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Abstract

In this paper we classify the family QSL2p of quadratic differential system pos-

sessing two parallel invariant affine lines according to their configurations of invariant

lines. Actually our classification also includes systems that are limit points in the pa-

rameter space of QSL2p , i.e. it covers the closure QSL2p of QSL2p in the parameter

space. We obtained a total of 93 such configurations. Our classification is done in

terms of polynomial invariants and it provides us with an algorithm to decide whether

or not a quadratic system belongs to the family and if it does then it gives us what its

configuration of invariant lines.

1 Introduction

We consider here real planar differential systems of the form

(S)
dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R, and their associated vector

fields

D̃ = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y
. (2)

We call degree of a system (S) the integer deg(S) = max(deg(P ), deg(Q)). We call

quadratic (respectively cubic) differential system such a polynomial system of degree two

(respectively three). We shall sometimes use quadratic system instead of quadratic dif-

ferential system. Each such system generates a complex differential vector field when the

variables range over C. We recall the following definitions:
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Definition 1.1. Let F : U −→ R, U ⊆ R2 be a C1 function on an open set U . If F is

constant on all solutions curves (x(t), y(t)) in U of a system (S), we say that F is a first

integral on U of (S). If there exists such an F which is nonconstant on any open subset of

U we say that this system is integrable on U .

Remark 1.1. We note that such a C1 function F : U −→ R is a first integral on U of (1)

if and only if for all solutions (x(t), y(t)) with values in U of (1) defined when t is in an

open interval of R, we have
dF (x(t), y(t))

dt
= 0 for all t in this interval, or equivalently

D̃F ≡ p(x, y)
∂F

∂x
+ q(x, y)

∂F

∂y
= 0. (3)

Darboux used algebraic invariant curves fi(x, y) = 0, i = 1, 2, . . . , s, over C to construct

first integrals of the form F =
∏s

i=1 fi(x, y)
λi for some λ = (λ1, . . . , λs) ∈ Cs \ {0} for

complex systems (S). By an analytic first integral F on an open set U of C2 of a complex

vector field (2) we mean an analytic function F on U such that D̃F = 0.

Definition 1.2. An algebraic curve f(x, y) = 0, f ∈ C[x, y] is invariant for a polynomial

differential system (S) if there exists a polynomial K(x, y) ∈ C[x, y], called the cofactor of

f(x, y) such that the following identity is satisfied in C[x, y]

p(x, y)
∂f

∂x
+ q(x, y)

∂F

∂y
= f(x, y)K(x, y).

Even though we may be interested in real systems, the extension of real systems to

complex systems proves to be very valuable and could provide real first integrals obtained

by using complex algebraic invariant curves according to the theory of Darboux which

without the use of complex invariant curves could not have been obtained. Indeed, consider

the following:

Example (This example is obtained by taking g = 1 in item 32 of Table 1 from [25].)

dx/dt = x2 + 1, dy/dt = x+ y

This system clearly has two invariant lines which are complex x ± i = 0 with respective

co-factors x∓i. This system was proved to be integrable in [25] having the inverse Darboux

integrating factor (x+ i)1+i/2(x− i)1−i/2 and a real first integral F32 in [25]. But this first

integral cannot be calculated by using only the real algebraic invariant conic x2 + 1 = 0.

To real systems we can associate their corresponding complex systems and to these we

can associate a complex differential equation on the complex projective plane (see [21],

Section 2). For each affine invariant curve f(x, y) = 0, its projective completion is also

invariant for the complex differential equation in the complex projective plane. Furthermore

the real (complex) line at infinity is an invariant line of the affine plane of the real (complex)

projective plane.

Darboux [12] constructed his theory of geometric integrability of planar polynomial

differential systems, based on the concept of invariant algebraic curves. In [12] Darboux

and gave a sufficient condition of integrability for complex systems (S) in terms of invariant

algebraic curves of the system.
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Theorem 1.1. If a polynomial differential system (real or complex) (S) has s invariant al-

gebraic curves fi(x, y) = 0, i = 1, 2, . . . , s such that s ≥ m(m+1)/2 where m = deg(S), then

either we have a first integral of the form F =
∏s

i=1 fi(x, y)
λi for some λ = (λ1, . . . , λs) ∈

Cs \ {0}.

Poincaré admired the work of Darboux and wrote two articles on this subject in the

1890’s ([19, 20]). His work was followed by work of Painlevé, Autonne at the end of the

19th century and of Dulac ([13]) at the beginning of 20th century. After their work, except

for some isolated examples, the integrability theory of Darboux did not advance until the

last quarter of the 20th and the beginning of the 21st century when Darboux’s theory was

further expanded to include also the multiplicity of the curves and interest in invariant

algebraic curves of planar polynomial systems has been steadily growing. This is natural

as on one side this is an interesting theory involving at the same time algebraic geometric

concepts and differential equations with reputedly very difficult problems to solve. On the

other side integrable systems are worthy objects of study as although the cases of integrable

systems are rare, as Arnold said in [1], (page 405) “...these integrable cases allow us to collect

a large amount of information about the motion in more important systems...”.

In the first part of his article [12] Darboux developed his geometric theory of integrability

over the complex projective space. Apart from the theorem mentioned above. Darboux

also proves the following theorem incolving singular points of the system which helps to

diminish the number of invariant curves involved in the expression of the first integral:

Theorem 1.2. Suppose that a system (1) of degree m has p algebraic solutions f1(x, y) =

0, . . . fp(x, y) = 0 which do not pass through q singular points of the system and assume

that we have p=m(m+1)/2+1-q. Then there exist complex numbers λ1, . . . , λp not all zero,

such that fλ1
1 . . . f

λp
p is a first integral of the system.

In the Second part of the article, Darboux applies his theory to the particular case of

quadratic systems. For example he calculates the integrals of quadratic systems having

two, three or four invariant lines not all passing through the same point. His calculation

are obtained by choosing the lines in convenient position and assuming that the systems

admit an integrating factor product of powers of lines.

The family of quadratic systems which we denote by QS is the first nonlinear class of

polynomial differential systems. Of the three classical problems on these systems, Hilbert’s

16th problem, the problem of Poincaré and the problem of the center, only this last one

was solved for QS and more than a century after their formulation the other two problems

are still open today. Although it is the simplest non-linear class of polynomial suystems

we are still far from understanding this class. To gain insight into this family, in recent

years subfamilies of QS began to be studied from a global viewpoint using a variety of

methods among them algebraic and geometric, but also numerical or involving substan-

tial symbolic calculations. In particular families of quadratic systems possessing invariant

algebraic curves began to be studied, the simplest ones being those possessing invariant

lines.

Every system in QS possesses an invariant line, the line at infinity. This line could be

simple, or multiple in which case producing several distinct lines in perturbations.
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The notion of multiplicity of an invariant line of a system (1) has been introduced in [21].

In the fundamental article [9] several notions of multiplicity of an invariant algebraic curve

of a polynomial systems were introduced and they were proven to be equivalent in the case of

algebraic solutions which are algebraic invariant curves defined by irreducible polynomials.

If a system has a finite number of invariant lines fi(x, y) = 0, i = 1, ..., k, of respective

multiplicities m1, ...,mk, we call total multiplicity of the invariant lines of (S), the number

M =
∑

imi +m∞ where m∞ is the multiplicity of the line at infinity. Since in any system

(1) the line at infinity is invariant we always have m∞ ≥ 1 and in particular we have this

for any system in QS.

At the beginning of this century a systematic study of non-degenerated quadratic sys-

tems possessing invariant algebraic curves was initiated by Schlomiuk and Vulpe. In the

series of articles [2,21,23,25–27] the authors studied the class QSL≥4 of quadratic systems

having invariant lines, including the line at infinity, of total multiplicity at least four. We

see in [21] that the maximum number of invariant lines, including the line at infinity of

non-degenerate quadratic systems is six.

The next step is the study of the subfamily QSL≥3 of QS which is the family of all

non-degenerate quadratic differential systems with invariant lines of total multiplicity at

least three. The study of this class began with work on the Lotka-Volterra systems, a family

important for applications. This is the class of all quadratic differential systems that have

two real invariant lines intersecting at a finite point. In [28, 29] the authors completed the

study of this class by giving its bifurcation diagram in the 12-dimensional space of the

coefficients of quadratic systems (1).

It now remains to complete the study of the family QSL≥3 which is split in several

cases according to the total multiplicity of the invariant affine lines. Another subfamily

of QSL≥3 is the family of non-degenerate real quadratic systems possessing two complex

invariant lines intersecting at a real finite point. This study was completed in [5, 31]. To

complete the study of QSL≥3 we need to study the family of quadratic systems having

either two parallel lines or a unique double affine line, or an affine line and the line at

infinity double or the line at infinity triple. Except for the last case, we always have at least

one affine line. We recall that for all systems in QS possessing a real affine invariant line

the Hilbert’s 16th problem is solved as we have:

Theorem 1.3 ([10, 11]). Every real quadratic differential system possessing a real affine

invariant line has at most one limit cycle.

As we prove in the Section 8 for the family QSL≥2 the maximum number of limit cycles

is also one and so the Hilbert number of this class H(QSL≥2)=1. In view of this theorem

the road is open for the problem of topologically classifying the family of QSL≥2 which is

part of the motivation of the paper.

Apart from this motivation we mention that this family contains the families of both

Bernoulli and Ricatti differential systems and it is worthwhile to view these systems from

this angle.

In this article we study one of the subfamilies of QSL≥3 listed above, namely the family

QSL2p of quadratic differential systems which we define below.

The next assertion is almost evident
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Lemma 1.1. If a quadratic system (1) possesses two distinct parallel invariant affine lines

then this systems could be brought via an affine transformation to the form

ẋ = a+ cx+ gx2 ≡ p(x),

ẏ = b+ ex+ fy + lx2 + 2mxy + ny2.
(4)

Proof: Assume that an arbitrary quadratic system possesses two distinct parallel invariant

lines

αx+ βy + γ1,2 = 0, α, β, γ1,2 ∈ C.

Since these two parallel invariant lines (real or complex) intersect at infinity at a real

singularity we deduce that there exists a non-zero λ ∈ C such that

λαx+ λβy + λγ1,2 = 0, ⇒ α̃x+ β̃y + γ̃1,2 = 0, α̃, β̃ ∈ R, γ̃1,2 ∈ C.

Therefore applying a real linear transformation

q ∈ GL(2,R) : x1 = α̃x+ β̃y, y1 = −β̃x+ α̃y, det(q) = α̃2 + β̃2 ̸= 0

we arrive at a system possessing in the direction x1 = 0 two parallel invariant lines (real

or complex). This means that the first equation of new system in the variables x1, y1 does

not depend on the variable y1, i.e. it must be of the form (4). This completes the proof of

Lemma 1.1.

We denote by QSL2p the class of non-degenerate quadratic systems which via an affine

transformation could be brought fo the canonical form (4) even if for these systems we

could have g = 0 or g = c = 0. This notation is motivated by the fact that although in the

case g = 0 and c ̸= 0 (respectively g = c = 0) systems (4) possess only one (respectively do

not possess any) invariant line in the direction x = 0 nevertheless applying a perturbation

p(x, ε) = a+cx+εx2 (respectively p(x, ε, ν) = a+νx+εx2) with small parameters |ε|, |ν| ≪ 1

we obtain systems possessing two distinct parallel invariant lines in the direction x = 0.

We need the notion of configuration of invariant algebraic curves of a polynomial system

(1) which was defined in [26]. We recall here this definition.

Definition 1.3. Consider a real polynomial differential system (S) endowed with a finite

number of invariant algebraic curves fi(x, y) = 0, i = 1, . . . , k over C. We call configuration

of invariant curves of (S) the set of curves f1 = 0, . . . , fk = 0 and the line at infinity, each

endowed with its own multiplicity, together with all the real singular points of (S) situated

on these curves, each one of them endowed with its own multiplicity.

The configurations we consider in this work are configurations of invariant lines.

The goal of this paper is to classify the family QSL2p according to the configurations

of invariant lines the systems possess.

To make this statement precise we first need to say when two configurations C1, C2
of invariant lines of two quadratic systems (S1) and (S2) are to be considered as distinct,

respectively when two such configurations are to be considered equivalent. The next Section

contains the necessary definition.
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Our goal is not only to list all possible distinct configurations which occur for systems

belonging to the family QSL2p but also and for each such configuration to give necessary

and sufficient conditions for a system in this family to have the given configuration of

invariant lines. We want these conditions to be independent of the normal form in which

the system may be presented. In other words we want these conditions to be affinely

invariant, expressed in terms of polynomial invariants. Furthermore we also want to give

the bifurcation diagram of the configurations in terms of polynomial invariants in the 12-

dimensional parameter space of coefficients of the systems in QSL, where by QSL we

denote the family of all quadratic differential systems that possess an invariant line.

A second and longer term goal is to give the topological classification of the family

QSL2p .

A quadratic differential system can be identified with a point in R12, the ordered se-

quence of its 12 coefficients. The group of affine transformations and time rescaling acts

on QS. The moduli space QS/≃ of QS modulo this action is 5 dimensional. The family

QSL2p is located on an algebraic hypersurface of R12. Consider now the family QSL≥2 of

all quadratic systems with invariant lines of total multiplicity at least two. Our final goal

is to give the topological classification of this family. The moduli space QSL≥2/ ≃ under

this group action is four dimensional. So far only one 4-dimensional sub-family of QS/≃
was topologically classified (see the paper [6] where this was done) but this turned out to

be a very simple case namely we only needed to study three 3-dimensional slices of this

space. As Hilbert’s 16th problem is solved for the family QSL2p we have a good chance to

obtain this topological classification and even more, the bifurcation diagram of this class

up to limit cycles and graphics.

The paper is organized as follows: In Section 2 we give the necessary preliminary no-

tions we need. In Section 3 we define the main invariant polynomials associated to the

class QSL2p . In Section 4 we present some preliminary results involving the use of in-

variant polynomials. Section 5 is dedicated to the construction of the invariant criteria

for a quadratic systems to belong to the class QSL2p . In Section 6 we give a complete

classification of quadratic systems in QSL2p according to their configurations of invariant

lines. In Section 7 we prove that all 122 detected configurations for the family QSL2p are

non-equivalent in the sens of Definition 2.1. And finally in Section 8 that the maximum

number of limit cycles for the family QSL≥2 is one and so the Hilbert number of this class

H(QSL≥2)=1.

2 On configurations of invariant lines of a polynomial differ-

ential system

In the notion of configuration of invariant algebraic curves of a system (1), the real singular

points of the system also intervene and we are led to ask questions such as: how many

finite distinct such points could we have on an invariant algebraic curves, what is the

maximum multiplicity that a finite singular point on an algebraic curve could have, what is

the maximum multiplicity that an infinite singular point of an algebraic curve could have?

These numbers are affine invariants of dynamical nature. The bounds for such numbers
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depend of course on the degree of the system and on the degree of the curve.

The notion of multiplicity of an invariant line of a polynomial system (1) was defined

in [21]. This concept was extended to the notion of multiplicity of an invariant algebraic

curve of a differential system (1) in [9] where several notions of multiplicity were given and

shown to be equivalent in case the algebraic invariant curve is irreducible.

To study the relationship between the dynamical concepts and the geometric or topo-

logical characteristics of the curve such as its class, its order, its genus provides us with

more motivation to further pursue this work.

Consider two polynomial differential systems (S1) and (S2) such that each has a finite

set of singular points and a finite set of invariant lines, including the line at infinity. Let

C1, C2 be the two configurations of invariant lines of (S1) and (S2).

Definition 2.1. We say that two configurations C1, C2, of (S1) and (S2) formed by invariant

lines (including the line at infinity) are equivalent if and only if there is a bijection ϕ between

the two sets of invariant lines sending the line at infinity of C1 to the line at infinity of C2,
sending a line with coefficients in R of (S1) to a line with coefficients in R of (S2). In

addition the map preserves the multiplicities of the invariant lines, and for each invariant

line L of C1 there is a one to one correspondence ϕL between the set of real singular points

of (S1) situated on the line L and the set of real singular points of the system (S2) situated

on the line ϕ(L) which preserves the multiplicities of the singular points and their order

and sends a real singular point at infinity to a real singular point at infinity. In addition

we have the following:

(i) When we list in a counterclockwise sense the real singular points at infinity on (S1)

starting from a point p on the Poincaré disk, p1 = p, ..., pl, this correspondence preserves

the multiplicities of the singular points and preserves or reverses the orientation.

(ii) We consider the total curves

F :
∏

Fj(X;Y ;Z)miZm = 0;F ′ :
∏

F ′
j(X;Y ;Z)m

′
iZm = 0

where Fi(X;Y ;Z) = 0 (respectively F ′
i (X;Y ;Z) = 0) are the projective completions of the

lines Li (respectively L′
i) and mi;m

′
i are the multiplicities of the curves Fi = 0; F ′

i = 0

and m,m′ are respectively the multiplicities of Z = 0 in the first and in the second system.

Then, there is a one-to-one correspondence between the real singularities of the curves F
and F ′ conserving their multiplicities as singular points of the total curves.

