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FOLIATIONS AND WEBS INDUCING GALOIS

COVERINGS

A. BELTRÁN, M. FALLA LUZA, D. MARÍN AND M. NICOLAU

Abstract. Motivated by a previous work of Cerveau and Déserti, we
introduce the notion of Galois holomorphic foliation on the complex
projective space as those whose Gauss map is a Galois covering when
restricted to an appropriate Zariski open subset. First, we establish gen-
eral criteria assuring that a rational map between projective manifolds
of the same dimension defines a Galois covering. Then, these criteria are
used to characterize Galois foliations on P2 belonging to certain classes,
which include homogeneous foliations. We also give a geometric char-
acterization of Galois foliations in terms of their inflection divisor and
their singularities.

1. Introduction

In this article we introduce the notion of Galois holomorphic foliation on
the complex projective space. Our main objective is to establish general
criteria characterizing those foliations that are Galois.

Focusing on the two dimensional case considered in [9], let F be a holo-
morphic foliation in the complex projective plane P2. The degree degF of
the foliation is the number of tangencies of F with a generic line of P2 and
the Gauss map GF : P2 99K P̌2 of the foliation, sending x ∈ P2 into the
tangent line of F at x, is a well defined rational map whose indeterminacy
points are just the singularities of the foliation. If the foliation is non de-
generated then the restriction of GF to a suitable Zariski open subset W of
P2 is a covering map of order degF > 0.

The determination of finite subgroups of the Cremona group Bir(P2) of
birational transformations of P2 is a classical topic, nevertheless it continues
to be an active field of current research (cf. [2, 14]). In [9], Cerveau and
Deserti addressed the problem of finding non-trivial birational deck trans-
formations of the covering associated to a foliation F , that is, birational
maps τ : P2 99K P2 fulfilling GF ◦ τ = GF . Their aim was to construct
periodic elements of Bir(P2) in an effective way. In particular they associ-
ated a birational involution to each quadratic foliation and trivolutions to
certain classes of cubic foliations. In all these cases the restriction of GF
to the Zariski open set W is necessarily a Galois covering. It is therefore a

Date: March 24, 2014.
1991 Mathematics Subject Classification. 14E05, 14E20, 37F75, 53A60, 32S65.
This work was partially supported by Pontificia Universidad Católica del Perú through
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natural question to determine the Galois foliations of P2, that is those folia-
tions in P2 whose Gauss map defines a Galois covering. This is the original
purpose of this article. We will see that for every Galois foliation the deck
transformations of its Gauss map are birational. This fact provides non-
trivial parametric realizations of the symmetry groups of regular polyhedra
into the Cremona group (cf. Remark 5.22).

We also prove that the set Gd of Galois foliations of degree d on P2 is a
quasi-projective variety. This raises the question of describing its irreducible
components in geometric terms. This problem is of similar nature to the
study of the irreducible components of the space of codimension one folia-
tions on Pn for n ≥ 3 (cf. [10]) and the study of the irreducible components
of the space of flat webs (cf. [26]).

We are specially concerned with the problem of characterizing Galois
foliations on P2 in terms of geometric elements of F . More precisely, in
terms of the singular set, the set of inflection points and the generic polar
curve, i.e. the preimage by the Gauss map GF of a generic line in P̌2. For
instance, one of the results that we obtain on this question is the following
(cf. Corollary 5.13):

Theorem A. Let F be a degree d foliation on P2. Assume that the following
assertions are satisfied:

(1) at an inflection point p, the tangency order of the leaf through p with
its tangent line attains its maximum d;

(2) for each singular point s of F the following trichotomy holds:
• s is a non-degenerate radial singularity of order d, or
• the generic polar of F has a single branch at s with multiplicity d, or
• s is a non-radial singularity and each branch at s of the generic polar

curve of F is smooth.

Then GF is Galois with cyclic deck transformation group. Moreover, when
d is prime the converse is also true.

With the main purpose of studying Galois foliations, we first consider
the more general setting of arbitrary rational maps G : X 99K Y between
complex projective manifolds of the same dimension. Our first result is the
following (cf. Theorem 3.11).

Theorem B. Let G : X 99K Y be a dominant rational map between complex
connected projective manifolds of the same dimension and let d be its degree.
There is a proper Zariski closed subset ΛG of Y such that, if we denote
YΛ = Y \ΛG and XΛ = G−1(YΛ), then G is defined on XΛ, the morphism
G|XΛ

: XΛ → YΛ is a covering map of degree d and the following property
is fulfilled: for every connected and locally path connected subset V ⊂ YΛ

inducing an epimorphism π1(V ) � π1(YΛ) the map G|U : U → V , where
U = G−1(V ), is a d-sheeted covering, its monodromy group is independent
of V ⊂ Y and every deck transformation of G|U extends to a birational map
of X.

As a consequence, the deck transformation group of any of these cover-
ings coincides with the group of birational transformations of X defined as
Deck(G) = {τ ∈ Bir(X) | G ◦ τ = G}. We say that the rational map G is
Galois if Deck(G) acts transitively on the generic fibre.
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The problem of deciding if the rational map G : X 99K Y is Galois is
simpler for curves since a dominant rational map between algebraic curves
is just a branched covering. Hence we are led to reduce the question to the
one-dimensional case. We carry out this reduction in different ways along
Subsection 3.2. In particular we obtain the following reduction. Using
Bertini’s theorem and a version of Lefschetz’s hyperplane theorem due to
Hamm and Lê, we know that there are smooth hyperplane curves `X ⊂ X
and `Y ⊂ Y such that the natural maps π1(`XΛ ) → π1(XΛ) and π1(`YΛ ) →
π1(YΛ) are epimorphisms, where `XΛ = `X\G−1(ΛG) and `YΛ = `Y \ΛG . We
denote by p : G∗(XΛ) = XΛ ×YΛ

XΛ → XΛ the pull-back covering. In this
situation we prove (cf. Theorem 3.16):

Theorem C. The following assertions are equivalent:

(1) the rational map G : X 99K Y is Galois,
(2) the restricted covering G−1(`YΛ )→ `YΛ is Galois,
(3) the restricted pull-back covering p−1(`XΛ )→ `XΛ is trivial.

A branched covering G : C → C ′ between Riemann surfaces is said to be
of regular type if for any given x ∈ C ′ all the points in G−1(x) have the same
ramification index. If the branched covering is Galois then it is necessarily
of regular type but the converse is not true except for particular cases which
include C = P1. A dominant rational map G : X 99K Y between projective
manifolds of the same dimension is also a branched covering, in the sense of
[31], outside a suitable Zariski closed subset of X. In this general case one
can also define in a natural way the notion of being of regular type, which
takes into account the behavior of the map at the indeterminacy locus. The
precise definition is given in Subsection 3.4. Using Theorem C we obtain
the following result (cf. Theorem 3.33) which states that, for a concrete
rational selfmap of Pn, being Galois could be decided just by studying its
ramification and indeterminacy loci.

Theorem D. A dominant rational map G : Pn 99K Pn is Galois if and only
if it is of regular type.

Whereas the pull-back by a dominant rational map of a (singular) folia-
tion, or a web, is always well defined, their push-forward is not. Nevertheless
we show that if G : X 99K Y is a dominant rational map of degree d between
projective manifolds of the same dimension and if F is a codimension one
holomorphic foliation on X, which is in general position with respect to G,
then there is a uniquely defined d-web G∗F on Y such that, on YΛ, G∗F is
given by the superposition of the d local foliations defined by the covering
map G|XΛ

(cf. Proposition 4.6). The precise definition of foliation in general
position with respect to a rational map is given in subsection 4.1.

For a given web W on an projective manifold Y there is a naturally
associated projective manifold ZW endowed with a foliation CW in general
position with respect to a surjective morphism πW : ZW → Y such that the
webW is the direct image of the foliation CW . It is shown that the birational
type of the triple (ZW , CW , πW) is unique (cf. Theorem 4.8). This property
allows us to define Galois webs as those whose associated morphism πW is
a Galois rational map and we prove that every finite group can be realized
as the monodromy group of a Galois web (cf. Theorem 4.14).
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Recall that a d-web is called totally decomposable if it is the superposition
of d global foliations. A characterization of the property for G of being
Galois in terms of foliations in the source space X is given by the following
statement (cf. Theorem 4.12).

Theorem E. Let G : X 99K Y be a given dominant rational map between
projective manifolds of the same dimension and let F be a codimension one
foliation on X which is in general position with respect to G. Then G is
Galois if and only if the web G∗G∗F on X is totally decomposable.

We apply this result to the case of the Gauss map of a foliation on the
projective space obtaining an explicit family of Galois foliations in each
dimension and degree (cf. Proposition 4.20). The construction of these
examples are in the spirit of generalizing the goals and methods of [9] to
foliations in arbitrary dimension.

We turn back now to the original motivation of this article, that is the
characterization of Galois foliations F in the complex projective plane. In
an affine chart, F is defined by a vector field X = A(x, y)∂x + B(x, y)∂y,
where A and B are polynomials. In this situation, Theorem D is equivalent
to say that F is Galois if and only if the polynomial in t

P (x, y, t) = det

(
A(x, y) A

(
x+ tA(x, y), y + tB(x, y)

)

B(x, y) B
(
x+ tA(x, y), y + tB(x, y)

)
)

decomposes totally over the field C(x, y). This criterium, already stated in
[9], implies that Galois property defines a Zariski closed set inside the space
of degree d foliations. It can be used to determine if a given class of foliations
is Galois or not, as the following example shows (cf. Example 5.7).

Example F. The vector fields

(αud + βvd)∂x + (γud + δvd)∂y + (λud + µvd)(x∂x + y∂y)

determine a family of degree d Galois foliations on P2 with cyclic monodromy
group, where (α, γ, λ), (β, δ, µ) ∈ C3 are linearly independent vectors and
u, v ∈ C[x, y] are C-linearly independent polynomials with deg u,deg v ≤ 1.

Then we use Theorem D to give a geometric characterization of Galois
foliations on P2 in terms of its inflection divisor IF , its singular locus ΣF
and the generic polar curve of F (cf. Theorems 5.11 and 5.12 for the explicit
statement) implying in particular Theorem A.

In subsection 5.3 we treat the case of homogeneous foliations in P2. That
is, those foliations whose coefficients A and B are homogeneous polynomials
of a same degree d. Such a foliation F is invariant by the flow associated
to the radial vector field and it turns out that in order to decide if F is
Galois we can perform a dimensional reduction in the following way. Let P̃2

be the manifold obtained by blowing up the origin of C2 ⊂ P2, which is a

singularity of the foliation. Then the lift G̃F to P̃2 of the Gauss map of the

foliation is defined on the the exceptional divisor E ∼= P1. Moreover G̃F
maps E onto a copy of P1 and we prove that the homogeneous foliation F is

Galois if and only if the restricted morphism G̃F |E : P1 → P1 is Galois. Then
we can use the classification of the Galois ramified coverings of P1 by itself,
that goes back to Klein (cf. Theorem 3.36). The left-right equivalence
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between rational functions on P1 preserve Galois property and translates
into a natural action of PSL2(C) × PSL2(C) on the space of homogeneous
foliations. We obtain the following result (cf. Theorem 5.17).

Theorem G. The homogeneous Galois foliations of degree d consists of the
orbits by the left-right action of PSL2(C)× PSL2(C) of the following ones:

(1) xd∂x + yd∂y for every d,
(2) (xn + yn)2∂x + (xn − yn)2∂y if d = 2n is even,

(3) (x4 + 2i
√

3x2y2 + y4)3∂x + (x4 − 2i
√

3x2y2 + y4)3∂y if d = 12,
(4) (x8 + 14x4y4 + y8)3∂x + (xy(x4 − y4))4∂y if d = 24,
(5) (x20−228x15y5+494x10y10+228x5y15+y20)3∂x+(xy(x10+11x5y5−y10))5∂y if d = 60.

In fact, foliations in Example F are deformations of those in the orbit
of xd∂x + yd∂y in the above theorem. Analogous deformations (cf. Defini-
tion 5.20) can be considered for the remaining orbits.

More generally, we consider foliations in P2 admitting a continuous group
of automorphisms. In this more general setting we prove that there is a

non-constant morphism Ĝ : P1 → P1, of the same degree than G, so that

Deck(G) ' Deck(Ĝ). In particular, F is Galois if and only if Ĝ is Galois (cf.
Corollary 5.25).

Concerning the problem of describing the irreducible components of the
space Gd of degree d Galois foliations, we consider a discrete numeric invari-
ant, the genus of the polar curve, that is shown to be generically constant
along each component (cf. Proposition 5.5). We also introduce a combi-
natorial invariant, the branching type of the foliation (cf. Definitions 3.22
and 3.29), that we also expect to be generically constant along the irreducible
components of Gd. Finally, with the help of an algebraic manipulator we
show that G3 is reducible (Proposition 5.33), answering partially a question
raised in [9].

This article is organized as follows. In Section 2 we collect the basic prop-
erties of Galois coverings that will be used in the sequel. Section 3 is devoted
to the general properties of rational maps between projective manifolds of
the same dimension focusing on those that are Galois. In particular we prove
Theorems B, C and D. In Section 4 we describe the behavior of a foliation
or a web under a rational map and we prove Theorem E. In the last section
we apply the above results to the Gauss map of a planar foliation, giving
concrete examples of Galois foliations on P2 and proving Theorems A and G.

Acknowledgements. The authors wish to thank J.V. Pereira and T. Fas-
sarella for fruitful conversations. The first and second authors thank the
Departament de Matemàtiques de la Universitat Autònoma de Barcelona
for their hospitality and support.

2. Galois coverings

Let $ : E → B be a d-sheet covering over a connected and locally path
connected topological space B. Fix a base point p0 ∈ B and its fibre
F = $−1(p0) = {p1, . . . , pd}. We consider its deck transformation group

D = {τ : E
∼→ E : $ ◦ τ = $} acting on the left on F by restriction.

In fact, the restriction map is a monomorphism D ↪→ S(F ), where S(F )
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is the permutation group of F . We also consider the monodromy anti-
representation µ̄ : π1(B, p0) → S(F ) of $ defined by µ̄([γ])(p) = γ̃p(1) for
each p ∈ F , where γ̃p(t) is a path in E starting at γ̃p(0) = p and project-
ing onto γ = $(γ̃p). The anti-morphism µ̄ defines a right action of the
fundamental group of B on F . We define the monodromy representation
µ : π1(B, p0) → S(F ) as the morphism γ 7→ µ(γ) = µ̄(γ−1). Its image
subgroup, denoted by M , is called the monodromy group of $. It is clear
that if E is connected then the action of D is free and the action of M
is transitive. Consequently, if E is connected then |D| ≤ d and |M | ≥ d.
Identifying F ' {1, . . . , d} we can consider both D and M as subgroups of
the symmetric group Sd.

It is well known (see for instance [15, Théorème 4.6.8]) that the covari-
ant functor from the category of coverings over B into the category of left
π1(B, p0)-sets, which sends a covering over B to its fibre F over p0 endowed
with the left action given by the monodromy representation, is an equiv-
alence of categories. Indeed, for every left π1(B, p0)-set F , coming from a
morphism µ : π1(B, p0) → S(F ), we can consider the suspension covering

E = B̃ ×µ F → B whose monodromy representation is µ. On the other
hand, if a map σ between the fibres over p0 of two coverings E1 and E2

over B is equivariant with respect their monodromy representations (i.e.
σ(µ1(γ)(p)) = µ2(γ)(σ(p))) then we can extend σ to a morphism E1 → E2

of covering maps over B by means of the classical lifting path method. This
allows to characterize the image of D inside S(F ) as the permutations com-
muting with all the elements of the monodromy group as F. Cukierman
states in [12]:

Proposition 2.1. Let $ : E → B be a covering with fibre F , deck trans-
formation group D ↪→ S(F ) and monodromy group M ⊂ S(F ). Then D is
the centralizer Z(M) of M in S(F ).

Remark 2.2. In general, there are no inclusion between the subgroups
D and M . In fact, it follows from Proposition 2.1 that their intersection
D ∩M = Z(M)∩M = C(M) is the centre of M . Thus, M ⊂ D if and only
if M is abelian. In addition, if the covering $ is finite and E is connected
then M is abelian if and only if M = D because |D| ≤ deg$ ≤ |M |.

Given a connected and locally path connected space B′ and a continuous
map f : B′ → B the pull-back covering of $ : E → B by f is defined
as $′ : E′ = f∗E = E ×B B′ = ($ × f)−1(∆B) → B′, where ∆B is the
diagonal of B×B and $′ is the restriction of the second projection onto B′.
The map f ′ : E ×B B′ → E induced by the first projection is a bijection
when it is restricted to a fibre of $′. Thus, given a point p′0 ∈ f−1(p0),
we can canonically identify the fibre $′−1(p′0) with $−1(p0) = F via f ′.
Then the monodromy representation of $′ : E′ → B′ is the composition
µ ◦ f∗ : π1(B′, p′0) → π1(B, p0) → S(F ). In particular, the monodromy
group M ′ of $′ is a subgroup of the monodromy group M of $. Let D (resp.
D′) be the deck transformation group of $ (resp. $′). There is a natural
monomorphism D ↪→ D′ given by τ 7→ τ ′, where τ ′(e, b′) = (τ(e), b′). On the
other hand, if E and E′ are connected and f ′(p′1) = p1 then $′∗(π1(E′, p′1)) =
f−1
∗ ($∗(π1(E, p1))).
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Proposition 2.3. With the notations introduced above, if f∗ : π1(B′) →
π1(B) is a epimorphism then

(a) M ′ = M ,
(b) D and D′ are canonically isomorphic,
(c) if E and E′ are connected then f ′∗ : π1(E′)→ π1(E) is an epimorphism.

Proof. The first assertion is clear, the second one is a consequence of Propo-
sition 2.1 and the last one follows by noting that $∗ ◦ f ′∗ = f∗ ◦$′∗ and by
applying f∗ to the equality $′∗(π1(E′, p′1)) = f−1

∗ ($∗(π1(E, p1))). �

Remark 2.4. The total space of the pull-back $′ : E′ → B′ of a connected
covering $ : E → B by a continuous map f : B′ → B is not necessarily
connected. In particular, if we take B′ = E and f = $ then there are
natural bijections

D ' {E′0 ∈ π0(E′) |$′|E′0 is bijective} ' Fix(M ′),

where D is the deck transformation group of $, M ′ is the monodromy
group of $′ and Fix(M ′) = {p ∈ F | ∀m′ ∈ M ′, m′(p) = p}. Indeed, for
each connected component E′0 of E′ := $∗E such that $|E′0 is bijective there

is a section σ : E → E′0 ⊂ E′ ⊂ E×E that we can write as σ(p) = (p, τ(p)).
Then τ : E → E is a deck transformation of $. On the other hand, the
map E ×D → $∗E defined by (p, τ) 7→ (p, τ(p)) is always injective.

Remark 2.5. With the precedent notations, if E and E′ = f∗E are con-
nected, $ is finite and f ′∗ : π1(E′) → π1(E) is an epimorphism then D
and D′ are canonically isomorphic. Indeed, the monodromy groups of $∗E
and $′∗E′ coincide. We conclude by noting that the natural morphism
D ↪→ D′ is injective and |D| = |D′| <∞ by Remark 2.4.

The following result is a compilation of well-known facts (see for instance
[27, §III.B] and [25, §II.2]) and some additional remarks.

Theorem 2.6. For a connected d-sheet covering $ : E → B the following
assertions are equivalent:

(1) the pull-back covering $∗E = E×BE → E is trivial (i.e. a product),
(2) $∗(π1(E, p1)) = kerµ (or equivalently, $∗(π1(E, p1)) ⊂ kerµ),
(3) $∗(π1(E, p1)) is a normal subgroup of π1(B, p0),
(4) D acts transitively on the fibre,
(5) |D| ≥ d (or equivalently, |D| = d),
(6) M acts freely on the fibre,
(7) |M | ≤ d (or equivalently, |M | = d),
(8) the groups D and M are isomorphic,

(9) $ induces an homeomorphism E/D
∼→ B.

When properties (1)-(8) are satisfied we say that the covering $ is Galois.
In this case D 'M ' π1(B, p0)/$∗(π1(E, p1)).

