
P
re

p
u

b
lic

ac
ió
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INVARIANT CONDITIONS FOR PHASE PORTRAITS OF QUADRATIC SYSTEMS

WITH COMPLEX CONJUGATE INVARIANT LINES MEETING AT A FINITE POINT

JOAN C. ARTÉS1, JAUME LLIBRE1, DANA SCHLOMIUK2 AND NICOLAE VULPE3

Abstract. The goal of this article is to give invariant necessary and sufficient conditions for a quadratic

system, presented in whatever normal form, to have anyone of 17 out of the 20 phase portraits of the family of

quadratic systems with two complex conjugate invariant lines intersecting at a finite real point. The systems

in this family have a maximum of one limit cycle. Among the 17 phase portraits we have two with limit cycles.

We also give invariant necessary and sufficient conditions for a system to have one of the 3 remaining phase

portraits, out of which one has a limit cycle and another one a homoclinic loop. In the region R determined

by these last conditions, due to the presence of systems with a homoclinic loop, an analytic condition, the

three phase portraits cannot be separated by algebraic conditions in terms of invariant polynomials. We also

give the bifurcation diagram of this family, outside the region R, in the twelve parameter space of coefficients

of the systems.

1. Introduction

We consider here polynomial differential systems on the plane. These are systems the form

(1)
dx

dt
= p(x, y),

dy

dt
= q(x, y),

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y with real coefficients. We call degree of a system (1) the

integer m = max(deg p, deg q). In particular we call quadratic a differential system (1) of degree m = 2. We

denote here by QS the whole class of real quadratic differential systems (in short quadratic systems).

In this article we consider the familyQS2cIL of all quadratic systems having two complex conjugate invariant

lines meeting at a finite real point. We observe that the group of affine transformations and time rescaling

acts on this family. The first study of this family was done in 1986 by Suo and Chen (see [11]) where the

authors gave a normal form for these systems ((5) in Section 3) and proved that the maximum number of

limit cycles of systems in this family is one. Actually their proof contained a gap as the authors of [10] later

discovered. In [10] the authors gave a new and complete proof of this result, brought to light an algebraic

geometric structure of this family based on the total multiplicity of invariant lines which the systems in this

family could have and gave the topological classification of phase portraits in this class. We point out that

actually two of the 22 phase portraits obtained in [10] are topological copies of two of the remaining 20 phase

portraits. Indeed, as the topological equivalence does not distinguish between a focus and a node, the phase

portrait P17 of [10] containing two nodes can be topologically identified with P11 (Port. 2 here) which has

two foci instead of two nodes. The phase portrait P18 of [10] containing a node and a saddle is topologically

equivalent to P21 (Port. 7 here) which has a focus and a saddle. So the family QS2cIL has a total of 20

topologically distinct phase portraits. To obtain their results, Schlomiuk and Zhang made a thorough study

of the normal form proved by Suo and Chen. Thus they gave necessary and sufficient conditions in terms of
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2 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

the 6 coefficients of the normal form (5) for a system in QS2cIL to be degenerate; to have invariant straight

lines of mutliplicity at least four; to have the line at infinity filled up with singularity.

In the literature there are other normal forms for this family (see for example [4]). Thus arises the question as

to how to transfer these results for one normal form to another. How do we make our topological classification

independent of normal forms?

The goal of this article is to respond to the above mentioned questions. Firstly, since in this family we

have systems with a limit cycle we would like to know if it is possible to have an algorithm such that for any

given system in the family QS2cIL in whatever normal form this system may be presented, we can decide by

using this algorithm, whether or not the system possesses a limit cycle and what is its phase portrait. In case

this were not possible then at least to delimit the cases when such a decision can be made, to go as far as

possible in giving invariant necessary and sufficient conditions for a given phase portrait to be realized. We

respond to this challenge in our Theorems 1 and 2. In Theorem 1 we give invariant necessary and sufficient

conditions for a quadratic system to belong to the family QS2cIL. In Theorem 2 we determine, for 17 of

the 20 phase portraits of the family QS2cIL, invariant necessary and sufficient conditions for the realization

of each one of these 17 phase portraits. Among these 17 phase portraits of QS2cIL we have two with limit

cycles, out of a maximum of three phase portraits with limit cycles in QS2cIL. For the remaining three phase

portraits: Port. 5, which has a limit cycle; Port. 6, which has a homoclinic loop; Port. 7 which is without

either a limit cycle or a homoclinic loop, we give necessary and sufficient conditions for a system to have one

of these three phase portraits. Furthermore Theorem 2 contains the bifurcation diagram for this family in the

12-parameter space of coefficients of quadratic systems, with the exception of the semi-algebraic region where

Port. 5, Port. 6 and Port. 7 occur. This bifurcation diagram provides us with an algorithm which allows us

to decide whether or not a given quadratic system, in whatever normal form it may be presented, has one of

the 17 phase portraits of QS2cIL which are different from Port. 5, Port. 6 and Port. 20. The hypersurface of

systems in QS2cIL which possess a homoclinic loop is likely to be analytic but not algebraic. This explains why

our bifurcation diagram cannot be completed in the semi-algebraic region where systems in QS2cIL possess

one of these three portraits Port. 5, Port. 6 and Port. 7 and why invariant polynomials which are algebraic

objects cannot do any better for this problem. We have pushed our analysis in terms of invariant polynomials

to its very limit. However we have necessary and sufficient conditions in terms of invariant polynomials for

two phase portraits which have limit cycles: Port. 1 and Port. 9 and naturally, the question arises as to why

were we able to do this. After all limit cycles are analytic objects and in general it is highly unlikely that we

can encapsulate each phase portrait with a limit cycle in a semi-algebraic set. For these phase portraits this

is possible because on the boundaries of regions in the parameter space where they occur we have systems

with centers on which the limit cycles collapse and we know that the conditions to have centers in quadratic

systems are algebraic.

Apart from using the results proven in [10], the present paper is based on the global classification of

topological configurations of singularities (see [1] for the definition of this notion) obtained in [1] and based

on the authors’ results in [2]. This global classification of topological configurations of singularities is done in

terms of polynomial invariants, giving us an algorithm for deciding for any given quadratic system in whatever

normal form it can be presented, what is its global topological configuration of singularities.

The paper is organized as follows: In Section 2 we give the preliminary notions and exhibit the invariant

polynomials in terms of which the invariant classification is made. In Section 3 we state and prove the

Theorems 1 and 2.



PHASE PORTRAITS OF QUADRATIC SYSTEMS WITH COMPLEX CONJUGATE INVARIANT LINES 3

2. Preliminary

We consider the family of quadratic systems:

(2)

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ p(x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ q(x, y)

where max(deg(p), deg(q)) = 2 and pi, qi (i = 0, 1, 2) are homogeneous polynomials of degree i in x, y in case

they are not identically zero:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) + a20x
2 + 2a11xy + a02y

2,

q0 = a00, q1(x, y) = a10x+ a01y, q2(x, y) + a20x
2 + 2a11xy + a02y

2.

Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the coefficients of systems (2)

and denote R[ã, x, y] = R[a00, . . . , b02, x, y].

