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Abstract

We prove the convergence in law, in the space of continuous functions % ([0,77]), of the
Russo-Vallois symmetric integral of a non-adapted process with respect to the fractional
Brownian motion with Hurst parameter H > 1/2 to the Russo-Vallois symmetric integral
with respect to the fractional Brownian motion with parameter Hy, when H tends to
Hy € [1/2,1).
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1 Introduction

In the last years, great efforts have been made to develop the stochastic integration with
respect to more general integrators than a semimartingale. For instance, since 1993 Russo
and Vallois [13] have developed a regularization procedure, whose philosophy is similar to the
discretization. In that work, they have introduced forward (generalizing It6), backward and
symmetric (generalizing Stratonovich) stochastic integrals.

Our aim in the present paper is to study the continuity in the Hurst parameter of the law
in €([0,T]) of the Russo-Vallois symmetric integrals with respect to the fractional Brownian
motion B when H € (1/2,1).

In previous works, we have proved the continuity with respect to the Hurst parameter of
the law of the functionals given by the multiple fractional integrals with H € (1/2,1), the local
time (for any value of H) and the first order integral with H € (0,1/2), respectively (see [7],
[8] and [9] for more details).

It is worth pointing out that this kind of results justifies the use of Bf as a model in
applied situations where H is some estimation of the unknown true value of H.

We will prove in our main result (Theorem 3.13) that, under certain conditions, the law
(in the space of continuous functions) of the Russo-Vallois symmetric integral with respect to
the fractional Brownian motion with Hurst parameter H > 1/2, converges weakly to that of
the corresponding integral with respect to BH0 when H — Hy, with Hy € [%, 1).

Concretely, we will consider a family of stochastic processes {uH, H € Vp} where Vj is
an interval which contains Hy and each u" = {uf , t € [0,T]} is a continuous stochastic
process satisfying certain conditions. Our purpose is to show that the family {X H, H €V} of
stochastic processes given by XtH = fg uf dBf converges in law to X " in the space € ([0, T)),
when H — Hj.

For proving such convergence in law we will follow the usual procedure. First of all, we will
check the tightness of the laws and then we will show the convergence of the finite-dimensional



distributions. For the tightness we have to assume uniform bounds in H for the integrals of
the moments of the processes u" and their Malliavin derivatives. On the other hand for the
convergence of the finite-dimensional distributions we must suppose some conditions (uniform
in H) of regularity of the processes and their Malliavin derivatives. We also need to impose
the following joint convergence

Hq

2 W™, B

(', B") % (u )
when H — Hy in (4([0,77)).

In the case Hy = %, we have to assume some additional conditions of regularity of the
Malliavin derivative that are very similar to those previously known as sufficient conditions for
the existence of Stratonovich-type integral introduced by Nualart and Pardoux in [11].

We have organized the paper as follows. In Section 2, following [3], we give some prelim-
inaries about the Russo-Vallois symmetric integral with respect to the fractional Brownian
motion with Hurst parameter H > 1/2. We prove in Section 3 the main result about the
convergence in law of the Russo-Vallois integral process. To illustrate this result we show a
very simple application in Section 4. Finally, in Section 5 we give the proof of Proposition 2.3.

2 Preliminaries

Let B” = {B,', t € [0,T]} be a fractional Brownian motion with Hurst parameter H € (0,1)
defined on a probability space (2, %, P), that is a centered Gaussian process with covariance
function given by

1
R, (s,t)=E[B. B, | = §(t2H + 520 |t — s2H).
From now on we only consider a fractional Brownian motion with Hurst parameter H €
(%, 1) although Hy may be also equal to % .
Let . be the set of step functions on the interval [0,T]. Consider the Hilbert space 5

defined as the closure of the space of step functions . in [0,T] with respect to the scalar
product given by

<1[0,s]7 1[O,t}>%H = RH (Sa t)‘
This space contains elements that are not functions but they are distributions (see [6]). The
mapping 1jg,; — B: provides an isometry between the Hilbert space ¢’ " and the Gaussian

space %(BH) associated with B" . We will denote this isometry by ¢ — B" ().
Let |77 H\ be the linear space of measurable functions ¢ on [0, 7] such that

T T
||<,0||2 " :aH/ / |<Pr”$0u\|7“—u\2H_2drdu<+oo.
177 o Jo

It is not difficult to show that L%”H| is a Banach space with the norm || - H e and .7 is dense
in it. In addition, it has been shown in [12] that this space equipped Wlth the scalar product

<907 wH =« / / %«%V - u|2H 2drdu



is not complete but it is isometric to a subspace of . We can identify |7 H| with this
subspace.

Since B" is a Gaussian process we can develop a Malliavin calculus (or stochastic calculus
of variations) with respect to it. The integration with respect to fractional Brownian motion
has been tackled by different authors (see for instance [1, 5]) and even when the integrator is
a more general Gaussian process (see [2] for more details).

Let S be the set of smooth and cylindrical random variables of the form

F=fB"(),....B"(¢,)),

where n > 1, p, € " and f € €°(R™) (that is, f and its partial derivatives are bounded) .

The derivative operator with respect B" applied to a F' of the above type is defined as the
#" ~valued random variable

H " 6 H H

For p > 1, D" is a closable operator from LP(Q2) into LP(12, %H).
For any p > 1, the Sobolev space D;p is the closure of S with respect the following norm

IF|2 . =|F|P,  +E|D"F|?

H,1,p LP(Q) et

In a similar way, for a Hilbert space V, }D);p(V) denotes the corresponding Sobolev space
of V-valued random variables.

Another important operator of the Malliavin calculus is the divergence operator denoted by
§" (also known as Skorohod integral). This operator is the adjoint of the derivative operator.

We say that u € L2(Q,,%”H) belongs to the domain of (5H, denoted by Dom 5" if there
exists a constant C' such that

E({D"F,u) ,u) < C|F||

L2)’

for any F' € 8" . In this case § (u) is defined by the following integration by parts formula:
E(F§"(w) =E((D"Fu) ,u), FeD, .

The Skorohod integral satisfies the following properties:

(a) For any u € ]D);’z (:%”H) C Dom §" we have that

E(©" (u)? = Elul® u + E(D"u, (D"u)*)

w wH ot

where (D" u)* is the adjoint of D" u in the Hilbert space " @ " .

(b) For any F in D1-? and any u € Dom 5" such that Fu and F§" (u) — (DHF, u) ,n are

square integrable, we have that Fu € Dom 5" and

" (Fu)=F6" (u) — (D" F, u) ,u. (1)



We consider also |7 H| ® |2 "| the space of measurable functions ¢ on [0, T)? such that

=y /[ " |or.6||Pumllr — u|2H_2|0 — 77\2H_2drdud9dn < +o00.

)

The space |#" | @ |#" | is a Banach space with the norm || - |
equipped with the scalar product

e | As well, this space

(@, ) =a? /[ o Or0Uun|r — w210 — n[* 2 drdudfdn
0,

H H, —
| @t |

is isometric to a subspace of " ® " . We identify | | ® |.#" | with this subspace.
For any p > 1, denote by ]D)l’p(\ij |) the subspace of ]D;’p (%”H) formed by the elements u
such that u € [#" | as., D" u e |#" | @ |#"| as. and

E|u|? . + E|D"ul] < 4o0.
||

H H
|77 |27 |

The Sobolev space ]D);Q(L%”HD C ]]])22 (%H) is included in the domain of the Skorohod
integral §" and from the above properties we have

H

H
B" @) < Blul? ,, +EID"ul?

