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Abstract
We consider the reaction-diffusion problem —Agju = f(u) in Br with zero

Dirichlet boundary condition, posed in a geodesic ball B with radius R of a Rieman-
nian model (MM, g). This class of Riemannian manifolds includes the classical space
forms, i.e., the Euclidean, elliptic, and hyperbolic spaces. For the class of semistable
solutions we prove radial symmetry and monotonicity. Furthermore, we establish
L, LP, and WP estimates which are optimal and do not depend on the nonlin-
earity f. As an application, under standard assumptions on the nonlinearity Af(u),
we prove that the corresponding extremal solution u™* is bounded whenever n < 9.
To establish the optimality of our regularity results we find the extremal solution
for some exponential and power nonlinearities using an improved weighted Hardy
inequality.

Keywords. semistable and extremal solutions, elliptic and hyperbolic spaces, a pri-
ori estimates, improved Hardy inequality

1 Introduction

This article is concerned with semilinear elliptic reaction-diffusion problems on Rieman-
nian manifolds. We are interested in the class of semistable solutions, which include local
minimizers, minimal solutions, extremal solutions, and also certain solutions found be-
tween a sub and a supersolution. On any geodesic ball, we show that semistable solutions
are radially symmetric and decreasing. Then, we establish L>°, LP, and WP a priori
estimates for solutions in this class. As an application we obtain sharp regularity results
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for extremal solutions. To show the optimality of our regularity results we find the ex-
tremal solution for some exponential and power nonlinearities. This will follow by using
an improved weighted Hardy inequality for radial functions.

We point out that the regularity properties we achieve in this paper represent a geo-
metrical extension of the ones carried out by Cabré and Capella in [5] for the Euclidean
case. As in [5], our results do not depend on the specific form of the nonlinearity in the
reaction term and they show that the class of semistable solutions enjoys better regularity
properties than general solutions.

More specifically, let f be any C! positive nonlinearity and consider the following
semilinear elliptic problem

—Ayu = f(u) inBg,
u > 0 in By, (1.1)
u = 0 on 0Bg,

posed on a geodesic ball Bg, with radius R, of a Riemannian model (M, g). That is, a
manifold M of dimension n > 2 admitting a pole O and whose metric g is given, in
spherical/polar coordinates around O, by

ds® = dr* +(r)*d®* forr € (0,R)and © € S* !, (1.2)

where 7 is the geodesic distance of the point P = (r, ©) to the pole O, v is a smooth
positive function in (0, R), and d©? is the canonical metric on the unit sphere S"~1. A
similar setting has been recently considered by Berchio, Ferrero, and Grillo [1] in order
to study stability and qualitative properties of radial solutions to the Lane-Emden-Fowler
equation, where f(u) = |u|™ '« with m > 1, on certain classes of Cartan-Hadamard
manifolds with infinite volume and negative sectional curvatures.

Observe that (1.2) defines the metric only away from the origin. From [12] and [14],
in order to extend in a C? manner the metric ds® to the whole R™ it is sufficient to impose
the following conditions:

$(0) =4¢"(0) =0 and ¢/(0)=1. (1.3)

Important consequences of the above hypotheses (1.3), as discussed in [12], are that on
geodesic balls of M the Laplace-Beltrami operator —A, is uniformly elliptic and its L?
spectrum is bounded away from zero.

Our purpose is to study the regularity of semistable solutions of (1.1). We say that
a classical solution u € C?(Bg) of (1.1) is semistable if the linearized operator at u is

nonnegative definite, i.e.,

/ V&P dv, > | f(w)&dv, forall & € Cy(Bg). (1.4)
Br Br
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The following theorem establishes radial symmetry and monotonicity properties of
semistable classical solutions v € C?*(Bg). By a radially symmetric and decreasing
function uw € C?(Br) we mean a function u such that v = w(r), with r = |z|, and
u,(r) = (du/dr)(r) < 0forall r € (0, R).

Theorem 1.1. Let f be a C* positive function. Assume that ) € C*([0, R]) is positive
in (0, R] and satisfies (1.3). If u € C*(Bg) is a semistable solution of (1.1), then it is
radially symmetric and decreasing.

The proof of Theorem 1.1 makes no use of moving plane arguments as usual. Instead,
the radial symmetry relies on the fact that, due to the semistability, any angular derivative
of u would be either a sign changing first eigenfunction of the linearized operator at u or
identically zero. However, the first assertion cannot hold since the first eigenfunction of
the linearized operator should be positive. The monotonicity is then a trivial consequence
of the positivity of the nonlinearity f.

Our first main result establishes a priori estimates for semistable classical solutions
of (1.1). This result is useful in order to obtain the regularity solutions, a priori possibly
singular, that can be obtained as the limit of semistable classical solutions (see for instance
the application on minimal and extremal solutions below).