Definition 2.2. Consider a real planar polynomial differential system (5). We call con-

figuration of invariant straight lines of this system, the set of (complex) invariant

straight lines (which may have real coefficients), including the line at infinity of the system,

each endowed with its own multiplicity and together with all the real singular points of this

system located on these invariant straight lines, each one endowed with its own multiplicity.
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3 The main invariant polynomials associated to the class

QSL2p

We consider the class of real quadratic polynomial differential systems

ẋ = p0 + p1(x, y) + p2(x, y) ≡ P (ã, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) ≡ Q(ã, x, y)
(5)

where
p0 = a, p1(x, y) = cx+ dy, p2(x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(x, y) = ex+ fy, q2(x, y) = lx2 + 2mxy + ny2

and with max(deg(p), deg(q)) = 2. It is known that on the set QS acts the group Aff (2,R)
of affine transformations on the plane (cf. [22]). For every subgroup G ⊆ Aff (2,R) we

have an induced action of G on QS. We can identify the set QS of systems (5) with

a subset of R12 via the map QS−→ R12 which associates to each system (5) the 12–

tuple ã = (a, c, d, g, h, k, b, e, f, l,m, n) of its coefficients. We associate to this group action

polynomials in x, y and parameters which behave well with respect to this action, the GL–

comitants (GL–invariants), the T–comitants (affine invariants) and the CT–comitants. For

their definitions as well as their detailed constructions we refer the reader to the paper [22]

(see also [3]).

Next we define the following 38 invariant polynomials associated to the class QSL2p :

{
µ0, . . . , µ4, D, R, U, η, B1, B2, B3, M̃ , C2, θ, θ3, θ5, K̃,

Ñ , D̃, H1, H3, . . . ,H12, H15, H16, D1, N1, N2, N5, N6

}
.

(6)

According to [3] (see also [8]) we apply the differential operator L = x ·L2−y ·L1 acting

on R[ã, x, y] with

L1 =2a
∂

∂c
+ c

∂

∂g
+

1

2
d
∂

∂h
+ 2b

∂

∂e
+ e

∂

∂l
+

1

2
f
∂

∂m
,

L2 =2a
∂

∂d
+ d

∂

∂k
+

1

2
c
∂

∂h
+ 2b

∂

∂f
+ f

∂

∂n
+

1

2
e
∂

∂m
,

to construct several invariant polynomials from the set. More precisely using this operator

and the affine invariant µ0 = Res x
(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct the following

polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4, where L(i)(µ0) = L(L(i−1)(µ0)).

Using these invariant polynomials we define some new ones, which according to [3] are

8



responsible for the number and multiplicities of the finite singular points of (5):

D =
[
3
(
(µ3, µ3)

(2), µ2
)(2) −

(
6µ0µ4 − 3µ1µ3 + µ22, µ4

)(4)]
/48,

P =12µ0µ4 − 3µ1µ3 + µ22,

R =3µ21 − 8µ0µ2,

S =R2 − 16µ20P,

T =18µ20(3µ
2
3 − 8µ2µ4) + 2µ0(2µ

3
2 − 9µ1µ2µ3 + 27µ21µ4)−PR,

U =µ23 − 4µ2µ4.

In what follows we also need the so-called transvectant of order k (see [15], [18]) of two

polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

In order to construct the remaining invariant polynomials contained in the set (6) we

first need to define some elementary bricks which help us to construct these elements of the

set.

We remark that the following polynomials in R[ã, x, y] are the simplest invariant poly-

nomials of degree one with respect to the coefficients of the differential systems (5) which

are GL-comitants:
Ci(x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, 2;

Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y), i = 1, 2.

Apart from these simple invariant polynomials we shall also make use of the following nine

GL-invariant polynomials:

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0, D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2, D2)
(1) .

These are of degree two with respect to the coefficients of systems (5).

We next define a list of T -comitants:

Â(ã) = (C1, T8 − 2T9 +D2
2)

(2)/144,

B̂(ã, x, y) =
{
16D1(D2, T8)

(1)(3C1D1 − 2C0D2 + 4T2) + 32C0(D2, T9)
(1)(3D1D2

− 5T6+ 9T7) + 2(D2, T9)
(1)

(
27C1T4− 18C1D

2
1−32D1T2+32(C0, T5)

(1)
)

+ 6(D2, T7)
(1)

[
8C0(T8 − 12T9)− 12C1(D1D2+T7) +D1(26C2D1+32T5)

+ C2(9T4 + 96T3)
]
+ 6(D2, T6)

(1)
[
32C0T9 − C1(12T7 + 52D1D2)

− 32C2D
2
1

]
+ 48D2(D2, T1)

(1)(2D2
2 − T8) + 6D1D2T4(T8 − 7D2

2 − 42T9)

− 32D1T8(D2, T2)
(1) + 9D2

2T4(T6 − 2T7)− 16D1(C2, T8)
(1)(D2

1 + 4T3)

+ 12D1(C1, T8)
(2)(C1D2 − 2C2D1) + 12D1(C1, T8)

(1)(T7 + 2D1D2)

+ 96D2
2

[
D1(C1, T6t)

(1) +D2(C0, T6)
(1)

]
− 4D3

1D2(D
2
2 + 3T8 + 6T9)

− 16D1D2T3(2D
2
2+3T8) + 6D2

1D
2
2(7T6+2T7)−252D1D2T4T9

}
/(2833),
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D̂(ã, x, y) =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6)− (C1, T5)
(1) − 9D2

1C2

+ 6D1(C1D2 − T5)
]
/36,

Ê(ã, x, y) =
[
D1(2T9 − T8)− 3(C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̂ (ã, x, y) =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0(D2, T9)

(1) − 9D2
2T4

+ 288D1Ê − 24(C2, D̂)(2) + 120(D2, D̂)(1) − 36C1(D2, T7)
(1)

+ 8D1(D2, T5)
(1)

]
/144,

K̂(ã, x, y) = (T8 + 4T9 + 4D2
2)/72,

Ĥ(ã, x, y) = (−T8 + 8T9 + 2D2
2)/72,

as well as the following affine invariants (which serve as bricks for constructing the needed

invariant polynomials):

A2(ã) = (C2, D̂)(3)/12, A8(ã) =
(
(D̂, Ĥ)(2), D2

)(1)
/8,

A11(ã) = (F̂ , K̂)(2)/4, A20(ã) =
(
(C2, D̂)(2), F̂

)(2)
/16,

A21(ã) =
(
(D̂, D̂)(2), K̂

)(2)
/16, A39(ã) =

(
((D̂, D̂)(2), F̂

)(1)
, Ĥ

)(2)
/64,

A42(ã) =
(
((D̂, F̂ )(2), F̂

)(1)
, D2

)(1)
/16.
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Now we can define the remaining invariant polynomials of the set (6):

K̃(ã, x, y) = 4K̂ ≡ Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
,

M̃(ã, x, y) = (C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
,

Ñ(ã, x, y) = K̃ − 4Ĥ,

D̃(ã, x, y) = D̂,

η(ã) = (M̃, M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
,

θ(ã) = − (Ñ , Ñ)(2)/2 ≡ Discrim
(
Ñ(ã, x, y)

)
;

θ3(ã) =A8 +A11,

θ5(ã, x, y) = 2C2 (T6, T7)
(1) − (2C1D2 + T5)

(
C1, D

2
2

)(2)
;

B1(ã) =Res x

(
C2, D̃

)
/y9 = −2−93−8 (B2, B3)

(4) ,

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, D̃)(3),

B3(ã, x, y) = (C2, D̃)(1) ≡ Jacob
(
C2, D̃

)
,

H1(ã) =−
(
(C2, C2)

(2), C2)
(1), D̃

)(3)
,

H3(ã, x, y) =(C2, D̃)(2),

H4(ã) =
(
(C2, D̃)(2), (C2, D2)

(1)
)(2)

,

H5(ã) =
(
(C2, C2)

(2), (D̃, D̃)(2)
)(2)

+ 8
(
(C2, D̃)(2), (D̃,D2)

(1)
)(2)

,

H6(ã, x, y) =16N2(C2, D̃)(2) +H2
2 (C2, C2)

(2),

H7(ã) = (Ñ , C1)
(2),

H8(ã) =9
(
(C2, D̃)(2), (D̃,D2)

(1)
)(2)

+ 2
[
(C2, D̃)(3)

]2
,

H9(ã) = − [[D̃, D̃)(2), D̃,
)(1)

, D̃
)(3)

,

H10(ã) =
(
(Ñ , D̃)(2), D2

)(1)
,

H11(ã, x, y) = 8Ĥ
[
(C2, D̃)(2) + 8(D̃,D2)

(1)
]
+ 3

[
(C1, 2Ĥ − Ñ)(1) − 2D1Ñ

]2
,

H12(ã, x, y) = (D̃, D̃)(2) ≡ Hessian(D̃),

H15(ã) =
(
(D̃, D̃)(2), H̃

)(1)
,

H16(ã) =14A4
2 −A2

2(10A20 + 33A21)− 2A2(15A39 +A42),

N1(a, x, y) =C1(C2, C2)
(2) − 2C2(C1, C2)

(2),

N2(a, x, y) =D1(C1, C2)
(2) −

(
(C2, C2)

(2), C0

)(1)
,

N5(a, x, y) =
[
(D2, C1)

(1) +D1D2

]2 − 4
(
C2, C2

)(2)(
C0, D2

)(1)
,

N6(a, x, y) =8D + C2

[
8(C0, D2)

(1) − 3(C1, C1)
(2) + 2D2

1

]
.

We remark that the above invariant polynomials (except H15 and H16) were constructed

and used in [27], [25] and [7] and only the invariant polynomials H15 and H16 are defined

here.
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Remark 3.1. Since we have used the above invariant polynomials in several articles (see

for example, [4, 5, 7, 21–23, 25–29]) as well as in the book [3] it happens that the same

invariant polynomials are applied under different names. So in order to avoid some confu-

sion concerning the invariant polynomials used in the classification we have done here, we

present the correspondence of the names from the articles [21–23,25,26]) (at the left) with

notations from this paper(at the right):

µ→ µ0; N → Ñ ; M → M̃ ; K → K̃; D → D̃.

4 Preliminary results involving the use of polynomial invari-

ants

The following two lemmas reveal the geometrical meaning of the invariant polynomials B1,

B2, B3, θ and Ñ .

Lemma 4.1 ( [21]). For the existence of an invariant straight line in one (respectively 2;

3 distinct) directions in the affine plane it is necessary that B1 = 0 (respectively B2 = 0;

B3 = 0).

Lemma 4.2 ( [21]). A necessary condition for the existence of one couple (respectively, two

couples) of parallel invariant straight lines of a system (5) corresponding to a ∈ R12 is the

condition θ(a) = 0 (respectively, Ñ(a, x, y) = 0).

We remark that the invariant polynomials µi(ã, x, y) (i = 0, 1, . . . , 4) defined earlier

are responsible for the total multiplicity of the finite singularities of quadratic systems (5).

Moreover they detect whether a quadratic system is degenerate or not. More exactly we

have the following lemma.

Lemma 4.3. ( [8]) Consider a quadratic system (S) with coefficients a ∈ R12. Then:

(i) The total multiplicity of the finite singularities of this system is 4− k if and only if

for every i such that 0 ≤ i ≤ k − 1 we have µi(a, x, y) = 0 in R[x, y] and µk(a, x, y) ̸= 0.

(ii) The system (S) is degenerate (i.e. gcd(p, q) ̸= constant) if and only if µi(a, x, y) = 0

in R[x, y] for every i = 0, 1, 2, 3, 4.

On the other hand the invariant polynomials η, M̃ and C2 govern the number of real

and complex infinite singularities. More precisely, according to [30] (see also [22]) we have

the next result.

Lemma 4.4. The number of infinite singularities (real and complex) of a quadratic system

in QS is determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M̃ ̸= 0;

(iv) 1 real if η = M̃ = 0 and C2 ̸= 0;

(v) ∞ if η = M̃ = C2 = 0.
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Moreover, the quadratic systems (5), for each one of these cases, can be brought via a linear

transformation to the corresponding case of the following canonical systems (SI)− (SV ):
{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SIV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

Now we define the affine comitants which are responsible for the existence of invariant

lines for a non-degenerate quadratic system (5).

Let us apply a translation x = x′ + x0, y = y′ + y0 to the polynomials p(ã, x, y) and

q(ã, x, y). We obtain p̂(â(ã, x0, y0), x
′, y′) = p(ã, x′ + x0, y

′ + y0), q̂(â(ã, x0, y0), x
′, y′) =

q(ã, x′ + x0, y
′ + y0). Let us construct the following polynomials

Γi(ã, x0, y0) ≡ Res x′
(
Ci

(
â(ã, x0, y0), x

′, y′
)
, C0

(
â(ã, x0, y0), x

′, y′
))
/(y′)i+1,

Γi(ã, x0, y0) ∈ R[ã, x0, y0], (i = 1, 2).

Notation 4.1.

Ẽi(a, x, y) = Γi(ã, x0, y0)|{x0=x, y0=y} ∈ R[ã, x, y] (i = 1, 2). (7)

Observation 4.1. We note that the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) are affine comi-

tants of systems (5) and are homogeneous polynomials in the coefficients a, . . . , n and non-

homogeneous in x, y and

degã Ê1 = 3, deg (x,y) Ê1 = 5, dega Ê2 = 4, deg (x,y) Ê2 = 6.

Notation 4.2. Let Ei(ã, X, Y, Z) (i = 1, 2) be the homogenization of Êi(ã, x, y), i.e.

E1(ã, X, Y, Z) = Z5Ê1(ã, X/Z, Y/Z), E2(ã, X, Y, Z) = Z6Ê1(ã, X/Z, Y/Z)

and H(ã, X, Y, Z) = gcd
(
E1(ã, X, Y, Z), E2(ã, X, Y, Z)

)
in R[ã, X, Y, Z].

The geometrical meaning of these affine comitants is given by the two following lemmas

(see [21]):

Lemma 4.5 ( [21]). The straight line L(x, y) ≡ ux+vy+w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0)

is an invariant line for a quadratic system (5) if and only if the polynomial L(x, y) is a

common factor of the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) over C, i.e.

Ẽi(a, x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2),

where W̃i(x, y) ∈ C[x, y].
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Lemma 4.6. 1) If L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an invariant

straight line of multiplicity k for a quadratic system (5) then [L(x, y)]k | gcd(Ẽ1, Ẽ2) in

C[x, y], i.e. there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2) such that

Ẽi(a, x, y) = (ux+ vy + w)kWi(a, x, y), i = 1, 2. (8)

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(E1, E2), in other words

we have Zk−1 | H(a, X, Y, Z).

In what follows the following Lemma it will be very useful.

Lemma 4.7. Assume that a quadratic system has the form

ẋ = a+ cx+ dy, ẏ = q(x, y),

i.e. the quadratic homogeneous part of the first equation vanishes (due to the change x↔ y

we obtain the systems with vanishing the quadratic homogeneous part of the second equa-

tion). Then the infinite invariant line Z = 0 of this system is of multiplicity 2 if c2+d2 ̸= 0

and it is of multiplicity 3 if c = d = 0.

Proof: Considering Notation 4.2 For the above systems we calculate H(X,Y, Z) = Z if

c2 + d2 ̸= 0 and H(X,Y, Z) = aZ2 if c = d = 0. Since a ̸= 0 (otherwise the system become

degenerate), according to Lemma 4.6 (see statement 2)) we deduce that the statement of

Lemma 4.7 is valid.

5 Invariant criteria for a system to belong to the class QSL2p

In this section we find necessary and sufficient affine invariant conditions for a quadratic

system (5) to belong to the class QSL2p .

Theorem 5.1. An arbitrary quadratic system (5) belongs to the class QSL2p if and only

if θ = B1 = H7 = 0 and one of the following conditions is satisfied:

(i) If η > 0 then either Ñ ̸= 0, or Ñ = 0, θ3 = 0.

(ii) If η < 0 then Ñ ̸= 0.

(iii) If η = 0, M̃ ̸= 0 then either Ñ ̸= 0, or Ñ = 0, K̃ ̸= 0, θ3 = 0, or

Ñ = K̃ = 0, B2 ̸= 0, θ5 = 0, or Ñ = K̃ = B2 = 0.

(iv) If η = M̃ = 0, C2 ̸= 0 then either Ñ ̸= 0, or Ñ = B2 = 0.

(v) If η = M̃ = C2 = 0.

Proof: Consider the generic family of systems (5) as well as the family of systems (4)

belonging to the class QSL2p . For systems (4) we have

θ = B1 = H7 = 0, (9)

i.e. these conditions are necessary for a system to belong to the class QSL2p .

We examine three cases: η > 0, η < 0 and η = 0.
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5.1 The case η > 0

According to [30] (see also [22]) for η > 0 any system (5) could be brought via an affine

transformation and time rescaling to the following canonical form:

ẋ =a+ cx+ dy + gx2 + (h− 1)xy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2.
(10)

Calculations yield

η = 1, θ = −8(g − 1)(h− 1)(g + h), C2 = xy(x− y)

and therefore considering (9) the condition θ = 0 yields (h− 1)(g− 1)(g+h) = 0. Without

loss of generality we can consider h = 1. Indeed, if g = 1 (respectively, g + h = 0) we

can apply the linear transformation which will replace the straight line x = 0 with y = 0

(respectively, x = 0 with y = x) reducing this case to h = 1.

