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REMOVABLE SINGULARITIES FOR ANALYTIC FUNCTIONS

IN THE LITTLE ZYGMUND SPACE

JUAN J. DONAIRE

Abstract. Using estimates of the law of the iterated logarithm type, a sharp
sufficient condition for a compact set to be removable for analytic functions in

the little Zygmund space is given.

1. Introduction and statement of results.

One classical problem in complex analysis is the description, in metric or geometric
terms, of those plane compact sets K with the property that all functions, analytic
outside K, which belong to some space of functions X can be extended analytically
to the entire plane. In this case the set K is said to be removable for the analytic
functions in X or more briefly X-removable. Of course, the description of such sets
depends on the space X considered.
The problem we want to study in this paper is the case when X is the little Zygmund
class, space that we define here for the reader’s convenience.
The Zygmund space Λ∗(C) is defined as the set of complex valued functions f in C
which are bounded and such that

‖f‖∗ = sup
z,h∈C

|f(z + h) + f(z − h)− 2f(z)|
2|h| <∞ .(1.1)

It is known that the boundedness of f and (1.1) together imply that f is continuous
with modulus of continuity verifying ωf (δ) = O(δ| log δ|) as δ → 0+. On the other
hand it is easy to prove that Λ∗(C), equipped with the norm ‖f‖∗ + ‖f‖∞, is a
Banach space.
The closure of bounded C∞ functions in Λ∗(C) is an important subspace which we
denote by λ∗(C) and it is called the little Zygmund space. It can be proved that
such space consists in all Zygmund functions f for which the function

η(δ) = sup
z∈C

sup
|h|<δ

|f(z + h) + f(z − h)− 2f(z)|
2|h|(1.2)

tends to zero as δ → 0. It is clear that η is an increasing function and it follows
from its definition that it satisfies the doubling condition η(2δ) ≤ 2η(δ) for δ > 0.
The Zygmund space is closely related to the Lipschitz spaces (see [16]). Nevertheless
the behaviour with respect to removability problems is essentially different. In
order to describe sets that are Lipschitz-removable, let us remember the definition
of Hausdorff measure.
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Given an increasing positive continuous function ϕ such that ϕ(0) = 0 the ϕ-
Hausdorff measure of a set E ⊂ C is defined to be

Hϕ(E)= lim
ε→0

inf
{∑

ϕ(diam (Bj)) : Bj are open disks, E⊂∪Bj , diam (Bj)<ε
}
.

If in the last limit we let ε → ∞ we obtain the definition of Hausdorff content,
which we denote by Mϕ(E). Obviously Mϕ(E) ≤ Hϕ(E) but it is not difficult to
prove that Mϕ(E) = 0 if and only if Hϕ(E) = 0. In the case that ϕ(t) = tβ for
some β > 0, it is usual to denote Hϕ(E) = Hβ(E) and the same for the Hausdorff
content. We refer the reader to the book [13] for more information about Hausdorff
measures.
Dolzenko [3] proved that a compact set K is Lipα-removable (0 < α < 1) if and
only if H1+α(K) = 0. The case α = 1 was solved by Uy in [17] and he proved that
sets that are Lip1-removable are those with zero area. On the other hand, when α
goes to zero, the space that must be considered is BMO and for this case, Kaufman
[8] proved that a compact set K is BMO-removable if and only if H1(K) = 0.
The situation for the Zygmund space is completely different. Using the fact that
the Cauchy transform of a bounded function belongs to Λ∗(C) (see [6, p. 80]) it is
not difficult to prove that compact sets of positive area are nonremovable for the
analytic functions in Λ∗(C). On the other hand, Uy [19] proved the existence of
compact sets of zero area but nonremovable for Λ∗(C) (see [1]). Finally, Kaufmann
[9] proved that does not exist any measure function ϕ with the property Mϕ(K) = 0
if and only if K is Λ∗-removable. Nevertheless in [1] it was shown that if MΦ(K) = 0
with

(1.3) Φ(t) = t2
√

log
1

t
log log log

1

t

then K is Λ∗-removable and that the function Φ is sharp in some sense.
In [4], a sufficient condition for Λ∗-removability was given in terms of a notion of
porosity.
In many aspects, the role played by λ∗ in Λ∗ is the same as the played by the space
lipα in Lipα. Consequently, in order to contextualize our problem is natural to
ask what is the lipα-removability condition. For this we require to remember the
definition of the lower Hausdorff content.

M∗ϕ(E) = sup{Mψ(E) : 0 ≤ ψ ≤ ϕ, ψ is increasing, lim
t→0+

ψ(t)

ϕ(t)
= 0} .

It follows from the Comparison Theorem for Hausdorff measures that if E has
measure Hϕ σ-finite, then M∗ϕ(E) = 0.
Using the notion of lower Hausdorff content, O’Farrell [15] proved that a compact
set K ⊂ C is lipα-removable if and only if M∗1+α(K) = 0. The corresponding result
for VMO-removability was proved by Verdera in [20]. He showed that a compact
set K is VMO-removable if and only if M∗1 (K) = 0.
The purpose of this paper is to prove a sharp sufficient condition for the λ∗-
removability in terms of a lower Hausdorff content.
First of all we have to mention that in [4] it is noted that it is possible to see, using
the main Lemma in [14], that a compact set of positive area is nonremovable for
the analytic functions in λ∗(C).
Our results are the following.
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Theorem 1. Let K ⊂ C be a compact set such that M∗Φ(K) = 0, being Φ the
function defined in (1.3). Then K is λ∗-removable.