Proof. First, recall that a covering is trivial if and only if its monodromy is
trivial. Thus, (1) and (2) are equivalent because the monodromy µ ◦$∗ of
$∗E is trivial if and only if $∗(π1(E, p1)) ⊂ kerµ. The general scheme of
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the proof is the following:

(1) ks
X +3 (2)

obvious +3 (3)
[27, IIIB2] +3 (4) ks

[27, IIIB6]

[25, II§2.2]
+3

[27, IIIB6]
��

(9)

(6) ks
M transitive

[27, IIIB4]

KS

(7) ks
|D|≤d

(8)
|M |≥d

+3 (5)

D free

ck

[(5) ⇒ (4)]: If D = {τ1, . . . , τd} and p1 ∈ $−1(p0) then {τj(p1)}dj=1 has
cardinal d because D acts freely.
[(7)⇒ (6)]: Since M = {σ1, . . . , σd} acts transitively on {1, . . . , d}, for each
i ∈ {1, . . . , d} there is a unique σj ∈M such that σj(1) = i. Without loss of
generality we can assume that j = i. If σk(i) = i then σk ◦ σi = σi. Hence
σk = id and M acts freely on the fibre. �

From Remark 2.2 and Theorem 2.6 we immediately obtain the following:

Corollary 2.7. If $ : E → B is a connected d-sheet covering with abelian
monodromy group M ⊂ Sd then $ is Galois. In particular, if M is cyclic
then M ' Zd.

Obviously the converse of Corollary 2.7 is not true in general. Hence
part (b) of Theorem 3 in [38] asserting that the subgroups D and M coincide
if and only if $ is Galois, is wrong. However, it becomes true when d is
prime thanks to Cauchy’s theorem:

Corollary 2.8. When deg$ is prime, $ is Galois if and only if M is cyclic.

Remark 2.9. Although it is customary to consider the Galois property only
for connected coverings there is a natural definition of non-connected Galois
covering $ : E → B by requiring

(0) the existence of a connected Galois covering $0 : E0 → B and a discrete
set C ' π0(E) such that E ' E0 × C and $ is the composition of the
first projection E → E0 with $0.

It can be easily checked that condition (0) is equivalent to conditions (1)-(4)
in Theorem 2.6. Moreover, it implies (but if |C| > 1 it is not equivalent
to) the part of assertions (5)-(7) and (9) which are not in parenthesis. In

fact, under condition (0) we have DE ' S(C) ⊕ D
⊕|C|
E0

so that |DE | =

|DE0 ||C||C|! > |DE0 ||C| = deg($) and |ME | = |ME0 | = deg$0 = deg$
|C| <

deg$, assuming that |C| > 1. Hence, in that case condition (8) does not
hold.

Using the above notion of non-connected Galois coverings we can state
the following result which will be used later.

Proposition 2.10. Let $ : E → B be a covering, let B′ ⊂ B a connected
and locally path connected subset, set E′ = $−1(B′) ⊂ E and consider a
connected component E′0 of E′. Then the restrictions maps $′ and $′0 of $
to E′ and E′0 are coverings. If $ is Galois then so are $′ and $′0 and there
are natural inclusions D′0 ↪→ D ↪→ D′ between the deck transformations
groups D, D′ and D′0 of $, $′ and $′0 respectively.
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Proof. The first assertion is straightforward. Clearly, each τ ∈ D fulfills
τ(E′) = E′, which implies that τ|E′ ∈ D′, and if τ(E′0)∩E′0 6= ∅ then τ(E′0) =
E′0 and τ|E′0 ∈ D

′
0. These considerations imply that if D acts transitively on

its fibre F then D′ and D′0 acts also transitively on its corresponding fibres
F ′ = F and F ′0 ⊂ F .

Given τ ′0 ∈ D′0, by the transitivity of D there is a unique τ ∈ D such
that τ(p) = τ ′0(p). Then τ|E′0 = τ ′0 and the correspondence τ ′0 7→ τ defines
the first inclusion. The second monomorphism is given by the restriction of
maps. Last isomorphism follows from Remark 2.9. �

3. Galois rational maps

In this section we consider dominant rational maps between projective
manifolds of the same dimension. The Gauss map associated to (non de-
generated) codimension one holomorphic foliations on Pn provide examples
of that kind of maps, which are shown to be finite coverings when restricted
to suitable Zariski open subsets. The map is said to be of Galois type if
the finite covering is Galois and we address the problem of finding sufficient
conditions assuring that such a rational map has that property.

3.1. Dominant rational maps between complex projective mani-
folds. Let G : X 99K Y be a rational map between complex projective
manifolds with indeterminacy locus ΣG ⊂ X. Since Y is projective, the
Zariski closed set ΣG has codimension ≥ 2. Consider the closed graph

Γ := {(x,G(x)) |x ∈ X \ ΣG} ⊂ X × Y and the restrictions pX and pY
to Γ of the natural projections from X × Y onto X and Y respectively. A
desingularization of G is a commutative diagram

X̃
G̃

��

β

��
X G // Y

where X̃ is a projective manifold, G̃ and β are morphisms and β is birational.
Without loss of generality we can always assume that β restricts to an

isomorphism from X̃ \ β−1(ΣG) onto X \ΣG . To give a desingularization of
G is equivalent to give a desingularization of Γ, i.e. a birational morphism

δ : X̃ → Γ. Indeed, from (β, G̃) we construct the morphism δ := β × G̃ :

X̃ → X × Y having image Γ and from δ we recover β := pX ◦ δ and

G̃ := pY ◦ δ. We consider also the exceptional divisor E := β−1(ΣG) of β
which contains δ−1(Sing(Γ)). For every subsets A ⊂ X and B ⊂ Y we

define the image G(A) := pY (p−1
X (A)) = G̃(β−1(A)) ⊂ Y and the preimage

G−1(B) := pX(p−1
Y (B)) = β(G̃−1(B)) ⊂ X. For every rational map f :

X 99K Y with indeterminacy locus Σf ⊂ X we define the following Zariski
closed sets:

(1)
∆f := {x ∈ X \ Σf | dfx is not surjective} ⊂ X
Λf := f(∆f ∪ Σf ) ⊂ Y.
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Going back to the original setup we note that

ΛG = G(∆G ∪ ΣG) = G(∆G \ ΣG) ∪ G(ΣG)

= G̃(β−1(∆G \ ΣG)) ∪ G̃(β−1(ΣG))

= G̃(∆G̃ \ E) ∪ G̃(E) = G̃(∆G̃ ∪ E) = ΛG̃ ∪ G̃(E).

Assume from now on that G : X 99K Y is dominant, i.e. it has dense image.

Since every projective morphism is closed we obtain that G̃ is surjective.

Moreover, by applying Sard’s theorem to G̃ : X̃ → Y we deduce that the
Zariski closed set ΛG̃ is proper.

Remark 3.1. If ΣG = ∅ or dimX = dimY then the Zariski closed subset

ΛG ⊂ Y is proper. Indeed, dim G̃(E) ≤ dim E < dimX.

Remark 3.2. The hypothesis that X and Y are non-singular projective
varieties is not restrictive. Indeed, if G′ : X ′ 99K Y ′ is a rational map
between singular complex projective varieties then we can desingularize it
by taking birational morphisms βX : X → X ′ and βY : Y → Y ′ with X
and Y complex projective manifolds and we can consider the rational map
G := β−1

Y ◦ G′ ◦ βX : X 99K Y . On the other hand, the assumption that G
is dominant is not restrictive either because we can always replace Y by a
desingularization of the Zariski closure of G(X \ ΣG) in Y .

In the sequel we will use the following extension of Lefschetz’s hyperplane
theorem (cf. [22, Theorem 1.1.3(ii)]):

Theorem 3.3 (Hamm-Lê). Let X be a complex projective algebraic variety
in PN . Let Z be an algebraic subspace of X such that X \Z is non singular.
Then there is an open dense set Ω ⊂ P̌N of complex hyperplanes in PN
such that for any H ∈ Ω the space X \ Z has the homotopy type of a space
obtained from H ∩ (X \ Z) by attaching cells of (real) dimension at least
equal to dimCX.

Definition 3.4. Let X be a complex projective n-manifold in PN . A generic
hyperplane curve `X of X is a curve on X obtained by intersection with
H1∩· · ·∩Hn−1 where (H1, . . . ,Hn−1) is a generic (n−1)-tuple of hyperplanes
in PN .

Notice that if X = Pn is linearly embedded in PN then `X is just a generic
line. We recall that, for n ≥ 2, adjoining n-cells to a given topological space
preserves any system of generators of its fundamental group and that, by
Bertini’s theorem, a generic hyperplane section of a projective manifold is
smooth. By applying n− 1 times Theorem 3.3 we deduce the following:

Corollary 3.5. Let X be a complex n-dimensional projective manifold in PN .
Let Z be an algebraic subspace of X. Then there is a open dense subset
Ω ⊂ (P̌N )n−1 such that for each (H1, . . . ,Hn−1) ∈ Ω the hyperplane curve
`X := X ∩ H1 ∩ · · · ∩ Hn−1 is smooth and the inclusion `X \ Z ⊂ X \ Z
induces an epimorphism π1(`X \ Z)� π1(X \ Z).

Corollary 3.6. Let X be a projective manifold, U ⊂ X an open Zariski
subset and Λ ⊂ X a closed Zariski subset. Then the inclusion U \ Λ ⊂ U
induces an epimorphism π1(U \ Λ)� π1(U).
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Proof. Applying Corollary 3.5 to the algebraic subspaces Z = X \ U and
Z = (X \ U) ∪ Λ of X we deduce that that the horizontal arrows of the
following commutative diagram are surjective

π1(`X ∩ U \ Λ) // //

����

π1(U \ Λ)

��
π1(`X ∩ U) // // π1(U).

The left vertical arrow is also surjective because `X is a complex curve and
`X ∩ (X \ U) ∩ Λ ⊂ `X ∩ Λ are finite sets. Hence the right vertical arrow
induced by the inclusion U \ Λ ⊂ U is also an epimorphism. �

Let f : A→ B be a smooth proper submersion where A and B are smooth
manifolds and B is connected. Then f defines a locally trivial fibration
with fibre a compact smooth manifold F and, associated to it, there is a
monodromy representation that can be defined as follows. Let F = f−1(b0)
be a fibre and let us fix a connection on A. Each loop in B with base point
b0 determines a diffeomorphism of F which is constructed by the lifting
path method and whose isotopy class only depends on the homotopy class
of the loop. Thus, there is a well defined morphism π1(B)→M(F ), where
M(F ) denotes the mapping class group of the fibre F . This morphism is
independent of the chosen connection and its image Mon(f) is called the
geometric monodromy group of the fibration. We will be mainly interested
in the case dimA = dimB. In that situation f is a covering map, F is
a finite set and M(F ) is S(F ), the group of permutations of F . For more
details on the definition and properties of the geometric monodromy we refer
to [16, §4.4].

In the sequel, given a rational map f : X 99K Y and a subset Λ ⊂ Y , we
will use the following notations:

(2) YΛ := Y \ Λ, XΛ := f−1(YΛ) and fΛ := f|XΛ
.

We recall a known result stated in a suitable form for our purposes.

Proposition 3.7. Let G : X 99K Y be a dominant rational map between
projective manifolds and assume Y is connected and G(ΣG) 6= Y . For every
proper Zariski closed set Λ ( Y containing ΛG, the restriction GΛ : XΛ → YΛ

is a fiber bundle with a fibre F of dimension dimX − dimY . Moreover, the
monodromy group of GΛ does not depend on Λ ⊇ ΛG. It will denoted by
Mon(G).

Proof. Since the restriction βΛ : β−1(XΛ) → XΛ of β is an isomorphism

and G̃ is proper, the map GΛ = G̃ ◦ β−1
Λ is a proper surjective submersion.

Ehresmann’s theorem asserts that GΛ is a locally trivial fiber bundle. Con-
nectedness of Y implies that all the fibres are smoothly equivalent, say to F .
Last assertion follows by applying Corollary 3.6 and Proposition 2.3. �
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Notice that the fibre F of the fiber bundle GΛ : XΛ → YΛ is not necessarily
connected. By applying Stein factorization theorem to the surjective mor-

phism G̃ we obtain a commutative diagram of complex projective varieties

(3) X̃
γ //

G̃
�� ��

β
��

N

ρ
����

X
G // Y

where γ is a morphism with connected fibres, N is an algebraic normal vari-
ety and ρ is a finite and surjective morphism, see [20, p. 213]. Consequently
ρ is a branched covering in the sense of [31]. Any surjective proper finite holo-
morphic map f : Z →W from a normal complex space Z onto a connected
complex manifold W is a finite branched covering of W (cf. Definition 1.1.1
and Example 1.1.2 in [31]). In fact, all the branched coverings appearing
in this article will be of that type. Notice also that NΛ = ρ−1(YΛ) is nat-
urally identified to

⋃
y∈YΛ

π0(G−1
Λ (y)). The following proposition says that

the branched covering ρ : N → Y is canonically associated to G : X 99K Y .

Proposition 3.8. The branched covering ρ : N → Y associated to the ra-
tional map G : X 99K Y by the Stein factorization (3) of a desingularization

G̃ of G does not depend on the choice of G̃.

Proof. Let G̃ : X̃ → Y and G̃′ : X̃ ′ → Y two desingularizations of G and

let G̃ = ρ ◦ γ and G̃′ = ρ′ ◦ γ′ their Stein factorizations given by (3). Since
NΛ '

⋃
y∈YΛ

π0(G−1
Λ (y)) ' N ′Λ, the coverings ρΛ and ρ′Λ are equivalent. We

conclude that the branched coverings ρ : N → Y and ρ′ : N ′ → Y are also
equivalent by applying [31, Proposition 1.1.5]. �

From now on we will restrict our attention to the case dimX = dimY
and Y connected. In this situation, the fibre F is finite of cardinal the
topological degree d of G (see [29, §5 Theorem A]), and the morphism γ :

X̃ → N is generically injective (because its generic fibre is 0-dimensional
and connected), hence birational.

Definition 3.9. Let G : X 99K Y be a dominant rational map between pro-
jective manifolds of the same dimension. We define the group of birational
deck transformations of G as

Deck(G) := {τ ∈ Bir(X) | G ◦ τ = G}.
Remark 3.10. Given birational maps a : X ′ 99K X and b : Y 99K Y ′, the
monodromy and deck transformation groups of the rational maps G : X 99K Y
and G′ = b◦G◦a : X ′ 99K Y ′ are canonically isomorphic. Indeed, conjugation
by a induces an isomorphism between the deck transformation groups and
the isomorphism between the monodromies follows from Proposition 3.7.

The main result of this section is the following.

Theorem 3.11. Let G : X 99K Y be a rational dominant map between
complex projective manifolds of the same dimension. Assume that Y is
connected and denote by d the topological degree of G. Let Λ be a Zariski
closed set of Y containing ΛG, let V be a connected and locally path connected
subset of YΛ and set U = G−1(V ). Then
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(1) the maps GΛ : XΛ → YΛ and ρΛ : NΛ → YΛ are isomorphic d-sheeted
coverings;

(2) the monodromy group Mon(G) of GΛ does not depend on Λ ⊃ ΛG and
coincides with the monodromy group of G|U if the inclusion V ⊂ YΛ

induces an epimorphism π1(V )� π1(YΛ);
(3) if one of the following two conditions is fulfilled

(a) the natural morphism π1(V )→ π1(YΛ) is surjective,
(b) X and U are connected and the natural morphism π1(U)→ π1(XΛ)

is surjective,
then the restriction maps induce canonical isomorphisms

Deck(G)
∼→ Deck(GΛ)

∼→ Deck(G|U ).

Proof. (1) By Proposition 3.7, the maps GΛ and ρΛ are d-sheeted coverings.
Since βΛ and γΛ are isomorphisms, we deduce that γΛ ◦ β−1

Λ : XΛ → NΛ is
an equivalence of coverings by the commutativity of diagram (3).
(2) The first part of the assertion also follows from Proposition 3.7. The
second part is a consequence of Proposition 2.3.
(3) The second isomorphism follows also from Proposition 2.3 and Re-
mark 2.5. To see the first isomorphism we use Remark 3.10 and part (1)
of the Theorem. It suffices to prove that the restriction map induces an
isomorphism Deck(ρ)

∼→ Deck(ρΛ). To see that we apply Riemann’s exten-
sion theorem, as in the proof of Proposition 1.1.5 of [31], which shows that
every deck transformation τΛ : NΛ → NΛ of ρΛ extends holomorphically
to N \ Sing(N). Then we use the normality of N to have a biholomorphic
extension to the whole N . �
Remark 3.12. The above proof shows that Deck(G) is naturally identified
with Deck(ρ) and that all the elements of Deck(ρ) are biholomorphisms
of N , where ρ : N → Y is the branched covering uniquely associated to
G : X 99K Y . In fact, the pair (N, ρ) can be characterized as the minimal
birational model of (X,G) fulfilling the following properties:

(i) ρ and all the elements of Deck(ρ) are morphisms,
(ii) ρ is a branched covering.

Recall that a branched covering ρ : N → Y is called Galois if the group
Deck(ρ) acts transitively on every fibre (cf. [31, §1]). In view of the above
theorem we can give the following definition.

Definition 3.13. A dominant rational map G : X 99K Y between connected
complex projective manifolds of the same dimension is said to be Galois if
its associated branched covering ρ : N → Y is Galois, or equivalently, if any
of its associated coverings GΛ are Galois.

We recall that every finite group appears as the Galois group of a Galois
branched covering as it was proved by M. Namba in [32]. Notice however
that deciding the birational type of the source from those of target and the
Galois group is a difficult problem.

Theorem 3.14 (Namba). For every finite group G and every connected
complex projective manifold Y there exists a Galois branched covering ρ :
N → Y whose deck transformation group Deck(ρ) is isomorphic to G.
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3.2. Dimensional reduction. The aim of this subsection is to find criteria
to decide whether a rational map is Galois just by looking at its restriction
to an appropriate subvariety, the most interesting case being when the sub-
variety has dimension one, as a rational dominant map between connected
complex curves is just a non constant morphism or, equivalently, a branched
covering. We obtain several criteria of that type. They will be useful both,
from the theoretical point of view as well as in the applications, for deciding
whether the Gauss map of certain classes of foliations are Galois. Thus, we
want to relate the behavior of a rational map G : X 99K Y , or more generally

a desingularization G̃ : X̃ → Y of it, with its restriction to some irreducible
subvariety.

Let V be an irreducible projective subvariety of X̃ and set W = G̃(V ) ⊂
Y . Since V or W may be singular, according to Remark 3.2, we fix desin-

gularizations βV : Ṽ → V and βW : W̃ → W of V and W and we consider

the rational dominant map G̃V := β−1
W ◦ G̃|V ◦ βV : Ṽ 99K W̃ . Assume

that dimV = dimW . Notice that this condition does not exclude the case
V ⊂ E . By applying Theorem 3.11 to the rational maps G̃ and G̃V with

Λ := ΛG̃ ∪ βW (ΛG̃V ) ∪ G̃(Sing(V )) ∪ Sing(W )

we obtain a commutative diagram

ṼΛ

G̃VΛ //

βV
��

W̃Λ

βW

��
X̃Λ

G̃Λ // YΛ

where the horizontal arrows are coverings. Since G̃(Sing(V ))∪Sing(W ) ⊂ Λ

we can identify ṼΛ ' VΛ ⊂ X̃Λ, W̃Λ 'WΛ ⊂ YΛ and G̃VΛ with the restriction

of G̃Λ to VΛ. In this situation we have the following result.

Proposition 3.15. Let V ⊂ X̃ be an irreducible projective subvariety.

(a) Assume that V 6⊂ ∆G̃.

(i) If G is Galois then G̃V is Galois and Deck(G̃V ) ↪→ Deck(G).

(ii) If G̃V is Galois, deg G̃V = deg G and the inclusion WΛ ⊂ YΛ in-
duces an epimorphism in the fundamental groups then G is Galois.

(b) Assume that V ⊂ ∆G̃ and dim G̃(V ) = dimV . If G is Galois then G̃V is
Galois.

Proof. Part (a) follows from Propositions 2.10 and 2.3 and Theorem 3.11.
Assume now that the hypothesis in (b) are fulfilled. In particular, the re-
striction γ|V : V → γ(V ) ⊂ N is birational. It follows, using Remark 3.12,
that V is not contained in the indeterminacy locus Στ of any deck trans-

formation τ : X̃ 99K X̃ of G̃. Then each element τ ∈ Deck(G̃) such that
τ(V \ Στ ) ∩ V 6= ∅ determines a birational map V 99K V inducing an ele-

ment in Deck(G̃V ). Since Deck(G̃) acts transitively on the generic fibre of

G̃ then, by continuity, it also acts transitively on a fibre over G̃(V ). Hence

Deck(G̃V ) acts also transitively on its fibre. �
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A particular situation in which the precedent result applies to a one-

dimensional covering G̃V is to take V = G̃−1(C) for some curve C ⊂ Y . In
fact, thanks to Corollary 3.5 there are generic hyperplane curves `X ⊂ X
and `Y ⊂ Y such that

π1(`X \ G−1(Λ))� π1(X \ G−1(Λ)) and π1(`Y \ Λ)� π1(Y \ Λ).