So, h = 1 and then we calculate

H7 = 4d(g − 1)(g + 1), Ñ = (g − 1)(g + 1)x2.

5.1.1 The subcase Ñ ̸= 0

Then (g − 1)(g + 1) ̸= 0 and hence the condition H7 = 0 yields d = 0 (then B1 = 0). This

leads to the following family of systems belonging to the class QSL2p :

ẋ =a+ cx+ gx2,

ẏ =b+ ex+ fy + (g − 1)xy + y2.
(11)

5.1.2 The subcase Ñ = 0

This gives (g − 1)(g + 1) = 0 and without lost of generality we may assume g = 1 as the

case g = −1 can be brought by a linear transformation to the case g = 1.

So for systems (10) we have g = h = 1 and after an additional translation (to make

c = f = 0) we get the systems:

ẋ = a+ dy + x2, ẏ = b+ ex+ y2. (12)

For these systems we calculate

B1 =− d2e2(4a− 4b+ d2 − e2), µ0 = 1, θ3 = −2de

and imposing B1 = 0 we consider two possibilities: θ3 ̸= 0 and θ3 = 0.

5.1.2.1 The possibility θ3 ̸= 0. Then de ̸= 0 and the condition B1 = 0 implies

4a− 4b+ d2 − e2 = 0, i.e. b = a+ (d2 − e2)/4. This leads to the systems

ẋ =a+ dy + x2, ẏ = a+ (d2 − e2)/4 + ex+ y2 (13)
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possessing the invariant line L1 = 2x− 2y + d− e = 0. We observe that due to de ̸= 0 the

above systems could not have invariant lines in the directions x = 0 or y = 0. Therefore

the unique direction for invariant lines is y = x. We claim that systems (13) could not have

another invariant line in the direction y = x different from the line L1 = 0. Indeed applying

the affine transformation x1 = 2x− 2y+ d− e, y1 = y which brings the line L1 = 0 to the

line x1 = 0 we arrive at the systems

ẋ = x1(−2d+ x+ 4y)/2, ẏ = (4a+ d2 − 2de+ e2 + 2ex+ 4ey + 4y2)/4.

Since the first equation depends on the variable y we conclude that in the considered case

a quadratic system could not belong to the family QSL2p .

5.1.2.2 The possibility θ3 = 0. In this case de = 0 and we may assume d = 0 due

to the change (x, y, a, b, d, e) → (y, x, b, a, e, d) in systems (12). Evidently these systems for

d = 0 belong to the class QSL2p and have the form:

ẋ = a+ x2, ẏ = b+ ex+ y2. (14)

5.2 The case η < 0

According to [30] (see also [22]) we consider the following canonical form:

ẋ =a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ =b+ ex+ fy − x2 + gxy + hy2.
(15)

Calculations yield:

η = −4, θ = 8(1 + h)
[
g2 + (h− 1)2

]
, C2 = x(x2 + y2),

Ñ = (g2 − 2h+ 2)x2 + 2g(h+ 1)xy + (h2 − 1)y2
(16)

and hence the condition θ = 0 implies (h + 1)[(h − 1)2 + g2] = 0. We consider again two

subcases: Ñ ̸= 0 and Ñ = 0.

5.2.1 Subcase Ñ ̸= 0

Then by (16) the condition θ = 0 yields h = −1 and in addition we may assume f = 0 due

to the translation (x, y) → (x, y + f/2). Hence, we obtain the family of systems

ẋ = a+ cx+ dy + gx2, ẏ = b+ ex− x2 + gxy − y2, (17)

for which we calculate H7 = 4d(4+ g2). Then the condition H7 = 0 gives d = 0 and clearly

the above systems belong to the family QSL2p.

5.2.2 Subcase Ñ = 0

Then from (16) we have g = h − 1 = 0 and without loss of generality we may assume

c = d = 0 due to the translation (x, y) → (x− d/2, y − c/2). Hence we obtain the systems

ẋ = a+ 2xy, ẏ = b+ ex+ fy − x2 + y2, (18)
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for which calculations yield:

B1 = − 4a(e2 + f2)2, θ = H7 = 0.

We observe that for systems (18) we have C2 = x(x2 + y2). This means that these systems

could have real invariant lines only in the direction x = 0. So the condition a = 0 must be

fulfilled (then B1 = 0), however the first equation of (18) contains the variable y, i.e. these

systems could not belong to QSL2p.

5.3 The case η = 0

According to [30] (see also [22]) we have to examine two subcases: M̃ ̸= 0 and M̃ = 0.

5.3.1 Subcase M̃ ̸= 0

Following [30] we consider the family systems

ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2.
(19)

for which calculations yield:

θ = 8h2(1− g), µ0 = gh2, C2 = x2y, Ñ = (g2 − 1)x2 + 2h(g − 1)xy + h2y2. (20)

We observe that the condition Ñ = 0 implies µ0 = θ = 0 and so we examine two possibilities:

Ñ ̸= 0 and Ñ = 0.

5.3.1.1 The possibility Ñ ̸= 0. The condition θ = 0 implies h(g − 1) = 0 and since

µ0 = gh2 we consider two cases: µ0 ̸= 0 and µ0 = 0.

5.3.1.1.1 The case µ0 ̸= 0. Considering (20) we obtain h ̸= 0, g = 1 and then we

may assume h = 1 due to the rescaling y → y/h. Moreover, we may assume c = d = 0 via

the translation (x, y) → (x− d, y + 2d− c). So, we obtain the canonical systems

ẋ = a+ x2 + xy, ẏ = b+ ex+ fy + y2,

for which calculation yields

B1 = −a2e2, H7 = −4e.

The condition H7 = 0 gives e = 0 (this implies B1 = 0) and applying the change (x, y) →
(y, x) we get the systems (after renotating the parameters)

ẋ = a+ cx+ x2, ẏ = b+ xy + y2, (21)

which evidently belong to the family QSL2p .
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5.3.1.1.2 The case µ0 = 0. Since θ = 0 this implies h = 0 and for the systems (19)

we have Ñ = (g2−1)x2 ̸= 0. So g−1 ̸= 0 and we may assume e = f = 0 via the translation

(x, y) →
(
x+ f/(1− g), y + e/(1− g)

)
. This leads to the systems

ẋ = a+ cx+ dy + gx2, ẏ = b+ (g − 1)xy,

for which we calculate

B1 = −bd4(g − 1)2g2, Ñ = (g2 − 1)x2, H7 = 4d(g2 − 1).

So due to Ñ ̸= 0 the condition H7 = 0 gives d = 0 and this implies B1 = 0. Therefore we

arrive at the family of systems

ẋ = a+ cx+ gx2, ẏ = b+ (g − 1)xy, (22)

which evidently belong to the class QSL2p .

5.3.1.2 The possibility Ñ = 0. In this case we get h = 0 and g2 − 1 = 0, i.e. g = 1 or

g = −1.

On the other hand for systems (SIII) with h = 0 we have K̃ = g(g − 1)x2 and we

consider two cases: K̃ ̸= 0 and K̃ = 0.

1) The case K̃ ̸= 0. Then g − 1 ̸= 0 and this implies g = −1. In this case we may

assume e = f = 0 due to the translation (x, y) →
(
x + f/2, y + e/2

)
and we arrive at the

family of systems

ẋ = a+ cx+ dy − x2, ẏ = b− 2xy, (23)

for which calculations yield:

B1 = −4bd4, θ3 = 2d2.

Since C2 = x2y we conclude that the only directions for the existence of invariant lines are

x = 0 and y = 0. It is clear that a system (23) belongs to the class QSL2p if and only if

d = 0 and this condition is equivalent to θ3 = 0 (this implies B1 = 0). So we arrive at the

following family of systems

ẋ = a+ cx− x2, ẏ = b− 2xy. (24)

2) The case K̃ = 0. Then g = 1 and we may assume c = 0 due to the translation

(x, y) → (x− c/2, y). Then we obtain the systems

ẋ = a+ dy + x2, ẏ = b+ ex+ fy.

It is clear that in order to have invariant lines in the direction x = 0 (respectively y = 0) the

condition d = 0 (respectively e = 0) has to be satisfied. Moreover in each one of these cases

the above systems belong to the class QSL2p (for e = 0 we apply the additional change

(x, y) → (y, x)).

It remains to detect an invariant polynomial which is responsible for the condition

de = 0. We calculate

B1 = H7 = 0, θ5 = 96dex3, B2 = −648d4y4
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and clearly the condition de = 0 is equivalent to θ5 = 0. However we have two situations

geometricaly different: when d = 0 the direction of the invariant lines is associated with

the double infinite singularity N1[0 : 1 : 0], whereas when e = 0 the corresponding direction

is associated with the simple infinite singularity N2[1 : 0 : 0] (because we have µ0 ̸= 0, i.e.

none of the finite singular point have gone to infinity).

Thus we arrive at the systems

ẋ = a+ x2, ẏ = b+ ex+ fy. (25)

if B2 = 0 (i.e. d = 0). In the case B2 ̸= 0 and θ5 = 0 (i.e. e = 0) after the change

(x, y) → (y, x) and redenoting the parameters we arrive at the family of systems:

ẋ = a+ cx, ẏ = b+ ex+ y2. (26)

Evidently both families above belong to the clas QSL2p .

Since all the possibilities in the case η = 0 and M̃ ̸= 0 are examined we deduce that the

statement (iii) of Theorem 5.1 is proved.

5.3.2 Subcase M̃ = 0

In this case we have to discuss two possibilities: C2 ̸= 0 and C2 = 0.

5.3.2.1 The possibility C2 ̸= 0. According to [22] we consider the following canonical

form:
ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,
(27)

for which we have θ = 8h3 and therefore the condition θ = 0 gives h = 0. In this case

calculations yield:

θ = 0, B1 = −d4g2(−f2 − efg + bg2), H7 = 4dg2, C2 = x3, Ñ = g2x2.

Due to C2 = x3 we deduce that the unique direction for the possible invariant lines is x = 0

and hence a system (27) with h = 0 could belong to the class QSL2p if and only if d = 0.

On the other hand the condition H7 = 0 yields dg = 0 (this implies B1 = 0) and clearly

in the case Ñ ̸= 0 (i.e. g ̸= 0) the condition H7 = 0 is equivalent to d = 0. Therefore for

Ñ ̸= 0 and H7 = 0 we arrive at the family of systems

ẋ =a+ cx+ gx2, ẏ = b+ ex+ fy − x2 + gxy. (28)

Assume now Ñ = 0, i.e. g = 0. Then for systems (27) with h = g = 0 we calculate

B2 = −648d4x4 and evidently the condition d = 0 is equivalent to B2 = 0. In this case we

get the family of systems

ẋ =a+ cx, ẏ = b+ ex+ fy − x2. (29)
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5.3.2.2 The possibility C2 = 0. According to [22] we consider the following family of

systems:

ẋ =a+ cx+ dy + x2, ẏ = b+ ex+ fy + xy. (30)

for which we have θ = 0 = B1 and H7 = 4d. Obviously it can be observed that for d = 0

the above systems belong to the class QSL2p.

We claim that if d ̸= 0 none of systems (30) could be brought via affine transformation

to the form (4). Indeed a straightforward calculation shows us that applying any arbitrary

affine transformation

x1 = αx+ βy + µ, y1 = γx+ δy + ν, α, β, µ, γ, δ, ν ∈ R, αδ − βγ ̸= 0

we arrive at the systems

ẋ1 =p̃0 + p̃1(x1, y1) +
δx21

αδ − βγ
+

βx1y1
βγ − αδ

, ẏ = q̃(x1, y1), (31)

where p̃i p̃i and q̃ depend rationally on the parameters α, β, µ, γ, δ and ν and p̃1 is a linear

form in x1 and y1. Clearly the above systems will have the form (4) if and only if the first

equation does not depend of the variable y and for this it is necessary β = 0. However in

this case we have

p̃1(x1, y1) =
x(αcδ − αγd− 2δµ)

αδ
+
αdy

δ
.

Since α ̸= 0 (due to αδ − βγ ̸= 0) we deduce that systems (31) with β = 0 belong to the

class QSL2p if and only if d = 0. However this contradicts the condition d ̸= 0 and this

contradiction proves our claim.

Thus all the possibilities are examined and Theorem 5.1 is proved.

6 Classification of systems in QSL2p according to their con-

figurations of invariant lines

According to [21], [23] and [28] we denote by QSLi the family of all non-degenerate

quadratic differential systems possessing invariant straight lines (including the line at infin-

ity) of total multiplicity i with i ∈ {2, 3, 4, 5, 6}. The families QSLi with i ∈ {4, 5, 6} were

classified topologically using their algebro-geometric structures in [21], [26] for i = 5, 6 and

in [23] and [25] for i = 4.

Regarding the systems in QSL3 a similar classification is done only for two subfamilies:

when there exist two finite invariant lines intersecting in the finite part of the phase plane

and either these lines are real (i.e. they are of Lotka-Voltera type [28] and [29]), or they

are complex [4].

In the above mentioned papers we have denoted the configurations following the rule:

for the class QSLi we set Config. i.ji where i ∈ {3, 4, 5, 6} denote the class and ji depend

on the number of configurations in the class QSLi.

Remark 6.1. We point out that for the cases i = 4, 5, 6 all the configurations are deter-

mined and fixed. More precisely for i = 4 (respectively i = 5; i = 6) we have j4 = 1, 2, . . . , 45
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(respectively j5 = 1, 2, . . . , 30; j6 = 1, 2, . . . , 11). On the other hand the quadratic systems

in the class QSL3 are not investgated completely. Until now we have only the notations

Config. 3.1–Config. 3.13. So in the present paper we continue the enumeration of the con-

figurations beginning with Config. 3.14.

Theorem 6.1. Assume that a quadratic non-degenerate system (S) belongs to the class

of systems QSL2p, i.e. one of the statements of Theorem 5.1 holds. Then system (S)

possesses one of the configurations of invariant lines indicated below if and only if the

corresponding conditions are satisfied respectively:

(i) For η > 0 the system (S) could possess either one of the configurations Config. 3.14–

Config. 3.27 or Config. 4.j for j ∈ {9, 9a, 10, 13, 16, 22, 34} or Config. 5.j for j ∈
{1, 3, 4, 5, 7, 8, 12, 16} or Config. 6.j for j ∈ {1, 2, 5} given in Figure1 if and only if

the one of the sets of conditions given in the Diagram 1 is satisfied, correspondingly.

(ii) For η < 0 the system (S) could possess either one of the configurations Config. 3.28–

Config. 3.41 or Config. 5.j for j ∈ {2, 9, 10} given in Figure 2 if and only if the one of

the sets of conditions given in the Diagram 2 is satisfied, correspondingly.

(iii) For η = 0 and M̃ ̸= 0 the system (S) could possess either one of the configurations

Config. 3.42–Config. 3.63 or Config. 4.j for j ∈ {11, 11a, 12, 14, 15, 19, 23, 24, 28, 32,
36, 39} or Config. 5.j for j ∈ {11, 13, 14, 15, 17, 18, 19} or Config. 6.j for j ∈ {8, 9}
given in Figure 3 if and only if the one of the sets of conditions given in the Diagram

3 is satisfied, correspondingly.

(iv) For η = M̃ = 0 the system (S) could possess either one of the configurations Con-

fig. 3.64–Config. 3.66 or Config. 4.j for j ∈ {31, 37, 38, 44, 46} or Config. 5.j for j ∈
{23, 26, 27, 30} or Config. C2.j for j ∈ {5, 6, 7, 8, 9} given in Figure 4 if and only if

the one of the sets of conditions given in the Diagram 4 is satisfied, correspondingly.

The proof that all these 122 configurations are non-equivalent, according to our defini-

tion of equivalence is done in Section 7.

Proof of Theorem 6.1: Following Theorem 5.1 we consider the cases given by the fol-

lowing three invariant polynomials: η, M̃ and C2.

6.1 The case η > 0

According to the statement (i) of Theorem 5.1 we examine two subcases: Ñ ̸= 0 and Ñ = 0.

6.1.1 The subcase Ñ ̸= 0

Taking into account the proof of Theorem 5.1 we consider the family of systems (32) for

which we have Ñ = (g2 − 1)x2 ̸= 0. Then due to a translation we may assume e = f = 0

and we arrive at the family of systems

ẋ =a+ cx+ gx2, ẏ = b+ (g − 1)xy + y2, (32)
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Figure 1: The configurations of quadratic systems in QSL2p (case η > 0)
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Figure 2: The configurations of quadratic systems in QSL2p (case η < 0)

possessing the invariant affine lines a+cx+gx2 = 0 going in the direction x = 0. According

to [21] in order to have invariant lines in other directions different from x = 0 the condition

B2 = 0 is necessary. For the above systems we have

B2 = −648b(g − 1)2
[
(b− a)(1 + g)2 + c2

]
x4 ≡ −648b(g − 1)2Φ(a, b, c, g)x4 (33)

and hence these systems remains in the class QSL3 if B2 ̸= 0. So we examine two possi-

bilities: B2 ̸= 0 and B2 = 0.