" e el
For any p > 1, the divergence of a process u € ]D)}{’p(L%”H |) satisfies the following inequality
of norms

(6" ) < Cp (Bl ) + EAD ull s u)) - (2)

We give now the definition of the symmetric stochastic integral introduced by Russo and
Vallois in [13] in the particular case in which the integrator process is a fractional Brownian
motion.

Definition 2.1. Let u = {u¢, t € [0,T]} be a stochastic processes with integrable trajectories.
The symmetric integral of the process u with respect to the fractional Brownian motion B" is
defined as the limit in probability when € tends to zero of
I " "
% J, Us(B(sieynr — Bls—epvo)ds;
provided that this limit exists and it is denoted by fOT utdBtH.

The following proposition gives sufficient conditions for the existence of the symmetric
integral in the case H > 1/2 and provides a representation of this integral in terms of the
Skorohod integral and a trace term (see Proposition 3 of [3]).



Proposition 2.2. Let u = {u, t € [0,T]} be a stochastic process in the space ID)}{’Q(L%”HD,
Suppose also that

T T
/ / |Dfut||t — s 72dsdt < +o0, a.s. (3)
o Jo

Then the symmetric integral exists and we have

g H H T e 2H-2
wdB, =9 (u)+ay D, ult — s| dsdt,
0 o Jo

where o, = H(2H —1).

A sufficient condition for (3) is

T T 1/p
/ (/ |D, ut|pdt) ds < oo,
0 s

1
for some p > 57—

Under the assumptions of the above proposition, the indefinite symmetric integral fot usdBSH =

fOT usl[oyt](s)dBf exists and for any ¢ € [0,T] can be decomposed as

t t T
/ usdB;H =5" (uljoy) +ay / / Dfus|s —r[2=2drds.
0 0 JO

From now on we use the following notation for the indefinite Skorohod integral

t
/ uS(SHBf = 5H(u1[0,t]).
0

In the standard Brownian motion case, Nualart and Pardoux defined a Stratonovich-type in-
tegral by means of a limit of Riemann sums (see Section 7 in [11]). In Theorem 3.1.1. of [10] the
following sufficient condition for the existence of this integral for a process
u € DV2(L2(0,T])) appears: If there exist D' "u and D"* u elements of L!([0,T] x €)

satisfying that
T

lim sup E|Di‘2’_ur - D;‘2u(r,y)v0|d7’ =0, (4)
=0 Jo o0<y<s
(resp.
T
lim sup E|D,” " u, — D, up_yparldr = 0,) (5)

6—0 Jo —6<y<0
then, the Stratonovich-type integral of u exists.
Furthermore, in this case one can define the trace as
|2 112,— 1/2,
Vz Uy = Dt Ut + Dt +7.Lt.
In the following proposition we will see that these conditions also imply the existence of
the Russo-Vallois symmetric integral. As well, this integral admits a decomposition in terms
of the Skorohod integral and the trace.



Proposition 2.3. Let u € DY2(L2([0,T))) be a stochastic process that satisfy conditions (4)
and (5). Then there exists the Russo-Vallois symmetric integral of the process u with respect
to the standard Brownian motion and, in addition, it admits the following representation

t t
1
/0 usclB;‘2 = 61‘2(u1[07t]) +/0 §V;‘2u7«dr. (6)

In order to lighten this section of preliminaries, the proof of this result is transferred to Section

5.

We will finish this section with the following lemma that provides an upper bound independent

of H for the norms || - HI%HI and || - H‘J,,ng‘X‘ij‘. See Lemma 3.1 and Lemma 4.1 of [7] for its

proof.

Lemma 2.4. For any f € L*([0,T]) and any H € (3,1) we have that
I, < CrllFIZ2qo.m)-
Moreover, for any g € L*([0,T]?) and any H € (3,1) we have that

2 2
||g||‘%nH‘®‘%ﬂH| < CT”g”LQ([O,T]?)'

3 Convergence in law of the Russo-Vallois symmetric integrals
with respect to B

Fixed Hy > %, we consider the family of stochastic processes {X H, H € Vp} defined by the

Russo-Vallois symmetric integrals with respect to the fractional Brownian motion
t
x" = {Xf :/ uLdB. , te [o,T]}, (7)
0

where V4 is an interval given by

with 1 < Hy < 1;

(1, Hs), if Hy= )

1
2
‘/0:

[Hy,Hs), if Ho> 3%, with 3 < Hy < Hy< Hy < 1.

Suppose that the stochastic processes u” satisfy the following block of hypotheses:
Block A :

There exists p > 2 such that

(A1)

T

H

/ sup Flu, |Pds < 4o0.
0 HeW



(A2)

T
sup / sup E|Dfuf|pdr =K, < +oo.
HeVo JO  z€[0,T)

Remark 3.1. The above conditions imply the existence of the Russo-Vallois symmetric integral
for the process u", when H > % By Proposition 2.2, this integral exists if u" € D}fﬂ%pHD

and -
E (/0 /0 |Dfuf||t— s|2H-2dsdt> < 400.

In fact, for H > % condition (A1) implies that u' e D}2(L*([0,T])) C D}{’Q(L}‘KHD and by

(A2) we have that

HY N 2H—2 g 7 H g 2H-2
E |Dg uy ||t — s dsdt | < sup E|D; u, | [t — s dt | ds
0o Jo 0 t€[0,7) 0

< G [ E|D} w'|ds < +
< up u S 0.
2H -1 Jo tepo.) -

In addition, Block A of hypotheses assures the existence of a continuous version of the Russo-
Vallois symmetric integral. This can be easily seen by using the following result (see Theorem

5, [3]):

Theorem 3.2. Let v = {u; , t € [0,T]} be a stochastic process ofDL’p(\c%”HD, where pH > 1

and assume that
T . T T pH
/ |Eu, |pdr+/ E (/ D, u, |1/Hds> dr < +o0. (8)
0 0 0

Then the integral X" = {fot udef, t € [0,T]} has a version with continuous trajectories.
Moreover for all v < H — ;1) there exists a random constant C., a.s. finite such that

H H
X - x|l <Gyl

In fact, the process u" satisfies the hypotheses of Theorem 3.2. By Condition (A1) we have
that the term

T
/ \Euf |Pdr < 4o0.
0

On the other hand, if p > 2 and H > %, pH > 1 and applying Holder’s inequality and
Condition (A2) we obtain

T T H H,1 P
/ E</ 1Dy u,, IHdS>
0 0

H T T -
dr < TPH—l/ / E|D, u, |Pdsdr < 4.
0 0



We will prove the convergence in law of the family of processes {X H, H € V,} showing
firstly the tightness of the family of laws and then, the convergence of the finite-dimensional
distributions.

3.1 Tightness

In the next proposition, we will prove the tightness of the family of the laws of stochastic
processes {XH7 H eV} in 9([0,T)).

