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C*-ALGEBRAS OF STABLE RANK ONE AND THEIR CUNTZ

SEMIGROUPS

RAMON ANTOINE, FRANCESC PERERA, LEONEL ROBERT, AND HANNES THIEL

Abstract. The uncovering of new structure on the Cuntz semigroup of a C*-
algebra of stable rank one leads to several applications: We answer affirmatively,

for the class of stable rank one C*-algebras, a conjecture by Blackadar and
Handelman on dimension functions, the Global Glimm Halving problem, and
the problem of realizing functions on the cone of 2-quasitraces as ranks of
Cuntz semigroup elements. We also gain new insights into the comparability
properties of positive elements in C*-algebras of stable rank one.

1. Introduction

A great deal of a C*-algebra’s structure is encoded in its Cuntz semigroup. This
is perhaps most apparent in the construction of the Cuntz semigroup from Hilbert
C*-modules by Coward, Elliott and Ivanescu. In this picture, elements of the Cuntz
semigroup are equivalence classes of countably generated Hilbert C*-modules under a
certain relation (see [CEI08]). This equivalence relation, although in general weaker
than isomorphism, agrees with the isomorphism relation for C*-algebras of stable
rank one (that is, C*-algebras whose invertible elements form a dense set). Thus, the
Cuntz semigroup of a C*-algebra of stable rank one is simply the set of isomorphism
classes of countably generated Hilbert C*-modules (over the C*-algebra) endowed
with the order induced by the embedding of Hilbert C*-modules, and with the
addition operation induced by the direct sum of Hilbert C*-modules.

In this paper we investigate Cuntz semigroups of C*-algebras of stable rank one.
By unraveling fine structural properties of these objects, we are able to resolve
relevant questions on dimension functions and on divisibility and comparability
properties of C*-algebras of stable rank one. These results push further the work
by the fourth author in [Thi17].

Stable rank one is a strong form of finiteness. Nevertheless, C*-algebras of stable
rank one are ubiquitous in manifold C*-algebra constructions (see [AP15, DHR97,
Rør04]). Further, stable rank one does not constitute a regularity property of the
kind encountered in the Elliott classification program of simple nuclear C*-algebras,
such as Z-stability or finite nuclear dimension. For example, Toms’s examples of
non-regular C*-algebras in [Tom06, Tom08] have stable rank one. Our results bring
about new insights into the structure of these elusive objects.

Given a C*-algebra A, let us denote its Cuntz semigroup by Cu(A). One of our
key results is as follows:

Theorem (3.8). Let A be a separable C*-algebra of stable rank one. Then every pair
of elements in Cu(A) has an infimum. Further, addition in Cu(A) is distributive
over the infimum operation.
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Directly stated in terms of Hilbert C*-modules, the existence of infima in Cu(A)
reads as follows: given countably generated Hilbert C*-modules E and F over
A, there exists a countably generated Hilbert C*-module E ∧ F , unique up to
isomorphism, that embeds in both E and F , and such that if a countably generated
Hilbert C*-module H embeds in both E and F then it embeds in E ∧ F . This
remarkable property proves especially useful when combined with the properties
of the Cuntz semigroup encapsulated in the abstract axioms of Cu-semigroups.
Equipped with these tools, we tackle a number of questions which we describe next.

1.1. A conjecture by Blackadar and Handelman. Let A be a unital C*-algebra.
Let W (A) denote the subsemigroup of Cu(A) of classes [H] such that H ↪→ An

for some n ∈ N. A map d : W (A) → [0,∞) is called a dimension function if
it is additive, order-preserving and d([A]) = 1. More concretely, a dimension
function assigns to each topologically finitely generated Hilbert C*-module a non-
negative real number in such a way that this number behaves as expected with
respect to direct sums and inclusions and such that A (as a module over itself) has
dimension 1. Denote by DF (A) the set of all dimension functions endowed with
the topology of pointwise convergence. Blackadar and Handelman conjectured in
[BH82] that DF (A) is a Choquet simplex for all C*-algebras A. This conjecture
has been confirmed in a number of instances, but it remains open in general; see
[Per97, BPT08, ABPP14, dS16]. The existence of infima (or rather, the Riesz
Interpolation Property) in the Cuntz semigroup readily implies that DF (A) is a
Choquet simplex. We thus confirm the Blackadar-Handelman conjecture for all
unital C*-algebras of stable rank one (Theorem 4.1).

1.2. The Global Glimm Halving Problem. A result of Glimm says that if a C*-algebra
A has an irreducible representation of dimension at least k ∈ N, then there exists a
non-zero *-homomorphism from Mk(C0((0, 1])) into A. The Global Glimm Halving
problem (for unital C*-algebras) asks whether there exists a *-homomorphism of
Mk(C0((0, 1])) into A with full range (that is, the range generates A as a closed
two-sided ideal) provided that A has no nonzero, finite dimensional representations.
This problem remains open in general. It is answered affirmatively in [ER06] for
C*-algebras of real rank zero. It is also considered in [BK04] and [RR13]. In [RR13],
the Global Glimm Halving problem is translated into an equivalence of divisibility
properties on the Cuntz semigroup of the C*-algebra. We rely on this alternative
formulation in order to solve the problem affirmatively for C*-algebras of stable
rank one. In the unital case, this reads as follows:

Theorem (5.7, 9.1). Let A be a unital C*-algebra of stable rank one, and let k ∈ N.
Then A has no nonzero representations of dimension less than k if and only if there
exists a *-homomorphism ϕ : Mk(C0((0, 1]))→ A with full range.

1.3. Realizing functions on QT (A) as ranks of Cuntz semigroup elements. Let QT (A)
denote the set of lower semicontinuous [0,∞]-valued 2-quasitraces on a C*-algebra
A. It is well known, stemming from the work of Blackadar and Handelman in
[BH82] that each τ ∈ QT (A) gives rise to a function dτ : Cu(A) → [0,∞], that
preserves addition, order and suprema of increasing sequences. More precisely, given
a countably generated Hilbert C*-module H,

dτ ([H]) = sup
{
τ(〈x, x〉) : x ∈ H, ‖x‖ 6 1

}
.

Let us now fix an element [H] ∈ Cu(A) and consider the map QT (A)→ [0,∞] given
by τ 7→ dτ ([H]). This is called the rank induced by [H].

The realization problem asks to describe the functions on QT(A) that arise
as ranks of elements of Cu(A). A variation on this problem, more frequently
encountered in the literature, considers the functions induced by Cuntz semigroup
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elements on the Choquet simplices of tracial states, or 2-quasitracial states, and again
asks exactly which functions are obtained in this way. Ranks of Cuntz semigroup
elements are linear, lower semicontinuous, and satisfy a technical approximation
property whose definition we defer to § 6.4. The collection of all functions with these
properties is denoted by L(QT (A)). One can then ask, more concretely, whether
all functions in L(QT (A)) can be realized as ranks of Cuntz semigroup elements.
An affirmative answer for simple, unital, separable C*-algebras of stable rank one
is given by the fourth author in [Thi17]. We extend the techniques of [Thi17] to
remove the assumption of simplicity and the existence of a unit and obtain:

Theorem (7.10). Let A be a separable C*-algebra of stable rank one that has no
nonzero, elementary ideal-quotients (that is, there are no closed, two-sided ideals
J ⊆ I of A such that I/J is a nonzero elementary C*-algebra). Then every function
in L(QT (A)) can be realized as the rank of a Cuntz semigroup element.

We prove a similar theorem in the traditional set-up where one seeks to realize
functions on the 2-quasitracial states as ranks; see Theorems 7.11 and 9.3.

1.4. Comparability properties. Comparability properties in the Cuntz semigroup,
such as strict comparison, m-comparison, or finite radius of comparison, measure
degrees of regularity of the C*-algebra. For simple nuclear C*-algebras, the Toms-
Winter conjecture asserts the equivalence of the strict comparison property with
‘harder’ forms of regularity such as Z-stability and finite nuclear dimension. Regu-
larity in the Cuntz semigroup, however, may be encountered in C*-algebras that
are both non-nuclear and tensorially prime (for example, the reduced C*-algebra of
the free group in infinitely many generators has strict comparison).

The additional structure in the Cuntz semigroup brought about by the stable
rank one property entails that seemingly different comparability properties are in
fact equivalent. Although our results do not require the assumption of simplicity,
we highlight here the simple unital case (see Section 8 for the relevant definitions):

Theorem (cf. Theorem 8.12, Theorem 8.13). Let A be a simple, unital, separable
C*-algebra of stable rank one.

(i) A has finite radius of comparison in the sense of Toms ([Tom06]) if and
only if the subsemigroup W (A) consists precisely of the elements in Cu(A)
whose rank is a bounded function on the set of 2-quasitracial states.

(ii) If A has either m-comparison for some m ∈ N (in the sense defined by Win-
ter in [Win12]) or local weak comparison (in the sense defined by Kirchberg
and Rørdam in [KR14]) then A has strict comparison.
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2. Preliminaries

2.1. The Cuntz semigroup. Let A be a C*-algebra. Denote by A+ the positive
elements in A. Let us recall the definition of the Cuntz semigroup of A in terms of
positive elements: Given a, b ∈ A+, one says that a is Cuntz smaller than b, or that
a is Cuntz subequivalent to b, denoted a - b, if there exists a sequence (dn)n in A
such that d∗nbdn → a. The elements a and b are Cuntz equivalent, denoted a ∼ b ,
if a - b and b - a. This is an equivalence relation. Let [a] denote the equivalence
class of a. The Cuntz semigroup of A is defined as

Cu(A) :=
{

[a] : a ∈ (A⊗K)+
}
.

That is, Cu(A) is the set of Cuntz equivalence classes of positive elements in the
C*-algebra A⊗K. (Here, and in the sequel, K denotes the C*-algebra of compact
operators on the Hilbert space `2(N).) The Cuntz semigroup Cu(A) is endowed
with the order [a] 6 [b] if a - b and the addition operation [a] + [b] := [a′ + b′],
where a′, b′ ∈ (A⊗ K)+ are chosen in such a way that a ∼ a′, b ∼ b′ and a′b′ = 0
(such elements always exist). In this way, Cu(A) is an abelian, partially ordered
semigroup.

We will focus largely on Cuntz semigroups of C*-algebras of stable rank one. As
pointed out in the introduction, in this case the Cuntz semigroup is isomorphic
to the set of isomorphism classes of countably generated Hilbert C*-modules over
the C*-algebra. In this picture, and if A has stable rank one, given Hilbert C*-
modules H1 and H2 over A, we have [H1] 6 [H2] if H1 embeds in H2 as a Hilbert
C*-submodule and [H1] + [H2] := [H1 ⊕H2]; see [CEI08, Theorem 3].

2.2. The category Cu. Some of the properties of the Cuntz semigroup of a C*-algebra
can be abstracted into a category termed Cu, whose objects are called abstract
Cuntz semigroups, or simply Cu-semigroups. We recall the main definitions.

Let S be an abelian, partially ordered semigroup. Given x, y ∈ S, let us write
x � y if whenever (yn)n is an increasing sequence in S such that the supremum
supn yn exists and satisfies y 6 supn yn, then there exists n0 such that x 6 yn0 .
This is a transitive relation on S, sometimes called the way-below relation or also the
compact containment relation; see [GHK+03, Definition I-1.1, p.49] and [APT18b,
Paragraph 2.1.1, p.11] for details.

The semigroup S is called a Cu-semigroup if it satisfies the following axioms:

(O1) Every increasing sequence in S has a supremum.
(O2) For each x ∈ S there exists a sequence (xn)n such that xn � xn+1 for every

n, and x = supn xn.
(O3) If x′ � x and y′ � y, then x′ + y′ � x+ y.
(O4) If (xn)n and (yn)n are increasing sequences in S, then supn(xn + yn) =

supn xn + supn yn.

We call a sequence (xn)n satisfying xn � xn+1 for all n a �-increasing sequence.
It is sometimes called a rapidly increasing sequence.

Given Cu-semigroups S and T , a Cu-morphism from S to T is a map S → T that
preserves addition, order, the relation � and suprema of increasing sequences. The
category Cu has as objects the Cu-semigroups, and as morphisms the Cu-morphisms.

2.3. It was proved in [CEI08] that the Cuntz semigroup Cu(A) of a C*-algebra
A is a Cu-semigroup. Further, every *-homomorphism ϕ : A → B between C*-
algebras induces a Cu-morphism Cu(ϕ) : Cu(A) → Cu(B) by sending the class
of a ∈ (A ⊗ K)+ to the class of ϕ(a) ∈ (B ⊗ K)+. This defines a functor from
the category of C*-algebras to the category Cu. By [APT18b, Corollary 3.2.9.],
this functor preserves arbitrary inductive limits (sequential inductive limits are
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covered by [CEI08, Theorem 2]). Further, the functor preserves (co)products and
ultraproducts; see [APT18a].

2.4. Almost algebraic order. The Cuntz semigroup of a C*-algebra is known to
satisfy an additional axiom which we now describe.

Let S be a Cu-semigroup. We say that S has almost algebraic order, or that S
satisfies axiom (O5), if given x′, x, y′, y, z ∈ S such that x + y 6 z, x′ � x, and
y′ � y, there exists w ∈ S such that x′ + w 6 z 6 x+ w and y′ � w.

If A is a C*-algebra, then Cu(A) satisfies (O5); see [RW10] and [APT18b, Sec-
tion 4, p.31ff].

2.5. A Cu-semigroup S is said to have weak cancellation if for every x, y, z ∈ S, the
condition x+ z � y + z implies x� y. If A is a C*-algebra with stable rank one,
then Cu(A) has weak cancellation; see [RW10].

2.6. Let S be a Cu-semigroup. Recall that S is said to be countably based if there
exists a countable subset B ⊆ S such that every element in S is the supremum of
a �-increasing sequence with elements in B. If A is a separable C*-algebra, then
Cu(A) is countably based; see for example [APS11], or [Rob13, Proposition 5.1.1].
One important consequence of having a countably based semigroup is recorded in
the following basic result:

Lemma. Every upward directed set in a countably based Cu-semigroup has a supre-
mum.

2.7. Let S be a Cu-semigroup. Recall that an ideal of S is an order-hereditary
submonoid I of S that is closed under suprema of increasing sequences. We define
x 6I y to mean that x 6 y + z for some z ∈ I, and write x ∼I y if both x 6I y
and y 6I x happen. The quotient S/I is defined as S/∼I . We refer to [APT18b,
Section 5.1] for details.

If A is a C*-algebra and I is a closed, two-sided ideal of A, then the inclusion
map I → A induces a Cu-morphism Cu(I)→ Cu(A) that identifies Cu(I) with an
ideal in Cu(A). Further, it was proved in [CRS10] that the quotient map A→ A/I
induces an isomorphism Cu(A)/Cu(I) ∼= Cu(A/I).

The following proposition is a crucial ingredient in the proofs of Theorems 3.5,
3.8, and 7.2. By embedding the Cuntz semigroup of a C*-algebra as an ideal of
a larger Cuntz semigroup, it introduces suitable compact elements associated to
elements of the original Cuntz semigroup.

