HEISENBERG UNIQUENESS PAIRS IN THE PLANE. THREE PARALLEL LINES.

DANIEL BLASI BABOT

ABSTRACT. A Heisenberg uniqueness pair is a pair (Γ, Λ) , where Γ is a curve in the plane and Λ is a set in the plane, with the following property: any bounded Borel measure μ in the plane supported on Γ , which is absolutely continuous with respect to arc length, and whose Fourier transform $\hat{\mu}$ vanishes on Λ , must automatically be the zero measure. We characterize the Heisenberg uniqueness pairs for Γ being three parallel lines $\Gamma = \mathbb{R} \times \{\alpha, \beta, \gamma\}$ with $\alpha < \beta < \gamma$, $(\gamma - \alpha)/(\beta - \alpha) \in \mathbb{N}$.

1. INTRODUCTION

The Heisenberg uncertainty principle states that both a function and its Fourier transform cannot be too localized at the same time (see (2) and (3)). M. Benedicks in (1) proved that given a non trivial function $f \in L^1(\mathbb{R}^n)$, the Lebesgue measure of the set of points where $f \neq 0$ and the set of points where the Fourier transform $\hat{f} \neq 0$ can not be simultaneously finite. In this paper we consider a similar problem for measures supported on a subset of \mathbb{R}^2 .

Let Γ be a smooth curve in the plane \mathbb{R}^2 and Γ a subset in \mathbb{R}^2 . In (4), Hedenmalm and Montes-Rodríguez posed the problem of deciding when is it true that

 $\widehat{\mu}_{|\Lambda} = 0$ implies $\mu = 0$

for any Borel measure μ supported on Γ and absolutely continuous with respect to the arc length measure on Γ , where

$$\widehat{\mu}(\xi,\eta) = \int_{\mathbb{R}^2} e^{\pi i \langle (x,y), (\xi,\eta) \rangle} d\mu(x,y).$$

If this is the case then (Γ, Λ) is called a *Heisenberg Uniqueness Pair* (HUP).

Key words and phrases. Heisenberg uniqueness pairs, Uncertainty principle.

The author is partially supported by the Göran Gustaffson Foundation, the grant 2009SGR00420 and the DGICYT grant MTM2008-00145.

The author thanks Håkan Hedenmalm for proposing the problem and Ioannis Parissis for helpful comments.

When Γ is the circle Lev (6) and Sjölin (7) independently, characterized the HUP for some "small" sets Λ .

In (4) Hedenmalm and Montes-Rodríguez characterized the HUP in the cases

- Γ is the hyperbola xy = 1 and $\Lambda = (\alpha \mathbb{Z} \times \{0\}) \cup (\{0\} \times \beta \mathbb{Z}),$ for $\alpha, \beta > 0$.
- Γ two parallel lines in \mathbb{R}^2

In this note we present a result generalizing this last case. We characterize the HUP for Γ being three parallel lines

$$\Gamma = \mathbb{R} \times \{\alpha, \beta, \gamma\}$$
 with $\alpha < \beta < \gamma, \ (\gamma - \alpha)/(\beta - \alpha) \in \mathbb{N}.$

2. Three parallel lines

Given a set $E \subset \mathbb{R}$ and a point $\xi \in E$, let define

- $\mathcal{A}_{loc}^{E}(\xi) = \{ \text{ Functions } \chi \text{ defined on } E \text{ such that there exist a small interval } I_{\xi} \text{ around } \xi \text{ and a function } \varphi \in L^{1}(\mathbb{R}) \text{ such that } \chi(\zeta) = \widehat{\varphi}(\zeta), \text{ for } \zeta \in I_{\xi} \cap E \}.$
- $P^{1,p}[\mathcal{A}^{E}_{loc}](\xi) = \{ \text{ Functions } \chi \text{ defined on } E \text{ such that there}$ exist an interval I_{ξ} around ξ and functions $\varphi_{0}, \varphi_{1} \in L^{1}(\mathbb{R})$ with $\chi^{p}(\zeta) + \widehat{\varphi}_{1}(\zeta)\chi(\zeta) + \widehat{\varphi}_{0}(\zeta) = 0$, for $\zeta \in I_{\xi} \cap E \}$.