Proposition 3.3. Let {XH}Hevo be the family of stochastic processes defined in (7) where the

processes {U’H}Hevo satisfy Block A of hypotheses. Then, the family of laws of {XH}HeVO in
the space of continuous functions € ([0,T)) is tight.

Proof. For any t € [0,T] we write

t t T
XtH = / uH(SHBH +ay, / / Dfu§|s — 21 =2drds.
0 0 Jo

Since Xé{ = 0, using Billingsley criterion (see Theorem 12.3, [4]) it suffices to check that for
any s <t . o
E|IX, = X,|” <CO(F(t) - F(s))'*® (9)

where «, 3, C' > 0 are positive constants and I is a continuous and increasing function.
In this case, for any s < ¢t we have that
P
. (10)

/ t uH (5HBH
S
Taking into account that the Skorohod integral satisfies the LP-estimates given in (2) we get

tHHHp
/ur(SBT
S

We shall now estimate each term of the right-hand side. By applying Lemma 2.4 and Hoélder’s
inequality we have that

t T
E|XtH - Xf P <ort (E +al B /0 Dfuf|x — P 2 drdx

E Co(Bllu" 1y I” . + BID" w110y |7

|| | @] \)

Blu" 1 4|l° < CoE|lu” s 22 0,27)

et
<C, (t—s)2 / E|u [Pdr.

From the following inequality
T, 1
cd< = +=d" Ve, d>0 and YV, ¢ >1 suchthat +— 1, (11)
p q 2

we obtain that

1
Ella" 1, g ]y, < o <p,(t—s> Sy (/ Elu, Pdr> )



Similarly, we can also estimate the moment of order p of the derivative

E|D"u" 14 |7 <c, E|p"u"1

stHLZ(OT] 2)

. t p/2
<C,T>'E (/ (/ 1D ) |2dr> da:)
s 0

t T
<CTT€-1(t—s)5—1// E|D. u, [Pdrdz.
s 0

Lo @™ |

From (11) we deduce that

1 ooy LT, N
e ol <C;, 2? (t—s)'2 + ? . E\D, u, |Pdrdx )

E|D"u 1[s gll?

Hence, we obtain

t
/ 5B

!

E

P 1 ;o1 t H e
<C;, (t — s)( ' 4 - (/ sup Elu, |pd7‘)
q s HeVy

T H H q/
(/ sup / E\D, u, |pdrdx> > .
HeVy

Now, we will study the second term of (10). For this, we will first apply Holder’s inequality
and then, Fubini’s theorem

p

t T
H H
» 2H -2
ol B / D, u, |z —r| drdx
s JO

t T - t T P
ok (/ / E\D, u, |P|z — 7“|2H2drdm> </ / |lx — r|2H2d7“dx)
s JO

<O, (t—s)P / / sup E|Dfu5|p|x77’\2H_2drdx
x€[0,7]

t
=C.(t—s)P 1aH/ sup E|Dfu5|p (/ |z — r|2H2d:E> dr
0 z€[0,T] s

T
<O (t—s)P™t sup / sup E|Dfuf|pdr
HeVp JO  z€[0,T]

<C K, (t—s)P L.

-1



Summarazing, for any s < ¢t we have that

1 t q
E‘|XtH —Xf|p <C, (p (t — 3) L 7 (/ sup Euf|pdr>
S

HeVy

</s 5161‘130/ E|D; ug d?”dx) >+C K, (t—s)P!

1 , 1 ¢
<C, (/(t — )G A=) 4 - </ sup E|uf|pdr>
' p q s

HeVy

1 ¢
+- </ sup / E|D uz| drd:z) . (12)
q s HeV

T T
Flx)==x +/ sup E|uf|Pdr +/ sup / E|Dfu5 Pdrdy.
0 HeW HeVvy

Define

F is a continuous and increasing function and by (12) we have that

EIX - X, P <C_, (F(t) - F(s))ZDFA\e-Dna

p,p', T
Finally, for any p > 2 there exist p’ and ¢’ such that ; + , = 1 and such that the exponent
(5 =1)p" A (p—1) A¢ is greater than 1. So, we have proved (9). O

3.2 Convergence of the finite-dimensional distributions

For any € > 0, we define the stochastic process

t
x™ = {Xf’s ;:/ u, “dB, , t € [O,T]}, (13)
0

where u;{ ° is an approximating process of u" defined by

H, e 1 t+e H

Uu

u =g - o ds. (14)

By convention we will assume that the process u vanishes outside the interval [0, T].

Actually, we can write y

, H
us = (u *:)(s) (15)
where @.(s) = Egp( ) denotes the approximation of the identity when ¢ — 0 given by the

function ¢(s) = %1[71,1](3).

Remark 3.4. It is not difficult to check that the Russo-Vallois symmetric integral of the process
ue given in (14) exists because u'" " is absolute continuous. Moreover, its integral is given by
the integration by parts formula (see [15]).

To prove the convergence in law of the finite-dimensional distributions we shall distinguish
the following cases in terms of the parameter Hy: Hy > % and Hy = %

10



3.2.1 Case Hy > %

Recall that in this case the interval V) has the form Vy = [Hy, Hp] with % < Hi < Hy< Hy < 1.
We will suppose that the family of processes {uH} Hevy also satisfies the following hypotheses:

Block B :
(B1)

T
H H
lim sup sup/ Elug fus_y|2ds:0.
=0 HeVy |y|<s

(B2) There exists p > 2 satisfying also p > 57— H 7 for which
T T H H H H
lim sup sup / / E|D, uy — D, us_,|[Pdrds = 0.
=0 HeVy |y|<s

Next, we state the following technical result that we will need early.

Proposition 3.5. Fiz Hy > % Let X" and X" be the families of stochastic processes defined
in (7) and (13). Suppose that {uH}HEVO satisfies Block A and Block B of hypotheses. Then,

lim sup E|X; —X,”|=0. (16)
e—0 HeVy

Proof. We have that

EIX - X HE|—E‘/ B!

t T
S E‘ / (uf B uf,g)éHBf " / / (Dfuf - Dfuf’€)|5 — P2 2drds
0 0 Jo

To prove (16) we will see that each term of the right-hand side tends to zero, uniformly in H,
when £ — 0.
From the LP-estimates for the Skorohod integral (see (2)) we can write

E’/ 5" B

By Lemma 2.4 we have

HHE

H H H 1/2
< Oy, (Bll” =" P o + BID" " = D "N )

H H,e
Ellu < CLE|lu" —u 17207

HW S
and

HHs H H H,e

H H
E|D v — ||‘7g,H|®‘7?(,H| C,E|D"u" - D"u HLZ([O,T]Q)'

It can be seen that the terms E||uH —u ||L2 (0,T]) and E||DHuH —-D"u" EH

to zero, uniformly in H, when € — 0.

(j0,7]2) converge

11



In fact, let us study the first term. By expression (15) and making an easy change of variables
we get

' — (5 0e)(s)] = |ulf — /R (s — 2)da

H H
< /R el — ulldy.