2.8. Proposition. Let A be a stable C*-algebra, and let a ∈ A+. Then there exists
a C*-algebra B and a projection pa ∈ B such that:

(i) A is a closed, two-sided ideal of B.
(ii) For x ∈ Cu(A), we have x 6 [a] in Cu(A) if and only if x 6 [pa] in Cu(B).
(iii) If A has stable rank one, then so has B.

Proof. Since the Hilbert C*-module H = aA is singly generated, it follows from
Kasparov’s stabilization theorem that H is a direct summand of `2(A), that is,
there is a Hilbert C*-module H ′ such that aA⊕H ′ ∼= `2(A). On the other hand,
since A is stable, `2(A) ∼= A as Hilbert C*-modules. Thus, aA is isomorphic to a
complemented Hilbert C*-submodule of A. Denote by M(A) the multiplier algebra
of A and let pa ∈M(A) be the projection onto this submodule. Then aA ∼= paA.

Now let B = C∗(pa, A) ⊆M(A). By construction A is a closed two-sided ideal
of B and thus (i) is verified.

(ii): Let x ∈ Cu(A). Since A is stable, there exists b ∈ A+ such that x = [b].
Suppose that x 6 [pa] in Cu(B). Then b - pa in B, and thus for every ε > 0 there
exists v ∈ paB such that (b − ε)+ = v∗v. As v∗v ∈ A, we also have v ∈ A, and
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therefore v ∈ paB ∩ A = paA ∼= aA. Hence, (b − ε)+ - a in A for all ε > 0, from
which we conclude that x 6 [a] in Cu(A). The converse is clear once we observe
that [a] 6 [pa] in Cu(B).

(iii): Assume that A has stable rank one. By construction, B/A ∼= C. Thus,
B is an extension of A and C, which both have stable rank one. Using [Rie83,
Theorem 4.11], it follows that B has stable rank one. �

3. Riesz Interpolation and infima

In this section, we prove that the Cuntz semigroup Cu(A) of any C*-algebra
A of stable rank one has the Riesz Interpolation Property. If A is also separable,
then it follows that every pair of elements in Cu(A) has an infimum. Further, this
semilattice structure is compatible with addition; see Theorem 3.8.

In the sequel, we write multiple inequalities in the compact form x1, x2 6 y1, y2.

3.1. The following axiom was introduced in [Thi17]. A Cu-semigroup S is said to
satisfy axiom (O6+) if for every a, b, c, x′, x, y′, y ∈ S satisfying

a 6 b+ c , x′ � x 6 a, b , and y′ � y 6 a, c,
there exist e, f ∈ S such that

a 6 e+ f , x′ � e 6 a, b , and y′ � f 6 a, c.
Axiom (O6+) is a strengthening of the axiom (O6) of almost Riesz decomposition

introduced in [Rob13]. Unlike (O6), which is known to hold for the Cuntz semigroup
of any C*-algebra, there are C*-algebras whose Cuntz semigroup does not satisfy
(O6+). However, it was shown in [Thi17, Theorem 6.4] that the Cuntz semigroup
of any C*-algebra of stable rank one satisfies (O6+).

3.2. Lemma. Let S be a Cu-semigroup, and let B ⊆ S be an order-hereditary subset
of S that is closed under suprema of increasing sequences. Define

B� =
{
x ∈ S : there is y ∈ B such that x� y

}
.

If B� is an upward directed set, then this is also the case for B.

Proof. Let x, y ∈ B. Choose �-increasing sequences (xn)n and (yn)n in S such
that x = supn xn and y = supn yn. Then xn, yn ∈ B� for each n. Since B� is
upward directed, there exists z1 ∈ B� such that x1, y1 6 z1. Suppose that, for
n > 2, there are z1 6 z2 6 . . . 6 zn in B� such that xn, yn 6 zn. Using again that
B� is upward directed, we may choose zn+1 ∈ B� such that xn+1, yn+1, zn 6 zn+1.
Now let z = supn zn. By construction x, y 6 z. Further z belongs to B since by
assumption this set is closed under suprema of increasing sequences. �

The lemma below is contained in [Thi17], though not explicitly stated. We
reproduce the proof here for convenience.

3.3. Lemma. Let S be a weakly cancellative Cu-semigroup satisfying (O5) and
(O6+), and let e, x ∈ S. Assume that e is compact. Then the set

{
z ∈ S : z 6 e, x

}

is upward directed.

Proof. Since the set {z ∈ S : z 6 e, x} is order-hereditary and closed under suprema
of increasing sequences, it suffices to show by Lemma 3.2 that the set

{
z′ ∈ S : there is z ∈ S such that z′ � z 6 e, x

}

is upward directed.
Let z′1, z

′
2 ∈ S be such that there are z1, z2 ∈ S with

z′1 � z1 6 e, y, and z′2 � z2 6 e, y.
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First, by (O5), there exists w ∈ S such that z′1 + w 6 e 6 z1 + w. Since z1 6 y,
we obtain e 6 y + w. We now apply (O6+) to this inequality and z′2 � z2 6 e, y.
Thus there exists x ∈ S such that e 6 x+ w and z′2 � x 6 e, y. Hence

z′1 + w 6 e� e 6 x+ w.

Since e is compact, we may use weak cancellation in S to obtain z′1 � x. Hence,
z′1, z

′
2 � x 6 e, y. Choose x′ ∈ S with z′1, z

′
2 � x′ � x. Then x′ has the desired

properties. �
3.4. Recall that an ordered semigroup S has the Riesz Interpolation Property if
given x, y, u, v ∈ S such that x, y 6 u, v, then there exists z ∈ S with x, y 6 z 6 u, v.

3.5. Theorem. Let A be a C*-algebra of stable rank one. Then Cu(A) has the Riesz
Interpolation Property.

Proof. Let x, y ∈ Cu(A). We must show that the set {z ∈ Cu(A) : z 6 x, y} is
upward directed. If x is compact, this follows from Lemma 3.3. We next reduce the
general case to this case relying on Proposition 2.8.

We may assume that A is stable. Choose a ∈ A+ such that x = [a]. Applying
Proposition 2.8 for A and a, we obtain a C*-algebra B with stable rank one that
contains A as a closed, two-sided ideal, and a projection pa ∈ B such that z ∈ Cu(A)
satisfies z 6 x if and only if z 6 [pa]. Since [pa] is compact in Cu(B), and since B
has stable rank one, it follows from Lemma 3.3 that the set {z ∈ Cu(B) : z 6 [pa], y}
is upward directed. The inclusion A ⊆ B identifies Cu(A) with an ideal in Cu(B).
We claim that

{
z ∈ Cu(A) : z 6 x, y

}
=
{
z ∈ Cu(B) : z 6 [pa], y

}
,

from which the result will follow.
Indeed, the inclusion ‘⊆’ follows using that x 6 [pa]. To prove the converse

inclusion, take z ∈ Cu(B) such that z 6 [pa], y. Since Cu(A) is an ideal of Cu(B)
and y ∈ Cu(A), we have z ∈ Cu(A). Now, since also z 6 [pa], we may use
Proposition 2.8 (ii) to conclude that z 6 x. �
3.6. Inf-semilattice ordered semigroups. Recall that a partially ordered set S is
called an inf-semilattice, or also a meet-semilattice, if for every pair of elements x
and y of S, the greatest lower bound of the set {x, y} exists in S. We shall follow
the usual notation and denote such infimum by x ∧ y.

We further say that a partially ordered semigroup S is inf-semilattice ordered if
S is an inf-semilattice and addition is distributive over the meet operation, that is,

(3.1) (x+ z) ∧ (y + z) = x ∧ y + z,

for all x, y, z ∈ S.

3.7. Lemma. Let A be a stable C*-algebra and let a ∈ A+. Let the C*-algebra B
and the projection pa ∈ B be as in Proposition 2.8. Let x ∈ Cu(A) such that [pa]∧x
exists in Cu(B). Then [a] ∧ x exists in Cu(A) and

[a] ∧ x = [pa] ∧ x.
Proof. Let w = [pa]∧x. Since w 6 x and since Cu(A) is an ideal of Cu(B), we obtain
w ∈ Cu(A). Now, we also have that w 6 [pa]. Hence, w 6 [a] by Proposition 2.8(ii).
Thus, w is a lower bound for [a] and x.

To show that w is the largest lower bound, let y ∈ Cu(A) satisfy y 6 [a] and y 6 x.
Then y 6 [pa] in Cu(B), again by Proposition 2.8(ii). Therefore y 6 [pa] ∧ x = w.
Hence, [a] ∧ x = [pa] ∧ x, as desired. �
3.8. Theorem. Let A be a separable C*-algebra of stable rank one. Then Cu(A) is
an inf-semilattice ordered semigroup.
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Proof. Without loss of generality, we may assume that A is stable. By Theorem 3.5,
Cu(A) has the Riesz Interpolation Property. Thus, given x, y ∈ Cu(A) the set
{z ∈ Cu(A) : z 6 x, y} is upward directed. Since A is separable, Cu(A) is countably
based. Applying § 2.6, we conclude that {z ∈ Cu(A) : z 6 x, y} has a supremum,
which is precisely x ∧ y. Thus, Cu(A) is an inf-semilattice.

In order to prove that (3.1) holds, we only need to show that

(3.2) (x+ z) ∧ (y + z) 6 x ∧ y + z,

for all x, y, z ∈ Cu(A), as the opposite inequality is straightforward.
We will first prove (3.2) in the case that both x and z are compact elements and

then, through successive generalizations, extend this to the general case.
Step 1: We show that the inequality (3.2) is valid when x and z are compact.
Let w = (x+ z)∧ (y + z). Choose w′ ∈ Cu(A) such that w′ � w. Applying (O5)

for the inequality w′ � w 6 x+z, we find v ∈ Cu(A) such that w′+v 6 x+z 6 w+v.
We get x + z 6 y + z + v. As A has stable rank one, Cu(A) has cancellation of
compact elements, and since z is compact by assumption, we obtain x 6 y + v. By
(O6+), x 6 x ∧ y + v. Adding z on both sides we get x+ z 6 x ∧ y + v + z. Hence,
using that x+ z is compact,

w′ + v 6 x+ z � x+ z 6 x ∧ y + z + v .

It now follows from weak cancellation that w′ 6 x ∧ y + z. Since w′ is arbitrary
satisfying w′ � w, the inequality (3.2) holds.

Step 2: We show that the inequality (3.2) is valid when x is compact.
Write x+ z = [b], with b ∈ A+. Let B be a C*-algebra of stable rank one and

let pb ∈ B be a projection, as in Proposition 2.8. Let f = [pb] ∈ Cu(B), which
is compact. We have x + z 6 f and by Lemma 3.7, f ∧ w = (x + z) ∧ w for all
w ∈ Cu(A). Since x 6 f and x is compact, x+ z′ = f for some compact element
z′ ∈ Cu(B). Then x+ z 6 f = x+ z′, and so by cancellation of compact elements
in Cu(B) we have z 6 z′. Since x and z′ are compact in Cu(B), we may apply Step
1 to conclude

(x+ z′) ∧ (y + z′) 6 x ∧ y + z′.

Since z 6 z′, we get

(x+ z) ∧ (y + z) 6 x ∧ y + z′.

Hence, by (O6+), it follows that

(x+ z) ∧ (y + z) 6 x ∧ y + z′ ∧ (x+ z).

The proof of Step 2 will be complete once we show z′ ∧ (x+ z) = z. By cancellation
of compact elements, and since x is compact by assumption, this is equivalent to
showing that z′ ∧ (x + z) + x = z + x. Since x and z′ are compact elements in
Cu(B), we may use Step 1 again to obtain

z′ ∧ (x+ z) + x = (z′ + x) ∧ (x+ z + x).

Now, we apply Lemma 3.7 at the second step and conclude

(z′ + x) ∧ (x+ z + x) = f ∧ (x+ z + x) = (z + x) ∧ (x+ z + x) = z + x.

Therefore z′ ∧ (x+ z) + x = z + x, as desired.
Step 3: We show that the inequality (3.2) holds in general.
Choose a ∈ A+ such that x = [a]. Applying Proposition 2.8 for A and a, we

obtain a C*-algebra B with stable rank one that contains A as a closed, two-sided
ideal, and a projection pa ∈ B such that z ∈ Cu(A) satisfies z 6 x if and only if
z 6 [pa]. Let e = [pa] ∈ Cu(B). By Step 2, (3.2) holds in Cu(B) with e in place of
x. This means that

(e+ z) ∧ (y + z) 6 e ∧ y + z
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for any y ∈ Cu(A).
Now, by Lemma 3.7 we have e ∧ y = x ∧ y. Therefore, the right hand side of

the above inequality is precisely x ∧ y + z. On the other hand, the left hand side
dominates (x+ z) ∧ (y + z). This proves the inequality in general. �

3.9. Let S be an inf-semilattice ordered semigroup, and let x
(k)
i ∈ S for k = 1, . . . , n

and i = 1, . . . , Nk. It follows from (3.1) and induction that

n∑

k=1

( Nk∧

i=1

x
(k)
i

)
=

∧

(i1,...,in)

( n∑

k=1

x
(k)
ik

)
,

where (i1, . . . , in) on the right hand side runs through {1, . . . , N1}×· · ·×{1, . . . , Nn}.
3.10. If S is an inf-semilattice ordered Cu-semigroup, then S satisfies (O6+). Indeed,
if we are given elements a, b, c, x′, x, y′, y ∈ S such that a 6 b + c, x′ � x 6 a, b
and y′ � y 6 a, c, then let e = a ∧ b and f = a ∧ c. We clearly have x′ � x 6 e
and y′ � y 6 f . On the other hand, applying the formula obtained in § 3.9 at the
second step, we obtain

a 6 (2a) ∧ (a+ c) ∧ (a+ b) ∧ (b+ c) = a ∧ b+ a ∧ c = e+ f .

3.11. Let S be an inf-semilattice ordered Cu-semigroup. Given x ∈ S and an
increasing sequence (yn)n in S, we have

sup
n

(x ∧ yn) = x ∧ sup
n
yn.

Indeed, the inequality ‘6’ follows since for each k ∈ N we have x∧ yk 6 x∧ supn yn.
To show the converse inequality, let z′ ∈ S be such that z′ � x ∧ supn yn. Since
z′ � supn yn, there exists k ∈ N such that z′ 6 yk. Since also z′ 6 x, we obtain
z′ 6 x∧yk 6 supn(x∧yn). Finally, passing to the supremum over all z′ � x∧supn yn,
the desired inequality follows.

As an immediate application of Theorem 3.8, we obtain that quotient maps
preserve infima. If I is a closed, two-sided ideal of a C*-algebra A, we denote by
πI : A→ A/I the quotient map.

3.12. Corollary. Let A be a separable C*-algebra of stable rank one, and let I be a
closed, two-sided ideal of A. Then Cu(πI) : Cu(A)→ Cu(A/I) preserves infima.

Proof. We view Cu(I) as an ideal of Cu(A). Since I is separable, Cu(I) has a
largest element that we denote by ωI . Notice that 2ωI = ωI , and thus ωI + Cu(A)
is an ordered subsemigroup of Cu(A). It was proved in [CRS10] that Cu(πI) is an
ordered semigroup isomorphism from ωI + Cu(A) to Cu(A/I). It therefore suffices
to show that the map x 7→ x + ωI from Cu(A) to the subsemigroup ωI + Cu(A)
preserves infima. Indeed, for x, y ∈ Cu(A) if follows from Theorem 3.8 that

(x+ ωI) ∧ (y + ωI) = x ∧ y + ωI . �

Another application of Theorem 3.8 allows us to compute the Cuntz semigroup
of a particular case of pullbacks (see also [APS11]).