It is known that on the set QS of all quadratic differential systems (2) acts the group Aff (2,R) of affine

transformations on the plane (cf. [8]). For every subgroup G ⊆ Aff (2,R) we have an induced action of G

on QS. We can identify the set QS of systems (2) with a subset of R12 via the map QS−→ R12 which

associates to each system (2) the 12–tuple ã = (a00, . . . , b02) of its coefficients. We associate to this group

action polynomials in x, y and parameters which behave well with respect to this action, the GL–comitants,

the T–comitants and the CT–comitants. For their detailed definitions as well as their constructions we refer

the reader to the paper [2] (see also [8]).

In this paper we use the invariant polynomials defined and constructed in [1] (see Section 3, the set (2)).

However here intervene some invariant polynomials which are not contained in the set (2) in [1] and so, we

will give their expressions. More exactly we need the invariant polynomials

B2, θ, H9, H10,

which were defined in different papers. The invariant polynomials B2, H9 and H10 are constructed in [9],

whereas the invariant polynomial θ is defined in [3] (we keep the corresponding notations from these articles).

So here we construct the mentioned invariant polynomials in the following way.

First we need the GL-comitants of degree one with respect to the coefficients of systems (2):

(3) Ci(x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, 2; Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y), i = 1, 2

and the so-called transvectant of order k (see [6], [7]) of two polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

Using this differential operator we construct now the following GL-comitants which are of degree two with

respect to the coefficients of systems (2):

T1 = (C0, C1)
(1)

, T2 = (C0, C2)
(1)

, T3 = (C0, D2)
(1)

, T4 = (C1, C1)
(2)

, T5 = (C1, C2)
(1)

,

T6 = (C1, C2)
(2)

, T7 = (C1, D2)
(1)

, T8 = (C2, C2)
(2)

, T9 = (C2, D2)
(1)

.

And finally we construct the mentioned invariant polynomials:

B2 =
(
M̂, M̂

)(2)

− 6M̂(C2, D̂)(3), θ = 16
(
(Ĥ, Ĥ − K̂)(2)

)
,

H9 =4
((

(D̂, D̂)(2), D̂
)(1)

, D̂
)(3)

, H10 = 4
((

D̂, K̂ − Ĥ
)(2)

, D2

)(1)

,

where

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6)− (C1, T5)
(1)

+ 6D1(C1D2 − T5)− 9D2
1C2

]
/36,

K̂ =(T8 + 4T9 + 4D2
2)/72, Ĥ = (−T8 + 8T9 + 2D2

2)/72, M̂ = (C2, D̂)(1),
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We observe that all the invariant polynomials which intervene in this article could also be found in a

Mathematica’s file which can be found at the following link:

http://mat.uab.es/∼artes/articles/config.nb

3. Main results

3.1. The invariant criteria for a quadratic system to have two complex invariant lines meeting

at a finite real point.

Theorem 1. A quadratic system possesses two complex invariant lines meeting at a finite real point if and

only if one of the following two sets of conditions is satisfied:

(4) (i) η < 0, B2 = 0; (ii) C2 = 0, (D > 0) ∨
(
µi = 0, i ∈ {0, 1, . . . , 4}

)
.

Proof: Necessity. Assume that a quadratic system possesses two complex invariant lines intersecting at a real

finite singular point. According to [11] via an affine transformation this system takes the following form:

(5)

dx

dt
= (αx− βy)(ax+ by + c) + k(x2 + y2) ≡ P (x, y),

dy

dt
= (βx+ αy)(ax+ by + c) ≡ Q(x, y)

where α, β, a, b, c, k are arbitrary real. For these systems, which possess the complex invariant lines x± iy = 0,

we calculate:

(6) B2 = 0, η = −4
[
a2β2 + (k − bβ)2

]2
, C2 = −(x2 + y2)

[
aβx+ (bβ − k)y

]
.

So we conclude that the necessary conditions are B2 = 0 and η ≤ 0. Moreover, it is clear that the condition

η = 0 implies C2 = 0, i.e. aβ = k − bβ = 0. So setting k = bβ and considering the condition aβ = 0 systems

(5) become

(7) ẋ = cαx− cβy + (aα+ bβ)x2 + bαxy, ẏ = (c+ ax+ by)(βx+ αy), aβ = 0,

for which we calculate

(8) D = 192b4c8β4(α2 + β2)4.

So we get D ≥ 0 and hence the necessity of the conditions C2 = 0 and D > 0 is proved. It remains to examine

the condition D = 0. We claim that this condition leads to degenerate systems (7), i.e. according to [2] (see

Lemma 5.2, statement (iii)) the conditions µi = 0, i ∈ {0, 1 . . . , 4} are satisfied.

Indeed for systems (7) calculations yield:

D = 192b4c8β4(α2 + β2)4, µ0 = 0, µ1 = bcβ(α2 + β2)ω′
1,

µ2 = bc2β(α2 + β2)ω′
2, µ3 = bc3β(α2 + β2)ω′

3, µ4 = 0

where ω′
i(a, b, c, α, β, x, y). So we observe that the condition D = 0 implies µ1 = µ2 = µ3 = 0 and since

µ0 = µ4 = 0 our claim is proved. This completes the proof of the necessity of the conditions of Theorem 1

are necessary.

Sufficiency. According to the statement of the theorem we consider two families of quadratic systems which

are defined by the conditions η < 0 or by C2 = 0, respectively.

3.1.1. The class of systems with η < 0. According to [8] in this case quadratic systems could be brought

via a linear transformation and time rescaling to the following canonical form:

(9)
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2.
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For these systems we have

(10)
η = −4, θ = 8(1 + h)

[
g2 + (h− 1)2

]
,

Ñ = (2 + g2 − 2h)x2 + 2g(1 + h)xy + (h− 1)(1 + h)y2

and we shall consider two cases: θ 6= 0 and θ = 0.

3.1.1.1. The case θ 6= 0. Then we have h + 1 6= 0 and doing a translation we may assume c = d = 0 in

systems (9) and we get the family of systems

(11) ẋ = a+ gx2 + (h+ 1)xy, ẏ = b+ ex+ fy − x2 + gxy + hy2.

For these systems calculation yields:

(12)

Coefficient[B2, y
4] = 648a(1 + h)2ϕ1, Coefficient[B2, xy

3] = 2592a(1 + h)2ϕ2,

ϕ1 = a(1 + g − h)(1− g − h) + 2bg(h− 1) + f(e− fg + eh),

ϕ2 = 2ag(h− 1) + b(1 + g − h)(−1 + g + h) + e2h− f2 − efg,

and we examine two subcases: a = 0 and a 6= 0.

3.1.1.1.1. The subcase a = 0. In this case for systems (11) we calculate B2 = −648Φx4, where

Φ = b2(1 + g2 − 2h+ h2)2 + (e2 + f2)(f2 + f2g2 − 2efgh+ e2h2)

−2b
[
e2h(1 + g2 − 2h+ h2)h+ efg(1 + g2 + 2h− 3h2)− f2(h− 1)2 + f2g2(2h− 1)

]
.

We observe that Φ is a quadratic polynomial in b and

Discrim [Φ, b] = −4(e+ fg − eh)2(f + fg2 − 2egh− fh2)2

and hence the equation B2 = 0 (which is equivalent with Φ = 0) has real solutions if and only if the condition

(e+ fg− eh)(f + fg2 − 2egh− fh2) = 0 holds. This relation gives us the two possibilities: e(1− h) + fg = 0

and e(1− h) + fg 6= 0 but f(1 + g2 − h2)− 2egh = 0.

1. The possibility e(1−h)+fg = 0. In order to apply this condition to systems (11) with a = 0 we consider

two cases: 1− h 6= 0 and 1− h = 0.