Theorem 1.2. Assume that 1) € C*([0, R]) is positive in (0, R and satisfies (1.3). Let f
be a C! positive function and
2n 2n
Y TS T gy gy gy

If u € C*(Bg) is a semistable solution of (1.1), then the following assertions hold:

(1.5)

a) Ifn <9 then there exists a constant C,, , depending only on n and 1 such that
ap dep g only
[ull o Br) < Crllullzrsg)- (1.6)

(b) If n > 10 then there exist constants C,, y,, and 6,%,”, depending only on n, ¥, and
p such that
ullLr i) < Crupllullisr — forallp < po (1.7)
and

|l wirsg) < 6n,¢,pHuHL1(3R) forallp < py. (1.8)

Remark 1.3. Note that the denominator of the exponent p in (1.5) is positive for n > 10,
while it vanishes for n = 10. This exponent has to be understood as infinity for n = 10.

In dimensions n < 9, every solution, a priori possibly singular, which is limit of
semistable classical solutions is bounded by Theorem 1.2 (i), and thus it is in fact a clas-
sical solution. In this sense, Theorem 1.2 may be regarded as a result on removable sin-
gularities.
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Cabré and Capella [5] proved Theorem 1.2 in the Euclidean case: ¢ (1) = r. The proof
of our main theorem, as in [5], relies essentially on the following key estimate

0
[ e <l "
0

for some 0 € (0, R) and some range of explicit v (see Lemma 3.2 below). This estimate
is obtained by using the radial symmetry of the solution and by choosing & = |u,|n as
a new test function in the semistability condition (1.4). With this choice, we have to be
careful in the computations due to the appearance of the first and second derivatives of
1 (which in the Euclidean case are identically 1 and 0, respectively). As we will see, the
general assumptions (1.3) on ¥ will be enough to prove (1.9).

Note that our result applies to the important case of space forms, i.e., the unique com-
plete and simply connected Riemannian manifold M of constant sectional curvature /Ky,
given by

e the hyperbolic space H": ¢(r) = sinhr and K, = —1;
e the Euclidean space R": ¢(r) = r and K = 0;
e the elliptic space S": ¢)(r) = sinr and K, = 1.

In Theorems 1.5 and 1.6 below we present explicit extremal solutions (which are limit
of classical semistable solutions) for some exponential and power nonlinearities. These
explicit solutions, as in the flat case, show the sharpness of the L>°, L?, and WW1? estimates
of Theorem 1.2 in geodesic balls By of the above space forms.

As main application of Theorem 1.2, we consider the following problem

—Agju = Af(u) inQ,
u > 0 in €2, (1.10)
u = 0 on 0f2,

where () is a smooth bounded domain in M, X > 0, and f is an increasing C'* function

satisfying f(0) > 0 and

lim fit) = +00. (1.11)

t—+o0

The study of the above nonlinear eigenvalue problem requires to extend to the general
case of Riemannian models the classical results of Crandall and Rabinowitz [9] and Brezis
et al. [2] for the Euclidean setting (see also Proposition 5.1 in [5]). More specifically, since
the first eigenvalue of —A, on €2 is positive (as well as the corresponding eigenfunction)
and we have a comparison principle for —A, (since it is uniformly elliptic), it is standard
to prove that there exists a parameter value A* € (0, +-00) such that: if 0 < A\ < \* then
(1.10) admits a minimal solution uy € C?(€2), while for A > \* problem (1.10) does not
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admit any classical solution. Here minimal means smaller than any other supersolution of
the problem. Moreover, we also have that for every 0 < A < \* the minimal solution u), is
semistable in the sense of (1.4). These assertions can be obtained as in Proposition 5.1 (a)-
(b) of [5].

Moreover, the increasing limit of minimal solutions

=1 1.12
U /\ITI/]\H Uy, ( )

which is well defined by the pointwise increasing property of u, with respect to A, be-
comes a weak solution of (1.10) for A\ = \* in the following sense: u* € L'(Bg),
f(w*) (R —r) e L'Y(Bg), and

—/ ulEdv, =X\ [ f(uw)édv, forall &€ Cy(Bg). (1.13)
Br Br

This solution u* is called the extremal solution of (1.10) for A = A*. This statement
follows as in Proposition 5.1 (¢) of [5].

Applying Theorem 1.2 (a) or (b) (depending on the dimension n) to minimal solu-
tions uy and letting A 1 \* it is straightforward to see that ©* enjoys the same regularity
properties as the ones stated in Theorem 1.2:

Corollary 1.4. Assume that v € C*([0, R]) is positive in (0, R] and satisfies (1.3). Let
f be a C*' positive and increasing function satisfying (1.11). Let u* € L'(Bg) be the
extremal solution of (1.10) and po, py the exponents defined in (1.5). Then the following
assertions hold:

(1) If n < 9thenu* € L>(Bg).
(i1) Ifn > 10 then u* € LP(Br) N WY4(Bg) for all p < py and q < p;.