We use the conventions introduced in (2), namely YΛ = Y \ Λ and XΛ =
G−1(YΛ), and we denote `XΛ := `X ∩ XΛ and `YΛ := `Y ∩ YΛ. Let pΛ :
G∗Λ(XΛ) = XΛ ×YΛ

XΛ → XΛ be the pull-back covering of GΛ by GΛ and
consider their corresponding restrictions to `XΛ and `YΛ :

p−1
Λ (`XΛ ) �

� //

p`Λ
��

G∗Λ(XΛ)

pΛ

��

// XΛ

GΛ

��

oo ? _G−1
Λ (`YΛ )

G`Λ
��

`XΛ
� � // XΛ

GΛ // YΛ
oo ? _`YΛ .

By applying Proposition 2.3 and Theorem 2.6 we immediately obtain the
following characterizations:

Theorem 3.16. Let `X ⊂ X and `Y ⊂ Y be generic hyperplane curves.
Then the restriction map Deck(GΛ)→ Deck(G`Λ) is an isomorphism and the
following assertions are equivalent

(1) the rational map G : X 99K Y is Galois;
(2) the restricted covering G`Λ : G−1

Λ (`YΛ )→ `YΛ is Galois;

(3) the restricted pull-back covering p`Λ : p−1
Λ (`XΛ )→ `XΛ is trivial.

Proposition 3.17. The restricted covering G`Λ extends to a uniquely deter-

mined branched covering G` : S`G → `Y between compact Riemann surfaces.

Moreover, the topological type of the covering G` does not depend on the
choice of the generic hyperplane curve `Y ⊂ Y , once we fix an embedding
Y ⊂ PN .

Proof. The fact that the covering G`Λ extends to a uniquely determined

branched covering G`, is well known. In fact, S`G is the normalization of

the Zariski closure of G−1
Λ (`YΛ ). To see the second part, we consider the

Grassmannian Z = GN−n+1(PN ) and its subset

ZY = {z ∈ Z | z ∩ Y is a smooth curve},

which contains a Zariski open subset of Z by Bertini’s theorem. We also
consider the incidence variety V = {(y, z) ∈ Y ×Z | y ∈ z} and we denote by
qY : V → Y and qZ : V → Z the natural projections. Set W = X ×Y V '
(G× idZ)−1(V) ⊂ X×Z and denote by qX :W → X the natural projection.
Although V and W can have singularities, using Remarks 3.1 and 3.2 we
can apply Proposition 3.7 to the rational map GV : X ×Y V 99K V and the
morphisms qX , qY and qZ defined above. In fact, we can choose compatible
closed sets Λ in the different spaces so that the arrows in the following
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commutative diagram are well defined

WΛ ×VΛ
`YΛ

//

��

`YΛ = (qZΛ )−1(z0) //
_�

��

{z0}
_�

��
WΛ

GVΛ //

qXΛ
��

VΛ

qZΛ //

qYΛ
��

ZΛ

XΛ
GΛ // YΛ,

and the following conditions are fulfilled: ZΛ ⊂ ZY , the restrictions qXΛ , qYΛ
and qZΛ are locally trivial fiber bundles and GVΛ and GΛ are finite coverings.
Notice that

WΛ ×VΛ
`YΛ = {(x, y, z0) | y = GΛ(x) ∈ z0} ' G−1

Λ (`YΛ ).

It is easy to check that the compositionWΛ
GVΛ−→ VΛ

qZΛ−→ ZΛ is a fiber bundle
trivializing on the same open subsets Ui ⊂ ZΛ that qZΛ : VΛ → ZΛ. Fix
z0, z1 ∈ ZΛ and choose a path zt ⊂ ZΛ joining them. Trivializing simultane-
ously both fiber bundles over the interval [0, 1] we obtain homeomorphisms

ξ : z0 ∩ YΛ
∼→ z1 ∩ YΛ and χ : G−1

Λ (z0 ∩ YΛ)
∼→ G−1

Λ (z1 ∩ YΛ) making commu-
tative the diagram

G−1
Λ (z0 ∩ YΛ)

χ //

G0
Λ

��

G−1
Λ (z1 ∩ YΛ)

G1
Λ

��
z0 ∩ YΛ

ξ // z1 ∩ YΛ.

Hence the coverings G0
Λ and G1

Λ have the same topological type. �

Remark 3.18. The genus of the compact Riemann surface S`G depends on

the embedding Y ↪→ PN but it is a well defined invariant in the case Y = Pn,
which is the case for instance for the Gauss map of a foliation on Pn.

For certain rational maps, the property of being Galois can be checked
by looking at its restriction to a curve that is not generic. The following
example exhibits a class of rational maps in which Proposition 3.15 can be

applied to a subvariety V contained in the exceptional divisor E ⊂ X̃. This
example will be used in Subsection 5.3.

Example 3.19. Let A,B ∈ Cd[x, y] be coprime homogeneous polynomials
of degree d and let u, v ∈ C1[x, y] be linear polynomials, not both zero.
Define C = uA + vB and consider the rational map G : P2 99K P2 given by
G([x, y, z]) = [A(x, y)z,B(x, y)z, C(x, y)]. The topological degree of G is d
because, for generic [a, b, c] ∈ P2, the system of equations

{
A
C = a

c ,
B
C = b

c

}

is equivalent to
{
B
A = b

a , au+ bv = c
}

whose solutions are the intersection
points of the set aB − bA = 0, consisting in d lines through the point
O = [0, 0, 1], with the straight line au + bv = c, which generically does not
contains O. On the other hand, it is easy to see that the image of the line
z = 0 by G is the point O′ = [0, 0, 1] in the target. The indeterminacy points
of G are {C(x, y) = 0, z = 0} and {A(x, y) = B(x, y) = 0} = {O}. It can
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be easily checked that we obtain a desingularization β : P̃2 → P2 of G by
blowing up once each one of these points. In fact, in the affine charts (t, x) of

P̃2 corresponding to z = 1, y = tx and a = 1 in the target P2, the morphism

G̃ = G ◦ β : P̃2 → P2 is written as G̃(t, x) = (f(t), xg(t)), where f(t) = B(1,t)
A(1,t)

and g(t) = C(1,t)
A(1,t) . Since det(dG̃)(t, x) = f ′(t)g(t) 6≡ 0, the divisor ∆G̃ consists

in the strict transform of a finite number of lines through O and the line
z = 0. Since the image by G of a line through O is a line through O′, we

deduce that ΛG̃ = G̃(∆G̃) consists in a finite number of lines through O′ and

a finite number of points in the line c = 0. Let V ⊂ P̃2 be the exceptional
divisor over O which in the chart (t, x) has equation x = 0. Its image

W = G̃(V ) by G̃(t, x) = [A(1, t), B(1, t), xC(1, t)] is just the line c = 0. Thus,

in this case G̃V = G̃|V and the set Λ = ΛG̃ ∪ΛG̃V ∪ G̃(Sing(V ))∪ Sing(W ) =

ΛG̃ . In addition, the inclusion W \ ΛG̃ ⊂ P2 \ ΛG̃ induces an epimorphism

of fundamental groups. Finally, thanks to the hypothesis gcd(A,B) = 1

we have deg G̃|V = d. By applying Proposition 3.15 we deduce that G is

Galois if and only if the morphism G̃|V : P1 → P1 given by G̃|V (x, y) =
[A(x, y), B(x, y)] is Galois. �

Another situation in which we can made a dimensional reduction is the
following. Let G : X 99K Y , f : X 99K X̂, g : Y 99K Ŷ and Ĝ : X̂ → Ŷ be
dominant rational maps between connected complex projective manifolds
such that the following diagrams commutes

(4) X
G //

f
��

Y

g
��

X̂
Ĝ // Ŷ

Assume further that dimX = dimY > dim X̂ = dim Ŷ , that f, g have

generic connected fibres, and that the topological degrees of G and Ĝ coin-
cide. Then one has

Proposition 3.20. Under the above hypothesis, there is a natural isomor-

phism between Deck(G) and Deck(Ĝ). In particular, G is Galois if and only

if Ĝ is Galois.

Proof. The hypothesis deg G = deg Ĝ is equivalent to say that the restriction
of G to a generic fibre of f is injective. Hence the rational map f×G : X 99K
X̂ × Y is generically injective. Its image is contained in X̂ ×

Ŷ
Y thanks to

the commutativity of diagram (4). By Proposition 3.7 and Theorem 3.11 we
can choose compatible closed sets Λ in each space so that the restrictions

fΛ : XΛ → X̂Λ and gΛ : YΛ → ŶΛ are well defined locally trivial fibrations

with connected fibres and GΛ : XΛ → YΛ and ĜΛ : X̂Λ → ŶΛ are finite
coverings of the same degree. Hence the map fΛ × GΛ : XΛ → X̂Λ ×ŶΛ

YΛ

is surjective and we conclude that f × G is a birational map. Consider the

morphism ι : Deck(Ĝ)→ Deck(G) given by τ̂ 7→ (f×G)−1◦(τ̂×idY )◦(f×G).
In order to conclude the proof, it suffices to construct the inverse map ι−1 :

Deck(G)→ Deck(Ĝ). We will see that if τ ∈ Bir(X) satisfies G ◦ τ = G then
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τ sends a generic fibre F of f into another generic fibre F ′ of f , inducing a

birational map τ̂ : X̂ 99K X̂. Let q ∈ X̂ be a generic point and let p0, p1 ∈ F
be two points in the fibre of f over q. Since F is connected we can choose
a path pt joining p0 and p1 inside F . Then

Ĝ(f(τ(pt))) = g(G(τ(pt))) ⊂ g(G(F )) = g(G) = {Ĝ(q)} ⊂ Ŷ .
Since Ĝ is finite and f(τ(pt)) is connected we deduce that f(τ(pt)) consists in

a single point of X̂ that we define as τ̂(q). It is clear that f ◦τ = τ̂ ◦f . Taking

a local holomorphic section σ : V̂ ⊂ X̂ → X of f , we see that τ̂ = f ◦ τ ◦ σ
is holomorphic on the Zariski open set Û consisting in the image by f of its

generic fibres. Since Ĝ ◦ τ̂ = Ĝ on Û , we have that τ̂ ∈ Deck(Ĝ|Û ). The fact

that τ̂ extends to a birational map τ̂ : X̂ 99K X̂ follows from assertion (3) in
Theorem 3.11. Direct computations show that the map τ 7→ τ̂ is the inverse

of ι : Deck(Ĝ)→ Deck(G). �
As an application, we discuss a particular case that will be used in Sec-

tion 5.

Example 3.21. Let X be a holomorphic vector field on P2 and let us
consider its associated one-parameter group {φt} ⊂ Aut(P2) and the cor-
responding dual one-parameter group {φ̌t} ⊂ Aut(P̌2). Assume that the
foliation defined by X has a rational first integral f : P2 99K P1. One
can see that the foliation defined by {φ̌t} also admits a rational first integral
f̌ : P̌2 99K P1. In fact, we can choose f and f̌ with connected fibres. Assume
now that G : P2 99K P̌2 is a rational map satisfying the relation

(5) G ◦ φt = φ̌t ◦ G.
Then G sends orbits of φt into orbits of φ̌t and, since f and f̌ have connected

fibres, there exists a uniquely defined holomorphic map Ĝ : P1 → P1 such

that Ĝ ◦ f = f̌ ◦ G. Moreover, G and Ĝ have the same topological degree.
Indeed, the restriction of G to a generic fibre of f is injective because if p is
generic then

G(φt1(p)) = G(φt2(p))⇒ φ̌t1−t2(G(p)) = G(p).

This implies that φ̌t1−t2 = idP̌2 and consequently φt1−t2 = idP2 . Hence the

hypothesis of Proposition 3.20 are satisfied. Then Deck(G) ' Deck(Ĝ) and

G : P2 99K P̌2 is Galois if and only if Ĝ : P1 → P1 is Galois. �
3.3. Branched coverings. Let N be a normal projective variety and let
Y be a projective manifold of the same dimension. Let ρ : N → Y be a
surjective finite morphism. Then ρ is a branched covering in the sense of
[31] (cf. loc. cit. Definition 1.1.1 and Example 1.1.2). The ramification
locus ∆ρ ⊂ N and the branching locus Λρ ⊂ Y of ρ are

∆ρ = {det(dρ) = 0} and Λρ = ρ(∆ρ).

Notice that ∆ρ has a natural divisor structure. The normal form of ρ at a
generic point of an irreducible component D = {z = 0} of ∆ρ is given by
ρ(z, w) = (zr, w) (see [31, Theorem 1.1.8]). The positive integer r is constant
along D\ρ−1(Sing(Λρ)) (see [31, Corollary 1.1.13]), and it is called the ram-
ification index %D of ρ along D. Notice that det(dρ)(z, w) = z%D−1u(z, w)
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with u(0, w) 6= 0. Consequently, we can write down the divisor structure of
the ramification locus as ∆ρ =

∑
D(%D − 1)D. We define the ramification

index of an irreducible component D of ρ−1(Λρ) which is not contained in
∆ρ as %D = 1.

We fix an embedding Y ⊂ PN in order to consider the generic hyperplane
curve `Y ⊂ Y and we define the degree of a hypersurface C ⊂ Y as the
intersection product degC := C · `Y . Notice that this definition of degC
depends on the embedding Y ⊂ PN .

Definition 3.22. Let {Ci}i∈I be the set of irreducible components of Λρ
and let {Dij}kij=1 denote the set of irreducible components of ρ−1(Ci). We

define the branching type Bρ and the extended branched type B+
ρ of ρ as

the unordered sequences

Bρ := [(%Di1 , . . . , %Diki )]i∈I and B+
ρ := [(degCi; %Di1 , . . . , %Diki )]i∈I .

We say that the branching type of ρ is regular if it has the form Bρ =
[(%i)d/%i ]i∈I , where %i divides d = deg ρ and (%i)k stands for a sequence of k
times %i. We say that the branching type of ρ is extremal if it has the form
Bρ = [(d)1, . . . , (d)1].

Proposition 3.23. Let ρ : N → Y be a branched covering of degree d. For
a generic choice of a hyperplane curve ` ⊂ Y , the curve S`ρ = ρ−1(`) is

smooth and its genus g(S`ρ) is given by the formula

(6) 2− 2g(S`ρ) = (2− 2g(`))d−
∑

i

degCi
∑

j

(%Dij − 1),

depending only on the extended branching type B+
ρ and the genus g(`) of `.

Notice that the restriction of ρ to S`ρ is the one-dimensional branched

covering ρ` : S`ρ → ` associated to ρ considered in Proposition 3.17.

Proof. To show the smoothness of S`ρ, let us consider the codimension ≥ 2
subvariety Z = Sing(Λρ) of Y , which contains ρ(Sing(∆ρ)) ∪ ρ(Sing(N))
thanks to [31, Corollary 1.1.10]. By applying n− 2 times Bertini’s theorem,
we can choose H1, . . . ,Hn−2 hyperplanes in PN such that SY := Y ∩H1 ∩
· · · ∩ Hn−2 is a smooth surface. Consider the (non necessarily irreducible)
curve CY := Λρ ∩ SY . Now, again by Bertini’s theorem, we can choose a
generic hyperplane Hn−1 in PN avoiding the set of isolated points Z ∩SY =
Z ∩H1 ∩ · · · ∩Hn−2 and such that the curve ` := SY ∩Hn−1 is smooth and
Hn−1 meets CY transversely in regular points (cf. [23, Theorem 17.16 and
Exercice 14.6]). Using the normal form ρ(z, w) = (z%, w) at a generic point
of ∆ρ we conclude that ρ−1(`) is smooth.

For such a choice of the hyperplane curve `, it cuts each irreducible com-
ponent Ci of Λρ in degCi different points. The genus g(S`ρ) of S`ρ can be com-

puted from the extended branching type B+
ρ of ρ by the Riemann-Hurwitz

formula. �
In the context of Riemann surfaces, there is the notion of branched cov-

ering of regular type (see for instance [25, §II6]). That notion makes sense
in our more general setting as follows:
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Definition 3.24. A branched covering ρ is of regular type if its branching
type is regular, or equivalently, if its ramification indices are constant along
each fibre (over the generic points of Λρ).

Here, for a generic point of Λρ, it is meant a point belonging to a dense
Zariski open subset Λreg

ρ of Λρ. In fact, we can take Λreg
ρ = Λρ \ Sing(Λρ)

because ρ(Sing(∆ρ)) ⊂ Sing(Λρ) by [31, Corollary 1.1.10].

Remark 3.25. A branched covering ρ of prime degree d is of regular type
if and only if Bρ is extremal, i.e. %D = d for each irreducible component
D ⊂ ∆ρ.

Clearly, if ρ is Galois then ρ is of regular type. The converse is not true
in general (even in the case of Riemann surfaces, see [25, II§6 Example 14]).
In [21, Lemma 1] L. Greenberg shows that if the source N is a connected
and simply connected Riemann surface (for instance if N = P1) then regular
type implies Galois. In [38] it is claimed that if the target Y is P1 the above
implication also holds but unfortunately this is not true as the following
counter-example shows.

Example 3.26. Let Y0 = P1\
3⋃
i=0

Di be the complement of four disjoint open

disks in P1 with boundaries γi and let µ : π1(Y0) ' Z[γ1]∗Z[γ2]∗Z[γ3]→ S4

be the morphism given by µ(γ1) = (1234), µ(γ2) = (12)(34) and µ(γ3) =

(14)(23). Define ρ0 : N0 = Ỹ0 ×µ {1, 2, 3, 4} → Y0 to be the suspension
covering associated to µ which is not Galois because the monodromy group

M = Imµ has order 8 > 4. Notice that [γ0]−1 = [γ1γ2γ3]
µ7→ (1432). It is

clear that ρ−1
0 (γi) = δi is a circle and ρ0|δi is a 4 : 1 map for i = 0, 1; on

the other hand, if i = 2, 3 then ρ−1
0 (γi) = δ+

i t δ−i are two disjoint circles
and ρ0|δ±i

is a 2 : 1 map. Consequently, we can glue disks ∆i, i = 0, 1,

and ∆±i , i = 2, 3, to N0 in order to obtain a compact Riemann surface N
and a branched covering ρ : N → P1 extending ρ0 with branched points
q0, q1, q2, q3 ∈ P1 and ramification points p0, p1, p

±
2 , p

±
3 ∈ N with ramifi-

cation indices 4, 4, 2, 2 respectively. Hence Bρ = [(2)2, (2)2, (4)1, (4)1] and
consequently ρ is a degree 4 branched covering of regular type. Riemann-
Hurwitz formula implies that N has genus 2. �

Remark 3.27. Let ρ : N → Y be a connected branched covering of degree
≤ 3. Then ρ is Galois if and only if it is of regular type. Indeed, if deg ρ ≤ 2
then ρ is always Galois and there is nothing to prove. If deg ρ = 3 and ρ is
of regular type then its monodromy group M is contained in the alternate
group A3 = {Id, (123), (132)} so that |M | ≤ 3 and we apply Condition (7)
in Theorem 2.6. Consequently, Example 3.26 has the minimal degree 4 for
a regular type non-Galois branched covering. On the other hand, Riemann-
Hurwitz formula implies that the minimal genus is also 2. This implies in
particular that every regular type branched covering of degree 4 from the
torus to the sphere is Galois.

In the following result the difference between Galois coverings and cover-
ings of regular type is enlightened.
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Proposition 3.28. Let ρ : N → Y be a finite branched covering and let
(N ×Y N)ν → N ×Y N be the normalization of the fibered product N ×Y N .
Then the composition p : (N×Y N)ν → N×Y N → N is a branched covering
and

(a) ρ is of regular type if and only if p is unramified;
(b) ρ is Galois if and only if p is trivial, i.e. the restriction of p to each

irreducible component of (N ×Y N)ν is an isomorphism.

Proof. Notice that property (a) can be checked locally in Y . Let N0 :=⊔r
i=1 Dni ↪→ N be the preimage by ρ of a polydisk Y0 := Dn ↪→ Y such that
{0} × Dn−1 = Λρ ∩ Y0 and the restriction ρi of ρ to the polydisk Dni writes
as ρi(xi, u) = (xnii , u). Then

N0 ×Y N0 =

r⊔

i,j=1

{(xi, u, yj , v) ∈ D2n |xnii = y
nj
j , u = v} ↪→ N ×Y N

is the preimage in N ×Y N of N0 ↪→ N by the projection N ×Y N → N .
The preimage P0 of N0 by p is nothing more than the normalization of
N0 ×Y N0. If ni = nj for all i, j = 1, . . . , r then P0 is a disjoint union

of polydisks {xi = ζkyj} × Dn−1, over which p(xi, yj , u) = (xi, u) is an
isomorphism, where ζ is a primitive ni-root of the unity. This shows that if
ρ is of regular type then p is unramified. To prove the converse, assume that
ni 6= nj . Then {(xi, yj) ∈ D2 |xnii = y

nj
j } × Dn−1 decomposes as k branches

of type x
n′i
i = ζ ′y

n′j
j , and where ni = n′ik, nj = n′jk, gcd(n′i, n

′
j) = 1 and ζ ′ is

a primitive k-root of the unity. The normalization morphism of each branch

takes the form Dn 3 (z, w) 7→ (zn
′
j , zn

′
i , w). Hence the restriction of p to the

normalization of this branch writes as p(z, w) = (zn
′
i , w) which ramifies if

n′i > 1. Finally, if ni 6= nj there is always a connected component of the
preimage of {0} × Dn−1 with n′i > 1.