1.1. The case 1− h 6= 0. Then without loss of generality we can set f = u(h− 1) and we get e = gu. This

yields

Φ =
[
g2 + (h− 1)2

]2
(b+ u2)2 = 0

and due to θ 6= 0 we obtain b = −u2. This leads to the family of systems

(13)
ẋ = x(gx+ y + hy),

ẏ = −u2 + gux− x2 + (−1 + h)uy + gxy + hy2

which possess one real and two complex invariant lines meeting at the singular point (0,−u):

x = 0, x± iy ± iu = 0.

1.2. The case 1 − h = 0. Then the condition e(1 − h) + fg = 0 gives fg = 0 and since in this case

θ = 16g2 6= 0 we get f = 0. Then Φ = (e2 + bg2)2 = 0, i.e. b = −e2/g2 which leads to the family of systems

(14) ẋ = x(gx+ 2y), ẏ = −e2/g2 + ex− x2 + gxy + y2.

These systems possess one real and two complex invariant lines:

x = 0, g(x± iy)± ie = 0.

2. The possibility e(1− h) + fg 6= 0, f(1 + g2 − h2)− 2egh = 0. Since (1 + g2 − h2)2 + (gh)2 6= 0 (due to

θ 6= 0) without loss of generality we may set e = u(1 + g2 − h2) and f = 2ugh and then we obtain

Φ = (1 + g2 − 2h+ h2)2(b− hu2 − g2hu2 − 2h2u2 − h3u2)2 = 0.
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Since θ 6= 0 we have b = hu2
[
g2 + (1 + h)2

]
and this leads to the family of systems

(15) ẋ = x(gx+ y + hy), ẏ = h(1 + g2 + 2h+ h2)u2 + (1 + g2 − h2)ux− x2 + 2ghuy + gxy + hy2.

These systems possess one real and two complex invariant lines:

x = 0, (x± iy)− u(h+ 1)± igu = 0.

3.1.1.1.2. The subcase a 6= 0. Then considering (12) we deduce that the condition B2 = 0 implies ϕ1 =

ϕ2 = 0 and since θ 6= 0 we obtain

a = − (e+ fg − eh)(f + fg2 − 2egh− fh2)

(1 + g2 − 2h+ h2)2
,

b =
efg3 − efg(−1 + h)(1 + 3h)− (−1 + h)2(f2 − e2h) + g2(−f2 − e2h+ 2f2h)

(1 + g2 − 2h+ h2)2
.

In this case we get the family of quadratic systems (11) (with the above defined parameters a and b), which

possesses the following two complex invariant lines intersecting at a real finite point:

(1 + ig − h)(x+ iy)− e− if = 0, (1− ig − h)(x− iy)− e+ if = 0.

Thus we proved that in the case η < 0 and θ 6= 0 the condition B2 = 0 is necessary and sufficient for the

existence of such kind of invariant complex lines.

3.1.1.2. The case θ = 0. According to (10) the condition Ñ = 0 is equivalent to h− 1 = g = 0 and therefore

we consider two subcases: Ñ 6= 0 and Ñ = 0.

3.1.1.2.1. The subcase Ñ 6= 0. Then the condition θ = 0 gives h = −1 and in addition we may consider

f = 0 doing the translation x → x and y → y + f/2. So systems (9) become of the form

(16) ẋ = a+ cx+ dy + gx2, ẏ = b+ ex− x2 + gxy − y2

and we calculate

(17)

Coefficient[B2, xy
3] = 2592d2gϕ̃1, Coefficient[B2, x

2y2] = 3888d2gϕ̃2,

ϕ̃1 = b(g2 − 4) + c2 + d2 − 4ag + cdg − e2, µ0 = g2,

ϕ̃2 = a(g2 − 4)− 2ce+ 4bg − d2g − deg.

1. The possibility µ0 6= 0. Then g 6= 0 and the condition B2 = 0 implies dϕ̃1 = 0 = dϕ̃2 and we examine two

cases: d = 0 and d 6= 0.

1.1. The case d = 0. In this case for systems(16) we calculate B2 = −648Φ̃x4, where

Φ̃ = (a2 + b2)(4 + g2)2 + (c2 + e2)2 + 4a(2e− cg)(2c+ eg)

−2b(2c+ 2e− cg + eg)(2c− 2e+ cg + eg).

We observe that Φ̃ is a quadratic polynomial in b and

Discrim [Φ̃, b] = −4
[
a(4 + g2)2 − 2(cg − 2e)(2c+ eg)

]2

and hence the equation B2 = 0 (which is equivalent with Φ̃ = 0) has real solutions if and only if the condition

a(4 + g2)2 − 2(cg − 2e)(2c+ eg) = 0 holds. Therefore we obtain

a = 2(cg − 2e)(2c+ eg)/(4 + g2)2, Φ̃ = b(4 + g2)2 + (cg − 2e)2 − (2c+ eg)2.

So the condition Φ̃ = 0 gives

b =
[
(2c+ eg)2 − (cg − 2e)2

]
/(4 + g2)2

So we arrive at the canonical form

(18)
ẋ = 2(cg − 2e)(2c+ eg)/(4 + g2)2 + cx+ gx2,

ẏ =
[
(2c+ eg)2 − (cg − 2e)2

]
/(4 + g2)2 + ex− x2 + gxy − y2.
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These systems possess two real and two complex invariant lines (intersecting at a real finite point):

(4 + g2)x− 2e+ cg = 0, g(4 + g2)x+ 2(2c+ eg) = 0,

(g − 2i)(x+ iy) + c+ ie = 0, (g + 2i)(x− iy) + c− ie = 0.

1.2. The case d 6= 0. Then considering (17) the condition B2 = 0 implies ϕ̃1 = 0 = ϕ̃2 and we obtain the

condititions under the parameters a and b:

a = (2c+ dg + eg)(−4e+ 2cg + dg2)/(4 + g2)2,

b = −
[
c2(g2 − 4) + cg(−4d− 8e+ dg2)− (d+ e)(4d− 4e+ 3dg2 + eg2)

]
/(4 + g2)2.

In this case we get the family of quadratic systems (16) with the above defined parameters a and b, which

possess the following two complex invariant lines intersecting at a real finite point:

(g − 2i)(x+ iy) + c+ i(d+ e) = 0, (g + 2i)(x− iy) + c− i(d+ e) = 0.

2. The possibility µ0 = 0. Then g = 0 and for systems (16) we calculate B2 = −648Ψx4, where

Ψ = (16a2 + 16b2 − 8bc2 + c4 + 16ace+ 8be2 + 2c2e2 + e4).

We observe that Ψ is a quadratic polynomial in b and

Discrim [Ψ, b] = −256(2a+ ce)2

and hence the equation B2 = 0 (which is equivalent with Ψ = 0) has real solutions if and only if the condition

2a+ ce = 0 holds. Then a = −ce/2 and we obtain Ψ = (4b− c2 − d2 + e2)2 = 0, i.e. b = (c2 + d2 − e2)/4 and

we get the family of systems

(19) ẋ = −ce/2 + cx+ dy, ẏ = (c2 + d2 − e2)/4 + ex− x2 − y2

which possess the following two complex invariant lines:

2(x± iy)± ic− d− e = 0.