3.13. Corollary. Let A be a separable C*-algebra of stable rank one, and let I, J ⊆ A
be closed, two-sided ideals of A. Then

Cu(A/(I ∩ J)) ∼= Cu(A/I)⊕Cu(A/(I+J)) Cu(A/J),

where the right side denotes the pullback semigroup of pairs (s̄, t̄) ∈ Cu(A)/Cu(I)⊕
Cu(A)/Cu(J) such that s̄ and t̄ agree when mapped to Cu(A/(I + J)).
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Proof. As in the proof of Corollary 3.12, given an ideal K of a separable C*-algebra
B we denote by ωK the largest element in Cu(K) and we identify Cu(B/K) with
Cu(B) + ωK . Thus Cu(πK) is identified with the map Cu(B)→ Cu(B) + ωK given
by z 7→ z + ωK .

Observe that ωI+J = ωI + ωJ . Therefore, the map Cu(A/I)→ Cu(A/(I + J)) is
identified with the map

Cu(A) + ωI → Cu(A) + ωI + ωJ given by z 7→ z + ωJ .

Likewise, the map Cu(A/J)→ Cu(A/(I + J)) is identified with the map Cu(A) +
ωJ → Cu(A) + ωI + ωJ given by z 7→ z + ωI .

Now, denote by S the algebraic pullback of the diagram

Cu(A) + ωI

��
Cu(A) + ωJ // Cu(A) + ωI + ωJ

We clearly have a map Cu(A)+ωI∩J → S, given by z 7→ (z+ωI , z+ωJ ). It suffices
to show that given (z1, z2) ∈ S, there exists a unique element z ∈ Cu(A) + ωI∩J
such that z + ωI = z1 and z + ωJ = z2.

Let z1 ∈ Cu(A) + ωi and z2 ∈ Cu(A) + ωJ . Set z := z1 ∧ z2. Using Theorem 3.8
at the first step, we obtain

z1 ∧ z2 + ωI = (z1 + ωI) ∧ (z2 + ωI) = z1 ∧ (z1 + ωJ) = z1.

Symmetrically, z1 ∧ z2 + ωJ = z2. Observe also that z ∈ ωI∩J + Cu(A). Indeed,
since z1 = z1 + ωI and ωI∩J + ωI = ωI , we get

z1 + ωI∩J = z1 + ωI + ωI∩J = z1 + ωI = z1,

and similarly z2 + ωI∩J = z2. Applying Theorem 3.8 again, we get

z + ωI∩J = (z1 ∧ z2) + ωI∩J = (z1 + ωI∩J) ∧ (z2 + ωI∩J) = z1 ∧ z2 = z.

Finally, suppose that z′ ∈ ωI∩J +Cu(A) is such that z′+ωI = z1 and z′+ωJ = z2.
Notice that, since A has stable rank one, ωI∩J = ωI ∧ ωJ . Then, using Theorem 3.8
at third step, we obtain

z′ = z′ + ωI∩J = z′ + ωI ∧ ωJ = (z′ + ωI) ∧ (z′ + ωJ) = z1 ∧ z2 = z. �

3.14. Note that Corollary 3.13 fails to hold if we drop the stable rank one hypothesis.
For example, set A := M2(C(S2)) and take I = M2(C0(U)) and J = M2(C0(V )),
where U and V are disjoint open caps of the sphere. Let p, q ∈M2(C(S2)) be rank
one projections with different class in K0(C(S2)). (For instance, p is e11 ⊗ 1 and q
is the Bott projection.) Then the images of p and q are Cuntz equivalent in A/I
and A/J , but [p] 6= [q].

4. A conjecture of Blackadar and Handelman

Let A be a C*-algebra. Using upper-left corner embeddings Mn(A)→Mn+1(A),
set M∞(A) :=

⋃
nMn(A), which has the structure of a local C*-algebra. Recall

that the classical (non-complete) Cuntz semigroup W (A) of A is defined as

W (A) = M∞(A)+/∼ ;

see [Cun78]. It can also be described as the subsemigroup of Cu(A) of those classes
[a] with a representative a ∈M∞(A)+. In the case that A has stable rank one, it
was proved in [ABP11, Lemma 3.4] that W (A) is a hereditary subset of Cu(A), and
thus may alternatively be described as

W (A) =
{
x ∈ Cu(A) : x 6 n[a] for some a ∈ A+, n ∈ N

}
.
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The Grothendieck group of W (A) is denoted by K∗0 (A). It is a partially ordered
group with positive cone K∗0 (A)+ = {[x]− [y] : y 6 x in W (A)}.

Assume that A is unital. A state on (W (A), [1A]) is an additive, order-preserving
map λ : W (A)→ [0,∞) with λ([1A]) = 1. We use St(W (A), [1A]) to denote the set
of states on (W (A), [1A]). There is a natural bijection between St(W (A), [1A]) and
states on (K∗0 (A),K∗0 (A)+, [1A]).

In [Cun78], Cuntz introduced a dimension function on A as a certain map
M∞(A)→ [0,∞). The set of all dimension functions on A is denoted by DF (A). It
is easy to see that there are bijections

DF (A) ∼= St
(
W (A), [1A]

) ∼= St
(
K∗0 (A),K∗0 (A)+, [1A]

)
.

In [BH82], Blackadar and Handelman conjectured thatDF (A) is always a Choquet
simplex. This has been confirmed for various classes of C*-algebras: in [Per97,
Corollary 4.4] for unital C*-algebras with real rank zero and stable rank one; in
[ABPP14, Theorem 4.1] for certain C*-algebras with stable rank two; in [dS16,
Theorem 3.4] for unital C*-algebras with finite radius of comparison and finitely
many extreme quasitraces.

In view of the results obtained, it was asked in [ABPP14, Problem 3.13] for which
C*-algebras A the group K∗0 (A) is an interpolation group. We solve this problem
affirmatively for C*-algebras of stable rank one.

4.1. Theorem. Let A be a unital C*-algebra of stable rank one. Then K∗0 (A) is an
interpolation group and DF (A) is a Choquet simplex.

Proof. By Theorem 3.8, we know that Cu(A) has the Riesz Interpolation Property.
This property passes to W (A) since W (A) is hereditary in Cu(A) (see also the
results in [ABPP14, Section 3]). Now apply [Per97, Lemma 4.2] to conclude that
K∗0 (A) is an interpolation group. Finally, using for example [Goo86, Theorem 10.17],
we obtain that DF (A) is a Choquet simplex. �

5. The Global Glimm halving Problem

In this section we solve the Global Glimm Halving Problem for C*-algebras of
stable rank one.

5.1. Global Glimm Halving Problem. The global Glimm Halving Problem has been
posed in various forms (see, for example, [BK04, ER06]). One such formulation is
as follows: If A is a unital C*-algebra without finite dimensional representations,
is there a *-homomorphism ϕ : M2(C0((0, 1])) → A with full range? (Recall that
a subset of a C*-algebras is called full if it generates the C*-algebra as a closed
two-sided ideal.) In Theorem 5.7 we answer this question affirmatively for separable
C*-algebras of stable rank one. We even obtain a sharper result that characterizes
when A has irreducible representations of a given finite dimension. Further, in
Theorem 9.1 we remove the separability assumption. We first establish results
on divisibility of elements of Cu-semigroups. These results then translate into a
solution of the Global Glimm Halving Problem.

5.2. Divisibility in the Cuntz semigroup. Let S be a Cu-semigroup and let x ∈ S.
Let us recall two divisibility properties introduced in [RR13]. Given k, n ∈ N, we say
that x is (k, n)-divisible if for each x′ ∈ S satisfying x′ � x there exists y ∈ S such
that ky 6 x and x′ � ny. We say that x is weakly (k, n)-divisible if for each x′ ∈ S
with x′ � x there exist y1, . . . , yn ∈ S such that kyj 6 x for all j, and x′ 6

∑n
j=1 yj .

Clearly, any (k, n)-divisible element is weakly (k, n)-divisible. In Theorem 5.5 below
we obtain a result in the converse direction.

Given x and y in a partially ordered semigroup S, we say that y dominates x,
and write x ∝ y, if there exists n ∈ N such that x 6 ny.
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5.3. Lemma. Let S be an inf-semilattice ordered Cu-semigroup, and let x, y1, . . . , yn
be elements in S such that x ∝ yk for k = 1, . . . , n. Then x ∝ ∧k yk. In fact, if
x 6 Nyk for all k, then x 6M(

∧n
k=1 yk) where M = n(N − 1) + 1.

Proof. It is enough to prove the last assertion. Assume N ∈ N is such that x 6 Nyk
for k = 1, . . . , n. Set M = n(N − 1) + 1. By (3.9), we have

M

n∧

k=1

yk =

M∑

j=1

n∧

k=1

yk =
∧(

M∑

k=1

yik

)
,

where the infimum on the right hand side runs through all sums with M terms taken
from the set {y1, . . . , yn}. Since M = n(N − 1) + 1, each of these sums contains at
least one of the yk repeated N times, whence it is greater than or equal to x. Thus,
M(
∧n
i=1 yk) is greater than or equal to x, as desired. �

5.4. Lemma. Let S be an inf-semilattice ordered Cu-semigroup satisfying (O5)
and weak cancellation. Let k ∈ N and let x′, x, y1, . . . , yn ∈ S such that x′ � x,
x′ 6

∑n
j=1 yj, and kyj 6 x for each j. Then there exist z1, . . . , zk such that

∑k
j=1 zj 6 x and x′ ∝ zj for each j. More precisely, we have x′ 6Mzj where

M = max{nr(k − r) + nr−1 : r = 1, . . . , k}.
Proof. We will prove the result by induction over k. The case k = 1 is trivial taking
z1 = x. Let us assume k > 1 and that the result holds for k − 1.

Let x′, x, y1, . . . , yn be as in the statement of the lemma. Choose y′1, . . . , y
′
n ∈ S

such that y′j � yj for each j, and such that x′ � ∑n
j=1 y

′
j . For each j, choose

y′′j ∈ S such that y′j � y′′j � yj . Apply (O5) in (k− 1)y′j � (k− 1)y′′j 6 x to obtain
wj ∈ S such that

(k − 1)y′j + wj 6 x 6 (k − 1)y′′j + wj .

Multiplying by k in x 6 (k − 1)y′′j + wj we get

kx 6 (k − 1)ky′′j + kwj .

Since (k − 1)ky′′j � (k − 1)x, we get by weak cancellation that x 6 kwj .
Set w =

∧n
j=1 wj . By Lemma 5.3 we have x 6 (n(k−1)+1)w. Choose w′, w′′ ∈ S

such that w′ � w′′ � w and x′ 6 (n(k − 1) + 1)w′. Using (O5) again, we obtain
x̃ ∈ S such that w′ + x̃ 6 x 6 w′′ + x̃. For each j, we have

(k − 1)y′j + wj 6 x 6 x̃+ w′′ .

Since w′′ � wj , we get by weak cancellation that (k − 1)y′j 6 x̃. Hence,
∑n
j=1 y

′
j 6

nx̃. Observe also that, by § 3.9,

n


(

n∑

j=1

y′j
)
∧ x̃


 =

n∧

k=0


(n− k)

( n∑

j=1

y′j
)

+ kx̃


 .

Further, any of the terms of the infimum on the right hand side is greater than∑n
j=1 y

′
j . Since x′ � ∑n

j=1 y
′
j , we have x′ � n((

∑n
j=1 y

′
j) ∧ x̃). Choose x̃′ such

that x̃′ � (
∑
j y
′
j) ∧ x̃ and x′ 6 nx̃′. By construction, we can apply induction

on x̃′, x̃, y′1, . . . , y
′
n to find z1, . . . , zk−1 such that

∑k−1
i=1 zi 6 x̃ and x̃′ 6 M0zi for

i = 1, . . . , n, where

M0 = max{ns(k − 1− s) + ns−1 : s = 1, . . . , k − 1}.
Set zk = w′. We have

k∑

j=1

zj 6 x̃+ w′ 6 x.



C*-ALGEBRAS OF STABLE RANK ONE AND THEIR CUNTZ SEMIGROUPS 13

Moreover, x′ 6 nx̃′ 6 nM0zj for j = 1, . . . , k − 1 and x′ 6 (n(k − 1) + 1)zk. Since
M = max{M0n, n(k − 1) + 1}, this completes the proof of the induction step. �

5.5. Theorem. Let S be an inf-semilattice ordered Cu-semigroup satisfying (O5)
and weak cancellation. Let k ∈ N and let x ∈ S. Then x is weakly (k, n)-divisible
for some n ∈ N if and only if x is (k,N)-divisible for some N ∈ N.

Proof. The backward implication is clear. To show the converse, let x′ ∈ S satisfy
x′ � x. By assumption, there exist y1, . . . , yn ∈ S such that kyj 6 x for all j, and
x′ 6

∑n
j=1 yj . Apply Lemma 5.4 to obtain M ∈ N and z1, . . . , zk ∈ S such that

kzj 6 x and x′ 6 Mzj for each j. Set N = k(M − 1) + 1 and z =
∧
zi. Then

kz 6 x and x′ 6 Nz by Lemma 5.3. �

The following result is an improved version of [RR13, Lemma 2.5] that is available
for C*-algebras with stable rank one.

5.6. Lemma. Let A be a C*-algebra with stable rank one, let x ∈ Cu(A), let
b ∈ A+, and let k ∈ N such that kx 6 [b]. Then there exists a *-homomorphism
ϕ : Mk(C0((0, 1]))→ bAb with [ϕ(e11 ⊗ ι)] = x.

Proof. We may assume that A is stable and x 6= 0. Given c, d ∈ A+, we write c ≈ d
if there exists r ∈ A with c = r∗r and rr∗ = d. Since A has stable rank one, we
have c - d (Cuntz subequivalence) if and only if c ≈ d′ ∈ dAd, for some d′; see for
example [ORT11, 6.2].

Choose pairwise orthogonal elements a1, . . . , ak ∈ A+ with [aj ] = x for each j.

Then
∑
j [aj ] = [

∑
j aj ] = kx 6 [b]. Choose r ∈ A with

∑
j aj = r∗r and rr∗ ∈ bAb.

Let r = v|r| be the polar decomposition of r in A∗∗. Set bj := v∗ajv for each j.

Then b1, . . . , dk are pairwise orthogonal elements in bAb satisfying [bj ] = [aj ] = x for

each j. Set c1 := b1/‖b1‖. For j = 2, . . . , k, we use that c1 - bj to choose cj ∈ bjAbj
with c1 ≈ cj . Then c1, c2, . . . , ck are pairwise orthogonal, pairwise equivalent (in

the sense of ≈) elements in bAb. As noted in [RR13, Remark 2.3], we obtain a
*-homomorphism ϕ : Mk(C0((0, 1]))→ bAb satisfying [ϕ(ejj ⊗ ι)] = cj . In particular,
[ϕ(e11 ⊗ ι)] = [c1] = [a1] = x. �

5.7. Theorem. Let A be a unital separable C*-algebra of stable rank one, and let
k ∈ N. Then A has no nonzero representations of dimension less than k if and only
if there exists a *-homomorphism ϕ : Mk(C0((0, 1]))→ A with full range.