To prove assertion (b) denote by ρΛ : NΛ → YΛ the (maximal) restricted
unramified covering induced by ρ : N → Y . Since N \NΛ has real codimen-
sion two, the number of irreducible components of (N ×Y N)ν coincide with
the number of connected components of NΛ ×YΛ

NΛ. We conclude by using
the characterization (1) in Theorem 2.6. �
3.4. Rational maps of regular type. Let G : X 99K Y be a rational
dominant map between connected complex projective manifolds of the same

dimension. We fix a desingularization G̃ : X̃ → Y of G as in Subsection 3.1
and its Stein factorization (3). Recall that N and ρ are uniquely determined

by G (cf. Proposition 3.8). Since det(dG̃) = det(dρ ◦ γ) det(dγ), we have the
following equality of divisors ∆G̃ = γ∗∆ρ + ∆γ . It follows that

Λρ = ρ(∆ρ) ⊂ G̃(∆G̃) = ΛG̃ ⊂ ΛG = ΛG̃ ∪ G̃(E) ⊂ Y.
For a given irreducible component D of ∆G̃ there are two possibilities:

(a) D is not included in ∆γ . In that case γ is a local biholomorphism at a
generic point of D. Consequently, as ρ is a branched covering, there are

local coordinates (z, w) such that D = {z = 0} and G̃(z, w) = (zk, w)

with k > 1. We say that D is a ramification component of G̃ with

ramification index %D := k. Notice that dim G̃(D) = dimD.
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(b) D is a component of ∆γ . In that case, dim G̃(D) < dimD and we say

that D is a contracting component of G̃.

Definition 3.29. We define the ramification divisor RG̃ =
∑

D(%D − 1)D
where D ranges the ramification components of ∆G̃. It coincides with the

strict transform of ∆ρ by γ. For each % > 1 we define the reduced (or empty)

hypersurface R%G̃ =
⋃
%D=%D ⊂ X̃, so that we can write

(7) RG̃ =
∑

%>1

(%− 1)R%G̃ .

The contracting divisor of G̃ is the divisor defined as CG̃ := ∆G̃ −RG̃, which

is supported on the contracting components of G̃. The branching type of
G is defined as the branching type of ρ. In particular, we say that G is of
regular type if ρ is of regular type.

Notice that ΛG̃ \ Λρ is included in G̃(CG̃) which has codimension greater
than 1.

Remark 3.30. Since γ is birational, if f = 0 is a local reduced equation
of an irreducible component D ⊂ RG̃ then we can compute the ramification

index %D of ρ along γ(D) directly from G̃ by writing det(dG̃) = f%D−1u with
f not dividing u. Notice that these ramification indices may include some

ones corresponding to components of RG̃ ⊂ X̃ that are contracted by β.

We are interested in deciding if a rational map G : X 99K Y is of regular

type just by looking at geometric elements contained in X and not in X̃.
With that purpose we introduce the following algebraic subsets of X:

R%G := β(R%G̃ \ E)

and Σρ
G ⊂ ΣG which is the union of the irreducible components S of ΣG such

that β−1(S) \ CG̃ ⊂ R
%

G̃ . In other words, all the ramification components of

β−1(S) share the same ramification index % if and only if S ⊂ Σ%
G .

Let us consider the following condition on G:

Hypothesis 3.31. For every irreducible components S of ΣG and D and

D′ of β−1(S) \ CG̃ we have G̃(D) = G̃(D′).

We will see in Section 5 that this hypothesis is always fulfilled by the
Gauss map associated to foliations on P2.

Proposition 3.32. Let G : X 99K Y be a dominant rational map between
projective manifolds of the same dimension and consider the following as-
sertions:

(1) G is of regular type,
(2) for each generic point y ∈ Λρ there is %|d, % > 1, such that

G̃−1(y) ⊂ R%G̃ \ CG̃ ,
(3) for each generic point y ∈ Λρ there is %|d, % > 1, such that

G−1(y) := β(G̃−1(y)) ⊂ (R%G \ ΣG) ∪ Σ%
G .



FOLIATIONS AND WEBS INDUCING GALOIS COVERINGS 23

Then (1) and (2) are equivalent and are implied by (3). In addition, if G
satisfies Hypothesis 3.31 then the three assertions are equivalent.

Proof. By definition, the branched covering ρ is of regular type if and only if
for generic y ∈ Λρ there is %|d, % > 1, such that ρ−1(y) ⊂ R%ρ = γ(R%G̃). This

is equivalent to assertion (1) because if y ∈ Λρ is generic then y ∈ Λρ \ G̃(CG̃)
and γ is an isomorphism outside CG̃ .

On the other hand, from assertion (3) we deduce that, for y ∈ Λρ \ G̃(CG̃)

and x̃ ∈ G̃−1(y), the point β(x̃) belongs either to R%G \ΣG or to Σ%
G . In both

cases x̃ ∈ R%G̃ \ CG̃ .

Finally, from assertion (2) we deduce that, for generic y ∈ Λρ \ G̃(CG̃)

and x̃ ∈ G̃−1(y), the point x̃ belongs either to β−1(R%G \ ΣG) or to an irre-

ducible component D ⊂ β−1(S) having ramification index %, where S is an
irreducible component of ΣG . Hypothesis 3.31 implies that for every irre-

ducible component D′ of β−1(S) \ CG̃ there is x̃′ ∈ D′ such that G̃(x̃′) = y

and consequently %D′ = %. Hence β(x̃) ∈ S ⊂ Σ%
G . �

The following result can be considered a generalization of [21, Lemma 1]
to arbitrary dimension:

Theorem 3.33. Let G : X 99K Y be a dominant rational map between
connected complex projective manifolds of the same dimension. Assume that
X admits a rational generic hyperplane curve `X ' P1 (for instance if X =
Pn). Then, G is of regular type if and only if G is Galois.

Proof. Consider the following commutative diagram.

X̃Λ
γΛ //

βΛ !!

� _

��

NΛ

ρΛ

  

� _

XΛ
GΛ //

� _

��

��

YΛ� _

��

X̃

β !!

γ // N
ρ

!!
X

G // Y

Let `X ⊂ X be a rational generic hyperplane curve. Since βΛ and γΛ are iso-
morphisms, the curve `NΛ := γΛ(β−1

Λ (`XΛ )) is isomorphic to `XΛ := `X∩XΛ and

its closure `N in N is a rational (maybe singular) curve. Moreover, by Corol-
lary 3.5, the natural inclusion induces an epimorphism π1(`NΛ ) ' π1(`XΛ )�
π1(XΛ) ' π1(NΛ). If G is of regular type then p : (N ×Y N)ν → N is an un-
ramified covering by Proposition 3.28(a). Let p` : (N ×Y N)ν ×N `Nν → `Nν
be the pull-back covering of p by the composition `Nν → `N ↪→ N of the
normalization of `N and the inclusion of `N into N . Since the base space
`Nν = P1 of p` is simply connected we deduce that p` is the trivial cov-
ering (i.e. a product). By Lemma 2.3 be deduce that the covering pΛ :
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(N ×Y N)Λ → NΛ is also trivial. From Proposition 3.28(b) we conclude
that ρΛ : NΛ → YΛ is Galois. Hence G is also Galois because Deck(ρΛ) '
Deck(ρ) ' Deck(G). �

The above result, Remark 3.25 and Corollary 2.8 imply the following.

Corollary 3.34. Let G : Pn 99K Y be a dominant rational map with topo-
logical degree d. If all the ramification indices of ρ are equal to d then G is
Galois with cyclic monodromy group. When d is prime the converse is also
true. More precisely, if G is Galois then all the ramification indices of ρ are
equal to d and the monodromy group is cyclic.

However there are examples of cyclic Galois rational maps whose ramifi-
cation indices are less than its degree:

Example 3.35. If Gi : Xi 99K Yi are Galois rational maps of degree di > 1
with cyclic monodromy group, i = 1, 2, and gcd(d1, d2) = 1 then G :=
G1×G2 : X1×X2 99K Y1×Y2 is Galois and Deck(G) ' Deck(G1)⊕Deck(G2) '
Zd1 ⊕ Zd2 ' Zd with d = deg G = d1d2 but the ramification indices of G are
≤ max(d1, d2) < d. �

3.5. Galois rational maps from the projective line into itself. The
simplest situation to test Galois property for rational maps is the case where
the source and the target are both the Riemann sphere. In this section we
recall the classification of the rational maps G : P1 → P1 which define Galois
coverings. This classification, used in what follows, provides the normal
form of the Galois rational maps as well as their corresponding branching
types. If we regard P1 as the unit sphere S2, then the deck transformation
group of G is conjugate to a finite subgroup of the group SO3 = PSU2, which
is the maximal compact subgroup of PSL2(C) and whose finite subgroups
are well-known: cyclic, dihedral, tetrahedral, octahedral and icosahedral.
In fact, for each finite subgroup G of PSL2(C) there is a Galois branched
covering G : P1 → P1 whose deck transformation group (also called Galois
group) is just G. More precisely, the following classification goes back to
Klein [24, Chapter IV], see also [36, Theorem 3.6.2, pp. 43–44 and 65–66]
for a modern exposition:

Theorem 3.36. Let G : P1 → P1 be a degree d Galois rational map with
deck transformation group G. Then G (resp. G) is left-right-equivalent (resp.
conjugated) to one of the rational functions (resp. triangular subgroups of
SO3 ⊂ PSL2(C)) appearing in Table 1, where

T (p, q, r) = 〈σ, τ |σp = τ q = (στ)r = 1〉, ζn = e
2iπ
n , φ =

√
5−1
2 and

GCn(z) = zn, GDn =
(zn + 1)2

4zn
, GT (z) =

(
z4 + 2i

√
3 z2 + 1

z4 − 2i
√

3 z2 + 1

)3

,

GO(z) =
(z8 + 14z4 + 1)3

108z4(z4 − 1)4
, GI(z) =

(z20 − 228z15 + 494z10 + 228z5 + 1)3

−1728z5(z10 + 11z5 − 1)5
.



FOLIATIONS AND WEBS INDUCING GALOIS COVERINGS 25

d G BG G σ(z) τ(z)

Cyclic n GCn [(n)1, (n)1] Cn = T (1, n, n) z ζnz

Dihedral 2n GDn [(2)n, (2)n, (n)2] Dn = T (2, 2, n) 1
z

ζn
z

Tetrahedral 12 GT [(2)6, (3)4, (3)4] A4 = T (2, 3, 3) −z z+i
z−i

Octahedral 24 GO [(2)12, (3)8, (4)6] S4 = T (2, 3, 4) iz−1
z−i

z+i
z−i

Icosahedral 60 GI [(2)30, (3)20, (5)12] A5 = T (2, 3, 5) φ−z
φz+1

(φ−z)ζ5
φz+1

Table 1. Klein’s classification of Galois rational functions on P1.

4. Foliations and webs

Given a codimension one holomorphic foliation F on the projective space
Pn, its associated Gauss map GF induces a well defined web LegF on the
dual space P̌n which is called the Legendre transform of F provided that GF
is dominant. In this section we study the direct image of foliations and webs
by more general rational maps. In particular we deduce that the foliation
F is Galois, which means that the Gauss map GF is Galois, if and only the
web G∗F LegF is totally decomposable. This criterion will be the starting
point of the discussion of Galois foliations on the projective plane carried
out in Section 5.

In order to give a precise meaning to the direct image of a foliation (or
more generally a web) we introduce a definition of a web with multiplicities
that generalizes the usual notion of web given for instance in [35, §1.3.1 and
§1.3.3].

Definition 4.1. For a positive integer k, a codimension one k-web (with
multiplicities) W on a complex manifold Y is given by an open cover {Vi}
of Y and k-symmetric forms ωi ∈ SymkΩ1

Y (Vi) subject to the conditions

(a) for each non-empty intersection Vi ∩ Vj there exists a non-vanishing
function gij ∈ O∗Y (Vi ∩ Vj) such that ωi = gijωj;

(b) the zero set Sing(ωi) of ωi has codimension at least two;
(c) the germ of ωi at every generic point of Vi is a product of k germs of

integrable 1-forms ωiα, α = 1, . . . , k.

If the 1-forms ωiα are two by two not collinear at the generic point of Vi,
we say that W is reduced. In that case, the subset of Y where the non-
collinearity condition fails is called the discriminant of W and it is denoted
by ∆(W). The singular set ΣW of W is defined by ΣW ∩ Vi = Sing(ωi) and
it is contained in ∆(W).

The usual definition of web is that of reduced web in our terminology.
Notice that for k = 1 we recover the usual definition of (singular) codi-
mension one foliation F (see [4, 6]). In that case ∆(F) = ΣF is just the
singular set of F . For arbitrary k ≥ 2, a reduced k-web always looks like
locally as the superposition of k foliations, but not necessarily globally. If
this is the case we say that the web is totally decomposable. In fact, there
is a monodromy representation µW : π1(Y \∆(W)) → Sk of W which de-
termines the irreducible subwebs of W and whose triviality is equivalent to
the total decomposability of W (see [35, §1.3.3 and §1.3.4]). In the reduced
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case, condition (c) allows us to define the tangent set TyW of W at a point
y ∈ Ui\∆(W) as the union of the k different kernels at y of the linear factors
of ωi(y).

Remark 4.2. Notice that the functions {gij} form a cocycle with values
in O∗Y determining a line bundle L → Y . The collection {ωi} defines an

element in H0(Y,SymkΩ1
Y ⊗L) which can be interpreted as a meromorphic

k-symmetric form ω on Y by setting ω = ωi
fi

=
ωj
fj

, once we fix a meromorphic

section of L, i.e. a collection of meromorphic functions fi on Vi fulfilling
fi = gijfj . The set Pk(Y ) of meromorphic k-symmetric forms on Y can be
identified with the space of degree k homogeneous polynomials in n = dimY
variables over the field C(Y ) of meromorphic functions on Y . Hence we
can consider the prime decomposition ω =

∏
α ω

eα
α of ω in Pk(Y ). Each

prime factor ωα defines a reduced (and irreducible) web Wα on Y such that
W is the superposition of the webs Wα with multiplicities eα. We define
the reduction Wred of W as the reduced web given by the superposition of
the webs Wα (without multiplicities), which is defined by the meromorphic
symmetric form ω′ =

∏
α ωα. We denote W = �αWeα

α and Wred = �αWα.
We define the discriminant of W as ∆(W) = ∆(Wred) and the tangent set
of W at a generic point y ∈ Y as TyW = TyWred.

4.1. Inverse and direct image of foliations and webs. Let G : X 99K
Y be a dominant rational map between complex projective manifolds and
let GU : U → Y be its restriction to the dense Zariski open subset U =
X \ ΣG , where ΣG is the indeterminacy locus of G. Let W be a k-web
(with multiplicities) on Y given as in Definition 4.1. As GU is a morphism
we can consider the open cover {Ui = G−1

U (Vi)} of U and the pull-back

ηi = G∗Uωi ∈ SymkΩ1
U (Ui) of the k-symmetric forms ωi. Since dG 6≡ 0 the

symmetric forms ηi do not vanish identically and we can write them as
ηi = fiη

′
i with fi ∈ OU (Ui) and codim(Sing(η′i)) ≥ 2. Thus, the collection

{Ui, η′i} defines a k-webW ′ on U (with the same multiplicities asW). Since
the indeterminacy set ΣG of G has codimension ≥ 2, an application of Levi’s
extension theorem (see for instance [6, Remarque 2.17]) allows us to extend
W ′ to a k-web G∗W on X, which is called the inverse image (or pull-back)
of W by G.

Remark 4.3. One can define a notion of web on a singular projective variety
X as a web on its smooth part X \ Sing(X) having the property that it
extends to a global web on any of the desingularizations of X (see [35,
§1.4.3]). It turns out that if G : X 99K Y is a dominant rational map from
a complex projective singular variety X into a projective complex manifold
Y endowed with a web W then the pull-back G∗W defines a web on the

smooth part of X which extends to any desingularization δ : X̃ → X of X
by means of (G ◦ δ)∗W.

From now on we will suppose that dimX = dimY and that Y is connected
and we denote by d the topological degree of G : X 99K Y . Let F be a
holomorphic foliation on X of codimension 1. In Proposition 4.6 below we
prove that the direct image G∗F of the foliation F by such a rational map G
is a well-defined d-web (with multiplicities) on Y . In order to decide whether
the web G∗F is reduced we introduce the following definition.
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Definition 4.4. We say that a holomorphic foliation F on X is in general
position with respect to a rational dominant map G : X 99K Y , or that F
is G-general, if for generic y ∈ Y the set of tangent spaces {dGx(TxF) |x ∈
G−1(y)} has exactly deg G elements.

Clearly, the set of G-general foliations is open. The following result shows
that it is non-empty.

Proposition 4.5. For every dominant rational map G : X 99K Y between
projective manifolds of the same dimension n ≥ 2 there exists a codimension
one G-general foliation on X.

Proof. Fix y0 ∈ Y \ ΛG and consider the fibre G−1(y0) = {x1, . . . , xd} ⊂
X. Let us fix an embedding X ⊂ PN and let us consider an affine chart
AN ⊂ PN containing the points xi, i = 1, . . . , d. There exists a linear
projection f̄ : AN → A2 such that pi = f̄(xi) are pairwise different points
and ker df̄xi + TxiX = TxiAN . Let f : X 99K P2 be the restriction of f̄
to X. Consider the codimension two subspaces `j := dGxj (ker dfxj ) ⊂ Ty0Y .
For each j = 1, . . . , d, we fix pairwise different codimension one subspaces
hj of Ty0Y containing `j . Consider the one-dimensional subspaces rj =
dfxj (dG−1

xj (hj)) ⊂ TpjP2. We fix affine coordinates (u, v) on A2 ⊂ P2 such

that pj = (uj , vj) with ui 6= uj if i 6= j and rj has equation v = aju + bj
with aj , bj ∈ C. Let p(u) be a polynomial such that p(uj) = aj . The vector
field ∂u + p(u)∂v defines a foliation F0 on P2 such that TpjF0 = rj . Then
F = f∗F0 is a G-general foliation on X because dGxj (TxjF) = hj ⊂ Ty0Y
are pairwise different subspaces. �

Proposition 4.6. Let G : X 99K Y be a dominant rational map of de-
gree d between projective manifolds of the same dimension and let F be
a codimension one holomorphic foliation on X. There is a unique d-web
(with multiplicities) G∗F on Y , called the direct image of F by G, such that
TyG∗F =

⋃
x∈G−1(y)

dGx(TxF) ⊂ TyY for generic y ∈ Y . Moreover, if F is

G-general then the web G∗F is reduced.

Proof. We follow the ideas sketched in [35, §1.3.2]. Let G̃ : X̃ → Y be a
desingularization of G. Using the notations introduced in Subsection 3.4,

we fix an open set V ⊂ Y \ ΛG̃ such that G−1(V ) =
⊔d
m=1 Um, G|Um is

bijective onto V and there are holomorphic 1-forms ωm on Um defining F .

Then ωV :=
∏d
m=1(G|−1

Um
)∗ωm is an element of SymdΩ1

V . These d-symmetric
forms differ by a non-vanishing multiplicative function in each non-empty
intersection. Hence they define a d-web (with multiplicities) W0 on Y \ΛG̃ .

In order to extend W0 to the generic point of Λρ ⊂ ΛG̃ we we will use
the local normal form of the branched covering ρ : N → Y given by the

Stein factorization (3) of G̃. Let y ∈ Λρ be a generic point and let V ⊂ Y

be a neighborhood of y such that G−1(V ) =
⊔k
j=1 Uj , G|Uj (z, w) = (z%j , w)

and F|Uj is defined by the holomorphic 1-form ωj = aj(z, w)dz+bj(z, w)dw.
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Then

ω′V :=
k∏

j=1

%j∏

i=1

(
aj(z

1
%j ζij , w)z

1
%j
−1 ζ

i
j

%j
dz + bj(z

1
%j ζij , w)dw

)
,

is a univalued meromorphic d-symmetric form on V , where ζj is a primitive
%j-root of unity. Multiplying ω′V by a suitable meromophic function on V we
obtain a holomorphic d-symmetric form ωV on V with codim(Sing(ωV )) ≥ 2.