As second main result, we obtain the extremal solution for some exponential and
power nonlinearities. More precisely, given

—1 if 1 =sinh,
Ky:=¢ 0 if ¢ =1Id, (1.14)
1 if ¢ =sin,

we consider the following exponential and power nonlinearities:

felu) = wép - Z—:;Kw (1.15)
and
folw) = -+ 0y 7) (s oty =yt = o ) g ) g
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where m > 1.

Note that for ¢)(r) = r (the Euclidean case) and R = 1 (the unit ball), we recover the
classical nonlinearities e* and (1 + u)™ studied in detail by Joseph and Lundgren [13],
Crandall and Rabinowitz [9], Mignot and Puel [15], and Brezis and Vazquez [3]. For these
nonlinearities the extremal parameter and the extremal solution of (1.10) are as follows:

o If f(u) = e“and n > 10 then \* = 2(n — 2) and u*(r) = log(1/r?).
o If f(u) = (14 u)™ and

m

n>N(m)=2+4—"" 44 (1.17)

m—1 m—1’

then \* = % (n — %) and u*(r) = T 1,

We extend this result to the hyperbolic and the elliptic spaces. In the hyperbolic space
we find the extremal parameter and the extremal solution of (1.10) for both nonlinearities
(the ones defined in (1.15) and (1.16)) in any geodesic ball.

Theorem 1.5. Assume 1 = sinh. Let f. and f, be the nonlinearities defined in (1.15) and
(1.16), respectively, and let N (m) be defined in (1.17). The following assertions hold:

(1) Let f = fo. If n > 10, then

N =2n—2) and w(r)——2log ( sinh(r) > |

sinh(R)

(17) Let f = f, withm > 1. Ifn > N(m) then

2 2
A= 7 <n - T1> and u*(r) = Sinh(r)fﬁ - sinh(R)fﬁ.

Instead, in the elliptic space we find the extremal parameter and the extremal solution
only in sufficiently small balls.

Theorem 1.6. Assume ¢ = sin. Let f, and f, be the nonlinearities defined in (1.15) and
(1.16), respectively, and let N (m) be defined in (1.17). Let
sin® s

Ry :=sup{s € (0,7/2) : A= coss)?

>n(n—2)}. (1.18)
The following assertions hold:

(i) Let f = foand R, := arcsin (ﬂ / Z—:?) € (0,7/2). Ifn > 10 and R < min{ Ry, R.},
then

N'=2(n—2) and u*(r)=—2log (:rrll((;))> .
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(1) Let f = f, withm > 1 and R,, := arcsin (W%) € (0,7/2). If n > N(m) and
R < min{Ry, R,} then

2 2
A= —— <n - m) and u*(r) = sin(r)_mz—l - sin(R)_%.

m—1 m—1

Remark 1.7. (i) These examples show the sharpness of our regularity results for any
geodesic ball in the hyperbolic space and for geodesic balls of small enough radius in
the elliptic space. For the exponential nonlinearity we obtain that the extremal solution
u*(r) = —2log (¢(r)/1¥(R)) —which is limit of semistable classical solutions— is un-
bounded at the origin if n > 10. This shows the optimality of Theorem 1.2 (a). Instead
for the power nonlinearity we obtain that the extremal solution u*(r) = (r) m- T —
zp(R)‘ﬁ belongs exactly to the L and WP spaces stated in Theorem 1.2 (b). This
shows the sharpness of the exponents py and p; defined in (1.5).

(i) In Theorem 1.6 (i) we make the assumption R < min{ Ry, R.}. We assume R <
R, in order to ensure that the exponential nonlinearity defined in (1.15) is positive. Instead,
we assume [? < Ry in order to have a Hardy-type inequality (see Proposition 1.8 below).
The assumptions on R in Theorem 1.6 (ii) are set exactly for the same reasons.

To prove Theorems 1.5 and 1.6 we proceed as in [3]. That is, we use the uniqueness
of semistable solutions in the energy class H](Bg) (see Proposition 4.1 below) and the
following improved Hardy inequality.

Proposition 1.8 (Improved weighted Hardy inequality). Assume n > 3. Let v either
sinh or sin, and K, and R be defined in (1.14) and (1.18), respectively. The following
inequality holds:

/ YR dr> / i 1€ dr+Hn¢/ P dr (1.19)
for all radial ¢ € Cj(Bg), where
H, .y = i ((SUP(¢/¢))_2 —n(n— 2)K¢> (1.20)
(0,R)
and ¢(r) := [ ¥ (s)ds forallr € (0, R).