3.1.1.2.2. The subcase Ñ = 0. In this case we have h = 1 and g = 0 and without loss of generality we may

assume c = d = 0 via the translation x → x− d/2, y → y − c/2. Hence we obtain the systems

(20) ẋ = a+ 2xy, ẏ = b+ ex+ fy − x2 + y2

for which calculations yield:

B2 = −648
[[
(e2 + f2)2 − 8aef

]
x4 + 16a(e2 − f2)xy(x2 − y2) + 8aefy2(6x2 − y2)

]
.

We observe that the condition B2 = 0 is equivalent to e = f = 0 and in this case the above systems possesses

two couples of complex conjugate invariant lines, each couple intersecting at a finite real singular point:

(x+ iy)2 + ia− b = 0, (x− iy)2 + ia− b = 0.

As for η < 0 al the cases are examined we deduce, that in this case a quadratic system possesses two

complex invariant lines meeting at a finite real point if and only if B2 = 0.

3.1.2. The class of systems with C2 = 0. According to [8] in this case quadratic systems could be brought

via an linear transformation and time rescaling to the following canonical form (doing an additional transla-

tion):

(21) ẋ = a+ cx+ x2 + dy, ẏ = b+ xy.

For these systems we calculate

H9 = 576d2(4a3 − a2c2 + 18abcd− 4bc3d+ 27b2d2) = 12D, H10 = 36d2, µ0 = 0, µ1 = dx.

According to [9] a non-degenerate quadratic system, belonging to the class defined by the condition C2 = 0,

possesses two complex invariant lines meeting at a finite real point if and only if H10 6= 0 and H9 > 0.



8 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

Evidently the condition H9 > 0 is equivalent to D > 0. Moreover this condition implies H10 6= 0. On the

other hand the condition D > 0 (i.e. d 6= 0) implies µ1 6= 0 and according to [2] (see Lemma 5.2, statement

(iii)) these systems are non-degenerate. So we deduce that for D > 0 systems (21) possess two complex

invariant lines meeting at a finite real point.

Assume now that quadratic systems are degenerate, i.e. by [2, Lemma 5.2, statement (iii)] the conditions

µi = 0, i ∈ {0, 1, . . . , 4} are satisfied in R[x, y]. According to [2] (see Subsection 8.5.5) any degenerate

quadratic system for which the condition C2 = 0 is fulfilled could be brought via an affine transformation and

time rescaling to the canonical form

ẋ = x(c+ x), ẏ = xy.

It remains to observe that these systems possess the following two complex invariant lines meeting at a real

singular point: x± iy + c = 0.

So all the cases are examined and we deduce that Theorem 1 is proved.

3.2. The phase portraits of quadratic systems possessing two complex invariant lines meeting

at a finite real point. According to [2, Theorem 6.2] (see also [12]), the next result can be easily deduced:

Proposition 1. Consider a non-degenerate quadratic differential system. Then:

(i) this system has exactly one center if and only if one of the following sets of conditions holds

(22)

(C1) T4 = 0, T3F < 0, F1 = F2 = F3F4 = 0;

(C2) T4 = T3 = 0, T2 > 0, B < 0, F = F1 = 0;

(C3) T4 = T3 = T2 = T1 = 0, σ 6= 0, F1 = 0,H < 0, B < 0, F = 0;

(C4) T4 = T3 = T2 = T1 = 0, σ 6= 0, F1 = 0,H = B1 = 0, B2 < 0;

(C5) σ = 0, µ0 < 0, D < 0, R > 0, S > 0;

(C6) σ = 0, µ0 = 0, D < 0, R 6= 0;

(C7) σ = 0, µ0 > 0, D > 0;

(C8) σ = 0, µ0 > 0, D = 0, T < 0;

(C9) σ = 0, µ0 = µ1 = 0, µ2 6= 0,U > 0, K̃ = 0;

(C10) σ = 0, µ0 > 0,D = T = P = 0, R 6= 0;

(ii) and it has two centers if and only if one of the following sets of conditions holds

(23)
(Ĉ1) T4 = T3 = 0, T2 < 0, B < 0, H < 0, F = F1 = 0;

(Ĉ2) σ = 0, µ0 > 0, D < 0, R > 0, S > 0.

Theorem 2. Assume that a quadratic system (2) possesses two complex invariant straight lines meeting at

a finite real point, i.e. one of the sets of the conditions (4) are satisfied. Then this systems has the phase

portrait Port.i indicated below on the left if and only if the corresponding conditions indicated below on the

right, are satisfied:

(A) in the case η < 0, B2 = 0:

Port. 1 (P10) ⇔ D 6= 0, µ0 < 0, ¬((C1)∨(Ĉ1)), T4 < 0;

Port. 2 (P11) ⇔ D 6= 0, µ0 < 0, ¬((C1)∨(Ĉ1)), T4 ≥ 0;

Port. 3 (P13) ⇔ D 6= 0, µ0 < 0, (C1);

Port. 4 (P12) ⇔ D 6= 0, µ0 < 0, (Ĉ1);
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Port. 5 (P19) or

Port. 6 (P20) or

Port. 7 (P21)





⇔
{
D 6= 0, µ0 > 0, ¬((C2)∨(C7)) or

D 6= 0, µ0 = µ1 = 0, ¬(C2);

Port. 8 (P22) ⇔
{
D 6= 0, µ0 > 0, (C2)∨(C7) or

D 6= 0, µ0 = µ1 = 0, (C2);

Port. 9 (P15) ⇔ D 6= 0, µ0 = 0, µ1 6= 0, T4 < 0;

Port. 10 (P16) ⇔ D 6= 0, µ0 = 0, µ1 6= 0, T4 ≥ 0;

Port. 11 (P14) ⇔ D = 0, µ0 < 0;

Port. 12 (P9) ⇔
{
D = 0, µ0 > 0 or

D = 0, µ0 = 0, κ = 0;

Port. 13 (P5) ⇔ D = 0, µ0 = 0, κ 6= 0, θ2 6= 0, R̃ 6= 0;

Port. 14 (P1) ⇔ D = 0, µ0 = 0, κ 6= 0, θ2 6= 0, R̃ = 0;

Port. 15 (P6) ⇔ D = 0, µ0 = 0, κ 6= 0, θ2 = 0, R̃ 6= 0;

Port. 16 (P2) ⇔ D = 0, µ0 = 0, κ 6= 0, θ2 = 0, R̃ = 0;

(B) in the case C2 = 0:

Port. 17 (P8) ⇔ D 6= 0, B1 6= 0;

Port. 18 (P7) ⇔ D 6= 0, B1 = 0;

Port. 19 (P3) ⇔ D = 0, µ1 = µ2 = µ3 = µ4 = 0, K2 6= 0;

Port. 20 (P4) ⇔ D = 0, µ1 = µ2 = µ3 = µ4 = 0, K2 = 0.

Furthermore, the bifurcation diagram for the phase portraits Port.i with i not belonging to {5, 6, 7} is indicated

in Figure 2.

Remark 1. In the statement of the above theorem we indicate in the first column, in the parentheses, the

corresponding phase portraits from the paper [10].

Proof: According to Theorem 1 we consider two possibilities: (i) η < 0, B2 = 0 and (ii) (D > 0) ∨
(
µi =

0, i ∈ {0, 1, . . . , 4}
)
.

3.2.1. The possibility η < 0, B2 = 0. By Theorem 1 the systems in this family possess two complex invariant

lines meeting at a finite real point and hence according to [11] via an affine transformation these systems could

be brought to the form (5), for which we calculate

(24)
B2 = 0, η = −4

[
a2β2 + (k − bβ)2

]2
, D = 192c8k4(α2 + β2)4,

µ0 = k(k + aα− bβ)(a2 + b2)(α2 + β2).

