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ç
20

11
.

D
ep

ar
ta

m
en

t
d

e
M

at
em

àt
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HEISENBERG UNIQUENESS PAIRS IN THE PLANE.
THREE PARALLEL LINES.

DANIEL BLASI BABOT

Abstract. A Heisenberg uniqueness pair is a pair (Γ,Λ), where Γ
is a curve in the plane and Λ is a set in the plane, with the following
property: any bounded Borel measure µ in the plane supported on
Γ, which is absolutely continuous with respect to arc length, and
whose Fourier transform µ̂ vanishes on Λ, must automatically be
the zero measure. We characterize the Heisenberg uniqueness pairs
for Γ being three parallel lines Γ = R× {α, β, γ} with α < β < γ,
(γ − α)/(β − α) ∈ N.

1. Introduction

The Heisenberg uncertainty principle states that both a function and
its Fourier transform cannot be too localized at the same time (see (2)
and (3)). M. Benedicks in (1) proved that given a non trivial function
f ∈ L1(Rn), the Lebesgue measure of the set of points where f 6= 0

and the set of points where the Fourier transform f̂ 6= 0 can not be
simultaneously finite. In this paper we consider a similar problem for
measures supported on a subset of R2.

Let Γ be a smooth curve in the plane R2 and Γ a subset in R2. In
(4), Hedenmalm and Montes-Rodŕıguez posed the problem of deciding
when is it true that

µ̂|Λ = 0 implies µ = 0

for any Borel measure µ supported on Γ and absolutely continuous with
respect to the arc length measure on Γ, where

µ̂(ξ, η) =

∫

R2

eπi<(x,y),(ξ,η)>dµ(x, y).

If this is the case then (Γ,Λ) is called a Heisenberg Uniqueness Pair
(HUP).
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When Γ is the circle Lev (6) and Sjölin (7) independently, charac-
terized the HUP for some ”small” sets Λ.

In (4) Hedenmalm and Montes-Rodŕıguez characterized the HUP in
the cases

• Γ is the hyperbola xy = 1 and Λ = (αZ × {0}) ∪ ({0} × βZ),
for α, β > 0.
• Γ two parallel lines in R2

In this note we present a result generalizing this last case. We charac-
terize the HUP for Γ being three parallel lines

Γ = R× {α, β, γ} with α < β < γ, (γ − α)/(β − α) ∈ N.

2. Three parallel lines

Given a set E ⊂ R and a point ξ ∈ E, let define

• AEloc(ξ) = { Functions χ defined on E such that there exist a
small interval Iξ around ξ and a function ϕ ∈ L1(R) such that
χ(ζ) = ϕ̂(ζ), for ζ ∈ Iξ ∩ E}.

• P 1,p[AEloc](ξ) = { Functions χ defined on E such that there
exist an interval Iξ around ξ and functions ϕ0, ϕ1 ∈ L1(R) with
χp(ζ) + ϕ̂1(ζ)χ(ζ) + ϕ̂0(ζ) = 0, for ζ ∈ Iξ ∩ E}.

Wiener’s lemma (5, p. 57) states that if χ ∈ AEloc(ξ) and χ(ξ) 6=
0 then 1/χ ∈ AEloc(ξ). Observe also that if χ ∈ AEloc(ξ) then χ ∈
P 1,p[AEloc](ξ).

Due to invariance under translation and rescaling (see (4)) it will be
sufficient to study the case when Γ = R× {0, 1, p} for p ∈ N, p > 1.

Given a set Λ ⊂ R2, we say that µ is an admissible measure if µ is
a Borel measure in the plane absolutely continuous with respect to arc
length with suppµ ⊂ Γ and µ̂|Λ = 0.

If µ is an admissible measure then there exist functions f, g, h ∈
 L1(R) such that

µ̂(ξ, η) = f̂(ξ) + eπiηĝ(ξ) + epπiηĥ(ξ), for any (ξ, η) ∈ R2.

