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Edifici C. 08193 Bellaterra, Barcelona. Spain.

ARMENGOL GASULL
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Abstract. We study the number of limit cycles and the bifurcation diagram in the
Poincaré sphere of a one-parameter family of planar differential equations of degree
five ẋ = Xb(x) which has been already considered in previous papers. We prove
that there is a value b∗ > 0 such that the limit cycle exists only when b ∈ (0, b∗) and
that it is unique and hyperbolic by using a rational Dulac function. Moreover we
provide an interval of length 27/1000 where b∗ lies. As far as we know the tools used
to determine this interval are new and are based on the construction of algebraic
curves without contact for the flow of the differential equation. These curves are
obtained using analytic information about the separatrices of the infinite critical
points of the vector field. To prove that the Bendixson-Dulac Theorem works
we develop a method for studying whether one-parameter families of polynomials
in two variables do not vanish based on the computation of the so called double
discriminant.

Keywords: Polynomial planar system, Uniqueness of limit cycles, Bifurcation,
Phase portrait on the Poincaré sphere, Dulac function, Double discriminant.

1. Introduction and main results

Consider the one-parameter family of quintic differential systems{
ẋ = y,
ẏ = −x + (a− x2)(y + y3), a ∈ R. (1)

Notice that without the term y3, (1) coincides with the famous van der Pol system.
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2 BIFURCATION VALUES

This family was studied in [24] and the authors concluded that it has only two
bifurcation values, 0 and a∗, and exactly four different global phase portraits on the
Poincaré disc. Moreover, they concluded that there exists a∗ ∈ (0, 3

√
9π2/16) ≈

(0, 1.77), such that the system has limit cycles only when 0 < a < a∗ and then if
the limit cycle exists, is unique and hyperbolic. Later, it was pointed out in [11]
that the proof of the uniqueness of the limit cycle had a gap and a new proof was
presented.
System (1) has no periodic orbits when a ≤ 0 because in this case the function

x2+y2 is a global Lyapunov function. Thus, from now on, we restrict our attention
to the case a > 0 and for convenience we write a = b2, with b > 0. That is, we
consider the system

{
ẋ = y,
ẏ = −x+ (b2 − x2)(y + y3), b ∈ R+ ∪ {0}. (2)

Therefore the above family has limit cycles if and only if b ∈ (0, b∗) with b∗ =√
a∗ and b∗ ∈ (0, 6

√
9π2/16) ≈ (0, 1.33). Following [24] we also know that the value

b = 0 corresponds to a Hopf bifurcation and the value b∗ to the disappearance of
the limit cycle in an unbounded polycycle. By using numerical methods it is not
difficult to approach the value b∗. Nevertheless, as far as we know there are no
analytical tools to obtain the value b∗. This is the main goal of this paper.
We have succeed in finding an interval of length 0.027 containing b∗ and during

our study we have also realized that there was a bifurcation value missed in the
previous studies. Our main result is:

Theorem 1.1. Consider system (2). Then there exist two positive numbers b̂ and
b∗ such that:

(a) It has a limit cycle if and only if 0 < b < b∗. Moreover, when it exists, it
is unique, hyperbolic and stable.

(b) The only bifurcation values of the system are 0,b̂ and b∗. In consequence
there are exactly six different global phase portraits on the Poincaré disc,
which are the ones showed in Figure 1.

(c) It holds that 0.79 < b̂ < b∗ < 0.817.

The phase portraits missed in [24] are (ii) and (iii) of Figure 1.

The key steps in our proof of Theorem 1.1 are the following:

• Give analytic asymptotic expansions of the separatrices of the critical
points at infinity, see Section 2.

• Use these expansions to construct explicit piecewise rational curves, and
prove that they are without contact for the flow given by (2). These
curves allow to control the global relative positions of the separatrices of
the infinite critical points, see Section 5.

• Provide an alternative proof of the uniqueness and hyperbolicity of the
limit cycle, which is based in the construction of an explicit rational Dulac
function, see Section 4.

By solving numerically the differential equations we can approach the bifur-
cation values given in the theorem, see Remark 2.6. We have obtained that
b̂ ≈ 0.8058459066, b∗ ≈ 0.8062901027 and then b∗− b̂ ≈ 0.000444. As we have said
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(o) a ≤ 0 (i) 0 < b < b̂ (ii) b = b̂

(iii) b̂ < b < b∗ (iv) b = b∗ (v) b > b∗

Figure 1. Phase portraits of systems (1) and (2). When a ≥ 0,
then b =

√
a.

the main goal of this paper is to get an analytic approach to the more relevant
value b∗, because it corresponds to the disappearance of the limit cycle.
Although all our efforts have been focused on system (2), the tools that we

introduce in this work can be applied to other families of polynomial vector fields
and they can provide an analytic control of the bifurcation values for these families.
As we will see, our approach is not totally algorithmic and following it we do

not know how to improve the interval presented in Theorem 1.1 for the values b̂
and b∗ .
One of the main computational difficulties that we have found has been to prove

that certain polynomials in x, y and b, with high degree, do not vanish on some
given regions. To treat this question, in Appendix II we propose a general method
that uses the so called double discriminant and that we believe that can be useful
in other settings, see for instance [1, 22]. In our context this discriminant turns
out to be a huge polynomial in b2 with rational coefficients. In particular we need
to control, on a given interval with rational extremes, how many reals roots has
a polynomial of degree 965, with enormous rational coefficients. Although Sturm
algorithm theoretically works, in practical our computers can not deal with this
problem using it. Fortunately we can utilize a kind of bisection procedure based
on the Descartes rule ([12]) to overcome this difficulty, see Appendix I.

2. Structure at infinity

As usual, for studying the behavior of the solutions at infinity of system (2)
we use the Poincaré compactification. That is, we will use the transformations
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(x, y) = (1/z, u/z) and (x, y) = (v/z, 1/z), with a suitable change of time to
transform system (2) into two new polynomial systems, one in the (u, z)-plane
and another one in the (v, z)-plane respectively (see [2] for details). Then, for
understanding the behavior of the solutions of (2) near infinity we will study the
structure of the critical points of the transformed systems which are localized on
the line z = 0. Recall that these points are the critical points at infinity of system
(2) and their separatrices play a key role for knowing the bifurcation diagram of
the system. In fact, it follows from the works of Markus [16] and Newmann [17]
that it suffices to know the behavior of these separatrices, the type of finite critical
points and the number and type of periodic orbits to know the phase portraits of
the system. We obtain the following result:

Figure 2. Separatrices at infinity for system (2).

Theorem 2.1. System (2) has six separatrices at infinity, which we denote by
S1,S2, S3,S ′

1, S ′
2 and S ′

3, see Figure 2. Moreover:

(i) Each S ′
k is the image of Sk under the transformation (x, y) → (−x,−y).

(ii) The separatrices S2 and S3 near infinity are contained in the curve {y −
φ(x) = 0} where φ(x) = φ̃(x− b)/(x− b)2, φ̃(u) is an analytic function at
the origin that satisfies

φ̃(u) =
1

b
− 1

3b2
u+

1

9b3
u2 − 359

27b4
u3 +O(u4). (3)

In particular, S2 corresponds to x . b and S3 to x & b.
(iii) The separatrix S1 near infinity is contained in the curve {y − ϕ(x) = 0}

where ϕ(x) = ϕ̃(1/x) and ϕ̃ is an analytic function at the origin that
satisfies

ϕ̃(u) = −u− (b2 − 1)u3 − (b4 − 3b2 + 2)u5 +O
(
u7
)
. (4)

Remark 2.2. In the statements (ii) and (iii) of Theorem 2.1 the Taylor expan-

sions of the functions φ̃ and ϕ̃ can be obtained up to any given order. In fact, in
Section 5 we will use the approximation of φ̃ until order 16.

As a consequence of the above theorem we have the following result:

Corollary 2.3. All the possible relative positions of the separatrices of system (2)
in the Poincaré disc are given in Figure 3.

To prove the above theorem we need some preliminary lemmas.
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(i) (ii) (iii)

(iv) (v)

Figure 3. Relative position of the separatrices of system (2).

Lemma 2.4. By using the transformation (x, y) = (1/z, u/z) and the change of
time dt/dτ = 1/z4 system (2) is transformed into the system

{
u′ = −(1 + u2)z4 − u(1− b2z2)(u2 + z2),
z′ = −uz5, (5)

where the prime denotes the derivative respect to τ . The origin is the unique
critical point of (5) and it is a saddle. Moreover the stable manifold is the u-axis,
the unstable manifold, S1, is locally contained in the curve {u− ψ(z) = 0}, where
ψ(z) is an analytic function at the origin that satisfies

ψ(z) = −z2 − (b2 − 1)z4 − (b4 − 3b2 + 2)z6 +O(z8), (6)

see Figure 4.

Figure 4. Phase portrait of system (5).

Proof. From the expression of (5) it is clear that the origin is its unique critical
point. For determining its structure we will use the directional blow-up since the
linear part of the system at this point vanishes identically.
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The u-directional blow-up is given by the transformation u = u, q = z/u; and
by using the change of time dt/dτ = u2, system (5) becomes

{
u̇ = −u− (1− b2u2)uq2 − (1− b2u)u2q4 − u4q4,
q̇ = q + (1− b2u2)q3 + (1− b2u)uq5.

(7)

This system has a unique critical point at origin and it is a saddle with eigenval-
ues ±1.
The z-directional blow-up is given by the transformation r = u/z, z = z. Doing

the change of time dt/dτ = −z2, system (5) becomes
{
ṙ = z + (1− b2z2)(r + r3),
ż = rz4.

(8)

This system has a unique critical point at the origin which is semi-hyperbolic. We
will use the results of [2, Theorem 65] to determine its type. By applying the
linear change of variables r = −ξ + η, z = ξ system (8) is transformed into

{
ξ̇ = (η − ξ)ξ4,
η̇ = η −N(ξ, η),

where N(ξ, η) = (η − ξ)(b2ξ2 − ξ4) + (η − ξ)3(b2ξ2 − 1). It is easy to see that if
η = n(ξ) is the solution of η−N(ξ, η) = 0 passing for the origin, then n(ξ) = −(b2−
1)ξ3− (b4 − 3b2 +2)ξ5+O(ξ7). Thus (n(ξ)− ξ)ξ4 = −ξ5 +O(ξ7). Therefore from
[2, Theorem 65] we know that the origin is a semi-hyperbolic saddle. Moreover,
its stable manifold is the η-axis and its unstable manifold is given by

η = −(b2 − 1)ξ3 − (b4 − 3b2 + 2)ξ5 +O(ξ7).