These symmetric forms define an extension of W0 to Y \ G̃(CG̃).

Finally as G̃(CG̃) has codimension ≥ 2, we can extend W0 to the whole
Y by using the standard argument based on Levi’s extension theorem for
meromorphic functions (see again [6, Remarque 2.17]).

Last assertion is clear from the above construction. �

Remark 4.7. Notice that if L is a leaf of F then G(L) is a leaf of G∗F , i.e.
TyG(L) ⊂ TyW for generic y ∈ G(L).

It turns out that every reduced web W is the direct image of a canonical
foliation CW . More precisely, we have the following result.

Theorem 4.8. For every reduced web W on Y there is a complex projective
manifold ZW of the same dimension as Y , a surjective morphism πW :
ZW → Y and a πW-general foliation CW on ZW such that (πW)∗CW = W
and fulfilling the following universal property:

For every dominant rational map G : X 99K Y with dimX = dimY and
every foliation F on X such that (G∗F)red =W there exists a unique rational
map GZ : X 99K ZW such that G = πW ◦ GZ and GZ∗ F = CeW , with e =
deg GZ :

(ZW , CW)

πW
��

(X,F)
G //

GZ
99

(Y,W).

Moreover, if F is G-general then GZ is birational. In particular, the triple
(ZW , CW , πW) is unique modulo birational transformations.

In addition, the discriminant ∆(W) of W is contained in the set ΛπW of
critical values of πW and the monodromy representation µπW of πW is the
composition

π1(Y \ ΛπW ) // //

µπW
((

π1(Y \∆(W))

µW
��

Sd

of the epimorphism induced by the inclusion Y \ ΛπW ⊂ Y \∆(W) and the
monodromy representation µW of W. In particular, the monodromy groups
of W and πW coincide.

This result allows us to define the direct image G∗W of a reduced web
W on X by a dominant rational map G : X 99K Y with dimX = dimY by
setting G∗W = (G ◦ πW)∗CW .
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The proof of Theorem 4.8 is based on Proposition 4.9 below. We recall
that the manifold T ∗Y has a canonical 1-form α whose exterior differential
dα defines its usual symplectic structure. The kernel of the 1-form α induces
a canonical contact distribution CY on PT ∗Y .

Proposition 4.9. For every holomorphic codimension one d-web W on a
projective manifold Y of dimension n, the Zariski closure of

{(y, [η]) ∈ PT ∗Y | y /∈ ∆(W), ker η ⊂ TyW}
is a projective subvariety ZW ⊂ PT ∗Y of dimension n such that the restric-
tion of the contact distribution CY of PT ∗Y to ZW is integrable and induces
a foliation CW on ZW . Moreover, the restriction of the natural projection
π : PT ∗Y → Y to ZW is a dominant morphism πW : ZW → Y satisfying
the following properties:

(1) the topological degree of πW is d, CW is πW-general and the direct
image of CW by πW is W,

(2) the set of critical values ΛπW of πW contains the discriminant ∆(W)
of W,

(3) the restriction πΛ
W : ZW \ π−1

W (ΛW)→ X \ ΛW of πW is a d-sheeted
covering whose monodromy representation is the composition of the
morphism π1(Y \ ΛπW ) → π1(Y \ ∆(W)) induced by the inclusion
and the monodromy representation of W.

This statement follows from [33] and [7] in the 2-dimensional case, and
from [8] and [35, §1.3.2] in the general case.

Proof of Theorem 4.8. The existence of the triple (ZW , CW , πW) in Theo-
rem 4.8 follows by desingularizing the corresponding objects in Proposi-
tion 4.9. In order to prove the existence of the factorization GZ we consider
the well-defined dominant rational map

PT ∗G : PT ∗X 99K PT ∗Y
(x, [η]) 7→ (G(x), [η ◦ dG−1

x ]),

preserving the contact structures. Since (G∗F)red = W, the restriction ḠZ
of PT ∗G to ZF ⊂ PT ∗X has image ZW ⊂ PT ∗Y . Hence ḠZ : ZF 99K ZW is
a dominant rational map projecting geometrically the foliation CF onto CW .
Consequently ḠZ∗ CF = CeW , where e = deg ḠZ . We define GZ := ḠZ ◦ π−1

F :
X 99K ZW which satisfies the desired properties. Notice that if F is G-
general then ḠZ is generically injective and consequently GZ is birational.

The uniqueness of the rational factorization GZ follows from the fact that
CW is πW -general. Indeed, if there were two different rational maps GZi :
(X,F) 99K (ZW , CW) fulfilling G = πW ◦ GZi and GZi∗F = CeiW with ei =

deg GZi , then, for a generic point x ∈ X we would have z1 = GZ1 (x) 6=
GZ2 (x) = z2 and dπW(Tz1CW) = dπW(Tz2CW) = dG(TxF) contradicting the
fact that CW is πW -general.

The remaining properties are consequence of Proposition 4.9. �
Remark 4.10. If F is G-general then the irreducible subwebs of G∗F are
in one to one correspondence with the irreducible components of X. On the
other hand, it can be checked that F is not G-general if and only if there

exists a rational factorization of G : X
σ99K Z π99K Y with deg σ > 1 and a
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foliation C on Z such that F = σ∗C. Since deg G = (deg σ)(deg π), in the
case that deg G is prime, every not G-general foliation on X is the pull-back
by G of a foliation on Y .

Remark 4.11. For every reduced webW on Y the pull-back π∗WW contains
the totally decomposable subweb �τ∈Deck(πW )τ

∗CW thanks to Remark 4.7.

For a given dominant rational map G : X 99K Y between connected com-
plex projective manifolds of the same dimension let us consider the following
commutative diagram

X ×Y X
q //

p

��

X

G
��

X
G // Y .

Fix a foliation F on X. Since X ×Y X = G∗X, the projections p and G
are locally equivalent and consequently F is G-general if and only if the
foliation q∗F on the (possibly singular) variety X ×Y X is p-general (cf.
Remark 4.3). From the commutativity of the above diagram we obtain
the following equality of reduced webs p∗q∗F = G∗G∗F , provided F is G-
general. From Theorem 4.8, Remark 2.4, Theorem 3.11 and Remark 4.11
we immediately obtain the following result.

Theorem 4.12. Let G : X 99K Y be a dominant rational map between
connected complex projective manifolds of the same dimension and let F
be a G-general foliation on X. Then the triple (ZW , CW , πW) associated to
the reduced web W = G∗G∗F is birationally equivalent to (X ×Y X, q∗F , p)
and �τ∈Deck(G)τ

∗F is the maximal totally decomposable subweb of G∗G∗F .
In particular, G is Galois if and only if for every (resp. some) G-general
codimension one foliation F on X, the web G∗G∗F is totally decomposable
and, in that case, G∗G∗F coincides with the superposition of the foliations
τ∗F with τ ∈ Deck(G) ⊂ Bir(X).

Definition 4.13. A reduced web W on a connected complex projective man-
ifold Y is called Galois if the universal projection πW : ZW → Y is a Galois
rational map.

Theorem 4.14. For every finite group G and every connected complex pro-
jective manifold Y there is a Galois |G|-web with monodromy group isomor-
phic to G.

Proof. By Theorem 3.14 (M. Namba) there is a Galois branched covering
ρ : N → Y with monodromy group isomorphic to G. Let δ : X → N be a
desingularization of the normal variety N and set G = ρ ◦ δ : X → Y . By
Proposition 4.5 there exists a G-general foliation F on X. ThenW = G∗F is
a web with (ZW , πW) birationally equivalent to (X,G) so that its monodromy
group is isomorphic to G. �
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4.2. Foliations and webs on the projective space. The rest of this
section is devoted to treat the case X = Pn. In that case PT ∗X can be
canonically identified with the incidence variety

V = {(p, h) ∈ Pn × P̌n : p ∈ ȟ} ⊂ Pn × P̌n,

where ȟ (resp. p̌) is the hyperplane in Pn (resp. P̌n) corresponding to
the point h ∈ P̌n (resp. p ∈ Pn). By symmetry V is also canonically
isomorphic to PT ∗P̌n. Moreover, the contact distributions C of PT ∗Pn and
PT ∗P̌n coincide under the identification with V and

(8) C(p,h) = dπ−1(Tp ȟ) = dπ̌−1(Th p̌) ⊂ T(p,h)V,
where π and π̌ are the restrictions to V of the natural projections onto Pn
and P̌n.

For each reduced web W on Pn the universal projection πW : ZW → Pn
is birationally equivalent to the restriction of π to the (possibly singular)
subvariety ZW ⊂ V ' PT ∗Pn considered in Proposition 4.9. Let π̌W be the
restriction of π̌ to ZW ⊂ V. Thanks to formula (8) we see that CW is in
general position with respect to the projections πW and π̌W , whenever they
are dominant maps.

Definition 4.15. We say that a reduced web on Pn is non-degenerate if the
map π̌W : ZW → P̌n is dominant. In that case we can consider the reduced
web LegW := (π̌W)∗CW on P̌n which is called the Legendre transform of W.

From now on all the webs considered will be reduced. To every web W
on Pn we can associate its characteristic numbers di(W), i = 0, . . . , n − 1,
which can be defined (see [35, §1.4.1]) as the number of pairs (p, h) ∈ Pn×P̌n
such that p ∈ `i ⊂ h ⊂ Pn and Tph ⊂ TpW, for a given generic linear i-plane
Pi ' `i ⊂ Pn. Notice that d0(W) counts the number of leaves of W through
a generic point of Pn, that is W is a d0(W)-web. The integer d1(W) counts
the number of points of a generic line `1 where the web has a leaf with
tangent space containing `1, i.e. the degree of W. The integer dn−1(W)
counts the number of points where the leaves of W are tangent to a generic
hyperplane. If W is non-degenerate we have di(LegW) = dn−1−i(W) for
each i = 0, . . . , n− 1, see [35, §1.4.3] for more details.

For a foliation F on Pn we have that d0(F) = 1 and dn−1(F) is just the
topological degree of its Gauss map GF : Pn 99K P̌n defined by GF (p) = TpF ,
where the tangent space TpF of F at a regular point p of F is thought as

a hyperplane of Pn. Indeed, we have GF = π̌F ◦ π−1
F . In the case n = 2 the

topological degree of F coincides with its usual degree, i.e. the number of
tangency points of the leaves of F with a generic line.

Remark 4.16. The classification of degenerate foliations, i.e. foliations
whose Gauss map is not dominant, is known in dimension n ≤ 4: for n = 2
they are of degree zero, i.e. pencils of lines, for n = 3 see [10] and [18] for
n = 4.

Definition 4.17. A non-degenerate codimension one foliation F on Pn is
said Galois if the web LegF is Galois or equivalently the Gauss map GF is
Galois.
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From Theorem 4.12 we obtain:

Corollary 4.18. A non-degenerate codimension one foliation F on Pn is
Galois if and only if the web G∗FLegF is totally decomposable. In that case,
G∗FLegF is the superposition of the foliations τ∗F with τ ∈ Deck(GF ).

Example 4.19. Every foliation F on Pn with dn−1(F) ∈ {1, 2} is Galois
because its Gauss map GF induces a covering of degree dn−1(F) ≤ 2. Notice
that, if n ≥ 3, there are examples of such foliations with d1(F) > 2. For
instance, for each ν ≥ 2 consider the exceptional foliation Eν on P3 (cf. [5])
given in the affine chart (x, y, z) by the integrable 1-form ıSν ıXν (dx∧dy∧dz),
where

Sν = x∂x + νy∂y + (1− ν + ν2)z∂z

Xν = ∂x + νxν−1∂y + (1− ν + ν2)yν−1∂z.

We have that d1(Eν) = ν and d2(Eν) = ν − 1. Then, foliations E2 and E3

are Galois but E4 is not, as it can be checked by computing explicitly the
divisor RGE4 and applying Proposition 3.32. �

We construct now a family of Galois foliations on Pn whose Galois char-
acter is checked by means of Corollary 4.18. Let (x1, . . . , xn) be an affine

chart of Pn and let
n∑
i=1

Ai(x)dxi be an integrable polynomial 1-form defin-

ing a foliation F on Pn. Consider the affine chart (y1, . . . , yn) of P̌n such

that
n∑
i=1

xiyi = 1 is an affine equation of V ⊂ Pn × P̌n. In these affine

charts, the contact distribution of V is given by the kernel of the 1-form
n∑
i=1

yidxi = −
n∑
i=1

xidyi and the Gauss map GF of F is written as

GF (x1, . . . , xn) =

(
A1(x)

C(x)
, . . . ,

An(x)

C(x)

)
,

where C(x) =
n∑
i=1

xiAi(x). The following result provides examples of Galois

foliations on Pn for each degree k ≥ 1.

Proposition 4.20. For each n ≥ 2 and k ≥ 1 the foliation Fn,k on Pn

given in an affine chart by the polynomial first integral
n∑
i=1

xk+1
i is Galois

with d1(Fn,k) = k and dn−1(Fn,k) = kn−1.

Proof. With the precedent notations, Ai(x) = xki and C(x) =
n∑
i=1

xk+1
i . For

generic y = (y1, . . . , yn) ∈ P̌n, the tangency points between Fn,k and the
hyperplane y are the solutions of the following system of equations:

(
xi
xn

)k
=
yi
yn
, i = 1, . . . , n− 1, and

xkn
yn

= C(x),
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that can be explicitly solved:

xi = xij(y) :=
y

1
k
i ζ

ji

n∑
`=1

y
1+ 1

k
` ζj`

, i = 1, . . . , n,

where ζ is a primitive k-root of the unity, j = (j1, . . . , jn−1) ∈ Zn−1
k and

jn = 0. Then the kn−1-symmetric form

∏

j∈Zn−1
k

( n∑

i=1

xij(y)dyi

)

is rational and it defines the dual web LegFn,k on P̌n. Finally the pull-
back of LegFn,k by G := GFn,k is formally the symmetric product, varying

j ∈ Zn−1
k , of the 1-forms

n∑

i=1

G∗(xij(y))G∗(dyi).

It suffices to notice that

G∗(xij(y)) =

xki ζ
ji

n∑
`=1

xk+1
`

n∑
`=1

xk+1
` ζj`

are rational functions in order to conclude by applying Corollary 4.18. �

Remark 4.21. It can be checked that det(dGFn,k(x)) = (x1···xn)k−1

C(x)n and

G({xi = 0}) = {yi = 0}. Consequently, the local monodromy of Fn,k
has order k. We can also compute explicitly all the elements of the deck
transformation group of GFn,k :

τj(x1, . . . , xn) =



x1ζ

j1
n∑
`=1

xk+1
`

n∑
`=1

xk+1
` ζj`

, . . . ,

xnζ
jn

n∑
`=1

xk+1
`

n∑
`=1

xk+1
` ζj`


 , j ∈ Znk , jn = 0.

We expect this group to be isomorphic to the abelian group Zn−1
k . A par-

ticular case in which this assertion is true is for n = 3 and k = 2 because
Z2 ⊕ Z2 is the only group of order 4 all whose elements have order 2.

Remark 4.22. Notice that birational geometry on Pn is not well-behaved
with respect to the projective duality. More precisely, for any birational
map τ ∈ Deck(GF ) there exists a lift PT ∗τ preserving the subvariety ZF ⊂
PT ∗Pn ' V defined in Proposition 4.9. However, in general there is no
rational map τ̌ : P̌n 99K P̌n such that GF ◦ τ = GF = τ̌ ◦GF . In general there
is no relation between LegF and Leg τ∗F as the following example shows.
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Example 4.23. Let F be the degree 2 foliation on P2 given by the vector

field (x2−x)∂x+ (y2−y)∂y then its Gauss map GF (x, y) =
(

1−y
x(x−y) ,

x−1
y(x−y)

)

admits a birational involution τ(x, y) =
(
−x(1−x+y)

1−x−y , −y(1+x−y)
1−x−y

)
such that

GF ◦ τ = GF . Then G∗FLegF = F �F⊥, F is Galois and the foliation F⊥ :=
τ∗F is defined by the vector field (x2−x)(1+x−3y)∂x+(y2−y)(1+y−3x)∂y.

Thus F⊥ has degree 3 and, using Proposition 5.1, it can be easily checked
that F⊥ is not Galois. �

5. Galois foliations on the projective plane

The aim of this section is to understand the geometry of Galois folia-
tions on the complex projective plane. We begin by giving an algebraic
characterization of Galois foliations using the main result of Section 4. In
particular we deduce that the space Gd of degree d Galois foliations is a
quasi-projective variety. We also provide a characterization of Galois folia-
tions in terms of geometric elements naturally associated to them by using
results of Subsection 3.4. Finally we obtain a full characterization of homo-
geneous Galois foliations and we also exhibit examples of Galois foliations
with other symmetries.

5.1. Algebraic characterization of Galois foliations. Recall that a de-
gree d foliation F on P2 is given by a 1-form on C3,

ω = a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)dz,

with a, b, c homogeneous polynomials of degree d+1 without common factors
and fulfilling ω(R) = ax + by + cz = 0, where R = x∂x + y∂y + z∂z is the
radial vector field (see for instance [6, §9.1]). Thus, the space Fd of degree d
foliations on P2 is a Zariski open subset of the projective space Fd = P(Ud),
where

(9) Ud := {(a, b, c) ∈ Cd+1[x, y, z]⊕3 | ax+ by + cz = 0}
and Cd[x, y, z] is the vector space of degree d homogeneous polynomials
in x, y, z. The condition ω(R) = 0 implies that the foliation can also be
defined by an homogeneous vector field Z = α∂x + β∂y + γ∂z of degree d on
C3 fulfilling ω = ıZ ıR(dx ∧ dy ∧ dz). In the affine chart z = 1, the foliation
F is defined by the polynomial 1-form

a(x, y, 1)dx+ b(x, y, 1)dy = −b̄(x, y)dx+ ā(x, y)dy + c̄(x, y)(xdy − ydx),

where ā, b̄, c̄ ∈ C[x, y], deg ā,deg b̄ ≤ d and c̄ is homogeneous of degree d.
It can be also defined by the vector field X = A(x, y)∂x + B(x, y)∂y with
A = ā + xc̄ and B = b̄ + yc̄. The line at infinity z = 0 is invariant by F if
and only if c̄ = 0. We deduce that Ud is isomorphic to the space of vector
fields

X = A(x, y)∂x +B(x, y)∂y = ā(x, y)∂x + b̄(x, y)∂y + c̄(x, y)(x∂x + y∂y)

with ā, b̄, c̄ ∈ C[x, y], deg ā,deg b̄ ≤ d and c̄ homogeneous of degree d. The
relationship between the vector fields Z and X is given by the identities
ā(x, y) = α(x, y, 1), b̄(x, y) = β(x, y, 1) and c̄(x, y) = −γ(x, y, 1). The vec-
tor field X is said saturated if gcd(A,B) = 1. This condition jointly with
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max(degA,degB) ≥ d is equivalent to the condition gcd(a, b, c) = 1 defin-
ing Fd.

We consider the Gauss map GF : P2 99K P̌2 of F which is written as

GF ([x, y, z]) = [a(x, y, z), b(x, y, z), c(x, y, z)]

in homogeneous coordinates. From now on the Gauss map of a foliation
F on P2 will be denoted simply by G. A criterion to test if F is Galois
is Corollary 4.18 which can be reformulated in the following form, already
considered in [9] for the degree 3 case (cf. Proposition 5.2 loc. cit.):

Proposition 5.1. A foliation F on P2 given by the polynomial vector field
X = A(x, y)∂x +B(x, y)∂y is Galois if and only if the polynomial
(10)

P (x, y, t) = det

(
A(x, y) A(x+ tA(x, y), y + tB(x, y))
B(x, y) B(x+ tA(x, y), y + tB(x, y))

)
∈ C[x, y, t]

decomposes totally over the field C(x, y). In fact, each one of its rational
roots t = t(x, y) ∈ C(x, y) determines a birational deck transformation of G:

(x, y) 7→ (x+ t(x, y)A(x, y), y + t(x, y)B(x, y)).

Besides its practical applications, this criterion allows us to prove the
following result.

Proposition 5.2. The set Gd of degree d Galois foliations is a Zariski closed
subset of Fd.