Following [1] we shall determine the topological configurations of singularities (finite and infinite), applying

the necessary and invariant conditions expressed through invariant polynomials.

First we observe that due to the condition η < 0 systems (5) have at infinity one real and two complex

singularities. Moreover for these systems the condition D ≥ 0 holds and we examine two cases: D 6= 0 and

D = 0.

3.2.1.1. The case D 6= 0. Then we have D > 0 and this implies ck 6= 0. So doing a time rescaling we may

assume k = 1 and we consider the family of systems

(25)

dx

dt
= (αx− βy)(ax+ by + c) + x2 + y2,

dy

dt
= (βx+ αy)(ax+ by + c),

for which we have

(26)
η = −4

[
a2β2 + (1− bβ)2

]2
, D = 192c8(α2 + β2)4,

µ0 = (1 + aα− bβ)(a2 + b2)(α2 + β2).
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Figure 1. Global phase portraits of quadratic systems with two complex lines

meeting at a real finite point.

3.2.1.1.1. The subcase µ0 < 0. Since D > 0 and η < 0 (i.e. at infinity we have one real and two complex

singularities), according to [1] (see Diagram 1, page 4) in this case we could have the following topological

configurations (we keep the notations from [1]):

(16) a, a; S ⇔ ¬((C1)∨(Ĉ1)); (17) a, c; S ⇔ (C1); (18) c, c; S ⇔ (Ĉ1).

So comparing with the topological phase portraits given in [10] we deduce, that the configuration (16) leads

to Port 1 and Port. 2; the configuration (17) leads to Port. 3; the configuration (18) leads to Port. 4.
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Figure 2. Diagram for the phase portraits of quadratic systems with two complex

lines meeting at a real finite point.

We observe that the phase portrait Port. 1 has a limit cycle. We prove the following result.

Lemma 1. If µ0 < 0 then systems (25) possess a limit cycle (which is unique) if and only if T4 < 0.

Proof: It is clear that the existence of a limit cycle (see the phase portrait Port. 1) is governed by the stability

or instability of the finite real singularities, which are anti-saddles. More exactly the limit cycle exists (and it

is unique according to [10]) if and only if the anti-saddles have the same stability.
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On the other hand systems (25) possess the following two real and two complex finite singularities with the

corresponding traces ρi (i = 1, 2, 3, 4):

(27)

M1(0, 0) ⇒ ρ1 = 2cα; M2

(
− cα

1 + aα− bβ
,

cβ

1 + aα− bβ

)
⇒ ρ2 = −ac(α2 + β2)

1 + aα− bβ
,

M3,4

(
− c

a± ib
, − ±ic

a± ib

)
⇒ ρ3,4 = −c(2a+ a2α+ b2α)

(a2 + b2)β
± i

c(2b+ a2β + b2β)

(a2 + b2)β
.

On the other hand according to [2] (see Subsection 5.4.2) for any quadratic system (2) in the case µ0 6= 0

we have the following relations between traces of its finite singularities and the invariant polynomials Ti
(i = 1, 2, 3, 4):

(28)

T4 = µ0ρ1ρ2ρ3ρ4,

T3 = µ0(ρ1ρ2ρ3 + ρ1ρ2ρ4 + ρ1ρ3ρ4 + ρ2ρ3ρ4),

T2 = µ0(ρ1ρ2 + ρ1ρ3 + ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + ρ3ρ4),

T1 = µ0(ρ1 + ρ2 + ρ3 + ρ4).

Evidently these relations are also valid for systems (25) in the case µ0 6= 0. Since for this class of systems the

traces ρ3,4 correspond to complex singularities we have ρ3ρ4 > 0.

We consider two possibilities: T4 6= 0 and T4 = 0.

1. The possibility T4 6= 0. In this case due to the conditions ρ3ρ4 > 0 and µ0 < 0 we get

sign (T4) = sign (µ0ρ1ρ2) = −sign (ρ1ρ2).

So we conclude that the anti-saddles of systems (25) are of the same stability if and only if T4 < 0. Therefore

we obtain the phase portrait Port. 1 if T4 < 0 and Port. 2 is T4 > 0, i.e. in this case the lemma is valid.

2. The possibility T4 = 0. In this case at least one of the traces ρi (i = 1, 2, 3, 4) vanishes. Considering

relations (28) we examine two cases: T3 6= 0 and T3 = 0.

2.1. The case T3 6= 0. Then by (28) only one trace vanishes and clearly it corresponds to a real singularity,

i.e. we have ρ1ρ2 = 0 holds. We observe that due to µ0D 6= 0 (see (26)) this condition is equivalent to αa = 0.

We claim that in the case a = 0 for systems (25) the conditions (C1) hold and this contradicts the conditions

for the topological configuration (16) given above. Indeed, setting a = 0 we calculate

T4 = 0, T3 = 2c3α(1− bβ)(α2 + β2)
[
(2 + bβ)2 + (bα)2

]
, F1 = F2 = F3 = 0,

F = cα(1− bβ)2(α2 + β2)
[
(2 + bβ)2 + (bα)2

]
, µ0 = b2(1− bβ)(α2 + β2).

Since T3 6= 0 we get F 6= 0 and T3F < 0 (due to µ0 < 0) and we deduce that the conditions (C1) are

satisfied, i.e. we have a center and this proves our claim.

Thus we assume a 6= 0 and it remains to examine the case when the condition ρ1ρ2 = 0 implies α = 0.

Then the singularity M1(0, 0) becomes a weak focus and applying the rescaling t → t/(cβ) (due to D 6= 0 and

µ0 < 0) we get the family of systems in normal form

(29) ẋ = −y +
x2

cβ
− a

c
xy +

1− bβ

cβ
y2, ẏ = x+

a

c
x2 +

a

c
xy.

As it was shown in [10] (see Subsection 4.2) for these systems the first Lyapunov quantity equals W 1 =

−4a/(c2β) and we have a weak focus of order one (due to a 6= 0). Moreover this focus is stable respectively

unstable) if W 1 < 0 (respectively W 1 > 0).

On the other hand for the second singularity M2(0, cβ/(bβ − 1)) of systems (29) we detect its trace ρ2 =

aβ/(bβ − 1). So we calculate

ρ2W 1 =
4a2

c2(1− bβ)
, µ0 = β2(1− bβ)(a2 + b2)
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and since µ0 < 0 we get ρ2W 1 < 0, i.e. the anti-saddles M1 and M2 have the opposite stabilities.

Thus we conclude that systems (25) with D 6= 0 and µ0 < 0 could not possess a limit cycle if T4 = 0 and

T3 6= 0.

2.2. The case T3 = 0. Considering (28) we deduce that at least two traces vanish and, moreover in the

case T2 6= 0 only two could vanish.

We claim that due to the conditions ¬(Ĉ1), which are satisfied for the topological configuration (16), the

traces corresponding to the real singularities could not vanish. Indeed, assume that ρ1 = ρ2 = 0. Then

considering (26), (27) and the condition Dµ0 6= 0 we get a = α = 0 and then for systems (25) calculations

yield:
T4 = T3 = 0, T2 = c2β2(1− bβ)(2 + bβ)2, B = −c2β2(2 + bβ)4/8,

H = bβ(1− bβ)(2 + bβ)2/2, F = F1 = 0, µ0 = b2(1− bβ)β2.