Wiener's lemma (5, p. 57) states that if $\chi \in \mathcal{A}_{loc}^{E}(\xi)$ and $\chi(\xi) \neq 0$ then $1/\chi \in \mathcal{A}_{loc}^{E}(\xi)$. Observe also that if $\chi \in \mathcal{A}_{loc}^{E}(\xi)$ then $\chi \in P^{1,p}[\mathcal{A}_{loc}^{E}](\xi)$.

Due to invariance under translation and rescaling (see (4)) it will be sufficient to study the case when $\Gamma = \mathbb{R} \times \{0, 1, p\}$ for $p \in \mathbb{N}$, p > 1.

Given a set $\Lambda \subset \mathbb{R}^2$, we say that μ is an *admissible measure* if μ is a Borel measure in the plane absolutely continuous with respect to arc length with $supp \mu \subset \Gamma$ and $\hat{\mu}_{|\Lambda} = 0$.

If μ is an admissible measure then there exist functions $f, g, h \in L^1(\mathbb{R})$ such that

$$\widehat{\mu}(\xi,\eta) = \widehat{f}(\xi) + e^{\pi i \eta} \widehat{g}(\xi) + e^{p\pi i \eta} \widehat{h}(\xi), \quad \text{for any} \quad (\xi,\eta) \in \mathbb{R}^2.$$

Observe also that $\hat{\mu}$ is 2-periodic with respect to the second variable. So, for any set $\Lambda \subset \mathbb{R}^2$, we may consider the periodized set

 $\mathcal{P}(\Lambda) = \{(\xi, \eta) \text{ such that } (\xi, \eta + 2k) \in \Lambda \text{ for some } k \in \mathbb{Z}\}$

and it follows that (Γ, Λ) is a HUP if and only if $(\Gamma, \overline{\mathcal{P}(\Lambda)})$ is a HUP, where $\overline{\mathcal{P}(\Lambda)}$ stands fore the closure of $\mathcal{P}(\Lambda)$ in \mathbb{R}^2 .

We may think without loss of generality that Λ is a closed set in \mathbb{R}^2 , 2-periodic with respect to the second coordinate.

We then have the following result.

Theorem 1. Let $\Gamma = \mathbb{R} \times \{0, 1, p\}$, for some $p \in \mathbb{N}$, p > 1 and $\Lambda \subset \mathbb{R}^2$, closed and 2-periodic with respect to the second variable, then (Γ, Λ) is a Heisenberg uniqueness pair if and only if

(2.1)
$$\mathfrak{F} := \Pi^{3}(\Lambda) \cup (\Pi^{2}(\Lambda) \setminus \Pi^{2^{*}}(\Lambda)) \cup (\Pi^{1}(\Lambda) \setminus \Pi^{1^{*}}(\Lambda))$$

is dense in \mathbb{R} .

 $\Pi(\Lambda)$ means the projection of Λ on the axe $\mathbb{R} \times \{0\}$ and given a point $\xi \in \Pi(\Lambda)$, $Img(\xi)$ corresponds to the set of points $\eta \in [0, 2)$ with $(\xi, \eta) \in \Lambda$. The sets in \mathfrak{F} are defined as follows:

