A NEW CHEBYSHEV FAMILY WITH APPLICATIONS
TO ABEL EQUATIONS
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ABSTRACT. This paper proves that a family of functions, defined through some
definite integrals, forms an extended complete Chebyshev system. The key point
of our proof consists in reducing the study of certain Wronskians to the Gram
determinants of a suitable set of new functions. Our result is applied to give
upper bounds for the number of isolated periodic solutions that some perturbed
generalized Abel equations can exhibit.

1. INTRODUCTION AND MAIN RESULTS

In this paper we introduce the family of analytic functions

o) = | (Mdt, )

1—yg(t)

k=0,1,...,n, and prove that they form an extended complete Chebyshev system
(for short, an ECT-system). As we will see, in contrast to what happens in other
papers, we do not need to perform the explicit integration in I, to prove our
result. In fact our proof uses the standard characterization of ECT-systems trough
the computation of several Wronskians, see Theorem 2.1. The key point of our
approach is to show that these Wronskians coincide with some Gram determinants
associated to the usual inner product in £2([a, b]),

(u,v) :/ u(t)v(t) dt,

for a suitable set of functions ug, u1,...,u,. As far as we know this is the first
time that this method is used to prove that a set of functions is an ECT-system.

We use the results obtained for the ECT-system to determine upper bounds for
the number of isolated 2m-periodic solutions that appear when we perform a first
order analysis in € of the generalized Abel equations

dx  cos(t)
dt  q—1
where ¢,p € N\ {0,1},¢ # p, and P, is a polynomial of degree n. Recall that

for the usual Abel equation {q,p} = {2,3}. This type of results are useful to
understand which is the number of isolated 27-periodic solutions of Abel type

x? 4+ eP,(cos(t),sin(t)) 2”, (2)
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differential equations in terms of the degrees of the trigonometrical polynomials
appearing in them. In turn, these results are strongly related with the Hilbert
sixteenth problem for planar polynomial differential equations, see [3, 4, 5, 7].
Our result improves previous results on (2) given in [1, 3, 7].

To state our main results we need to fix some notations. Given k € N, a,a,b € R
and any continuous, non identically zero, function g(t) on [a, b], we consider the
new analytic function I ,(y) defined in (1), on the open interval .J given by the
connected component of the set {y € R : 1 —yg(t) > 0 for all t € [a,b]} that
contains the origin. For instance, note that if m = mincp) g(t) < 0 and M :=
maXefqp ¢(t) > 0 then J = (1/m,1/M). Our first result shows that, varying ,
and for almost all «, the above set of functions is an ECT-system. See next section
for the precise definition.

Theorem A. For any n € N and any o € R\ Z~, the set of ordered functions
(Loa, lias - -5 Ina), defined in (1), is an ECT-system on J. When a € Z~ it is
an ECT-system on J if and only if n < —a. In particular, for the cases for which
the set of functions is an ECT-system, any non-trivial function of the form

) = Zak]k,a(y)

with a; € R, has at most n zeros on J counted with multiplicities.

In [7] it is proved that when g(t) = sin(t) and [a,b] = [0, 27], the function @,
has n zeros in a neighborhood of y = 0 and in [3] this result is extended to any
®,, for « € Q. Afterwards some of these local results are improved in [1]. In this
last paper the functions ®; and ®_;/, are explicitly computed and their global
number of zeroes in J = (—1,1) is studied. The authors got the following results:

n

Pi(y) = Zak Lia(y Zak /27r Slzsm dat
- % (Pt QulVT=9). @)

yr1—y

and

n

O_1p(y?) =) ar Iy Zak/ sin®(t)y/1 — y2 sin(t) dt

k=0

_Vity (Pa(r)K(r) + Qu(r)E(r)),  (4)

T2n

where P; and Q; are some polynomials of degree j, r = v/2|y|/+/1 + 2, and K(r)
and &(r) are the two usual elliptic functions

7n):/ol\/l—,tﬂ\l/l—r2 / =
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see [2]. Then by using the expressions (3) and (4), they prove that the function
®4(y) has at most n zeros in (—1,1), taking into account their multiplicities, and
that this upper bound is sharp, and that the function ®_;5(y?) can have at most
4n+ 2 zeros in J and that there are examples having at least 2n zeros (also in J).