If in addmon R < Ry when 1) = sin, then H,, ;, > 0. In particular,

R
/ Ve dr > (njf)?/ i 152 dr  for all radial ¢ € Cy(Bg). (L.21)
0 0

Note inequality (1.19) is really an improved Hardy inequality only if H,, , > 0. This
holds for any geodesic ball in the hyperbolic space. Unfortunately, in the elliptic case we
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only have been able to prove it for geodesic balls of radius R < Ry. It would be interesting
to obtain an improvement of the constant ,, ,, defined in (1.20) to have an (1.19) in large
balls (with positive H,, ;).

Finally, let us to mention that the bibliography studying the regularity of extremal
solutions in a general domain {2 C R"™ with the standard Euclidean metric is extensive.
However, only partial answers are known for general nonlinearities f. We refer the reader
to [4, 6, 10, 16, 17, 18, 19] and references therein.

Notation 1.9. We always assume that the radius R of the geodesic ball By, is fixed. There-
fore, all the universal constants appearing in this work, included the ones in the estimates
of Theorem 1.2, may depend on R. Moreover, as usual we denote by C' or M the universal
constants appearing in some inequalities in this paper. The value of these constants may

vary even in the same line.

The paper is organized as follows. In Section 2 we prove the radial symmetry and
the monotonicity property of semistable solutions established in Theorem 1.1. Section 3
deals with the regularity of semistable and extremal solutions. We prove our L*°, LP,
and WP estimates of Theorem 1.2 and Corollary 1.4. Finally, in Section 4 we find the
extremal parameter and the extremal solution for the exponential and power nonlinearities

considered in Theorems 1.5 and 1.6, establishing the sharpness of Theorem 1.2.

2 Radial symmetry of semistable solutions

This section will be devoted to the proof of Theorem 1.1. The radial symmetry of positive
solutions to uniformly elliptic problems on radially symmetric domains has been subject
of an extensive study, essentially started by the celebrated work of Gidas, Ni, and Niren-
berg [11]. Most of these symmetry results are based on the moving plane method as well
as on the use of the Maximum Principle and its generalizations. Here, we will follow a
more direct approach which uses the semistability of our solutions and was applied in [7]
and [8] to obtain symmetry results for semistable solutions to reaction-diffusion equations
involving the p-Laplacian.

Proof of Theorem 1.1. Let u € C?(BR) be a classical semistable solution of (1.1). Note
that the semistability condition (1.4) is equivalent to the nonnegativity of the first eigen-
value of the linearized operator —A, — f'(u) in Bg, i.e.,

> 0. 2.1

N (- T
/\1(_Ag - f (u)a BR) - ﬁEHétgi)\{O} fBR 52 dUg
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Let up = g—g be any angular derivative of u. On the one hand, by the fact that v €
C?(Bgr), we clearly have

/ |V yup|? dv, < 0.
Br

Moreover, the regularity up the boundary of w and the fact that v = 0 on 0B trivially
give that ug = 0 on OBg. Hence, ug € H}(Bgr).

On the other hand, noting that in the spherical coordinates given by (1.2) the Rieman-
nian Laplacian of u = u(r, 6y, ..,0,_1) is given by

1 =1y, ———Agn-1U
WW(T) r)r w(r)QAS )

where Agn-1 is the Riemannian Laplacian on the unit sphere S"~!, and by the radial

1
Agu =

symmetry of the weight 1, we can differentiate problem (1.1) to see that uy (weakly)

satisfies
—Agug = f'(uw)ug inBp,
Ugp — 0 on C()BR

Therefore, multiplying the above equation on By and integrating by parts we have
| Vgl - 1w e, =0,
Br

and hence, from (2.1) (taking £ = uy if necessary) it follows necessarily that either |uy|

is a first positive eigenfunction of the linearized operator at v in Br or uy = 0. But by

the periodicity of u with respect to § we see that uy necessarily changes sign unless it is

constant (equal to zero). Thus uy = 0 for any § € S"~!, which means that v is radial.
Finally, if we pass to radial coordinates we see that u = u(r) satisfies

—(vO) ) =) @) (0, R).

Integrating the previous equation from 0 to any s € (0, R) with respect to r, recalling that
f(u) is positive, 1 is also positive in (0, R], and u,(0) = 0, we have

o6 ) = [ (000 ) dr = = [Cor i) dr <o

Thus u,(s) < 0 for all s € (0, R), i.e., u is decreasing. This concludes the proof. O

3 Regularity of radial semistable solutions

Let us begin by rewriting problem (1.1), for radial solutions v € C*(Bg), as

~(ve)r ) = v @) in (0, R),
0 in (0, R), (3.1)
0,

N
v
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and considering the quadratic form associated to the second variation of the energy func-

tional, evaluated at u, written in radial form:

Qul€) = / B HE — Fw)E} dr

for every Lipschitz function £ such that £(R) = 0.
We want to see that the results by Cabré and Capella in [5] for the Euclidean case carry
over to the general Riemannian model setting. We start by proving the following lemma.

