HEISENBERG UNIQUENESS PAIRS IN THE PLANE.
THREE PARALLEL LINES.

DANIEL BLASI BABOT

ABSTRACT. A Heisenberg uniqueness pair is a pair (I', A), where I'
is a curve in the plane and A is a set in the plane, with the following
property: any bounded Borel measure i in the plane supported on
I', which is absolutely continuous with respect to arc length, and
whose Fourier transform i vanishes on A, must automatically be
the zero measure. We characterize the Heisenberg uniqueness pairs
for I' being three parallel lines I' = R x {a, 8,7} with a < 8 < 7,

(y—a)/(B—a)eN.

1. INTRODUCTION

The Heisenberg uncertainty principle states that both a function and
its Fourier transform cannot be too localized at the same time (see (2)
and (3)). M. Benedicks in (1) proved that given a non trivial function
f € LY(R"), the Lebesgue measure of the set of points where f # 0

and the set of points where the Fourier transform f ## 0 can not be
simultaneously finite. In this paper we consider a similar problem for
measures supported on a subset of R2.

Let T’ be a smooth curve in the plane R? and I' a subset in R2. In
(4), Hedenmalm and Montes-Rodriguez posed the problem of deciding
when is it true that

fia = 0 implies = 0
for any Borel measure i supported on I and absolutely continuous with
respect to the arc length measure on I', where

f(g,m) = /R T dp(z, y).

If this is the case then (I',A) is called a Heisenberg Uniqueness Pair
(HUP).
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When I is the circle Lev (6) and Sjolin (7) independently, charac-
terized the HUP for some "small” sets A.
In (4) Hedenmalm and Montes-Rodriguez characterized the HUP in
the cases
e [ is the hyperbola zy = 1 and A = (aZ x {0}) U ({0} x 5Z),
for a, 5 > 0.
e I' two parallel lines in R?

In this note we present a result generalizing this last case. We charac-
terize the HUP for I' being three parallel lines

'=Rx{a,B,7}witha< <7, (v—a)/(8—a)eN.

2. THREE PARALLEL LINES

Given a set £ C R and a point £ € E, let define

o AL (&) = { Functions y defined on FE such that there exist a
small interval ¢ around ¢ and a function ¢ € L'(R) such that

x(¢) = ¢(C), for ¢ € I N E}.

o PLP[AE 1(¢) = { Functions y defined on E such that there
exist an interval Iz around £ and functions g, 1 € L'(R) with
X7 () + @1(Q)x(€) + @o(¢) = 0, for ¢ € Ie N E}.
Wiener’s lemma (5, p. 57) states that if x € AF (£) and x(&) #
0 then 1/x € AE_.(£). Observe also that if y € AE (§) then x €
PLoAE ().
Due to invariance under translation and rescaling (see (4)) it will be
sufficient to study the case when I' =R x {0,1,p} forp e N, p > 1.
Given a set A C R?, we say that u is an admissible measure if 1 is
a Borel measure in the plane absolutely continuous with respect to arc
length with suppp C I' and pijx = 0.
If 1 is an admissible measure then there exist functions f,g,h €
L'(R) such that

A&, m) = F(€) + e™g(€) + "™ N(€), for any (€,7) € R%.

Observe also that j1 is 2-periodic with respect to the second variable.
So, for any set A C R?, we may consider the periodized set

P(A) = {(&,n) such that (&, n+ 2k) € A for some k € Z}

and it follows that (I', A) is a HUP if and only if (I', P(A)) is a HUP,
where P(A) stands fore the closure of P(A) in R

We may think without loss of generality that A is a closed set in R2,
2-periodic with respect to the second coordinate.

We then have the following result.



HEISENBERG UNIQUENESS PAIRS IN THE PLANE. THREE PARALLEL LINES. 3

Theorem 1. LetI' = R x {0,1, p}, for somep € N, p > 1 and A C R?,
closed and 2-periodic with respect to the second variable, then (I, A) is
a Heisenberg uniqueness pair if and only if

(2.1)  F:=T10(A) U IP(A) \ TI* (A)) U (TTH(A) \ TV (A))
18 dense in R.