Theorem 2. For any continuous measure function Ψ such that Ψ(t) = o(Φ(t))
as t → 0+ there exists a compact set K ⊂ C such that M∗Ψ(K) = 0 and K is
nonremovable for λ∗.

The paper is organized as follows. In section 2 we prove Theorem 1. The proof of
Theorem 2 is provided in section 3. The key point for this is Proposition 2. Since
the proof of this one is rather technical we have decided to pospone it until the last
section.

2. Proof of Theorem 1.

The ideas we are going to use in the proof of Theorem 1 are the same as the used in
[1], that is, we will make use of the techniques of Stochastic Processes introduced
by Makarov in [11] and [12]. Nevertheless the case λ∗ is a little bit more delicate
and requires a deeper treatment. Here we summarize the most important facts that
we shall use concerning this theory.
As in [1] let us denote by Q0 the unit square in C and by Dn the set of dyadic
squares of the form

[
k

2n
,
k + 1

2n

)
×
[
j

2n
,
j + 1

2n

)
, 0 ≤ k, j < 2n .

A dyadic martingale (Sn), n ≥ 0, is a sequence of complex integrable functions
defined on Q0 such that for any n ≥ 0, the function Sn is constant on every square
of Dn and for any R ∈ Dn one has

∫
R
Sn dm =

∫
R
Sn+1 dm.

If (Sn) is a dyadic martingale, we shall denote by (S∗n) its maximal function, that
is

S∗n(z) = max
1≤j≤n

|Sj(z)| .

An important fact is that if (Sn) is a dyadic martingale and p ∈ (1,∞) then
∫

Q0

(S∗n)p dm(z) ≤ C
∫

Q0

|Sn|p dm(z) ,

where C only depends on p. This is known as the Maximal Theorem for martingales.
If ϕ is a complex integrable function defined on Q0, the conditional expectation
E(ϕ|Dn) is the function which is constant on every square of Dn and takes the
values

E(ϕ|Dn)|Q ≡
1

|Q|

∫

Q

ϕdm ,

for any Q ∈ Dn.
The exponential transform of a dyadic martingale (Sn) is the sequence defined by

(2.1) Zn =
exp(Sn)

Πn
k=1E (exp(Sk − Sk−1)|Dk−1)

.

It is not hard to prove that the exponential transform of a dyadic martingale is
again a dyadic martingale.
The following Proposition is the key in the proof of Theorem 1 (compare to Theorem
A in [1] and Theorem 3.1 in [12]).
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Proposition 1. Let η be a positive increasing function such that it satisfies a

doubling condition η(2t) ≤ Cη(t), limt→0 η(t) = 0 and
∫ 1

0
η(s)2

s ds = ∞. Let (Mn)

be a real dyadic martingale so that M0 = c > 0 and ‖Mn+1 −Mn‖∞ = O(η(2−n)).
Then

HΨ({z ∈ Q0 : Mn(z) > 0 for all n ≥ 0}) > 0 ,

where

(2.2) Ψ(t) = t2

√∫ 1

t

η(s)2

s
ds log log

∫ 1

t

η(s)2

s
ds .

Remark. If

∫ 1

0

η(s)2

s
ds is finite, HΨ is, up to a constant, the Lebesgue measure. On

the other hand the convergence of the integral and the assumption on the increments
of (Mn) together imply that the martingale converges a.e. to a function in the L2-
norm. A standard argument using the stopping time τ = inf{n ≥ 0 : Mn < 0}
allows us to obtain the corresponding result.

For this reason, previous result has only a significant relevance if

∫ 1

0

η(s)2

s
ds =∞.

Assuming that this proposition has been proved, let us derive the proof of Theo-
rem 1.
Proof of Theorem 1. Suppose K is a compact set with

(2.3) M∗Φ(K) = 0 .

We can assume that K ⊂ (0, 1) × (0, 1). If K is not λ∗-removable there exists a
function f ∈ λ∗(C) which is analytic on C \K and so that f cannot be extended
holomorphically to C. Consequently there exists a square Q for which

∫

∂Q

f(z) dz 6= 0 .

Multiplying by a suitable constant we can assume that

Re

∫

∂Q0

f(z) dz = c > 0 .

For any n ≥ 0 let us define the following sequence of functions (Sn) on Q0,

Sn(z) =
1

|Q|Re

∫

∂Q

f(ζ) dζ ,

where Q is the unique square in Dn which contains z. It is not difficult to check
that (Sn) is a dyadic martingale that verifies ‖Sn+1 − Sn‖∞ ≤ Cη(2−n), where
C > 0 is an absolute constant and η is the function associated to f defined in (1.2).
On the other hand, if z ∈ Q0 \K there exists a natural number N so that for any
n ≥ N , the square of Dn which contains the point z is disjoint from K. Since f is
analytic on the complement of K we obtain Sn(z) = 0 for any n ≥ N . Consequently,
the compact set K contains the set of points z ∈ Q0 for which Sn(z) > 0 for all
n ≥ 0.
By assumption, f ∈ λ∗(C) and thus, the function η defined in (1.2) verifies the
hypotheses of Proposition 1. Moreover the martingale (Sn) is also in the hypotheses
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of this Proposition. Consequently, the compact set K verifies that HΨ(K) > 0,
being Ψ the function (2.2). Since limt→0 η(t) = 0,

lim
t→0

1

log 1
t

∫ 1

t

η(s)2

s
ds = 0 ,

which implies that M∗Φ(K) > 0 and this contradicts (2.3). �
Thus, in order to prove Theorem 1 it is enough to prove Proposition 1. For getting
this purpose, we will need several technical lemmas. From now on the function η
that appears in the statement of Proposition 1 will remain fixed. We can suppose,
without lose of generality that η(1) ≤ 1.
We shall use the following notation.