Lemma 3.1. Let [ be a C' positive function. Assume that v € C*(|0, R]) is positive in
(0, R] and satisfies (1.3). If u € C*(Bg) is a semistable classical solution of (1.1), then

R R
(n — 1)/ P (Y P dr < / V"2 {(Yn)? + (n — D)y n?} dr (3.2)
0 0
for every Lipschitz function 1 such that n(R) = 0.

Proof. Differentiating equation (3.1) it is easy to see that

), = g (f'<u>+<n—1> (j)) W OR).  (3

Thanks to equation (3.3), we are able prove that for any € H' N L>°(0, R) with
support in (0, R) there holds

Qu(uston) = /OR (O T {(wn)f —(n—1) ((@b’)z -~ W”) 772} dr > 0.

In fact, integrating by parts and using (3.3) we are able to compute

R
Qu(u,Yn) = /0 Pl P+ aE(0n)? + (V0P — f(wulyn® ) dr
= [ ) @Y 6 )i
0
R
- / ()2 — (a2} 6 — i (™), dr
R AN
-/ w—1u2{<wn>z+<n—1> (w) (W} dr
R
— n—1_ 2 2 _ _ N2 _ " 2 d )
| ot {n = =) (@ = vo)e?} ar

Since for n > 2 we have that the singleton {0} is of zero capacity, the fact that v €
H{(Bg) gives that the equation above also holds for 7 not necessarily vanishing around 0
with |V (¢yn)| € L. O
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Now, we are able to prove the key estimate (1.9) used in our main regularity result.

Lemma 3.2. Let [ be a C" positive function. Assume that p € C*([0, R]) is positive
in (0, R] and satisfies (1.3). Let 6 = 0(¢) € (0,R/2) be such that ¢’ > 0 in [0,0].

If u € C?*(BR) is a semistable classical solution of (1.1), then there exists a positive

constant C,, oy, depending only on n, o, and 1) such that

6
[ i < G Il
0

for every

1<a<l++vVn—1
Proof. Lete € (0,0) and define

Pe) @ —=P(6)~*  if0<r<e,
Ne(r) =< Y(r) " =)~ ife <r <4,
0 ifd <r <R.

Observe that both 7. and (¢7.), are bounded. By (3.2) with 77 = 7. we obtain
(n=1) [ oy 2dr+<n—l>/ PR dr
R e
+(n—1) / O

Using thatn > 2 and > < 2% +1(5)2*, we have

3.4)

(n—1) / PR < / (0 {(1—a>w*a—¢<5>*a}2dr

tn-1 / G2 (672 + p(6) ) dr

Now, expanding and rearranging the terms in the integrals, and using that ) is increasing

in (0,9), we get
(n—1—(1—a)? /1/1”12 2 dr
/w”” o) {2a+n-2) +ww;)a}dr
+(n—1) / N 2"{1+ WQ = }ar

S Mn,a,w 0 q/Jn ! ,2#} a{( ) Q/Jl a} d?",
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where M, ., 1s a positive constant depending only on n, o, and ).
Using that inf o 5) ¢ and supq 5) ¢’ are positive, (3.4), and letting ¢ go to zero we get

é M 1)
n—1, 2 fZad < n,a,p / n—1,2 /—«a 1 -« dr. 35
[ e e [yrdie fieghan 6s)

Now, the fact that there exists a positive constant C, , ,, depending only on n, o, and
1 such that

Mn,a,w
n—1—(1-a«)?

1
1+t < 5ﬂ“ + Chapt" " forallt >0
and (3.5) give

1 [? s
5 / YT dr < Cha / 22 dr. (3.6)
0 0

Moreover, since u is positive and radially decreasing (remember that 6 € (0, R/2) only
depends on ), we have

§
U(é) S me/ U(T)Q/)n_l dT’ S C'meuHU(BR) (37)
0
and 20 o o
—u(p) = _u )5_ u(d) < UE;) for some p € (8, 26). (3.8)
Therefore, integrating the equation (3.1) from s € (0, ) to p and noting that f is positive,
we obtain
n—1 n—1 P n—1 U((S) n—1
—un(s)P(s)" = —u(p)y(p)" — [ fW"Tdr < == d(p)

< Cuyllullzsg)-

Squaring this inequality and integrating for s between 0 and ) we get

)
/ 2 dr < Cy [l .