In the plane (r, z) the local expression of this manifold is

r = −z − (b2 − 1)z3 − (b4 − 3b2 + 2)z5 +O(z7).

Finally, in the (u, z)-plane the unstable manifold is contained in the curve (6)
and from the analysis of phase portraits of systems (7) and (8) we obtain that the
local phase portrait of system (5) is the one given in Figure 4. �
Lemma 2.5. By using the transformation (x, y) = (v/z, 1/z) and the change of
time dt/dτ = 1/z4 system (2) is transformed into the system

{
v′ = v(1 + z2)(v2 − b2z2) + (1 + v2)z4,
z′ = z(1 + z2)(v2 − b2z2) + vz5,

(9)

where the prime denotes the derivative respect to τ . System (9) has a unique
critical point at the origin and its local phase portrait is the one showed in Figure 5.
Moreover, the separatrices S2 and S3 are locally contained in the curve {v−g(U) =
0} where U = z/v−1/b and g(U) is an analytic function at the origin that satisfies

g(U) = b6U2 − 10

3
b7U3 +

22

3
b8U4 +O

(
U5
)
. (10)

Proof. From the expression of system (9) it is clear that the origin is its unique
critical point. As in Lemma 2.4 we will use the directional blow-up technique to
determine its structure since the linear part of the system at this point is identically
zero.
It is well-known, see [2], that since at the origin z′v − v′z = −z5 + O(z6), all

the solution, arriving or leaving the origin have to be tangent to z = 0. So it
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Figure 5. Topological local phase portrait of system (9). All the
solutions are tangent to the v-axis but for aesthetical reasons this
fact is not showed in the figure.

suffices to consider the v-directional blow-up given by the transformation v = v,
s = z/v. Performing it, together with the change of time dt/dτ = −v3, system
(9) is transformed into

{
v̇ = −(1 + v2s2)(1− b2s2)− vs4(1 + v2),
ṡ = s5.

(11)

This system has not critical points. However, by studying the vector field on the
s-axis we will obtain relevant information for knowing the phase portrait of system
(9). If s = 0 then v̇ = −1 and ṡ = 0, that is, the v axis is invariant. If v = 0 then
v̇ = −1+b2s2 and ṡ = s5, this implies that v̇ = 0 if s = ±1/b. In addition, a simple
computation shows that v̈ > 0 at the points (0,±1/b). Therefore the solutions
through these points are as it is showed in Figure 6.(a), and by the continuity
of solutions with respect to initial conditions, we have that the phase portrait of
system (9), close to these points, is as it is showed in Figure 6.(b).

- -

(a) (b)

Figure 6. Local phase portrait of system (11).

Then by using the transformation (v, z) = (v, sv) and the phase portrait showed
in Figure 6.(b) we can obtain the phase portrait of system (9). Recall that the
mapping swaps the second and the third quadrants in the v-directional blow-up.
In addition, taking into account the change of time dt/dτ = −v3 it follows that
the vector field in the first and fourth quadrant of the plane (v, z) has the opposite
direction to the showed in the (v, s)-plane. Therefore the local phase portrait of
(9) is the showed in Figure 5.
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-

Figure 7. Transformation between system (11) and system (9).

To show that the separatrices S2 and S3 are contained in the curve (10) we
proceed as follows. First, we will obtain the curve that contains the solution
through the point (0, 1/b) in the plane (v, s). Second, by using the transformation
(v, z) = (v, sv) we will obtain the corresponding curve in the (v, z)-plane and we
will show that such curve is exactly the curve given by (10).
Since ṡ is positive in (0,∞), the solution through the point (0, 1/b) (respectively

(0,−1/b)) is contained in the curve {v − g(s) = 0} (respectively {v − g̃(s) =
0}), where g(s) (respectively g̃(s)) is an analytical function defined in an open
neighborhood of the point, moreover it is clear that g(1/b) = 0 and g′(1/b) = 0.
Consider the Taylor series of g(s) around (1/b):

g(s) =

∞∑

i=2

g(i)
(
1
b

)

i!

(
s− 1

b

)i
. (12)

Since the curve {v − g(s) = 0} is invariant then 〈∇(v − g(s)), X̃〉 = 0 at all the

points of {v − g(s) = 0}, where X̃ is the vector field associated to system (11).

Thus, we have a function, 〈∇(v−g(s)), X̃〉, for which all its coefficients have to be
zero. From this observation we obtain linear recurrent equations in the coefficients,
g(i)(1/b) of g(s). Simple computations show that the first 3 terms of the Taylor
series of g(s) are:

b6
(
s− 1

b

)2 − 10
3
b7
(
s− 1

b

)3
+ 22

3
b8
(
s− 1

b

)4
.

Thus, in the plane (v, z), the curve corresponding to {v − g(s) = 0} is
{
v − b6

(
z
v
− 1

b

)2
+ 10

3
b7
(
z
v
− 1

b

)3 − 22
3
b8
(
z
v
− 1

b

)4
+O

((
z
v
− 1

b

)5)
= 0
}
.

Finally, if U = z/v − 1/b, we obtain (10). �
Remark 2.6. The proof of the above lemma gives a natural way for finding a
numerical approximation of the value b∗. Notice that in the coordinates (v, s) the
point (0, 1/b) corresponds to both separatrices S2 and S3. Since it is a regular point
we can start our numerical method (we use a Taylor method) without initial errors
and then follow the flow of the system, both forward and backward for given fixed
times, say t+ > 0 and t− < 0. We arrive to the points (v±, s±) with s± 6= 0 for
t = t±, respectively. These two points have associated two different points (x±, y±)
in the plane (x, y), because of the transformation (v, s) = (x/y, 1/x). Now, we
integrate numerically the system (2) with initial conditions (x±, y±) to continue
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obtaining approximations of the separatrices S2 and S3, respectively. The next step
is to compare the points of intersection x̃+ = x̃+(b) < 0 and x̃− = x̃−(b) > 0 of
these approximations with the x-axis.
We consider the function b → Π(b) := x+(b) + x̃−(b) and we use the bisection

method to find one approximate zero of Π. Note that if Π(b̄) = 0 then S ′
2 =

S3 and by the symmetry of the system S ′
3 = S2, and therefore b∗ = b̄. Taking

b0 = 0.8062901027, t+ = 0.05 and t− = −0.5 we obtain that x̃+(b0) + x̃−(b0) ≈
−4.58036036× 10−11 and so b∗ ≈ b0.
Following a similar procedure, but now using Lemma 2.4 to have an initial

condition almost on S1, we get that b̂ ≈ 0.8058459066.

Proof of Theorem 2.1. (i) The result follows because system (2) is invariant by the
transformation (x, y) → (−x,−y).
(ii). From (10) and by using the change of variables (v, z) = (x/y, 1/y) we

obtain that the separatrices S2 and S3 are contained in the curve
{
x

y
− b6

(
1

x
− 1

b

)2

+
10

3
b7
(
1

x
− 1

b

)3

− 22

3
b8
(
1

x
− 1

b

)4

+O

((
1

x
− 1

b

)5
)

= 0

}
,

or equivalently
{
y − φ(x) = 0

}
, (13)

where

φ(x) =
x

b6
(
1
x
− 1

b

)2 − 10
3
b7
(
1
x
− 1

b

)3
+ 22

3
b8
(
1
x
− 1

b

)4
+O

((
1
x
− 1

b

)5) .

We can write the function φ(x) as

φ(x) =

(
1

(x− b)2

)
φ1(x), (14)

where

φ1(x) =
b2x3

b6 + 10
3
b7
(
x−b
bx

)
+ 22

3
b8
(
x−b
bx

)2
+O

((
x−b
bx

)3) .

The function φ1(x) is analytical at x = b and it is not difficult to see that it has
the following Taylor expansion

φ1(x) =
1

b
− (x− b)

3b2
+

(x− b)2

9b3
− 359(x− b)3

27b4
+O((x− b)4).

Then (14) can be written as

φ(x) =
1

b(x− b)2
− 1

3b2(x− b)
+

1

9b3
− 359

27b4
(x− b) +O((x− b)2).

Hence from (13) and taking φ(x) = φ̃(x− b)/(x− b)2 we complete the proof.
The proof of (iii) follows by applying the previous ideas, considering the expres-

sion given by (6) and the change of variables (u, z) = (y/x, 1/x). �
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3. Proof of Theorem 1.1

We start proving a preliminary result that is a consequence of some general
properties of semi-complete family of rotated vector fields with respect one pa-
rameter, SCFRVF for short, see [7, 18].

Proposition 3.1. Consider system (2) and assume that for b = b̄ > 0 it has no
limit cycles. Then there exists 0 < b∗ ≤ b̄ such that the system has limit cycles
if and only if b ∈ (0, b∗). Moreover, for b = b∗ its phase portrait is like (iv) in
Theorem 1.1 and when b > b∗ it is like (v) in Theorem 1.1.

Proof. It is easy to see that the system has a limit cycle for b & 0, which appears
from the origin through an Andronov-Hopf bifurcation.
If we denote by Xb(x, y) = (Pb(x, y), Qb(x, y)) the vector field associated to (2)

then

∂

∂b2
arctan

(
Qb(x, y)

Pb(x, y)

)
=
Pb(x, y)

∂Qb(x,y)
∂b2

−Qb(x, y)
∂Pb(x,y)
∂b2

P 2
b (x, y) +Q2

b(x, y)

=
y2(1 + y2)

P 2
b (x, y) +Q2

b(x, y)
≥ 0.

This means that system (2) is a SCFRVF with respect to the parameter b2.
We will recall two properties of SCFRVF. The first one is the so called non-

intersection property. It asserts that if γ1 and γ2 are limit cycles corresponding to
different values of b, then γ1 ∩ γ2 = ∅.
The second one is called planar termination principle: [19, 20] if varying the

parameter we follow with continuity a limit cycle generated from a critical point
p, we get that the union of all the limit cycles covers a 1-connected open set U ,
whose boundaries are p and a cycle of separatrices of Xb. The corners of this cycle
of separatrices are finite or infinite critical points of Xb. Since in our case Xb only
has the origin as a finite critical point we get that U has to be unbounded. Notice
that in this definition, when a limit cycle goes to a semistable limit cycle then we
continue the other limit cycle that has collided with it. This limit cycle has to
exist, again by the properties of SCFRVF.
If for some value of b = b̄ > 0 the system has no limit cycle it means that the

limit cycle starting at the origin for b = 0, has disappeared for some b∗, 0 < b∗ ≤ b̄
covering the whole set U . Since U fills from the origin until infinity, from the non
intersection property, the limit cycle cannot either exist for b ≥ b∗, as we wanted
to prove.
Since for b > 0 the origin is a repellor, by Corollary 2.3 we know by the Poincaré-

Bendixson Theorem that the phase portraits (i),(ii) and (iii) in Figure 1 have at
least one limit cycle. Then, the phase portraits for b ≥ b∗ have to be like (iv) or
(v) in the same figure. Since the phase portrait (iv) is the only one having a cycle
of separatrices it corresponds to b = b∗. Again by the properties of SCFRVF, the
phase portrait (iv) does not appear again for b > b∗. Hence, for b > b∗ the phase
portrait has to be like (v) and the proposition follows. �
Remark 3.2. In Lemma 4.3 we will give a simple proof that when b = 1 system (2)
has no limit cycles, based on the fact that for this value of the parameter it has the
hyperbola xy + 1 = 0 invariant by the flow. From the above proposition it follows
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that b∗ < 1. This result already improves the upper bound of b∗, given in [24],
6
√

9π2/16 ≈ 1.33. Theorem 1.1 improves again this upper bound, but as we will
see, the proof is much more involved.