(2.4) V (t) =

∫ 1

t

η(s)2

s
ds .

In view of the doubling property of function η it is clear that V (2−n) is comparable
to
∑n
j=0 η(2−j)2.

Lemma 1. Let (Mn) be the martingale of Proposition 1. There exists a constant

β so that if (Z
(t)
n ) is the exponential transform of (tMn) (t > 0), then

Z(t)
n ≥ exp(tMn − βt2V (2−n)) .

Proof. As in [1] let us denote by α the maximum of the function

f(x1, . . . , x4) =
4 log 1

4

∑4
j=1 e

xj

∑4
j=1 x

2
j

,

restricted to the set {(x1, . . . , x4) :
∑4
j=1 xj = 0,

∑4
j=1 x

2
j 6= 0}.

The constant α has been chosen in such a way that the inequality

(2.5) E(exp(Mk −Mk−1)|Dk−1) ≤ exp(αE((Mk −Mk−1)2|Dk−1))

is optimal.
From last inequality we get

Z(t)
n =

exp(tMn)

Πn
k=1E (exp(tMk − tMk−1)|Dk−1)

≥ exp(tMn)

Πn
k=1 exp(αt2E((Mk −Mk−1)2|Dk−1))

= exp

(
tMn − αt2

n∑

k=1

E((Mk −Mk−1)2|Dk−1)

)
(2.6)

Taking into account that |Mk −Mk−1| ≤ Cη(2−k) we have that
n∑

k=1

E((Mk −Mk−1)2|Dk−1)) ≤ C
n∑

k=1

η(2−k)2 ≤ C1V (2−n) .

Using this inequality in (2.6) and writing β = C1α, we obtain the desired result. �
Lemma 2. Under the hypothesis of Proposition 1, if a > c then

(1) m({z ∈ Q0 : M∗n(z) > a}) ≤ 2 exp
(
− (a−c)2

4βV (2−n)

)
.

(2) For any positive integer p,
∫
Q0

(M∗n)2p dm ≤ Cp1V (2−n)pp!, where C1 is an

absolute constant.
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The proof of this Lemma follows from Lemma 1 using similar arguments as in the
proof of Lemma 2 in [1].
The final step in the proof of Proposition 1 requires the construction of a special
measure that will be supported on the set {z : Mn(z) > 0 for all n}.
Let us consider the stopping time τ(z) = inf{n : Mn ≤ 0} if last set is nonempty
and τ(z) =∞ if Mn(z) > 0 for any n. Using this stopping time, define the following
sequence of measures

dµn = M+
n∧τ dm .

It is clear that µn(Q0) ≥ c > 0, because (Mn∧τ ) is a dyadic martingale and con-
sequently, has constant expectation. On the other hand, since |Mn − Mn−1| ≤
C2η(2−n), for some constant C2, we have that M−n∧τ ∈ [0, C2η(1)]. Consequently

µn(Q0) =

∫

Q0

M+
n∧τ dm =

∫

Q0

Mn∧τ dm+

∫

Q0

M−n∧τ dm ≤ c+ C2η(1) .

Thus we have that

c ≤ µn(Q0) ≤ c+ C2η(1) ,

for any n ≥ 0.
Let µ be some limit measure of the sequence (µn) in the weak-star topology which
will remain fixed trough the rest of this section.
The following Lemma is the analogous of Lemma 3.4 in [12].

Lemma 3. There exists an absolute constant C > 0 such that

(2.7)

∫

Q0

(Mn∧τ )
2p+1

dm ≤ Cpp!V (2−n)p ,

for any nonnegative integer p.

Proof. For simplicity, let us denote Pn = Mn∧τ . If n is so that, V (2−n) ≤ 22p,
the proof is a simple consequence of the second part Lemma 2 and the fact that
(2p)! ≤ 4p(p!)2.

∫

Q0

P 2p+1
n dm ≤

(∫

Q0

(M∗n)4p dm

)1/2(∫

Q0

(M∗n)2 dm

)1/2

≤
(
C2p

1 V (2−n)2p(2p)!
)1/2 (

C1V (2−n)
)1/2 ≤ (4C1)pC

1/2
1 V (2−n)p

and the result follows if C is chosen large enough.
If V (2−n) > 22p the proof of (2.7) is not so easy and it will be made by induction
on p. If p = 0, then (2.7) is obvious.
Let us denote by 4Pk = Pk − Pk−1, that is, (4Pk) are the increments of the
martingale (Pn). It is clear that | 4 Pk| ≤ | 4Mk| ≤ C2η(2−k). Then

∫

Q0

P 2p+1
k dm =

∫

Q0

(Pk−1+4Pk)2p+1 dm =

2p+1∑

j=0

(
2p+ 1

j

)∫

Q0

P 2p+1−j
k−1 (4Pk)j dm .