Theorem A proves that, for any ¢ and « as in the statement, n is the sharp
upper bound for the number of zeros of ®,(y) in the whole interval J. Notice that
for ®,(y?) the upper bound goes to 2n in the suitable interval.

Our result on the generalized Abel equations (2) is given in the next theorem.
As we can see in item (i) the relation between the Abel equations and the functions
®,, is that precisely they appear when we study the first order terms in € of the
solution of these differential equations. In fact this was our original motivation to
prove Theorem A.

Theorem B. Let x = p(t, p,e) be the solution of the generalized Abel equation (2),

d t
c% = (;os_(l) z? + eP,(cos(t),sin(t)) a?,

where q,p € N\ {0,1},q # p, and P, is a polynomial of degree n, with initial
condition x(0) = p, |p| < 1. Then:

(i) It holds that

P27, p.€) = p+epPu(p?") + O(7), (5)
where O, is the function introduced in Theorem A, for some real constants
ag, A1, ... G, g(t) =sin(t) and a = (p—q)/(q —1).

(ii) For e =0 and |p| < 1 all the solutions of (2) are 2mw-periodic.

(iii) The simple zeros in (—1,1)\ {0} of the function ®,(p?™1), give rise to initial
conditions of isolated 2m-periodic solutions of (2) that tend to these zeros
when € goes to 0.

(iv) For e # 0, small enough, and ®,(p?') #£ 0, the mazimum number of non-
zero isolated 27 -periodic solutions obtained in item (iii) is n, when q is even,
and 2n, when q s odd. Moreover in both cases these upper bounds are sharp.

This paper is organized as follows: some preliminary results on ECT-systems
and the proof of Theorem A are given in next section. Section 3 deals with the
generalized Abel equation (2).

2. PRELIMINARY RESULTS AND PROOF OF THEOREM A

Let fo, f1,..., fn be functions on an open interval J of R. It is said that
(fo, f1,--, fn) is an extended complete Chebyshev system (ECT-system) on J
if, for all £ = 0,1,...,n, any nontrivial linear combination agfy(y) + a1 f1(y) +
-+« + ag fr(y) has at most k isolated zeros on J counted with multiplicities. Here
“T” stands for Tchebycheff, which is one of the transcriptions of the Russian name
Chebyshev.

A very useful characterization of ECT-systems is given in the following theorem,
see [6, 8]
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Theorem 2.1. Let fy, fi,. .., fa be analytic functions defined on an open interval

J of R. Then (fo, f1,..., fn) is an ECT-system on J if and only if for each
k=0,1,...,n, and all y € J, the Wronskian

i
W), i)y =| T
Py P - 1P

is different from zero.
Next well-known result of linear algebra will also be a key point in our proof.

Theorem 2.2. Let vy, vy, ...,v, be elements of a vectorial space E endowed with
an inner product (,). Then

<U07 o) <U0, vy) e <Uo, Un>
U1, V) v1,v1) -+ {U1,v
G(”Oa”l?"')vn):: <1. 0> <1. 1> . <1n>
<Un7U0> <Un,U1> e <Unvvn>
and it is zero if and only if the vectors vy, vy, ...,v, are linearly dependent. The
determinant G(vg, vy, ..., v,) is usually called the Gram determinant.

In fact we will use the above result when E is the space of continuous functions
on a closed interval [a,b] and the inner product is (u,v) = fabu(t)v(t) dt. In this
context G is also called the integral Gram determinant, see |9, pp. 45-48].

Before proving Theorem A we need a preliminary result about the successive
derivatives of I} ,(y) and a recurrence that allows to express Iy ,(y) in terms of

several I} ,(y) with k<kand & < a.