Applying Cauchy-Schwarz’s inequality, Fubini’s theorem and using that ¢. defines a probability
measure, we obtain that
2
ds

T
H H, e H H
Bl ~u ||%2([0,T])<E</O [ el =l lay

T
E (/ / g — ug]_ylz%(y)dyds>
0 R
T H H
= @E(y) E‘us _usfy| ds | dy
R 0

T

H H

< sup sup/ E|ug fus_y|2ds.
HeVp |y|<e JO

Then condition (B1) implies the desired convergence to zero of supycy, £ HuH —u 12, (0.7])"
In a similar way, using condition (B2) (it suffices to take p = 2), one can show that

H Hs||2 5—>00

E|ID"u" =D ]

)

uniformly in H.
It remains to check the convergence to zero of the following term

t T
fo / / (Dfuf - Dfufgﬂs — 2 72drds|. (17)
0o Jo

Remember that the parameter H € Vi = [Hy, Hp] with % < Hy < Hy < Hs.
By Fubini’s theorem we have that

T T
H/ / (D, D u Vs — 22 2drds
o Jo

H H,e

T T
aH/ E|D u — D, u, " ||s —r*2drds
o Jo

T T
aH/ / </ E|D u - D, fy|90s(y)dy> |s — T|2H72d7“ds
0 JO
) H
aH/R </0 / BID, uy = Dy uyylls = 7P _2drd3) pe(y)dy.  (18)

12



If H > H;, there exists a constant C’Tﬂ1 > 0 such that

2H—2 2H, -2
|s — 7| S Crpyls =77
and thus, we have that
/ / E|D D uS ylls— r?H2drds < / / E|D D us ylls— r|2H1=2drds.
Applying Holder’s inequality with the particular value of p > ﬁ which has appeared in
condition (B2) and its conjugate ¢ = -5 > 1 which satisfies that q(2 —2H;) < 1, we have

/0 /0 E|Dfuf - Dfuf_st — r[21=2gpds

T T - - Ve , T pT /g
< </ / E\D, u, — D, us_y\pdrds> (/ / |s — 7"|(2H12)qdrds> .
o Jo

From condition (B2) we can deduce that

l/q T T H H H H 1/p
Coron (/ / r|(2H12)erds) sup sup/ / E|D, u; — D, u,_,|Pdrds
! HeV Jyl<e JO  JO

(19)
is an upper bound of (18) and taking into account that
T T
aH/ / |s — r|CH1=2agprds < CTH ,
0o Jo
expression (19) converges to zero uniformly in H € Vj, when ¢ — 0.
O

Remark 3.6. Lets note that in this proof the only step where we use that Hy > % is when we
study the term (17). Thus, if Hy = % we must to pay special attention to this term.

3.2.2 Case Hy = %
In this case Vp = [Ho, H] C [, 1). We will also assume that the family of stochastic processes
{uH} nev, satisfies the following condition:

Condition C :
(C) There exist D" and D" u" elements of L'([0,T] x Q) satisfying

T
lim sup / sup E|Df’_uf - Dfu:iy|dr =0, (20)
=0 Hevp Jo  0<y<é

(resp.
H

T
lim sup / sup E|DH+ - Dfuf_y|dr =0.) (21)
0

=0 Hey, —§<y<0

13



If the u"" satisfy Condition C then we can define a kind of trace (inspired in the case H = 1/2)
of u" as

Vt Uy —Df+uf+Dt uf
Remark 3.7. Note that if Hy = %, due to conditions (C) the process u' is Stratonovich
integrable because it satisfies conditions (4) and (5) (see Proposition 2.3).
Furthermore, conditions (C) and (A2) imply that

sup / E( \D )dr < 400 (22)
HeVy
(resp.
sup / E( |D )dr < +00.) (23)
HeVy

The following proposition is similar to Proposition 3.5 but only refers to the standard
Brownian motion.

PI“OpOSltllon 3.8. Let B'"” a standard Brownian motion. Suppose that the stochastic process
1|2 1]2

={u, ", t €[0,T)} satisfies conditions (4) and (5). Then

t t
/ u, " dB," / uydB.”
0 0

Proof. For all € > 0 the Stratonovich integral of u'"** can be expressed as

lim F

e—0

=0. (24)

t
/OuLQ’EdB; —5" ((u 1[0t] _‘_7// Dl|2u1|213 55+E]( r)drds, (25)

because the trace of (u1|21[07t])5 gives

2 1]
Va2 (w'P194)%) / D12u121[0t]()

.. 1)2
In a similar way, for u ~ we have

. t
1
/ u.’dB,” :61‘2(ull21[o,t])+/ §Vi‘2uil2d7‘ (26)
; 0

From expression (25) and using some arguments of the proof of Proposition 2.3, we can obtain
the convergence in L?(f2) of the first summand of (25) to the first summand of (26) and also,
the convergence in L!(Q) of the second summand of (25) to the second summand of (26). This
concludes the proof.

0
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For the proof of the next proposition we will make use of the following approximation of
the identity when H | 3
Yy (s) = cHls‘QH_Ql[—T,T](S) (27)
where
2H —1

€ = op2H-1

(28)

Observe that when Hy = % condition (B2) does not make sense. Instead of this condition
we will assume

(B2’)

T T
lim sup sup / / E\Dfuf - Dfuiy|2drds =0.
0=0 HeVy |y|<s

Proposition 3.9. Suppose that {uH}Hevo satisfies the blocks A and B (with (B2’) replacing
(B2)) of hypotheses and Condition C. Then, given p > 0 there exist € > 0 and n > 0 such that

s E|X, - X, <p (29)
and 1|2 1|2,
EIX," - x," < p. (30)

Proof. To prove this result, we will see that, at least for a small enough ¢ > 0, each term of
the following majorization tends to zero, when H — f:

t
EXf—Xf’E|<E‘/O(uf— // D u - ffs)|s—r\2H72drds

(31)
In the proof of Proposition 3.5 we have seen that the first term tends to zero, uniformly in H,
when ¢ — 0.
Recall that (see for instance Remark 3.6) the main term that we have to treat for the case
Hy = % is the second term:

t T
H H H H, —
aH// (D, ug — D, ug " )|s — r[*2drds|.
0o Jo
We can write

T
aH//(D Ug DHuH€)| —s|?H2drds
0Jo

E <Al(H)—FAQ(H)—FAg(H,E)—|—A4(H,6)—|—A5(H,E),

15



A(H)=F|«u / / D U |7‘ s|*1~2drds — c,, / / D Ug |7° s[*#2drds|

As(H)=F|c / / D U |r |21 =2drds — / V U, Yr|,

1
As(H,e)=FE / VHqu / (/ Dfuidm) dr|,
0 2e r—¢
1 [Tt e
Ay(He) = FE / ( D Uy dx) dr—cH/ / DH . Ir — 5?0 2drds|
0

As(H,e) = FE|c / / DH H5|r—s|2H_2drds—ozH/ / DH o Ir — s|*H2drds|,

with ¢,, defined in (28).
Notice that the term % f:t Dfufdm which appears in As(H, ) and A4(H,e) plays the role

of the trace V' u"
Next, we will see that each one of these terms becomes small when H is close to 3 L at least for
some € > 0:

e For the first term we have

T T
A1(H) = o, —c,|E ‘/ / D)l |r — s]?P2drds
o Jo

T T
< oy, — cH|/ sup E|Dfuf| </ |r — s|2H_2ds> dr
s€[0,1 0

T 2H—1
H|2H
= [2HT?1 — 1|KL1)/”,

< ey, Kllj/p

where we have used condition (A2). On the other hand, the term [2HT?#~! — 1| tends

to zero as H — 1/2.Thus, A;(H) converges to zero as H — 3.

e We can bound the term Az(H,¢) in the following way

As(H,e) = lay —cy|E

1 s+e
<2 Dfugdw) Ir — s|?H~2drds
2 S—

€

< ay / / / sup E]Dfuﬂda; r — s|?H ~2drds
25 s—e xz€[0,T]
7 H g 2H-2
< ay — eyl ; Sl[épT]E|Dr Uy | ; [r — s] ds | dr
x€|0,

< [2HT?H -1 KVP.