0

We conclude the proof going back to (3.6). 0
Thanks to Lemma 3.2 we are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let ¢ € (0, R/2) as in Lemma 3.2. Using Schwarz inequality and
(3.7) we obtain

lu(t)] =

1
U(5)+/ _urw(n7172a)/2w(2a7n+1)/2d,r,
t
1

5 3/ o !
CrpllullLrsg) + </ ufz/;“l%édr) (/ w2an+1dr>
0 t

IN
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forall £ € (0, d). Therefore, from Lemma 3.2 we deduce

5 5
|U(f)|SCn,a,w{1+< / W”*ldr) }||u|rL1<BR> (3.9)
t

forallt € (0,9) and every o € [1,1 4+ v/n — 1).
(a) L™ estimate (1.6): Assume n < 9. On the one hand, since u is radially decreasing
and thanks to (3.7), we have that

u(t) <u(d) < Chyllullpipy foralld <t < R. (3.10)

On the other hand, since ¢ € C?([0, R]) is positive in (0, R], 1(0) = 0, and ¢/(0) = 1
by assumption, we note that the integral in (3.9) is finite for{ = 0if 2aa —n +1 > —1,

Le.,
5
-2
/ o lgr < Cy < 400 if o > r 5
0
Therefore,
lu(t)] < Crawllullrri, forall0 <t <, (3.11)
whenever

-2
max{nz,1}<a<1+\/n—1.

Finally, since 2 < n < 10, we can choose « (depending only on n) in the previous range
to obtain (3.11) with a constant C,, ,, depending only on 7 and 7. The desired L> estimate
(1.6) follows from this fact and (3.10).

(b) Assume n > 10.

LP estimate (1.7): On the one hand, the fact that « is decreasing and (3.7) give that

R H R N
(/5 |u|p1/1"71 dt) < u(0) (/5 ! dt) < C’n7w7p||u||L1(BR). (3.12)

On the other hand, let s € (0, ). By (3.9) it follows that

5 5 5 .
/ ufPy~tdt < Cz,a,wHUHil(zsR)/ (1 + (/ ot dr) ) P dt
s < ]

for every p > 1. Notice that, again by (1.3), we have:

/ ’ (1+( / " gaani dr);yw"l dt < Cray < +00
0 t

200 —n + 2 . 2n
fp+n—1>—17 e, p<

whenever

(3.13)

n—2a—2
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Therefore, for any
2n

< =
b=p n—2vyn—-—1-4
we can choose o = a(n, p) € [1,1++/n — 1) such that condition (3.13) holds, obtaining

1
0 P
( / |u|w”1dt) < Crspllullorcen.
0

Taking into account (3.12) and applying Minkowski inequality, we reach the desired L”
estimate (1.7).
WP estimate (1.8): Recall that every radial function u in H'(Bp) also belongs (as

a function of » = |z|) to the Sobolev space H'(d, R) in one dimension. Thus, by the
Sobolev embedding in one dimension and (3.7), we have

R 7 R ,
< /5 |ur|p¢”1dr> < Chwyp ( /6 \url”dr> < Cuypllullceer (3.1
= Crypu(0) < CrypllullLrsg)-

Observe that by equation (3.1), and since f is positive, we have

j wr — fu) < —(n - 1>1f;'ur

Let p € (0,20) such that (3.8) holds (as in the proof of Lemma 3.2). Integrating the
previous inequality with respect to  from ¢ € (0,6) to p, using (3.8) and (3.7), as well as

Upp = —(n — 1) in (0, R).

Schwarz inequality, we have

—u,(t) W
n—1 S n—l /

5 25 ! -

20 d}/ 2 % 25 %
S OTL)I/JHU’HLl(BR) —+ / <,¢> ¢77L+1+2a dr </ u%¢n7172a d’l“) )
t t

Note that at this point we can use Lemma 3.2 with § replaced by 20 (taking our original §

smaller if necessary). Using this fact we have

(1) < Coplullzrs (1 + (/t (Zi) s n+1+2ad7“)1)

for every o € [1, 1+ +/n — 1). Therefore, for this range of « and given s € (0,0), we get

/\u Pt dt < OF oyl /85(1+(/t25<w>w e ) Yyt
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Finally, note that
1

/ ’ (1 + ( / 26(¢')2w—”—1+2a dr) 5)%”—1 dt < Chypy < +00
0 t

whenever
200 — n . 2n
p+n—1>—-1, ie, p<
2 n —2u

(note that n — 2« > 0 since n > 10 and «v € [1,1 + v/n — 1)). Therefore, for any

(3.15)

2n
< —
p=n n—2vn—1-—2

we can choose o« = a(n,p) € [1,1+ y/n — 1) such that (3.15) holds, obtaining

§
/ fur P9t dt < Coypllullfa -

We conclude the proof using the previous estimate, (3.14), and Minkowski inequality,
proving our W17 estimate (1.8). [

Finally, we prove Corollary 1.4 as an immediate consequence of Theorem 1.2.

Proof of Corollary 1.4. Since the extremal solution is a weak solution of the extremal
problem (1.10) for A = )\*, and hence u* € L'(Bg), the result follows by applying
Theorem 1.2 to minimal solutions uy € C*(Bg) for A € (0, \*) and letting A T A\*. [

4 Singular extremal solutions for exponential and power
nonlinearities in space forms

In this section we find the extremal parameter A* and the extremal solution u* of problem
(1.10) for the exponential and power nonlinearities considered in Theorems 1.5 and 1.6.