- $\Pi^1(\Lambda) = \{ \xi \in \Pi(\Lambda) \text{ such that there is a unique } \eta_0 \in Img(\xi) \}$
- $\Pi^{1^*}(\Lambda) = \{ \xi \in \Pi^1(\Lambda) \text{ such that } \chi \in P^{1,p}[\mathcal{A}_{loc}^{\Pi^1(\Lambda)}](\xi) \}, \text{ where } \chi(\xi) = e^{\pi i \eta_0}$
- $\Pi^2(\Lambda) = \{\xi \in \Pi(\Lambda) \text{ such that there are two different points}$ $\eta_0, \eta_1 \in Img(\xi) \text{ and if there is another point } \eta_2 \in Img(\xi) \text{ then}$ $\frac{e^{p\pi i \eta_1} - e^{p\pi i \eta_0}}{e^{\pi i \eta_1} - e^{\pi i \eta_0}} = \frac{e^{p\pi i \eta_2} - e^{p\pi i \eta_0}}{e^{\pi i \eta_2} - e^{\pi i \eta_0}} \}$
- $\Pi^{2^*}(\Lambda) = \{ \xi \in \Pi^2(\Lambda) \text{ such that } \tau, \Phi \in \mathcal{A}_{loc}^{\Pi^2(\Lambda)}(\xi) \text{ , where } \tau(\xi) = \frac{e^{p\pi i\eta_1} e^{p\pi i\eta_0}}{e^{\pi i\eta_1} e^{\pi i\eta_0}} \text{ and } \Phi(\xi) = e^{\pi i\eta_0} \frac{e^{p\pi i\eta_1} e^{p\pi i\eta_0}}{e^{\pi i\eta_1} e^{\pi i\eta_0}} e^{p\pi i\eta_0} \}$
- $\Pi^3(\Lambda) = \{ \xi \in \Pi(\Lambda) \text{ such that there are at least three different points } \eta_0, \eta_1, \eta_2 \in Img(\xi) \text{ with } \frac{e^{p\pi i\eta_1} e^{p\pi i\eta_0}}{e^{\pi i\eta_1} e^{\pi i\eta_0}} \neq \frac{e^{p\pi i\eta_2} e^{p\pi i\eta_0}}{e^{\pi i\eta_2} e^{\pi i\eta_0}} \}$

The following technical lemma is easy to prove and shows that the functions τ and Φ are well defined for $\xi \in \Pi^2(\Lambda)$.

Lemma 2. Let $x, y, z \in \mathbb{C}$ different with

$$\tau = \frac{y^p - x^p}{y - x} = \frac{z^p - x^p}{z - x},$$

then

$$\frac{z^p - y^p}{z - y} = \tau \quad and \quad \Phi = x\tau - x^p = y\tau - y^p = z\tau - z^p.$$

Next lemma will be needed for the proof of the necessity of condition (2.1) in Theorem 1.

Lemma 3. Let I be an interval in \mathbb{R} with $\Pi^{2^*}(\Lambda)$ dense in I, then there exists a subinterval $I' \subset I$ with $I' \subset \Pi^{2^*}(\Lambda) \cup \Pi^3(\Lambda)$.

Proof. Pick an arbitrary point $\tilde{\xi} \in I \cap \Pi^{2^*}(\Lambda)$, since $\tau, \Phi \in \mathcal{A}_{loc}^{\Pi^2(\Lambda)}(\tilde{\xi})$ and $\Pi^{2^*}(\Lambda)$ is dense in I, we can extend the functions τ, Φ continuously on a neighborhood of $\tilde{\xi}$. Let $\tilde{\eta} \neq \tilde{\varrho} \in Img(\tilde{\xi})$, then

$$|\tau(\widetilde{\xi})| = \left| \frac{e^{p\pi i \widetilde{\eta}} - e^{p\pi i \widetilde{\varrho}}}{e^{\pi i \widetilde{\eta}} - e^{\pi i \widetilde{\varrho}}} \right| < p,$$

and since τ is continuous around $\tilde{\xi}$, there exists a small interval I'around $\tilde{\xi}$ with $|\tau(\xi)| < p$ for $\xi \in I'$. We will see that $I' \subset \Pi^{2^*}(\Lambda) \cup \Pi^3(\Lambda)$.

Given $\xi \in I'$, consider a sequence $\{\xi_k\} \subset \Pi^{2^*}(\Lambda) \cap I'$ with $\xi_k \to \xi$, and for each ξ_k let $\eta_k \neq \varrho_k \in Img(\xi_k)$. There exist subsequences $\{\eta_k^*\}$ and $\{\varrho_k^*\}$ such that $\eta_k^* \to \eta^*$ and $\varrho_k^* \to \varrho^*$ for some $\eta^*, \varrho^* \in [0, 2]$. Since the set Λ is closed and 2-periodic with respect to the second coordinate, we may assume WLOG that $\xi \in \Pi(\Lambda)$ with $\eta^* \neq \varrho^* \in Img(\xi)$. Otherwise,

$$\begin{aligned} |\tau(\xi)| &\longleftarrow |\tau(\xi_k^*)| = \left| e^{(p-1)\pi i\eta_k^*} + e^{(p-2)\pi i\eta_k^*} e^{\pi i\varrho_k^*} + \dots + e^{(p-1)\pi i\varrho_k^*} \\ &\longrightarrow \left| e^{(p-1)\pi i\eta^*} + e^{(p-1)\pi i\eta^*} + \dots + e^{(p-1)\pi i\eta^*} \right| = p, \end{aligned}$$

which is a contradiction with the fact that $\xi \in I'$.