Proof. If π : A→Mj(C) is a representation with j < k and ϕ : Mk(C0((0, 1]))→ A
is any *-homomorphism, then π ◦ ϕ = 0. Thus, ker(π) contains the ideal generated
by the range of any such ϕ. If there exists ϕ : Mk(C0((0, 1]))→ A with full range
then π must be the zero representation. This proves the easy direction.

Suppose now that A has no nonzero representations of dimension less than k.
Let 1 ∈ A be the unit of A. We have by [RR13, Theorem 5.3] that [1] is weakly
(k, n)-divisible in Cu(A) for some n ∈ N. But Cu(A) is an inf-semilattice ordered
Cu-semigroup, since A is separable and of stable rank one. We thus obtain from
Theorem 5.5 that [1] is (k,N)-divisible for some N ∈ N. Since [1] is (k,N)-divisible
and A has stable rank one, we can choose c ∈ A+ such that k[c] 6 [1] and [1] 6 N [c].
By Lemma 5.6, there exists a *-homomorphism ϕ : Mk(C0((0, 1]))→ A such that
[ϕ(e11 ⊗ ι)] = [c]. This *-homomorphism is as desired. �

5.8. It is possible to adapt the previous proof to nonunital C*-algebras. In this case,
however, rather than a *-homomorphism with full range, we obtain for each a ∈ A
in the Pedersen ideal of A a *-homomorphism ϕ : Mk(C0((0, 1])) → A such that
the ideal generated by the range of ϕ contains a (assuming that A has no nonzero
representations of dimension less than k).
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This can be improved if we start with the assumption that A has no elementary
quotients. In this case we can get ϕ : Mk(C0((0, 1]))→ A with full range for each
k ∈ N, even in the nonunital case. We prove this in Theorem 5.11 below. We first
establish an improved form of divisibility of full elements (Theorem 5.10) which will
also be used in Section 8.

5.9. Let S be a Cu-semigroup. Recall that x ∈ S is said to be soft if for all x′ ∈ S
with x′ � x we have (k + 1)x′ 6 kx for some k ∈ N. The following result is
essentially [ERS11, Proposition 6.4], but we include a proof for completeness.

Lemma. Let S be a Cu-semigroup, and let (xj)j be a sequence in S such that
xj ∝ xj+1 for each j. Then x :=

∑∞
j=1 xj is soft.

Proof. Let x′ ∈ S satisfy x′ �∑∞
j=1 xj . Then there exists n such that x′ 6

∑n
j=1 xj .

We can now find k ∈ N such that
∑n
j=1 xj 6 kxn+1 and hence

(k + 1)x′ 6 kx′ +
n∑

j=1

xj 6 kx′ + kxn+1 6 k
n+1∑

j=1

xj 6 k
∞∑

j=1

xj = kx. �

Recall that a C*-algebra is termed elementary if it is isomorphic to the C*-algebra
of compact operators on some Hilbert space.

5.10. Theorem. Let A be a separable C*-algebra of stable rank one that has no
elementary quotients. Then for every full element x ∈ Cu(A) and every n ∈ N there
exists a soft full element z ∈ Cu(A) such that nz 6 x.

Proof. The assumption that A has no elementary quotients is equivalent to the
assumption that no full hereditary subalgebra of A has nonzero finite dimensional
representations. This in turn is equivalent to saying that for every full element
x ∈ Cu(A) and every k ∈ N, the element x is weakly (k, n)-divisible for some n. By
Theorem 5.5, this implies that every full element x is (k,N)-divisible for some N .

To prove our conclusion, it suffices to consider the case n = 2. Let x ∈ Cu(A)
be full. Choose a �-increasing sequence (xj)j with supremum x. Since x is (3, N)-
divisible for some N ∈ N, there exists z1 ∈ Cu(A) such that 3z1 6 x and x2 ∝ z1.
Choose z′1, z

′′
1 ∈ Cu(A) such that z′1 � z′′1 � z1 and x1 ∝ z′1. By (O5) applied to

2z′1 � 2z′′1 6 x, we find w1 ∈ Cu(A) such that

2z′1 + w1 6 x 6 2z′′1 + w1.

Hence, x+ 2x = 3x 6 6z′′1 + 3w1. Since 6z′′1 � 2x, we get by weak cancellation that
x 6 3w1. In particular, w1 is a full element.

Since x3 � x 6 3w1 and x2 � x3, there are elements w′′1 , w
′
1 ∈ Cu(A) such that

w′′1 � w′1 � w1 and x2 � 3w′′1 . Since also 2z′1 � x 6 3w1, we may further assume
that z′1 � 3w′′1 .

Using that w1 is full and hence (3, N)-divisible for some N , we find z2 ∈ Cu(A)
such that 3z2 6 w1 and w′1 ∝ z2. Choose z′2, z

′′
2 ∈ Cu(A) such that z′2 � z′′2 � z2

and also w′′1 ∝ z′2. In particular, we obtain x2 ∝ w′′1 ∝ z′2 and likewise, z′1 ∝ z′2.
Arguing as above, we find a full element w2 ∈ Cu(A) such that 2z′2 + w2 6 w1.

Continuing in this way we build a sequence z′1, z
′
2, . . . such that xj , z

′
j ∝ z′j+1 and

2z′1 + 2z′2 + · · · 6 x.
Let z =

∑∞
j=1 z

′
j . We deduce from z′j ∝ z′j+1 for all j that z is soft. We deduce

from xj ∝ zj for all j that z is full. �

5.11. Theorem. Let A be a separable C*-algebra of stable rank one that has
no elementary quotients. Then for each k ∈ N there exists a *-homomorphism
ϕ : Mk(C0((0, 1]))→ A with full range.
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Proof. Let a ∈ A+ be full, and let k ∈ N. Then x := [a] is full in Cu(A). Using
Theorem 5.10, we obtain a full element z ∈ Cu(A) with kz 6 x. By Lemma 5.6, there
exists a *-homomorphism ϕ : Mk(C0((0, 1]))→ aAa ⊆ A such that [ϕ(e11 ⊗ ι)] = z.
This *-homomorphism has full range. �

6. The cone of functionals and its dual

In this section we provide basic results on the cone F (S) of functionals on a
Cu-semigroup S, and its dual L(F (S)). We formulate the problem of realizing
functions in L(F (S)) as ranks of elements in S, which will be tackled in Section 7.
The main result of this section is Theorem 6.10, which shows that the natural map
S → L(F (S)) preserves infima. This is used repeatedly in the following sections.

6.1. Functionals. Let S be a Cu-semigroup. A map λ : S → [0,∞] is called a
functional if λ is additive, order-preserving, λ(0) = 0, and it also preserves the
suprema of increasing sequences. Let us denote as customary the set of all functionals
on S by F (S).

A functional λ in F (S) is said to be densely finite if every element of S can be
written as a supremum of an increasing sequence in {x ∈ S : λ(x) < ∞}. This is
equivalent to saying that λ(x) <∞ whenever there exists x̃ ∈ S with x� x̃. We
denote by F0(S) the set of densely finite functionals.

The set F (S) is endowed with operations of addition and scalar multiplication
by positive real numbers (both defined pointwise). Further, F (S) is equipped with
a topology that, in terms of convergence, is described as follows: Given λ ∈ F (S)
and a net (λi)i∈I in F (S), we have λi → λ if

lim supλi(x
′) 6 λ(x) 6 lim inf λi(x) for all x′, x ∈ S such that x′ � x.

With this topology, F (S) is a compact Hausdorff space; see [ERS11, Theorem 4.8].
Given a C*-algebra A, there is a natural bijection between F (Cu(A)) and the

set QT (A) of [0,∞]-valued, lower semicontinuous 2-quasitraces on A; see [ERS11,
Theorem 4.4]. This bijection sends λ ∈ F (S) to τλ : A+ → [0,∞], given by

τλ(a) :=

∫ ‖a‖

0

λ([(a− t)+])dt,

for a ∈ A+. Conversely, τ ∈ QT(A) corresponds to λτ ∈ F (S) given by λτ ([a]) =
supn τ(a1/n), for a ∈ A+. Under this bijection, F0(Cu(A)) corresponds to the set of
densely finite 2-quasitraces on A.

6.2. Extreme functionals and chisels. Let S be a Cu-semigroup. A densely finite
functional λ ∈ F0(S) is said to be extreme if whenever µ ∈ F (S) and C ∈ [0,∞)
satisfy µ 6 Cλ, then there exists c ∈ [0,∞) such that µ = cλ. Notice that the zero
functional is extreme.

Let λ ∈ F0(S) be an extreme functional. We define the chisel σλ at λ as the
function σλ : F (S) → [0,∞] given by σ0 = 0 and, if λ is not the zero functional,
then

σλ(µ) =

{
c, if µ = cλ and c ∈ [0,∞)

∞, otherwise
,

for µ ∈ F (S). It is straightforward to check that σλ is both linear (with respect to
the cone structure in F (S)) and lower semicontinuous.

6.3. Edwards’ condition. Let S be a Cu-semigroup, and let λ ∈ F (S). We say that
S satisfies Edwards’ condition for λ if

inf
{
λ1(x) + λ2(y) : λ = λ1 + λ2

}
= sup

{
λ(z) : z 6 x, y

}
,(6.1)
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for all x, y ∈ S. If λ ∈ F0(S) is extreme, it is not hard to show that S satisfies
Edward’s condition for λ if and only if

min
{
λ(x), λ(y)

}
= sup

{
λ(z) : z 6 x, y

}

for all x, y ∈ S. This form of Edwards’ condition appears in [Thi17, Definition 4.1].
Notice that if every pair of elements in S has an infimum, then Edward’s condition
for λ may be phrased as follows:

min
{
λ(x), λ(y)

}
= λ(x ∧ y).

In [APRT18], we introduce and study Edwards’ condition for arbitrary functionals
on a Cu-semigroup. It is shown there that if A is a C*-algebra, then Cu(A) satisfies
Edwards’ condition for all functionals on Cu(A). In the next section, we will only use
that Cu(A) satisfies Edwards’ condition for all extreme, densely finite functionals.

6.4. Dual of F (S). Let S be a Cu-semigroup. We now describe the appropriate
notion of dual for the cone F (S). Denote by Lsc(F (S)) the set of functions F (S)→
[0,∞] that are additive, order-preserving, homogeneous (with respect to positive
scalars) and lower semicontinuous. We endow Lsc(F (S)) with pointwise order,
pointwise addition, and pointwise scalar multiplication by nonzero positive scalars.
Given x ∈ S, we define the function x̂ : F (S)→ [0,∞] by evaluation, namely:

x̂(λ) := λ(x), for λ ∈ F (S).

Then x̂ belongs to Lsc(F (S)). We call x̂ the rank of x. Further, the map S →
Lsc(F (S)) defined by x 7→ x̂ preserves addition, order, and suprema of increasing
sequences.

The realification of S, denoted by SR, was introduced in [Rob13] as the smallest
subsemigroup of Lsc(F (S)) that is closed under suprema of increasing sequences
and contains all elements of the form 1

n x̂ for x ∈ S and n ∈ N. It was proved in
[Rob13, Proposition 3.1.1] that SR is a Cu-semigroup, and that SR satisfies (O5)
whenever S does; see also [APT18b, Proposition 7.5.6].

Given f, g ∈ Lsc(F (S)), we write f C g if f 6 (1− ε)g for some ε > 0 and if f
is continuous at each λ ∈ F (S) satisfying g(λ) < ∞. We denote by L(F (S)) the
subsemigroup of Lsc(F (S)) consisting of those f ∈ Lsc(F (S)) that can be written
as the pointwise supremum of a sequence (fn)n∈N in Lsc(F (S)) such that fn C fn+1

for all n ∈ N. We always have SR ⊆ L(F (S)) by [Rob13, Proposition 3.1.6]. If S
satisfies (O5), then SR = L(F (S)) by [Rob13, Theorem 3.2.1].

Thus, given a C*-algebra A, we have a natural map

Cu(A)→ Cu(A)R = L(F (Cu(A))),

given by [a] 7→ [̂a], where [̂a](λ) = λ([a]) for all λ ∈ F (Cu(A)).
We remark that the realification SR can be identified with the tensor product of

Cu-semigroups S ⊗ [0,∞] as defined and studied in [APT18b].

6.5. The problem of realizing functions as ranks. Let S be a Cu-semigroup. Recall
that the function x̂ ∈ L(F (S)) is called the rank of x ∈ S. The problem of realizing
functions on F (S) as ranks of elements in S consists of finding necessary and
sufficient conditions for the map x 7→ x̂ to be a surjection from S to L(F (S)). In
Theorem 7.10 we solve this problem when S is the Cuntz semigroup of a separable
C*-algebra of stable rank one.

6.6. The problem of realizing full functions as ranks. Let S be a Cu-semigroup. A
function f ∈ L(F (S)) is said to be full if it is a full element of the Cu-semigroup
L(F (S)), that is, if g 6∞ · f for all g ∈ L(F (S)). It is easy to see that f is full if
and only if f(λ) = 0 implies λ = 0, that is, if f is strictly positive on the nonzero
functionals.
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A variation on the problem of realizing functions on F (S) as ranks is as follows:
Under what conditions is the map x 7→ x̂ a surjection from the subsemigroup of full
elements of S to the subsemigroup of full elements of L(F (S))? In Theorems 7.8
and 7.11 we address this problem when S is the Cuntz semigroup of a C*-algebra of
stable rank one.

Assume that S contains a full, compact element u. In this case, the subsemigroup
of full elements of L(F (S)) admits a somewhat more concrete description, which
we now give. Let Fu(S) denote the set of functionals normalized at u, that is,
the set of λ ∈ F (S) such that λ(u) = 1. Then Fu(S) is a compact, convex set.
Let LAff(Fu(S))σ++ denote the set of affine functions f : Fu(S)→ (0,∞] such that
f−1((t,∞]) is open and σ-compact for all t ∈ R.

6.7. Proposition. Let S be a Cu-semigroup, and let u ∈ S be a full, compact
element. Then the restriction map f 7→ f |Fu(S) is a bijection from the set of full
functions in L(F (S)) to LAff(Fu(S))σ++.