Observe also that µ̂ is 2-periodic with respect to the second variable.
So, for any set Λ ⊂ R2, we may consider the periodized set

P(Λ) = {(ξ, η) such that (ξ, η + 2k) ∈ Λ for some k ∈ Z}
and it follows that (Γ,Λ) is a HUP if and only if (Γ,P(Λ)) is a HUP,

where P(Λ) stands fore the closure of P(Λ) in R2.
We may think without loss of generality that Λ is a closed set in R2,

2-periodic with respect to the second coordinate.
We then have the following result.
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Theorem 1. Let Γ = R×{0, 1, p}, for some p ∈ N, p > 1 and Λ ⊂ R2,
closed and 2-periodic with respect to the second variable, then (Γ,Λ) is
a Heisenberg uniqueness pair if and only if

(2.1) F := Π3(Λ) ∪ (Π2(Λ) \ Π2∗(Λ)) ∪ (Π1(Λ) \ Π1∗(Λ))

is dense in R.

Π(Λ) means the projection of Λ on the axe R × {0} and given a
point ξ ∈ Π(Λ), Img(ξ) corresponds to the set of points η ∈ [0, 2) with
(ξ, η) ∈ Λ. The sets in F are defined as follows:

• Π1(Λ) = { ξ ∈ Π(Λ) such that there is a unique η0 ∈ Img(ξ)}

• Π1∗(Λ) = { ξ ∈ Π1(Λ) such that χ ∈ P 1,p[AΠ1(Λ)
loc ](ξ) }, where

χ(ξ) = eπiη0

• Π2(Λ) = { ξ ∈ Π(Λ) such that there are two different points
η0, η1 ∈ Img(ξ) and if there is another point η2 ∈ Img(ξ) then
epπiη1−epπiη0
eπiη1−eπiη0 = epπiη2−epπiη0

eπiη2−eπiη0 }

• Π2∗(Λ) = { ξ ∈ Π2(Λ) such that τ,Φ ∈ AΠ2(Λ)
loc (ξ) , where τ(ξ) =

epπiη1−epπiη0
eπiη1−eπiη0 and Φ(ξ) = eπiη0 e

pπiη1−epπiη0
eπiη1−eπiη0 − epπiη0 }

• Π3(Λ) = { ξ ∈ Π(Λ) such that there are at least three different

points η0, η1, η2 ∈ Img(ξ) with epπiη1−epπiη0
eπiη1−eπiη0 6= epπiη2−epπiη0

eπiη2−eπiη0 }

The following technical lemma is easy to prove and shows that the
functions τ and Φ are well defined for ξ ∈ Π2(Λ).

Lemma 2. Let x, y, z ∈ C different with

τ =
yp − xp
y − x =

zp − xp
z − x ,

then

zp − yp
z − y = τ and Φ = xτ − xp = yτ − yp = zτ − zp.

Next lemma will be needed for the proof of the necessity of condition
(2.1) in Theorem 1.

Lemma 3. Let I be an interval in R with Π2∗(Λ) dense in I, then there
exists a subinterval I ′ ⊂ I with I ′ ⊂ Π2∗(Λ) ∪ Π3(Λ).
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Proof. Pick an arbitrary point ξ̃ ∈ I ∩ Π2∗(Λ), since τ,Φ ∈ AΠ2(Λ)
loc (ξ̃)

and Π2∗(Λ) is dense in I, we can extend the functions τ,Φ continuously

on a neighborhood of ξ̃. Let η̃ 6= %̃ ∈ Img(ξ̃), then

|τ(ξ̃)| =
∣∣∣∣
epπiη̃ − epπi%̃
eπiη̃ − eπi%̃

∣∣∣∣ < p,

and since τ is continuous around ξ̃, there exists a small interval I ′

around ξ̃ with |τ(ξ)| < p for ξ ∈ I ′. We will see that I ′ ⊂ Π2∗(Λ) ∪
Π3(Λ).

Given ξ ∈ I ′, consider a sequence {ξk} ⊂ Π2∗(Λ)∩I ′ with ξk → ξ, and
for each ξk let ηk 6= %k ∈ Img(ξk). There exist subsequences {η∗k} and
{%∗k} such that η∗k → η∗ and %∗k → %∗ for some η∗, %∗ ∈ [0, 2]. Since the
set Λ is closed and 2−periodic with respect to the second coordinate, we
may assume WLOG that ξ ∈ Π(Λ) with η∗ 6= %∗ ∈ Img(ξ). Otherwise,