6.1.1.1 The possibility B2 ̸= 0. Then we have only the invariant lines a+cx+gx2 = 0

and since µ0 = g2 we examine two cqses: µ0 ̸= 0 and µ0 = 0.

6.1.1.1.1 The case µ0 ̸= 0. Then g ̸= 0 and in order to get a more convenient

normal form for the systems for investigation of the invariant lines and their multiplicities

we apply the following translation to systems (32): (x, y) →
(
x− c/(2g), y+ c(g− 1)/(4g)

)
.
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Figure 3: The configurations of quadratic systems in QSL2p (case η = 0 ̸= M̃)
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Figure 3 (continuation): The configurations of quadratic systems in QSL2p (case η = 0 ̸=
M̃)

Then we arrive at the family of systems

ẋ =a+ gx2, ẏ = b+ ex+ (g − 1)xy + y2, (34)

which possess two parallel invariant lines a+ gx2 = 0 which are real (respectively complex;

coinciding) if and only if ag < 0 (respectively ag > 0; ag = 0). For the above systems we

calculate

η = 1, µ0 = g2, θ = 0, Ñ = (g2 − 1)x2, H10 = −32ag(g2 − 1) (35)

and we observe that ÑH10 = −32ag(g2 − 1)2x2. Hence sign (ÑH10) = −sign (ag) and we

consider three subcases: ÑH10 < 0, ÑH10 > 0 and H10 = 0 (as Ñ ̸= 0).

1: The subcase ÑH10 < 0. Then ag > 0 and we may assume a = gu2 ̸= 0. Moreover we

may assume u = 1 due to the rescaling (x, y, t) → (ux, uy, t/u) in systems (34). Thus we

arrive at the 3-parameter family of systems

ẋ =g(x2 + 1), ẏ = b+ ex+ (g − 1)xy + y2, (36)

which clearly possess two complex invariant lines x = ±i and all the finite singularities also

complex. Thus we get the configuration of invariant lines given by Config. 3.14 (see Figure

1).

2: The subcase ÑH10 > 0. Then ag < 0 and we may assume a = −gu2 ̸= 0. Moreover

we may assume u = 1 due to the rescaling (x, y, t) → (ux, uy, t/u) in systems systems (34)
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Figure 4: The configurations of quadratic systems in QSL2p (case η = M̃ = 0)

with a = −gu2. Thus we arrive at the 3-parameter family of systems

ẋ =g(x2 − 1), ẏ = b+ ex+ (g − 1)xy + y2, (37)

possessing two real invariant lines x = ±1 and the finite singularities M1,2(x1,2, y1,2) and

M3,4(x3,4, y3,4), where

x1,2 = 1, y1,2 =
(
1− g ±

√
V1

)
/2; V1 = (g − 1)2 − 4(b+ e);

x3,4 = −1, y3,4 =
(
g − 1±

√
V2

)
/2; V2 = (g − 1)2 − 4(b− e).

(38)

On the other hand for the above systems we have D = −768g6V1V2 and H15 = 128g4(V1 +

V2). So we examine three possibilities: D < 0, D > 0 and D = 0.

2.1: The possibility D < 0. Then we obtain V1V2 > 0 and since sign (V1 + V2) =

sign (H15) we discuss two cases H15 < 0 and H15 > 0.

2.1.1: The case H15 < 0. Then V1 < 0 and V2 < 0 and clearly all 4 finite singularities

(38) are complex. As a result we get the configuration given by Config. 3.15.
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Diagram 1: The invariant criteria for configurations of systems in QSL2p (case η > 0)

2.1.2: The case H15 > 0. Then V1 > 0 and V2 > 0 and this implies the existence of

4 real distinct finite singularities. Therefore we obtain the configuration Config. 3.16.

2.2: The possibility D > 0. In this case we obtain V1V2 < 0 and without losing the
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Diagram 1 (continuation): The invariant criteria for configurations of systems in QSL2p

(case η > 0)

generality we may assume V1 > 0 due to the rescaling (x, y, t) → (−x,−y,−t) which transfer

V2 to V1. So on the line x = 1 we have two real singularities whereas on the line x = −1

are located two complex singular points. In such a way we arrive at the configuration

Config. 3.17.

2.3: The possibility D = 0. Then we obtain V1V2 = 0 and again without losing the

generality we may assume V1 = 0 due to the rescaling (x, y, t) → (−x,−y,−t) which transfer

V2 to V1. In this case we have sign (V2) = sign (H15) if V2 ̸= 0. Therefore on the line x = 1

we have a double real singularity, whereas on the line x = −1 there are located either

two complex singular points (if H15 < 0) or two real ones (if H15 > 0) or one real double

(if H15 = 0) singularity, on this line. We note that the condition D = H15 = 0 implies

V1 = V2 = 0 and this leads to the conditions b = (g − 1)2/4 and e = 0 and then we obtain

B2 = −81(g2 − 1)4x4/2, i.e. the condition B2 ̸= 0 is still valid.

Thus in the caseD = 0 we get three configurations: Config. 3.18 ifH15 < 0; Config. 3.19

if H15 > 0 and Config. 3.20 if H15 = 0.

3: The subcase H10 = 0. Considering (35) we get a = 0 and then systems (34) become:

ẋ =gx2, ẏ = b+ ex+ (g − 1)xy + y2, (39)

possessing the double invariant line x = 0 and two double singular points M1,2(0,±
√
−b).
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Diagram 2: The invariant criteria for configurations of systems in QSL2p (case η < 0)

On the other hand for these systems we have R = −16bg4x2 and hence sign (R) =

− sin(b) in the case R ̸= 0 and due to µ0 ̸= 0 (i.e. g ̸= 0) the condition b = 0 is equivalent

to R = 0. In this last case when b = 0 for systems (39) we get B2 = −648e4x4 ̸= 0 and this

means that these systems are not homogeneous.

Therefore we deduce that in the case H10 = 0 we arrive at the following three configu-

rations: Config. 3.21 if R < 0; Config. 3.22 if R > 0 and Config. 3.23 if R = 0.

6.1.1.1.2 The case µ0 = 0. Then g = 0 and systems (32) become:

ẋ =a+ cx, ẏ = b− xy + y2 (40)

for which we calculate µ0 = µ1 = 0 and µ2 = −c2(x − y)y. So we examine two subcases:

µ2 ̸= 0 and µ2 = 0.

1: The subcase µ2 ̸= 0. Then c ̸= 0 and hence the above systems possess one real invariant

affine line cx+ a = 0. Considering Lemma 4.7 we deduce that the infinite line is a double

one.
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Diagram 3: The invariant criteria for configurations of systems in QSL2p (case η = 0 ̸= M̃)

Since c ̸= 0 we may assume c = 1 due to the rescaling (x, y, t) → (cx, cy, t/c) and we

arrive at the 2-parameter family of systems

ẋ =a+ x, ẏ = b− xy + y2 (41)
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Diagram 3 (continuation): The invariant criteria for configurations of systems in QSL2p

(case η = 0 ̸= M̃)
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Diagram 3 (continuation): The invariant criteria for configurations of systems in QSL2p

(case η = 0 ̸= M̃)

Diagram 4: The invariant criteria for configurations of systems in QSL2p (case η = 0 = M̃)

which possess two finite singularities M1,2(x1,2, y1,2) where

x1,2 = −a, 1

2

(
−a±

√
a2 − 4b

)
.

We underline that other two finite singularities have gone to infinity and according to [3,

Lemma 5.2] (since µ2 = −(x − y)y) they coalesced with two different infinite singularities

of the lines y = 0 and y = x. As a result we get two infinite double singularities of the type
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(1, 1) (i.e. one finite and one infinite singularities coalesced).

On the other hand for systems (41) we have D = −48(a2−4b) and therefore sign (D) =

−sign (a2 − 4b), i.e. this invariant polynomial D is responsible for the kind of the finite

singularities: real, complex or coinciding.

Since B2 ̸= 0 as we mentioned earlier systems (41) could not possess invariant affine

lines in the directions different from x = 0. So considering the double infinite invariant

line, we arrive at the configuration Config. 3.24 if D < 0 (then the finite singularities

are real distinct); at the configuration Config. 3.25 if D > 0 (then the finite singularities

are complex) and at the configuration Config. 3.26 if D = 0 (then we have a double real

singularity).

2: The subcase µ2 = 0. Then c = 0 and systems (40) become

ẋ = a, ẏ = b− xy + y2 (42)

which do not possess finite singularities because a ̸= 0, otherwise the systems are degenerate.

For these systems we have µ0 = µ1 = µ2 = µ3 = 0 and µ4 = a2y2(x − y)2 and according

to [3, Lemma 5.2] the four finite singularities have gone to infinity and two of them coalesced

with the infinite singularities N1[1 : 0 : 0] (the point of the line y = 0), whereas the other

two coalesced with the infinite singularities N2[1 : 1 : 0] (the point of the line y = x). As a

result we obtain at infinity two triple singularities of the type (1, 3).

We point out that by Lemma 4.7 the line at infinity Z = 0 of the systems (42) is of

multiplicity 3. So since B2 ̸= 0 we could not have invariant affine lines and hence we get

the configuration Config. 3.27.

6.1.1.2 The possibility B2 = 0. Considering (33) and Ñ ̸= 0 (i.e. g − 1 ̸= 0) we get

bΦ(a, b, c, g) = 0. We claim that due to an affine transformation in systems (32) we could

transfer the condition Φ = 0 to the condition b = 0.

Indeed, applying to systems (32) the affine transformation x1 = x, y1 = x− y we arrive

at the systems

ẋ1 =a1 + c1 + g1x
2
1, ẏ1 = b1 + (g1 − 1)x1y1 + y21, (43)

where

a1 = −a+ 2c2
(
g2 + 1

)

(g + 1)4
, g1 = −g, b1 = b− a+

c2

(g + 1)2
, c1 =

c(g − 1)2

(g + 1)2
⇒

a = −a1 +
2c1

2
(
g21 + 1

)

(g1 + 1)4
, g = −g1, b = b1 − a1 +

c21
(g1 + 1)2

, c =
c1(g1 − 1)2

(g1 + 1)2
.

(44)

Then substituting the expressions for the old parameters we obtain

Φ(a, b, e, g) =(b− a)(1 + g)2 + c2 =
[
(b1 − a1 +

c21
(g1 + 1)2

)− (−a1 +
2c1

2
(
g21 + 1

)

(g1 + 1)4
)
]
(1− g1)

2

+
[c1(g1 − 1)2

(g1 + 1)2
]2

= b1(g1 − 1)2, (g2 − 1) = (g21 − 1) ̸= 0.

and this completes the proof of our claim.
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So considering the condition b = 0 we get the family of systems

ẋ =a+ cx+ gx2, ẏ = y [(g − 1)x+ y] , (45)

possessing an additional invariant line y = 0, i.e. these systems belong to the class QSLj

with j ≥ 4. So taking into consideration the article [23] (see Table 2) we evaluate the

following invariant polynomials:

η = 1 > 0, B2 = H7 = θ = 0, µ0 = g2, ÑH10 = 8(g2 − 1)2(c2 − 4ag)x2,

H4 = −48(g − 1)
[
c2 − a(1 + g)2

]
, B3 = 3

[
c2 − a(1 + g)2

]
x2y2,

H9 = −576a2(g − 1)4(c2 − 4ag)2

(46)

and we examine two cases: B3 ̸= 0 and B3 = 0.

6.1.1.2.1 The case B3 ̸= 0. In this case we observe that this condition implies

H4 ̸= 0 and since we have η > 0 and H4 ̸= 0, according to [23, Table 2] we deduce

that systems (45) possess the following configurations of if and only if the corresponding

conditions are satisfied, respectively:

µ0 ̸= 0, ÑH10 < 0 ⇔ Config. 4.13;

µ0 ̸= 0, ÑH10 > 0, H9 ̸= 0 ⇔ Config. 4.9;

µ0 ̸= 0, ÑH10 > 0, H9 = 0 ⇔ Config. 4.10;

µ0 ̸= 0, ÑH10 = 0 ⇔ Config. 4.22;

µ0 = 0, µ2 ̸= 0, H9 ̸= 0 ⇔ Config. 4.16;

µ0 = 0, µ2 ̸= 0, H9 = 0 ⇔ Config. 4.17;

µ0 = 0, µ2 = 0 ⇔ Config. 4.34;

Remark 6.2. We point out that in the case µ0 ̸= 0, ÑH10 > 0 and H9 ̸= 0 in paper [23] it

is presented only one configuration Config. 4.9. However depending on the position of the

finite singularities of systems (45) with respect to the invariant line e+(g−1)y = 0 we could

have another configuration different from Config. 4.9 which we denote here by Config. 4.9a

(see Figure 1).

Next we detect the invariant condition for distinguishing these two configurations. We

prove the following lemma:

Lemma 6.1. Assume that for an arbitrary quadratic system the conditions η > 0, θ =

H7 = B2 = 0, µ0B3H4H9 ̸= 0 and ÑH10 > 0 are satisfied. Then the configuration of the

invariant lines of this system is Config. 4.9a if H16 < 0 and Config. 4.9 if H16 > 0.

Proof: If for a quadratic system the conditions provided by the lemma hold then according to

[23, Theorem 4.1, statement (ii)] this system could be brought via an affine transformation

and time rescaling to the canonical form

ẋ = x2 − 1, ẏ = (y + b)
[
y + (1− l)x− b

]
, b, l ∈ R, (l − 1)

[
(l ± 1)2 − 4b2

]
̸= 0.
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However applying the transformation (x, y, t, b, l) → (−x,−y−b,−t, b/2, 1−a) to the above

systems we could simplify them and we arrive at the family of systems

ẋ = x2 − 1, ẏ = y(y + ax+ b), (47)

for which we calculate:

η = (a− 1)2, θ = H7 = B2 = 0, µ0 = 1, ÑH10 = 32a2(a− 2)2x2,

H4 = −48a
[
(a− 2)2 − b2

]
, H9 = −9216(a2 − b2)2, B3 = 3

[
(a− 2)2 − b2

]
x2y2.

Thus according to the conditions provided by Lemma 6.1 for the new canonical systems

(47) the following condition must be satisfied:

a(a− 1)(a− 2)(a2 − b2)
[
(a− 2)2 − b2

]
̸= 0.

We observe that the above systems posses the invariant lines x = ±1 and y = 0 and the

following finite singularities:

M1(−1, 0), M2(−1, a− b), M3(1, 0), M4(1,−a− b).

It is clear that the singularities M2 and M4 are located on the invariant lines x = −1 and

x = 1, respectively. And it is important to detect if they are located on the same part with

respect to the invariant line y = 0 (Config. 4.9 ) or on different parts (Config. 4.9a). So in the

first case the product of the corresponding ordinates must be positive, i.e. (a+b)(b−a) > 0,

whereas in the second case it must be negative, i.e. (a+ b)(b− a) < 0.

On the other hand for systems (47) we have

H16 = 180(a+ b)(b− a)
[
(a− 2)2 − b2

]2 ⇒ sign (H16) = sign
(
(a+ b)(b− a)

)

and hence we arrive at the configuration Config. 4.9a if H16 < 0 and Config. 4.9 if H16 > 0.

This completes the proof of Lemma 6.1.

6.1.1.2.2 The case B3 = 0. Considering (46) this condition gives a =
c2

(g + 1)2
and

hence we get the family of systems

ẋ =
1

(g + 1)2
[
(g + 1)x+ c

][
g(g + 1)x+ c

]
,

ẏ =y [(g − 1)x+ y] ,

(48)

which possess four invariant affine lines:

(g + 1)x+ c = 0, g(g + 1)x+ c = 0, y = 0, (g + 1)(x− y) + c = 0.

Considering the invariant line at infinity Z = 0 we conclude that these systems belong to

the class QSL5. In this case following [21] we calculate.

η = 1 > 0, B3 = θ = 0, µ0 = g2, Ñ = (g2 − 1)x2, H1 = 576c2(g − 1)2/(g + 1)2, H6 = 0.

Since Ñ ̸= 0, according to [21, Table 4] in the case µ0 ̸= 0 we obtain Config. 5.1 if H1 ̸= 0

and Config. 5.8 if H1 = 0, whereas for µ0 = 0 we get the unique configuration Config. 5.7.
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6.1.2 The subcase Ñ = 0

According to Theorem 5.1 in this case the condition θ3 = 0 must be satisfied and taking into

account the proof of this theorem we consider the family of systems (14), i.e. the systems

ẋ = a+ x2, ẏ = b+ ex+ y2. (49)

for which we have

B2 = 648e2(4a− 4b− e2)x4, B3 = −3x2
[
e2x2 − 2e2xy + 4(a− b)y2

]
, H4 = 96e2. (50)

We consider two possibilities: B2 ̸= 0 and B2 = 0.

6.1.2.1 The possibility B2 ̸= 0. In this case we could not have invariant affine lines

different from x2+a = 0. Since for the above systems we have H8 = −3456ae2 we examine

three cases: H8 < 0, H8 > 0 and H8 = 0.

