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The Plateau Problem in Hadamard Manifolds

1 - Introduction.

In this paper we use a differential topological approach to construct solutions to the
Plateau problem in Hadamard manifolds for hypersurfaces of constant Gaussian curva-
ture. Explicitely, let Mn+1 be an (n+ 1)-dimensional Hadamard manifold. An immersed
hypersurface in M is a pair Σn = (i, (Sn, ∂Sn)) where (Sn, ∂Sn) is a smooth, compact, n-
dimensional manifold with boundary and i : S →M is a smooth immersion. An immersed
hypersurface is said to be locally convex if and only if its shape operator is everywhere
positive definite, and its boundary is said to be generic if and only if for any p 6= q ∈ ∂S
such that i(p) = i(q):

Di · Tp∂S 6= Di · Tq∂S.

In other words, the two tangent spaces of ∂Σ at these points do not coincide. Trivially, ev-
ery smooth, locally convex immersion can be approximated arbitrarily closely by a smooth,
locally convex immersion with generic boundary. We prove:

Theorem 1.1

Let Σ̂n = (̂ı, (Ŝ, ∂Ŝ)) be a locally strictly convex, immersed hypersurface in M with
generic boundary. Let φ ∈ C∞(M) be a smooth, positive valued function such
that, for every p ∈ Σ̂, the Gaussian curvature of Σ̂ at p is strictly greater than
φ(p). Suppose that there exists a convex set, K, with smooth boundary and an
open subset Ω ⊂ ∂K such that:

(i) ∂Ω is smooth;

(ii) Ωc has finitely many connected components; and

(iii)Σn is isotopic by locally strictly convex, immersed hypersurfaces to a finite
covering of Ω,

then there exists a locally strictly convex, immersed hypersurface Σn in M such
that:

(a) ∂Σ = ∂Σ̂;

(b) Σ is contained by Σ̂; and

(c) for every point p ∈ Σ, the Gaussian curvature of Σ at p is equal to φ(p).

Remarks:

(a) this generalises the existence result [5] of Guan and Spruck;

(b) the concept of containment (condition (b)), is described explicitely in Section 3. Heuris-
tically, if Σ is contained by Σ̂, then Σ̂ limits the geometry and, in particular, the extent of
Σ: in fact, Σ̂ is (more or less) a graph over Σ;

(c) when the ambient manifold is of dimension greater than 3, immersed hypersurfaces of
constant Gaussian curvature typically do not behave well under passage to the limit. We
thus do not expect that an approximation argument may be used to relax the condition
of genericity along the boundary;
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The Plateau Problem in Hadamard Manifolds

(d) if (Ŝ, ∂Ŝ) is diffeomorphic to the closed unit ball in Rn, then the hypotheses of Theorem
1.1 are automatically satisfied for all φ sufficiently small;

(e) when n = 2, and thus when the dimension of the ambient manifold is equal to 3,
Theorem 1.1 yields a stronger version of Proposition 5.0.3 of [8], which itself constitutes
the analytic core of that paper; and

(f) in general manifolds (of arbitrary curvature), the situation is complicated by the pos-
sible existence of conjugate points along geodesics. However, most stages of the argument
remain more or less intact, and the result may thus be adapted, albeit with stronger
hypothesis, to the more general case.

Our approach uses the continuity method based on a marriage of various existing ap-
proaches to the study of immersions of constant Gaussian curvature. The continuity
method itself divides into two stages: compactness and local deformation. The com-
pactness stage is carried out using an adaptation of the now classical analysis of Caffarelli,
Nirenberg and Spruck first described in [2] and first applied to constant curvature hyper-
surfaces by the same authors in [4]. These techniques were subsequently developed most
notably by Guan and Spruck in [5] for hypersurfaces in Rn+1 and Rosenberg and Spruck
in [9] for hypersurfaces in Hn+1, and were further refined by the author in [10] to treat
the case of hypersurfaces in general manifolds (albeit with stronger hypotheses than those
studied here). The analysis of [10] is used in the current paper to obtain second and higher
order estimates on hypersurfaces of prescribed Gaussian curvature once the first order
estimates have been established.

The first order estimates present, in our setting, a new challenge that is not so explicitely
present in the cases hitherto studied. Typically, these estimates follow immediately from
elementary properties of convex sets. In our setting, however, we require a stronger result,
relating to the compactness of families of convex immersions, which generalises to the
case of general manifolds the results [6] of Guan and Spruck and [14] of Trudinger and
Wang (proven in these cases for convex immersions in Rn+1). This, along with elementary
geometric considerations, completes the compactness half of the argument, and it is this
stage that requires the genericity assumption along the boundary.

The local deformation stage uses a further genericity argument based on Sard’s Lemma and
compactness (which has now already been established and which yields a finite dimensional
reduction of the problem in a certain sense). Generalising the argument [8] of Labourie for
three dimensional ambiant manifolds, we construct a smooth isotopy, (Σ̂t)t∈[0,1], of convex
immersed balls and a smooth isotopy, (φt)t∈[0,1], of smooth functions such that:

(i) Σ̂1 = Σ̂, φ1 = φ; and

(ii) there exists a unique solution for the data (Σ̂0, φ0).