Since µ0 < 0 (and this implies bβ > 1) we conclude that in this case the conditions T2 < 0, B < 0 and H < 0

are satisfied. So we arrive at the conditions (Ĉ1) which implies the existence of two centers and this proves

our claim.

So we have to force to vanish the traces ρ3,4 and then due to the relations (28) the condition T2 6= 0 implies

ρ1ρ2 6= 0. Moreover due to the condition µ0 < 0 we get

sign (T2) = sign (µ0ρ1ρ2) = −sign (ρ1ρ2).

On the other hand considering (27) we detect that the condition ρ3 = 0 = ρ4 yields

α = − 2a

a2 + b2
, β = − 2b

a2 + b2

and then for systems (25) we calculate

T2 =
64a2c2

(a2 + b2)2
, µ0 = −4(a2 − 3b2)

a2 + b2
, D =

49152c8

(a2 + b2)4
.

We observe that the condition D 6= 0 implies c 6= 0 whereas the condition µ0 < 0 implies a 6= 0 and hence

we obtain T2 > 0. Since sign (T2) = −sign (ρ1ρ2) we get ρ1ρ2 < 0 and we conclude that in this case the

anti-saddles M1 and M2 of systems (25) are of the opposite stability. This means that systems (25) could not

have limit cycle in this case and the proof of Lemma 1 is completed.

3.2.1.1.2. The subcase µ0 > 0. In this case by [1] (see Diagram 1, page 4) following the same reasons as

above we get exactly two configurations of singularities:

(23) s, a; N ⇔ ¬((C2)∨(C7)); (24) s, c; N ⇔ (C2)∨(C7).

According to [10] we obtain, that the configuration (23) leads to the phase portraits Port. 5, Port. 6 and

Port. 7 whereas the configuration (24) leads to the unique phase portrait Port. 8.

As it was proved in [5] quadratic differential systems can have separatrix connections or double limit cycles

which cannot be controlled by means of semi-algebraic conditions. In this family we detect the existence of a

non-algebraic loop. So in this case we cannot distinguish the phase portraits possessing or not limit cycles by

means of invariant polynomials.

3.2.1.1.3. The subcase µ0 = 0. In this case it is more convenient to consider systems (5) with free parameter

k. Then taking into account (24) and D 6= 0, the condition µ0 = 0 gives

(a2 + b2)(k + aα− bβ) = 0.

On the other hand for systems (25) we calculate

µ1 = ck(α2 + β2)
[
(2bk + 2abα− a2β − 3b2β)x− (2ak + 3a2α+ b2α− 2abβ)y

]
.

We observe that the condition a2 + b2 = 0 implies µ1 = 0 and so we consider two possibilities: µ1 6= 0 and

µ1 = 0
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1. The possibility µ1 6= 0. Then a2 + b2 6= 0 and the condition µ0 = 0 implies k + aα − bβ = 0, i.e. we

obtain k = bβ − aα 6= 0 (due to D 6= 0). So we get the family of systems

(30)
ẋ = c(αx− βy) + bβx2 + (bα− aβ)xy − aαy2,

ẏ = (c+ ax+ by)(βx+ αy)

for which we calculate

(31)

µ0 = 0, η = −4a4(α2 + β2)2, D = 192c8(α2 + β2)4(aα− bβ)4,

µ1 = c(a2 + b2)(α2 + β2)(aα− bβ)(βx+ αy),

T4 = 2aα(aα− bβ)c4(α2 + β2)2
[
(aα− 3bβ)2 + (bα− aβ)2

]
.

According to [1] systems (30) are in the class with mf = 3. This means that only one singularity (which

is real) has gone to infinity and coalesced with a real infinite point, yielding a double point. According to

Diagram 2 of [1] (see page 8) we get the unique topological configuration. More exactly we have (84) a;
(
1
1

)
SN

and the anti-saddle cannot be a center. According to [10] this leads to the two configurations: Port. 9 and

Port. 10.

We observe that Port. 9 has a limit cycle and we prove the following lemma.

Lemma 2. If µ0 = 0 and µ1 6= 0 then systems (30) possess a limit cycle (which is unique) if and only if

T4 < 0.

Proof: Our proof is based on Lemma 1 by applying a perturbation of systems (30) with a small parameter

|ε̃| ≪ 1 in order to obtain for perturbed systems the condition µ0(ε̃) < 0 (keeping the condition B2 = 0 for

the existence of complex invariant lines x2 + y2 = 0). We examine two cases: T4 6= 0 and T4 = 0.

1.1. The case T4 6= 0. Then by (31) we have (aα − bβ) 6= 0 and setting ε̃ = ε2 sign (aα − bβ) we consider

the following family of perturbed systems:

(32)
ẋ = c(αx− βy) + (bβ + ε̃)x2 + (bα− aβ)xy + (ε̃− aα)y2,

ẏ = (c+ ax+ by)(βx+ αy).

For these systems we calculate

(33)

B2 = 0, µ0 = −(a2 + b2)(α2 + β2)(aα− bβ − ε̃)ε̃,

η = −4
[
a2β2 + (aα− ε̃)2

]2
, D = 192c8(α2 + β2)4(aα− bβ−̃ε)4,

T4 = 2aα(aα− bβ − ε̃)c4(α2 + β2)2
[
(aα− 3bβ)2 + (bα− aβ)2 − 4ε̃(aα− 3bβ − ε̃)

]
.

It is clear that for |ε̃| ≪ 1 we have the conditions η < 0, D > 0 and T4 6= 0. Moreover, since B2 = 0, according

to Theorem 1 the perturbed systems keep the complex invariant lines x2 + y2 = 0.

On the other hand since ε̃ = ε2 sign (aα− bβ) we obtain

sign (µ0) = −sign ((aα− bβ)ε̃) = −sign (|(aα− bβ)|ε2),

i.e. we get µ0 < 0. Since T4 6= 0 according to Lemma 1 the perturbed systems (32) possess a limit cycle if

and only if T4 < 0. So we conclude that as for a sufficiently small perturbation a limit cycle remains, it must

exist also for non-perturbed systems (30) and this completes the proof of lemma in the case T4 6= 0.

1.2. The case T4 = 0. Considering (31) and the condition ηD 6= 0 we obtain that the condition T4 = 0 is

equivalent to

α
[
(aα− 3bβ)2 + (bα− aβ)2

]
= 0.

1.2.1. The subcase α = 0. Then the singular point M1(0, 0) is a weak focus. Applying the same perturba-

tion as in the case T4 6= 0 we arrive at the perturbed systems (32) with α = 0 and according to (33) for these

systems we have η < 0, D > 0 and T4 = 0. So we can apply Lemma 1 and we conclude that in this case we

could not have limit cycle.



PHASE PORTRAITS OF QUADRATIC SYSTEMS WITH COMPLEX CONJUGATE INVARIANT LINES 15

1.2.2. The subcase α 6= 0. Then we have the conditions aα − 3bβ = 0 and bα − aβ = 0. We observe that

these equations with respect to the parameters α and β have the determinant 3b2 − a2 and we must force it

to be zero, i.e. a = ±
√
3 b and then we obtain α = ±

√
3β 6= 0. Then we get the family of systems

(34) ẋ = cβ(±
√
3x− y) + bβx2 − 3bβy2, ẏ = β(x±

√
3y)(c±

√
3bx+ by),

for which calculations yield

(35) µ0 = T4 = T3 = 0, D = 3 · 218b4c8β12, η = −576b4β4, T2 = 768b4c2β6.