Proof of Theorem 1.1. Recall that for a ≤ 0 the function V (x, y) = x2 + y2 is a
global Lyapunov function for system (1) and therefore the origin is global asymp-
totically stable. Then it is easy to see that its phase portrait is like (o) in Figure 1.
To prove the theorem we list some of the key points that we will use and that

will be proved in the forthcoming sections:

(R1) System (2) has at most one limit cycle for b ∈ (0, 0.817] and when it exists
it is hyperbolic and attractor, see Section 4.

(R2) System (2) has an odd number of limit cycles, with multiplicities taken
into account, when b ≤ 0.79 and the configuration of its separatrices is like
(i) in Figure 3, see Proposition 5.1.

(R3) System (2) has an even number of limit cycles, with multiplicities taken
into account, when b = 0.817 and the configuration of its separatrices is
like (v) in Figure 3, see again Proposition 5.1.

The theorem for b ≥ b∗ is a consequence of Proposition 3.1. Notice that again
by this proposition and (R3), b

∗ < 0.817. Hence, the limit cycles can exist only
when b ∈ (0, b∗) ⊂ (0, 0.817] and by (R1) when they exist then there is only one
and it is hyperbolic and attractor.
As a consequence of (R2) and the uniqueness and hyperbolicity of the limit

cycle we have that the phase portrait for b ≤ 0.79 is like (i) in Figure 1.
To study the phase portraits for the remaining values of b, that is b ∈ (0.79, b∗),

first notice that all of them have exactly one limit cycle, which is hyperbolic
and stable. So it only remains to know the behavior of the infinite separatrices.
We denote by x2(b) and x′3(b) the points of intersection of the separatrices S2

and S ′
3 of system (2) with the x-axis (when they exist), see also the forthcoming

Figure 13. Notice that for b > b∗, x′3(b) < x2(b) < 0 and x′3(b
∗) = x2(b

∗) < 0.
The properties of the SCFRVF imply that x2(b) is monotonous increasing and
that x′3(b) is monotonous decreasing. Hence for b . b∗ the phase portrait of the
system is like (iii) in Figure 1. Since we already know that for b = 0.79 the phase

portrait is like (i), it should exists at least one value, say b = b̂, with phase portrait
(ii). Since for SCFRVF the solution for a given value of b, say b = b̄, becomes a
curve without contact for the system when b 6= b̄, we have that the phase portraits
corresponding to heteroclinic orbits, that is (ii) and (iv) of Figure 1, only appear

for a single value of b (in this case b̂ and b∗, respectively). Therefore, the theorem
follows. �

4. Uniqueness of the limit cycle for b ≤ 817/1000

In this section we will prove the uniqueness of the limit cycle of system (2) when
b ≤ 0.817. The idea of the proof is to find a suitable rational Dulac function for
applying the following generalization of Bendixson–Dulac criterion.

Proposition 4.1. Consider the C1-differential system
{
ẋ = P (x, y),
ẏ = Q(x, y),

(15)
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and let U ⊂ R2 be an open region with boundary formed by finitely many algebraic
curves. Assume that:

(I) There exists a rational function V (x, y) such that

M :=
∂V

∂x
P +

∂V

∂y
Q− V

(
∂P

∂x
+
∂Q

∂y

)
(16)

does not change sign on U . Moreover M only vanishes on points, or curves
that are not invariant by the flow of (15).

(II) All the connected components of U \ {V = 0}, except perhaps one, say Ũ ,
are simple connected. The component Ũ , if exists, is 1-connected.

Then the system has at most one limit cycle in U and when it exists is hyperbolic

and it is contained in Ũ . Moreover its stability is given by the sign of −VM on Ũ .
The above statement is a simplified version of the one given in [9] adapted to

our interests. Similar results can be seen in [4, 10, 14, 25].

Remark 4.2. Looking at the proof of Proposition 4.1 we also know that:

(i) The Dulac function used in the proof is 1/V.
(ii) In the region U , the curve {V (x, y) = 0} is without contact for the flow

of (15). In particular, by the Bendixson-Poincaré Theorem, the ovals of the
set {V (x, y) = 0} must surround some of the critical points of the vector
field.

To give an idea of how we have found the function V that we will use in our
proof we will first study the van der Pol system and then the uniqueness in our
system when b ≤ 0.615. Although we will not use these two results, we believe
that to start studying them helps to a better understanding of our approach.

4.1. The van der Pol system. Consider the Van der Pol system{
ẋ = y,
ẏ = −x+ (b2 − x2)y.

(17)

Due to the expression of the above family of differential equations, in order to
apply Proposition 4.1, it is natural to start considering functions of the form

V (x, y) = f2y
2 + f1(x)y + f0(x).

For this type of functions, the corresponding M is a polynomial of degree 2 in y,
with coefficients being functions of x. In particular the coefficient of y2 is

f ′
1(x) + f2(b

2 − x2).

Taking f1(x) = (x2 − 3b2)f2x/3 we get that it vanishes. Next, fixing f2 = 6, and
imposing to the coefficient of y to be zero we obtain that f0(x) = 6x2 + c, for any
constant c. Finally, taking c = b2(3b2 − 4), we arrive to

Vb(x, y) = 6y2 + 2(x2 − 3b2)xy + 6x2 + b2(3b2 − 4). (18)

From (16) of Proposition 4.1, the corresponding M , which only depends on x, is

Mb(x, y) = 4x4 + b2(3b2 − 4)(x2 − b2).

It is easy to see that for b ∈ (0, 2/
√
3) ≈ (0, 1.15), Mb(x, y) > 0. Notice that

Vb(x, y) = 0 is quadratic in y and so is not difficult to see that it has at most
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one oval, see Figure 8 for b = 1. Then we can apply Proposition 4.1 to prove the
uniqueness and hyperbolicity of the limit cycle for these values of b.

Figure 8. The algebraic curve Vb(x, y) = 0 with b = 1.

We remark that taking a more suitable polynomial Dulac function, it is possible
to prove the uniqueness of the limit cycle for all values of b, see [5, p. 105]. We
have only included this explanation as a first step towards the construction of a
suitable rational Dulac function for our system (2).

4.2. System (2) with b ≤ 651/1000. By making some modifications to the func-
tion Vb given by (18), we get an appropriate function for system (2). Consider

Vb(x, y) =[2x3 + 6b2(1− b2)x]y3 + 6(1− b2)y2 + 2(x2 − 3b2)xy

+ 6(1− b2)x2 + b2(3b2 − 4).

Computing the double discriminant △2(Vb) of the function Vb, introduced in Ap-
pendix II, we get that

△2(Vb) = b2(3b2 − 4)(b2 − 1)15(P19(b
2))2,

where P19 is a polynomial of degree 19. By using for instance the Sturm method,
we prove that the smallest positive root of △2(Vb) is greater than 0.85. Therefore
by Proposition 5.7 we know that for b ∈ (0, 0.85] the algebraic curve Vb(x, y) = 0
has no singular points and therefore the set {Vb(x, y) = 0} ⊂ R2 is a finite disjoint
union of ovals and smooth curves diffeomorphic to open intervals.
By applying Proposition 4.1 to system (2) with V = Vb, we get that

Mb(x, y) = 6[(2− 3b2)x4y2 − 2b2(2− b2)x3y3 + (2− b2)x2y4] + 2(2− 3b2)x4

−3b2(14− 15b2)x2y2 + 12b4(2− b2)xy3 − b2(4− 9b2)x2

+3b4(2− 3b2)y2 + b4(4− 3b2).
(19)

In Subsection 5.5 of Appendix II we prove that Mb does not vanish on R2 for
b ∈ (0, 0.651]. Then by Remark 4.2 all the ovals of {Vb(x, y) = 0} must surround
the origin, which is the unique critical point of the system. Since the straight line
x = 0 has at most two points on the algebraic curve Vb(x, y) = 0, it can have at
most one closed oval surrounding the origin. Then by Proposition 4.1 it follows
the uniqueness, stability and hyperbolicity of the limit cycle of system (2) for these
values of the parameter b.
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4.3. System (2) with b ≤ 817/1000. The hyperbola xy + 1 = 0 will play an
important role in the study of this case. We first prove a preliminary result.

Lemma 4.3. Consider system (2).

(I) For b 6= 1 the hyperbola xy + 1 = 0 is without contact for its flow. In
particular its periodic orbits never cut it.

(II) For b = 1 the hyperbola xy + 1 = 0 is invariant for its flow and the system
has not periodic orbits.

Proof. Define F (x, y) = xy + 1 and set X = (P,Q) := (y,−x+ (b2 − x2)(y + y3)).
Simple computations give that for x 6= 0,

(FxP + FyQ)|y=−1/x =
1 + x2

x2
(
1− b2

)
.

Therefore (I) follows and we have also proved that when b = 1, the hyperbola is
invariant by the flow.
(II) When b = 1,

FxP + FyQ = KF, (20)

where K = K(x, y) = y2−x2−xy(xy−1) is the so called cofactor of the invariant
curve F = 0.
Let us prove that the system has no limit cycle. Recall that the origin is repeller.

Therefore if we prove that any periodic orbit Γ of the system is also repeller we
will have proved that there is no limit cycle.
This will follow if we show that∫ T

0

div(X)(γ(t)) dt > 0, (21)

where γ(t) := (x(t), y(t)) is the time parametrization of Γ and T = T (Γ) its period.
To prove (21) notice that the divergence of X can be written as div(X) =

3K + 2x2 + 1− 3xy. Then,
∫ T

0

div(X)(γ(t)) dt = 3

∫ T

0

K(x(t), y(t))dt+

∫ T

0

(2x(t)2 + 1)dt− 3

∫ T

0

x(t)y(t)dt.