We then obtain (generically) an isotopy (Σt)t∈[0,1] of solutions. Σ1 is then (generically) a
solution to the problem, and existence then follows by taking limits (which is valid at this
stage, in contrast to Remark (c) above).

Uniqueness presents an interesting problem. As shown by Labourie in [8], when the am-
biant manifold is 3-dimensional, if its sectional curvature is bounded above by 1, and if the
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desired Gaussian curvature is less then 1, then the linearisation (derivative) of the Gauss
Curvature Operator is always invertible. Consequently, any two distinct solutions for the
data (Σ̂1, φ1) can by interpolated to two distinct solutions for the data (Σ̂0, φ0), for which,
however, only one solution exists. They thus coincide, and uniqueness follows.

In the higher dimensional case, however, the linearisation of the Gauss Curvature Operator
is no longer necessarily invertible, and this interpolation argument is therefore no longer
valid. There is no obstacle to the apparition of multiple solutions. Our results are nonethe-
less of a differential topological nature, essentially proving a cobordism invariance of the
number of zeroes of certain types of (generic) sections of certain bundles. In particular,
the number of solutions modulo 2 is (generically) an invariant of isotopy classes of convex
immersions. In fact, there should exist a natural orientation of solutions such that the
number of solutions, counted algebraically (with orientation), is an invariant of isotopy
classes of convex immersions. The resulting invariants are analogous to those arising from
the theory of pseudo-holomorphic curves of Gromov: an analogy which becomes explicit
when the ambient manifold is 3 dimensional (c.f. [8]). Nonetheless, it should be borne in
mind that, firstly, the current arguments for Hadamard manifolds do not apply to compact
manifolds of non-positive curvature (as an examination of the proof of Proposition 6.1 of
[10] reveals), and, secondly, we so far know of no examples of locally rigid Plateau problems
having more than one solution, which would be necessary for these invariants to ever take
non-trivial values.

Another interesting associated problem is that of proving existence of solutions for other
curvature functions, defined by O(n)-invariant functions of the shape operator of an im-
mersed hypersurface (c.f., for example, [4]). Of these, perhaps the most interesting is
σ2(A), where A is the shape operator and σ2 is the second order symmetric polynomial
of the eigenvalues. This curvature is equivalent to the scalar curvature of the immersed
hypersurface, and thus describes its intrinsic geometry. In this case, it would be most
interesting to prove the existence of hypersurfaces of prescribed curvature depending, not
only on position, but also on the normal vector, since only this allows us to prescribe the
scalar curvature of the solution. The techniques developed here and in [10] are so far not
sufficiently strong to solve this problem.

This paper is structured as follows:

(i) in Sections 2 to 4 we introduce the concepts and notation used in the sequel: in
Section 2, we introduce immersed hypersurfaces and describe the Banach manifold of
immersed hypersurfaces modulo reparametrisation; in Section 3 we introduce locally convex
immersions and describe the concept of containment; and in Section 4 we develope a
higher codimensional concept of convexity which is required to understand the boundary
conditions used in the sequel;

(ii) in Sections 5 to 9, which together constitute the most innovative part of the paper,
we determine first order a-priori bounds near the boundary for generic, locally convex
immersions of prescribed curvature: in Section 5, restricting to the case where the boundary
is embedded, and using the notion of “semi-convexity”, we obtain a compactness result for
convex immersions which yields these a-priori bounds but requires various intuitive but
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technical propositions whose proofs are deferred to the subsequent two sections; in Section
6, we obtain technical results using the parabolic limit; in Section 7, we show that the limit
of a sequence of semi-convex sets is also semi-convex; in Section 8, we show how, under
a simple modification, the reasoning of Section 5 may be adapted to the case where the
boundary is immersed and generic; and in Section 9, we obtain first order lower bounds
along the boundary which are important in the sequel for the final (technical) step in
obtaining second order bounds over the boundary;

(iii) in Sections 10 to 11, we recall the results of [10] to prove a conditional existence result:
in Section 10, we prove compactness of families of immersions of prescribed curvature; and
in Section 11, we show how Sard’s Lemma may be used along with compactness to obtain
(generically) solutions which interpolate between isotopic data; and

(iv) in Section 12, we prove the existence of isotopies between the given data and other
data for which solutions are known to exist, and, using the concepts of local and global
rigidity, we prove Theorem 1.1.

This paper was written while the author was staying at the Mathematics Department of
the Universitat Autònoma de Barcelona, Bellaterra, Spain.

2 - Immersed Submanifolds and Moduli Spaces.

Let Mn+1 be a smooth Riemannian manifold. A (smooth, compact) immersed subman-
ifold is a pair Σ := (i, (S, ∂S)) where:

(i) (S, ∂S) is an oriented, compact, Riemannian manifold with boundary; and

(ii) i : Σ →M is a smooth immersion (i.e. Di is everywhere injective).