Proof. Let f ∈ L(F (S)) be full. As pointed out in § 6.6, f is non-zero on Fu(S).
Since f is lower semicontinuous and Fu(S) is compact, f attains a minimum.
Hence, the range of f |Fu(S) is contained in (0,∞]. Let t ∈ (0,∞). By the lower

semicontinuity of f , we get that f (−1)((t,∞]) ∩ Fu(S) is open in Fu(S). To see
that this set is also σ-compact, write f = sup fn, where fn C fn+1 for all n. The
functions fn are finite and continuous on Fu(S). Hence,

f−1((t,∞]) ∩ Fu(S) =
⋃

n,m

(f−1n ([t+
1

m
,∞]) ∩ Fu(S)),

where the sets on the right side are compact. It follows that the restriction f |Fu(S)

belongs to LAff(Fu(S))σ++.
Since û 6Mf for some constant M > 0, we have f(λ) =∞ for all λ such that

λ(u) =∞. It is then clear that the map f 7→ f |Fu(S) is injective on the set of full
functions. It remains to show that this map is surjective. Let g ∈ LAff(Fu(S))σ++.
By [Alf71, Corollary I.1.4], there exists an increasing net of affine, continuous
functions gi : Fu(S)→ (0,∞] with supremum g. Exploiting the σ-compactness of
the sets g(−1)((t,∞]), we can choose from this net an increasing sequence (gn)n with
supremum g; see [TT15, Lemma 4.2]. Next, multiplying if necessary the functions
gn by scalars, we can arrange for gn 6 (1− εn)gn+1 for some εn > 0 and all n, while
maintaining that g = supn gn. For each n define g̃n : F (S)→ [0,∞] by

(6.2) g̃n(λ) =





λ(u)f(λ(u)−1λ), if λ(u) <∞
0, if λ = 0

∞, otherwise.

Then g̃n C g̃n+1 for all n. Hence, g̃ := supn g̃n belongs to L(F (S)). We have
g̃|Fu(S) = g, proving the desired surjectivity. �

6.8. Lemma. Let S be an inf-semilattice ordered Cu-semigroup, let x, y ∈ S, and
let n ∈ N. Then [2n(x ∧ y)]∧ = [(2nx) ∧ (2ny)]∧ in L(F (S)).

Proof. By induction on n, it is enough to show the case n = 1. Using § 3.9 we have

3(x ∧ y) = (3x) ∧ (2x+ y) ∧ (2y + x) ∧ (3y).

Similarly,

(2x ∧ 2y) + (x ∧ y) = (3x) ∧ (2x+ y) ∧ (2y + x) ∧ (3y).

This proves that 3(x ∧ y) = (2x ∧ 2y) + (x ∧ y), which implies

2̂(x ∧ y) + x̂ ∧ y = ̂(2x) ∧ (2y) + x̂ ∧ y.
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Since x ∧ y 6 2(x ∧ y) and x ∧ y 6 (2x) ∧ (2y), we can cancel x̂ ∧ y to obtain the
desired equality. �
6.9. It is not always the case that 2x∧2y = 2(x∧y) for all x, y in the Cuntz semigroup
of a separable C*-algebra of stable rank one. Take for example a separable C*-
algebra A of stable rank one and with torsion in K0(A). Then there exist compact
elements e, f ∈ Cu(A) such that 2e = 2f but e 6= f . We have 2e ∧ 2f 6= 2(e ∧ f).
Indeed, suppose for a contradiction that 2e ∧ 2f = 2(e ∧ f). Then

2e = 2(e ∧ f) = e ∧ f + e ∧ f 6 e+ f.

By cancellation of compact elements, we obtain e 6 f , and a symmetrical argument
proves f 6 e, which is impossible.

6.10. Theorem. Let S be a countably based, inf-semilattice ordered Cu-semigroup
satisfying (O5). Then the map S → L(F (S)), given by x 7→ x̂, preserves infima.

Proof. By § 3.10, S satisfies (O6), and thus [Rob13, Theorem 4.2.2] implies that
L(F (S)) is an inf-semilattice ordered Cu-semigroup.

Let x, y ∈ S. The inequality x̂ ∧ y 6 x̂ ∧ ŷ is straightforward. To prove the
converse inequality, let f ∈ L(F (S)) such that f 6 x̂, ŷ. We will prove that f 6 x̂ ∧ y.
Since L(F (S)) = SR by the observations made in § 6.1, it suffices to assume that
f = 1

2k
ẑ for some z ∈ S and k ∈ N. Let ε > 0, and let z′ ∈ S such that z′ � z. By

[Rob13, Proposition 2.2.6] there exists N ∈ N such that 1/2N < ε and

(2N − 1)z′ 6 2N+kx, and (2N − 1)z′ 6 2N+ky.

Hence, (2N − 1)z′ 6 2N+kx∧ 2N+ky. Passing to L(F (S)) and using Lemma 6.8, we
obtain

(2N − 1)ẑ′ 6 2N+kx̂ ∧ y.
Therefore, by our choice of N , we have

1− ε
2k

ẑ′ 6 2N − 1

2N+k
ẑ′ 6 x̂ ∧ y.

Since this holds for all ε > 0 and z′ ∈ S such that z′ � z, the result follows. �

7. Realizing functions as ranks

In this section we solve the problems of realizing (full) functions on the cone
F (Cu(A)) as ranks of Cuntz semigroup elements when A is a C*-algebra of stable
rank one.

By an ideal-quotient of a C*-algebra A we mean a quotient of the form I/J ,
where J ⊆ I are closed-two sided ideals of A. Ideal-quotients thus arise as ideals of
the quotients of A or as quotients of its ideals.

7.1. Proposition. Let A be a C*-algebra. Then the following statements hold:

(i) If A has a nonzero, elementary ideal-quotient then there exists λ ∈ F (Cu(A))
with {

x̂(λ) : x ∈ Cu(A)} = {0, 1, . . . ,∞
}
.

(ii) If A is separable and has a nonzero, elementary quotient then there exists a
densely finite λ ∈ F (Cu(A)) such that

{
x̂(λ) : x ∈ Cu(A) and x is full} = {1, . . . ,∞

}
.

Proof. (i): Assume that I and J are closed, two-sided ideals such that J ⊆ I and

I/J is elementary. Then Cu(I/J) ∼= N and thus the quotient map I
π→ I/J induces

a Cu-morphism Cu(π) : Cu(I) → Cu(I/J) ∼= N. Now let λ : Cu(A) → [0,∞] be
given by λ(x) = Cu(π)(x) if x ∈ Cu(I) and λ(x) =∞ otherwise. It is easy to verify
that λ is a functional on Cu(A) with the desired property.
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(ii): Let I be a closed, two-sided ideal such that A/I is elementary. Let λ ∈
F (Cu(A)) be the functional obtained in (i), that is, λ = Cu(π), where π : A→ A/I.
If x ∈ Cu(A) is full then x̂(λ) 6= 0, so that x̂(λ) ∈ {1, 2, . . . ,∞}. To complete
the proof it suffices to show that there exists a full x such that λ(x) = 1. Since
λ is onto, there exists x0 ∈ Cu(A) such that λ(x0) = 1. Let ωI ∈ Cu(I) be the
largest element of Cu(I), which exists since I is separable. Set x = x0 +ωI . Clearly,
λ(x) = λ(x0) = 1. Moreover, x is full, for if y ∈ Cu(A) then λ(y) 6 ∞ ∈ N, from
which we deduce that y 6∞ · x0 + ωI =∞ · x. �

In view of the previous proposition, it is clear that in order to realize every
element of L(F (Cu(A))) in the form x̂, with x ∈ Cu(A), we must assume that A
has no nonzero, elementary ideal-quotients. Similarly, if A is unital, and Fu(Cu(A))
is the set of functionals normalized at [1A], then in order to realize elements of
LAff(Fu(Cu(A)))++ in the form x̂|Fu(Cu(A)) with x ∈ Cu(A) full, we must assume
that A has no nonzero, finite dimensional representations. As we show below, if A
is has stable rank one, then these are the only obstructions.

In the proof of the following theorem we borrow ideas from the closely related
[Thi17, Lemma 8.3].

7.2. Theorem. Let A be a separable C*-algebra of stable rank one, and let f ∈
L(F (Cu(A))). Then the set

If =
{
x ∈ Cu(A) : x̂′ � f for all x′ � x

}

has a supremum.

Proof. Since A is separable, Cu(A) is countably based. Thus, as noted in § 2.6,
it suffices to show that If is upward directed. Clearly If is hereditary. It is also
closed under the suprema of increasing sequences. For suppose that x = supn xn,
where (xn)n is an increasing sequence in If . Let x′ � x. Then x′ � xn for

some n, and so x̂′ � f by the definition of If . This shows that x ∈ If . By
Lemma 3.2, in order to show that If is upward directed it suffices to show that
the set Gf = {x′ ∈ Cu(A) : x′ � x and x ∈ If} is upward directed. We prove this
below. We remark that Gf can be alternatively described as follows:

Gf =
{
x ∈ S : there exists y ∈ S such that x� y and ŷ � f

}
.

In order to see this, let x ∈ Gf . Then there exist y′, y such that x � y′ � y and

y ∈ If . Then ŷ′ � f , and thus x belongs to the right hand side of the equality
above. Conversely, if x is such that x� y and ŷ � f for some y, then clearly y ∈ If
and therefore x ∈ Gf .

We now prove that Gf is upward directed. Let x1, x2 ∈ Gf . Choose elements
y1, y

′
1, y2, y

′
2 such that

x1 � y′1 � y1, x2 � y′2 � y2, and ŷ1, ŷ2 � f.

Since L(F (Cu(A))) is equal to Cu(A)R (the realification of Cu(A)), we have f =

supn d̂n/kn, for suitable dn ∈ Cu(A) and kn ∈ N. We may thus find d ∈ Cu(A) and
k ∈ N such that

ŷ1, ŷ2 �
d̂

k
6 f.

We will construct w ∈ Cu(A) such that x1, x2 6 w and ŵ 6 d̂
k . Arranging for

w ∈ Gf after this is easy.
Since y1, y2 6 ∞ · d, there exists n ∈ N such that y′1, y

′
2 6 nd. We apply the

construction from Proposition 2.8 to A and d ∈ Cu(A) to obtain a C*-algebra B
of stable rank one and a full projection pd ∈ B such that A is an ideal of B, and
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such that for any x ∈ Cu(A) we have x 6 d precisely when x 6 [pd] in Cu(B). Set
e = [pd], which is a full, compact element in Cu(B).

Then y′1, y
′
2 6 nd 6 n[pd] = ne. By (O5), there exist z1, z2 ∈ Cu(B) such that

x1 + z1 6 ne 6 y′1 + z1,

x2 + z2 6 ne 6 y′2 + z2.

Set z = z1 ∧ z2. Note that z 6 ne. Let ε0 > 0 be such that ŷ1, ŷ2 6 1−ε0
k d̂ and set

g = 1−ε0
k d̂. Next, choose 0 < ε < ε0 such that εẑ 6 (ε0 − ε) êk . (Such an ε exists

since z 6 ne.) Then

(1 + ε)g + εẑ 6 (1 + ε)(1− ε0)
ê

k
+ (ε0 − ε)

ê

k
6 ê

k
.

We have nê 6 ŷ′1 + ẑ1 6 g + ẑ1 and similarly nê 6 g + ẑ2. Using at the first
step that L(F (Cu(B))) is an inf-semilattice ordered Cu-semigroup (by [Rob13,
Theorem 4.2.2]) and using Theorem 6.10 at the second step, we obtain

nê 6 g + ẑ1 ∧ ẑ2 = g + ẑ.

Next, since e� e, it follows from [Rob13, Lemma 2.2.5] that

nê� (1 + ε)g + (1 + ε)ẑ.

Choose z′ ∈ Cu(B) with z′ � z and nê� (1 + ε)g + (1 + ε)ẑ′. Applying (O5) to
z′ � z 6 ne, find w′ ∈ Cu(B) such that z′ + w′ 6 ne 6 z + w′. Then

x1 + z 6 x1 + z1 6 ne� ne 6 z + w′.

Recall that B has stable rank one, and thus Cu(B) has weak cancellation. Therefore,
we have x1 6 w′, and similarly, x2 6 w′. On the other hand,

ẑ′ + ŵ′ 6 nê� (1 + ε)g + (1 + ε)ẑ′.

Therefore ŵ′ 6 (1 + ε)g + εẑ 6 1
k ê.

Let ωA ∈ Cu(A) be the largest element of Cu(A). Set w = w′∧ωA, which belongs
to Cu(A) since the inclusion A→ B identifies Cu(A) with an ideal in Cu(B). Using
x1, x2 6 w′, we get x1, x2 6 w. Applying Theorem 6.10 at the first step, and using
that 1

k ω̂A = ω̂A at the third step, we obtain

ŵ = ŵ′ ∧ ω̂A 6
ê

k
∧ ω̂A =

1

k
ê ∧ ωA =

1

k
d̂.

Thus, w is as desired. �

7.3. The map α. Let A be a separable C*-algebra of stable rank one. In view of
Theorem 7.2, we define α : L(F (Cu(A)))→ Cu(A) by

α(f) = sup
{
x ∈ Cu(A) : x̂′ � f for all x′ � x

}
.

In the course of the proof of Theorem 7.2 we have also shown that

α(f) = sup
{
x ∈ Cu(A) : x� y and ŷ � f for some y

}
.

Yet another description of α that we will find useful is as follows:

α(f) = sup
{
x ∈ Cu(A) : x̂ 6 (1− ε)f for some ε > 0

}
.

To see this, notice first that the set on the right hand side contains the set of all x
such that x̂� f , of which α(f) is the least upper bound. It thus suffices to show
that α(f) is an upper bound of the set on the right hand side. Suppose that x

satisfies x̂ 6 (1− ε)f for some ε > 0. By [Rob13, Lemma 2.2.5], we have x̂′ � f for
every x′ � x. Hence, x ∈ If , from which x 6 α(f), as desired.

We use the map α to solve the problems on realizing (full) elements of L(F (Cu(A)))
as ranks of Cuntz semigroup elements when A is separable and of stable rank one.
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We show that, under suitable hypotheses, f = ẑ for z = α(f). We first prove this is
the case when f is the chisel of an extreme densely finite functional (see § 6.2 and
Lemma 7.7 below) and then extend this to arbitrary (full) functions.

7.4. Proposition. Let A be a separable C*-algebra, and let λ ∈ F0(Cu(A)) be an
extreme densely finite functional. Then the chisel σλ at λ belongs to L(F (Cu(A))).

Proof. If λ = 0 the proposition holds trivially. Assume thus that λ 6= 0. We first
show that the set

(7.1)
{
f ∈ L(F (Cu(A))) : f(λ) < 1

}

is upward directed. Let f1, f2 ∈ L(F (Cu(A))) satisfy f1(λ), f2(λ) < 1. Assume
that f1(λ) 6 f2(λ). Note that F (L(F (Cu(A)))) ∼= F (Cu(A)), using for example
Proposition 3.1.1 and Theorem 3.2.1 in [Rob13]. Further, Cu(A) satisfies Edwards’
condition for λ; see § 6.3. Therefore, the map f 7→ f(λ), regarded as a functional on
L(F (Cu(A))), satisfies (f1 ∧ f2)(λ) = f1(λ). Choose ε > 0 such that f2(λ) + ε < 1.
Next, choose gCf1∧f2 with g(λ) > f1(λ)−ε. Finally, we apply [Rob13, Lemma 3.3.2]
to obtain h such that g + h = f1 + f2 and such that the support of h is the same as
that of f1 + f2. We have

f1 + h > g + h = f1 + f2.