Observe that from (20) we have that
∫ T

0

K(x(t), y(t)) dt =

∫ T

0

Fx(x(t), y(t))ẋ+ Fy(x(t), y(t))ẏ

F (x(t), y(t))
dt

=

∫ T

0

d

dt
ln |F (x(t), y(t))|dt = ln |F (x(t), y(t))|

∣∣∣
T

0
= 0

and that ∫ T

0

x(t)y(t)dt =

∫ T

0

x(t)ẋ(t)dt =
x2(t)

2

∣∣∣
T

0
= 0.

Therefore ∫ T

0

div(X)(γ(t)) dt =

∫ T

0

(2x(t)2 + 1)dt > 0,

as we wanted to see. �
Theorem 4.4. System (2) for b ∈ (0, 0.817] has at most one limit cycle. Moreover
when it exists it is hyperbolic and attractor.
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Proof. Based on the function Vb used in the Subsection 4.2 we consider the function
Vb(x, y) = V̂b(x, y)/(5 + 6b18x2), where

V̂b(x, y) = 1
2
b18x6 + 1

2
b18x4y2 +

(
1 + 1

2
b12
)
x3y3 +

(
1 + 3

2
b2
)
x3y

−
(
3
5
b10 + 5

3
b14 + 2 b16

)
x2y2 +

(
3 b2 − 3 b4 + 21

10
b6
)
xy3

+ (3− 3 b2 + 2 b4) x2 − b2
(
3− 1

10
b4
)
xy + (3− 3 b2 + 2 b4) y2

+3
2
b4 − 2 b2.

(22)

We have added the non-vanishing denominator to increase a little bit the range
of values for which Proposition 4.1 works. Indeed, it can be seen that the above
function, but without the denominator, is good for showing that the system has
at most one limit cycle for b ≤ 0.811.

To study the algebraic curve V̂b(x, y) = 0 we proceed like in the previous sub-
section. The double discriminant introduced in Appendix II is

△2(V̂b) = b182(3b2 − 4)(4b36 + 27b24 + 108b12 + 108)(P152(b
2))2,

where P152 is a polynomial of degree 152. It can be seen that the smallest positive

root of △2(V̂b) is greater than 0.88. Therefore by Proposition 5.7 we know that for
b ∈ (0, 0.88] this algebraic curve has no singular points. Hence the set {Vb(x, y) =
0} ⊂ R2 is a finite disjoint union of ovals and smooth curves diffeomorphic to open
intervals.
The function that we have to study in order to apply Proposition 4.1 is

Mb(x, y) =
Nb(x, y)

30(6b18x2 + 5)2
(23)

where Nb(x, y) is given in (33) of Subsection 5.6. The denominator ofMb is positive
for all (x, y) ∈ R2. By Lemma 4.3 we know that the limit cycles of the system
must lay in the open region Ω = R2∩{xy+1 > 0}. In Subsection 5.6 of Appendix
II we will prove that Nb does not change sign on the region Ω and if it vanishes it
is only at some isolated points.
Notice also that the set {V̂b(x, y) = 0} cuts the y-axis at most in two points,

therefore by the previous results and arguing as in Subsection 4.2, we know that
it has at most one oval and that when it exists it must surround the origin.
Therefore we are under the hypotheses of Proposition 4.1, taking U = Ω, and

the uniqueness and hyperbolicity of the limit cycle follows. �

5. Phase portraits for b ≤ 79/100 and b = 817/1000

This section is devoted to find the relative position of the separatrices of the
infinite critical points when b ≤ 0.79 and when b = 0.817. The main tool will
be the construction of algebraic curves that are without contact for the flow of
system (2). These curves are essentially obtained by using the functions φi(x) :=

φ̃i(x− b)/(x− b)2 and ϕi(x) := ϕ̃i(1/x) where φ̃i and ϕ̃i are the approximations of
order i of the separatrices of the infinite critical points, given in the expressions (3)
and (4) of Theorem 2.1, respectively. That is, we use algebraic approximations of
Si and S ′

i, for i = 1, 2, 3.
As usual for knowing when a vector field X is without contact with a curve of

the form y = ψ(x) we have to control the sign of

Nψ(x) := 〈∇(y − ψ(x)), X〉
∣∣
y=ψ(x)

.
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In this section we will repeatedly compute this function when ψ(x) is either ϕi(x),
φi(x) or modifications of these functions.
We prove the following result.

Proposition 5.1. Consider system (2). Then:

(I) For b ≤ 79/100 the configuration of its separatrices is like (i) in Figure 3.
Moreover it has an odd number of limit cycles, taking into account their
multiplicities.

(II) For b = 817/1000 the configuration of its separatrices is like (v) in Figure 3.
Moreover it has an even number of limit cycles, taking into account their
multiplicities.

Proof. (I) Consider the two functions

ϕ1(x) = −1

x
, and ϕ2(x) = −1

x
− (b2 − 1)

x3
,

which are the corresponding expressions in the plane (x, y) of the first and second
approximation of the separatrix S1.
If b < 1 then (ϕ1 − ϕ2)(x) = (b2 − 1)/x3 > 0 for x < 0. This implies that the

separatrix S1 in the (x, y)-plane and close to −∞ is below the graphic of ϕ1(x).
Moreover

Nϕ1(x) = −(x2 + 1)(b2 − 1)

x3
< 0 for x < 0.

This inequality implies that the separatrix S1 in the plane (x, y) cannot intersect
the graphic of ϕ1(x) for x < 0, see Figure 9.

Figure 9. Behavior of S1 for b < 1.

Now, we consider the third approximation to the separatrices S2 and S3, that
is we consider the first three terms in (3). It is given by the graph of the function

φ3(x) =
(x2 − 5bx+ 13b2)

9b3(x− b)2
.

Let us prove that when b ∈ (0,
√
2/3), the graphs of ϕ1(x) and φ3(x) intersect

at a unique point, (x0, y0) with x0 < 0 and y0 > 0. For this is sufficient to show
that the function (ϕ1 − φ3)(x) has a unique zero at some x0 < 0.
It is clear that limx→0−(ϕ1 − φ3)(x) = +∞ and we have that (ϕ1 − φ3)(−2b) =

(3b2 − 2)/6b3, then for b <
√

2/3, (ϕ1 − φ3)(−2b) < 0 hence (ϕ1 − φ3)(x) has a
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zero at a point x0 with −2b < x0 < 0. Moreover this zero is unique because the
numerator of (ϕ1 − φ3)(x) is a monotonous function.
It also holds that ∇(y−φ3(x)) = (−φ′

3(x), 1) where φ
′
3(x) = (−x+7b)/3b2(−x+

b)3 is a positive function for x < 0, and a simply computation shows that

Nφ3(x) = 1
−729b9(b−x)2 [(81b

6 + 1)x4 + (729b8 − 405b6 − 11)bx3

−9(162b8 − 108b6 − 7)b2x2 + (729b8 + 405b6 − 178)b3x
−13(81b6 − 20)b4] .

To control the sign of Nφ3 we compute the discriminant of its numerator with
respect to x. It gives dis(Nφ3(x), x) = b12P22(b

2), where P22 is a polynomial of
degree 22 with integer coefficients.
By using the Sturm method we obtain that P22(b

2) has exactly four real zeros.
By Bolzano theorem the positive ones belong to the intervals (0.7904, 0.7905) and
(2.6, 2.7).

(a) (b)

Figure 10. Behavior of S1 and S3 for b ≤ 0.79

If we fix b0 ≤ 79/100 then b0 <
√

2/3 and moreover according to previous
paragraph the graphics of ϕ1(x) and φ3(x) intersect at a unique point (x0, y0)

with x0 < 0 and y0 > 0. Furthermore,
∂Nφ3

∂b
(b0) > 0 in (x0, b0) and Nφ3 < 0 in

(x0, b) for all b ∈ (0, b0]. Therefore the vector field associated to (2) on these curves
is the one showed in Figure 10.(a).
From Figure 10.(a) it is clear that the separatrix S1 cannot intersect the set

Ω = {(x, ϕ1(x))| − ∞ < x ≤ x0} ∪ {(x, φ3(x))|x0 ≤ x < b0}. Moreover, since
the separatrix S2 forms an hyperbolic sector together with S3 we obtain that S1

cannot be asymptotic to the line x = b0. Hence we must have the situation showed
in Figure 10.(b). We know that the origin is a source and from the symmetry of
system (2) we conclude that for b ≤ 0.79 the system has an odd number of limit
cycles (taking into account multiplicities) and the phase portrait is the one showed
in Figure 11.

(II) We start proving the result when b = b0 := 89/100 because the method that
we use is the same that for studying the case b = 817/1000, but the computations
are easier. Recall that we want to prove that the configuration of separatrices is
like (v) in Figure 3. That the number of limit cycles must be even (taking into
account multiplicities) is then a simply consequence of the Poincaré–Bendixson
Theorem, because the origin is a source.
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Figure 11. For 0 < b ≤ 0.79, system (2) has at least one limit
cycle and phase portrait (i) of Figure 1 .

We consider the approximation of eight order to S2 and S3 given by the graph
of the function φ8(x).
By using again the Sturm method it is easy to see that Nφ8(x) < 0 for x ∈

(b0, x0), where x0 = 1.924 is a left approximation to the root of the function φ8(x),
and Nφ8(x) > 0 for x ∈ (x1, b0), where x1 = −2.022 is a right approximation
to the root of the function Nφ8(x). That is, we have the situation shown in

Figure 12.(a). Now, we consider the function φ̂8(x) = φ8(x) − 1/(9b3), is clear

that (φ8 − φ̂8)(x) > 0. We have Nφ̂8
(x) > 0 for x ∈ (b0, x2) where x2 = 1.6467 is

a left approximation to the root of the function φ̂8(x), moreover the line x = x2
is transversal to the vector field for y > 0, thus the separatrix S3 intersects the
x-axis at a point x̄ of the interval (x2, x0), see again Figure 12.(a).

(a) (b)

Figure 12. Behaviour of S2 and S3 for b ∈ {0.817, 0.89}.

At this point, the idea is to show that S2 intersects the x-axis at a point x̂, with
−x2 < x̂ < 0. For proving this, we utilize the Padé approximants method, see [3].
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Recall that given a function f(x), its Padé approximant Pd[n,m](f)(x, x0) of
order (n,m) at a point x0, or simply Pd[n,m](f)(x) when x0 = 0, is a rational
function of the form Fn(x)/Gm(x), where Fn and Gm are polynomials of degrees
n and m, respectively, and such that∣∣∣∣f(x)−

Fn(x)

Gm(x)

∣∣∣∣ = O
(
(x− x0)

n+m+1
)
.