6.1.2.1.1 The case H8 < 0. Then a > 0 and hence we have two complex invari-

ant lines and only complex finite singularities. This evidently leads to the configuration

Config. 3.14

6.1.2.1.2 The case H8 > 0. This condition implies a < 0 and we may set a =

−u2 ̸= 0. So assuming u = 1 due to the rescaling (x, y, t) → (ux, uy, t/u) we arrive at the

family of systems

ẋ = x2 − 1, ẏ = b+ ex+ y2. (51)

We observe that this family of systems is a subfamily of (37) defined by the condition

g = 1. So we follow the same steps as in the examination of the family (37) but taking

into consideration the condition g = 1. Therefore since B2 ̸= 0 in this particular case (i.e.

g = 1) we get the same configurations obtained for systems (37) in the generic case with

one exception. More precisely since for systems (51) we have

D = −12288(b− e)(b+ e), H15 = −1024b

then the condition D = H15 = 0 is impossible, otherwise we get b = e = 0 and this implies

B2 = 0 which contradicts our assumption.

Thus we have the next remark.

Remark 6.3. Assume that for systems (49) the condition B2 ̸= 0 and H8 > 0 hold.

Then these systems possess the indicated configurations of invariant lines if and only if the

corresponding conditions are satisfied, respectively:

Config. 3.15 ⇔ D < 0 H15 < 0;

Config. 3.16 ⇔ D < 0 H15 > 0;

Config. 3.17 ⇔ D > 0;

Config. 3.18 ⇔ D = 0 H15 < 0;

Config. 3.19 ⇔ D = 0 H15 > 0.
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6.1.2.1.3 The case H8 = 0. Then a = 0 and we arrive at the family of systems

ẋ = x2, ẏ = b+ ex+ y2, (52)

which is a subfamily of (39) defined by the condition g = 1. So following step by step the

three subcases R < 0, R > 0 and R = 0 examined for systems (39) we arrive at the next

remark.

Remark 6.4. Assume that for systems (49) the condition B2 ̸= 0 and H8 = 0 hold.

Then these systems possess the indicated configurations of invariant lines if and only if the

corresponding conditions are satisfied, respectively:

Config. 3.21 ⇔ R < 0;

Config. 3.22 ⇔ R > 0;

Config. 3.23 ⇔ R = 0.

6.1.2.2 The possibility B2 = 0. Considering (50) this condition implies e(4a − 4b −
e2) = 0 and since H4 = 96e2 we consider two cases: H4 ̸= 0 and H4 = 0.

6.1.2.2.1 The case H4 ̸= 0. Then e ̸= 0 and the condition B2 = 0 gives 4a− 4b−
e2 = 0, i.e. b = a− e2/4 and we arrive at the family of systems

ẋ = a+ x2, ẏ = a− e2/4 + ex+ y2. (53)

These systems possess three invariant affine lines: x2 + a = 0 and 2(x − y) − e = 0, i.e.

these systems possess invariant lines of total multiplicity at least 4. On the other hand

calculations yield B3 = −3e2x2(x− y)2 ̸= 0 due to H4 ̸= 0. This means that systems (53)

belong to the class QSL4 and following [23] we calculate

η = 1 > 0, B2 = Ñ = 0, H4 = 96e2, H8 = −3456ae2.

We observe that the condition B3 ̸= 0 implies H4 ̸= 0 and in the case H8 ̸= 0 we have

sign (H8) = −sign (a). So according to [23, Table 2] we obtain the configuration Config. 4.9

if H8 > 0 and H9 ̸= 0; Config. 4.10 if H8 > 0 and H9 = 0; Config. 4.13 if H8 < 0 and

Config. 4.22 if H8 = 0.

However for Ñ = 0 we also have to include the omitted configuration Config. 4.9a as

we did in the case Ñ ̸= 0 (see Lemma 6.1).

We prove the next lemma.

Lemma 6.2. Assume that for an arbitrary quadratic system the conditions η > 0, θ =

H7 = B2 = 0, µ0B3H4H9 ̸= 0, Ñ = 0 and H8 > 0 are satisfied. Then the configuration of

the invariant lines of this system corresponds to Config. 4.9a if H16 < 0 and to Config. 4.9

if H16 > 0.

Proof: If for a quadratic system the conditions provided by the above lemma hold, then as

it was shown above this system could be brought via an affine transformation to the form

(53), for which the condition H8 > 0 and B3 ̸= 0 implies a < 0. Then we may consider
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a = −u2 ̸= 0 and applying the rescaling (x, y, t) 7→ (ux, uy, t/u) we may assume a = −1

and we arrive at the 1-parameter family of systems

ẋ = x2 − 1, ẏ = −1− e2/4 + ex+ y2 (54)

possessing three affine invariant lines: x = ±1 and L(x, y) = 2x − 2y − e = 0. The above

systems have the following four real finite singularities:

M1(−1,−(e+ 2)/2), M2(−1, (e+ 2)/2), M3(1, (2− e)/2), M4(1, (e− 2)/2).

We observe that the singularity M1 (respectively M3) is located at the intersection of the

invariant line x = −1 (respectively x = 1) with the invariant line L(x, y) = 0. Now it

is important to detect if the remaining singularities M2 and M4 are located on the same

part with respect to the invariant line L(x, y) = 0 (Config. 4.9 ) or on the different parts

(Config. 4.9a). So in the first case the product L(x2, y2)L(x4, y4) of the corresponding

ordinates must be positive, whereas in the second case it must be negative. We calculate

L(x2, y2)L(x4, y4) = 4(e− 2)(e+ 2).

On the other hand for systems (47) we have

H16 = 180(e− 2)e4(2 + e) ⇒ sign (H16) = sign
(
(e− 2)(e+ 2)

)

and hence we arrive at the configuration Config. 4.9a if H16 < 0 and Config. 4.9 if H16 > 0.

This completes the proof of Lemma 6.2.

6.1.2.2.2 The case H4 = 0. Then e = 0 (this implies B2 = 0) and we get the

following 2-parameter family of systems

ẋ = a+ x2, ẏ = b+ y2 (55)

which evidently possess at list five invariant lines, including the line at infinity. Following

[26] for these systems we calculate

η = 1 > 0, B2 = Ñ = H4 = 0, B3 = −12(a− b)x2y2, H5 = 6144ab, H1 = −1152(a+ b)

and according to [21] (see Table 4, Table 2, Diagram 2 and Diagram 1) we arrive at the

following configurations and phase portraits of systems (55) if and only if the corresponding

conditions are satisfied, respectively:

B3 ̸= 0, H5 < 0 ⇔ Config. 5.4;

B3 ̸= 0, H5 > 0, H1 < 0 ⇔ Config. 5.5;

B3 ̸= 0, H5 > 0, H1 > 0 ⇔ Config. 5.3;

B3 ̸= 0, H5 = 0, H1 < 0 ⇔ Config. 5.16;

B3 ̸= 0, H5 = 0, H1 > 0 ⇔ Config. 5.12;

B3 = 0, H1 < 0 ⇔ Config. 6.2;

B3 = 0, H1 > 0 ⇔ Config. 6.1;

B3 = 0, H1 = 0 ⇔ Config. 6.5.

Thus we completed the proof of the statement (i) of Theorem 6.1.
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6.2 The case η < 0

According to the statement (ii) of Theorem 5.1 in this case the condition Ñ ̸= 0 must hold.

So we consider the family of systems (17) with d = 0, i.e. the systems

ẋ = a+ cx+ gx2, ẏ = b+ ex− x2 + gxy − y2. (56)

with C2 = x(x2+y2). So we conclude that we can have real affine invariant lines only in the

direction x = 0 and in the case B2 = 0 (which is the necessary condition for the existence

of invariant lines in the second direction) we could have only complex conjugate invariant

lines in the directions y = ±ix.
For these systems calculation yield

η = −4 < 0, µ0 = g2, θ = 0, H7 = 0

and we examine two subcases: µ0 ̸= 0 and µ0 = 0.

6.2.1 The subcase µ0 ̸= 0

Then g ̸= 0 and we may assume c = 0 due to the translation (x, y) → (x− c/(2g), y − c/4)

which conserves the second equation of the above systems (56). So we get the family of

systems

ẋ = a+ gx2, ẏ = b+ ex− x2 + gxy − y2, g ̸= 0, (57)

for which calculations yield

B2 = −648
[
e4 − 2e2(−4b− 4ag + bg2) + (a2 + b2)(4 + g2)2

]
x4 ≡ −648x4B̃2.

Lemma 6.3. Assume that for systems (57) the condition B2 = 0 holds. This implies

B3 = 0 and then these systems belong to the class QSL5. Moreover the condition B2 = 0

implies H10 ≥ 0 and D ≥ 0, and if H10 = 0 (which is equivalent to D = 0) then we get

quadratic homogeneous systems.

Proof: We observe that the polynomial B2 is bi-quadratic with respect to the parameter e.

Then we calculate

Discrim [B̃2, e
2] = −4(−4a+ 4bg + ag2)2 ≤ 0.

So in order to impose B2 = 0 the condition −4a+4bg+ ag2 = 0 is necessary and this gives

b =
a
(
4− g2

)

4g
. Then calculations yield

B̃2 = −81x4

2g2
[
4e2g + a(4 + g2)2

]2
, B3 =

3x3y

2g

[
4e2g + a(4 + g2)2

]

and therefore the condition B̃2 = 0 implies B3 = 0 and we get a = − 4e2g

(g2 + 4)2
. In this

case we obtain H10 =
128e2g2

4 + g2
≥ 0 and D =

3 · 222e8g8
(4 + g2)8

≥ 0. Due to g ̸= 0 the condition
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H10 = 0 implies e = 0 and then we get a = b = 0, i.e. we arrive at the homogeneous

quadratic systems.

On he other hand for these values of the parameters a and b systems (57) possess the

following invariant lines:

(4 + g2)x = ±2e, (g + 2i)(y + ix) + e = 0, (g − 2i)(y − ix) + e = 0.

So considering the line at infinity these systems belong to the classQSL5 and this completes

the proof of our lemma.

It is easy o observe that systems (57) possess two finite invariant lines which are real

(respectively complex; coinciding) if ag < 0 (respectively ag > 0; a = 0).

On the other hand for these systems we haveH10 = −32ag(4+g2) and hence sign (H10) =

sign (ag). So we consider three possibilities: H10 < 0, H10 > 0 and H10 = 0.

6.2.1.1 The possibility H10 < 0. In this case we get ag > 0 and therefore the invariant

lines of systems (57) are complex. Then the finite singularities are also complex.

On the other hand considering Lemma 6.3 we deduce that the condition B2 ̸= 0 holds,

i.e. we could not have invariant lines in other directions. As a result we arrive at the

configuration given by Config. 3.28.

6.2.1.2 The possibility H10 > 0. Then ag < 0 and we may assume a = −gu2 ̸= 0.

Moreover we may consider u = 1 due to the rescaling (x, y, t) → (ux, uy, t/u) in systems

(57) with a = −gu2. Thus we arrive at the 3-parameter family of systems

ẋ =g(x2 − 1), ẏ = b+ ex− x2 + gxy − y2, (58)

possessing two real invariant lines x = ±1 and the finite singularities M1,2(x1,2, y1,2) and

M3,4(x3,4, y3,4) located on these invariant lines, where

x1,2 = 1, y1,2 =
(
g ±

√
Ṽ1

)
/2; Ṽ1 = g2 + 4(b+ e− 1);

x3,4 = −1, y3,4 =
(
− g ±

√
Ṽ2

)
/2; Ṽ2 = g2 + 4(b− e− 1).

(59)

On the other hand for the above systems we calculate:

D = −768g6Ṽ1Ṽ2, H15 = 128g4(Ṽ1 + Ṽ2) (60)

and we discuss three cases: D < 0, D > 0 and D = 0.

6.2.1.2.1 The case D < 0. Then Ṽ1Ṽ2 > 0 and the finite singularities are all either

real or complex and this situation is governed by the invariant polynomial H15, because

sign (H15) = sign (Ṽ1 + Ṽ2).

On the other hand according to Lemma 6.3 we deduce that the condition B2 ̸= 0 must

be fulfilled in this case, i.e. we do not have other invariant lines apart from x = ±1. So we

examine two subcases: H15 < 0 and H15 > 0.
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1: The subcase H15 < 0. This implies Ṽ1 < 0 and Ṽ2 < 0, i.e. all four finite singularities

are complex. Then we arrive at the configuration of invariant lines of systems (58) given

by Config. 3.29.

2: The subcase H15 > 0. Then we obtain Ṽ1 > 0 and Ṽ2 > 0, i.e. systems (58) possess four

real distinct finite singularities. This leads to the configuration Config. 3.30.

6.2.1.2.2 The case D > 0. Then Ṽ1Ṽ2 < 0 and may assume Ṽ1 > 0 and Ṽ2 < 0 due

to the rescaling (x, y, t) → (−x,−y,−t), which change the sign of the parameter e and this

transfer the Ṽ2 in Ṽ1. Therefore on the invariant line x = 1 we have two real singularities

whereas on the line x = 1 there are two complex singularities.

On the other hand considering Lemma 6.3 we deduce that in this case we could have

the condition B2 = 0 which implies the existence of additional invariant lines. So we discus

two subcases: B2 ̸= 0 and B2 = 0.

1: The subcase B2 ̸= 0. So in this case the invariant lines x = ±1 are the only lines for

systems (58) and we get the configuration Config. 3.31.

2: The subcase B2 = 0. As it is shown in the proof of Lemma 6.3 for systems (57) the

condition b =
a
(
4− g2

)

4g
is necessary in order to have the B2 = 0. Therefore for systems

(58) with a = −g we get b = (g2 − 4)/4) and then we calculate:

B2 =
81

2
(4− 2e+ g2)2(4 + 2e+ g2)2x4 = 0.

Without lost of generality we may assume 4− 2e + g2 = 0 due to the rescaling (x, y, t) →
(−x,−y,−t), which change the sign of the parameter e. Therefore we obtain e = (g2+4)/2

and we arrive at the family of systems

ẋ =g(x2 − 1), ẏ = (g2 − 4)/4 + (g2 + 4)x/2− x2 + gxy − y2, (61)

possessing the following 4 invariant affine lines:

x = ±1, 2(y − ix) + g + 2i = 0, 2(y + ix) + g − 2i = 0.

Since the complex lines intersect at the real finite singular point (1,−g/2) located on the

invariant line x = 1 and on the same line we have the second real singularity (1, 3g/2), we

arrive at the unique configuration given by Config. 5.2 (see [21], Diagram 2 on page 34).

6.2.1.2.3 The case D = 0. Considering (60) this condition gives Ṽ1Ṽ2 = 0 due to

µ0 = g2 ̸= 0. Moreover as it is mentioned above, we may assume Ṽ1 = 0 and considering

(59) this implies b = 1− e− g2/4. So we get the systems

ẋ = g(x2 − 1), ẏ = (4− 4e− g2)/4 + ex− x2 + gxy − y2 (62)

possessing the following fnite singularities:

M1 ≡M2(1, g/2), M3,4(−1,−g/2±
√
−2e).
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On the other hand we have H15 = −1024eg4 and hence this invariant polynomials is re-

sponsible for the kind of the finite singularities located on the invariant line x = −1. More

exactly they are real (respectively complex; coinciding) if H15 > 0 (respectively H15 < 0;

H15 = 0).

We claim that in the case under examination the condition B2 ̸= 0 must hold. Indeed

suppose the contrary, that B2 = 0. Then according to Lemma 6.3 the condition B2 = D = 0

implies H10 = 0 that contradicts to H10 > 0. This completes the proof of our claim.

Considering the double singularity on the invariant line x = 1 we obtain Config. 3.32 if

H15 < 0; Config. 3.33 if H15 > 0 and Config. 3.34 if H15 = 0.

6.2.1.3 The possibility H10 = 0. In this case we get a = 0 and then systems (57)

become systems

ẋ =gx2, ẏ = b+ ex− x2 + gxy − y2, (63)

possessing the double invariant line x = 0 and two double singular points M1,2(0,±
√
b).

On the other hand for these systems we have R = 16bg4x2, i.e. sign (R) = sin(b) and

we examine two cases: R ̸= 0 and R = 0.

6.2.1.3.1 The case R ̸= 0. Considering Lemma 6.3 we deduce that in the case

R ̸= 0 we must have B2 ̸= 0, otherwise we get homogeneous quadratic systems (i.e.

b = e = 0) and this implies R = 0. As a result we arrive at the configuration given

by Config. 3.35 if R < 0; by Config. 3.36 if R > 0.

6.2.1.3.2 The case R = 0. Then b = 0 and we obtain B2 = −648e4x4. So in the

case B2 ̸= 0 we obviously obtain Config. 3.37.

Assuming B2 = 0 we have e = 0 and this leads to the homogeneous systems (63) with

b = e = 0 possessing the invariant lines x = 0 (double) and y = ±ix. Therefore we

have systems with invariant lines of total multiplicity 5 and this leads to the configuration

Config. 5.10 (see [21], Diagram 2 on page 35).