Hence, since the supports of h and f1 + f2 agree, we may use cancellation in
L(F (Cu(A))) to conclude that h > f2. Symmetrically, h > f1. On the other hand,

f1(λ)− ε+ h(λ) 6 g(λ) + h(λ) = f1(λ) + f2(λ),

from which we deduce that h(λ) 6 f2(λ) + ε < 1.
Since L(F (Cu(A))) is a countably based Cu-semigroup, the upward directed

set in (7.1) has a supremum, which we now proceed to prove is precisely σλ. To
this end, it suffices to show that for any µ ∈ F (Cu(A)) such that µ /∈ [0,∞)λ and
any C > 0 there exists f ∈ L(F (Cu(A))) such that f(λ) < 1 and f(µ) > C. To
show this, choose x ∈ Cu(A) such that 0 < λ(x) < ∞, which is possible as λ 6= 0
by assumption. Since µ is not a scalar multiple of λ and the latter is extreme by
assumption, we have µ 66 4Cλ. Let y ∈ Cu(A) be such that 4Cλ(y) < µ(y). If
λ(y) = 0, then f = 2C

µ(y) ŷ is as desired. Suppose that λ(y) > 0. Set

f =
1

4λ(x)
· x̂+

1

4λ(y)
· ŷ.

Clearly then f(λ) = 1/4 + 1/4 < 1. Also,

f(µ) > 1

4
· µ(y)

λ(y)
> C.

Hence, f is as desired. �

7.5. Lemma. Let A be a C*-algebra, and let λ, µ ∈ F0(Cu(A)) be densely finite
functionals, with λ extreme and µ /∈ [0,∞)λ. Then for every ε > 0 there exists
w ∈ Cu(A) such that λ(w) < ε and µ(w) > 1/ε.

Proof. If λ = 0 the lemma follows easily. Let us thus assume that λ 6= 0. We can
reduce the proof to the case that µ is also extreme. To this end, we find µ′ 6 µ that
is extreme and not a scalar multiple of λ. Such a µ′ must exist since F0(Cu(A))
is a well-capped cone (see [APRT18]). It is then clear that it suffices to prove the
lemma for the pair of functionals λ and µ′. Changing notation, we assume that µ is
also an extreme functional.

Choose x ∈ Cu(A) such that 0 < λ(x) <∞ and 0 < µ(x) <∞. This is possible
as both λ and µ are densely finite, and thus if 0 < λ(z) < ∞ and 0 < µ(w) < ∞,
there are z′, w′ ∈ Cu(A) with z � z′ and w � w′. Then x := z + w satisfies the
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required conditions. Normalize λ and µ so that λ(x) = µ(x) = 1. (The normalized
functionals are multiples of the original functionals by fixed scalars not depending
on ε; thus, the proof of the lemma may be reduced to the normalized functionals.)
We have λ � µ since µ is extreme and not a scalar multiple of λ. Let y ∈ Cu(A) be
such that µ(y) < λ(y) <∞. Set δ = λ(y)− µ(y).

Choose numbers m,n ∈ N such that 1
ε + ε < mδ and

|λ(nx)− λ(my)| = |n−mλ(y)| < ε .

Set z = (nx) ∧ (my). Since λ is an extreme functional that satisfies the Edwards’
condition (see § 6.3), we have λ(z) = min{n,mλ(y)}. Since n − ε < mλ(y) and
clearly n − ε < n, we deduce that |λ(z) − n| < ε. Choose z′ ∈ Cu(A) such that
z′ � z and |λ(z′)− n| < ε.

Now, by (O5) applied to z′ � z 6 nx, there is w ∈ S such that z′+w 6 nx 6 z+w.
Then λ(w) 6 λ(nx)− λ(z′) < ε. Also,

µ(z) + µ(w) > µ(nx) = n = n− λ(my) + λ(my) > −ε+mδ + µ(my)

> −ε+mδ + µ(z).

Therefore 1
ε < mδ − ε 6 µ(w), as desired. �

7.6. Lemma. Let A be a separable C*-algebra of stable rank one that has no nonzero
type I quotients, and let λ ∈ F0(Cu(A)) be a nonzero, densely finite functional.

(i) For each ε > 0 the set {x ∈ Cu(A) : λ(x) < ε} is a full subset of Cu(A).
(ii) The range of λ is [0,∞].

Proof. (i): Let W ⊆ Cu(A) be the ideal generated by {x ∈ Cu(A) : λ(x) < ε}. Let
I ⊆ A be the closed, two-sided ideal such that W = Cu(I). Suppose for the sake of
contradiction that I is proper. Let x ∈ Cu(A) with λ(x) <∞. Find x′′ � x′ � x
such that λ(x)− λ(x′′) < ε. By (O5), there exists w such that x′′ +w 6 x 6 x′ +w.
Evaluating on λ we get λ(w) < ε, whence w ∈W . Thus, the images of x and x′ in
Cu(A/I) agree. It follows that the image of x in Cu(A/I) is compact.

Next, we show that A/I contains a positive element with spectrum [0, 1]. Since
A/I is not type I, it follows from Glimm’s theorem that there exists a sub-C*-algebra
B ⊆ A/I that has a UHF-algebra as a quotient. In a UHF-algebra it is easy to find

a positive element b̃ with spectrum [0, 1]. Lift b̃ to a positive, contractive element
b in B. The b has spectrum [0, 1] in B, and consequently also in A/I. By [BC09,
Theorem 3.5], if C is a stably finite C*-algebra and c ∈ C+, then [c] is compact if
and only if 0 is an isolated point of the spectrum of c. Since A/I has stable rank one,
it is stably finite, and it follows that [(b− t)+] ∈ Cu(A/I) is not compact for every
t ∈ (0, 1). Let a ∈ A+ be a lift of b. Then λ([(a− 1/2)+]) <∞ and [(a− 1/2)+] is
mapped to [(b− 1/2)+] in Cu(A/I), which is not compact. This contradicts what
was proved in the previous paragraph.

(ii): It suffices to show that λ attains arbitrarily small nonzero values. Fix ε > 0.
By part (i), {x ∈ Cu(A) : λ(x) < ε} is a full subset of Cu(A). So if λ does not
attain nonzero values less than ε then it is the zero functional, contradicting our
assumption. Thus, there exists x ∈ Cu(A) such that 0 < λ(x) < ε. �

7.7. Lemma. Let A be a separable C*-algebra of stable rank one that has no nonzero
type I quotients, let λ ∈ F0(Cu(A)) be an extreme, densely finite functional, and let
σλ denote its chisel. Then σλ = ẑ for z := α(σλ).

Proof. We clearly have ẑ 6 σλ. If λ = 0 then σλ is the zero function, and the lemma
holds trivially. Assume thus that λ 6= 0. We first show that z is full. Let x ∈ Cu(A)
satisfy λ(x) < 1. Then x̂ 6 (1− ε)σλ for a sufficiently small ε. As noted in § 7.3,
we get x 6 α(σλ) = z. Hence, by Lemma 7.6 (i), z is full.
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Let 0 < ε < 1. By Lemma 7.6 (ii), there exists x ∈ Cu(A) such that λ(x) = 1− ε.
Then x̂ 6 (1− ε)σλ, whence x 6 z. Evaluating at λ we get 1− ε 6 λ(z). Since ε
can be arbitrarily small, we obtain λ(z) = 1, that is, ẑ(λ) = 1.

Let µ be a densely finite functional that is not a scalar multiple of λ, and let ε > 0.
By Lemma 7.5, there exists w ∈ Cu(A) such that λ(w) < 1 and µ(w) > 1/ε. Similar
as in the previous paragraph, we get w 6 z, from which we obtain that µ(z) > 1/ε.
Since ε can be arbitrarily small, we deduce µ(z) =∞, that is, ẑ(µ) =∞.

We have shown that ẑ(µ) = σλ(µ) for all µ densely finite. Further, since z is full,
this equality holds also for all functionals that are not densely finite, as in this case
both sides equal ∞. The lemma is thus proved. �

7.8. Theorem. Let A be a separable C*-algebra of stable rank one that has no
nonzero type I quotients, and let f ∈ L(F (Cu(A))) be a full function. Then f = ẑ
for z := α(f).

Proof. Choose g C f . Choose ε > 0 such that g C (1 − ε)f . We claim that there
exists x ∈ Cu(A) such that g 6 x̂ 6 (1− ε)f . Once the claim is proved, notice that
from x̂ 6 (1 − ε)f we get x 6 α(f) = z. Hence, g 6 ẑ for any g such that g C f .
Since f is the supremum of all such g, we obtain that ẑ = f , as desired.

We now prove the claim. If f = σ0 (that is, the function equal to ∞ on all
nonzero functionals) then we can choose x = ∞. We may thus assume that f is
finite on some nonzero functionals. Set

K :=
{
λ ∈ F (Cu(A)) : f(λ) 6 1

}
.

Observe that K is a closed (whence compact) convex subset of F (Cu(A)). Further,
since the function f is full, we have K ⊆ F0(Cu(A)). Let ∂eK denote the set of
extreme points of K. Notice that since K is a cap of F0(Cu(A)), every extreme
point of K is also an extreme functional in F0(Cu(A)) (see [APRT18]).

For each λ ∈ ∂eK set xλ := α((1− ε/2)f(λ)σλ). We know by Lemma 7.7 that
x̂λ = (1− ε/2)f(λ)σλ. Hence

g � (1− ε

2
)f 6 (1− ε

2
)f(λ)σλ = x̂λ.

Choose x′λ ∈ Cu(A) such that x′λ � xλ and g 6 x̂′λ. By the definition of the map

α, we have x̂′λ � (1 − ε/2)f(λ)σλ = x̂λ. Let us choose hλ ∈ L(F (Cu(A))) such

that x̂′λ 6 hλ 6 x̂λ and such that hλ is continuous on K. In order to do this, use

that x̂′λ � x̂λ to choose x′′λ � xλ such that x̂′λ � x̂′′λ, and then let choose hλ such

that x̂′λ 6 hλ C x̂′′λ. Since x′′λ � xλ, the function x̂′′λ is finite on the densely finite
functionals, and thus hλ is continuous on all the densely finite functionals and in
particular on K.

For each finite set of extreme functionals F ⊆ ∂eK define

hF :=
∧

λ∈F
hλ

The set {(hF )|K : F ⊆ ∂eK finite} is a downward directed family of continuous
affine functions on K, whence the pointwise infimum is an upper semicontinuous
affine function h : K → [0,∞). Since g 6 hF for all F , we have g|K 6 h. We also
have by construction that h(λ) 6 (1− ε/2)f(λ) for all λ ∈ ∂eK. Since both h and
f |K are affine functions of first Baire class on K, we obtain that h 6 (1− ε/2)f |K .

For any finite set F ⊆ ∂eK, define

UF =
{
λ ∈ K : hF (λ) < f(λ)

}
and VF =

{
λ ∈ K : hF (λ) < 1

}
,
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which are open subsets of K as hF is continuous on K and f − hF is lower semicon-
tinuous on K. Using the inequality h 6 (1− ε/2)f |K we see that

K =
⋃

F⊂⊂∂eK
(UF ∪ VF ) .

By compactness of K, and since the UF ∪ VF are upwards directed, there exists a
finite subset F of ∂eK such that K = UF ∪ VF .

We now claim that hF 6 f . Let λ ∈ F (Cu(A)). If f(λ) = ∞ the claim holds
trivially, so assume that f(λ) < ∞. Suppose also that 0 < f(λ) and let t = 1

f(λ) .

Clearly, tλ is an element of K. Thus, if tλ ∈ UF , then hF (tλ) < f(tλ), and hence
hF (λ) 6 f(λ). If, on the other hand, tλ ∈ VF , then hF (tλ) < 1 = f(tλ), whence
hF (λ) 6 f(λ). Finally, suppose that f(λ) = 0. Then, given x ∈ Cu(A), we have
x̂ 6∞f because f is full. Therefore, for any x′ ∈ Cu(A) such that x′ � x, there is
n ∈ N with x̂′ 6 ng. Thus λ(x′) = 0, and this implies that λ = 0. Thus the claim is
proved.

Now, set x :=
∧
λ∈F x

′
λ. Then, using that g 6 x̂′λ for each extreme functional λ

at the first step, using Theorem 6.10 at the second step, and using that x̂′λ 6 hλ at
the third step, we obtain

g 6
∧

λ∈F
x̂′λ = x̂ 6

∧

λ∈F
hλ = hF 6 f.

Thus, x is as desired. �
7.9. Let A be a C*-algebra and let I ⊆ A be a closed, two-sided ideal of A. Recall
that we may regard Cu(I) as an ideal of Cu(A). Given λ ∈ F (Cu(I)), define

λ̃ ∈ F (Cu(A)) by

λ̃(x) =

{
λ(x), if x ∈ Cu(I)

∞, otherwise
.

The assignment λ 7→ λ̃ defines an order-embedding F (Cu(I))→ F (Cu(A)) which is
a right inverse to the restriction map F (Cu(A))→ F (Cu(I)), given by λ 7→ λ|Cu(I).
Thus, the latter map is surjective. By applying the functor L(·) to the restriction

map, we obtain a map L(F (Cu(I))) → L(F (Cu(A))), given by f 7→ f̃ , where

f̃(λ) := f(λ|Cu(I)) for λ ∈ F (Cu(A)).

7.10. Theorem. Let A be a separable C*-algebra of stable rank one that has no
nonzero, elementary ideal-quotients, and let f ∈ L(F (Cu(A))). Then f = ẑ for
z := α(f).

Proof. The set W = {x ∈ Cu(A) : x̂ 6 ∞ · f} is an ideal of Cu(A). Let I be
the closed, two-sided ideal of A such that Cu(I) = W . Note that I is a separable
C*-algebra of stable rank one that has no nonzero, elementary ideal-quotients,
and in particular no nonzero type I quotients. Now, writing f = sup x̂n

kn
for

suitable xn ∈ Cu(A) and kn ∈ N, we see that xn ∈ Cu(I) for all n, and thus
f ∈ L(F (Cu(I))). It is moreover clear that f is a full element of L(F (Cu(I))).
Let αI : L(F (Cu(I))) → Cu(I) be the map from § 7.3 for I. Set y := αI(f). By
Theorem 7.8, we have f = ŷ in L(F (Cu(I))). Using the observation from § 7.9, it is
easy to see that the following diagram commutes:

L(F (Cu(I))) //

αI

��

L(F (Cu(A)))

α

��
Cu(I)

� � // Cu(A).

It follows that αI(f) = α(f), and consequently ẑ = f in L(F (Cu(A))). �
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7.11. Theorem. Let A be a separable, unital C*-algebra of stable rank one that
has non nonzero, finite dimensional quotients. Set u = [1A]. Let Fu(Cu(A))
denote the set of functionals λ ∈ F (Cu(A)) normalized at u. Then for each f ∈
LAff(Fu(Cu(A)))σ++ there exists z ∈ Cu(A) such that ẑ|Fu(Cu(A)) = f .

Proof. Let I be a closed, two-sided ideal of A such that A/I has type I. Choose a
maximal ideal J containing I. Then A/J is simple, unital and has type I, whence it
is finite dimensional. It follows that A has no nonzero type I quotients.

We can thus apply Theorem 7.8 to realize full functions in L(F (Cu(A))). More-
over, by Proposition 6.7, given a function f ∈ LAff(Cu(A))σ++, there exists a full

f̃ ∈ L(F (Cu(A))) whose restriction to Fu(Cu(A)) is f . Then f̃ = ẑ for z := α(f̃),
and so ẑ|Fu(Cu(A)) = f . �

8. Supersoft elements and comparability

In this section we introduce the notion of supersoft elements in Cuntz semigroups
of a separable C*-algebras of stable rank one. We use these elements to advance
further the study of comparability properties in the Cuntz semigroups of these
C*-algebras.