Therefore, As(H,e) becomes small when H is close to %, for any € > 0.

16



e Now we will study the term Ay(H). Using the approximation of the identity defined in
(27), this term can be expressed as

[ (bt~ il o)

E

with

1
sVl =0l v, = [ v (5970 DI )

Using Fubini’s theorem we obtain the following equality
T/l _uwn H H T T H H H H
ivr Uy — (Dr u, * 7/’11)(7") dri=F dJH (y) (§Vr Uy — Dr Uy )d’l” dy
0 -T 0
For any ¢ € (0,7) we have that
"1 _wow H H
¢H (y) (/ 7vr Up — DT ur—ydr) dy
ly|<6 0o 2

T
Yy (y) (/ *Vfuf — Dfuf_ydr> dy| .
ly|>5 0o 2

E

AyH)< E

(32)

+F

We will insert the following term

H—- H H+ H
Dr U, 1{O<y<(5} + D’r‘ Uy 1{—5<y<0}

into the first summand of (32). Then, we have that

1Vfu — dr dy‘
y‘<5 2

T 1 i |
E‘/ </ < Vit = (D ur Locyssy + Dy ur 1{—5<y<o})> dr) dy‘
y\<6 0

3V tr =
+ E‘ |<6 (/ — Dfuf_y) dr> dy‘.
ly

(33)
By applying Fubini’s theorem and the symmetry of the function v, we obtain that the

2|

Uy Lioey<sy + Dy up 1 sey<oy)

17



first summand is equal to zero. In fact, we have

T /q . |
‘/||<5 V) </0 <2Vfuf - (Df uf1{0<y<6} +Df+ufl{—5<y<o})) dr) dy’
RS

- ' GVfuf ( ly@%(y)dy)
D! < / 5 wH<y>dy> — D ( / 05 wH<y>dy>> dr]
- ) (Df"uf (; U= / 5wH<y>dy>

prr (L d ’ d d
+ r Uy <2 ‘y|<5wH(y) y_/(st(y) y)) T"—O.

The second summand of (33) can be bounded by the following sum whose terms tend to
zero when J goes to zero

H,— H H H

T
E‘ (y)/ (Dr’ Wy — Dr )1{O<y<6}drdy‘
ly| <o 0

H+ H H H

T
+ E’ (y> / (Dr , u, — D, u )1{ 5<y<0}drdy‘ (34)
ly|<d 0
In fact, taking suprema in the first summand over H and y we have

T
H—- H H H
Bl [ [ 08wl = Dl ) 1ocy <y

T
H— H
< | sup sup/ E\D,” w, — D, Ty|dr / U, (y
HeVy 0<y<d JO

Now using condition (20) we have that we can choose § such that the term

ly|<o

T

sup sup / E|Df’7uf — f f yldr
HeVy 0<y<dJO

becomes sufficiently small. By similar arguments to those used above one can see an

analogous result for the second summand of (34).

We next detail the steps of the treatment of the second term of (32). On one hand we
have that
1 H o
E‘ Y, (y) ( V u - D, u,,ydr> dy‘
0

ly|>6

dr) dy.

T
l_w = H H
< wH(y) </ E‘2vrur 7D1" Up_y
[>5 0

18



From condition (A2) and inequalities (22) and (23) we have that

T
1
sup sup / E ’Vfuf — Dfuffy dr < 400.
He(5,5+n) vel0,T] 2

Moreover, using that v, is an approximation of the identity when H | %, for the § chosen
in the treatment of (34) we have that:

H|L
7#H( )dy — 0.
ly|>6
Thus, we deduce that
£|
y|>5

becomes small when H is close to %

The term As(H,e) can be bounded as follows

Ag(H,e) < / (/ EID u) — D) |dm>
1 T r H— H H H
+— E\D,” u, — D, u,|dx) dr
2e 0 r—e¢

1 T
<= sup/ sup E|DH+ " D Uy |d’r‘
2 Hevy Jo z€[r,r+e]

1 T _
+ — sup / sup E\Df uf - Dfu:| dr.
2 Hewy Jo zE€[r—e,r]

Using condition (20) we have that given p > 0 there exists ¢, > 0 such that for any
€ < g, we have

sup As(H,e) <
HeVy

M\b

We proceed now to finish the proof with the treatment of the term A4(H,¢).

By Proposition 3.5, there exists £; such that the first summand of (31) is lesser than p
for any 0 < € < €1. On the other hand, by Proposition 3.8, there exists €2 such that for
any 0 < € < &y inequality (30) is also satisfied. From now on, fix an € > 0 such that
e<egNer Neg.

19



Similar arguments to those used above give
T T r+e
1 e
:E'/TwH(y) </0 (26 D Uy, dm—DHuH )dr) dy‘
r—y-+e

¥, (y) (/ ( / D u dx—— Dfujdx)dr)dy

lyl<e 0o \2 2 Jyoyc
1 r—y+e

Y, (y (/ < / D dr — —/ Dfu:da:) dr) dy| .

ly|>e 0 2e 2e r—y—e

(35)

<E

+FE

The first summand of (35) can be bounded by

T pemevemve
E Vi (y) </ (25/ D, u, dm) dr) dy
lyl<e 0 (r—e)A(r—y—¢)
T 1 (rte)V(r—y+e) b
+E V() </ (25/ D, u, dx) dr) dy| .
|y‘<5 0 (r+e)AN(r—y+e)

So, applying Fubini’s theorem we have that

T (1 (r—e)v(r—y—e) -
1/)H (y) / o~ / Dr Uy dx | dr dy
lyl<e 0 \2J npmye

(r—e)A(r—y—e)

E

(r—e)V(r—y—e)

T 1 - -y
é/ Vi (y) </ (/ sup E\Dfugdaﬂ dr | dy
lyl<e 0 \ 26/ gn(y-e) @€
T 2H-1
é/ sup E|Dfuf| / %dy dr
0 \ze7] yl<e  2€

(2H — 1)€2H_1 /T H H
= sup E|D, u, |dr.
SHT?H=1 o e o

For H € (%, % + 77) we have that this term becomes small if > 0 is small enough.

We treat now the second summand of (35). This term can be bounded by

T 1 r+e " oH
on) ([ (5 [ B0l an)ar)ay
ly|>e 0 2 r—e
T 1 r—y-+e
+ Y, (y) (/ </ E|Dfu§|dw> dr) dy.
lyl> o \2e /iy .