6.2.2 The subcase µ0 = 0

Then g = 0 and considering (56) we may assume e = 0 due to the translation (x, y) →
(x+ e/2, y). So we arrive at the 3-parameter family of systems

ẋ =a+ cx, ẏ = b− x2 − y2, (64)

for which we have µ0 = µ1 = 0 and µ2 = c2(x2 + y2).

6.2.2.1 The possibility µ2 ̸= 0. According to [3, Lemma 5.2] two finite singularities

have gone to infinity and coalesced with two complex infinite singularities. Since c ̸= 0

we may assume c = 1 due to the rescaling (x, y, t) → (cx, cy, t/c) and we arrive at the

2-parameter family of systems

ẋ =a+ x, ẏ = b− x2 − y2 (65)

42



which possess the invariant affine line x = −a. According to Lemma 4.7 the line at infinity

Z = 0 of the systems (65) is of multiplicity 2.

We determine that the above systems possess two finite singularitiesM1,2

(
−a,±

√
b− a2

)

which could be either real or complex or coinciding depending on the value of b− a2.

On the other hand for systems (65) we calculate

D = −768(a2 − b), B2 = −648
[
16a2 + (1− 4b)2

]
x4

and we have the following remark.

Remark 6.5. The condition B2 = 0 implies D > 0.

Indeed, assuming B2 = 0 we get a = 0 and b = 1/4 which gives D = 192 > 0.

We observe that sign (D) = sign (b− a2) and we discuss three cases: D < 0, D > 0 and

D = 0.

6.2.2.1.1 The case D < 0. Then b− a2 > 0 and the singularities M1,2 are real dis-

tinct. By the above remark the condition B2 ̸= 0 hold, i.e. we could not have invariant lines

in other directions. As a result we arrive at the unique configuration given by Config. 3.38.

6.2.2.1.2 The case D > 0. This implies b − a2 < 0 and the singularities M1,2 are

complex. If B2 ̸= 0 we get the unique configuration Config. 3.39.

Assume now B2 = 0. Following Remark 6.5 we get a = 0 and b = 1/4 and we arrive at

the system

ẋ =x, ẏ = 1/4− x2 − y2 (66)

which possesses 3 invariant affine lines: x = 0 and 2(y ± ix) + 1 = 0, i.e. we have invariant

lines of total multiplicity 5 (the infinite line is double). Taking into account the existence of

two finite singularities (0,±1/2) we obtain the configuration Config. 5.9 (see [21], Diagram

2 on page 35).

6.2.2.1.3 The case D = 0. This condition yields b = a2 and we get the family of

systems

ẋ = a+ x, ẏ = a2 − x2 − y2

which possess the unique finite singularity (−a, 0) and clearly it is double. By Remark 6.5

we deduce that B2 ̸= 0 and it is easy to determine that this leads to the unique configuration

Config. 3.40.

6.2.2.2 The possibility µ2 = 0. Then c = 0 and systems (64) become as systems

ẋ = a, ẏ = b− x2 − y2 (67)

which do not possess finite singularities because a ̸= 0, otherwise the systems are degenerate.

For these systems we have µ0 = µ1 = µ2 = µ3 = 0 and µ4 = a2(x2 + y2)2 and according

to [3, Lemma 5.2] the four finite singularities have gone to infinity and coalesced with two
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complex infinite singularities: one couple with N1[1 : i : 0] and the second couple with

N2[1 : −i : 0].
On the other hand according to Lemma 4.7 the line at infinity Z = 0 of the systems

(67) is of multiplicity 3.

Since for systems (67) we have B2 = −10368(a2 + b2)x4 ̸= 0 (due to a ̸= 0) we arrive at

the unique configuration Config. 3.41.

Thus we completes the proof of the statement (ii) of Theorem 6.1.

6.3 The case η = 0 and M̃ ̸= 0

According to the statement (iii) of Theorem 5.1 we examine two subcases: Ñ ̸= 0 and

Ñ = 0.

6.3.1 The subcase Ñ ̸= 0

Taking into account the proof of Theorem 5.1 we have to consider two possibilities: µ0 ̸= 0

and µ0 = 0.

6.3.1.1 The possibility µ0 ̸= 0. As it was shown in the proof of Theorem 5.1 in this

case we arrived at the systems (21), i.e. in what follow we examine the systems

ẋ = a+ cx+ x2, ẏ = b+ xy + y2 (68)

with C2 = −xy2. So we have the invariant affine lines a + cx + x2 = 0 in the directions

x = 0 and in the case B2 = 0 (which is a necessary condition for the existence of invariant

lines in the second direction) we could also have such lines in the direction y = 0. Fo the

above systems we calculate B2 = −648b2x4 and we discuss two cases: B2 ̸= 0 and B2 = 0.

6.3.1.1.1 The case B2 ̸= 0. Then systems (68) possess only two invariant affine

lines a + cx + x2 = 0 which are real (respectively complex; coinciding) if c2 − 4a > 0

(respectively, c2 − 4a < 0; c2 − 4a = 0).

On the other hand for these systems we have H10 = 8(c2 − 4a) and hence sign (H10) =

sign (c2 − 4a). So we examine three subcases: H10 < 0, H10 > 0 and H10 = 0.

1: The subcase H10 < 0. Then c2 − 4a < 0 and hence the invariant affine lines of systems

(68) are complex. Therefore the finite singularities located on these line are also complex

and we arrive at the configuration Config. 3.42.

2: The subcase H10 > 0. This condition implies c2 − 4a > 0 and for commodity we replace

c by 2c. Then we get the condition 4(c2 − a) > 0 and setting c2 − a = u2 ̸= 0, (i.e.

a = c2 − u2), after the transformation (x, y, t) → (ux − c, uy, t/u) we arrive at the family

of systems

ẋ = x2 − 1 ẏ = b+ fy + xy + y2 (69)

for which B2 = −648b2x4, i.e. this polynomial keeps its value after the mentioned above

transformation. These systems possess two real invariant lines x = ±1 and the finite
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singularities M1,2(x1,2, y1,2) and M3,4(x3,4, y3,4), where

x1,2 = −1, y1,2 =
(
1− f ±

√
V̂1

)
/2; V̂1 = (1− f)2 − 4b;

x3,4 = 1, y3,4 =
(
− f − 1±

√
V̂2

)
/2; V̂2 = (1 + f)2 − 4b.

(70)

On the other hand for systems (69) we calculate

D = −768V̂1V̂2, H15 = 128(V̂1 + V̂2) (71)

and we discuss three possibilities: D < 0, D > 0 and D = 0.

2.1: The possibility D < 0. Then we have V̂1V̂2 > 0, i.e. these expressions have the

same sign. More precisely, if H15 < 0 then V̂1 < 0 and V̂2 < 0 and evidently in this case

all four finite singularities are complex. If H15 > 0 then V̂1 > 0 and V̂2 > 0 and hence all

four finite singularities are real. Considering the condition B2 ̸= 0 (i.e. we do not have

other invariant affine line apart from x = ±1) we arrive at Config. 3.43 if H15 < 0 and at

Config. 3.44 if H15 > 0.

2.2: The possibility D > 0. In this case we have V̂1V̂2 < 0, i.e. two finite singularities

of systems (69) are real and two are complex. Therefore evidently we get the configuration

given by Config. 3.45.

2.3: The possibility D = 0. Then V̂1V̂2 = 0 and without losing the generality we may

assume V̂1 = 0 due to the rescaling (x, y, t) → (−x,−y,−t) which change the sign of the

parameter f and hence transfer V̂2 to V̂1.

Thus V̂1 = 0 and then the singular points M1,2 coalesced. On the other hand by (71)

we have sign (V̂2) = sign (H15) and therefore we arrive at the Config. 3.46 if H15 < 0 and

at Config. 3.47 if H15 > 0.

Clearly when H15 = 0 we obtain V̂1 = V̂2 = 0 and hence systems (69) possess two double

finite singularities. This leads to Config. 3.48.

3: The subcase H10 = 0. Then c2 − 4a = 0 and for comodity we repplace again c by 2c.

Then we get a = c2 and applying the transformation (x, y, t) → (−x− c,−y,−t) to systems

(68) we arrive at the family of systems

ẋ = x2 ẏ = b+ fy + xy + y2. (72)

These systems possess the double invariant line x = 0 and two double singular points

M1,2

(
0,−(f ±

√
f2 − 4b)/2

)
. It is clear that these singularities are real (respectively, com-

plex; coinciding) if f2 − 4b > 0 (respectively f2 − 4b < 0; f2 − 4b = 0).

On the other hand for the above systems we have R = 4(f2−4b)x2 and considering the

condition B2 ̸= 0 (i.e. we do not have other invariant affine line apart from the double line

x = ±1) we arrive at Config. 3.49 if R < 0; Config. 3.50 if R > 0 and at Config. 3.51 if

R = 0.
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6.3.1.1.2 The case B2 = 0. This implies b = 0 and we get the family of systems

ẋ = a+ cx+ x2, ẏ = y(x+ y) (73)

possessing the additional invariant line y = 0. So these systems possess invariant lines of

multiplicity at least four and following [23] we calculate:

η = 0, M̃ = −8y2 ̸= 0, θ = H7 = B2 = 0, µ0 = 1 ̸= 0,

Ñ = x2 ̸= 0, B3 = −3ax2y2, H10 = 8(c2 − 4a).

Therefore according to [23] (see Table 2 and Diagram 1) if B3 ̸= 0 we obtain the configura-

tion Config. 4.14 if H10 < 0; Config. 4.11 if H10 > 0 and Config. 4.23 if H10 = 0. However

in the case H10 > 0 in [23] a configuration was omitted (see Lemma 6.4 below).

Assume now B3 = 0. Then a = 0 and since in this case for the above systems we have

D̃ = c2xy2, according to [23] (see Table 2 and Diagram 1) we arrive at the configuration

Config. 5.11 if D̃ ̸= 0 and Config. 5.19 if D̃ = 0.

Remark 6.6. We point out that in the case µ0 ̸= 0, H̃10 > 0 and B3 ̸= 0 in paper [23]

there appears only one configuration Config. 4.11. However depending on the position of the

finite singularities of systems (73) with respect to the invariant line y = 0 we could have

another configuration different from Config. 4.11 which we denote here by Config. 4.11a (see

Figure 3).

We have to distinguish these two configurations. The next lemma holds.

Lemma 6.4. Assume that for an arbitrary quadratic system the conditions η = 0, M̃ ̸= 0,

θ = H7 = B2 = 0, µ0B3 ̸= 0 and H10 > 0 are satisfied. Then the configurations of the

invariant lines of this system are Config. 4.11 if H4 < 0 and Config. 4.11a if H4 > 0.

Proof: If for a quadratic system the conditions provided by the lemma hold then according to

[23, Theorem 4.1, statement (ii)] this system could be brought via an affine transformation

and time rescaling to the canonical form

ẋ = x(x+ y), ẏ = (y + k)2 − 1, k ∈ R, k ̸= ±1. (74)

These systems posses the invariant lines x = 0 and y = −k ± 1 and the finite singularities:

M1,2(0,−k ± 1), M3(k − 1, 1− k), M4(k + 1,−k − 1).

It is clear that the singularities M3 and M4 are located on the invariant lines y = 1 − k

and y = −1 − k, respectively. And it is important to detect if they are located on the

same part with respect to the invariant line x = 0 (Config. 4.11a) or on different parts

(Config. 4.11 ). So in the first case the product of the corresponding abscissae must be

positive, i.e. (k − 1)(k + 1) > 0, whereas in the second case it must be negative, i.e.

(k − 1)(k + 1) < 0.

On the other hand for systems (74) we have H4 = 48(k−1)(1+k) and we conclude that

for H4 < 0 we get Config. 4.11 and for H4 > 0 we obtain Config. 4.11a. This completes the

proof of Lemma 6.4.
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6.3.1.2 The possibility µ0 = 0. As it was shown in the proof of Theorem 5.1 in this

case we arrived at the systems (21), i.e. the systems

ẋ = a+ cx+ gx2, ẏ = b+ (g − 1)xy, (75)

for which we have

C2 = x2y, B2 = 0, B3 = −3b(g − 1)2x4, Ñ = (g2 − 1)x2. (76)

We observe that we have two invariant affine lines in the direction x = 0 (which is defined

by the double factor of C2), whereas in the direction y = 0 we could have only the line

y = 0 if b = 0. Due to Ñ ̸= 0 the last condiion is equivalent to B3 = 0 and therefore we

examine two cases: B3 ̸= 0 and B3 = 0.

6.3.1.2.1 The case B3 ̸= 0. Then the invariant lines a+ cx+ gx2 = 0 are the only

invariant affine lines of systems (75). However for these systems we have H6 = 128(−1 +

g)4
[
]a(1+g)2− c2

]
x6 and setting H6 = 0 (i.e. a = c2/(1+g)2 due to (g+1) ̸= 0) we obtain

the systems

ẋ =
1

(g + 1)2
(c+ gx+ x)(c+ g2x+ gx), ẏ = b+ (g − 1)xy, (77)

Then considering the Notation 4.2 for these systems we calculate

H(X,Y, Z) =
1

(g + 1)2
(c+ gX +X)2(c+ g2X + gX)

and hence by Lemma 4.6 the invariant line c+g2X+gX = 0 of the above systems is simple

whereas the invariant line c+ gX +X = 0 is double. So we consider two subcases: H6 ̸= 0

and H6 = 0.

1: The subcase H6 ̸= 0. Then both invariant lines of systems (75) are simple ones and

these systems belong to the class QSL3.

On the other hand for these systems we have µ0 = µ1 = 0, µ2 = ag(g − 1)2x2 and

by [3, Lemma 5.2] if µ2 ̸= 0 then only two finite singularities have gone to infinity and

coalesced with the same infinite singular point N2[0 : 1 : 0] which becomes of multiplicity

4 of the type (2, 2). On the other hand the singular point N1[1 : 0 : 0] is an elementary

singularity.

If µ2 = 0 by the same lemma at least three finite singularities have gone to infinity. So

we consider two possibilities: µ2 ̸= 0 and µ2 = 0.

1.1: The possibility µ2 ̸= 0. As it is mentioned above, at infinity we have the singular

points N1[1 : 0 : 0] (elemental) and N2[0 : 1 : 0] (of multiplicity 4). Clearly systems (75)

possess only two invariant affine lines a+cx+gx2 = 0 which are real (respectively complex;

coinciding) if c2 − 4ag > 0 (respectively, c2 − 4ag < 0; c2 − 4ag = 0).

On the other hand for these systems we have H11 = 48(g − 1)4(c2 − 4ag)x4 and hence

sign (H11) = sign (c2 − 4a). So we examine three cases: H11 < 0, H11 > 0 and H11 = 0.
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1.1.1: The case H11 < 0. Then the invariant affine lines are complex as well as the

finite singularities. Considering the multiplicity of infinite singularities we arrive at the

configuration Config. 3.52.

1.1.2: The case H11 > 0. Then c2 − 4ag > 0 and setting c2 − 4ag = u2 we obtain

a = (c2 − u2)/(4g). Then applying the transformation (x, y, t) →
(
(ux− c)/(2g), y, 2gt/u

)

we arrive at the family of systems

ẋ = g(x2 − 1) ẏ = b+ fy + (g − 1)xy. (78)

These systems possess two real invariant lines x = ±1 intersecting at infinity at the point

N2[0 : 1 : 0] of multiplicity 4. For the above systems we have

µ2 = g2(f + 1− g)(f − 1 + g)x2, B3 = −3b(g − 1)2x4, K̃ = 2g(g − 1)x2?

and due to µ2 ̸= 0 systems (78) possess the following two finite singularities:

M1

(
− 1,− b

f + 1− g

)
, M2

(
1,− b

f − 1 + g

)
.

So due to B3 ̸= 0 we arrive at the unique configuration Config. 3.53.

1.1.3: The case H11 = 0. This condition implies c2 − 4ag = 0, i.e. a = c2/(4g) and

we obtain the systems

ẋ = (c+ 2gx)2/(4g), ẏ = b+ (g − 1)xy, (79)

possessing the double invariant line c+ 2gx = 0 and the double real singular point(
− c

2g
,

2bg

c(g − 1)

)
. Taking into consideration the existence of the multiple singularity at

infinity (of the type (2,2)) as well as of the simple one we obtain the configuration Con-

fig. 3.54.

1.2: The possibility µ2 = 0. This condition implies ag(g − 1) = 0 and due to Ñ ̸= 0 (i.e.

g− 1 ̸= 0) we obtain ag = 0. On the other hand for systems (75) we have K̃ = 2g(g− 1)x2

and we examine two cases: K̃ ̸= 0 and K̃ = 0.

1.2.1: The case K̃ ̸= 0. Then the condition µ2 = 0 gives a = 0 and this leads to the

family of systems

ẋ = x(c+ gx) ẏ = b+ (g − 1)xy (80)

for which we calculate

µ0 = µ1 = µ2 = 0, µ3 = bcg(1− g)x3, K̃ = 2g(g − 1)x2,

B3 = −3b(g − 1)2x4, H6 = −128c2(g − 1)4x6

The condition K̃B3H6 ̸= 0 implies µ3 ̸= 0 and then by [3, Lemma 5.2] only three fi-

nite singularities have gone to infinity and coalesced with the same infinite singular point

N2[0 : 1 : 0] which become of multiplicity 5 of the type (2, 3).