We claim that these systems could not possess a limit cycle surrounding the strong focus M1(0, 0).

Indeed, suppose the contrary, that such a limit cycle exists. Then we apply to systems (34) the perturbation

with a small parameter ε̃ = ε2 sign (bβ), which leads to the following family of perturbed systems

(36)
ẋ = cβ(±

√
3x− y) + (bβ + ε̃)x2 + (ε̃− 3bβ)y2,

ẏ = β(x±
√
3y)(c±

√
3bx+ by).

For these systems we calculate

(37)
B2 = 0, µ0 = −16b2β2(2bβ − ε̃)ε̃, η = −4

(
12b2β2 − 6bβε̃+ ε̃2

)2
,

D = 3 · 214c8β8(2bβ − ε̃)4, T4 = 384bc4β5(2bβ − ε̃)ε̃.

Since ε̃ = ε2 sign (bβ) we obtain η < 0, DD > 0, µ0 < 0 and T4 > 0 and moreover, for the sufficiently small

parameter |ε̃| ≪ 1 the limit cycle persists.

On the other hand since T4 > 0, by Lemma 1 systems (36) could not possess any limit cycle. So we get a

contradiction which proves our claim.

So all the cases are examined and we conclude that Lemma 2 is proved.

2. The possibility µ1 = 0. In this case a = 0 and it was shown above that this implies b = 0. So systems

(25) become

(38) ẋ = c(αx− βy) + x2 + y2, ẏ = c(βx+ αy)

and calculations yield:

µ0 = µ1 = κ = K̃ = 0, µ2 = c2(α2 + β2)(x2 + y2),

U = c6(α2 + β2)2(βx+ αy)2(x2 + y2)2, D = 192c8(α2 + β2)4.

Since µ2 > 0, U > 0, κ = K̃ = 0 and η < 0, according to [1] (see Diagram 3,page 10) we obtain the following

two topological configurations:

(23) s, a; N ⇔ ¬(C2); (24) s, c; N ⇔ (C2).

We observe that these configurations are already obtained above in the case mf = 4, whereas the above

systems belong to the class with mf = 2. According to [10] we deduce, that in this case we could have the

phase portraits Port. 5, Port. 6 and Port. 7 in the case (23) and Port. 8 in the case (24).

3.2.1.2. The case D = 0. For systems (5) we calculate

D = 192c8k4(α2 + β2)4, µ0 = k(k + aα− bβ)(a2 + b2)(α2 + β2),

µ1 = ck(α2 + β2)ω1, µ2 = ck(α2 + β2)ω2, µ3 = ck(α2 + β2)ω3, µ4 = 0

where ωi(a, b, c, k, α, β, x, y). So we observe that for D = 0 we obtain µ1 = µ2 = µ3 = µ4 = 0. So considering

[2] we deduce that in the case D = 0 systems (5) possess the singular point (0, 0) of multiplicity four if µ0 6= 0

(see Lemma 5.2, statement (ii)), whereas for µ0 = 0 these systems become degenerated (see Lemma 5.2,

statement (iii) of [2]).

Thus we have to examine two subcases: µ0 6= 0 and µ0 = 0.
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3.2.1.2.1. The subcase µ0 6= 0. A it was mentioned above the singular point (0, 0) of systems (5) and we

calculate

D = T = P = R = 0, µ0 = (1 + aα− bβ)(a2 + b2)(α2 + β2).

Therefore according to [1] (see Diagram 1, page 7) we obtain the following two topological configurations:

(67) ee; S ⇔ µ0 < 0; (47) hh; N ⇔ µ0 > 0.

So comparing with the topological phase portraits given in [10] we deduce, that: a) the configuration 67 leads

to Port. 11 (in which we must have an invariant line with the finite singularity of order 4 on it) and b) the

configuration (47) leads to Port. 12.

3.2.1.2.2. The subcase µ0 = 0. First we prove the next lemma.

Lemma 3. Assume that for a quadratic system (5) the condition µ0 = 0 = D holds. Then for this system

the condition κ = 0 is equivalent to the condition (α2 + β2)(a2 + b2 + c2) = 0.

Proof: Considering (24) the condition µ0 = 0 = D implies

ck(α2 + β2) = 0 = k(k + aα− bβ)(a2 + b2)(α2 + β2).

Assume first that the condition (α2 + β2)(a2 + b2 + c2) = 0 is satisfied. Then considering the form of systems

(5), evidently we get that the condition α2 + β2 = 0 as well as the condition a2 + b2 + c2 = 0 leads to the

same degenerate systems

(39) ẋ = x2 + y2, ẏ = 0

for which we have κ = 0. Thus the sufficiency of the condition under examination is proved.

Assume now that the condition (α2 + β2)(a2 + b2 + c2) 6= 0 holds. In this case the condition µ0 = 0 = D

gives

ck = 0 = k(k + aα− bβ)(a2 + b2).

It is clear that in this case we have either (i) k = 0, or (ii) k 6= 0 and c = 0 = k + aα− bβ.

Therefore evaluating for systems (5) the invariant polynomials κ and η we obtain

κ = −16(a2 + b2)2β2(α2 + β2), η = −4(a2 + b2)2β4

in the case (i) and

κ = −16a2(a2 + b2)(α2 + β2)2, η = −4a4(α2 + β2)2

in the case (ii). It is clear that in both cases the condition η < 0 implies κ 6= 0 and this completes the proof

of the lemma.

In what follows we examine two possibilities: κ 6= 0 and κ = 0.

1. The possibility κ 6= 0. In this case by Lemma 3 the condition (α2 + β2)(a2 + b2 + c2) 6= 0 and it was

mentioned above that the the condition µ0 = 0 = D implies either (i) k = 0, or (ii) c = 0 and k = bβ−aα 6= 0.

1.1. The case (i). In this case we get the family of degenerate systems

ẋ = (αx− βy)(ax+ by + c), ẏ = (βx+ αy)(ax+ by + c),

for which calculations yield:

κ = −16(a2 + b2)2β2(α2 + β2), θ2 = −(a2 + b2)cβ(α2 + β2)/4,

η = −4(a2 + b2)2β4, R̃ = 16α(ax+ by)
[
(aα+ bβ)x+ (bα− aβ)y

]
.

Since η < 0 κ 6= 0, according to [1] (see Diagram 6, page 15) we obtain the following four topological

configurations:

(173): a, (⊖ [|]; ∅); c©, c©,
(⊖ [|]; ∅

)
if θ2 6= 0, R̃ 6= 0 ⇒ Port. 13;

(174): c, (⊖ [|]; ∅); c©, c©,
(⊖ [|]; ∅

)
if θ2 6= 0, R̃ = 0 ⇒ Port. 14;
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(175): (⊖ [|]; f); c©, c©,
(⊖ [|]; ∅

)
if θ2 = 0, R̃ 6= 0 ⇒ Port. 15;

(176): (⊖ [|]; c); c©, c©,
(⊖ [|]; ∅

)
if θ2 = 0, R̃ = 0 ⇒ Port. 16.