8.1. Let A be a separable C*-algebra of stable rank one. We call z ∈ Cu(A) supersoft

if α(ẑ) = z. Put differently, z = α(f) and α̂(f) = f for some f ∈ L(F (Cu(A))).

8.2. Proposition. Let A be a separable C*-algebra of stable rank one.

(i) If z ∈ Cu(A) is supersoft then z is soft.
(ii) If x ∈ Cu(A) is soft, z ∈ Cu(A) is supersoft, and x̂ 6 ẑ, then x 6 z.
(iii) If x is soft then x 6 α(x̂) and α(x̂) is supersoft.

Proof. (i): Let z = α(ẑ) be supersoft. Let z′ � z. Then ẑ′ � ẑ, by the definition of
α (see § 7.3). This in turn implies that z is soft (see [APT18b, Proposition 5.3.3]).

(ii): Let x′ ∈ Cu(A) satisfy x′ � x. Since x is soft, x̂′ � x̂ 6 ẑ. Thus, x̂′ � ẑ
for every x′ � x. It follows that x 6 α(ẑ) = z.

(iii): Let x′ ∈ Cu(A) satisfy x′ � x. Since x is soft, x̂′ � x̂. Hence, x′ 6 α(x̂)
(see § 7.3). Passing to the supremum over all x′ � x we get that x 6 α(x̂). Hence,

x̂ 6 α̂(x̂). On the other hand, from the definition of α we have that α̂(f) 6 f for

any f . Thus, α̂(x̂) 6 x̂. It follows that x̂ = α̂(x̂). Hence, α(x̂) is supersoft. �

8.3. Let A be a separable C*-algebra of stable rank one. Our results on realizing
elements of L(F (Cu(A))) as ranks guarantee the existence of supersoft elements in
Cu(A):

(1) By Theorem 7.8, if f ∈ L(F (Cu(A))) is a full function then α(f) is supersoft,
provided that A has no nonzero type I quotients. In particular, this is true
if A is unital and has no nonzero, finite dimensional quotients.

(2) By Theorem 7.10, the set of supersoft elements agrees with the range of α,
provided that A has no nonzero, elementary ideal-quotients.

For the result below, recall from § 7.3 that, if A is a separable C*-algebra with
stable rank one and f ∈ L(F (Cu(A))), we have

α(f) = sup If , where If =
{
x ∈ Cu(A) : x̂′ � f for all x′ � x

}
.

8.4. Proposition. Let A be a separable C*-algebra of stable rank one. Then, the
map α : L(F (Cu(A))) → Cu(A) preserves the order, the suprema of increasing
sequences, and the infima of pairs of elements.



26 RAMON ANTOINE, FRANCESC PERERA, LEONEL ROBERT, AND HANNES THIEL

Proof. Let f, g ∈ L(F (Cu(A))) satisfy f 6 g. Then If ⊆ Ig, and thus α(f) 6 α(g).
Next, let (fn)n be an increasing sequence in L(F (Cu(A))), and set f := supn fn.

Since α is order-preserving, the sequence (α(fn))n is increasing in Cu(A). Set
x := supn α(fn). Since α(fn) 6 α(f) for all n, we have x 6 α(f). To prove the
converse inequality, take z ∈ If . Then ẑ � f , and thus there is n ∈ N with ẑ � fn.
This means that z ∈ Ifn and thus z 6 α(fn) 6 x. Passing to the supremum over all
z ∈ If we get α(f) 6 x. Hence x = α(f), as desired.

Finally, let us show that α(f ∧ g) = α(f) ∧ α(g). From the fact that α is order
preserving we deduce at once that α(f ∧ g) 6 α(f) ∧ α(g). Let 0 < ε < 1 and
suppose that z 6 α((1− ε)f) ∧ α((1− ε)g). Then

ẑ 6 (1− ε)f ∧ (1− ε)g = (1− ε)(f ∧ g).

Hence, z 6 α(f ∧ g). It follows that α((1− ε)f) ∧ α((1− ε)g) 6 α(f ∧ g). Letting
ε → 0 and using that α preserves suprema of increasing sequences, we get that
α(f) ∧ α(g) 6 α(f ∧ g). �

8.5. Theorem. Let A be a separable C*-algebra of stable rank one, let x ∈ Cu(A),
and let f ∈ L(F (Cu(A))) satisfy x̂ 6 ∞f . Suppose that we are in one of the
following cases:

(i) A is unital, has no nonzero, finite dimensional quotients, and f is full;
(ii) A has no nonzero, elementary ideal-quotients.

Then
α(f + x̂) = α(f) + x.

Proof. In both cases, (i) and (ii), we have that α(f) is supersoft, whence soft. By
[APT18b, Theorem 5.3.11 (2)], the soft elements form an absorbing subsemigroup of
Cu(A) in the following sense: if z 6∞·w and w is soft then z+w is soft. Therefore,
since x 6∞ · α(f), we have that α(f) + x is soft. Using Proposition 8.2 (ii) at the

first step, and that α̂(f) = f at the second step, we obtain

α(f) + x 6 α(α̂(f) + x̂) = α(f + x̂).

Let us prove the opposite inequality. Assume first that x̂ ∝ f (that is, x̂ 6 Cf for
some constant C > 0). Let h ∈ L(F (Cu(A))) be any function such that hC f + x̂.

In the case (i), assume also that h is full, and thus in either case we have α̂(h) = h.
Choose ε > 0 such that h 6 (1− ε)f + x̂. We claim that hC h+ ε

2f . Indeed, notice
first that h ∝ f , since x̂ ∝ f . It is then clear that for small enough δ > 0 we have
h 6 (1− δ)(h+ ε

2f). Further, if f(λ) <∞ then f(λ) + x̂(λ) <∞ and therefore h is
continuous at λ.

Consider the element

y = (α((1− ε)f) + x) ∧ α(h).

Then
ŷ = ((1− ε)f) + x̂) ∧ h = h.

Hence, h� ŷ + ε
2f (since hC h+ ε

2f). Choose y′ ∈ Cu(A) such that y′ � y and
h� ŷ′ + ε

2f . Then y′ � y 6 α(h), and thus there exists by (O5) a z ∈ Cu(A) such
that

y′ + z 6 α(h) 6 y + z.

Observe then that
ŷ′ + ẑ 6 h 6 ŷ′ + ε

2
f.

It follows that ẑ 6 ε
2f , and so z 6 α(εf). Then, using the definition of α at the last

step, we obtain

α(h) 6 y + z 6 α((1− ε)f) + x+ α(εf) 6 α(f) + x.
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Passing to the supremum over all hCf + x̂ and using that α is supremum preserving
(Proposition 8.4) we get that α(f + x̂) 6 α(f) + x, as desired.

Let us finally deal with the case that x̂ 6 ∞f . If x′ � x then x̂′ ∝ f . Hence
α(f + x̂′) = α(f) + x′. Passing to the supremum over all x′ � x the theorem
follows. �

8.6. Corollary. Let A be a separable C*-algebra of stable rank one.

(i) If A is unital and has no nonzero, finite dimensional quotients, then α is
additive on the set of full elements of L(F (Cu(A))) and its range is an
absorbing subsemigroup of Cu(A).

(ii) If A has no nonzero, elementary ideal-quotients, then α is additive and its
range is an absorbing subsemigroup of Cu(A).

Proof. (i): This is a straightforward consequence of the previous theorem.
(ii): To show that α is additive, let f, g ∈ L(F (S)). If x, y ∈ Cu(A) satisfy

x̂ 6 (1− ε)f and ŷ 6 (1− ε)g for some ε > 0, then x̂+ ŷ 6 (1− ε)(f + g), which
implies that x + y 6 α(f + g). Passing to the supremum of all such x and y we
obtain the inequality α(f) + α(g) 6 α(f + g).

Set wf = α(∞f) and wg = α(∞g). Then wf + wg is idempotent, that is,
2(wf + wg) = wf + wg. It is not difficult to check that idempotent elements are
supersoft. Hence,

α(∞f) + α(∞g) = wf + wg = α(ŵf + ŵg) = α(∞f +∞g).

Now, using Theorem 8.5 and that α preserves infima (Proposition 8.4),

α(f + g) ∧ wf = α
(
(f + g) ∧ (∞f)

)
=
(
α(f) + α(g)

)
∧ wf 6 α(f) + α(g).

Similarly,

α(f + g) ∧ wg 6 α(f) + α(g).

Hence,

α(f + g) ∧ wf + α(f + g) ∧ wg 6 2(α(f) + α(g)).

Using the distributivity of addition over infima on the left side we obtain that
α(f + g) 6 2(α(f) + α(g)).

Let 0 < ε < 1/2. Then, using Theorem 8.5 and the inequality just established,
we obtain

α
(
(1− ε)(f + g)

)
= α

(
(1− 2ε)f

)
+ α

(
(1− 2ε)g

)
+ α

(
ε(f + g)

)

6 α
(
(1− 2ε)f

)
+ α

(
(1− 2ε)g

)
+ α(2εf) + α(2εg)

6 α(f) + α(g).

Letting ε→ 0 we obtain that α(f + g) 6 α(f) + α(g). �

8.7. Radius of comparison. Let A be a unital C*-algebra. Set u := [1A] and recall
that we use Fu(Cu(A)) to denote the set of all λ ∈ F (Cu(A)) such that λ(u) = 1.
Recall that the radius of comparison of A, denoted rc(A), is the infimum of the set
of r ∈ (0,∞] such that

λ(x) + r 6 λ(y) for all λ ∈ Fu(Cu(A))) =⇒ x 6 y
for all x, y ∈ Cu(A) with y full. We will find the following restatement of the
definition of rc(A) more convenient: rc(A) is the infimum of the set of r ∈ (0,∞]
such that

x̂+ rû 6 ŷ =⇒ x 6 y
for all x, y ∈ Cu(A). Observe that the fullness of y is now automatic since rû 6 ŷ
and r > 0.
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In the result below, we shall be using the general fact that, if x ∈ Cu(A), then x
is full if and only if x̂ ∈ L(F (Cu(A))) is full. Recall that W (A) denotes the set of
Cuntz classes of positive elements in M∞(A).

8.8. Theorem. Let A be a separable, unital C*-algebra of stable rank one that has
no nonzero, finite dimensional quotients. Set u = [1A]. Then the following are
equivalent:

(i) W (A) = {x ∈ Cu(A) : x̂ 6 nû for some n ∈ N}.
(ii) W (A) contains at least one full supersoft element.
(iii) There exists N ∈ N such that x̂ 6 û implies x 6 Nu for all x ∈ Cu(A).
(iv) A has finite radius of comparison.

Proof. (i) =⇒ (ii): Set y := α(û), which is a supersoft element. Since ŷ = û, we
have by (i) that y is an element of W (A). It remains to see that y is full, but this
follows from the fact that ŷ = û and u is full in Cu(A).

(ii) =⇒ (iii): Let z ∈ W (A) be a full supersoft element. Thus, there exist
m,n ∈ N such that u 6 mz 6 nu.

Now let x ∈ Cu(A) be such that x̂ 6 û. Then x̂ 6 mẑ, and thus

x 6 x+ α(x̂) 6 x+ α(mẑ) = α(x̂+mẑ) 6 α(2mẑ) = 2mz 6 2nu.

(iii) =⇒ (iv): Let N be as in (iii). To show that rc(A) 6 N , let x, y ∈ Cu(A)
satisfy x̂+Nû 6 ŷ. Set z := α(û). Applying Theorem 8.5, we obtain

x+Nu 6 x+Nu+ z = α(x̂+Nû+ û) 6 α(ŷ + ẑ) = y + z.

By (iii), we have z 6 Nu, and therefore x + Nu 6 y + Nu. Hence, x 6 y by
cancellation of compact elements.

(iv) =⇒ (i): Clearly if x ∈ W (A) then x̂ 6 nû for some n ∈ N. Suppose
conversely that x ∈ Cu(A) and n ∈ N satisfy x̂ 6 nû. Let N ∈ N satisfy N > rc(A).
From x̂+Nû 6 (N + n)û we deduce that x 6 (N + n)u. Hence, x ∈W (A). �

8.9. Strict comparison and local weak (m, γ)-comparison. Recall that a C*-algebra
A is said to have strict comparison if whenever x, y ∈ Cu(A) satisfy x̂ 6 (1− ε)ŷ
for some ε > 0, then x 6 y.

Let us say that A has strict comparison on full elements if whenever x, y ∈ Cu(A),
with y full, satisfy x̂ 6 (1− ε)ŷ for some ε > 0, then x 6 y. Clearly, if A is a simple
C*-algebra this property agrees with strict comparison.

Suppose now that A is unital. Set u = [1A]. Recall that we denote by Fu(Cu(A))
the set of all λ ∈ F (Cu(A)) such that λ(u) = 1. Suppose that there exist m ∈ N
and γ > 1 such that if a, b ∈ A+, with b full, satisfy

γ · sup
λ∈Fu(Cu(A))

λ([a]) 6 inf
λ∈Fu(Cu(A))

λ([b])

then [a] 6 m[b]. We then say that A has local weak (m, γ)-comparison. The word
local here refers to the fact that we do not choose a and b in A⊗K, just in A. The
case when A is simple and m = 1 of this property appears in [KR14, Definition 2.1],
where it is called ‘local weak comparison’. We show below that if A is a separable,
unital C*-algebra of stable rank one that has no nonzero, finite dimensional quotients,
then local weak (m, γ)-comparison implies strict comparison on full elements.

8.10. Lemma. Let A be a separable C*-algebra of stable rank one, let x ∈ Cu(A)
be full, and let f ∈ L(F (Cu(A))) satisfy f � x̂. Then there exist y, z ∈ Cu(A) such
that f 6 ŷ, y + z 6 x, and z is full.

Proof. Choose w ∈ Cu(A) satisfying f � ŵ � x̂. Set x1 := x∧w. By Theorem 6.10,
we have x̂1 = x̂ ∧ ŵ = ŵ. Therefore f � x̂1 and x1 6 x. Choose y ∈ Cu(A) such
that y � x1 and f 6 ŷ. Finally, apply (O5) to y � x1 6 x to obtain z ∈ Cu(A)
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such that y + z 6 x 6 x1 + z. It remains to show that z is full. Denote by W the
ideal generated by z, that is, W = {z′ ∈ Cu(A) : z′ 6 ∞ · z}. Let I ⊆ A be the
closed, two-sided ideal such that W = Cu(I). Passing to Cu(A/I) by the quotient
map, let us denote the images of x, x1, and y by x, x1, and y. We have y = x1 = x,
and this element is compact. Since x̂1 � x̂, we can choose ε > 0 with x̂1 6 (1− ε)x̂.
Passing to Cu(A/I) we obtain x̂ = (1− ε)x̂. Thus, x is a compact element on which
no functional is finite and nonzero. Since A/I is stably finite, we deduce x = 0.
Hence x 6∞z, and since x is full we get that z is full as well. �

8.11. Lemma. Let A be a unital, separable C*-algebra of stable rank one. Set
u = [1A]. Let (zi)i be a sequence of full, supersoft elements in Cu(A) such that
ẑi 6 û for all i. Then

∞∑

i=1

zi =
∞∑

i=1

(zi ∧ u).