Since B3 ̸= 0 (i.e. b ̸= 0) the above systems possess only two invariant affine lines

x = 0 and x = −c/g. On the other hand these systems possess only one finite singularity

48



(
− c
g
,

bg

c(g − 1)

)
which is located on the invariant line x = −c/g. As a result we arrive at

the configuration Config. 3.55.

1.2.2: The case K̃ = 0. Then g = 0 and we obtain the family of systems

ẋ = a+ cx, ẏ = b− xy, (81)

for which we have

µ0 = µ1 = µ2 = 0, µ3 = −acx2y, B3 − 3bx4, H11 = 48c2x4.

1.2.2.1: The subcase µ3 ̸= 0. Then ac ̸= 0 and hence the above systems possess

one real invariant affine line cx+ a = 0. We observe that according to Lemma 4.7 the line

at infinity Z = 0 of the systems (81) is of multiplicity 2.

On the other hand since the invariant polynomial µ3 contains the factor x2y, by [3,

Lemma 5.2] three finite singularities have gone to infinity, two of them coalescing with

the infinite singular point N2[0 : 1 : 0] which becomes of multiplicity 4 of the type (2, 2),

whereas the third one coalesced with the singular point N1[1 : 0 : 0] which becomes of

multiplicity 2 of the type (1, 1).

So considering the singular point (−a/c,−bc/a) located on the invariant line cx+a = 0

and the double infinite line we obtain Config. 3.56.

1.2.2.2: The subcase µ3 = 0. This condition gives ac = 0 and since H11 = 48c2x4

we examine two possibilities: H11 ̸= 0 and H11 = 0.

1.2.2.2.1: The possibility H11 ̸= 0. Then c ̸= 0 and we get a = 0. This leads to

the systems

ẋ = cx, ẏ = b− xy (82)

for which we have µ0 = µ1 = µ2 = µ3 = 0 and µ4 = −bc2x3y ̸= 0 (otherwise we get degen-

erate systems). So by [3, Lemma 5.2] the above systems possess at infinity the singularities

N2[0 : 1 : 0] of multiplicity 5 (of the type (2, 3)) and N1[1 : 0 : 0] of multiplicity 2 (of the

type (1, 1)). Since by Lemma 4.7 the line at infinity is double we obtain the configuration

Config. 3.57.

1.2.2.2.2: The possibility H11 = 0. Then c = 0 and this leads to the systems

ẋ = a, ẏ = b− xy, (83)

which according to Lemma 4.7 possess the invariant line at infinity Z = 0 of multiplicity 3.

Since for the above systems we have µ0 = µ1 = µ2 = µ3 = 0 and µ4 = a2x2y2 ̸= 0,

by [3, Lemma 5.2] two finite singularities have gone to infinity coalescing with the infinite

singular point N2[0 : 1 : 0] which becomes of multiplicity 4 of the type (2, 2), whereas other

two coalesced with the singular point N1[1 : 0 : 0] which becomes of multiplicity 3 of the

type (1, 2). As a result we arrive at the configuration Config. 3.58.

2: The subcase H6 = 0. As mentioned earlier in this case systems (75) belong to the

class QSL4

⋃
QSL5

⋃
QSL6 and for H6 = 0 we obtain systems (77). So following [23] for
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systems(77) we calculate:

η = 0, M̃ = −8x2 ̸= 0, θ = H7 = B2 = µ0 = 0, B3 = −3b(−1 + g)2x4 ̸= 0,

Ñ = (g2 − 1)x2 ̸= 0, K̃ = 2g(g − 1)x2, H11 =
48

(g + 1)2
c2(g − 1)6x4.

Therefore according to [23] (see Table 2 and Diagram 1) in the case K̃ ̸= 0 we arrive at the

configuration Config. 4.30 if H11 ̸= 0 and at the configuration Config. 4.43 if H11 = 0.

Assuming K̃ = 0 we obtain the configuration Config. 4.40.

6.3.1.2.2 The case B3 = 0. Then considering (76) and the condition Ñ ̸= 0 we

obtain b = 0 and systems (75) become

ẋ = a+ cx+ gx2, ẏ = (g − 1)xy. (84)

We observe that these systems possess invariant affine lines a + cx + gx2 and y = 0. So

taking into account the line at infinity we conclude that the above systems possess invariant

lines of total multiplicity at least four. So following [23] and [21] we calculate:

η = 0, M̃ = −8x2 ̸= 0, θ = H7 = B2 = 0, µ0 = 0, B3 = 0, Ñ = (g2 − 1)x2 ̸= 0,

K̃ = 2g(g − 1)x2 ̸= 0, H6 = 128(g − 1)4
[
a(g + 1)2 − c2

]
x6, H11 = 48(g − 1)4(c2 − 4ag)x4.

According to [23] (see Table 2 and Diagram 1) and [21] (see Table 4 and Diagram 2) we

have the following lemma.

Lemma 6.5. Assume that for an arbitrary non-degenerate quadratic system the conditions

η = µ0 = θ = H7 = B3 = 0 and M̃Ñ ̸= 0 hold. Then this system could possess one of the

following configurations if and only if the corresponding conditions are satisfied, respectively:

H6 ̸= 0, K̃ ̸= 0, H11 < 0 ⇔ Config. 4.15;

H6 ̸= 0, K̃ ̸= 0, H11 > 0 ⇔ Config. 4.12;

H6 ̸= 0, K̃ ̸= 0, H11 = 0 ⇔ Config. 4.24;

H6 ̸= 0, K̃ = 0, H11 ̸= 0 ⇔ Config. 4.19;

H6 ̸= 0, K̃ = 0, H11 = 0 ⇔ Config. 4.36;

H6 = 0, K̃ ̸= 0 ⇔ Config. 5.14;

H6 = 0, K̃ = 0 ⇔ Config. 5.18.

6.3.2 The subcase Ñ = 0

According to the statement (iii) of Theorem 5.1 in this case we have to consider two

possibilities: K̃ ̸= 0 and K̃ = 0.

6.3.2.1 The possibility K̃ ̸= 0. According to Theorem 5.1 in this case the condition

θ3 = 0 must be satisfied and taking into account the proof of this theorem we consider the

family of systems (24), i.e. the systems

ẋ = a+ cx− x2, ẏ = b− 2xy. (85)
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For these systems we have

η = 0, M̃ = −8x2 ̸= 0, µ0 = µ1 = 0, µ2 = −4ax2, Ñ = B2 = 0, µ3 = −2cx2(bx+ 2ay),

K̃ = 4x2 ̸= 0, B3 = −12bx4, H6 = −2048c2x6, H11 = 768(4a+ c2)x4

(86)

and we examine two cases: B3 ̸= 0 and B3 = 0.

6.3.2.1.1 The case B3 ̸= 0. We observe that in the case H6 = 0 (i.e. c = 0) for

systems (89) we have H(X,Y, Z) = (X2 − aZ2)2. This means that these systems belong to

the class QSL5 and therefore we discuss two subcases: H6 ̸= 0 and H6 = 0.

1: The subcase H6 ̸= 0. We detect that the family of systems (89) is a subfamily of (75)

defined by the condition g = −1 (which implies Ñ = 0). So we could follow the steps and

the results obtained for the family (75) with g = −1 and namely the branch defined by the

condition K̃H6B3 ̸= 0.

Thus in the case B3H6 ̸= 0 we arrive at the configurations below if and only if the

following conditions are satisfied, correspondingly:

µ2 ̸= 0, H11 < 0 ⇔ Config. 3.52;

µ2 ̸= 0, H11 > 0 ⇔ Config. 3.53;

µ2 ̸= 0, H11 = 0 ⇔ Config. 3.54;

µ2 = 0 ⇔ Config. 3.55.

2: The subcase H6 = 0. Then c = 0 and we get the systems

ẋ = a− x2, ẏ = b− 2xy. (87)

for which following [21] (see Table 4) we evaluate the following invariant polynomials:

η = 0, M̃ = −8x2 ̸= 0, Ñ = B2 = 0, B3 = −12bx4, H2 = 0, H3 = 32ax2.

We observe that for the above systems we have H11 = 3072ax4 and then sign (H3) =

sign (H11). So according to [21] (see Table 4 and Diagram 2) we arrive at the configuration

Config. 5.25 if H11 < 0; Config. 5.22 if H11 > 0 and Config. 5.29 if H11 = 0.

6.3.2.1.2 The case B3 = 0. Then b = 0 and this leads to the family of systems

ẋ = a+ cx− x2, ẏ = −2xy, (88)

for which we have

η = 0, M̃ = −8x2 ̸= 0, K̃ = 4x2, B3 = Ñ = 0, H6 = −2048c2x6,

µ0 = H7 = 0, H11 = 768(4a+ c2)x4.

So according to [23] (see Table 2 and Diagram 1) in the case H6 ̸= 0 we obtain Config. 4.15

if H11 < 0; Config. 4.12 if H11 > 0 and Config. 4.24 if H11 = 0.
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Assume now H6 = 0, i.e. we have c = 0. Therefore we get the family of systems

ẋ = a− x2, ẏ = −2xy (89)

for which following [21] (see Table 2) we calculate

η = 0, M̃ = −8x2 ̸= 0, H̃ = −4x2, B3 = Ñ = 0, H2 = 0, H3 = 32ax2, H11 = 3072ax4.

We observe that sign (H11) = sign (H3) and hence comparing with the conditions from

Table 2 in [21] we arrive at the configuration Config. 6.9 if H11 < 0 and at Config. 6.8 if

H11 > 0. We notice that H11 ̸= 0, otherwise we get degenerate system.

6.3.2.2 The possibility K̃ = 0. According to the statement (iii) of Theorem 5.1 for

Ñ = K̃ = 0 we have to consider two cases: B2 ̸= 0 and B2 = 0.

6.3.2.2.1 The case B2 ̸= 0. According to Theorem 5.1 in this case the condition

θ5 = 0 must be satisfied and taking into account the proof of this theorem we arrive at the

systems (26), i.e. at the systems

ẋ = a+ cx, ẏ = b+ ex+ y2. (90)

for which we have

C2 = −xy2, B2 = −648e4x4 ̸= 0, µ0 = µ1 = 0, µ2 = c2y2.

So we consider two subcases: µ2 ̸= 0 and µ2 = 0

1: The subcase µ2 ̸= 0. Then c ̸= 0 and we may assume c = 1 due to the rescaling

(x, y, t) → (cx, cy, t/c). Since µ2 = y2, by [3, Lemma 5.2] only two finite singularities

have gone to infinity and coalesced with the same infinite singular point N1[1 : 0 : 0] which

becomes of multiplicity 4 of the type (2, 2). At the same time the singular point N2[0 : 1 : 0]

remains an elementary singularity.

On the other hand according to Lemma 4.7 systems (90) possess the invariant line

at infinity Z = 0 of multiplicity 2. Obviously we obtain that the above systems (with

c = 1) possess two finite singularities (−a,±
√
ae− b) the kind of which (real or complex or

coinciding) is governed by the invariant polynomial U = 4(ae− b)x2y4.

Thus summarizing the information discussed above we obtain Config. 3.59 if U < 0;

Config. 3.60 if U > 0 and Config. 3.61 if U = 0.

2: The subcase µ2 = 0. This condition implies c = 0 and we arrive at the family of systems

ẋ = a, ẏ = b+ ex+ y2, (91)

for which we have µ0 = µ1 = µ2 = µ3 = 0 and µ4 = a2y4 ̸= 0 (otherwise we get degenerate

systems). Therefore by [3, Lemma 5.2] all the finite singular points have gone to infinity and

coalesced with the same infinite singular point N1[1 : 0 : 0] which becomes of multiplicity 6

of the type (2, 4).

On the other hand according to Lemma 4.7 the infinite invariant line of systems (??)

is of multiplicity three. Therefore due to B2 ̸= 0 (i.e. e ̸= 0) these systems do not possess

any invariant affine lines. As a result we get the configuration Config. 3.62.
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6.3.2.2.2 The case B2 = 0. According to the proof of Theorem 5.1 in this case we

have to examine systems (25), i.e. the systems

ẋ = a+ x2, ẏ = b+ ex+ fy, (92)

for which we have

C2 = x2y, B2 = B3 = 0, µ0 = µ1 = 0, µ2 = f2x2.

So we consider two subcases: µ2 ̸= 0 and µ2 = 0.

1: The subcase µ2 ̸= 0. Then f ̸= 0 and we may assume f = 1 and b = 0 due to the change

(x, y, t) → (fx, y − b/f, t/f). This leads to the family of systems

ẋ = a+ x2, ẏ = ex+ y, (93)

for which µ2 = x2. Then by [3, Lemma 5.2] only two finite singularities have gone to

infinity and coalesced with the same infinite singular point N2[0 : 1 : 0] which becomes of

multiplicity 4 of the type (2, 2). At the same time the singular point N1[1 : 0 : 0] remains

an elementary singularity.

On the other hand according to Lemma 4.7 the infinite invariant line of systems (93) is

double. As a result we obtain that these systems possess invariant lines of total multiplicity

4.

We observe that for systems (93) the following conditions are satisfied:

η = 0, M̃ ̸= 0, θ = H7 = B3 = µ0 = Ñ = K̃ = 0.

So following [23] (see Table 2) for systems (93) we calculate additionally the following

invariant polynomials:

N1 = 8ex4, N2 = 4(1 + 4a)x, N5 = −64ax2, D̃ = −x2y, H̃ = 0.

We examine the two possibilities: N1 ̸= 0 and N1 = 0.

1.1: The possibility N1 ̸= 0. Then in the case N2 ̸= 0, since D̃ ̸= 0, according to [23]

(see Table 2 and Diagram 1) we arrive at the the configurations Config. 4.32 if N5 < 0;

Config. 4.28 if N5 > 0 and Config. 4.39 if N5 = 0.

If N2 = 0 we obtain a = −1/4 and then considering the Notation 4.2 for systems (93)

we calculate

H(X,Y, Z) =
1

16
Z(2X − Z)2(2X + Z)

and hence by Lemma 4.6 we conclude that these systems possess invariant lines of total

multiplicity 5. Considering the above conditions according to [21] (see Table 4 and Diagram

2) we arrive at the configuration Config. 5.21.

1.2: The possibility N1 = 0. This condition gives e = 0 and this implies the existence of

an additional invariant affine line y = 0, i.e. systems (93) possess invariant lines of total

multiplicity 5. In this case if N2 ̸= 0 then due to D̃ ̸= 0 and H̃ = 0, according to [21] (see
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Table 4 and Diagram 2) systems (93) with e = 0 possess the configuration Config. 5.15 if

N5 < 0; Config. 5.13 if N5 > 0 and Config. 5.17 if N5 = 0.

In the case N2 = 0 (i.e. a = −1/4) we get the system

ẋ = 1/4(−1 + 2x)(1 + 2x), ẏ = y

for which we calculate

H(X,Y, Z) =
1

16
ZY (2X − Z)2(2X + Z).

Therefore by Lemma 4.6 we conclude that this system possesses invariant lines of total

multiplicity 6. As a result considering [21] (see Table 4 and Diagram 2) we arrive at the

configuration Config. 6.7.

2: The subcase µ2 = 0. This implies f = 0 and we get the family of systems

ẋ = a+ x2, ẏ = b+ ex, (94)

for which we have

η = 0, M̃ ̸= 0, θ = B3 = µ0 = Ñ = K̃ = 0.

So following [23] (see Table 2) for systems (94) we calculate additionally the following

invariant polynomials:

N1 = 8ex4, N2 = 16ax, N5 = −64ax2, D̃ = 0.

We examine the two possibilities: N1 ̸= 0 and N1 = 0.

2.1: The possibility N1 ̸= 0. Then since D̃ = 0, according to [23] (see Table 2 and

Diagram 1) in the case N2 ̸= 0 (this implies N5 ̸= 0) we arrive at the configurations

Config. 4.33 if N5 < 0 and Config. 4.29 if N5 > 0.

If N2 = 0 we get a = 0 and considering the Notation 4.2 for systems (94) we calculate

H(X,Y, Z) = X3Z

and hence by Lemma 4.6 the invariant line x = 0 of systems (97) is triple whereas the

infinite invariant line Z = 0 is double. So we have these systems possess invariant line of

total multiplicity 5. In this case since Ñ1 ̸= 0 and N2 = H̃ = 0, according to [21] (see Table

4 and Diagram 2) systems (94) with a = 0 possess the unique configuration Config. 5.28.

2.2: The possibility N1 = 0. This condition gives e = 0 and then b ̸= 0 otherwise we get

degenerate systems. In this case for systems (94) we have

H(X,Y, Z) = bZ2(X2 + aZ2)

if a ̸= 0 (i.e. N2 ̸= 0) and

H(X,Y, Z) = bX3Z2

if a = 0 (i.e. N2 = 0).

Therefore considering Lemma 4.6 we conclude that systems (94) possess invariant lines

of total multiplicity five (respectively six) if N2 ̸= 0 (respectively N2 = 0).
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So according to [21] (see Table 4 and Diagram 2) in the case N2 ̸= 0 (then N5 ̸= 0) we

obtain the configurations Config. 5.24 if N5 < 0 and Config. 5.20 if N5 > 0.