Lemma 2.3. (i) For any k>0 and ¢ > 1,
-1
Ii s = Blii1p41, I;E% = H(/B + ) kvepre-
=0
(ii) For any k > 1 and m < k,
1 1 « (m
Iip=— k-1 — Ig-14-1) = — (—1)]< ,>Ik—m,,6—j~
y = J
Proof. It is easy to see that the functions I g are analytic for y € J and
PO gt
o Oy (1—yg(1))°

Then the statement () follows differentiating (1) with respect to y, one or £ times,
respectively.

I(y) = dt.
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We will prove statement (ii) by induction on m. The case m = 1 follows
multiplying by (1 — yg(¢)) the numerator and the denominator of the integrand

of (1):

o ROBCES710)
Te1p1(y) —/a (1— yg(t)) (1 - yg(t))dt

L Y L O R
/a -ty y/a A= yoyp = -1 —ylks,

then solving I}, 5 of the previous equality we obtain the relation given in the state-
ment.

Suppose that the relation of I g is satisfied until m, then the next equalities
hold:

1 & m
Bes0) =45 2 (] s

.
o

- 3

@\r—t

(Ik-m—1,6-j = Te—m-1,6-j-1)

- i
"=
- m - m
g Z Iem1p-5— Z(—l)J( .>Ik—m—1,6—j—1
Jj=0 J j=0 J

m m+1
> (=1 ( Iemorgj+ Y (=1)f <g " 1) Ik—m—lﬁ—f)
(=1

j=0

QC
u

/().
()

m+1

<z<<><>>

+ Ikml,ﬁ(m+l)>

m+1

1 (m+1
:ym+1 Z(_l)j < ] >Ik_(m+1)7ﬁ_j'

Jj=0

The following result relates a Wronskian with the determinant of a symmetric
matrix that finally will be a Gram determinant.
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Lemma 2.4. Let Iy, ..., 1, be the functions defined by (1). Then fory # 0,

IO,a Il,a Tt In,a
I(l),a Zl,oz T I1I7,,a
Wn = W([O,om [l,om s >[n,a) = : : :
1o
n—1
N IO Il e I
IeY _|_] n—j g Nej n,o
]1;[0( ) IO,a+1 [1,a+1 te In,a+1
=T armm : :
Yy 2
IO,a—i—n Il,oz—l—n e In7a+n
n—1
\n—j IOa IOa—l [Oa—n
le% + ] J ) ) )
. ]‘l;[[)( ) IO7a+1 IO,a e [O,afn+1
(_1) (1+2n)ny(1+n)n . .
IO,a+n -[O,a—i-n—l e [0,(1
n—1 ) ) IO,a—n IO,a—n+1 e IO,a—l IO,a
'Ho(a + ) Ino—n+1 loa—nt2 - Iy Iy at1
_ )= . . . . .
- y(lJr—n)n : : . : : . (6)
IO,Cu—l [O,a e IO,a-l—n—Q IO,a—i—n—l
IO,oz IO,a+1 T IO,a—i—n—l IO,a—I—n

Proof. Using the expression for the derivatives given in Lemma 2.3(i) we can write

IO,a Il,a T In,oz
Lo Lo o Lo
Won=1. : - :
VA TR bt
IO,oz Il,oz e In,a
aly a1 aly a1 e alpi1a41

n—1 ) n—1 ) n—1 )

H (Oé + ])[n,aJrn H (Oé + ])In+1,a+n e H (Oé + ])I2n,a+n
j=0 j=0 §=0

L IO,a Il,a e In,a
i o et T2+ o Ingia+
- H(a_'—])nﬂ . . . : ’ (7)
=0 : . :
[n,aJrn In+1,a+n e IQn,oc+n

If we denote the i-row of the previous determinant by R; = [L; atis lit1.a4is - - - 5
Iitno+i] for i =0,...,n, using the expression given in Lemma 2.3(ii) and taking
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k=1i+j, B =a+iand m =i for each j-component of R;, we can write

Iz za+z+z<> zza—H j)7

[erl za+1+z<) H»l i,o41i— j)7"'7

"Iy
{
(et 3 () b )
[

<[

<

<[

_1

y’ [Oa+17[1 oc+17~-~7[n,oz+i]