Proof. Applying § 3.9 in
∑n
i=1(zi ∧ u) we obtain the infimum of a number of sums.

Since, for each i, the element zi is full by assumption, we may apply Theorem 8.5
to conclude that those sums whose terms contain at least one u and at least one zi
result in a supersoft element. Further, since ẑi 6 û for all i, this supersoft element
is larger than

∑n
i=1 zi. Hence,

n∑

i=1

(zi ∧ u) = (
n∑

i=1

zi) ∧ nu.

Passing to the supremum over all n we get the desired equality. �

8.12. Theorem. Let A be a unital, separable C*-algebra, of stable rank one that
has no nonzero finite dimensional quotients. Then the following conditions are
equivalent:

(i) A has local weak (m, γ)-comparison for some m ∈ N and γ > 1.
(ii) For each full element x ∈ Cu(A) there exists a full, supersoft element

z ∈ Cu(A) such that z 6 x.
(iii) A has strict comparison on full elements.
(iv) The restriction of α to {f ∈ L(F (Cu(A))) : f is full} is a Cu-morphism

into the subsemigroup of full elements of Cu(A).

Proof. (i) =⇒ (ii): Let m ∈ N and γ > 1 such that A has local weak (m, γ)-
comparison. Let x ∈ Cu(A) be full. As above, set u = [1A]. Replacing x by x ∧ u if
necessary, we may assume that x 6 u. (Note that x∧ u remains full by Lemma 5.3).
By Theorem 5.10, we can choose a sequence (xi)i of full elements in Cu(A) such
that

∑
imxi 6 x. Since xi is full for each i, there exists ni ∈ N such that u 6 nixi,

and we may clearly further assume that
∑
i

1
ni
6 1. Set

ε =

∞∑

i=1

1

γni
.

Applying Theorem 5.10 again, let z ∈ Cu(A) be a full, supersoft element such that
ẑ 6 εû. We claim that z 6 x. Set ti := 1

εγni
for each i ∈ N, and observe that∑

i ti = 1. Set zi := α(tiẑ) for each i. Since z is full, we see that zi is full for each i.
Using Theorem 8.5 at the second step, Proposition 8.4 at the third step, and that z
is supersoft at the last step, we have

∞∑

i=1

zi = sup
n

n∑

i=1

α(tiẑ) = sup
n
α(

n∑

i=1

tiẑ) = α(sup
n

n∑

i=1

tiẑ) = α(ẑ) = z.
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Since ẑ 6 û, Lemma 8.11 implies

z =
∞∑

i=1

(zi ∧ u).

By the way we picked the sequence (ti)i, we have γniẑi 6 û 6 nix̂i. Since A has
local weak (m, γ)-comparison we conclude that zi ∧ u 6 mxi for all i. Therefore,

z =
∞∑

i=1

(zi ∧ u) 6
∞∑

i=1

mxi 6 x,

as desired.
(ii) =⇒ (iii): Suppose that x, y ∈ Cu(A), with y full, satisfy x̂ 6 (1−ε)ŷ for some

ε > 0. Let x′ ∈ Cu(A) satisfy x′ � x. By Lemma 8.10 there exist y′, w ∈ Cu(A)

such that x̂ 6 ŷ′, y′ + w 6 y, and w is full. By assumption, there exists a full,

supersoft element z ∈ Cu(A) such that z 6 w. Then x̂ + ẑ 6 ŷ′ + ẑ, whence

α(x̂+ ẑ) 6 α(ŷ′ + ẑ). Now, since z is full we have x̂, ŷ′ 6∞ẑ. Using Theorem 8.5
in the second and fourth steps, and that z is supersoft in the first and sixth steps
we obtain

x+ z = x+ α(ẑ) = α(x̂+ ẑ) 6 α(ŷ′ + ẑ) = y′ + α(ẑ) = y′ + z 6 y′ + w 6 y,
and thus x 6 y, as desired.

(iii) =⇒ (iv) We have already shown that α preserves order and suprema of
increasing sequences (Proposition 8.4), and that α is additive on full functions
(Theorem 8.5). It remains to show that it preserves the way below relation. Let us
show first that if x, y ∈ Cu(A), with x full and soft, are such that x̂ 6 ŷ, then x 6 y
(cf. [APT18b, Theorem 5.2.18]). Choose a full element x′ ∈ Cu(A) such that x′ � x.

Since x is soft, x̂′ � x̂ 6 ŷ. By strict comparison on full elements, x′ 6 y. Passing
to the supremum over all full x′ � x, we get x 6 y. Now let f, g ∈ L(F (Cu(A)))
be full and such that f � g. Since α(g) = supx�α(g) x, and z 7→ ẑ is supremum

preserving, we can choose x� α(g) such that f 6 x̂. Since α(f) is soft and full, we
deduce that α(f) 6 x� α(g), as desired.

(iii) =⇒ (i): Obvious.
(iv) =⇒ (iii): Suppose that x, y ∈ Cu(A), with y full, satisfy x̂ 6 (1 − ε)ŷ for

some ε > 0. Let x′ � x. Then x̂′ � ŷ, and thus x̂′ + û� ŷ + û. We deduce

x′ + α(û) = α(x̂′ + û)� α(ŷ + û) = y + α(û).

By weak cancellation, we get x′ 6 y. Passing to the supremum over all x′ � x, we
obtain x 6 y. �

8.13. Theorem. Let A be a separable C*-algebra of stable rank one that has no
nonzero, elementary ideal-quotients. Then, the following conditions are equivalent:

(i) There exist m ∈ N and γ > 1 such that γx̂ 6 ŷ implies x 6 my for all
x, y ∈ Cu(A).

(ii) For each x ∈ Cu(A) there exists y 6 x that is supersoft and such that
∞y =∞x.

(iii) Cu(A) has strict comparison.

Moreover, these conditions imply that α is a Cu-morphism.

Proof. (i) =⇒ (ii): Given x ∈ Cu(A), choose x′ such that mx′ 6 x and ∞x′ =∞x.

Set y := α(x̂′/γ). Then γŷ = x̂′. So y 6 mx′ 6 x and ∞y =∞x′ =∞x.
(ii) =⇒ (iii): Let x, y ∈ Cu(A) and ε > 0 satisfy x̂ 6 (1− ε)ŷ. Let x′ � x. Then

x̂′ � ŷ. By Lemma 8.10, there exist y′, z ∈ Cu(A) such that x̂′ 6 ŷ′, y′ + z 6 y,
and y 6∞z. Let w ∈ Cu(A) be supersoft, such that w 6 z and ∞w =∞z. Then
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x′ + w and y′ + w are supersoft, and so x′ 6 x′ + w 6 y′ + w 6 y. Passing to the
supremum over all x′ � x, we get x 6 y.

(iii) =⇒ (i): Obvious.
Lastly, let us show that (iii) implies that α is a Cu-morphism. As in the proof of

Theorem 8.12 (iii) =⇒ (iv), we only need to check preservation of the way below
relation. Let f, g ∈ L(F (S)) satisfy f � g. As in the proof of Theorem 8.12
(iii) =⇒ (iv), we obtain x ∈ S such that f 6 x̂ and x � α(g). By [APT18b,
Theorem 5.2.18], if elements y, z in a Cu-semigroup with strict comparison satisfy

ŷ 6 ẑ, and if y is soft, then y 6 z. Since α(f) is soft, and since α̂(f) = f 6 x̂, we
get α(f) 6 x, and then α(f)� α(g). �

9. Nonseparable C*-algebras

Here we show that the hypothesis of separability can be dropped in some of the
results from the previous sections. To this end, we rely on the model theory of
C*-algebras and in particular on the Downward Löwenheim-Skolem Theorem for
C*-algebras. For the model theory of C*-algebras we refer the reader to [FHL+16].

Given a C*-algebra A and a C*-subalgebra B, we write B ≺ A if B is an el-
ementary submodel of A. This means that for every formula ϕ in the language
of C*-algebras and every n-tuple a in B, we have ϕB(a) = ϕA(a) (see [FHL+16,
Definition 2.3.3]). By the Downward Löwenheim-Skolem Theorem ([FHL+16, Theo-
rem 2.6.2]), every C*-algebra has a separable elementary submodel. Important to
us in what follows is that if B ≺ A then the induced map Cu(B) → Cu(A) is an
order-embedding ([FHL+16, Lemma 8.1.3]).

The next result removes the separability assumption in Theorem 5.7.

9.1. Theorem. Let A be a unital C*-algebra of stable rank one, and let k ∈ N.
Then A has no nonzero representations of dimension less than k if and only if there
exists a *-homomorphism ϕ : Mk(C0((0, 1]))→ A with full range.

Proof. The proof of the easy direction in Theorem 5.7 does not make use of the
separability hypothesis. Hence, it applies here.

Suppose that A is a unital C*-algebra of stable rank one without nonzero
representations of dimension less than k. By [RR13, Corollary 5.4], the element [1] is
weakly (k, n)-divisible for some n (see § 5.2). Thus, there exist a1, . . . , an ∈ A+ such
that k[ai] 6 [1] for all i and [1] 6

∑n
i=1[ai]. Apply the Downward Löwenheim-Skolem

Theorem to obtain a separable C*-subalgebra B ≺ A that contains 1, a1, . . . , an.
Since the inclusion of B in A induces an order-embedding of Cu(B) in Cu(A)
([FHL+16, Lemma 8.1.3]), the inequalities k[ai] 6 [1] for all i and [1] 6

∑n
i=1[ai]

also hold in Cu(B). By [RR13, Corollary 5.4], B has no representations of dimension
less than k. On the other hand, by [FHL+16, Lemma 3.8.2]), the property of having
stable rank one is elementary and so passes to elementary submodels. We can thus
apply Theorem 5.7 in B to obtain a *-homomorphism ϕ : Mk(C0((0, 1]))→ B ⊆ A
whose range is full in B. Since 1 ∈ B, the range of ϕ is also full in A. �

Next we extend Theorem 7.11 to the nonseparable case. We start with a prepara-
tory result.

9.2. Lemma. Let A be a C*-algebra, let B ≺ A, and let a, b ∈ B+. Then λ([a]) 6
λ([b]) for all λ ∈ F (Cu(A)) if and only if λ([a]) 6 λ([b]) for all λ ∈ F (Cu(B)).

Proof. The backward implication follows directly using that every functional on
Cu(A) restricts to a functional on Cu(B). To show the converse, suppose that
λ([a]) 6 λ([b]) for all λ ∈ F (Cu(A)). Let ε > 0 and δ > 0. By [Rob13, Proposi-
tion 2.2.6] there exist M,N ∈ N such that M/N > 1− δ and M [(a− ε)+] 6 N [b] in
Cu(A). Since the inclusion A→ B induces an order-embedding Cu(B)→ Cu(A),
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this inequality also holds in Cu(B). Fix λ ∈ F (Cu(B)). Evaluating both sides of
M [(a− ε)+] 6 N [b] on λ we get

(1− δ)λ
(
[(a− ε)+]

)
6 λ([b]).

Since this holds for all δ, ε > 0 we conclude that λ([a]) 6 λ([b]), as desired. �

9.3. Theorem. Let A be a unital C*-algebra of stable rank one with no finite
dimensional quotients. Set u = [1A] and let Fu(Cu(A)) ⊆ F (Cu(A)) denote the set
of functionals normalized at u. Then for each f ∈ LAff(Fu(Cu(A)))σ++ there exists
z ∈ Cu(A) such that ẑ|Fu(Cu(A)) = f .

Proof. Let us regard A embedded in A⊗K as the ‘upper left corner’. Let 1A ∈ A⊗K
denote the unit of A. Given f ∈ LAff(Fu(Cu(A)))σ++, apply Proposition 6.7 to

obtain f̃ ∈ L(F (Cu(A))) that extends f . Find a sequence (xi)i in Cu(A) such that

supi x̂i/mi = f̃ . Choose ai ∈ (A⊗K)+ such that xi = [ai] for all i.
Since A has no finite dimensional representations, by [RR13, Corollary 5.4] there

exists for each k an nk ∈ N such that [1A] is weakly (k, nk)-divisible in Cu(A). We
thus find bk,l ∈ A+ for k = 1, 2, . . . and l = 1, . . . , nk such that k[bk,l] 6 [1A] for
all k, l and [1A] 6

∑nk

l=1[bk,l] for all k. Apply the Downward Löwenheim-Skolem
theorem to obtain a separable elementary submodel B ≺ A⊗K that contains all ai,
all bk,l, and 1A.

As argued in the proof of Theorem 9.1, B has stable rank one. Further, the
inclusion of B in A induces a natural order-embedding Cu(B)→ Cu(A).

We claim that B is stable To prove this we use the Hjelmborg-Rørdam criterion
for stability established in [HR98, Theorem 2.1]. By the stability of A, for each
b ∈ B+ and ε > 0 there exists v ∈ A such that ‖a − v∗v‖ < ε and ‖a − vv∗‖ < ε.
Since B is an elementary submodel of A, there exists also ṽ ∈ B fulfilling the same
inequalities. Since B is separable, [HR98, Theorem 2.1] implies that B is stable.

Let us show that 1A ∈ B is full in B. For every b ∈ B+ we have [b] 6∞[1A] in
Cu(A), as 1A is full in A⊗K. Using that Cu(B)→ Cu(A) is an order-embedding,
we get [b] 6∞[1A] in Cu(B), which implies that 1A is full in B.

The inequalities k[bk,l] 6 [1A] and [1A] 6
∑nk

l=1[bk,l] hold in Cu(B) for all k, l,
using again that Cu(B)→ Cu(A) is an order-embedding. Therefore, the element
[1A] is weakly (k, nk)-divisible in Cu(B) for all k. By [RR13, Corollary 5.4], the
hereditary C*-subalgebra 1AB1A has no finite dimensional representations.

By Lemma 9.2, the sequence (x̂i/mi)i is increasing when regarded as a sequence
in L(F (Cu(B))). Let h ∈ L(F (Cu(B))) be its supremum. The function h is full,
since x̂i/mi is full for large enough i. By Theorem 7.11 applied in the C*-algebra
B, we have h = x̂ for x := α(h). Since B is stable, there exists c ∈ B+ such that

[c] = x, and thus ˆ[c] = h.

We claim that [c], regarded as an element in Cu(A), satisfies ˆ[c] = f̃ . By

Lemma 9.2, the inequalities x̂i/mi 6 ˆ[c], which hold in L(F (Cu(B))), also hold

in L(F (Cu(A))) for all i. Passing to the supremum over i, we get that f̃ 6 ˆ[c].
Let [c′] ∈ Cu(B) be such that [c′] � [c]. By the definition of α(h), we have that
ˆ[c′]� h = ˆ[c] in L(F (Cu(B))). Hence ˆ[c′] 6 x̂i/mi for some i. By Lemma 9.2, this

inequality holds also in L(F (Cu(A)). Hence, ˆ[c′] 6 f . This holds for c′ = (c− ε)+
and arbitrary ε > 0. Hence, ˆ[c] 6 f̃ in L(F (Cu(A))), as desired. �
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