In the case N2 = 0 following [21] (see Table 2 and Diagram 1) we arrive at the unique

configuration Config. 6.10.

Since all the possibilities are examined this completes the proof of the statement (iii)

of Theorem 6.1.

6.4 The case η = M̃ = 0 and C2 ̸= 0

According to the statement (iv) of Theorem 5.1 we have to examine two subcases: Ñ ̸= 0

and Ñ = 0.

6.4.1 The subcase Ñ ̸= 0

Taking into account the proof of Theorem 5.1 we consider the family of systems (28) for

which we have Ñ = g2x2 ̸= 0. Then due to a translation we may assume e = f = 0 and we

arrive at the family of systems

ẋ =a+ cx+ gx2, ẏ = b− x2 + gxy, (95)

for which we calculate

C2 = x3, B2 = 0, B3 = −3ag2x4, Ñ = g2x2, µ0 = µ1 = 0, µ2 = ag3x2. (96)

We examine two possibilities: µ2 ̸= 0 and µ2 = 0.

6.4.1.1 The possibility µ2 ̸= 0. Then by [3, Lemma 5.2] only two finite singularities

have gone to infinity and coalesced with the unique infinite singular point N1[0 : 1 : 0]

which becomes of multiplicity 5 of the type (3, 2). Clearly systems (95) possess only two

invariant affine lines a + cx + gx2 = 0 which are real (respectively complex; coinciding) if

c2 − 4ag > 0 (respectively, c2 − 4ag < 0; c2 − 4ag = 0).

On the other hand for these systems we have H11 = 48g4(c2 − 4ag)x4 and hence

sign (H11) = sign (c2 − 4a).

We observe that systems (95) possess two finite singularities M1,2(x1,2, y1,2) with the

coordinates

x1,2 =
−c±

√
c2 − 4ag

2g
, y1,2 =

c(bg − a)± (a+ bg)
√
c2 − 4ag

2ag2
.

So we conclude that these singularitiffes are real (respectively complex; coinciding) if c2 −
4ag > 0 (respectively, c2 − 4ag < 0; c2 − 4ag = 0). Then considering the multiplicity of the

infinite singularity it is clear that we arrive at the configuration Config. 3.63 if H11 < 0;

textitConfig. 3.64 if H11 > 0 and textitConfig. 3.65 if H11 = 0.
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6.4.1.2 The possibility µ2 = 0. Due to Ñ ̸= 0 (i.e. g ̸= 0) the condition implies a = 0

and we get the systems

ẋ =x(c+ gx), ẏ = b− x2 + gxy, (97)

for which we have B3 = 0. Considering the Notation 4.2 for these systems we calculate

H(X,Y, Z) = X(gX + cZ)2

and hence by Lemma 4.6 the invariant line x = 0 of systems (97) is simple whereas the in-

variant line gx+c = 0 is double. So these systems possess invariant lines of total multiplicity

4 and considering [23] (see Table 2) we calculate the following invariant polynomials:

η = M̃ = 0, θ = B3 = 0, Ñ = g2x2 ̸= 0, N6 = 8(c2 + bg2)x3, H11 = 48c2g4x4.

We discuss two cases: N6 ̸= 0 and N6 = 0.

6.4.1.2.1 The case N6 ̸= 0. According to [23] (see Table 2 and Diagram 1) in

this case systems (97) possess the configuration Config. 4.31 if H11 ̸= 0 and Config. 4.44 if

H11 = 0.

6.4.1.2.2 The case N6 = 0. This condition implies c2 + bg2 = 0 and since g ̸= 0

(due to Ñ ̸= 0) we obtain b = −c2/g2. Then for systems (97) we have

η = M̃ = θ = B3 = N6 = 0, Ñ ̸= 0

and by [21] (see Table 4 and Diagram 2) we arrive at the configuration Config. 5.23.

6.4.2 The subcase Ñ = 0

Considering the proof of Theorem 5.1 we have to examine the family of systems (29) for

which we may assume b = e = 0 due to the translation (x, y) → (x+ e/2, y). So we arrive

at the family of systems

ẋ =a+ cx, ẏ = b+ fy − x2. (98)

for which considering the Notation 4.2 we calculate

H(X,Y, Z) = Z2(cX + aZ).

Hence by Lemma 4.6 the infinite invariant line Z = 0 is triple and considering the invari-

ant affine line a + cx = 0 we conclude that the above systems possess invariant lines of

multiplicity at least 4. So following [23] (see Table 2) we evaluate the following invariant

polynomials:

η = M̃ = 0, Ñ = θ = B3 = 0, N3 = 3(c− f)x3,

N6 = 8c(c− f)x3, D̃ = −f2x3, D1 = c+ f.

According to [23] (see Table 2 and Diagram 1) and [21] (see Table 4 and Diagram 2) we

have the following lemma.
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Lemma 6.6. Assume that for an arbitrary non-degenerate quadratic system the conditions

η = M̃ = 0, Ñ = θ = B3 = 0 hold. Then this system could possess one of the following

configurations if and only if the corresponding conditions are satisfied, respectively:

N3 ̸= 0, D1 ̸= 0, N6 ̸= 0, D̃ ̸= 0 ⇔ Config. 4.37;

N3 ̸= 0, D1 ̸= 0, N6 ̸= 0, D̃ = 0 ⇔ Config. 4.38;

N3 ̸= 0, D1 ̸= 0, N6 = 0 ⇔ Config. 4.46;

N3 ̸= 0, D1 = 0 ⇔ Config. 5.26;

N3 = 0, D1 ̸= 0 ⇔ Config. 5.27;

N3 = 0, D1 = 0 ⇔ Config. 5.30.

Thus we completes the proof of the statement (iv) of Theorem 6.1.

6.5 The case C2 = 0

According to the proof of Theorem 5.1 in this case we arrived at the systems (30) with

d = 0. Moreover due to a translation we may assume e = f = 0 and hence we have to

examine the family of systems

ẋ =a+ cx+ x2, ẏ = b+ xy. (99)

For these systems we have C2 = 0, i.e. the infinite line Z = 0 is filled ut with singularities.

We remark that in [27] the complete classification of the configuration of invariant lines for

the whole family of quadratic systems with C2 = 0 was done. So following [27] (see Table

1) we evaluate for systems (99) the following invariant polynomials:

H10 = 0, H11 = −48(4a− c2)x4, H12 = −8a2x2.

Then according to [27] (see Table 1 and Diagram 2) we obtain the following lemma.

Lemma 6.7. Assume that for an arbitrary non-degenerate quadratic system the condition

C2 = H7 = 0 holds. Then this system possesses one of the configurations of invariant lines

indicated below if and only if the corresponding conditions are satisfied respectively:

H12 ̸= 0, H11 < 0 ⇔ Config. C2.6;

H12 ̸= 0, H11 > 0 ⇔ Config. C2.5;

H12 ̸= 0, H11 = 0 ⇔ Config. C2.7;

H12 = 0, H11 ̸= 0 ⇔ Config. C2.8;

H12 = 0, H11 = 0 ⇔ Config. C2.9.

As all the cases were examined we conclude that Theorem 6.1 is proved.

7 Geometric invariants and the proof of the non-equivalence

of the 122 configurations

In this section we complete the proof of Theorem 6.1 by showing that all 122 configurations

of invariant lines we constructed are non-equivalent according to Definition 2.1.
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First of all we point out that in the papers [21] and [23] the non-equivalence of the

configurations containing invariant lines of the total multiplicity 4, 5 or 6 was proved.

Moreover in [27] the same is done for the configurations of the systems with the infinite line

filled up with singularities. So in this section we focus our attention to the configurations of

the systems in QSL2p possessing invariant lines of total multiplicity exactly 3. We denote

this family by QSL2p
3

To prove the non-equivalence of the configurations we obtained for this family we intro-

duce first some notations.

Notation 7.1. Let (S) ∈ QSL. Let us denote

IL(S) =

{
l

∣∣∣∣∣
l is a line in P2(C) such
that l is invariant for (S)

}
;

m(l) = the multiplicity of the invariant line l of (S).

We denote by SingR(S) the set of all real singular points of the system (S).

N
IL

R = #{l ∈ IL|l : aX + bY + cZ = 0, a, b, c ∈ R};

Remark 7.1. In defining m(l) we assume, of course, that (S) has a finite number of

invariant lines. We note that the line l∞ : Z = 0 is included in IL(S) for any (S) ∈ QSL.

We also note that both m(l) and N
IL

R are invariants under the group action.

Let Fi(X,Y, Z) = 0 be the projective completion of the invariant line fi(x, y) = 0 and

let mi be its multiplicity. Also let m be the multiplicity of the line at infinity Z = 0 We

introduce the following additional notations.

G :
∏

i

Fi(X,Y, Z)
miZm = 0;

SingR,G(S) = {w ∈ SingR(S)|w ∈ G}

Definition 7.1. Definition 2.11. Let V be an irreducible algebraic variety of dimension

n over a field K. A cycle of dimension r or r-cycle on V is a formal sum
∑

W m(W )W

where W is a subvariety of V of dimension r which is not contained in the singular locus

of V , m(W ) ∈ Z, and only a finite number of m(W )’s are non-zero. We call degree of an

r-cycle the sum
∑

W . An (n− 1)-cycle is called a divisor.

Definition 7.2. We call type of an r-cycle the set of all ordered couples (n1, n2) where n1
is a coefficient, n1 = m(W ) appearing in the r − cyle and n2 is the number of W ’s in the

cycle whose coefficient is m(W ).

We denote the type of an r-cycle D by T (D).

We now introduce three cycles on P2(R) which encapsulate the basic features of the

configurations, i.e. i) the invariant lines together with their multiplicities and ii) the real

singular points located on the invariant lines together with their multiplicities.
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The first one of these two cycles is the divisor on P2(R) that encapsulates the multiplic-

ities of the invariant lines:

DM =
∑

l∈IL
m(l)l

The second one is the zero-cycle that encapsulates the multiplicities of the real singular

points located on the algebraic invariant curves or equivalently on the curve G:

DR,G =
∑

w∈SingR,G
m(w)w

The third cycle we need to consider is the multiplicity divisor of real singularities on

the line at infinity l∞ : Z = 0

DR,l∞ =
∑

w∈SingR,l∞

m(w)w

The types of these three cycles are affinely invariant and we use them to distinguish the

configurations.

We first define a few additional geometric invariants.

n∞ =#{w ∈ SuppDS (C,Z)
∣∣w ∈ P2(C)};

n∞R =#{w ∈ SuppDS (C,Z)
∣∣w ∈ P2(R)};

N
IL

R = #{l ∈ SuppDIL

∣∣ l : aX + bY + cZ = 0, a, b, c ∈ R};
m(l∞) = the multiplicity of the invariant line l∞ : Z = 0 of (S);

MIL = max{m(l) | l ∈ IL(S)}.

The note that n∞R ∈ {1, 2, 3}. Furthermore we have MIL ∈ {1, 2, 3}. Since these are

both affinely invariant it is sufficient to distinguish among the configurations that have

(n∞R ,MIL) = (i, j) where i, j ∈ {1, 2, 3}.
From the Diagram 5 it is clear that the above defined geometric invariants are sufficient

to prove the non-equivalence of all the 53 configurations of invariant lines obtained for the

systems in the class QSL2p
3 .

8 Existence of limit cycles for the class QSL≥2

We consider the class of real quadratic polynomial differential systems (5), i.e. the systems

ẋ = p0 + p1(x, y) + p2(x, y) ≡ P (ã, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) ≡ Q(ã, x, y)
(100)

where
p0 = a, p1(x, y) = cx+ dy, p2(x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(x, y) = ex+ fy, q2(x, y) = lx2 + 2mxy + ny2.

According to [10, 11] Theorem 1.3 is valid, i.e. every real quadratic differential system

(100) possessing a real affine invariant line has at most one limit cycle.
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Diagram 5: The non-equivalence of the configurations of systems in QSL2p

We prove here the following theorem.

Theorem 8.1. Every real quadratic differential system (5) belonging to the class QSL≥2

has at most one limit cycle, i.e. the Hilbert number of this class H(QSL≥2)=1.

60



Diagram 5 (continuation): The non-equivalence of the configurations of systems in QSL2p

Proof: In the papers [25] and [26] the topological classification of quadratic systems pos-

sessing invariant lines of total multiplicity at least four is given. From this classification it

follows that if a quadratic system (S) belongs to the class QSL≥4 then it could not possess

a limit cycle.

Assume now that a quadratic system (S) possesses invariant line of total multiplicity

either 2 or 3. If this system has at least one real invariant affine line then by Theorem 1.3

it can have at most one limit cycle. If (S) does not have any real affine invariant line then

we could only have the following possibilities:

(i) system (S) has only complex invariant lines on its phase plane;
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(ii) system (S) does not have invariant lines on the finite part of its phase plane.

We examine each one of these possibilities.

(i) Since a complex affine invariant line must have its conjugate we deduce that in this

case (S) ∈QSL3, i.e. it possess two complex invariant lines on the phase plane.

If these complex lines have a finite intersecting point, then according to [31] (see also [4])

the system (S) could possess at most one limit cycle.

Assume now that the two complex lines are parallel intersecting at infinity. Then by

Lemma 1.1 the system (S) could be brought via an affine transformation to the form (2)

and evidently all finite singularities of (S) (if there exist any) are located on the parallel

invariant lines and hence have complex coordinates. So no limit cycle could exist.

(ii) Suppose that the system (S) does not possess invariant affine lines. Since this

system possesses invariant lines of total multiplicity either 2 or 3 we deduce that the infinite

invariant line must be of the multiplicity at least 2.

On the other hand considering Lemma 4.6 (see statement 2) we deduce, that if the line

l∞ : Z = 0 is of multiplicity > 1 then Z | gcd(E1, E2). In other words Z is a common factor

of the polynomials E1(X,Y, Z) and E2(X,Y, Z) (see Notation 4.2).

Taking into account the definition of the invariant polynomials E1(X,Y, Z) and E2(X,Y, Z)
(see Notations 4.1 and 4.2) for systems (100) we calculate

E1(X,Y, Z) =
1

2
C2(X,Y )K̃(X,Y ) + ϕ1(X,Y )Z + ϕ2(X,Y )Z2 + . . .+ ϕ5(X,Y )Z5,

E2(X,Y, Z) =C2(X,Y )Ψ(X,Y ) + ψ1(X,Y )Z + ψ2(X,Y )Z2 + . . .+ ψ6(X,Y )Z6,

where

C2(X,Y ) =− lX3 + (g − 2m)X2Y + (2h− n)XY 2 + kY 3,

K̃(X,Y ) = 4
[
(gm− hl)X2 + (gn− kl)XY + (hn− km)Y 2

]
≡ 4

[
αX2 + βXY + γY 2

]
,

Ψ(X,Y ) = (2gα+ lβ)X3 +
[
(4h+ 2n)α+ gβ + 4lγ

]
X2Y

+
[
2kα+ (2h+ n)β + 4mγ

]
XY 2 + (kβ + 2nγ)Y 3.

Therefore we conclude that the invariant polynomials E1(X,Y, Z) and E2(X,Y, Z) have Z
as a common factor if and only if the conditions C2(X,Y )K̃(X,Y ) = C2(X,Y )Ψ(X,Y ) = 0

hold. Since C2 = 0 leads to systems with the line at infinity filled up with singularities (see

Lemma 4.4) clearly the condition C2 ̸= 0 has to be satisfied.

On the other hand we observe that the condition K̃(X,Y ) = 0 implies α = β = γ = 0

and then Ψ(X,Y ) = 0. Therefore we conclude that K̃(X,Y ) = 0 is necessary and sufficient

for a quadratic system to have the invariant line at infinity of the multiplicity at least 2.

We point out that the geometric meaning of the condition K̃(X,Y ) = 0 was revealed

in [21] (see Lemma 42), where it was proved that the degree of gcd
(
p2(x, y), q2(x, y)

)
= 2

if and only if for systems (5) the condition K̃ = 0 holds. This means that the homogeneous

quadratic parts of these systems are proportionally, i.e. we have up2(x, y)+vq2(x, y) = 0 for

u, v ∈ R, u2+v2 ̸= 0. Then applying the linear transformation x1 = ux+vy, y1 = −vx+uy
with det = u2 + v2 ̸= 0 we obtain systems having a linear first equation, i.e. we arrive at
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the systems (keeping the old notations)

ẋ = a+ cx+ dy, ẏ = q0 + q1(x, y) + q2(x, y). (101)

It is clear that the invariant line at infinity for these systems has the multiplicity at least

2, because the simple perturbation of the first equation ẋ = (a+ cx+ dy)(1+ εx) (|ε| ≪ 1)

generates an invariant affine line which tends to infinity when ε → 0. Evidently that for a

sufficiently small parameter ε this perturbation conserves two or more limit cycles if they

exist. However this leads to a contradiction with Theorem 1.3.

Thus we conclude that a quadratic system with multiple infinite invariant line could

not have more than one limit cycle and this completes the proof of our theorem.
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