Taking supremum on x we obtain the same upper bound for each of these terms:

T
/ b (9) / sup ED"u”| dr | dy. (36)
ly|>e 0 z€[0,1]
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Thus, condition (A2) and the following computation

ly|>e T

vady =1 (2)

1

imply that (36) tends to zero when H — 3. This concludes the proof.

O

In order to prove the convergence of the finite-dimensional distributions of {X H} we
HeVy

will use that X" is a continuous functional of (uH,BH). Indeed, first of all, applying the

integration by parts formula (see for instance [13]) we have that

H,e H
0 0

t t
X, :/ u,"dB. =u, "B —u) B 7/ (u, ") B, ds
0

0

1 t+e t 1
~ (o [ )= [
26 t—e 0 25

ste / "
/ u, dr) B, ds. (37)

s§—¢&

Suppose that 0 < e < % Taking into account the convention that w is null out of the interval

(0,77, the term fot (uf’s)’ B. ds has a different expression depending on the value of ¢:

(i) If 0 <t < e then

¢ H,e H t Us+e H
/ (ug, ") By ds :/ B, ds.

0 0 2e

(ii) If e <t <T — ¢ then

(iii) If T'—e <t < T then

Uste = Us—e pH 4

t £ t
[wynlas= [ ieplas s [t
0 0o 2 €

2e s

t IS5 T—e t
e — Ug_ 0— ug—
/<u5 VB ds = / Uste pH g 4 / Uste ~Usme ph o | / 07 sme pit .
0 0 €

2e 2e

T—e 2e

We next see that the functional of " and B" involved in (37) is continuous.

Lemma 3.10. Fized 0 < e < % we define the map

e (€(0,1])? —  €([0,7))

(z,y) = Uz y)(8) = W) (0)y(t) — fy y(s) W5 (a(s))ds,

with

1 (t-‘rE)/\T
TS (x)(t) := 2—/ x(s)ds,
€ J(t—e)vo
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and
z(tJrE) ifO<t<e,

S(l‘)(t) — x(t-i—e) —z(t—e) 7 ng t<T—¢,
00 f T —e<t<T.
Then V¢ is continuous.
Proof. We have that
WS (x — [ly(s) 255 ds, 0 < t < e,

WE () ()y(t) — [ y(s) L) ds — [Ty(s wds, <t<T—e¢,
\Ilg(m,y)(t): 1( )() () fO ( ) 2e f

W (2) (8)y(t) — f yls) 5ED ds — [T72 y(s) 2letelzloze) gy
— fry(s) T ds, T—e <t < T.

Notice that the functional ¥¢ really takes values in € ([0, 7)) and it can be easily checked that
is a continuous map from %'([0,77)? into €([0,T)). O

In the following lemma we will prove the convergence in law of {X H’E} Hevy 10 X 1o i
%([0,T]), when H — Hp, for all 0 < e < T/3.

Lemma 3.11. Let {uH}HeV0 be a family of processes with continuous trajectories such that

(uH’BH) ;j} (uHO BHO),

n (¢([0,T)))* when H — Hy. Then for all Hy € [3,1) the family of processes {XH'E}HGV0
defined in (13) converges in law to X" in €([0,T]) when H — Hy.

)

Proof. From expression (37) and Lemma 3.11 we have that X" = e (uH , BH) is a continuous
: H o H .
functional of (v~ , B ). So, using that

(", B") 5 ("

Hq

B ),

when H — Hy in (4'([0,7]))? we obtain the desired result. O

Now we have the necessary ingredients to show the convergence of the finite-dimensional dis-
. . . H
tributions of the family of processes {X" },_,. .
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Proposition 3.12. Let {XH}HEV0 be the family of Russo-Vallois stochastic integrals defined

in (7). Suppose that the family of stochastic processes {uH}HEvO satisfies Block A and Block
B of hypotheses if Hy > % and, in the case Hy = %, blocks A and B of hypotheses (with (B2’)
replacing (B2)) and Condition C. Moreover, assume that

(uH’BH) i (uHO7BHO>)

in (€(]0,T)))? when H — Hy. Then the finite-dimensional distributions of X converge to
those of X" when H — Hy.
Proof. e Case Hy € (5,1):

1
2
For all t1,...,tm € [0,T] and g € €} (R™) we write

H H Hy Hy

[Elg(Xeys o Xp, ) = Elg(Xe, 5o X, I < Tiles H) + Tale, H) + T3(e),

where u o . .
Tl(f‘:a H) = |E[9(Xt1a' . 'aXtm)] - E[Q(Xh’ yeo )XtW; )”7
H,e H,e Hq,e Hq,e
T2(57H):|E[9(Xt1 7'~~7Xtm )]_E[g(tho a"'ath(l) )H
and H H H H
Ts(e) = |Blg(X,," ... X)) = Elg(X,,", .., X )]

On one hand we have that T} (e, H) is bounded by

H H,e
Cy max sup E|X, — X, |
j=1,....,m 7 7
J=4-m HeVy

By using Proposition 3.5, we have that this term tends to zero when ¢ — 0.

In an analogous way we can show that T5(¢) is bounded by

Hg Hop,e
Cy max sup EF|X, —X,
J=Ll..m gev, J J

and using again Proposition 3.5, we obtain that the term T5(¢) tends to zero when ¢ — 0.
Thus, given n > 0 we can take a small enough ¢ > 0 such that T1(¢, H) < 2 and
T3(e) < 3.

Finally, the remaining term Ts(e, H) tends to zero when H — Hy. In fact, as a conse-
quence of Lemma 3.11 for the € > 0 taken above we have the following convergence

H.e

L(X0 LX)

) tm

Ho,s

Hg,e
)—>$(th0 7”'7Xtm )7

when H — Hj. This completes the proof in the case Hy > %
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e Case Hy = %:
For all t1,...,tm € [0,T] and g € €} (R™) we write also

H H 12 12

|E[9(Xt17‘ . ‘7Xtm)] - E[Q(th 7"'7Xtm)]| < T1(5>H) +T2(5>H) +T3(5)7

where o o o .
Tl((':?H) = |E[g(Xt1a' . -aXtm)] - E[g(th’ PR >th; )”7
H,e H,e 1]2,e 1]2,e
TQ(EvH):|E[g(Xt1 7"'7Xtm )]7E[9(Xt1 v~~~aXtm )H
and 1/2 12 12 1]2
Ty(e) = |Elg(Xy, -, Xy, )] = Elg(Xyy 5o X, )N

On one hand we have that Tj(e, H) is bounded by

C, max E|X, — X, |

7j=1,....m

and the term T3(¢) is majorized by

12 1)2,e
C, max FE|X. — X,
9. t; t

7j=1,....m

Using Proposition 3.9 we have that given p > 0 we can take € > 0 and 7 > 0 such that
it He (%, % +n) then Ti(e, H) < p and also T3(¢g) < p.
Taking the € chosen above and applying also Lemma 3.11, we deduce that the term

Ty (e, H) converges to zero when H — Hy. This fact finishes the proof.
O]

As a consequence of Proposition 3.3 and Proposition 3.12 we obtain the main result of our
work.