So $I' \subset \Pi^2(\Lambda) \cup \Pi^3(\Lambda)$ and since the extended functions τ, Φ are continuous on I' we also have that $\xi \in \Pi^{2^*}(\Lambda)$ for any $\xi \in \Pi^2(\Lambda) \cap I'$, and we can conclude that $I' \subset \Pi^{2^*}(\Lambda) \cup \Pi^3(\Lambda)$. \Box

3. Proof of the main result

This section is devoted to the proof of theorem 1. The proof of the sufficiency of condition (2.1) is rather easy. Let μ be an admissible weight, then there exist functions $f, g, h \in L^1(\mathbb{R})$ such that

$$\widehat{\mu}(\xi,\eta) = \widehat{f}(\xi) + e^{\pi i \eta} \widehat{g}(\xi) + e^{p\pi i \eta} \widehat{h}(\xi), \quad \text{for any} \quad (\xi,\eta) \in \mathbb{R}^2.$$

Since \mathfrak{F} is dense in \mathbb{R} we will be done if we show that $\widehat{f}(\xi) = \widehat{g}(\xi) = \widehat{h}(\xi) = 0$ for any $\xi \in \mathfrak{F} = \Pi^3(\Lambda) \cup (\Pi^2(\Lambda) \setminus \Pi^{2^*}(\Lambda)) \cup (\Pi^1(\Lambda) \setminus \Pi^{1^*}(\Lambda)).$

If $\xi \in \Pi^3(\Lambda)$, let $\eta_0, \eta_1, \eta_2 \in Img(\xi)$ different. Since $\widehat{\mu}_{|\Lambda} = 0$ and $\frac{e^{p\pi i\eta_1} - e^{p\pi i\eta_0}}{e^{\pi i\eta_1} - e^{\pi i\eta_0}} \neq \frac{e^{p\pi i\eta_2} - e^{p\pi i\eta_0}}{e^{\pi i\eta_2} - e^{\pi i\eta_0}}$ it follows that $\widehat{f}(\xi) = \widehat{g}(\xi) = \widehat{h}(\xi) = 0$.

If $\xi \in \Pi^2(\Lambda)$, let $\eta_0 \neq \eta_1 \in Img(\xi)$. Since $\hat{\mu}_{|\Lambda} = 0$ then $\hat{g}(\xi) = -\tau(\xi)\hat{h}(\xi)$ and $\hat{f}(\xi) = \Phi(\xi)\hat{h}(\xi)$. Suppose $\hat{h}(\xi) \neq 0$, then by Wiener's lemma $\tau, \Phi \in \mathcal{A}_{loc}^{\Pi^2(\Lambda)}(\xi)$ which implies that $\xi \in \Pi^{2^*}(\Lambda)$. So if $\xi \in \Pi^2(\Lambda) \setminus \Pi^{2^*}(\Lambda)$ then $\hat{f}(\xi) = \hat{g}(\xi) = \hat{h}(\xi) = 0$.

Finally, if $\xi \in \Pi^1(\Lambda)$ and $\eta_0 \in Img(\xi)$, since $\widehat{\mu}_{|\Lambda} = 0$ then $\widehat{f}(\xi) + \chi(\xi)\widehat{g}(\xi) + \chi^p(\xi)\widehat{h}(\xi) = 0$, where $\chi(\xi) = e^{\pi i \eta_0}$. Suppose $\widehat{h}(\xi) \neq 0$, then $\chi \in P^{1,p}[\mathcal{A}_{loc}^{\Pi^1(\Lambda)}](\xi)$ and $\xi \in \Pi^{1^*}(\Lambda)$. Otherwise, if $\widehat{h}(\xi) = 0$ and $\widehat{g}(\xi) \neq 0$

then, by Wiener's lemma $\chi \in \mathcal{A}_{loc}^{\Pi^{1}(\Lambda)}(\xi)$ and also $\chi^{p} \in \mathcal{A}_{loc}^{\Pi^{1}(\Lambda)}(\xi)$, so $\chi \in P^{1,p}[\mathcal{A}_{loc}^{\Pi^{1}(\Lambda)}](\xi)$ and $\xi \in \Pi^{1^{*}}(\Lambda)$. This means that if $\xi \in \Pi^{1}(\Lambda) \setminus \Pi^{1^{*}}(\Lambda)$ then $\widehat{f}(\xi) = \widehat{g}(\xi) = \widehat{h}(\xi) = 0$.