Since (Pn) is a martingale, the term corresponding to j = 1 is zero, consequently,

∫

Q0

P 2p+1
k dm−

∫

Q0

P 2p+1
k−1 dm =

2p+1∑

j=2

(
2p+ 1

j

)∫

Q0

P 2p+1−j
k−1 (4Pk)j dm .
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Using last identity we have
∫

Q0

P 2p+1
n dm =

n∑

k=1

(∫

Q0

P 2p+1
k dm−

∫

Q0

P 2p+1
k−1 dm

)
+

∫

Q0

P 2p+1
0 dm

=

n∑

k=1

2p+1∑

j=2

(
2p+ 1

j

)∫

Q0

P 2p+1−j
k−1 (4Pk)j dm+

∫

Q0

P 2p+1
0 dm

=
n∑

k=1

p∑

j=1

(
2p+ 1

2j + 1

)∫

Q0

P
2(p−j)
k−1 (4Pk)2j+1 dm

+

n∑

k=1

p∑

j=1

(
2p+ 1

2j

)∫

Q0

P
2(p−j)+1
k−1 (4Pk)2j dm+

∫

Q0

P 2p+1
0 dm .

Let us use the following notations.

Σ1 =
n∑

k=1

p∑

j=1

(
2p+ 1

2j + 1

)∫

Q0

P
2(p−j)
k−1 (4Pk)2j+1 dm ,

Σ2 =
n∑

k=1

p∑

j=1

(
2p+ 1

2j

)∫

Q0

P
2(p−j)+1
k−1 (4Pk)2j dm ,

that is ∫

Q0

P 2p+1
n dm = Σ1 + Σ2 + c2p+1 .

In order to estimate Σ1 we shall use Lemma 2 and the fact that η(2−k)2j+1 ≤
η(2−k)2 for any k and j ≥ 1.

Σ1 ≤
n∑

k=1

p∑

j=1

(
2p+ 1

2j + 1

)∫

Q0

|Pk−1|2(p−j)| 4 Pk|2j+1 dm(2.8)

≤
n∑

k=1

p∑

j=1

(
2p+ 1

2j + 1

)
Cp−j1 (p− j)!V (2−k−1)p−jC2j+1

2 η(2−k)2j+1

≤
p∑

j=1

(
2p+ 1

2j + 1

)
Cp−j1 C2j+1

2 (p− j)!
n∑

k=1

V (2−k+1)p−jη(2−k)2 .

Now for estimating Σ2, let us note first that if Pk−1(z) < 0 then 4Pk(z) = 0.
Consequently,∫

Q0

P
2(p−j)+1
k−1 (4Pk)2j dm =

∫

{Pk−1≥0}
P

2(p−j)+1
k−1 (4Pk)2j dm

≤ C2j
2 η(2−k)2j

∫

{Pk−1≥0}
P

2(p−j)+1
k−1 dm

= C2j
2 η(2−k)2j

∫

Q0

P
2(p−j)+1
k−1 dm

− C2j
2 η(2−k)2j

∫

{Pk−1<0}
P

2(p−j)+1
k−1 dm

≤ C2j
2 η(2−k)2j

∫

Q0

P
2(p−j)+1
k−1 dm+ C2p+1

2 η(2−k)2p+1 .
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Using last inequality and the induction hypothesis we have

Σ2 ≤
n∑

k=1

p∑

j=1

(
2p+ 1

2j

)(
C2j

2 η(2−k)2j

∫

Q0

P
2(p−j)+1
k−1 dm+ C2p+1

2 η(2−k)2j

)

≤
n∑

k=1

p∑

j=1

(
2p+ 1

2j

)(
C2j

2 η(2−k)2jCp−j(p− j)!V (2−(k−1))p−j+C2p+1
2 η(2−k)2j

)

≤
p∑

j=1

(
2p+ 1

2j

)
C2j

2 Cp−j(p− j)!
(

n∑

k=1

V (2−(k−1))p−jη(2−k)2

)

+ 22pC2p+1
2

n∑

k=1

η(2−k)2 .

Now observe that

n∑

k=1

V (2−(k−1))p−jη(2−k)2 is less than or equal to

∫ 1

2−n

V (t)p−j
η(t)2

t
dt =

V (2−n)p−j+1

p− j + 1
,

consequently, using the last fact, inequality (2.8) and the estimate for Σ2 we have
∫

Q0

P 2p+1
n dm ≤

p∑

j=1

((
2p+1

2j+1

)
Cp−j1 C2j+1

2 +

(
2p+1

2j

)
C2j

2 Cp−j
)

(p− j)!V (2−n)p−j+1

p− j + 1

+ 22p+1C2p+1
2 V (2−n) + c2p+1 .

In the last sum, we separate the term corresponding to j = 1 and estimate the
others in the trivial way.
∫

Q0

P 2p+1
n dm ≤ (p− 1)!