This will be achieved through the use of the Improved Hardy inequality established
in Proposition 1.8 as well as the following uniqueness result, due to Brezis and Vazquez
[3] for the Euclidean case (see also Proposition 3.2.1 in [10]). Its proof carries over easily
to our setting thanks to the fact that, as commented in the Introduction, the structural
hypothesis on the weight ¢ stated in (1.3) ensures that \;(—Ay; Bg) > 0.

Proposition 4.1 ([3, 10]). Let \;(—A,; Br) > 0 denote the principal eigenvalue of the
Dirichlet Laplace Beltrami operator —A, in Bg. Assume f € C*(R) is convex.

Let uy, uy € HY(BRr) be two stable weak solutions of (1.1). Then, either uy = uy a.e.
or f(u) = \u on the essential ranges of u; and usy. In the latter case, uy and uy belong

to the eigenspace associated to \1. In particular, they are collinear.
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Let us prove the improved Hardy-type inequality on Riemannian models following the

argument of Theorem 4.1 in [3].

Proof of Proposition 1.8. Let ¢ € CL(Bg) be a radial function and let ¢ := &3, We
claim that the following Poincaré inequality holds:

R 1 R
| etvdrz Jswiep)? [T v @
0 (0,R) 0

Indeed, using integration by parts (note that ¢(0) = ¢(R) = 0) and Schwarz inequality
we have

R R "
/ prpdr = / ¢, dr:—z/ Con 212 gy
: Y n 3 n 42 1/2
2 2 9°
2 (/0 iy dr) (/0 (pl/gb?w dr)
R R
2 d 2 d
220 (6/0) ( [ e ) ( [ >

The claim follows immediately from the previous inequality (note that supq gy (¢/7) €

IN

1/2

IN

(0, +00) either for ¢)(r) = sinr, r, or sinhr).
Now, using (') —1 = — Ky, ¢" /1 = — K, and an integration by parts, we obtain

[ (-2 otae= [t - 22 - O ki
0 0

4 2 . 2
—2 (¢ (-2
—/0 P+ (fb—(”Q )Kw>g02¢dr
R
=/ orp — n(n4_ 2 ko dr.
0

We obtain (1.19) using Poincaré inequality (4.1).
Note that the constant /7, ,, defined in (1.20), for the hyperbolic and elliptic spaces, is

given by
1 sinh® R
Hyson=-|——77—- -2 4.2
sinb 4<(coshR—1)2+n(n )> (42)
and )
1 sin® R
Hysn=-|——F—= — -2)], 4.3
’ 4 ((COSR— 1)2 n(n )> “.3)

respectively. This constant is clearly positive for all R in the hyperbolic space. Instead, in
the elliptic space it is positive for all R < Ry (by definition of Ry). Therefore inequality
(1.21) is an immediate consequence of (1.19). (]

We are now able to prove Theorems 1.5 and 1.6 establishing the extremal parame-
ter and the extremal solution of (1.10) for the exponential and the power nonlinearities
defined in (1.15) and (1.16) in the hyperbolic and elliptic spaces.
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4.1 Proof of Theorem 1.5 (i) and Theorem 1.6 (i): Exponential non-
linearity

Consider problem (1.10) with the exponential nonlinearity

n—1

- sk (44)

It is clear that f is a positive increasing nonlinearity satisfying (1.11) in the hyperbolic
space (since K, = —1). Instead in the elliptic space these assumptions hold if and only if

o 9 n—2, ) n—2
R < R, =sup{s € (0,7/2) : sin 5<n_1}—arcsm< n—1>'

In these cases, as we said in the introduction, the minimal solution uy € CZ(B r) of (1.10)
exists for A € (0,\*) and its increasing limit «* is a (weak) solution of the extremal
problem (1.10) for A = A\*.

A simple computation shows that problem (1.10) admits the explicit singular solution

u?(r) = —2log (%) with A = \* = 2(n — 2).

Note that u* € HJ(Bg) ifn > 3.

We claim that A* = \* and u# = u* whenever n > 10 for any geodesic ball if
1 = sinh and for balls with radius R < min{ Ry, R.} if ¢ = sin. Indeed, by Proposi-
tion 4.1 and since u* € H{(Bg) is singular at the origin, we only have to prove that u*
is semistable. That is,

R B 52
n—1¢2 _ n—1
/0 G dr > 2n — 2) /O oIS dr 4.5)

for every radial £ € C}(Bg) (note that \* f/(u*) = 2(n—2)/1%). However, this inequality
clearly holds by (1.21):

/w"15d>

since (n — 2)?/4 > 2(n — 2) whenever n > 10. This proves Theorem 1.5 (i) and Theo-
rem 1.6 (7).