Z < ) [OoHrl ]7]1a+z j;-“;In,aJrij])

J(§+Z(> )

where E@ = [Lo.ate; L1040, - - - s Inate| for all £ and }ABO = Ry. Then using the ele-
mentary properties of the determinants we can write (7) as

IO,a Il,a e In,a
— 1 1 1
n—l . gfo,a+1 511,a+1 e ;In,aﬂ
W, = [](a+) ) .
=0
1 1 1
yTIO,a+n y7]1,a+n e yTIn,a+n
n—1
H (O[ + ')n—j IO,a Il,a T In,a
j=0 0,a+1 1,a+1 n,a+1
- (14+n)n : : .. : ) (8)
Yoz : : . :
IO,a—i—n Il,a—i—n T In,a+n

that coincides with the first equivalent determinant of the statement.
If we denote the i-column of the previous determinant by C; = [L; o, Lia41s - - -
Li oin)t for i = 0,...,n, using the expression given in Lemma 2.3(ii) and taking
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k=1, f=a+j and m =i for each j-component of C;, we can write

i—1 .
1 : :
Ci = 7 (Z <Z> (—1)]11;2',047]' + (_1)Zlii,ai> )
v\ \J
J
1 (& (i
— Z < > (_1)J-Ii—i,a+1—j + <_1)lli—i,a+1—i )
v\ I

i-1 . t
1 7 . )
cey (Z < > (_1)]Iifi,a+nfj + (_l)ljii,a+ni> ]
v \=
-1 .
1 ) ,
Ty (Z <) (=1 Uo.ajs Loari—js - - Jo.actn—s]'
+ (—1)i Ho,a—ir Lo,at1—iy - - - 7[0,a+ni]t>

i—1 .
> (el + e,

v i\
where @ = [Loa—ts lo,a+1-0 - - -, Lo,asn—e] for all £ and 60 = (. Then using again
the properties of the determinants we can write (8) as
n—1 . [0,0é %[O,afl o (—y}z)" [O,an
le% + )\ —J _ _1\n
'I;IO( ]) ]O,a+1 QIO,& e ( 13 ]0,a7n+1
W. _y= Y Y
n (1+n)n .
y 2
[07a+n %[Oa—ﬁ—n—l e (;i)n 10704
n—1
N — i ]0 IO -1 e [Q —
o _l_] n—j fLed ;& ,—n
]];[O( ) Ioaq1 Io,a o doa—nt1

(9)

]O,oH»n IO,aJrnfl e [O,oc
that is exactly the second equivalent determinant of the statement.
Reordering the columns of determinant (9), changing (Cy, C1,...,C,_1,C,) by

(Cn, Cp1,...,C1,Ch), we can transform it into a determinant of a symmetric
matrix.
n—1 ) [O,a—n IO,a—n—i—l e IO,a—l IO,a
N
( 1)[%1] [I(a+j) Ino—ns1 loa—ny2 --- Iy I at1
(= j=0 . . , : .
Wn - (1+n)n (1+n)n : : )
(=)= ¥ I I i I
0,a—1 0, e 0,a+n—2 0,a4+n—1
-[O,a IO,a—I—l e -[O,a+n—1 -[O,a—i-n

(10)
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where | | denotes the integer part function. This last expression coincides with the
third equivalent determinant of the statement because ["?H] + % is always an
even number. Thus the lemma is proved. U

Next result will be the key point in our proof of Theorem A.

Proposition 2.5. Let W, be the Wronskian defined in Lemma 2.4. When « is a
negative integer and n > —« then W,, = 0. Otherwise, W,, does not vanish on J

and sgn(W,,) = sgn <H;:01(oc + j)"*j).
Proof. When « is a negative integer and n > —a it is clear that H;lfol (a+j)" 7 =0.

Thus by equality (7) we know that W,, = 0. Assume that HJ 0 (a +7)" 7 #0. In
W,ﬁ)rZ—o,l,..., s
which are well defined on J because on this set 1 — yg(¢) > 0. Notice that
b
1
<f’mf]> = /av (1 _yg(t))ainJriJrj dt = _[O,a—n—i-i—‘rj(y).