1.2. The case (ii). Then we have c = 0 and k = bβ−aα and we arrive at the following family of degenerate

systems

ẋ = (bx− ay)(βx+ αy), ẏ = (ax+ by)(βx+ αy),

for which we calculate

κ = −16a2(a2 + b2)(α2 + β2)2, η = −4a4(α2 + β2)2, θ2 = 0,

R̃ = 16b(βx+ αy)
[
(aα+ bβ)x+ (bα− aβ)y

]
.

Since η < 0, κ 6= 0 and θ2 = 0, according to [1] (see Diagram 6, page 15) we obtain again topological

configuration (175) if R̃ 6= 0 and (176) if R̃ = 0. As it was shown earlier these two topological configurations

lead to the pictures Port. 15 and Port. 16, respectively.

2. The possibility κ = 0. As it was shown in the proof of Lemma 3 in this case systems (5) become of the

form (39) for which we calculate κ = L1 = 0, η = −4k4.

Therefore according to [1] (see Diagram 6, page 15) we obtain the unique configuration

(47): (⊖ [· ]; ∅); N∗,
(⊖ [· ]; ∅, ∅

)
⇒ Port. 12.

3.2.2. The possibility C2 = 0. Considering (6) the condition C2 = 0 for systems (5) gives aβ = k− bβ = 0.

So setting k = bβ and considering the condition aβ = 0, systems (5) become the systems

(40) ẋ = cαx− cβy + (aα+ bβ)x2 + bαxy, ẏ = (c+ ax+ by)(βx+ αy), aβ = 0,

for which we calculate

(41) D = 192b4c8β4(α2 + β2)4.

We consider two cases: D 6= 0 and D = 0.

3.2.2.1. The case D 6= 0. Then β 6= 0 and this implies a = 0. So we arrive at the systems

(42) ẋ = cαx− cβy + bβx2 + bαxy, ẏ = (c+ by)(βx+ αy)

and for these systems we calculate

µ1 = −b3cβ(α2 + β2)(βx+ αy), κ = 0, K̃ = 2b2(βx+ αy)2

We observe that the condition D 6= 0 implies µ1K̃ 6= 0 and since κ = 0, K̃ > 0 and C2 = 0, according to [1]

(see Diagram 2, page 8) we obtain the following two topological configurations:

(96): a; [∞; ∅] if ¬(C4) ⇒ Port. 17; (97): c; [∞; ∅] if (C4) ⇒ Port. 18.

We observe that the set of conditions (C4) given in [1] could be simplified for systems (42). Indeed, according

to [1] this set of conditions has the form:

(C4) : T4 = T3 = T2 = T1 = 0, σ 6= 0, F1 = 0, H = B1 = 0, B2 < 0.

On the other hand for systems (42) we calculate:

T4 = T3 = T2 = T1 = 0, σ = 2cα+ 3b(βx+ αy), F1 = H = 0,

B1 = −2b2c4αβ(α2 + β2)(α2 + 9β2), B2 = −27b4c4β2(α2 + β2)2(3β2 − α2)/4

and we observe that due to D 6= 0 the condition σ 6= 0 holds and the condition B1 = 0 is equivalent to α = 0.

But in this case we obtain B2 < 0. Therefore we deduce that for systems (42) the set of conditions (C4) is

equivalent to the condition B1 = 0.
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3.2.2.2. The case D = 0. In this case for systems (7) calculations yield:

D = 192b4c8β4(α2 + β2)4, µ0 = 0, µ1 = bcβ(α2 + β2)ω′
1,

µ2 = bc2β(α2 + β2)ω′
2, µ3 = bc3β(α2 + β2)ω′

3, µ4 = 0

where ω′
i(a, b, c, α, β, x, y). So we observe that the condition D = 0 implies µ1 = µ2 = µ3 = 0 and since

µ0 = µ4 = 0 according to [2] (see Lemma 5.2, statement (iii)) systems (7) become degenerated.

Considering the conditions aβ = bcβ = 0 we examine two subcases: β = 0 and β 6= 0.

1. The subcase β = 0. This leads to the following family of degenerate systems

(43) ẋ = αx(c+ ax+ by), ẏ = αy(c+ ax+ by)

for which we have K2 = 48c2α4(ax + by)2. Since the above systems must be quadratic, i.e. the condition

α(a2 + b2) 6= 0 has to be satisfied we deduce that the condition K2 = 0 is equivalent to c = 0.

According to [1] (see Diagram 2, page 8) we obtain the following two topological configurations:

(209): a, (⊖ [|]; ∅);
[
∞;

(⊖ [|]; ∅3
)]

if K2 6= 0 ⇒ Port. 19;

(209): (⊖ [|];n∗);
[
∞;

(⊖ [|]; ∅2
)]

if K2 = 0 ⇒ Port. 20.

2. The subcase β 6= 0. This implies a = 0 = bc and since b 6= 0 (otherwise we obtain linear systems) we

obtain the degenerate systems

(44) ẋ = bx(βx+ αy), ẏ = bx(βx+ αy)

for which K2 = 0. Therefore by [1] (see Diagram 2, page 8) we arrive at the same topological configuration

(209) which leads to the phase portrait Port. 20.

As all the cases are examined we conclude that Theorem 2 is proved.
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References

[1] J. C. Artés, J. Llibre, D. Schlomiuk and N. I. Vulpe, Global topological configurations of singularities for the whole

family of quadratic differential systems, Preprint, nm. 2, 2018, Universitat Autnoma de Barcelona, 1-26.

[2] J. C. Artés, J. Llibre and D. Schlomiuk, N. Vulpe, Geometric configurations of singularities of planar polynomial differen-

tial systems [A global classification in the quadratic case]. Submitted to the Publishers (December, 2017).

[3] J. C. Artés, J. Llibre, D. Schlomiuk and N. Vulpe, From topological to geometric equivalence in the classification of singu-

larities at infinity for quadratic vector fields. Rocky Mountain J. of Math., 45 (2015), no. 1, 29–113.

[4] L. Cairó and J. Llibre, Darbouxian first integrals and invariants for real quadratic systems having an invariant conic, J.

Phys. A: Math. Gen. 35 (2002), 589–608.

[5] F. Dumortier and P. Fiddelaers. Quadratic models for generic local 3–parameter bifurcations on the plane, Trans. Amer.

Math. Soc., 326 (1991), 101–126.

[6] J. H. Grace and A. Young, The algebra of invariants. Stechert, New York, 1941.

[7] P. J. Olver, Classical Invariant Theory. London Math. Soc. Student Texts 44, Cambridge University Press, 1999.

[8] D. Schlomiuk, N. Vulpe, Geometry of quadratic differential systems in the neighborhood of infinity, J. Differential Equa-

tions, 215 (2005), 357–400.

[9] D. Schlomiuk, N. Vulpe, The full study of planar quadratic differential systems possessing a line of singularities at infinity,

J. Dynam. Differential Equations 20 (2008), 737–775.

[10] Dana Schlomiuk and Xiang Zhang, Topological classification and algebraic-geometric structure of quadratic differential

systems with complex conjugate invariant lines, J. Differential Equations, (2018).

[11] Guangjian Suo and Yongshau Chen, The real quadratic system with two conjugate imaginary straight line solutions, Ann.

Diff. Eqns. 2 (1986), 197–207.

[12] N. Vulpe, Characterization of the finite weak singularities of quadratic systems via invariant theory. Nonlinear Analysis,

74 (2011), No. 4, 6553–6582.



PHASE PORTRAITS OF QUADRATIC SYSTEMS WITH COMPLEX CONJUGATE INVARIANT LINES 19
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