[(
2p+ 1

3

)
Cp−1

1 C3
2 +

(
2p+ 1

2

)
C2

2C
p−1

]
V (2−n)p

p

+ (p− 2)!V (2−n)p−122p+1
(
Cp−2

1 C2p+1
2 + C2p

2 Cp−2
)

+ 22p+1C2p+1
2 V (2−n) + c2p+1

≤ 2(p+ 1)!V (2−n)pCp−1
1 C3

2 + 3p!C2
2C

p−2V (2−n)p

+ (p− 2)!V (2−n)p−122p+1
(
Cp−2

1 C2p+1
2 + C2p

2 Cp−2
)

+ 22p+1C2p+1
2 V (2−n) + c2p+1

= p!V (2−n)pCp

[
2(p+ 1)

Cp−1
1

Cp
+

3

C
+

22p+1

p(p− 1)C2V (2−n)

+
c2p+1

p!V (2−n)pCp
+

22p+2

p!V (2−n)p−1Cp

]
≤ p!V (2−n)pCp ,

where the last inequality follows if C has been chosen large enough so that the sum
inside the parenthesis is smaller than 1. �
From Lemma 3 we deduce that∫

Q0

|Mn∧τ |2p+1 ≤ Cpp!V (2−n)p ,(2.9)

because on the set {Mn∧τ < 0} we have that Mn∧τ > −η(1).
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Inequality (2.9) and the maximal theorem for martingales allows us to obtain that
∫

Q0

(M∗n∧τ )
2p+1 ≤ Cpp!V (2−n)p .(2.10)

Lemma 4. If p ≥ 0 then∫

Q0

(M∗n)2p dµ ≤ Cpp!V (2−n)p ,

where C is an absolute constant.

Proof. Since M∗n is constant on every square of Dn, we have that
∫

Q0

(M∗n)2p dµ =

∫

Q0

(M∗n)2pM+
n∧τ dm=

∫

Q0

(M∗n)2pMn∧τ dm+

∫

Q0

(M∗n)2pM−n∧τ dm

=

∫

Q0

(M∗n)2pMn∧τ dm−
∫

{τ≤n}
(M∗n)2pMτ dm

=

∫

{τ>n}
(M∗n)2pMn dm− 2

∫

{τ≤n}
(M∗n)2pMτ dm

≤
∫

{τ>n}
(M∗n)2p+1Mn dm+2η(1)

∫

{τ≤n}
(M∗n)2p dm≤Cpp!V (2−n)p ,

because of (2.10). �
With these previous results, we can prove Proposition 1.
Proof of Proposition 1. For ` ≥ 0, let us consider the following sequence of positive
integers.

n` = min{n : V (2−n) ≥ 2`} .
It is clear that

(2.11) 2` ≤ V (2−n`) ≤ 2`+1 .

Let us consider the following sequence of sets.

A` = {z ∈ Q0 : Mn(z) ≤Mϕ(V (2−n)) for any n ≥ n`} ,
being ϕ(s) =

√
s log log s and M a constant large enough that will be chosen later.

Now observe that

Q0 \A` ⊂ ∪j≥`{z ∈ Q0 : Mk(z) > Mϕ(V (2−k)) for some k ∈ [nj , nj+1]}
⊂ ∪j≥`{z ∈ Q0 : M∗nj+1

(z) > Mϕ(V (2−nj ))} .
On the other hand, for any positive integer p,

µ({M∗nj+1
(z)>Mϕ(V (2−nj ))}) ≤ 1

Mpϕ(V (2−nj ))p

∫

Q0

(
M∗nj+1

)p
dµ

≤ 1

Mpϕ(V (2−nj ))p

(∫

Q0

(
M∗nj+1

)2p
dµ

)1/2
µ(Q0)1/2 .

By Lemma 4, last expression is less than or equal to

1

Mpϕ(V (2−nj ))p
Cp/2(p!)1/2V (2−nj+1)p/2µ(Q0)1/2 ,

which is controlled by

(2.12)
1

Mpϕ(2−j)p
Cp/2(p!)1/2(2j+1)p/2µ(Q0)1/2 ≤

(
Cp

M2 log j

)p/2
,
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because of (2.11) and Stirling’s formula. Now choose p the integer part ofM2log j/2C.
If M is large enough, we have that the right hand term of (2.12) is bounded above
by 1/2j2. Consequently

µ(∪lAl) = µ(Q0) .

Let B be set {z ∈ Q0 : Mn(z) > 0 for any n ≥ 0}. Then by the definition of µ we
have that

(2.13) c ≤ µ(Q0) = µ(B ∪
⋃

l

Al)

Let us consider a covering of B by dyadic squares. If R ∈ Dn is one of these squares,
then

µ(R) = lim
k→∞

∫

R

M+
k∧τ dm = lim

k→∞

(∫

R

Mk∧τ dm+

∫

R

M−k∧τ dm

)

≤
∫

R

Mk∧τ dm+ η(1)m(R) ≤Mϕ(V (2−n))m(R)

≤ MΨ(diamR) ,

where Ψ is the function which appears in the statement of Proposition 1.
Now, returning to (2.13) we obtain that

0 < c ≤
∑

j

µ(Rj) ≤M
∑

j

Ψ(diamRj) ,

for any dyadic covering of B. Consequently, MΨ(B) > 0. �

3. Proof of Theorem 2.

The proof of Theorem 2 is a consequence of the following two facts.

Proposition 2. For any increasing function η such that η(0) = 0, η(2t) ≤ Cη(t)

and
∫

0
η(s)2

s ds =∞ there exists a compact set K ⊂ (0, 1) such that

(1) Hψ(K) <∞, being

(3.1) ψ(t) = t

√∫ 1

t

η(s)2

s
ds log log

∫ 1

t

η(s)2

s
ds .

(2) K supports a positive singular measure µ such that

(3.2) |µ(I)− µ(I ′)| ≤ C|I|η(|I|) ,
for any pair of adjacent intervals I and I ′ of the same length.