For the proof of the necessity of condition (2.1), suppose that the set \mathfrak{F} is not dense in \mathbb{R} and let us pick an open interval I that has empty intersection with \mathfrak{F} , ie,

$$\Pi(\Lambda) \cap I = (\Pi^{1^*}(\Lambda) \cup \Pi^{2^*}(\Lambda)) \cap I.$$

We consider three cases:

• There exists a small interval $I_{\xi} \subset I$ around $\xi \in \Pi^{1^*}(\Lambda)$ such that all the points in $I_{\xi} \cap \Pi(\Lambda)$ belong to $\Pi^{1^*}(\Lambda)$. Since $\chi \in P^{1,p}[\mathcal{A}_{loc}^{\Pi^1(\Lambda)}](\xi)$, there exist an interval $I' \subset I_{\xi}$ around ξ and functions $\varphi_0, \varphi_1 \in L^1(\mathbb{R})$ such that

$$\chi^p(\xi^*) + \widehat{\varphi}_1(\xi^*)\chi(\xi^*) + \widehat{\varphi}_0(\xi^*) = 0$$

for any $\xi^* \in I' \cap \Pi(\Lambda)$. Let $h \in L^1(\mathbb{R})$ with $\hat{h}(\xi) \neq 0$ and $supp\hat{h} \in I'$, and define $f, g \in L^1(\mathbb{R})$ via $\hat{f} = \hat{h}\widehat{\varphi_0}$, and $\hat{g} = \hat{h}\widehat{\varphi_1}$. Now,

$$\widehat{\mu}(\xi^*, \eta^*) = \widehat{f}(\xi^*) + \widehat{g}(\xi^*)\chi(\xi^*) + \widehat{h}(\xi^*)\chi^p(\xi^*) = 0$$

for $\xi^* \in I' \cap \Pi^{1^*}(\Lambda)$, $\eta^* \in Img(\xi^*)$. Finally, since $supp\hat{h} \subseteq I'$ and $I' \cap \Pi(\Lambda) = I' \cap \Pi^{1^*}(\Lambda)$, we can conclude that $\hat{\mu}_{|\Lambda} \equiv 0$ and we have that μ is a non trivial admissible measure. So (Γ, Λ) is not a Heisenberg uniqueness pair.

• There exists a small interval $I_{\xi} \subset I$ around $\xi \in \Pi^{2^*}(\Lambda)$ such that all the points in $I_{\xi} \cap \Pi(\Lambda)$ belong to $\Pi^{2^*}(\Lambda)$. Now there exists a small interval $I' \subset I_{\xi}$ around ξ and functions $\Phi_1, \tau_1 \in$ $L^1(\mathbb{R})$ such that $\hat{\tau}_1 = \tau$ and $\widehat{\Phi}_1 = \Phi$ on $I' \cap \Pi(\Lambda)$. Consider a function $h \in L^1(\mathbb{R})$ with $sppt \hat{h} \subset I'$ and $\hat{h}(\xi) \neq 0$ and define $f, g \in L^1(\mathbb{R})$ as

$$g = -h * \tau_1$$
 and $f = h * \Phi_1$.

Now, given a point $\xi^* \in I' \cap \Pi^{2^*}(\Lambda)$, let $\eta^* \neq \varrho^* \in Img(\xi^*)$. Since $\tau(\xi^*) = \frac{e^{p\pi i\eta^*} - e^{p\pi i\varrho^*}}{e^{\pi i\eta^*} - e^{\pi i\varrho^*}}$ and $\Phi(\xi) = e^{\pi i\eta^*} \frac{e^{p\pi i\eta^*} - e^{p\pi i\varrho^*}}{e^{\pi i\eta^*} - e^{\pi i\varrho^*}} - e^{p\pi i\varrho^*}$, we have that

$$\widehat{\mu}(\xi^*, \eta^*) = \widehat{f}(\xi^*) + \widehat{g}(\xi^*)e^{\pi i \eta^*} + \widehat{h}(\xi^*)e^{p\pi i \eta^*} = 0$$

and also that $\hat{\mu}(\xi^*, \varrho^*) = 0$. So, the corresponding measure μ is a nontrivial admissible measure and (Γ, Λ) is not a Heisenberg uniqueness pair.