Consider the Padé approximant Pd[3,3](φ8). It satisfies that Pd[3,3](φ8)(0) = φ8(0)
and by the Sturm method it can be seen that there exists x3 < 0 such that
Pd[3,3](φ8)(x3) = 0, Pd[3,3](φ8) is positive and increasing on the interval (x3, 0) and
a left approximation to x3 is−1.595. Moreover it is easy to see thatNPd[3,3](φ8)(x) >

0 for x ∈ (x3, 0). Therefore S2 cannot intersect neither the graph of y = Pd[3,3](φ8)(x)
in (x3, 0) nor the graph of φ8(x) in [0, b0). Hence S2 intersects the x-axis in a point
x̂ contained in the interval (x3, 0). This implies that −x2 < x̂ < 0 as we wanted to
see, because −x2 < x3. Hence the behavior of the separatrices is like Figure 12.(b).
See also Figure 13.

Figure 13. Behavior of S2,S3,S ′
2 and S ′

3 for b ∈ {0.817, 0.89}.

When b0 = 817/1000 we follow the same ideas. For this case we consider

the functions φ16(x) and φ̂16(x) = φ16(x) − 1/(9b3). Recall that the graphic of
φ16(x) is the sixteenth order approximation to S2 and S3. It is not difficult to
prove that Nφ̂16

> 0 on the interval (b0, x2), with x2 = 1.6421 and since the line
x = x2 is transversal to X for y > 0, S3 intersects the x-axis at a point x̄ > x2.
Also we have that Nφ16 > 0 on the interval (−3/100, b0) and using the Padé
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approximant Pd[5,1](φ16)(x,−3/100) we obtain that S2 intersect to the x-axis in a
point x̂ ∈ (x3, 0) with x3 > −1.638. This implies that −x2 < x̂ < 0 as in the case
b = 0.89. Hence we have the same situation that in Figure 13. �

Remark 5.2. As it is shown in the proof of Theorem 1.1, the values 0.79 and
0.817, obtained in the previous proposition, provide a lower and an upper bound
for b∗. We have tried to shrink the interval where b∗ lies using higher order ap-
proximations of the separatrices, but we have not been able to diminish its size.

Appendix I: The Descartes method

Given a real polynomial P (x) = anx
n + · · · + a1x + a0 and a real interval

I = (α, β) such that P (α)P (β) 6= 0, there are two well-known methods for knowing
the number of real roots of P in I: the Descartes rule and the Sturm method.
Theoretically, when all the ai ∈ Q and α, β ∈ Q, the Sturm approach solves

completely the problem. If all the roots of P are simple it is possible to associate
to it a sequence of n+ 1 polynomials, the so called Sturm sequence, and knowing
the signs of this sequence evaluated at α and β we obtain the exact number of real
roots in the interval. If P has multiple roots it suffices to start with P/(gcd(P, P ′)),
see [23, Sec. 5.6].
Nevertheless when the rational numbers have big numerators and denominators

and n is also big, the computers have not enough capacity to perform the compu-
tations to get the Sturm sequence. On the other hand the Descartes rule is not
so powerful but a careful use, in the spirit of bisection method, can many times
solve the problem.
To recall the Descartes rule we need to introduce some notation. Given an

ordered list of real numbers [b0, b1, . . . , bn−1, bn] we will say that it has C changes
of sign if the following holds: denote by [c0, c1, . . . , cm−1, cm], m ≤ n the new list
obtained from the previous one after removing the zeros and without changing
the order of the remaining terms. Consider the m non-zero numbers δi := cici+1,
i = 0, . . . , m− 1. Then C is the number of negative δi.

Theorem 5.3 (Descartes rule). Let C be the number of changes of sign of the list
of ordered numbers

[a0, a1, a2, . . . , an−1, an].

Then the number of positive zeros of the polynomial P (x) = anx
n+ · · ·+ a1x+ a0,

counted with their multiplicities, is C − 2k, for some k ∈ N ∪ {0}.
Corollary 5.4. With the notations of Theorem 5.3 if C = 0 then P (x) has not
positive roots and if C = 1 it has exactly one simple positive root.

In order to apply Descartes rule to arbitrary open intervals we introduce the
following definition:

Definition 5.5. Given a real polynomial P (x) and a real interval (α, β) we con-
struct a new polynomial

Nβ
α (P )(x) := (x+ 1)degPP

(
βx+ α

x+ 1

)
.
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We will call Nβ
α (P ), the normalized version of P with respect to (α, β). Notice

that the number of real roots of P (x) in the interval (α, β) is equal to the number
of real roots of Nβ

α (P )(x) in (0,∞).

The method suggested in [12] consists in writing (α, β) =
⋃k
i=1(αi, αi+1), with

α = α1 < α2 < · · · < αk < αk+1 = β in such a way that on each (αi, αi+1) it
is possible to apply Corollary 5.4 to the normalized version of the polynomial.
Although there is no systematic way of searching a suitable decomposition, we
will see that a careful use of these type of ideas has been good enough to study
the number and localization of the roots for a huge polynomial of degree 965, see
Subsection 5.6 in Appendix II.

Appendix II: A method for controlling the sign
of polynomials in two variables

The main result of this appendix is a new method for controlling the sign of
families of polynomials with two variables. As a starting point we prove a simple
result for one-parameter families of polynomials in one variable.
Let Gb(x) be a one-parametric family of polynomials. As usual, we write △x(P )

to denote the discriminant of a polynomial P (x) = anx
n + · · ·+ a1x+ a0, that is,

△x(P ) = (−1)
n(n−1)

2
1

an
Res(P (x), P ′(x)),

where Res(P, P ′) is the resultant of P and P ′.

Lemma 5.6. Let

Gb(x) = gn(b)x
n + gn−1(b)x

n−1 + · · ·+ g1(b)x+ g0(b),

be a family of real polynomials depending also polynomially on a real parameter b
and set Ω = R. Suppose that there exists an open interval I ⊂ R such that:

(i) There is some b0 ∈ I, such that Gb0(x) > 0 on Ω.
(ii) For all b ∈ I, △x(Gb) 6= 0.
(iii) For all b ∈ I, gn(b) 6= 0.

Then for all b ∈ I, Gb(x) > 0 on Ω.
Moreover if Ω = Ωb = (c(b),∞) for some smooth function c(b), the same result

holds changing Ω by this new Ωb if we add the additional hypothesis

(iv) For all b ∈ I, Gb(c(b)) 6= 0.

Proof. The key point of the proof is that the roots (real and complex) of Gb depend
continuously of b, because gn(b) 6= 0. Notice that hypotheses (iii) and (iv) prevent
that moving b some root enters in Ω either from infinity or from the boundary
of Ω, respectively. On the other hand if moving b some real roots appear from C,
they do appear trough a double real root that is detected by the vanishing of
△x(Gb). Since by item (ii), △x(Gb) 6= 0 no real root appears in this way. Hence,
for all b ∈ I, the number of real roots of any Gb is the same. Since by item (i) for
b = b0, Gb0 > 0 on Ω, the same holds for all b ∈ I. �
To state the corresponding result for families of polynomials with two variables

inspired in the above lemma, see Proposition 5.12, we need to prove some results
about the iterated discriminants (to replace hypothesis (ii) of the lemma) and to
recall how to study the infinity of planar curves (to replace hypothesis (iii)).
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5.1. The double discriminant. Let F (x, y) be a complex polynomial on C2.
We write F as

F (x, y) = any
n + an−1y

n−1 + an−2y
n−2 + . . .+ a1y + a0, (24)

where ai = ai(x) ∈ C[x]. Then

△y(F ) = (−1)
n(n−1)

2
1

an
Res(F, ∂F/∂y),

and this resultant can be computed as the determinant of the Sylvester matrix of
dimension (2n− 1)× (2n− 1), see [6],

S =




an 0 0 0 nan 0 0 0
an−1 an 0 0 (n− 1)an−1 nan 0 0

an−2 an−1
. . . 0 (n− 2)an−2 (n− 1)an−1

. . . 0
...

. . . an
...

. . . nan
... an−1

... (n− 1)an−1

a0 a1

0 a0
... 0 a1

...

0 0
. . . 0 0

. . .

0 0 0 a0 0 0 0 a1




.

We will write △2
y,x(F ) = △x(△y(F )). Analogously we can compute △2

x,y(F ).
This so called double discriminant plays a special role in the characterization of
singular curves of {F (x, y) = 0} and it is also used in applications, see for instance
[1, 13, 22]. In particular we prove the following result.

Proposition 5.7. Let F (x, y) be a complex polynomial on C2. If {F (x, y) = 0} ⊂
C2 has a singular point, that is, if there exists a point (x0, y0) ∈ C2 such that
F (x0, y0) = ∂F (x0, y0)/∂x = ∂F (x0, y0)/∂y = 0, then △2

y,x(F ) = △2
x,y(F ) = 0.

Proof. We write F (x, y) in the form (24). Without lost of generality we assume
that (x0, y0) = (0, 0). Then from the assumptions it follows that a0(0) = a′0(0) = 0
and a1(0) = 0, that is, a0(x) = x2â0(x) and a1(x) = xâ1(x), with both âi also
polynomials.
By using the Sylvester matrix S defined above, we have that

detS = (−1)na0 det(S(2n− 1 | n− 1)) + a1 det(S(2n− 1 | 2n− 1)), (25)

where S(i | j) means the matrix obtained from S by removing the i-th row and
the j-th column.
Notice that the elements of the last row of S(2n − 1 | 2n − 1) are only 0, a0

and a1. Therefore, developing the determinant of this matrix from this row we get
that det(S(2n− 1 | 2n− 1)) = xQ(x), for some polynomial Q(x).
Hence, by using (25), we get that detS = x2P (x) with P (x) another polynomial.

This implies that △y(F ) has a double zero at x = 0 and hence △2
y,x(F ) = 0.

Analogously we can prove that △x(F ) has a double zero at y = 0 and hence
△2
x,y(F ) = 0. �

Corollary 5.8. Consider a one-parameter family of polynomials Fb(x, y), de-
pending also polynomially on b. The values of b such that the algebraic curve



BIFURCATION VALUES 23

Fb(x, y) = 0 has some singular point in C2 have to be zeros of the polynomial

△2(Fb) := gcd
(
△2
x,y(Fb),△2

y,x(Fb)
)
.

By simplicity we will also call the polynomial △2(Fb), double discriminant of
the family Fb(x, y). As far as we know the above necessary condition for detecting
algebraic curves with singular points is new.