Proposition 3. Let µ be a positive measure on C such that for any pair of adjacent
squares Q and Q′, of the same size and with edges parallel to the axes,

(3.3) |µ(Q)− µ(Q′)| = o(m(Q)) as m(Q)→ 0 .

Then the function

f(z) =

∫

C

dµ(ζ)

ζ − z
is continuous in C and belongs to λ∗(C).
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Proposition 3 can be proved following the same scheme as the main result in [18]
Assume that Propositions 2 and 3 have been proved.
Proof of Theorem 2. Let us consider a positive increasing function η in the assump-
tions of Proposition 2 such that

Ψ(t) = o(tψ(t)) ,

being ψ the function defined on (3.1). Let K be the compact set given by this
Proposition and define F = K × [0, 1]. If we denote by η(t) = tψ(t), it is not
difficult to check that Hη(F ) is finite and thus M∗Ψ(F ) = 0. In order to prove that
F is not λ∗-removable, first we shall see that it supports a measure ν verifying
(3.3).
Let h be a positive C2 function supported on (0, 1) and let ν be the measure µ×h dy.
It is clear that ν is supported on F . For j = 1, 2, let us denote by Qj = [aj , bj ] ×
[cj , dj ] two adjacent squares with side length h. We have two cases. First, if a1 = a2,

|ν(Q1)−ν(Q2)|=
∣∣∣∣∣µ([a1, b1])

(∫ d1

c1

h(s) ds−
∫ d2

c2

h(s) ds

)∣∣∣∣∣ ≤ Ch
3 log(1/h)=o(h2) .

The second case is c1 = c2. Then

|ν(Q1)− ν(Q2)| =
∫ d1

c1

h(s) ds |µ([a1, b1])− µ([a2, b2])| ≤ Ch2η(h) = o(h2) .

Now, by Proposition 3, the Cauchy transform of the measure ν belongs to the little
Zygmund space. Moreover is analytic on C\F but not on the entire plane, because
ν is not the zero measure. �

4. Estimates on the size of Kahane’s compact sets.

The proof of Proposition 2 requires an accurate estimate on the size of a collection
of compact sets defined by Kahane in [7], similar to the obtained by Makarov in
[10]. Actually, the scheme we are going to follow is the same of Makarov.
Fix the function η appearing in the statement of Proposition 2. For j ≥ 1 let cj be
the smallest power of 1/2 which is bigger than η(4−j). With this definition, (cj) is
a decreasing sequence of positive numbers such that cj is comparable to η(4−j) and

for any j ≥ 1, cj+1 = cj or cj+1 = cj/2. On the other hand, since
∫

0
η(s)2

s ds = ∞
and η is doubling it turns out that

∑∞
n=1 c

2
n =∞.

For any n ≥ 0 let us denote by Qn the set of the intervals of the form

[
k

4n
,
k + 1

4n
) 0 ≤ k < 4n .

We are going to define a sequence of simple functions (Sn) in such a way that for any
n ≥ 0, Sn is constant on every interval of Qn. Let S0 be the function which takes
the value 1 over the interval [0, 1) and assume that S1, . . . , Sn have been defined.
Given I ∈ Qn let I1, . . . , I4 be the four intervals in Qn+1 which are contained in I
and let I− and I+ be the intervals of Qn which are adjacent to I on the left and on
the right respectively.
If j ∈ {1, 2, 3, 4}, we define

Sn+1(Ij) = Sn(I) + εjcn+1 ,
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where εj ∈ {−1, 1}, ε1ε2 = −1, ε3ε4 = −1 and

ε1 = 1 if Sn(I−) > Sn(I)

ε1 = −1 if Sn(I−) ≤ Sn(I)

ε4 = 1 if Sn(I+) > Sn(I)

ε4 = −1 if Sn(I+) ≤ Sn(I)

With this definition, if I ∈ Qn it is clear that Sn(I) is, choosing the corresponding
sequence of signs, equal to 1± c1 ± · · · ± cn.
We define

(4.1) E = {x ∈ [0, 1) : Sn(x) > 0 for any n ≥ 1} .
For n ≥ 0, let Mn be the function given by

Mn(x) =

{
Sn(x) if S1(x), . . . , Sn(x) > 0

0 otherwise
,

and let µn = Mn dx. It is clear that (µn) is a sequence of probability measures.
Let µ be some limit in the weak star topology. From the definition, it follows that
µ is supported on E. Moreover the assumptions on η assure that E has Lebesgue
measure zero.
In [7] it is proved that the measure µ verifies (3.2). Thus our goal is to prove that
Hψ(E) <∞.

Lemma 5. There exists a positive constant α such that for any I ∈ Qm and for
any k > 0,

µ
(
I ∩ {Sm+k − Sm >

( m+k∑

j=m+1

c2j
)1/2}

)
≥ αµ(I) .

Proof. For n≥1, let us denote En=suppMn and, for convenience, σ=
( m+k∑

j=m+1

c2j
)1/2

.