|τ(ξ)| ←− |τ(ξ∗k)| =
∣∣e(p−1)πiη∗k + e(p−2)πiη∗keπi%

∗
k + · · ·+ e(p−1)πi%∗k

∣∣
−→

∣∣e(p−1)πiη∗ + e(p−1)πiη∗ + · · ·+ e(p−1)πiη∗
∣∣ = p,

which is a contradiction with the fact that ξ ∈ I ′.
So I ′ ⊂ Π2(Λ) ∪ Π3(Λ) and since the extended functions τ,Φ are

continuous on I ′ we also have that ξ ∈ Π2∗(Λ) for any ξ ∈ Π2(Λ) ∩ I ′,
and we can conclude that I ′ ⊂ Π2∗(Λ) ∪ Π3(Λ). �

3. Proof of the main result

This section is devoted to the proof of theorem 1. The proof of the
sufficiency of condition (2.1) is rather easy. Let µ be an admissible
weight, then there exist functions f, g, h ∈  L1(R) such that

µ̂(ξ, η) = f̂(ξ) + eπiηĝ(ξ) + epπiηĥ(ξ), for any (ξ, η) ∈ R2.

Since F is dense in R we will be done if we show that f̂(ξ) = ĝ(ξ) =

ĥ(ξ) = 0 for any ξ ∈ F = Π3(Λ)∪ (Π2(Λ) \Π2∗(Λ))∪ (Π1(Λ) \Π1∗(Λ)).
If ξ ∈ Π3(Λ), let η0, η1, η2 ∈ Img(ξ) different. Since µ̂|Λ = 0 and

epπiη1−epπiη0
eπiη1−eπiη0 6= epπiη2−epπiη0

eπiη2−eπiη0 it follows that f̂(ξ) = ĝ(ξ) = ĥ(ξ) = 0.

If ξ ∈ Π2(Λ), let η0 6= η1 ∈ Img(ξ). Since µ̂|Λ = 0 then ĝ(ξ) =

−τ(ξ)ĥ(ξ) and f̂(ξ) = Φ(ξ)ĥ(ξ). Suppose ĥ(ξ) 6= 0, then by Wiener’s

lemma τ,Φ ∈ AΠ2(Λ)
loc (ξ) which implies that ξ ∈ Π2∗(Λ). So if ξ ∈

Π2(Λ) \ Π2∗(Λ) then f̂(ξ) = ĝ(ξ) = ĥ(ξ) = 0.

Finally, if ξ ∈ Π1(Λ) and η0 ∈ Img(ξ), since µ̂|Λ = 0 then f̂(ξ) +

χ(ξ)ĝ(ξ) + χp(ξ)ĥ(ξ) = 0, where χ(ξ) = eπiη0 . Suppose ĥ(ξ) 6= 0, then

χ ∈ P 1,p[AΠ1(Λ)
loc ](ξ) and ξ ∈ Π1∗(Λ).Otherwise, if ĥ(ξ) = 0 and ĝ(ξ) 6= 0
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then, by Wiener’s lemma χ ∈ AΠ1(Λ)
loc (ξ) and also χp ∈ AΠ1(Λ)

loc (ξ), so χ ∈
P 1,p[AΠ1(Λ)

loc ](ξ) and ξ ∈ Π1∗(Λ). This means that if ξ ∈ Π1(Λ) \Π1∗(Λ)

then f̂(ξ) = ĝ(ξ) = ĥ(ξ) = 0.
For the proof of the necessity of condition (2.1), suppose that the set

F is not dense in R and let us pick an open interval I that has empty
intersection with F, ie,

Π(Λ) ∩ I = (Π1∗(Λ) ∪ Π2∗(Λ)) ∩ I.
We consider three cases:

• There exists a small interval Iξ ⊂ I around ξ ∈ Π1∗(Λ) such
that all the points in Iξ ∩ Π(Λ) belong to Π1∗(Λ). Since χ ∈
P 1,p[AΠ1(Λ)

loc ](ξ), there exist an interval I ′ ⊂ Iξ around ξ and
functions ϕ0, ϕ1 ∈ L1(R) such that