Remark 5.9. (i) Notice that if in Corollary 5.8, instead of imposing that for b ∈ I,
△2(Fb) 6= 0, it suffices to check only that either △2

x,y(Fb) 6= 0 or △2
y,x(Fb) 6= 0.

(ii) The converse of the Proposition 5.7 is not true. For instance if we consider
the polynomial F (x, y) = x3y3 + x + 1 then △2

y,x(F ) = △2
x,y(F ) = 0, however

Fx(x, y) = 3x2y3 + 1 and Fy(x, y) = 3x3y2 hence {F (x, y) = 0} does not have
singular points.
(iii) Sometimes △2

y,x(F ) 6= △2
x,y(F ). For instance this is the case when F =

y2 + x3 + bx2 + bx because

△2
x,y(F ) = −110592b9(b− 4)(b− 3)6 and △2

y,x(F ) = 256b3(b− 4).

Notice that △2(F ) = b3(b− 4).

5.2. Algebraic curves at infinity. Let

F (x, y) = F 0(x, y) + F 1(x, y) + · · ·+ F n(x, y)

be a polynomial on R2 of degree n. We denote by

F̃ (x, y, z) = znF 0(x, y) + zn−1F 1(x, y) + · · ·+ F n(x, y)

its homogenization in RP2.

For studying F̃ (x, y, z) in RP2 we can use its expressions in the three canonical
charts of RP2, {[x : y : 1]}, {[x : 1 : z]}, and {[1 : y : z]}, which can be identified
with the real planes {(x, y)},{(x, z)}, and {(y, z)} respectively. Of course the
expression in the chart {[x : y : 1]}, that is, in the (x, y)-plane is precisely F (x, y).

We denote by F̃1(x, z) and F̃2(y, z) the expressions of the function F̃ in the

planes {(x, z)} and {(y, z)}, respectively. Therefore F̃1(x, z) = F̃ (x, 1, z) and

F̃2(y, z) = F̃ (1, y, z).

Let [x∗ : y∗ : z∗] ∈ RP2 be a point of {F̃ = 0}. If z∗ 6= 0, then [x∗ : y∗ : z∗]
corresponds to a point in R2, otherwise it is said that [x∗ : y∗ : 0] is a point of
F at infinity. Notice that the points at infinity of F correspond to the points
[x∗ : y∗ : 0] where (x∗, y∗) 6= (0, 0) is a solution of the homogeneous part of degree
n of F ,

Hn(F (x, y)) = F n(x, y),

that is F n(x∗, y∗) = 0. Equivalently, these are the zeros of F̃1(x, 0) and F̃2(y, 0).
In other words, [x∗ : y∗ : 0] is a point at infinity of F if and only if x∗/y∗ is a zero

of F̃1(x, 0) = F n(x, 1) or y∗/x∗ is a zero of F̃2(y, 0) = F n(1, y).
Let Ω ⊂ R2 be an unbounded open subset with boundary ∂Ω formed by finitely

many algebraic curves. It is clear that this subset can be extended to RP2. We
will call the adherence of this extension Ω̄. When a point at infinity of F is also
in Ω̄, for short we will say that is a point at infinite which is also in Ω.
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5.3. Isolated points of families of algebraic curves. To state our main re-
sult we need explicit conditions to check when a point of a real algebraic curve
G(x, y) = 0 is isolated. Recall that it is said that a point p ∈ R2 on the curve is
isolated if there exists an open neighborhood U of p, such that

U ∩ {(x, y) ∈ R2 : G(x, y) = 0} = p.

Clearly isolated points are singular points of the curve. Next result provides an
useful criterion to deal with this question.

Lemma 5.10. Let G(x, y) be a real polynomial. Assume that (0, 0) ∈ {G(x, y) =
0} and that there are natural numbers p, q and m, with gcd(p, q) = 1, and a
polynomial G0 satisfying G0(εpX, εqY ) = εmG0(X, Y ), and such that for all ε > 0,

G(εpX, εqY ) = εmG0(X, Y ) + εm+1G1(X, Y, ε),

for some polynomial function G1. If the only real solution of G0(X, Y ) = 0 is
(X, Y ) = (0, 0), then the origin is an isolated point of G(x, y) = 0.

Proof. Assume without loss of generality that G0 ≥ 0. We start proving that
K := {(x, y) ∈ R2 : G0(x, y) = 1} is a compact set. Clearly it is closed, so it
suffices to prove that it is bounded. Since G0 is a quasi-homogeneous polynomial
we know that there exists a natural numberm0 such thatm = m0pq andG

0(x, y) =
Pm0(x

q, yp), where Pm0 is a real homogeneous polynomial of degree m0. The fact
that the only real solution of the equation G0(x, y) = 0 is x = y = 0 implies that
Pm0 has not linear factors when we decompose it as a product of real irreducible

factors. Hence m0 is even and Pm0(x, y) =
∏m0/2

i=1 (Aix
2 + Bixy + Ciy

2), with
B2
i − 4AiCi < 0. As a consequence,

G0(x, y) =

m0/2∏

i=1

(Aix
2q +Bix

qyp + Ciy
2p), with B2

i − 4AiCi < 0. (26)

Assume, to arrive to a contradiction, that K is unbounded. Therefore it should
exist a sequence {(xn, yn)}, tending to infinity, and such that G0(xn, yn) = 1. But
this is impossible because the conditions B2

i − 4AiCi < 0, i = 1, . . . , m0/2, imply
that all the terms Aix

2q
n +Bix

q
ny

p
n +Ciy

2p
n in (26) go to infinity. So K is compact.

Let us prove that (0, 0) is an isolated point of {(x, y) ∈ R2 : G(x, y) = 0}.
Assume, to arrive to a contradiction, that it is not. Therefore there exists a
sequence of points {(xn, yn)}, tending to 0 and such that G(xn, yn) = 0 for all
n ∈ N. Consider G0(xn, yn) =: (gn)

m > 0. It is clear that limn→∞(gn)
m = 0. Write

(xn, yn) = ((gn)
pun, (gn)

qvn). Notice that

(gn)
m = G0(xn, yn) = G0(gpnun, g

q
nvn) = (gn)

mG0(un, vn).

Then G0(un, vn) = 1 and (un, vn) ∈ K, for all n ∈ N. Therefore, taking a subse-
quence if necessary, we can assume that

lim
n→∞

(un, vn) = (u∗, v∗) ∈ K. (27)

We have that 0 = G(xn, yn) = (gn)
m + (gn)

m+1G1(un, vn, gn). Dividing by (gn)
m

we obtain that 1 = 0+gnG
1(un, vn, gn), and passing to the limit we get that 1 = 0

which gives the desired contradiction.
Notice that to prove that limn→∞ gnG

1(un, vn, gn) = 0 we need to know that the
sequence {(un, vn)} remains bounded and this fact is a consequence of (27). �
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We remark that the suitable values p, q and m and the function G0 appearing
in the statement of Lemma 5.10 are usually found by using the Newton diagram
associated to G.
We also need to introduce a new related concept for families of curves. Consider

a one-parameter family of algebraic curves Gb(x, y) = 0, b ∈ I, also depending
polynomially of b. Let (x0, y0) ∈ R2 be an isolated point of Gb(x, y) = 0 for all
b ∈ I, we will say that (x0, y0) is uniformly isolated for the family Gb(x, y) = 0,
b ∈ I if for each b ∈ I there exist neighborhoods V ⊂ I and W ⊂ R2, of b and
(x0, y0) respectively, such that for all b ∈ V,

{(x, y) ∈ R2 : Gb(x, y) = 0} ∩W = (x0, y0). (28)

Next example shows a one-parameter family of curves that has the origin isolated
for all b ∈ R but it is not uniformly isolated for b ∈ I, with 0 ∈ I,

Gb(x, y) = (x2 + y2)(x2 + y2 − b2)(x− 1). (29)

It is clear that the origin is an isolated point of {Gb(x, y) = 0} for all b ∈ R, but
there is no open neighborhood W of (0, 0), such that (28) holds for any b in a
neighborhood of b = 0.
Next result is a version of Lemma 5.10 for one-parameter families. In its proof

we will use some periodic functions introduced by Lyapunov in his study of the
stability of degenerate critical points, see [15]. Let us recall them.
Let u(ϕ) = Cs(ϕ) and v(ϕ) = Sn(ϕ) be the solutions of the Cauchy problem:

u′ = −v2p−1, v′ = u2q−1, u(0) = 2q
√

1/p and v(0) = 0,

where the prime denotes the derivative with respect to ϕ.
Then x = Cs(ϕ) and y = Sn(ϕ) parameterize the algebraic curve px2q+qy2p = 1,

that is pCs2q(ϕ) + q Sn2p(ϕ) = 1, and both functions are smooth Tp,q-periodic
functions, where

T = Tp,q = 2p−1/2qq−1/2p
Γ
(

1
2p

)
Γ
(

1
2q

)

Γ
(

1
2p

+ 1
2q

) ,

and Γ denotes the Gamma function.

Proposition 5.11. Let Gb(x, y) be a family of real polynomials which also de-
pends polynomially on b. Assume that (0, 0) ∈ {Gb(x, y) = 0} and that there are
natural numbers p, q and m, with gcd(p, q) = 1, and a polynomial G0

b satisfying
G0
b(ε

pX, εqY ) = εmG0
b(X, Y ), and such that for all ε > 0,

Gb(ε
pX, εqY ) = εmG0

b(X, Y ) + εm+1G1
b(X, Y, ε),

for some polynomial function G1
b. If for all b ∈ I ⊂ R, the only real solution of

G0
b(X, Y ) = 0 is (X, Y ) = (0, 0), then the origin is an uniformly isolated point of

Gb(x, y) = 0 for all b ∈ I.

Proof. Assume without loss of generality that G0
b ≥ 0. Let us write the function

Gb(x, y) using the so-called generalized polar coordinates,

x = ρp Cs(ϕ), y = ρq Sn(ϕ), for ρ ∈ R+.
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Then

Gb(x, y) = Gb(ρ
p Cs(ϕ), ρq Sn(ϕ))

= ρmG0
b(Cs(ϕ), Sn(ϕ)) + ρm+1G1

b(Cs(ϕ), Sn(ϕ), ρ). (30)

Using the same notation that in the proof of Lemma 5.10, with the obvious mod-
ifications, we know from (26) that

G0
b(Cs(ϕ), Sn(ϕ)) =

m0/2∏

i=1

(Ai(b) Cs
2q(ϕ) +Bi(b) Cs

q(ϕ) Snp(ϕ) + Ci(b) Sn
2p(ϕ)),

with all B2
i (b)− 4Ai(b)Ci(b) < 0. Therefore, it is not difficult to prove that there

exists two positive continuous functions, L(b) and U(b) such that

0 < L(b) ≤ G0
b(Cs(ϕ), Sn(ϕ)) ≤ U(b),

due to the periodicity of the Lyapunov functions and the discriminant conditions.
Dividing the expression (30) by ρm we obtain that the points of {Gb(x, y) =
(0, 0)} \ {(0, 0} are given by

G0
b(Cs(ϕ), Sn(ϕ)) + ρG1

b(Cs(ϕ), Sn(ϕ), ρ) = 0. (31)

Fix a compact neighborhood of b, say V ⊂ I. Set L = minx∈V L(b). Then there
exists δ > 0 such that for any ||(x, y)|| ≤ δ and any b ∈ V,

|ρG1
b(Cs(ϕ), Sn(ϕ), ρ)| < L/2.