If Mm(I) = 0 then µ(I) = 0 and there is nothing to prove. Thus assume that
Mm(I) = a > 0.
It is clear that

µ
(
I ∩ {Sm+k − Sm > σ}

)
=
∑

s>0

µ
(
I ∩ {Sm+k − Sm > σ} ∩ {Sm+k = s}

)
,

because in the last sum, there is only a finite number of nonvanishing terms. On
the other hand the set I ∩ {Sm+k − Sm > σ} ∩ {Sm+k = s} is union of intervals of
Qm+k. Consequently, for this set, the measures µ and µm+k take the same value.
Thus, if we denote by λ the Lebesgue measure in [0, 1],

µ
(
I ∩ {Sm+k − Sm > σ}

)
=
∑

s>0

µm+k

(
I ∩ {Sm+k − Sm > σ} ∩ {Sm+k = s}

)

=
∑

s>0

sλ
(
I ∩ {Sm+k − Sm > σ} ∩ {Sm+k = s} ∩ Em+k

)

=
∑

s>S

sλ
(
I ∩ {Sm+k > a+ S} ∩ {Sm+k = s} ∩ Em+k

)

≥
(
a+ S

)
λ(I ∩ Em+k ∩ {Sm+k > a+ S}) .
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Consequently, we have obtained the following estimate.

(4.2)
1

µ(I)
µ
(
I ∩ {Sm+k − Sm > σ}

)
≥ a+ σ

a

λ(I ∩ Em+k ∩ {Sm+k > a+ S})
λ(I)

.

Now observe that last quotient of measures coincides with the probability

P (T1 > −a, T2 > −a, . . . , Tk > σ) ,

where Tn =
∑n
j=1 cm+jXj with Xj independent Bernouilli random variables. By

the Reflexion Principle for random walks ([5]), last probability is equal to

P (Tk > σ)− P (Tk > 2a+ σ) .

We get finally that the right hand term of (4.2) is

(1 +
σ

a
)P (1 ≤ Tk

σ
≤ 1 + 2

a

σ
)

and this is bounded below because of definition of σ and the Berry-Essen uniform
version of the Central Limit Theorem (see [2]). �
For convenience, let us define the following sequence of positive integers.

(4.3) Vn = inf{k :
k∑

j=1

c2j ≥ n} .

Lemma 6. There exists a positive constant δ so that for any interval I ∈ QV2n−1

one has

µ
(
I ∩ {SV2n

− SV2n−1 ≥ δ(2n log2 n)1/2}
)
≥ 1

n
µ(I) .

Proof. Let k be the biggest integer such that 2k ≤ logn
log(1/α) , and define δ =

(4 log(1/α))−1/2 where α is the constant appearing in the statement of Lemma 5.
For j between 0 and 2k let us define d(j) = 2n−1(1 + j/2k) and the set

Cj = {SVd(j)
− SVd(j−1)

>
√

2−k2n−1} .

It is clear that if x ∈ ⋂2k

j=1 Cj then SV2n
(x)−SV2n−1 (x) >

√
2k2n−1 and taking into

account the definition of k we have that x belongs to the set for which we want to
estimate the measure. Thus it is enough to prove that

(4.4) µ
(
I ∩

2k⋂

j=1

Cj
)
≥ 1

n
µ(I) .

For this purpose, let j be an integer between 1 and 2k and suppose that J is an
interval of the generation Vd(j−1). Then by Lemma 5,

µ(J ∩ {SVd(j)
− SVd(j−1)

>

Vd(j)∑

`=Vd(j−1)+1

c2`}) ≥ αµ(J) .

Now observe that, by (4.3), the set in (4.4) is exactly Cj , consequently,

µ
(
I ∩

2k⋂

j=1

Cj
)

= µ
(
C2k ∩ I ∩

2k−1⋂

j=1

Cj
)
≥ αµ

(
I ∩

2k−1⋂

j=1

Cj
)
≥ . . . ≥ α2k

µ(I) ≥ 1

n
µ(I) ,

because of the definition of k. �



14 JUAN J. DONAIRE

Now let us consider the following sequence of sets.

AN =




x : Sk(x) ≤ δ




k∑

j=1

c2j log2 log2

k∑

j=1

c2j




1/2

, for any k ∈ [Vlog2N , VN ]




,

where δ is the constant in Lemma 6.

Lemma 7.

µ(A2N ) = O(
logN

N
) as N →∞ .

Proof. For j ≥ 1 let us consider the following set.

Bj = {x : SV2j
(x) ≤ δ

√
2j log2 j} ,

being δ the same constant as in lemma 6.

If x ∈ A2N then Sk(x) ≤ δ

√√√√
k∑

j=1

c2j log2 log2

k∑

j=1

c2j for any k between VN and V2N .

In particular we obtain that x is in Bj for all log2N < j < N . Therefore,

A2N ⊂
N⋂

j=log2N

Bj .

Now, fixed j, it is clear that Bj is a union of intervals of length 4−V2j . If I is an
interval of the generation V2j−1 , then

µ(Bj ∩ I) = µ(I)− µ(I \Bj) = µ(I)− µ(I ∩ {S2V2j
> δ
√

2j log2 j}) .
Since the martingale (Sn) is positive on the support of µ, we obtain

µ(I ∩ {SV2j
> δ
√

2j log2 j}) ≥ µ(I ∩ {SV2j
− SV2j−1 > δ

√
2j log2 j}) .

By Lemma 6, we have that the previous measure is bigger than µ(I)/j. Conse-
quently,

µ(Bj ∩ I) ≤ (1− 1

j
)µ(I) .

Then, by the additivity of µ we have

µ(∩jk=log2N
Bk) = µ(Bj ∩ ∩j−1

k=log2N
Bk) ≤ j − 1

j
µ(∩j−1

k=log2N
Bk) .