χp(ξ∗) + ϕ̂1(ξ∗)χ(ξ∗) + ϕ̂0(ξ∗) = 0

for any ξ∗ ∈ I ′ ∩ Π(Λ). Let h ∈ L1(R) with ĥ(ξ) 6= 0 and

suppĥ b I ′, and define f, g ∈ L1(R) via f̂ = ĥϕ̂0, and ĝ = ĥϕ̂1.
Now,

µ̂(ξ∗, η∗) = f̂(ξ∗) + ĝ(ξ∗)χ(ξ∗) + ĥ(ξ∗)χp(ξ∗) = 0

for ξ∗ ∈ I ′ ∩ Π1∗(Λ), η∗ ∈ Img(ξ∗). Finally, since suppĥ b I ′

and I ′ ∩Π(Λ) = I ′ ∩Π1∗(Λ), we can conclude that µ̂|Λ ≡ 0 and
we have that µ is a non trivial admissible measure. So (Γ,Λ) is
not a Heisenberg uniqueness pair.

• There exists a small interval Iξ ⊂ I around ξ ∈ Π2∗(Λ) such
that all the points in Iξ ∩ Π(Λ) belong to Π2∗(Λ). Now there
exists a small interval I ′ ⊂ Iξ around ξ and functions Φ1, τ1 ∈
L1(R) such that τ̂1 = τ and Φ̂1 = Φ on I ′ ∩ Π(Λ). Consider a

function h ∈ L1(R) with sppt ĥ ⊂ I ′ and ĥ(ξ) 6= 0 and define
f, g ∈ L1(R) as

g = −h ∗ τ1 and f = h ∗ Φ1.

Now, given a point ξ∗ ∈ I ′ ∩ Π2∗(Λ), let η∗ 6= %∗ ∈ Img(ξ∗).

Since τ(ξ∗) = epπiη
∗−epπi%∗

eπiη∗−eπi%∗ and Φ(ξ) = eπiη
∗ epπiη

∗−epπi%∗
eπiη∗−eπi%∗ − epπi%

∗
,

we have that

µ̂(ξ∗, η∗) = f̂(ξ∗) + ĝ(ξ∗)eπiη
∗

+ ĥ(ξ∗)epπiη
∗

= 0

and also that µ̂(ξ∗, %∗) = 0. So, the corresponding measure µ is
a nontrivial admissible measure and (Γ,Λ) is not a Heisenberg
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uniqueness pair.

• All the intervals Iξ ⊂ I contain points in Π1∗(Λ) and points in
Π2∗(Λ). Ie, the sets Π1∗(Λ) and Π2∗(Λ) are dense in I∩(Π1∗(Λ)∪
Π2∗(Λ)) = I ∩Π(Λ). But this is not possible. In fact, if Π2∗(Λ)
is dense in I, by Lemma 3, there exists a subinterval I ′ ⊂ I
such that I ′ ⊂ Π2∗(Λ) ∪ Π3(Λ).

This finishes the proof of the theorem.

4. Examples and further results

Given a point ξ ∈ Π(Λ) such that ]{η ∈ Img(ξ)} ≥ 3, we will state a
criteria to decide whether the point ξ belongs to Π3(Λ) or Π2(Λ). But
before it we prove the following lemma.

Lemma 4. Given C ∈ C, there exist at most p different points ρ(k) ∈
[0, 2), such that for any j 6= k,

(4.1)
xp − yp
x− y = C, where x = eπiρ

(k)

, y = eπiρ
(j)

.

Proof. Observe that fixed C, there exists a constant C∗ ∈ C such that

(4.2) xC − xp = C∗

for any x = eπiρ
(k)

solution of (4.1). Now it is obvious that there are at
most p different solutions ρ(k) ∈ [0, 2) of the equation (4.2).

�

Corollary 5. Given a point ξ ∈ Π(Λ), if ]{η ∈ Img(ξ)} > p then
ξ ∈ Π3(Λ).

In particular if Γ consists on three parallel equidistant lines in the
plane (p = 2) we have

Π3(Λ) = { ξ ∈ Λ such that ]{η ∈ Img(ξ)} ≥ 3 }
Π2(Λ) = { ξ ∈ Λ such that ]{η ∈ Img(ξ)} = 2 }

Example 6. The following example shows that corollary 5 is sharp.

• Let Λ = R× {2k/p}k=0,··· ,p−1, then for any ξ ∈ R,

]{η ∈ Img(ξ)} = p

and ξ ∈ Π2∗(Λ). Observe that in this case, (Γ,Λ) is not a HUP.
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