Theorem 3.13. Let {uH} Hevy be a family of stochastic processes with continuous trajectories
such that satisfy Block A and Block B of hypotheses if Hy > % and, in the case Hy = %, blocks
A and B of hypotheses (with (B2’) replacing (B2)) and Condition C. Moreover, assume that

<z Hg

w",B") % (", B™), (38)

in (€([0,T)))*> when H — Hy. Then the family of the laws of the Russo-Vallois stochastic

integrals {XH}HEVO defined in (7) converges weakly to the law of X" in the space of continuous
functions €([0,T]) when H — Hj.
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4 Example

Now we give an example of a simple family of stochastic processes {uH} HeV, with continuous
trajectories to which Theorem 3.13 can be applied.

Example 4.1. Let {uH}HEVO be the family of stochastic processes defined by o = {uf =

B?(t), t € [0,7]} where f:[0,T] — Ry is a continuous function on [0,T] and Vo = [3,1) .

Let {XH,H € o} be the family of Russo-Vallois stochastic integrals defined in (7) for these
H

u . Then,

H & _ Hy

X =X,
when H — Hy in €([0,T)) for each Hy € [3,1).
Proof. We will check that the family {uH} satisfies the assumptions of Theorem 3.13.
e Condition (Al): There exists p > 2 such that

T

H

/ sup Flu, |Pds < 4o0.
0 HeW

In fact, for all p > 0,

T T
/ sup E|B}{(s)|pds < Cp/ sup |f(s)[PHds < +o0,
0 HeW 0 HeV

because f is a continuous function on [0, 7).
e Condition (A2): There exists p > 2 such that

T
sup / sup E|Dfug |Pdr = K, < +o0.
HeVp Jo  z€[0,T]

We know that Dy By, = 1p,s(s)(r). Thus,

T T

H __H

hsiup / sup E|D, By, [Pdr = sup / sup ljg p(sy(r)dr < T < +oo,
€VoJO s€[0,T] HeVp JO  s€[0,T]

e Condition (B1)

T
. H H
lim sup sup/ Elug —us_y|2d5:0.
=0 HeVy |y|<sJ0

In this case, we must take care of the prolongation of the process u” by zero out of the

interval [0, 7] (this can be done defining f(s) = 0 for any s € [0,7]¢). Suppose § < %
Then, we have that
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T T
H H H
sup sup/ E|ug —us_y|2d3< sup sup / E|us| ds+ sup E|ug \st}
HeVp |y|<s JO HeVp * 0<y<o —0<y<0JT—¢

T T-5
+ sup { sup / E|uf — Uy y| ds+ sup / E|uf —uf_y|2ds}
0

HeVy ~0<y<d Jé —d<y<0
d T
< swp { s [ipPas e s [ (o) as)
HeVy ~ 0<y<d —o<y<0JT—6

T—6
+sup { sup / F(9)— F(s—y)PPdst sup / 7(8) = (s — )P ds

HeVp ~ 0<y<o —d<y<0J0
(39)

Letting § — 0, the first term in (39):
T
o { s [P s s [ sptas),
HeVy ~ 0<y<d —o<y<0JT—§
converges to zero because |f(t)|* can be bounded uniformly in H and in ¢ and the
length of the intervals [0, 4] and [T — §,T] tends to zero.

On the other hand the remaining term in (39)

cup { s [ 1500 - p)Pas+ s [7 1500~ sts s}

HeVy ~ 0<y<d —d<y<0

can be bounded by

0<y<d —5<y<0

T T—6
Cf,T<sup /5 F(s) = (s —9)lds + sup /0 If(S)—f(s—y)|d8>-

Since f is uniformly continuous, this expression tends to 0 when § — 0.

e Condition (B2) (or Condition (B2’)): For any p > 2

T /T
H H H H
lim sup sup// E|D, uy — D, us_,|[Pdrds = 0.
6—0 gev, ly|<d 0
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We have that

T T
sup sup / / E|DfusH — Dfuiy\pdrds
0

HeW |y|<s JO

T T
< Sup{ sup / / E|D U |pdrds+ sup / / E|Dfuf|pdrd8}
HeVy ~ 0<y<é —d<y<0JT-5J0

T-6
+sup sup // E|D D us y|Pdrds+ sup / E|D u D us 7 drds}
HeVp * 0<y<d —0<y<0

< sup Lio. ¢(sy(r)|drds + sup / / Lio. ¢(sy(r)|drds
0<y<6/ / | [Of() | —0<y<0JT—6 | [Of() |

+ sup / / |1[0,f(s)](7’) — 1[07f(s_y)](7’)|d7’d8

0<y<d
T—s
sup / / 1110, £y (7) = Ljo,f(s—y)] (7)|drds.

—6<y<0

The first two summands of the above expression tends to zero when ¢ — 0.

We have that

T T

sup // 0.£(s)](r) = Lo, f(s—y)) (r)|drds + sup / / L0,£()) (1) = Ljo,f(s—y)) (r)|drds
0<y<d —o<y<0JT—-6 J0O

< sup / / FEAL (=), (f(s)V f(s—y))) (T)drds

0<y<d
T—6
+ sup / / (IAF(s—),(F(5)V F(s—))) (T)drds
—6<y<0

T—6
< sup /5 F(s) — f(s—)lds + sup / F(8) — F(s — )lds.

0<y<o —6<y<0J0

Taking into account that f is uniformly continuous we have that the last terms tend to
zero, when § — 0.

e Finally we will check Condition C.

H,—

We have the following candidates for the derivates D" iD

lim Dy, = hf(f)l Lo, ¢ (r+)) (1) = Ljo,£(r (1)

h—0T
and
s Dy uyy), = S Lo, ) (1) = Lo, (1):
respectively.
So, we will define e
Dy uy = 10,5 (r)
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and
H— H

Dy oy = Ly g (7)-
Now we will check that Condition C holds.
For any r € [0,7] and 0 € (0,7/3), let m _; = minycjo5{f(r—y), f(r)} and
Mr,6 '= MaXyco,d] {f(?“ - y), f(?“)} Then,

H H

T T
H,— H
sup/ sup E|D, uw, — D, u,_ dré/ sup lyr— ), (f(r— ) (r)dr
Hevo Jo 0eyes | yl 0 0ey<s [Fr—AF ). (Fr—y)V i) (T)

T
< / 1[mr6’Mr5](T)dT
0 : :

and this term tends to zero when § — 0, by the Dominated Convergence Theorem.

In a similar way one can prove that

T
H+ H H H

sup/ sup E|D," w, — D, u,_,|dr — 0,

HeVp Jo  —d0<y<0

when 6 — 0.

Now we will check that

Hop Ho

w”,B") L ("™, B™)

in the space of continuous functions (%([0,7]))? where H — Hj.
Since the function f : [0,7] — Ry is continuous, we can assume that it takes values on an
interval [0,7”] such that [0,7] C [0,T"].

Define the following functional

U 2(0,T) — (€(0,T))>
T — U(x) = (xof, x\[oﬂ)a

where x|, .. denotes the restriction of 2 to the interval [0,T7.
It is easily checked that ¥ is continuous. Moreover, we have

).