Iterating this inequality we obtain the desired result, because

µ(A2N ) ≤ µ(∩Nj=log2N
Bj) ≤

N∏

j=log2N

j − 1

j
=

log2N

N
. �

From Lemma 7 we deduce directly that if 2n ≤ N ≤ 2n+1, then

(4.5) µ(AN ) = O(
log logN

logN
) .

Lemma 8. λ(EVN
∩AN ) = O(

log logN√
N logN

) as N → ∞, being VN be the sequence

defined in (4.3).
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Proof. Let M be the integer part of

√
N

logN
and write,

λ(EVN
∩AN ) =

M∑

j=1

λ(EVN
∩AN ∩ {j − 1 < SVN

≤ j})(4.6)

+
∑

j>M

λ(EVN
∩AN ∩ {j − 1 < SVN

≤ j}) .

In order to estimate the second sum of (4.6) let us observe that the set appearing
there is union of dyadic intervals of length 4−VN . Thus

λ(EVN
∩AN ∩ {j − 1 < SVN

≤ j}) =≤ 1

j − 1
µ(EVN

∩AN ∩ {SVN
= s})

≤ 1

j − 1
µ(AN ∩ {SVN

= s}) .

Hence the second sum of (4.6) is less than or equal to
∑

j>M

1

j − 1
µ(AN ∩ {j − 1 < SVN

≤ j}) ≤ 1

M
µ(AN ) ≤ C1

log logN√
N logN

,

because of (4.5) and the selection of M .
For the first term of (4.6) we use again the Reflexion principle and the central
Limit Theorem. If (Wn) is a random walk with increments (cn), using again the
Reflection Principle, the first sum of the right term of (4.6) is less than or equal to

M∑

j=1

λ(EVN
∩ {j − 1 < SVN

≤ j})

≤
M∑

j=1

P (W1 > 0, . . . ,WVN−1 > 0, {j − 1 < SVN
≤ j}|W0 = 1)

=

M∑

j=1

(P ({j − 1 < WVN
≤ j}|W0 = 1)− P ({j − 1 < WVN

≤ j}|W0 = −1))

=

M∑

j=1

(P ({j − 2 < WVN
≤ j − 1}|W0 = 0)− P ({j < WVN

≤ j + 1}|W0 = 0))

= P ({−1 < WVN
≤ 1}|W0 = 0)− P ({M − 1 < WVN

≤M + 1}|W0 = 0).

By the central Limit theorem and the integral mean value theorem, this last differ-
ence becomes

C2
1√
N

(e−x
2
1/2 − e−x2

2/2) ,

where x1 ∈ ( −1√
N
, 1√

N
) and x2 ∈ ( 1√

logN
− 1√

N
, 1√

logN
+ 1√

N
).

Finally,since |x2 − x1| ≤
2√

logN
, a direct aplication of the mean value theorem

gives us the desired estimate that we want to see. �
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Now, we are able to prove Proposition 2
Proof of Proposition 2.
Given ε > 0, we are going to see that the set E defined in (4.1) has measure

H
(ε)
ψ (E) < c, where c does not depend on ε and ψ is the measure function defined

on (3.1).
Let N be a positive integer such that Vlog2N > log4 ε

−1. Then

(4.7) H
(ε)
ψ (E) ≤ H(ε)

ψ (EVN
\AN ) +H

(ε)
ψ (EVN

∩AN ) .

We are going to estimate the first term of (4.7). Let us observe that EVN
\ AN

is QVN
-measurable. If I is one the dyadic intervals of length 4−VN contained in

EVN
\AN then for any x ∈ I we have

Sk(x) > δ

√√√√
k∑

j=1

c2j log log
k∑

j=1

c2j

for some k between Vlog2N and VN . Moreover, the first k with this property is the
same for all points in I. So we can consider

kI = min



k ∈ [Vlog2N , VN ] : Sk(x) > δ

√√√√
k∑

j=1

c2j log log

k∑

j=1

c2j , x ∈ I



 .

Let J(I) be the interval of length 4−kI containing I. Then for intervals I1 6= I2,
of length 4−VN which appears in the decomposition of EVN

\AN , or J(I1) = J(I2)
either they are disjoint. Let F the familiy of intervals J(In), with In ∈ QVN

and
In ∩ (EVN

\AN ) 6= ∅.
If J ∈ F has length 4−k, then

µ(J) = Sk(J)4−k ≥ δ4−k
√√√√

k∑

j=1

c2j log log
k∑

j=1

c2j

≥ δ4−kc1

√∫ 1

4−k

η(s)2

s
ds log log

∫ 1

4−k

η(s)2

s
ds

≥ c1δψ(|J |) .
On the other hand, since k ≥ Vlog2N we have that 4−k < ε. Hence

H
(ε)
ψ (EVN

\AN ) ≤
∑

J∈F
ψ(|J |) ≤ 1

c1δ

∑

J∈F
µ(J) =

1

c1δ
.

For the second term of (4.7) we have

H
(ε)
ψ (EVN

∩AN ) = ψ(4−VN )4VNP (EVN
∩AN )

≤ c1

√√√√
VN∑

j=1

c2j log log

VN∑

j=1

c2jP (EN ∩AN )

≤ c2
log logN√

logN
≤ c3 ,

by Lemma 8 and the definition of VN . �
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