Proof. Let Vm be the vector subspace of C[x, y] of polynomials of degree
≤ m. Put δ := (d + 1)2 − 1 = (d + 2)d and ∆ := δ(d − 1) = (d +

2)d(d − 1) and let us consider the map p : Ud → V ⊕dδ ↪→ V ⊕d∆ given
by p(A∂x + B∂y) = (a1, . . . , ad) where ai = ai(x, y) are determined by

the polynomial PX(x, y, t) =
∑d

j=1 aj(x, y)tj given by formula (10). No-

tice that PλX(x, y, t) = λ2P (x, y, λt), so that p(λX) = φλ(p(X)), with
φλ(a1, . . . , ad) = (λ3a1, . . . , λ

d+2ad). Thus, p induces a rational map p :

Fd 99K Pw(V ⊕d∆ ), where Pw(V ⊕d∆ ) is the weighted projective space associated

to the weights (3, . . . , d+2) in each direct summand V∆ of V ⊕d∆ . Notice that

p is defined on the open set Fd ⊂ Fd.
Let q : V

⊕2(d−1)
δ → V ⊕d∆ be the map defined by q(b1, c1, . . . , bd−1, cd−1) =

(a1, . . . , ad) where
d∑
j=1

ajt
j = t

d−1∏
i=1

(cit− bi). Notice that

q(λ1b1, λ1c1, . . . , λd−1bd−1, λd−1cd−1) =

(
d−1∏

i=1

λi

)
q(b1, c1, . . . , bd−1, cd−1)

and q(b1, c1, . . . , bd−1, cd−1) = (0, . . . , 0) if and only if there is 1 ≤ i ≤ d− 1

such that bi = ci = 0. Then q induces a morphism q :
(
P(V ⊕2

δ )
)d−1 → P(V ⊕d∆ ).

Let Z ⊂ V ⊕d∆ and Z ⊂ P(V ⊕d∆ ) be the images of q and q respectively. Since

q is a morphism we deduce that Z is a Zariski closed subset. Denote by f :

V ⊕d∆ \ {0} → P(V ⊕d∆ ), fw : V ⊕d∆ \ {0} → Pw(V ⊕d∆ ) and g :
(
V ⊕2
δ \ {0}

)d−1 →(
P(V ⊕2

δ )
)d−1

the natural projections. Notice that Z∗ := Z \{0} is saturated
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by the maps f and fw because, if the polynomial P (t) =
d∑
j=1

ajt
j decomposes

as t
d−1∏
i=1

(cit− bi) with bi, ci ∈ Vδ, then the same property holds for λP (t) and

for λ2P (λt).
From q ◦ g = f ◦ q and the surjectivity of g we deduce that f(Z∗) = Z.

Since Z∗ is saturated by f and f is surjective we deduce that Z∗ = f−1(Z)

is a Zariski closed set of V ⊕d∆ \ {0}. Then Zw := fw(Z∗) is a Zariski closed

set of Pw(V ⊕d∆ ) because Z∗ is saturated by fw. Finally, we deduce from

Proposition 5.1 that Gd = (p|Fd)
−1(Zw) is a Zariski closed set of Fd. �

The first part of the following natural question was asked in [9, §6] for
the case d = 3:

Question 5.3. (1) Which is the number, dimension and type of the irre-
ducible components of Gd?

(2) Is the branching type of the Gauss map of a degree d Galois foliation
generically constant along each irreducible component of Gd?

(3) What are the elements of Gd \Gd ⊂ Fd?

Recall that the polar curve of F with respect to p ∈ P2 is defined as
G−1(p̌) = Tang(F , Rp), where Rp is the radial vector field centered at p.
A generic polar of F is a polar curve of F with respect to a generic point
p ∈ P2. We know by [30] that the generic polar of a degree d foliation is an
irreducible (and reduced) curve of degree d+ 1 and that its genus is gener-
ically constant. If the point p ∈ P2 is generic and ` = p̌ ⊂ P̌2 denotes its
dual line, then the composition of the normalization S`G → G−1(`) with the

restriction of G to G−1(`) is the branched covering G` : S`G → ` ' P1 consid-

ered in Proposition 3.17. The branching type of G` is a numerical invariant
of F , which contains in particular the genus of S`G , cf. Proposition 3.23 and
Remark 3.18. In fact, Proposition 3.17 implies that the topological type of
the generic polar is constant. In [17] a stronger result is proved: the con-
stancy of the topological embedded type G−1(`) ⊂ P2 of the generic polar
of a foliation F on P2. The following statement gives a precise meaning to
the notion of generic in this situation that we will use in the sequel.

Lemma 5.4. If p does not belong to the dual curve Λ̌G ⊂ P2 of ΛG ⊂ P̌2

then the polar curve of F with respect to p is irreducible and its genus does
not depend on p.

Proof. We follow the proof of Proposition 3.17 in the case X = P2, Y = P̌2,
N = 2 and G being the Gauss map of a foliation F on P2. In that situation

Z = ZY = ˇ̌P2 = P2, V = {(y, z) ∈ P̌2 × P2 | z ∈ y̌}, W ' (G × idZ)−1(V) and
GV ' G × IdZ restricted to (G × idZ)−1(V). Hence

{det(dGV) = 0} ⊂ {(x, z) ∈ P2 × P2 | det(dGx) = 0, z ∈ G(x)},
so that Z \ ZΛ ⊂ G(∆G) = Λ̌G and consequently P2 \ Λ̌G ⊂ ZΛ. By Propo-
sition 3.17, the topological type of the desingularization of the polar curve
of F with respect to p ∈ ZΛ is constant. On the other hand, if p /∈ Λ̌G
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then the dual line p̌ meets transversely ΛG , the inclusion induces an epimor-
phism π1(p̌ \ΛG)� π1(P̌2 \ΛG) and consequently the monodromy group of
G|G−1(p̌\ΛG) is transitive. Then G−1(p̌ \ ΛG) is connected and hence G−1(p̌)
is irreducible. �

Thus, the map g : Fd → Z+ given by the genus of the generic polar of F
is well-defined. Since g(F) can be computed from the extended branching
type B+

F of F by formula (6), the following result goes in the direction of an
affirmative answer to Question 5.3(2):

Proposition 5.5. The map g : Fd → Z+ is lower semi-continuous, i.e. the
sets {F ∈ Fd | g(F) ≤ e} are Zariski closed for all e ∈ Z+. In particular,
the genus of the generic polar is generically constant along each irreducible
component of Gd and {F ∈ Fd | g(F) = 0} is a Zariski closed set. Moreover,

{F ∈ Fd | g(F) = d(d−1)
2 } is a dense Zariski open set.

Proof. Consider the rational map Gd : P2×Fd 99K P̌2×Fd given by Gd(p,F) =
(GF (p),F). Although for any given F ∈ Fd, the set ∆GF is closed in P2,
the union

⋃
F∈Fd ∆GF × {F} in not necessarily a closed subset of P2 ×

Fd. Nevertheless, this union is contained in the Zariski closed set Dd :=
{det(dGd) = 0}, and therefore its image is contained in the Zariski closed set
Ld := Gd(Dd) ⊂ P̌2×Fd. Since the fibre of Ld over F is a curve on P̌2, we de-
duce that Ld is an hypersurface. Let h(x, y, z,F) = 0 be a reduced equation
of Ld. Let Ľd be the image of Ld by the rational map P̌2 × Fd 99K P2 × Fd
given by (q,F) 7→

([
∂h
∂x(q), ∂h∂y (q), ∂h∂z (q)

]
,F
)

. Clearly, the fibre of Ľd over

F contains the dual curve Λ̌F ⊂ P2 of ΛF := GF (∆GF ) ⊂ P̌2. Thus, we can
consider the Zariski open set

Y := {([α, β, γ], [a, b, c]) ∈ P2 × Fd | [α, β, γ] 6∈ Λ̌[a,b,c])}
and the family of projective curves f : X → Y over Y given by

X := {([x, y, z], [α, β, γ], [a, b, c]) ∈ P2 × Y | (αa+ βb+ γc)(x, y, z) = 0}.
It can be easily checked that X is a non-singular hypersurface of P2 × Y .
Since each fibre of f is a curve we have dimxX = dimf(x) Y+dimx(f−1(f(x)))
for every x ∈ X. This condition, jointly with the smoothness of X and Y ,
implies that the morphism f is flat, see [19, Corollary 3.20]. Then [13,
Proposition 2.4] asserts that the map sending y ∈ Y to the geometric genus
of f−1(y) is lower semi-continuous. We conclude by noting that this map is
constant along the fibres of the second projection Y ⊂ P2 × Fd → Fd. Last
statement follows from [30, Proposition 6.2]. �

Remark 5.6. Let Ed be the subset of Fd consisting of foliations F with ex-
tremal extended branching type B+

F = [(c1; (d)1), . . . , (ck; (d)1)]. By Corol-
lary 3.34, Ed ⊂ Gd and Ed = Gd when d is prime. Let Ecd be the subset of
Ed defined by the equality c1 + · · · + ck = c. Then formula (6) shows that

g|Ecd is constant and equal to (c−2)(d−1)
2 .

Before going further with Question 5.3 let us present some explicit ex-
amples. As remarked in [9], every foliation of degree one or two on P2 is
Galois but it follows from Proposition 5.1 that foliations of degree d ≥ 3
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are generically non-Galois. The following example provides infinite families
of Galois foliations in each degree, and all of them have cyclic monodromy
group. That family contains as particular cases all the examples considered
in [9].

Example 5.7. For all linearly independent vectors (α, γ, λ), (β, δ, µ) ∈ C3

and every C-linearly independent u, v ∈ C[x, y] with deg u,deg v ≤ 1, the
degree d foliation defined by the saturated vector field

(αud + βvd)∂x + (γud + δvd)∂y + (λud + µvd)(x∂x + y∂y)

is Galois with cyclic monodromy group and generic extremal extended branch-
ing type [(1; (d)1), (1; (d)1)]. In particular the genus of its generic polar is
always 0. Indeed, the slope of the vector field takes the form p(x, y) =
γ+δwd+y(λ+µwd)
α+βwd+x(λ+µwd)

, with w = v
u . The roots of polynomial (10) for the vec-

tor field X = ∂x + p(x, y)∂y are the solutions of the equation p(x + t, y +

tp(x, y)) = p(x, y), which reduces to w(x+ t, y+ tp(x, y))d = w(x, y)d. Using
that deg u,deg v ≤ 1, the last equation factorizes as the following d linear
equations in the variable t:

(11) w(x+ t, y + tp(x, y)) = ζkw(x, y) with ζ = e
2iπ
d and k ∈ {1, . . . , d}.

For each k ∈ Zd the rational solution t = tk(x, y) ∈ C(x, y) of (11) associated
to ζk determines a deck transformation

τk(x, y) = (x+ tk(x, y), y + tk(x, y)p(x, y))

of the Gauss map G which satisfies the relation w(τk(x, y)) = ζkw(x, y). If
τk ◦ τ` = τm(k,`) then

ζk+`w = w ◦ τk ◦ τ` = w ◦ τm(k,`) = ζm(k,`)w

and consequently m(k, `) = k + ` in the set Zd parametrizing the deck
transformation group of the foliation. Hence the monodromy group is also
cyclic. Finally, a simple but lengthy computation shows that the sets R%G
defined in Subsection 3.4 are empty if % 6= d and RdG = {uv = 0}. Its image
by G consists in two straight lines, provided that {u = 0} and {v = 0}
are not invariant by the foliation, condition which holds generically. Last
statement follows from Remark 5.6 and Proposition 5.5. �

Next example is a Galois foliation with non-cyclic monodromy group.

Example 5.8. An explicit computation of the polynomial defined in (10)
shows that the degree d = 2n foliation F defined by the vector field

(xn + yn)2∂x + (xn − yn)2∂y

is Galois. We will see in Subsection 5.3 that its monodromy group is the
dihedral group Dn of order 2n. Moreover, a straightforward computation
shows that R%G = ∅ if % /∈ {2, n},

R2
G = {(xn + yn)(xn − yn) = 0} and RnG = {xy = 0},

so that its extended branching type is given by [(1; (2)n), (1; (2)n), (1; (n)2)]
and the genus of its generic polar is also 0. �
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5.2. Geometric characterization of Galois foliations. We address now
the question of characterizing Galois foliations on P2 in terms of geometric
elements naturally associated to the foliation. Let F be a foliation on P2 of
degree d > 0 given by an homogeneous 1-form ω = adx + bdy + cdz with
a, b, c ∈ Cd+1[x, y, z]. Recall that its Gauss map G : P2 99K P̌2 is written

G([x, y, z]) = [a(x, y, z), b(x, y, z), c(x, y, z)]

in homogeneous coordinates. We will use Theorem 3.33 which states that a
foliation F on P2 is Galois if and only if its associated Gauss map G is of
regular type. Therefore, the geometric elements that we are led to consider
are the indeterminacy locus ΣG of G, which is just the singular set ΣF of F ,
and the set ∆G that we denote ∆F from now on, i.e.

∆F := {p ∈ P2 \ ΣF | det(dGp) = 0} =





∣∣∣∣∣∣

∂xa ∂ya ∂za
∂xb ∂yb ∂zb
∂xc ∂yc ∂zc

∣∣∣∣∣∣
= 0



 ⊂ P2.

Recall that ∆F = ∆G has a natural divisor structure.
One can give a geometric interpretation to ∆F as follows. Let us consider

the inflection locus IF of the foliation F , which is the closure of the set of
points in P2 \ΣF where the leaves of F have a contact of order greater than
one with its tangent line. It is shown in [34] that IF has a natural divisor
structure defined by the homogeneous equation

F (x, y, z) :=

∣∣∣∣∣∣

x y z
Z(x) Z(y) Z(z)
Z2(x) Z2(y) Z2(z)

∣∣∣∣∣∣
= 0,

of degree 3d, where Z(x, y, z) is an homogeneous vector field defining F .
Indeed, if ζ(t) = (x(t), y(t), z(t)) is an integral curve of Z and γ(t) =(
x(t)
z(t) ,

y(t)
z(t)

)
is its projection to the affine chart (x, y) of P2 then

F (ζ(t)) =

∣∣∣∣∣∣

x(t) y(t) z(t)
x′(t) y′(t) z′(t)
x′′(t) y′′(t) z′′(t)

∣∣∣∣∣∣
= z(t)3 det(γ′(t), γ′′(t)),

whose vanishing characterize the inflection points of the curve γ(t). Notice
also that, if F is defined by a vector field X = A(x, y)∂x + B(x, y)∂y in
the affine chart (x, y) and γ(t) = (x(t), y(t)) is an integral curve of X, then
det(γ′(t), γ′′(t)) = f(γ(t)), where

(12) f(x, y) =

∣∣∣∣
A(x, y) B(x, y)

X(A(x, y)) X(B(x, y))

∣∣∣∣ .

Consequently, f(x, y) = 0 is an affine equation for IF .

Lemma 5.9. If the foliation F is not degenerated, there is an equality of
divisors IF = ∆F .

Proof. Let Z = α∂x + β∂y + γ∂z be a degree d homogeneous vector field
defining F and set ω = ıZ ıRdx∧dy∧dz = adx+bdy+cdz. Then a = yγ−zβ,
b = zα − xγ, c = xβ − yα and the equality of divisors follows from Euler
identity. �
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We can decompose IF = I inv
F + Itr

F , where the support of I inv
F consists in

the union of the invariant lines of F and the support of Itr
F is the closure

of the inflection points that are isolated along the leaves of F . For each
% > 1 we consider the reduced (maybe empty) curves I%F ⊂ P2 defined by
the equality of divisors

Itr
F =

∑

%>1

(%− 1)I%F .

Remark 5.10. For each irreducible component D of I%F the ramification
index of G along D is % and it coincides with the tangency order between the
leaf of F through a generic point p of D and its tangent line TpF . Indeed,
the ramification index of G can be though as the number of local regular
preimages G−1(q′) by G collapsing to p ∈ G−1(q) as q′ → q, that is, the
number of tangency points of order one collapsing to p.

In order to study the indeterminacy locus of G, we consider a composition

β : P̃2 → P2 of blow-ups centered at ΣF which desingularize G, i.e. such

that G̃ = G ◦ β : P̃2 → P̌2 is a well-defined morphism. For each s ∈ ΣF
we set Es = β−1(s). We denote Edom

s (resp. Eram
s ) the union of irreducible

components D of Es such that δD := deg(G̃) > 0 (resp. %D > 1). We also
set Σram

F := {s ∈ ΣF | Eram
s 6= ∅}. We recall that %D is the ramification index

of G̃ along D and we notice that Edom
s 6= ∅ and that Eram

s ⊂ Edom
s .

As we pointed out at the beginning of Subsection 3.1, the morphism

δ := β×G̃ : P̃2 → P2×P̌2 is a desingularization of the graph ΓF ⊂ V ⊂ P2×P̌2

of G which is canonically identified with the variety ZF ⊂ PT ∗P2 considered

in Proposition 4.9. Thus, if s ∈ ΣF and x̃ ∈ Es then δ(x̃) = (β(x̃), G̃(x̃)) ∈ V
and s = β(x̃) belongs to the line G̃(x̃) ⊂ P2, or equivalently G̃(x̃) ∈ š. Since

G̃(Es) has positive dimension and it is contained in the line š we deduce

that G̃(Es) = š. Hence Hypothesis 3.31 is satisfied by the Gauss map of
every foliation on P2. Keeping the notations used in Subsection 3.4, we
have that R%G = I%F and Σρ

G consists of the singularities s ∈ ΣF of F such

that each irreducible component of Edom
s has ramification index %. To unify

the notations we will denote Σρ
G by Σ%

F .
Using Theorem 3.33 and Proposition 3.32 we obtain the following char-

acterization of Galois foliations.

Theorem 5.11. A degree d foliation F on P2 is Galois if and only if for
each generic ˇ̀ ∈ Λρ ⊂ P̌2 there is %|d, % > 1, such that Tang(F , `) ⊂
(I%F \ ΣF ) ∪ Σ%

F .

Remark 5.10 gives a clear geometric meaning to the curve I%F . It remains
to give a geometric characterization of the sets Σ%

F . To this purpose, we
define the vanishing order of F at a point s ∈ ΣF as

νs := min{k ≥ 1 : JksX 6= 0}
and the tangency order of F with a generic line passing through s ∈ ΣF as

τs := min{k ≥ νs : det(JksX,Rs) 6= 0},
where X is a saturated vector field defining F , JksX is its k-jet at s and Rs
is the radial vector field centered at s.
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Fix an affine chart (x, y) on P2 such that the corresponding line at infinity
`∞ is not contained in the subset Λ̌G ⊂ P2 and assume that F is given by
the vector field X = A(x, y)∂x +B(x, y)∂y. Let (p, q) the affine chart of P̌2

so that, in the affine chart (x, y, p, q) of P2× P̌2, the incidence variety V has
equation y = px+q. Hence (x, y, p) and (p, q, x) are affine charts of V where
the graph ΓF ⊂ V of F has equations F (x, y, p) := B(x, y)−pA(x, y) = 0 and
F̌ (p, q, x) := B(x, px+q)−pA(x, px+q) = 0 respectively. The differential 1-
form dy−pdx = dq+xdp defines the contact distribution C on V inducing the
foliation CF on ΓF . Let πF and π̌F be the restrictions to ΓF of the natural
projections π and π̌ from V onto P2 and P̌2 respectively. Notice that for each
s ∈ ΣF we have π−1

F (s) = π−1(s) ⊂ ΓF and π−1
F (s) ⊂ Sing(ΓF ) if and only if

νs > 1. The foliation F = (πF )∗CF and the web LegF = (π̌F )∗CF are given

by the implicit differential equations F (x, y, dydx) = 0 and F̌ (p, q,−dq
dp) = 0

respectively. (For more details see [26, 3].)
Once the affine chart (x, y) is fixed, we can also interpret ΓF ⊂ P2 × P̌2

as a family of curves on P2 over `∞ ' P1, whose fibers are the polar curves
of F with respect to the points [1, p, 0] ∈ `∞, because each of them is given
by the equation F (x, y, p) = 0, for fixed p.

Consider the normalization κ : ΓνF → ΓF of the graph ΓF of F . By
the universal property of the normalization there are birational morphisms

ξ : P̃2 → ΓνF and χ : ΓνF → N such that the composition χ ◦ ξ is the

birational morphism γ : P̃2 → N given by the Stein factorization (3) of the

chosen desingularization G̃ : P̃2 → P̌2 of G = π̌F ◦ π−1
F : P2 99K P̌2. These

maps make commutative the following diagram:

P̃2 ξ //

β
��

ΓνF

κ

��

χ // N

ρ

��
P2 oo πF ΓF

π̌F // P̌2.

In fact, for each s ∈ ΣF the morphism ξ (resp. χ) collapses exactly each ir-
reducible component of Es \Edom

s (resp. each invariant line) to a point. This
implies that ξ induces a canonical bijection between the sets of irreducible
components of the curves Edom

s and κ−1(π−1
F (s)). Moreover, the irreducible

components of κ−1(π−1
F (s)) are in one-to-one correspondence with the local

irreducible components of ΓF along π−1
F (s). Notice also that every irre-

ducible component D of Edom
s intersects the strict transform of a generic po-

lar curve P in exactly δD > 0 points and on the other hand P∩Es = P∩Edom
s .

Consequently the desingularization of the generic polar curve P coincides

with the desingularization β : P̃2 → P2 of G, but in general it is different
from the reduction of singularities of F , cf. [11].