Therefore (31) never holds in this region and

{(x, y) ∈ R2 : Gb(x, y) = 0} ∩ {(x, y) ∈ R2 : ||(x, y)|| < δ} = (0, 0),

for all b ∈ V, as we wanted to prove. �

Notice that, the fact that for all b ∈ R, the origin of (29) is isolated simply
follows plotting the zero level set of Gb. Alternatively, we can apply Lemma 5.10
with p = 1, q = 1 and m = 2 to prove that the origin is isolated when b 6= 0 and
with p = q = 1 and m = 4 when b = 0. In any case, Proposition 5.11 can not be
used.

5.4. The method for controlling the sign.

Proposition 5.12. Let Fb(x, y) be a family of real polynomials depending also
polynomially on a real parameter b and let Ω ⊂ R2 be an open connected subset
having a boundary ∂Ω formed by finitely many algebraic curves. Suppose that there
exists an open interval I ⊂ R such that:

(i) For some b0 ∈ I, Fb0(x, y) > 0 on Ω ⊂ R2.
(ii) For all b ∈ I, △2(Fb) 6= 0.
(iii) For all b ∈ I, all points of Fb = 0 at infinity which are also in Ω do not

depend on b and are uniformly isolated.
(iv) For all b ∈ I, {Fb = 0} ∩ ∂Ω = ∅.
Then for all b ∈ I, Fb(x, y) > 0 on Ω.
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Proof. Consider the following set

J := {b ∈ I : Fb(x, y) > 0 for all (x, y) ∈ Ω}.
By hypothesis (i), J 6= ∅ because b0 ∈ J . Consider now b̄ = sup J . We want to
prove that b̄ ∈ ∂I. If this is true, arguing similarly with inf J the result will follow.
We will prove the result by contradiction. So assume that b̄ ∈ I.
Notice that if Fb̄(x, y) takes positive and negative values on Ω, by continuity

this would happen for any b near enough to b̄. This is in contradiction with the
fact that b̄ is the supremum of J. Therefore, either Fb̄(x, y) ≥ 0 or Fb̄(x, y) > 0
in Ω.
In the first case it is clear that a point (x0, y0) where Fb̄(x0, y0) = 0 has to be a

singular point of the curve {Fb̄(x, y) = 0}. Therefore, by Corollary 5.8, △2(Fb̄) = 0
which is in contradiction with (ii).
In the second case it should exist a sequence of real numbers {bn}, with bn ↓ b̄,

and a sequence of points {(xn, yn)} ∈ Ω such that limn→∞ Fbn(xn, yn) = 0.
If the sequence is bounded, renaming it if necessary, we arrive to a convergent

sequence. Call (x̄, ȳ) ∈ Ω its limit, where Ω denotes the adherence of Ω. Then
Fb̄(x̄, ȳ) = 0. By hypothesis (iv), the point (x̄, ȳ) 6∈ ∂Ω and we also know that
Fb̄(x, y) > 0 on Ω. Therefore we have a contradiction and the sequence {(xn, yn)}
must be unbounded.
This unbounded sequence can be considered in the projective space RP2. Then

this sequence must converge to a point p of Fb̄(x, y) = 0 at infinity, which is
also in U . Since by hypothesis (iii) this point is uniformly isolated, there exists
a neighborhood V of b̄ and an open neighborhood W of p such that this point
is the only real point in RP2 of the homogenization of Fb(x, y) = 0. This is in
contradiction with the fact Fbn(xn, yn) = 0 for all n, and the result follows. �

5.5. Control of the sign of (19). In this subsection we will prove by using
Proposition 5.12, that for b ∈ (0, 0.6512), the function Mb given in (19) is positive
on Ω = R2.
To check hypothesis (i), we prove that M1/2 > 0 for all R2. For this value,

M1/2 =
15
2
x4y2 − 21

4
x3y3 + 21

2
x2y4 − 123

16
x2y2 + 21

16
xy3 + 5

2
x4 − 7

16
x2 + 15

64
y2 + 13

64
.

We thinkM1/2 as a polynomial in x and y as a parameter and we apply Lemma 5.6.
If y = 0 then M1/2 reduces to the polynomial (5/2)x4 − (7/16)x2 + 13/64 which
is positive on R. Now, we compute △x(M1/2) and we obtain a polynomial in the
variable y of degree 20. By using the Sturm method it is easy to see that it does
not have real roots. Moreover, the coefficient of x4 is 5(3y2+1)/2 > 0. Therefore,
M1/2 > 0 on R2, as we wanted to see.

To check hypothesis (ii) we compute the double discriminant of Mb and we
obtain that △2

x,y(Mb) is a polynomial in b of degree 1028, of the following form

△2
x,y(Mb) =b

320(b2 − 2)40(3b2 − 2)5(3b2 − 4)(2b6 − 4b4 − 3b2 + 2)×
× (b6 − 2b4 − 3b2 + 2)(P2(b

2))8(P6(b
2))4(P32(b

2))2(P33(b
2))6,

where Pi are polynomials of degree i with rational coefficients. By using the Sturm
method we localize the real roots of each factor of △2

x,y(Mb) and we obtain that

in the interval (0, 0.6512) none of them has real roots. In fact P32(b
2) has a root
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in (0.6513, 0.6514) and that is the reason for which we can not increase more the
value of b. Therefore △2

x,y(Mb) 6= 0 for all b ∈ (0, 0.6512).
Finally we have to check hypothesis (iii). Notice that in this case ∂Ω = ∅ and

so (iv) follows directly.
The zeros at infinity are given by the directions

H6(Mb) = 6x2y2[(2− 3b2)x2 − 2b2(2− b2)xy + (2− b2)y2] = 0.

For |b| < 0.7275 it has only the non-trivial solutions x = 0 and y = 0. The
homogenization of Mb is

M̃b = 6[(2− 3b2)x4y2 − 2b2(2− b2)x3y3 + (2− b2)x2y4] + 2(2− 3b2)x4z2

−3b2(14− 15b2)x2y2z2 + 12b4(2− b2)xy3z2 − b2(4− 9b2)x2z4

+3b4(2− 3b2)y2z4 + b4(4− 3b2)z6,
(32)

and hypothesis (iii) is equivalent to prove that (0, 0) is an uniformly isolated

singularity for M̃1
b (x, z) = M̃b(x, 1, z) and that (0, 0) is also an uniformly isolated

singularity for M̃2
b (y, z) = M̃b(1, y, z).

First we prove this result for M̃1
b (x, z). From (32),

M̃1
b (x, z) = 6[(2− 3b2)x4 − 2b2(2− b2)x3 + (2− b2)x2] + 2(2− 3b2)x4z2

−3b2(14− 15b2)x2z2 + 12b4(2− b2)xz2 − b2(4− 9b2)x2z4

+3b4(2− 3b2)z4 + b4(4− 3b2)z6.

Hence,

M̃1
b (ε

2X, εZ) =
(
6(2− b2)X2 + 12b4(2− b2)XZ2 + 3b4(2− 3b2)Z4

)
ε4 +O(ε5).

The discriminant with respect to X of the homogeneous polynomial T (X,W ) :=
6(2− b2)X2 + 12b4(2− b2)XW + 3b4(2− 3b2)W 2, where W = Z2, is

△X(T ) = 72W 2b4(b2 − 2)(2b6 − 4b4 − 3b2 + 2).

Since its smallest positive root is greater than 0.673 it holds for b ∈ (0, 673) that
T (X,W ) = 0 if and only if (X,W ) = (0, 0). Therefore by Proposition 5.11 the

point (0, 0) is an uniformly isolated point of the curve M̃1
b (x, z) = 0, for these

values of b.
For the other point, since

M̃2
b (y, z) = 6[(2− b2)y4 − 2b2(2− b2)y3 + (2− 3b2)y2] + 2(2− 3b2)z2

−3b2(14− 15b2)y2z2 + 12b4(2− b2)y3z2 − b2(4− 9b2)z4

+3b4(2− 3b2)y2z4 + b4(4− 3b2)z6,

we have that

M̃2
b (εY, εZ) = 2(2− 3b2)

(
3Y 2 + Z2

)
ε2 +O(ε3),

and the result follows for b ∈ (0,
√
2/3) ≈ (0, 0.816), by applying again the same

proposition.
So, we have shown that for b ∈ (0, 0.6512) all the hypotheses of the Proposi-

tion 5.12 hold. Therefore we have proved that for b ∈ (0, 0.651], Mb(x, y) > 0 for
all (x, y) ∈ R2.
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5.6. Control of the sign of (23). The numerator of the function Mb given in
(23) is a polynomial of the following form

Nb(x, y) = f0(x, b) + f1(x, b)y + f2(x, b)y
2 + f3(x, b)y

3 + f4(x, b)y
4, (33)

where

f0(x, b) = 90b36x10 − 15b18(6b20 − 5)x8 + 15b18(24b4 − 59b2 + 24)x6

−(378b24 − 810b22 + 360b20 − 300b4 + 675b2 − 300)x4

−15b2(18b22 − 24b20 + 21b4 − 45b2 + 20)x2 − 75b4(−4 + 3b2),

f1(x, b) = 180b36x7 + 12b18(60b16 + 50b14 + 18b10 + 25)x5 − 20b10(36b12

−54b10 + 54b8 − 30b6 − 25b4 − 9)x3 − 180b20(3b2 − 4)x,

f2(x, b) = 270b36x10 − 45b18(6b20 + 2b18 − 5)x8 + 3b18(30b20 + 120b16

+100b14 − 90b12 + 36b10 + 360b4 − 615b2 + 335)x6 − (360b36

+300b34 + 108b30 + 2214b24 − 3690b22 + 3435b20 + 360b18

−300b16 − 250b14 + 225b12 − 90b10 − 900b4 + 1350b2 − 900)x4

−b2(468b22 − 540b20 − 1080b18 + 300b16 + 250b14 + 90b10

+1845b4 − 3075b2 + 2475)x2 − 90b4(4b2 − 5),

f3(x, b) = −180b20(b10 − 3)x7 + 30b2(6b34 + 6b30 − 24b22 + 18b20 − 72b18

−5b10 + 15)x5 + 30b2(24b24 − 36b22 + 72b20 + 10b16 + 5b12

−20b4 + 15b2 − 60)x3 − 20b4(36b18 − 54b16 + 54b14 + 30b12

+25b10 + 9b6 − 30b4 + 45b2 − 90)x,

f4(x, b) = 90b36x8 − 3b18(30b20 + 120b16 + 100b14 + 36b10 − 25)x6

+b10(360b26 + 300b24 + 198b20 + 360b12 − 615b10 + 720b8

−300b6 − 250b4 − 90)x4 + (−738b24 + 1080b22 − 1080b20

+300b18 + 250b16 + 315b12 + 300b4 − 450b2 + 900)x2 + 15b6.