• All the intervals $I_{\xi} \subset I$ contain points in $\Pi^{1^*}(\Lambda)$ and points in $\Pi^{2^*}(\Lambda)$. Ie, the sets $\Pi^{1^*}(\Lambda)$ and $\Pi^{2^*}(\Lambda)$ are dense in $I \cap (\Pi^{1^*}(\Lambda) \cup \Pi^{2^*}(\Lambda)) = I \cap \Pi(\Lambda)$. But this is not possible. In fact, if $\Pi^{2^*}(\Lambda)$ is dense in I, by Lemma 3, there exists a subinterval $I' \subset I$ such that $I' \subset \Pi^{2^*}(\Lambda) \cup \Pi^3(\Lambda)$.

This finishes the proof of the theorem.

4. Examples and further results

Given a point $\xi \in \Pi(\Lambda)$ such that $\sharp\{\eta \in Img(\xi)\} \geq 3$, we will state a criteria to decide whether the point ξ belongs to $\Pi^3(\Lambda)$ or $\Pi^2(\Lambda)$. But before it we prove the following lemma.

Lemma 4. Given $C \in \mathbb{C}$, there exist at most p different points $\rho^{(k)} \in [0, 2)$, such that for any $j \neq k$,

(4.1)
$$\frac{x^p - y^p}{x - y} = C$$
, where $x = e^{\pi i \rho^{(k)}}, y = e^{\pi i \rho^{(j)}}$.

Proof. Observe that fixed C, there exists a constant $C^* \in \mathbb{C}$ such that

$$(4.2) xC - x^p = C^*$$

for any $x = e^{\pi i \rho^{(k)}}$ solution of (4.1). Now it is obvious that there are at most p different solutions $\rho^{(k)} \in [0, 2)$ of the equation (4.2).

 \square

Corollary 5. Given a point $\xi \in \Pi(\Lambda)$, if $\sharp\{\eta \in Img(\xi)\} > p$ then $\xi \in \Pi^3(\Lambda)$.

In particular if Γ consists on three parallel equidistant lines in the plane (p = 2) we have

$$\Pi^{3}(\Lambda) = \{ \xi \in \Lambda \text{ such that } \sharp\{\eta \in Img(\xi)\} \ge 3 \}$$
$$\Pi^{2}(\Lambda) = \{ \xi \in \Lambda \text{ such that } \sharp\{\eta \in Img(\xi)\} = 2 \}$$

Example 6. The following example shows that corollary 5 is sharp.

• Let $\Lambda = \mathbb{R} \times \{2k/p\}_{k=0,\dots,p-1}$, then for any $\xi \in \mathbb{R}$,

$$\sharp\{\eta \in Img(\xi)\} = p$$

and $\xi \in \Pi^{2^*}(\Lambda)$. Observe that in this case, (Γ, Λ) is not a HUP.

References

- M. Benedicks On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), no. 1, 180-183.
- [2] W. Heisenberg Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Physik **43** (1927), 172-198.
- [3] V. Havin; B. Jöricke The uncertainty principle in harmonic analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 28. Springer-Verlag, Berlin, 1994.
- [4] H. Hedenmalm; A. Montes-Rodríguez Heisenberg uniqueness pairs and the Klein-Gordon equation, to appear in Annals of Mathematics.
- [5] J.P. Kahane Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50 Springer-Verlag, Berlin-New York (1970)
- [6] N. Lev Uniqueness theorems for Fourier transforms, Bull. Sci. math. (2010), doi:10.1016/j.bulsci.2010.12.002
- [7] P. Sjölin Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin, Bull. Sci. math. (2010), doi:10.1016/j.bulsci.2010.12.004

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalunya

 $E\text{-}mail \ address: \texttt{dblasiQgmail.com}$