By [37, Corollaire p. 80], the restriction of κ : ΓνF → ΓF to the preimage
by κ of the polar curve ΓF ∩ {p = p0} coincide with its normalization
for generic p0 ∈ C. Fix s ∈ ΣF and assume we have chosen the affine
chart (x, y) so that s = (0, 0) and that x is not a factor of an equation
defining the tangent cone of the polar curve F (x, y, p) = 0 at s. The local
irreducible components of ΓF at (0, 0, p0) are in canonical bijection with the
branches of the polar curve F (x, y, p0) = 0. Moreover, for each branch γp0
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of F (x, y, p0) = 0 at s there are local coordinates (t, p) ∈ (C2, 0) on ΓνF such
that

(πF ◦ κ)(t, p) =
(
tm,

∑

j≥m
cj(p)t

j
)

is a simultaneous Puiseux parametrization of the corresponding branches γp
of the polar curves F (x, y, p) = 0 at s. Here m stands for the multiplicity
of γp at s for generic p. Notice that the the sum of the multiplicities m of
the different branches of F (x, y, p0) at s is the multiplicity of F (x, y, p0) at
s and it coincides with the vanishing order νs of the vector field X at s.

Since for generic p0 ∈ C, the birational morphisms χ and ξ are local bi-
holomorphisms at the points (0, p0) and ξ−1(0, p0) respectively, for each

irreducible component D of Edom
s , the ramification index of G̃ along D

coincides with the ramification index along ξ(D) = {t = 0} of the map
π̌F ◦ κ : ΓνF → P̌2, which is written as

(π̌F ◦ κ)(t, p) =
(
p,
∑

j≥m
(cj(p)− pδjm)tj

)
.

Theorem 5.12. Let F be a degree d foliation on P2 and let us fix s ∈ ΣF .
Then s ∈ Σ%

F if and only if either,

• τs = νs and each branch of the generic polar at s has multiplicity %, or
• τs > νs, τs − νs + 1 = % and each branch of the generic polar at s, whose

strict transform does not meet the exceptional divisor of the first blow up
of s, has multiplicity %.

Moreover,

(1) s ∈ Σram
F if and only if τs > νs or τs = νs and the generic polar of F

has a singular branch at s;
(2) s ∈ Σd

F if and only if (νs, τs) = (1, d) or νs = d and the generic polar of
F has a single branch at s.

Proof. Set ν = νs and τ = τs and consider an irreducible component D
of Edom

s . With the notations introduced above, we have that %D is the
ramification index of π̌F ◦ κ along ξ(D) = {t = 0}. If cm(p) 6≡ p then
%D = m. If cm(p) ≡ p then y−px divides the polynomialBν(x, y)−pAν(x, y).
This implies that Aν = xCν−1 and Bν = yCν−1 for some homogeneous
polynomial Cν−1(x, y) of degree ν − 1. Consequently (y − px)2 does not
divide Bν(x, y)−pAν(x, y) = (y−px)Cν−1(x, y) and there is a unique branch
γp of F (x, y, p) = 0 at s, tangent to y = px, which is necessarily non-singular
at s. Hence the strict transform of γp meets the exceptional divisor Ds of
the first blow up of s and consequently D = Ds. Consider the chart (t, x)

around Ds = {x = 0} given by y = tx. Then G̃(t, x) = (p(t, x), x(t−p(t, x)))

with p(t, x) = B(x,tx)
A(x,tx) . We write

X = A∂x +B∂y = (Cν−1 + · · ·+ Cτ−2)R+Xτ + · · ·+Xd + CdR,

where Xτ is not collinear with the radial vector field R. Consequently,

p(t, x) = xνt(Cν−1(1,t)+xCν (1,t)+···+xτ−ν+1Cτ−2)+xτBτ (1,t)+···+xd+1Bd+1(1,t)

xν (Cν−1(1,t)+xCν (1,t)+···+xτ−ν+1Cτ−2)+xτAτ (1,t)+···+xd+1Ad+1(1,t)

= t+ xτ−νpτ−ν(t) + · · ·
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with pτ−ν(t) 6≡ 0, q(t, x) = −xτ−ν+1pτ−ν(t) + · · · and

det(dG̃) =

∣∣∣∣
1 + xτ−νp′τ−ν(t) + · · · −p′τ−ν(t)xτ−ν+1 + · · ·

(τ − ν)pτ−ν(t)xτ−ν−1 + · · · −(τ − ν + 1)pτ−ν(t)xτ−ν + · · ·

∣∣∣∣
= −(τ − ν + 1)pτ−ν(t)xτ−ν + · · ·

Hence, in that case we have %Ds = τ − ν + 1 by Remark 3.30. We deduce
the following dichotomy:

• If νs = τs then %D is the multiplicity m of the branch of the generic polar
whose strict transform meets D.
• If νs < τs then there are two possibilities: D = Ds and D 6= Ds. In the

first case %D = τs − νs + 1 and in the second one %D is the multiplicity m
of the branch of the generic polar whose strict transform meets D.

First part of the statement follows from these assertions.
By [30, Proposition 5.2] the generic polar curve of a foliation on P2 is

(globally) irreducible. Consider the (necessarily reduced) local prime fac-
torization of F (x, y, p) =

∏r
i=1 fi(x, y, p) in OP2,s for generic p ∈ C. Now

assertions (1) and (2) follow easily from the facts that mi = ordsfi and∑
imi = νs. �

Corollary 5.13. Let F be a degree d foliation on P2. If the following
conditions are satisfied

(1) at an isolated inflection point p along a leaf L of F , the tangency order
of L with its tangent line TpL attains its maximum d;

(2) for each s ∈ ΣF the following trichotomy holds:
• νs = 1 and τs = d, or
• νs = d and the generic polar of F has a single branch at s, or
• νs = τs and each branch at s of the generic polar of F is smooth;

then F is Galois with cyclic monodromy group. The converse is also true
when d is prime.

Proof. Assertion (1) is equivalent to the equality Itr
F = (d − 1)IdF by Re-

mark 5.10. The two first possibilities in assertion (2) are equivalent to
s ∈ Σd

F and the third one to s /∈ Σram
F , so that assertion (2) is equivalent to

the equality Σram
F = Σd

F . We conclude by applying Corollary 3.34. �

Remark 5.14. It is worth noting that, if F ∈ Ed ⊂ Gd with d ≥ 3 then
Itr
F = (d − 1)IdF , which implies that I inv

F 6= ∅ when d 6= 4. Indeed, if
IF = Itr

F then 3d = (d− 1)k and (k, 3) = `(d, d− 1) for some ` ∈ Z, because
gcd(d, d− 1) = 1. Hence ` = 1 and d = 4. On the other hand, Example 5.8
provides a family of homogeneous Galois foliations of degree d = 2n for
which Itr

F 6= IdF . Finally, the hypothesis Σram
F = Σd

F cannot be removed
from Corollary 5.13 because the foliation F defined by the vector field

x2(x+ 3y)∂x + y2(y + 3x)∂y

is convex, i.e. Itr
F = ∅, but it is not Galois. In fact, F has singular points

at infinity [1, 0, 0], [0, 1, 0], [1,−1, 0] and [1, 1, 0], all of them with vanishing
order ν = 1, and with tangency orders τ = 2, 2, 3 and 1 respectively.
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We know from Corollary 4.18 that F is Galois if and only if G∗LegF is
totally decomposable. Let us point out the close relationship between the

ramification index of G̃ along a component D of RG̃ and the local (resp.

semi-local) decomposability of the web LegF at the generic point of (resp.

along) the component G̃(D) of Λρ = ∆(LegF) ⊂ P̌2.
Let D be an irreducible component of RG̃ and let UD be a tubular neigh-

borhood of D. By Lemma 4.6, the direct image WD := G̃∗(F̃|UD) is an

irreducible %DδD-web on the tubular neighborhood G̃(UD) of G̃(D) ⊂ Λρ.
Let C be an irreducible component of Λρ and let VC be a tubular neighbor-

hood of C. Then LegF|VC = �DWD, where D ranges the set of irreducible

components of G̃−1(C). Let p ∈ C be a generic point of C ⊂ Λρ and let
Vp be a small neighborhood of p. Then, for each irreducible component D

of G̃−1(C), we have WD|Vp = �δDj=1W
j
D, where Wj

D is an irreducible %D-web
on Vp.

In the case C = š with s = (0, 0) ∈ ΣF we have that F̌ (p, 0, x) = xτsu(p, x)
with u(p, 0) 6≡ 0. This implies that, in a tubular neighborhood Vš of the
dual line š ⊂ P̌2 of s, we can decompose LegF|Vš = W inv

τs �Wtr
d−τs where

∆(W inv
τs ) = š is totally invariant by W inv

τs and Wtr
d−τs is transverse to š. In

fact, W inv
τs = �D⊂Edom

s
WD. Hence

(13)
∑

D⊂Edom
s

δD%D = τs.

Remark 5.15. If F is a Galois foliation of degree d and s ∈ Σram
F with

τs < d then there must exist an irreducible component C ⊂ Itr
F such that

G(C \ ΣF ) = š. Indeed, we know from the hypothesis s ∈ Σram
F and for-

mula (13) that there is 1 < % ≤ τs < d such that s ∈ Σ%
F . Taking a line

` ⊂ P2 such that ` ∩ ΣF = {s} we see that Tang(F , `) must contain points
in I%F \ ΣF thanks to Theorem 5.11.

Example 5.16. Another illustrative example is given by the family of Fer-
mat foliations introduced in [26]. They are defined by the vector fields
(xd − εx)∂x + (yd − εy)∂y with ε 6= 0. All of them are convex, i.e. Itr

F = ∅,
but they have radial singularities s ∈ ΣF with vanishing order νs = 1 and
tangency order τs = 2. From Remark 5.15 we deduce that Fermat foliations
of degree d > 2 are not Galois. However, their degenerations xd∂x + yd∂y,
obtained by taking ε = 0, are Galois, as we have seen in Example 5.7. �

5.3. Homogeneous Galois foliations and their deformations. In [9]
the authors are interested in describing the algebraic set G3 of degree three
Galois foliations. Due to the difficulty of problem in its full generality, they
focus on the homogeneous case, for which they dispose of a particularly
simple generic normal form depending only on 4 complex parameters:

(14) Fα;λ,µ,ν :
dx

x
+ λ

dy

y
+ µ

dy − dx
y − x + ν

dy − αdx
y − αx = 0,

with λµν(1 + λ + µ + ν)α(α − 1) 6= 0. They prove some partial results
about the set T of (α;λ, µ, ν) ∈ C4 such that the foliation Fα;λ,µ,ν admits a
birational trivolution τ : P2 99K P2 fullfilling G ◦τ = G, where G is the Gauss
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map of the foliation. Namely, in [9, Theorem 5.17 and Proposition 5.18] it
is stated that the point (−1; 1, 1, 1) ∈ T admits a neighborhood U such that
T ∩ U is a smooth surface and the intersection of T with the hyperplane
α = −1 consists in two irreducible curves meeting at (−1; 1, 1, 1). This
subsection is devoted to describe completely the set of homogeneous Galois
foliations of arbitrary degree as well as its geometry.

Let Hd be the set of degree d homogeneous foliations given by satu-
rated vector fields A(x, y)∂x + B(x, y)∂y. It is a Zariski open subset of

P(Cd[x, y]⊕2) ' P2d+1. The left-right actions of PSL2(C) on the set of ra-
tional functions induce a natural action ϕ of PSL2(C)× PSL2(C) on Hd by
means of

ϕ([αij ], [βij ], [A1, A2]) = [β11A
α
1 + β12A

α
2 , β21A

α
1 + β22A

α
2 ],

where
Aαi (x, y) = Ai(α11x+ α12y, α21x+ α22y).

It is easy to see that the Gauss map of a homogeneous foliation F defined
by X = A(x, y)∂x + B(x, y)∂y in the affine charts (x, y) on P2 and (a, b)

on P̌2 corresponding to the line ay − bx = 1, takes the form

G(x, y) =

(
A(x, y)

yA(x, y)− xB(x, y)
,

B(x, y)

yA(x, y)− xB(x, y)

)
,

which is precisely in the class of rational maps considered in Example 3.19,
with u = y and v = −x. By applying Proposition 3.15 and Theorem 3.36
we obtain the following classification result.

Theorem 5.17. The subset Hd∩Gd of Hd is constructible and its irreducible
components consist of the orbits by ϕ : PSL2(C) × PSL2(C) × Hd → Hd of
the foliations

(1) xd∂x + yd∂y for every d,
(2) (xn + yn)2∂x + (xn − yn)2∂y if d = 2n is even,

(3) (x4 + 2i
√

3x2y2 + y4)3∂x + (x4 − 2i
√

3x2y2 + y4)3∂y if d = 12,
(4) (x8 + 14x4y4 + y8)3∂x + (xy(x4 − y4))4∂y if d = 24,
(5) (x20−228x15y5+494x10y10+228x5y15+y20)3∂x+(xy(x10+11x5y5−y10))5∂y if d = 60.

The closure of each orbit is an unirational variety. The first one is 5-
dimensional and the rest are 6-dimensional. Each irreducible component
corresponds to a different Galois group according to Klein’s classification
given in Theorem 3.36.

Proof. Since PSL2(C)× PSL2(C) is an irreducible rational quasi-projective
variety, we deduce from Chevalley’s theorem (cf. [28, §2.6]) that each ϕ-
orbit is an irreducible constructible set and its closure is an unirational
variety, i.e. the closure of the image of a dominant rational map from a
projective space. The assertion about the dimension in (1) follows from an
explicit computation of the differential of the map ϕ([αij , βij ], [x

d, yd]) at
the identity, which is

[(β11 + α11d)xd + xd−1yα12d+ β12y
d, β21x

d + yd−1xα21d+ (β22 + α22d)yd].

Its kernel is a 1-dimensional subspace of sl2(C)× sl2(C). Analogous compu-
tations can be made in the cases (2)-(5). �
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Notice that, for each degree d, the first component of Hd ∩Gd considered
in the above Theorem consists of the homogeneous foliations appearing in
Example 5.7 and the second one contains the foliations considered in Exam-
ple 5.8. In addition, we can write the deck transformations of G in terms of
τ̂(z) ∈ Deck(B(1, z)/A(1, z)) ⊂ PSL2(C) in the following way

(15) τ(x, y) =
A(x, y)y −B(x, y)x

A(x, y)τ̂(y/x)−B(x, y)
(1, τ̂(y/x)).

Specializing the previous result to d = 3, the case considered in [9], we
deduce that the set H3∩G3 of homogeneous degree 3 Galois foliations is the
ϕ-orbit of x3∂x+y3∂y, which has dimension 5 inside the 7-dimensional space
H3 and it is saturated by the orbits of the linear group of GL2(C) ⊂ PSL3(C).

Corollary 5.18. The 4-dimensional slice S := {Fα;λ,µ,ν} given by the nor-
mal form (14) is transverse to the GL2(C)-orbits and T = S ∩ G3 is a
rational surface.

Proof. A computation shows that the subset

Γ := {(α, β) ∈ PSL2(C)2 | (α, β) · [x3, y3] ∈ S}

is the graph of a morphism γ : US ⊂ PSL2(C) → PSL2(C), where US is
a Zariski open set. The previous infinitesimal computation implies that
T = Γ · [x3, y3] ⊂ S has dimension two. Hence T is an unirational surface.
Since in dimension ≤ 2, rational and unirational are equivalent concepts, we
conclude that T is a rational surface. �

The classification of homogeneous Galois foliations given by Theorem 5.17
can be used to obtain a negative test for proving that a given foliation on P2

is not Galois. It also provides (see Proposition 5.19 below) restrictions to
either the type of the singularities of Galois foliations or the finite subgroups
of Bir(P2) that can occur as Galois groups of foliations on P2. For a general
account on the finite subgroups of Bir(P2) we refer to [14]. Notice that
Theorem 3.14 asserts that every finite group G occurs as the Galois group
of a Galois branched covering ρ : N → Y but it does not give any indication
about those that can be realized with rational total space N .

Let F be a foliation on P2, for each singularity s ∈ ΣF and each F-
invariant line ` ⊂ I inv

F we consider the homogeneous foliations Fs and F`
defined respectively by:

• Fs is the saturation of the first non-zero jet of a vector field defining F
at s,
• F` is the saturation of the top degree homogeneous part of a vector field

defining F in the affine chart P2 \ `.
Notice Fs and F` are homogeneous foliations on P2. Therefore, if they are
Galois their deck transformation group are of Klein type, that is, appearing
in the list given in Theorem 3.36. The relation between the foliations F , Fs
and F` is given by the following statement.
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Proposition 5.19. Let F be a Galois foliation on P2. For each s ∈ ΣF and
` ⊂ I inv

F we have that

(1) if degFs > 0 the homogeneous foliation Fs is Galois; moreover if the
exceptional divisor Ds obtained blowing up once the point s is not a
ramification component then the Klein type deck transformation group
of Fs injects into the deck transformation group of F ;

(2) if degF` = degF then the homogeneous foliation F` is also Galois.

Proof. We obtain assertion (1) by applying Proposition 3.15 to V = Ds ⊂ P̃2.
Assertion (2) follows from the fact that Gd is closed by noting that F` =
lim
ε→∞

h∗εF , where hε ∈ PSL3(C) is given by hε(x, y) = (εx, εy) in the affine

chart P2 \ `. �

In the case d` = degF` < degF = d we are not able to assure that F`
is Galois. Nevertheless F` belongs to Gd \ Gd ⊂ Fd and we expect that
F` ∈ Gd` . An affirmative answer would help to describe an stratification

of Gd in terms of families of Galois foliations of lower degree (cf. Ques-
tion 5.3(3)).

Motivated by Theorem 5.17 and Example 5.7 we consider the following
family of deformations of a homogeneous foliation.

Definition 5.20. Let F ∈ Hd be a homogeneous foliation given by a sat-
urated homogeneous vector field X = A(x, y)∂x + B(x, y)∂y. For every C-
linearly independent polynomials u, v ∈ C[x, y] of degrees ≤ 1, and every lin-
early independent vectors (α, γ, λ), (β, δ, µ) ∈ C3 we consider the extended
left-right deformation (ELR in short) of F as the family of foliations given
by the vector fields

(αA+ βB)(u, v)∂x + (γA+ δB)(u, v)∂y + (λA+ µB)(u, v)(x∂x + y∂y).

Proposition 5.21. If F is a Galois homogeneous foliation then every ele-
ment of its ELR-deformation is Galois with the same branching type that F .

Proof. The polar curve P of the general element of the ELR-deformation
of F with respect to a generic point (a, b) ∈ C2 ⊂ P2 is given by the affine
equation

F (x, y) :=

∣∣∣∣
x− a (αA+ βB)(u, v) + x(λA+ µB)(u, v)
y − b (γA+ δB)(u, v) + y(λA+ µB)(u, v)

∣∣∣∣ = 0.

Since u and v are C-linearly independent polynomials of degree ≤ 1, from
the equation v

u = w ∈ P1 we can express either y = y0(w) + y1(w)x or
x = x0(w) + x1(w)y, with xi(w), yi(w) ∈ C(w). Without loss of generality
we can assume that we are in the first situation. From equation F (x, y0(w)+
y1(w)x) = 0 we obtain an explicit rational parametrization π : P1 → P given
by

x(w) =
((λA+ µB) a+ αA+ βB) y0 + (γA+ δB) a+ (−αA− βB) b

− ((λA+ µB) a+ αA+ βB) y1 + (λA+ µB) b+ (γA+ δB)

∣∣∣∣
(1,w)

y(w) = y0(w) + y1(w)x(w)
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On the other hand, the pencil p̌ of lines through p can be parametrized by
t ∈ P1 by means of y−b

x−a = t. By composing G|P : P → p̌ to the left by

π : P1 → P and to the right with the inverse of P1 ∼→ p̌ we obtain the

rational map P1 → P1 given by w 7→ (γ+bλ)A(1,w)+(δ+bµ)B(1,w)
(α+aλ)A(1,w)+(β+aµ)B(1,w) , which is

right equivalent to the Galois rational map w 7→ B(1,w)
A(1,w) because

(γ + bλ) (β + aµ)− (δ + bµ) (α+ aλ) =

∣∣∣∣∣∣

α γ λ
β δ µ
a b −1

∣∣∣∣∣∣
6= 0

if (a, b) ∈ C2 is generic. �

Remark 5.22. The family of vector fields considered in Example 5.7 con-
sists in the ELR-deformation of the homogeneous Galois foliation defined
by xd∂x + yd∂y. One can also made explicit the ELR-deformation of each
homogeneous Galois foliation given in Theorem 5.17, obtaining, by using
formula (15), explicit parametric continuous deformations of faithful repre-
sentations of the triangular groups Cn, Dn, A4, S4 and A5 into the Cremona
group Bir(P2), whose images are not contained in PSL3(C). For instance,
these considerations applied to the foliation xd∂x+yd∂y provide the following
family hαβ(x, y) = (Xαβ(x, y), Yαβ(x, y)) of order d elements of Bir(P2):

Xαβ(x, y) =
(yβ11(α11x+α12y)d+yβ12(α21x+α22y)d−xβ21(α11x+α12y)d−xβ22(α21x+α22y)d)x
ζyβ11(α11x+α12y)d+ζyβ12(α21x+α22y)d−xβ21(α11x+α12y)d−xβ22(α21x+α22y)d

,

Yαβ(x, y) =
(yβ11(α11x+α12y)d+yβ12(α21x+α22y)d−xβ21(α11x+α12y)d−xβ22(α21x+α22y)d)ζy
ζyβ11(α11x+α12y)d+ζyβ12(α21x+α22y)d−xβ21(α11x+α12y)d−xβ22(α21x+α22y)d

,

where ζ is a d-root of the unity and α = [αij ], β = [βij ] ∈ PSL2(C).