We will prove that Nb ≥ 0 on Ω := {(x, y) : xy + 1 > 0} for all b ∈ (0, 0.817]
and if it vanishes this only happens at some isolated points. We will use again
Proposition 5.12. Notice that ∂Ω = {(x, y) : xy + 1 = 0}.

Figure 14. Curves Nb = 0 and xy + 1 = 0 with b = 0.817.

It is not difficult to verify that {Nb(x, y) = 0} ∩ {xy + 1 = 0} = ∅ for b ∈
(0, 0.8171), see Figure 14. It suffices to see that for these values of b, and x 6= 0, the
one variable function Nb(x, 1/x), never vanishes. We skip the details. Therefore
hypothesis (iv) is satisfied.
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For proving that hypothesis (ii) of Proposition 5.12 holds we compute the double
discriminant △2

y,x(Nb). It is an even polynomial in b, of degree 21852, of the
following form

b7566(3b2 − 4)(159b4 − 380b2 + 225)2(P71(b
2))2(P386(b

2))4(P587(b
2))6(P965(b

2))2,
(34)

where Pi are polynomials of degree i with rational coefficients. By using the Sturm
method it is easy to see that its first 4 factors do not have real roots in (0, 0.8171).
We replace b2 = t in the next three polynomials to reduce their degrees and
we obtain P1(t) := P386(t), P2(t) := P587(t), and P3(t) := P965(t). It suffices to
study their number of real roots in (0, 0.6678], because 0.6678 > (0.8171)2. Our
computers have no enough capacity to get their Sturm sequences. Therefore we
will use the Descartes approach as it is explained in Appendix I.
We consider first the polynomial P1(t). Its normalized version N0.68

0 (P1) has
all their coefficients positive. Therefore P1(t) has no real roots in (0, 0.68) as we
wanted to see.
Applying the Descartes rule to the normalized versions of P2(t), N

0.561
0 (P2),

N0.811
0.561 (P2) and N0.812

0.562 (P2), we obtain that the number of zeros in the intervals
(0, 0.561), (0.561, 0.811) and (0.562, 0.812) is 0, 1 and 0 respectively. That is, there
is only one root of P2(t) in (0, 0.812), it is simple and it belongs to (0.561, 0.562).
Refining this interval with Bolzano Theorem we prove that the root is in the
interval (0.5617, 0.5618).

Finally to study P3(t) we consider N
11/20
0 (P3), N

7/12
11/20(P3) and N

52/75
7/12 (P3). By

Descartes rule we obtain that the number of zeros of P3 in the corresponding
intervals is 0, 1 and 1 or 3, respectively. By Bolzano Theorem we can localize
more precisely these zeros and prove that in the last interval there are exactly 3
zeros. So we have proved that the polynomial P3 has exactly 4 zeros in the interval
(0, 52/75) ≈ (0, 0.693), and each one of them is contained in one of the following
intervals

(0.5614, 0.5615) , (0.6678, 0.6679) , (0.6690, 0.6700) , (0.6870, 0.6880) .

In brief, for t ∈ (0, 0.6678] the double discriminant △y,x(Nb) only vanishes at two
points t = t1 and t = t2 with t1 ∈ (0.5614, 0.5615) and t2 ∈ (0.5617, 0.5618).
Therefore we are under the hypothesis (ii) of Proposition 5.12 for b belonging to
each of the intervals (0, b1), (b1, b2) and (b2, 0.8171), where

b1 :=
√
t1 ≈ 0.749301, b2 :=

√
t2 ≈ 0.749478.

To ensure that on each interval we are under the hypotheses (i) of the proposition
we prove that Nb does not vanish on Ω for one value of b in each of the above
three intervals. We take

1

2
∈ (0, b1),

7494

10000
∈ (b1, b2), and

3

4
∈ (b2, 0.8171).
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We study with detail the case b = 1/2. The other two cases can be treated similarly
and we skip the details. So we have to study on Ω the sign of the function

N1/2 = 135
34359738368x

10y2 + 45
34359738368x

8y4 + 45
34359738368x

10 + 117964485
137438953472x

8y2

+ 138195
268435456x

7y3 + 39253779
137438953472x

6y4 + 39321555
137438953472x

8 + 45
17179869184x

7y

+ 320504301
137438953472x

6y2 + 1932072223485
17179869184 x5y3 − 906074381

8589934592x
4y4 + 645

1048576x
6

+ 1229859
1073741824x

5y + 5315442024413
8589934592 x4y2 − 1808748465

4194304 x3y3 + 6763995071
8388608 x2y4

+ 1258289751
8388608 x4 + 55625

262144x
3y − 1910154937

4194304 x2y2 + 26361865
262144 xy3 + 15

64y
4

− 316538295
8388608 x2 + 585

1048576xy +
45
2 y

2 + 975
64 .

We consider N1/2 as a polynomial in x with coefficients in R[y] and we apply
Lemma 5.6 with Ωy = (−1/y,∞) when y > 0 and Ω0 = (−∞,∞). Notice
that for the symmetry of the function there is no need to study the zone y < 0
because N1/2(−x,−y) = N1/2(x, y). We introduce the following notation Sy(x) :=
N1/2(x, y). We prove the following facts:

(i) If we write Sy(x) =
∑1

i=1 0si(y)x
i, then s10(y) = k(1+3y2) for some k ∈ Q+.

Therefore s10(y) > 0 for all y ∈ R.
(ii) If y = 0 then S0(x) is an even polynomial of degree 10 and it is easy to see

that S0(x) > 0 over R.
(iii) We already know that {Sy(x) = 0} ∩ ∂Ω = ∅.
(iv) Some computations give that

△x(Sy) = P35(y
2),

where P35 is a polynomial of degree 35. Moreover, using once more the Sturm
method, we get that P35(y

2) has only two positive roots 0 < y1 < y2, with
y1 ≈ 0.588423 and y2 ≈ 6065.2946. From this result it is easy to prove that:
(a) If y ∈ [0, y1) ∪ (y2,∞), then Sy(x) > 0.
(b) If y ∈ (y1, y2), then Sy(x) has only two real roots, say x1(y) < x2(y),

and none of them belongs to the interval (−1/y,∞). So Sy(x) > 0 on
(−1/y,∞).

(c) If y ∈ {y1, y2}, then Sy(x) has only a real root, x1(y), which is a double
root and x1(y) 6∈ (−1/y,∞). So, again Sy(x) > 0 on (−1/y,∞).

Thus, by Lemma 5.6, the function N1/2 is positive on (x, y) ∈ Ω, as we wanted
to see. In fact, its level curves are like the ones showed in Figure 14. The straight
lines y = y1 and y = y2 correspond to the lower and upper tangents to the oval
contained in the second quadrant.
To be under all the hypotheses of Proposition 5.12 it only remains to study the

function Ñb at infinity. We denote by Ñb(x, y, z) its homogenization in RP2 and by

Ñ1
b (x, z) and Ñ

2
b (y, z) the expressions of the function Ñb in the planes {(x, z)} and

{(y, z)}, respectively. Since H12(Nb) = 90b36x8y2[3x2 + y2], the only non-trivial
solutions of H12(Nb) = 0 are x = 0 and y = 0. Hence these directions give rise to
two points of Nb at infinity which are also on the region Ω. They correspond to

the points (0, 0) of the algebraic curves Ñ1
b (x, z) = 0 and Ñ2

b (y, z) = 0. We have
to prove that both points are uniformly isolated.
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Similarly that in the previous subsection, we write

Ñ1
b (εX, εZ) =

(
90b36X8 − 3b18(30b20 + 120b16 + 100b14 + 36b10 − 25)X6Z2

+ b10(360b26 + 300b24 + 198b20 + 360b12 − 615b10 + 720b8 − 300b6 − 250b4 − 90)X4Z4

+ (−738b24 + 1080b22 − 1080b20 + 300b18 + 250b16 + 315b12 + 300b4 − 450b2 + 900)X2Z6

+ 15b6Z8
)
ε8 +O(ε9)

and

Ñ2
b (εY, εZ) = 90b36(3Y 2 + Z2)ε2 +O(ε3).

By Proposition 5.11, for the second algebraic curve it is clear that for all b > 0
(0, 0) is an isolated point.
For studying the first one we denote by R(X,Z) the homogenous polynomial

accompanying ε8 and we obtain that

△X(R(X,Z)) = Z56b150(P71(b
2))2,

for some polynomial P71 of degree 71 and integer coefficients. Since the smallest
positive root of this polynomial is greater that 0.92 we can easily prove that for
b < 0.92, R(X,Z) = 0 if and only if X = Z = 0. Therefore we can use again
Proposition 5.11 and prove that (0, 0) is an uniformly isolated point of the curve
for these values of b.
So, if we write

(0, 0.8171) = (0, b1) ∪ {b1} ∪ (b1, b2) ∪ {b2} ∪ (b2, 0.8171),

we can apply Proposition 5.12 to each one of the open intervals to prove that for
b ∈ (0, 0.817] \ {b1, b2} it holds that Nb(x, y) > 0 for all (x, y) in Ω. By continuity,
for the two values b ∈ {b1, b2}, we obtain that Nb(x, y) ≥ 0. Since △y(Nb) 6≡ 0
either it is always positive or it vanishes only at some isolated points, as we wanted
to prove.
It can be seen that for b & b̂ ≈ 0.81722, Nb(x, y) changes sign on Ω because there

appears one oval in the set {Nb(x, y) = 0}. The value b̂2 ≈ 0.6678492 corresponds
to the root of P3 in the interval (0.6678, 0.6679) that has appeared in the proof as
a root of the double discriminant.
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