Since {B"} converges in law to B0 in the space €([0,T"]) and ¥ is continuous, we deduce
that

H

w",B"y=(B" o f,B")=W(B

(u ,B") = (uflo, BHo),

in (¢([0,77))
We have checked that the assumptions of Theorem 3.13 are satisfied and then the convergence
in law that we wanted to prove follows. O
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5 Proof of Proposition 2.3

Proof. The proof of this proposition will be decomposed in two steps.
From property (1) of the Skorohod integral we have that for all € > 0

1\2 \ 1 t 1]2
7/ us s+a_ s e)dszfg us0 (l[sfs,erE]('))dS

1
= o 8 et o [ D et g s
1]2 1 t
=5 <<u1[o,ﬂ>€>+% [0 w1 ra Ol ooy s
t s+e
= 5" (1)) + / / D drds (40)
2e 0 Js—e
where we have used the notation
1 s+

e Step 1:

For any u € D'2?(L*([0,77)), and ¢ € [0,T], the family (uljy,)® approximates uljyy in
the space DY2(L2([0,T])) and as a consequence we obtain the convergence in L?(€2) of
the indefinite Skorohod integral:

12

— I
5" (ulpg)?) =2 6" (ulp ).

In order to show this, we will prove that for any u € DV2(L?([0,T])) we have that

E(|lu® - || 0T]))—>0, ase — 0 (41)

and 1]2 1)2
E(|D v —-D u||L2([O7T]2>) — 0, ase—0. (42)

We will only see (42), the proof of (41) is similar but simpler.
Observe that for each r € [0, 7]

Dimug = Dimu * (e
and then, using Young’s inequality for convolutions, we have that

12 1]2 1]2
1Dy w2 o,y < 11Dy ull 2o, lellro,ryy = 1Dy wll2qo,1) »

which implies that

T T
sup / / D, us — D, u,Pds dr < 210" w2 g 92y € L1
0<e<1Jo 0
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So, if we show that
||D1|2u5 - D1|2u||%2([0’T]2) — 0 almost surely, (43)
we can conclude by using the Dominated Convergence Theorem. But, for any r € [0, T]

and any w € )

T

T
1]2 1]2
/ |D, "uS — D, ug|*ds — 0 ase — 0.
0

Moreover
T 1]2 1]2 2 T 12 2 1
sup / |D. " us — D, us|®ds < 2/ |D, " us|“ds € L*([0,T7),
0<e<1J0 0

therefore (43) follows by dominated convergence and this finishes the proof of (42).
Step 2:

We will study the convergence in L'(Q) of the second summand of (40) to the trace term,
that is:
1 t
% <D ul[s 55+5]>L2(OT)d5— // D *usl [s—e,s+¢] (T drds—>/ V *updr,
0

when € — 0. Recall that
12, +

12 1)2,—
V, 4 =D, wu +D,
Taking into account this identity, we will insert the following term

1)2,—

12,4+
D, Urlipcscrqe) T D, Urly ccsary

t 1 r+e t 1
E‘/ — D:,‘Qusds dr—/ fVilzurdr‘
0 26 \Jr—e 0 2

and we have that this last expression can be bounded by

trq e )2 1)2,— 12,4+
E‘ / <2€/ (Dr us — D, Url{r<s<r+s} - D, uT]—{rs<s<T})dS> dT“

into

112,—

" 1
* E‘ / <28 / (D, url{r<s<r+5} + Dll2 Ur].{r—6<s<r} - 2Vil2ur)d5> dr‘, (44)
r—e

The first summand of the right-hand side tends to zero when ¢ — 0. In fact, we can
write

t 1 r+e 1|2 1)2 2 4 12
E‘ o \2¢ (D, u,” = D", 1{r<s<r+e} D,y L —ecscry)ds dr‘
r—E&

t 1 T
< E‘ / (/ (Dipuy2 - Diz’uiz)ds) dr‘
0 2e rT—€

L Y L T 12 4 12
+E‘/ (/ (D, uy, — D, Tu, )ds) dr‘
0 2e r
112 1]2

t t
g/ sup E|D1l2u1|2—Di‘z’fui‘2|dr+/ sup FE|D, u, — D,
0 0

r—e<s<r r<s<r+e

12 4 1\2

- |dr.
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Hence, conditions (4) and (5) imply that this term tends to zero when ¢ — 0.

On the other hand, one can find a properly expression for the second summand of (44)
and check that it is equal to zero

tr1 T 12 1
’ 2 (D" urlpcsaryey + Dr T up Ll _ccgony —§Vrur)ds dr‘
r—E&

VA Y LR IR
= ‘ % D, Tuplfpcscryeyds | dr — 3 D, "uydr
0 € Jr—e 0

tr1 frte 12 4 1 [t 2
—|—/ —/ D, Tuply csoryds dr—f/ D, urdr’
0 2e r—e 2 0

=0.

Thus, we obtain the desired convergence in L(£2) of the trace term

1 T Pl e
?g ) <D u71[s5,8+5]>L2([0,T])d5_>/0 er urdr,

when € — 0.

O

Acknowledgement
The authors are supported by the grant MEC-FEDER Ref. MTM2009-08869 from the Di-
recciéon General de Investigacién, Ministerio de Educacién y Ciencia, Spain.

References

1]

Alos, E., Mazet, O., Nualart, D. Stochastic calculus with respect to fractional Brownian
motion with Hurst parameter lesser than % Stochastic Process. Appl., 86 , no. 1, 121-139,
2000.

Alos, E., Mazet, O., Nualart, D. Stochastic calculus with respect to Gaussian processes.
Ann. Probab., 29, no. 2, 766-801, 2001.

Alos, E., Nualart, D. Stochastic integration with respect to the fractional Brownian
motion. Stochastics and Stochastics Reports, 75(3):129-152, 2003.

Billingsley, P. Convergence of probability measures. John Wiley & Sons Inc., New York,
1968.

Decreusefond, L., Ustiinel, A. S. Stochastic analysis of the fractional Brownian motion.
Potential Anal., 10, no. 2, 177-214, 1999.

Jolis, M. On the Wiener integral with respect to the fractional Brownian motion on an
interval. J. Math. Anal. Appl. 330, no. 2, 1115-1127, 2007.

31



Jolis, M., Viles, N. Continuity with respect to the Hurst parameter of the laws of the
multiple fractional integrals. Stochastic Process. Appl. 117, no. 9, 1189-1207, 2007.

Jolis, M., Viles, N. Continuity in law with respect to the Hurst parameter of the local
time of the fractional Brownian motion. J. Theoret. Probab. 20, no. 2, 133-152, 2007

Jolis, M., Viles, N. Continuity in the Hurst parameter of the law of the Wiener
integral with respect to the fractional Brownian motion.  Statist. Probab. Lett.,
d0i:10.1016/3.sp1.2009.12.011

Nualart, D. The Malliavin calculus and related topics, Probability and its Applications
(New York), Second Edition, Springer-Verlag, Berlin, 2006.

Nualart, D.; Pardoux, E. Stochastic calculus with anticipating integrands. Probab. Theory
Related Fields 78 (1988), no. 4, pp. 535-581

Pipiras, V., Taqqu, M. S. Are classes of deterministic integrands for fractional Brownian
motion on an interval complete? Bernoulli 7, no. 6, 873-897, 2001.

Russo, P.; Vallois, P. Forward, backward and symmetric stochastic integration. Probab.
Theory Related Fields 97 (1993), pp. 403-421

32