2
/ e 15 dr  for all radial £ € C}(Bg),

4.2 Proof of Theorem 1.5 (i:) and Theorem 1.6 (ii): Power nonlin-
earity

Consider now

Fu) = (u+ $(R) 7o) ((u L p(R)TEyn-r (M= Dn = (m+ 1)

(m—1)n—2m

Kw> (4.6)
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withm > (n+2)/(n —2) (e, n > 2(m+1)/(m — 1) = 2+ 4/(m — 1)). Note that
in part (ii) of Theorems 1.5 and 1.6 we assume n > N(m), where N(m) is defined in
(1.17). In particular, one has m > (n +2)/(n — 2).

In the hyperbolic (and Euclidean) space it is clear that f is a positive increasing non-
linearity satisfying (1.11). In the elliptic space these assumptions hold whenever

£(0) =sin "1 R <Sin2 g lm=bn=(m+ 1)> >0,

(m—1)n—2m

or equivalently,
(m—1)n—2m
(m—1)n—(m+1)

sin? R < =: h(m,n).

However, since the function h defined in the right hand side of the above inequality is
increasing inm in ((n+2)/(n —2), +00), we have that f(0) > 0 (independently of m) if

R < R, :sup{RG (0,7/2) : sin’ R < n-2 =h (n+2,n>}.
n n—2
Note that 12, coincides with the number defined in Theorem 1.6 (ii).

As a consequence, f is a positive increasing nonlinearity satisfying (1.11) in all the
space forms (whenever R < R,, in the elliptic one). Therefore, the minimal solution u of
(1.10) exists for A € (0, A*) and its increasing limit u* is a (weak) solution of the extremal
problem (1.10) for A = A\*.

In order to find the extremal solution and the extremal parameter, let us note that

W () = () 7T — p(R) T, with A = \F = - (n _ 2m> ,

m—1
is a weak solution of (1.10). Note that, since m > (n + 2)/(n — 2), we have A* > 0 and
u € Hé (BR)

We proceed as for the exponential nonlinearity, i.e., we want to prove that u* is a
semistable solution of (1.10) for A\ = \*. First, note that
m  (m—1)n—(m+1)

’u#:——
f) 2 (m—1)n—2m

Therefore, semistability condition for u# turns out to be

o B (1 1 (m—=1)n—(m+1)
n—1¢2 # n—1 _ 2
/0 YU dr > A m/o P (1/}2 m (m—1)n—2m Kw> Edr 47

for every radial ¢ € C(Bg). By Proposition 1.8 we have

R R R
/ 7/1”_153 dr > (n - 2)2 / ¢n_1§ dr + Hn,d}/ wn—lg? dr
0 4 0 @Z’Z 0
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for every radial £ € C}(Bg), where H,, , is the constant defined in (1.20). Therefore,
semistability condition (4.7) follows from the previous improved Hardy inequality if the
following two conditions hold:

(n—2)2 " 2m 2m
nZa s S P L 4.
el Ky *8)
and
2m 2m \ 1 (m—1)n—(m+1)
Hny 2 Tm—1\" " m-1)m (m—1)n—2m v
9 4.9)

G (= Dn = m D) Ky,

Note that condition (4.8) is equivalent to

1
n>Nm)=2+ " 44,/ (4.10)
m—1 m—1

In order to deal with condition (4.9) we consider the hyperbolic and the elliptic cases
separately.

HYPERBOLIC CASE: Assume t)(r) = sinhr and K, = —1. We have (remember (4.2))
that condition (4.9) is nothing but

Hy sinn = i <(1in(ﬂj};;i%)2 +n(n — 2)) > (m_21)2 <(m —1)n—(m+ 1))

It is clear that this inequality holds if

n(n—2)> 2
4 “(m-—1

)2(<m— D= (m+1)),

or equivalently,
nin—2)(m—1)*>8m—1)(n—1) — 16

which is true whenever m > Z—fg This shows that (4.9) holds independently of R and
therefore u” is a semistable solution of (1.10) for A = \*.

ELLIPTIC CASE: Assume ¢)(r) = sinr and K, = 1. In this case condition (4.9) is

G2
Hygin = i (ui”(lx)fw —n(n— 2)) > _(m—21)2((m —1)n— (m+ 1)) (4.11)
(rememeber (4.3)). This condition clearly holds since we are assuming R < Ry, and
hence, H,, sn > 0. Therefore, in the elliptic case u# is also a semistable solution.

We have thus obtained that u# is a semistable solution of (1.10) for A = \# when
(4.10) holds for any geodesic ball in the hyperbolic space and for geodesic balls of radius
R < min{Ry, R,} in the elliptic one. Moreover, since it is singular at the origin, we
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obtain that \#* = \* and u# = u* by Proposition 4.1. This proves Theorem 1.5 (i) and
Theorem 1.6 (i) .
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