Remark 5.23. Every homogeneous foliations admits the infinitesimal sym-
metry R = x∂x + y∂y but the general element of its ELR-deformation does
not admit R as infinitesimal symmetry any more. However, it can be checked
that the set of all ELR-deformations of every homogeneous foliation contains
the special subsets:

(a) {P (y)∂y+Q(y)(x∂x+y∂y) |P,Q ∈ C[y]}, obtained by taking u, v ∈ C[y]
and α = β = 0 and admitting the infinitesimal symmetry x∂x,

(b) {P (y)∂x +Q(y)(x∂x + y∂y) |P,Q ∈ C[y], obtained by taking u, v ∈ C[y]
and γ = δ = 0 and admitting the infinitesimal symmetry y∂x.

5.4. Foliations with continuous automorphism group. A natural class
of foliations on P2 including homogeneous foliations is that of foliations F
with a continuous group of automorphisms Aut(F) ⊂ PSL3(C). After giving
a classification of foliations in that class we establish a general criterion to
decide whether they are Galois in terms of a suitable rational map P1 → P1.

Taking into account that every foliation of degree 1 or 2 is Galois, we can
assume that F has degree ≥ 3. Let R ∈ Lie(Aut(F)) ⊂ X(P2) ' sl3(C) be a
non-trivial infinitesimal automorphism of F . There are four possible Jordan
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form types for the traceless matrix associated to R:

(a)




α 0 0
0 β 0
0 0 −(α+ β)


 (b)




0 1 0
0 0 0
0 0 0




(c)




0 1 0
0 0 1
0 0 0


 (d)




1 1 0
0 1 0
0 0 −2




In the affine chart (x, y) the corresponding vector field R takes one of the
following normal forms:

(a) R = αx∂x + βy∂y with α ∈ C∗ and β ∈ C,
(b) R = y∂x,
(c) R = y∂x + ∂y,
(d) R = (x+ y)∂x + y∂y.

Let X = A(x, y)∂x + B(x, y)∂y be a saturated polynomial vector field
defining F . The fact that R ∈ Lie(Aut(F)) translates into the relation

(16) LRX = εX,

for some rational function ε ∈ C(x, y). Since the poles of ε are contained in
the zeroes of the coefficients of X and that vector field is saturated we see
that ε ∈ C[x, y]. Finally, using that degR = 1 we deduce that ε must be
constant. The following result describes the foliations of degree ≥ 2 having
a continuous automorphism group.

Proposition 5.24. Let X = A(x, y)∂x+B(x, y)∂y be a saturated polynomial
vector field of degree ≥ 2 satisfying LRX = εX for some R ∈ X(P2) in the
precedent list (a)-(d) of normal forms and for ε ∈ C.

(a) If R = αx∂x +βy∂y then β/α ∈ Q, so that we can assume that α, β ∈ Z
are coprime, ε ∈ Zα+ Zβ and

A(x, y) =
∑

αi+βj=ε+α

aijx
iyj and B(x, y) =

∑

αi+βj=ε+β

bijx
iyj

are quasi-homogenous polynomials of weights (α, β).
(b) If R = y∂x then ε = 0 and X = P (y)∂x + Q(y)(x∂x + y∂y) for some

coprime polynomials P,Q ∈ C[y].
(c) If R = y∂x+∂y then ε = 0 and X = P (y2−2x)(y∂x+∂y)+Q(y2−2x)∂x

for some coprime polynomials P,Q ∈ C[z].

In addition,

(d) if R = (x + y)∂x + y∂y, relation LRX = εX does not hold for any
saturated polynomial vector field X of degree ≥ 2.

Proof. (a) Writing A =
∑
aijx

iyj and B =
∑
bijx

iyj , if LRX = εX then
(∑

aij(αi+ βj − α− ε)xiyj
)
∂x +

(∑
bij(αi+ βj − β − ε)xiyj

)
∂y = 0,

leading to the claimed form of A and B. It is not difficult to see that if
β/α 6∈ Q and degX ≥ 2 then X cannot be saturated.
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(b) If R = y∂x then LRX − εX = (y∂xA−B− εA)∂x + (y∂xB− εB)∂y = 0

implies that B = e
εx
y Q̄(y) ∈ C[x, y]. Hence ε = 0 and B = Q̄ ∈ C[y].

From the ∂x-component of LRX − εX = 0 we obtain that A = Q̄(y)x
y +

P (y) ∈ C[x, y]. Thus, Q̄(y) = yQ(y) for some Q ∈ C[y].
(c) If R = y∂x + ∂y then

LRX − εX = (y∂xA+ ∂yA−B − εA)∂y + (y∂xB + ∂yB − εB)∂y = 0

implies that B = eεyP (y2 − 2x) and necessarily ε = 0. From the ∂x-
component of LRX − εX = 0 we obtain that A(x, y) = yP (y − x2) +
Q(y2 − x) for some polynomials P,Q ∈ C[z].

(d) If R = (x + y)∂x + y∂y and X =
∑

n≥0Xn with Xn = An∂x + Bn∂y
homogeneous of degree n, then the degree n homogeneous part of LRX−
εX is

0 = LRXn − εXn = ((x+ y)∂xAn + y∂yAn − (ε+ 1)An −Bn)∂x +

((x+ y)∂xBn + y∂yBn − (ε+ 1)Bn)∂y

= (y∂xAn − (ε+ 1− n)An −Bn)∂x + (y∂xBn − (ε+ 1− n)Bn)∂y.

As before, looking at the ∂y-component we deduce that if Bn 6= 0 then

Bn = e
(ε+1−n)x

y Q(y) ∈ C[x, y]. Hence ε = n− 1 and B(y) = Q(y) = qyn

for some q ∈ C. Substituting B in the ∂y-component of LRXn− εXn we
easily deduce that A(x, y) = qxyn−1 + pyn for some p ∈ C. Since there
is at most one n ∈ Z+ such that ε = n− 1, we deduce that X = Xn =
yn−1((py + qx)∂x + qy∂y) is not saturated because degX = n ≥ 2.

�

Let φt be the flow of homographic transformations of P2 associated to
R and let φ̌t be the dual flow on P̌2 associated to the dual vector field
Ř. We consider on P̌2 the affine chart (a, b) that parametrizes the lines
{ax+ by = 1}. We can check that, in the relevant cases (a), (b) and (c), the
corresponding flows and dual vector fields are the following:

(a) for R = αx∂x+βy∂y we have Ř = −(αa∂a+βb∂b), φt(x, y) = (xeαt, yeβt)

and φ̌t(a, b) = (ae−αt, be−βt);
(b) for R = y∂x we have φt(x, y) = (x + ty, y), φ̌t(a, b) = (a, b − at) and

Ř = −a∂b;
(c) for R = y∂x + ∂y we have φt(x, y) = (x + ty + t2/2, y + t), φ̌t(a, b) =(

a
1+bt−at2/2 ,

b−ta
1+bt−at2/2

)
and Ř = −(ab∂a + (a+ b2)∂b).

Let φVt : V → V denote the flow induced by PT ∗φt : PT ∗P2 → PT ∗P2 via
the identification V = {(p, `) ∈ P2 × P̌2 | p ∈ `} ' PT ∗P2. The relation (16)
implies that (dφt)p(Xp) is collinear to X(φt(p)) so that φVt preserves the
graph ΓF ⊂ V of the foliation F defined by X. The commutativity of the
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top faces of the diagram

ΓF

π̌F

��

πF

��

ΓF

φVt

66

π̌F

��

πF

��

P2 G // P̌2

P2

φt

66

G // P̌2

φ̌t

66

implies that φ̌t ◦ G = G ◦ φt, which is relation (5) in Example 3.21.

Corollary 5.25. To every foliation F on P2 admitting a continuous group

of automorphisms we can associate a non-constant morphism Ĝ : P1 → P1

so that Deck(G) ' Deck(Ĝ). In particular, F is Galois ⇐⇒ Ĝ is Galois.

Proof. In cases (a), (b) and (c) the foliations defined by the vector fields R
and its dual Ř admit explicit primitive rational first integrals

ρ : P2 99K P1 and ρ̌ : P̌2 99K P1

respectively, and rational sections

σ : P1 99K P2 and σ̌ : P1 99K P̌2

such that ρ ◦ σ = ρ̌ ◦ σ̌ = IdP1 . It can be easily checked that, in the affine
charts considered above, these maps are given by

(a) ρ(x, y) = yα/xβ, σ(z) = (zγ , zδ), ρ̌(a, b) = bα/aβ and σ̌(z) = (zγ , zδ),
where γ, δ ∈ Z satisfy Bézout’s relation αδ − βγ = 1,

(b) ρ(x, y) = y, σ(z) = (0, z), ρ̌(a, b) = a and σ̌(z) = (z, 0),

(c) ρ(x, y) = y2 − 2x, σ(z) = (−z/2, 0), ρ̌(a, b) = b2+2a
a2 and σ̌(z) = (2/z, 0).

Moreover, the Gauss map of the foliation given by the vector field A(x, y)∂x+
B(x, y)∂y is written as

G(x, y) =

(−B(x, y)

C(x, y)
,
A(x, y)

C(x, y)

)
, with C(x, y) = yA(x, y)− xB(x, y).

Thus we obtain explicit expressions for the map Ĝ = ρ̌ ◦ G ◦ σ : P1 → P1:

(17)





(a) Ĝ(z) = A(zγ , zδ)α(−B(zγ , zδ))−βC(zγ , zδ)β−α,

(b) Ĝ(z) = −B(0,z)
C(0,z) = −Q(z)

P (z) ,

(c) Ĝ(z) = Q(z)2−zP (z)2

P (z)2 =
(
Q(z)
P (z)

)2
− z,

where A,B take the form given by Proposition 5.24 in each case. Conse-
quently, we are in the hypothesis of Example 3.21 and we can apply Propo-
sition 3.20 in order to conclude. �

Notice that all Galois foliations of this type have Galois group appearing in
Klein’s classification given by Theorem 3.36. This fact and Proposition 5.19
motivate the following natural question:
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Question 5.26. Are there Galois foliations on P2 whose Galois group is
not of Klein type?

Remark 5.27. If we set α = β = 1 in case (a), we obtain the class of homo-
geneous foliations studied in Subsection 5.3. For every coprime homogeneous
polynomials A,B in two variables of the same degree, the homogeneous and
type (b) foliations on P2 given respectively by the vector fields

A(x, y)∂x +B(x, y)∂y and A(1, y)∂x −B(1, y)(x∂x + y∂y)

satisfy that the map Ĝ induced by their Gauss map is Ĝ = [A,B] : P1 → P1.

Moreover, in the homogeneous case we have Ĝ = [A,B] = G̃|DO , where DO

is the exceptional divisor obtained after blowing up once the origin, and we
recover Theorem 5.17 in an alternative way. On the other hand, as we have
already pointed out in Remark 5.23, cases (a) with β = 0 and (b) can be
thought as degenerations of homogeneous foliations.

Despite the criterion provided by Corollary 5.25 for deciding whether a
foliation with an infinitesimal symmetry is Galois and the explicit form of

the rational map Ĝ given in (17), it is not easy to find new examples of
Galois foliations admitting such a symmetry. This is due to the difficulty of

recovering the coefficients A and B based only on the map Ĝ. However, we
can present some examples and partial results about the quasi-homogeneous
case (a) with 0 < α < β.

First of all, notice that the degree d foliation F given by the vector field

xd+1∂x + (yd + xdy)∂y

belongs to the Galois family of Example 5.7 and that it is quasi-homogeneous
with weights α = d − 1 and β = d. Moreover, it can be checked that the
foliation F is convex, i.e. Itr

F = ∅, that Σram
F = ΣF = {[0, 0, 1], [0, 1, 0]} and

that B+
F = [(1; (d)1), (1; (d)1)].

Secondly, thanks to Corollary 3.34 we can present two new explicit Galois
quasi-homogeneous foliations of degree d = 3.

Example 5.28. The foliation F given by the vector field

X1 = (y + x2)∂x −
x3

3
∂y

is quasi-homogeneous with weights α = 1 and β = 2. Using formula (12), it
can be easily checked that Itr

F = {x2(3y+2x2)2 = 0}. On the other hand, we
have that ΣF = {s1 = [0, 0, 1], s2 = [0, 1, 0]} with νsi = τsi = i for i = 1, 2.
It can be checked that the generic polar has i smooth branches at si, for
i = 1, 2. By applying Theorem 5.12 we deduce that Σram

F = ∅. Since G maps
x = 0 into p = 0 and 3y + 2x2 = 0 into 3q − p2 = 0, its extended branching
type is B+

F = [(1; (3)1), (2; (3)1)], so that F is Galois and the genus of its
generic polar is g = 1. �
Example 5.29. The foliation F given by the vector field

X2 = yx∂x + (ζy2 + x3)∂y, with ζ =
1± i

√
3

2
,

is quasi-homogeneous with weights α = 2 and β = 3. As before, it can
be checked that Itr

F = {(y2 − x3)2 = 0} and that, for each s ∈ ΣF =
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{[0, 0, 1], [0, 1, 0]}, the generic polar has an ordinary double point at s. Hence
Σram
F = ∅ again by Theorem 5.12. Since G maps Itr

F into {q− ξp3 = 0} with

ξ = ζ
3−6ζ , the extended branching type of F is B+

F = [(3; (3)1)], so that the

foliation F is Galois and the genus of its generic polar is also g = 1. �

Let us finish this subsection by pointing out a special property fulfilled
by every quasi-homogeneous foliation F with weights α 6= β. Namely, the
envelope of the family of the tangent lines of F along a fibre F = {yα −
zxβ = 0} of ρ(x, y) = yα

xβ
is another fibre F ′ = {yα − z′xβ = 0} with

z′ = ψ̂F (z) := (−α)αβ−β(β−α)β−α

Ĝ(z)
. If p ∈ F \ {0} then TpF is tangent to

F ′ at a uniquely determined point ψF (p) ∈ F ′. It can be checked that the
self-map ψF : P2 99K P2 is rational. By construction it makes commutative
the following diagram

P2 ψF //

ρ
��

P2

ρ
��

P1 ψ̂F // P1 .

Example 5.30. If F is given by the vector field xy∂x + (by2 + cx3)∂y then

ψF (x, y) =
(

3x((b−1)y2+cx3)
by2+cx3 , 2((b−1)y2+cx3)

y

)
and ψ̂F (z) = 4(c+bz)3

27z(c+(b−1)z) . �

Let r : P2 × P2 99K P̌2 be the rational map defined by considering the
line passing through two different points. Then Id× r : P2 × P2 99K P2 × P̌2

is birational and (Id × r) ◦ (Id × ψF ) = Id × G so that all the relevant
topological information of G is encoded by ψF , which has the advantage of
being a self-map that can be naturally iterated.

Question 5.31. Which is the relationship between the Galois property of
a quasi-homogeneous foliation F on P2 and the dynamical behavior of its

associated rational self-maps ψF : P2 99K P2 and ψ̂F : P1 → P1?

5.5. Reducibility of the space of degree 3 Galois foliations. Recall
that the vector space U3 defined in (9) is isomorphic to the space of vector
fields X = A(x, y)∂x+B(x, y)∂y with A,B ∈ C[x, y], A = ā+xc̄, B = b̄+yc̄,
deg ā,deg b̄ ≤ 3 and c̄ homogeneous of degree 3 (see Subsection 5.1). The
projectivization F3 = P(U3) contains a Zariski open set that can be identified
to the space F3 of degree 3 foliations on P2. If X ∈ U3 is such a vector field
we will denote [X] ∈ F3 the foliation defined by X. Let G3 ⊂ F3 be the
Zariski closed set of Galois degree 3 foliations.

In order to estimate the dimension of G3 we can compute an upper bound
of the dimension of the tangent space of G3 at a point [X] ∈ G3. To do that,
we note that G3 coincides with the set of foliations [X] ∈ F3 such that the
t-discriminant ∆X = a2

2 − 4a1a3 ∈ C[x, y] of the polynomial PX(x, y, t)/t ∈
C[x, y, t] considered in (10), is a square, i.e. ∆X = δ2

X with δX ∈ C[x, y].
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Lemma 5.32. If [X] ∈ G3 then T[X]F3 = U3/〈X〉 and

T[X]G3 ⊂
{
Y ∈ U3 | δX divides

d

dε

∣∣∣
ε=0

(∆X+εY ) ∈ C[x, y]

}/
〈X〉.

Proof. Let Vm denote the space of polynomials in C[x, y] of degree ≤ m.
Writing PX = a1t + a2t

2 + a3t
3, it is easy to check that a1 ∈ V9, a2 ∈ V12

and a3 ∈ V15, so that ∆X ∈ V24. The map s : V12 → V24 given by δ 7→ δ2

induces a morphism s : P(V12) → P(V24) whose image S is Zariski closed.
Then the preimage S of S in V24 is also Zariski closed. Let f1, . . . , fk be
generators of the ideal I(S). Then f1 ◦∆, . . . , fk ◦∆ is a system of equations
defining the preimage G3 of G3 in U3. Although we do not know whether
fi ◦∆ generate the ideal I(G3) we have

TXG3 ⊂
k⋂

i=1

ker d(fi ◦∆)X =

{
Y ∈ U3

∣∣∣ d
dε

∣∣∣
ε=0

∆X+εY ∈
k⋂

i=1

ker(dfi)∆X

}

=

{
Y ∈ U3

∣∣∣ d
dε

∣∣∣
ε=0

∆X+εY ∈ T∆X
S

}
.

Consider ∆ = δ2 ∈ S \ {0} ⊂ V24 with δ ∈ V12 \ {0} and Γ ∈ T∆V24 = V24.
Since, for γ ∈ TδV12 = V12, dsδ(γ) = 2δγ 6= 0 if γ 6= 0, it follows that S \ {0}
is smooth and consequently T∆S = Im dsδ. Hence Γ ∈ T∆S if and only
if δ divides Γ. We conclude by taking the quotient by the 1-dimensional
subspace 〈X〉 of TXG3. �
An explicit computation carried out with maple shows that dimT[X2]G3 ≤ 9
and consequently dimC ′ ≤ 9 for each irreducible component C ′ of G3 con-
taining the point [X2] ∈ G3. On the other hand, the family E ⊂ F3

given in Example 5.7 for d = 3 is the image of an explicit morphism
ϕ : W ⊂ P11 → F3. It can be checked that the rank of dϕ at the point
[α, β, γ, δ, λ, µ, u, v] = [1, 0, 0, 1, 0, 0, x, y] is 9 and consequently dimE ≥ 9.
The following result is a very partial answer to Question 5.3(1) for d = 3.

Proposition 5.33. The Zariski closed set G3 of degree 3 Galois foliations
is reducible. More precisely, the foliation [X2] ∈ G3 given in Example 5.29
and the family E ⊂ G3 given in Example 5.7 for d = 3, lie in different
irreducible components of G3.

Proof. Let C be an irreducible component of G3 containing the irreducible
subset E ⊂ G3 and let C ′ be an irreducible component of G3 containing the
point [X2] ∈ G3. Proposition 5.5 implies that E′ := {[X] ∈ C ′ | g([X]) = 0}
is a Zariski closed set of C ′. If C = C ′ then 9 ≤ dimE ≤ dimC = dimC ′ ≤ 9
contradicting that E is contained in the proper Zariski closed set E′ (cf.
Example 5.7). �
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Toulouse, XIX n. 3–4 (2010), 849–863.
[31] M. Namba, Branched coverings and algebraic functions, Pitman Research Notes in

Mathematics Series 161 (1987).
[32] M. Namba, On finite Galois coverings of projective manifolds, J. Math. Soc. Japan

41 (1989), 391–403.
[33] I. Pan, Quelques remarques sur les d-webs des surfaces complexes et un problème
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