II(A) means the projection of A on the axe R x {0} and given a
point £ € TI(A), Img(§) corresponds to the set of points n € [0,2) with
(&,m) € A. The sets in § are defined as follows:

o II'(A) = { £ € TI(A) such that there is a unique 79 € Img(£)}

o I (A) = {& € T'(A) such that x € Pl’p[.Alr([;(A)](f) }, where
(@) = e

e I1%(A) = {¢ € TI(A) such that there are two different points
no,m € Img(§) and if there is another point 75 € I'mg(§) then

ePTINL _ePTiNg  ePTiNg _ePTing }
eﬂ'inl 767”'7]0 - 67”'7]2 767”-770

o 11 (A) = {& € IT?(A) such that 7,® € AEZ(A) (€), where 7(§) =

epmlnl_ep?rmo and @(g) _ 671.1'”0 epﬂ%nl _ep7lrmo . epﬂino }
eTiN] _e™ing eTiN] _e™ing

e I1°(A) = {£ € II(A) such that there are at least three different
h ep‘n'inl _epﬂ'ino epﬂ'inQ_epTrino }

pOiIltS Nos M1, M2 € Img(g) wit e —e™i0 eTi2 —eTio

The following technical lemma is easy to prove and shows that the
functions 7 and ® are well defined for £ € TI%(A).

Lemma 2. Let x,y,z € C different with

yP —aP 2P — P
T = =
Yy—x Z—

)

then
2P — P

<Y

=7 and P=axr—2P=yr—yP =27 — 2"

Next lemma will be needed for the proof of the necessity of condition
(2.1) in Theorem 1.

Lemma 3. Let [ be an interval in R with 112" (A) dense in I, then there
exists a subinterval I' C I with I' C TI*" (A) UTI3(A).
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Proof. Pick an arbitrary point ge I NTI? (A), since 7,® € AHQ(A)(g)

loc
and T1?" (A) is dense in I, we can extend the functions 7, ® continuously
on a neighborhood of €. Let 17 # 0 € Img(£), then

ePmin _ ppmio

(&) =

emin _ emio <D

and since 7 is continuous around §, there exists a small interval I’
around ¢ with |7(&)] < p for € € I'. We will see that I’ C T1>"(A) U
I3(A).

Given ¢ € I, consider a sequence {&,} C TI2" (A)NI’ with &, — &, and
for each & let n, # or € Img(&x). There exist subsequences {n;} and
{0}} such that nj — n* and o} — o* for some n*, p* € [0,2]. Since the
set A is closed and 2—periodic with respect to the second coordinate, we
may assume WLOG that £ € II(A) with n* # o* € Img(§). Otherwise,

17(6)] «— |7(&)] = ‘e(p—l)vrini + ep=2)ming omicy 4 ... 4 e(p—l)frigi‘
— |€(p—1)m'77* 4 elp=min® .4 e(p—l)mn*‘ = p,

which is a contradiction with the fact that £ € I’.

So I' € TI*(A) UII*(A) and since the extended functions 7, ® are
continuous on I’ we also have that £ € II1*" (A) for any ¢ € TI2(A) N I',
and we can conclude that I’ C TT1%" (A) U II3(A). O

3. PROOF OF THE MAIN RESULT

This section is devoted to the proof of theorem 1. The proof of the
sufficiency of condition (2.1) is rather easy. Let u be an admissible
weight, then there exist functions f, g, h € L'(R) such that

A&, n) = F(€) + e™g(€) + eP™N(€), for any (€,n) € R%

~

Since § is dense in R we will be done if we show that f(£) = g(§) =
h(§) = 0 for any € € F = IPP(A) U (IFX(A) \ TT*'(A)) U (IT'(A) \ TI""(A)).