Hence by using the equivalent expression (6) of the Wronskian, when y # 0,

this case consider the auxiliary functions f;(t) =

n—1

I 0+ )
Wn:WG(f(bflv"'vfn)) (11)

where G(fo, f1,..., fa) is the integral Gram determinant. From Theorem 2.2, it
is non-negative and vanishes if and only if the functions f; are linearly depen-
dent. Since the function g(t) is not identically zero, the functions f; are linearly
independent because they can be written as

(1—yg@®) =™  (A—ygt) ="  (1—ygt)) =
and the numerators are polynomials of degree n,n — 1,...,0 in y, respectively.
Then the sign of W,,, on the set J\ {0}, is the sign of H;:OI (a+ 7)™ because the

Gram determinant in (11) is always positive and y1+™" > 0.

In the expression of W,, given in (7), it can be seen that the determinant ap-
pearing there, evaluated at y = 0, is also positive because it can also be written
as a new integral Gram determinant,

Io.0(0) La(0) - I.(0)
I 41(0) Iz,aH(O) o Iny1.a+1(0)
In,a—l—n(o) n—l—l a—l—n(o) et I2n a—i—n(o)
[ 1dt fg tydt - [Cgr(t)dt
t)dt tdt - () dt
= fg o . " , o .(> =G(Lg.g"....9") > 0.
[Pgrydt [Pgrtipyde - [ g (t)dt
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Thus W, is well deﬁned on the whole J, does not vanish and its sign coincides
with the one of HJ 0 (a4 7)™, as we wanted to prove. O

Remark 2.6. Note that although for « = —m € Z~ the functions

Ly = / 01—yt dt,

are well defined for all y € R our result only proves that the set (Iy —m, 1 —m,-- -,
I _m), for n < —a =m, is an ECT-system on J. In fact it is easy to see that,
for instance, the functions

aolo,—2(y) + arli,—2(y),

which are polynomials of degree 2 in y, can have two zeros in R, proving that
(Ip,—2, 11 —2) is not a ECT-system on the whole R.

Proof of Theorem A. By using Theorem 2.1, we know that to prove the theorem
it suffices to show that, under our hypotheses and for any & = 0,1,...,n, the
Wronskian of the functions (I, [14,-- -, ko) does not vanish on J. This is a
direct consequence of Proposition 2.5. ]

3. GENERALIZED ABEL EQUATIONS

This section is devoted to prove Theorem B.

Proof of Theorem B. (i)-(ii) Following the computations of [1] or [3] it is not dif-
ficult to see that

1

o(t, p.e) =p <1_pqllsm(t)> o
+€< 0 | (t))p/ot Pn(cos(s),§in(s)) ds + O(2).

1 — p2tsin (1 — pa~Ttsin(s))®
Note that since p € (—1,1) the flow is well defined for all ¢ € R. Then

o) =pcp [

Using that cos?(t) = (1 — sin?(¢))¢ and cos?*1(t) = (1 — sin?(¢))* cos(¢) and, that
for any polynomial R(z),

dt + O(e?).

/m R(sin(t))cos(t) . _
o (

1 — pa~1sin(t))>
we get that

/2“ Py (cos(t), sin(t )i df — /27r : Qnsin(t))

(1 — pr=tsin(t)) 1 — pr=tsin(t))>

where @, is a new polynomial of degree n, that we can write as Q,(z) = ap +
a1z + agz* + - - + a,2". Hence the expression (5) follows.
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Item (iii) is a direct consequence of (5) and the Implicit Function Theorem
applied to

PERLAZL _ o, () + OFC).

(iv) Putting y = p?! and taking J = (—1,1) we know from Theorem A that
the maximum number of zeros of ®,(y) on J counted with multiplicities is n and
that this upper bound is sharp. Since when ¢ is odd @, (p? ') = ®,((—p)? ') the
result follows. O
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