If & € II°(A), let no,mi,m2 € Img(§) different. Since fijy = 0 and
LTI el TR0 St fo]lows that f(€) = G(€) = h(€) = 0.

eTri'r]l _eﬂ"’i’l‘]o e7T’i772 _eﬂ'ino

If € € TI2(A), let g # m € Img(€). Since iy = 0 then §(¢) =

—7(E)R() and f(€) = ®()R(E). Suppose h(£) # 0, then by Wiener’s
lemma 7,® € Ay, M (€) which implies that £ € II*'(A). So if £ €

loc  \
I?(A) \ IT* (A) then f(&) = g(&) = h(§) = 0. R
Finally, if £ EAH1(A) and 19 € Img(§), since [ijz = 0 then f& +
x(€)g(€) + )gp(ﬁ)h(ﬁ) = 0, where x (&) = ™™, Su/Ppose h(§) # 0, then
x € P2l Al M](€) and € € ITV (A). Otherwise, if 2(€) = 0 and G(€) # 0

loc
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then, by Wiener’s lemma y € A}IOZ(A) (€) and also x? € A}IOZ(A) (€),s0 x €

Pl’p[Agi(A)](é') and & € IT'"(A). This means that if £ € TI*(A) \ [T (A)

then f(§) =9(§) = h(§) = 0.

For the proof of the necessity of condition (2.1), suppose that the set
§ is not dense in R and let us pick an open interval I that has empty
intersection with §, ie,

I(A)NT =Y (A)UII* (A)N 1.
We consider three cases:

e There exists a small interval Iz C I around & € II'"(A) such
that all the points in I N TI(A) belong to IT*"(A). Since x €

pte [AHI(A)](@, there exist an interval I' C I around & and

loc

functions ¢g, 1 € L'(R) such that
X(€7) +@1(E)x(E) + 2o(§7) =0
for any & € I' N II(A). Let h € L*(R) with 2(¢) # 0 and

supph € I', and define f,g € L'(R) via f = hipg, and g = hip;.
Now,

A ) = J(E) +FEIXE) +hENE) =0
for & € I' NIV (A), n* € Img(€¥). Finally, since supp/ﬁ el
and I'NII(A) = I' NI (A), we can conclude that fij, = 0 and

we have that p is a non trivial admissible measure. So (I', A) is
not a Heisenberg uniqueness pair.

e There exists a small interval Iz C I around & € I1*'(A) such
that all the points in Iz N II(A) belong to 11> (A). Now there
exists a small interval I’ C I, around ¢ and functions @, 7y €

L'(R) such that 7, = 7 and ®; = ® on I’ N II(A). Consider a
function h € L'(R) with sppth C I’ and h(£) # 0 and define
f,9 € L}Y(R) as

g=—hxm and f=hx®.

Now, given a point £* € I' NIIZ (A), let n* # o* € Img(&*).
Since 7(£*) = S and O() = €™ - — ePmie
we have that

A ) = F€)+ () +R(E ) =0
and also that 1(&*, 0*) = 0. So, the corresponding measure p is
a nontrivial admissible measure and (I', A) is not a Heisenberg
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uniqueness pair.

e All the intervals I C I contain points in IT'" (A) and points in
1" (A). Te, the sets TT'" (A) and I1*" (A) are dense in IN(TT (A)U
12" (A)) = I'NTI(A). But this is not possible. In fact, if TI?" (A)
is dense in I, by Lemma 3, there exists a subinterval I’ C [
such that I’ C TI?" (A) U TI3(A).

This finishes the proof of the theorem.

4. EXAMPLES AND FURTHER RESULTS

Given a point £ € TI(A) such that g{n € Img(§)} > 3, we will state a
criteria to decide whether the point ¢ belongs to II>(A) or IT1*(A). But
before it we prove the following lemma.

Lemma 4. Given C € C, there exist at most p different points p*) €
[0,2), such that for any j # k,

aP — yP

(4.1) —C, where z=c"" =m0
r—y
Proof. Observe that fixed C, there exists a constant C* € C such that

for any z = ¢™”" solution of (4.1). Now it is obvious that there are at
most p different solutions p*) € [0,2) of the equation (4.2).
0

Corollary 5. Given a point & € TI(A), if t{n € Img(§)} > p then
£ eIB3(A).

In particular if I' consists on three parallel equidistant lines in the
plane (p = 2) we have

I13(A) = { £ € A such that #{n € Img(£)} >3}
I12(A) = { & € A such that ${n € Img(£)} =2}

Example 6. The following example shows that corollary 5 is sharp.
o Let A=R x {2k/p}r—o... p-1, then for any & € R,

H{n € Img(§)} = p
and & € TI?"(A). Observe that in this case, (I', A) is not a HUP.
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