Remark: in the sequel, all submanifolds of M will be (relatively) compact. Likewise, unless
stated otherwise, all submanifolds of M will be smooth.

Let Σ = (i, (S, ∂S)) and Σ′ = (i′, (S′, ∂S′)) be two immersed hypersurfaces in M . We say
that Σ and Σ′ are equivalent if and only if there exists a diffeomorphism φ : (S, ∂S) →
(S′, ∂S′) such that:

i′ ◦ φ = i.

Let Exp be the exponential map of M . Let NΣ be the outward pointing normal vector
field over Σ. We say that Σ′ is a graph over Σ if and only if there exists f ∈ C∞0 (S) and
a diffeomorphism φ : (S, ∂S) → (S′, ∂S′) such that:

i′ ◦ φ = Exp(fNΣ).

In particular, Σ and Σ′ are equivalent if and only if Σ′ is a trivial graph over Σ.

Let (Σn)n∈N = (in, (Sn, ∂Sn)),Σ0 = (i0, (S0, ∂S0)) be immersed submanifolds in M . We
say that (Σn)n∈N converges to Σ0 if and only if there exists N > 0 and, for all n > N a
diffeomorphism φn : (S0, ∂S0) → (Sn, ∂Sn) such that (in ◦ φn)n>N converges to i0 in the
C∞ sense.
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Trivially, if (Σn)n∈N converges to Σ0, then there exists N > 0, and for all n > N a vector
field Xn ∈ Γ(i∗0TM) and a diffeomorphism φn : (S0, ∂S0) → (Sn, ∂Sn) such that:

in ◦ φn = Exp(Xn).

Moreover, (Xn)n>N tends to 0 in the C∞ sense. If Σn and Σ0 have the same boundary
for all n, then, increasing N if necessary, Xn may always be chosen to be normal to Σ0

and vanishing along ∂S0. In other words, Σn is a graph over Σ0 for sufficiently large n.

Let (Γt)t∈[0,1] = (jt, (Gt, ∂Gt))t∈[0,1] be a smooth family of (exact) immersed submanifolds
in M . We denote by M̂ the family of all pairs (t,Σ) where t ∈ I and Σ is an immersed
submanifold in M such that ∂Σ = Γt. For all t ∈ [0, 1], let M̂t be the fibre of M̂ over t.
We denote by M the family of all pairs (t, [Σ]) where [Σ] denotes the equivalence class of
Σ. Likewise, for all t ∈ [0, 1], we denote by Mt the fibre of M over t.

For all t, we interpret Mt as a smooth Banach manifold (strictly speaking, every relatively
compact open subset is an intersection of an infinite family of nested Banach manifolds).
Let [Σ] be an element in Mt. Let VΣ ⊆ Mt be the set of those immersed hypersurfaces
which are graphs over Σ. This is an open subset of Mt, which we identify with an open
subset UΣ of C∞0 (S). Let ΦΣ : UΣ → VΣ be the canonical identification. (UΣ, VΣ,ΦΣ)
consitutes a smooth chart of Mt which we call the graph neighbourhood of Σ.

We likewise interpret M also as a smooth Banach manifold. As before, let (t, [Σ]) be an
element of M, where Σ = (i, (S, ∂S)). We extend i to a smooth family (is)s∈]t−ε,t+ε[ such
that, for all s, (is, ∂S) = Γs. Thus, if, for all s, we define Σs by Σs = (is, (S, ∂S)), then
(s, [Σs])s∈]t−ε,t+ε[ is a smooth family in M. Let VΣ ⊆M be the set of pairs (s, [Σ′]) where
Σ′ is a graph over Σs. VΣ is an open subset of M which we identify with an open subset,
UΣ, of ]t−ε, t+ε[×C∞0 (S). Let ΦΣ : UΣ → VΣ be the canonical identification. (UΣ, VΣ,ΦΣ)
consitutes a smooth chart of M which we likewise call the graph neighbourhood of Σ.
Trivially, this does not depend canonically on Σ, but also on the choice of smooth family
extending Σ.

Let (t,Σ) be an element of M̂, where Σ = (i, (S, ∂S)). The group of smooth diffeomor-
phisms of (S, ∂S) acts linearly on C∞(S). C∞(S) therefore defines a bundle E over M,
whose fibre at (t, [Σ]) is C∞(S). Since the constant functions over S are preserved by the
diffeomorphisms of (S, ∂S), these generate a subbundle of E which we identify with M×R.
Likewise, if (φt)t∈[0,1] ∈ C∞(M) is a smooth family of smooth functions, then it defines a
section of E , which we also denote by φ, given by:

φ(t, [Σ]) = φt ◦ i.

For all t, E restricts canonically to a bundle over Mt, which we denote by Et. Let
(UΣ, VΣ,ΦΣ) be a graph neighbourhood of Mt about Σ. Trivially:

E|VΣ = UΣ × C∞(S).

This yields a canonical splitting of TEt over the fibre over Σ. Since every point in Mt has a
canonical graph neighbourhood, we thus obtain a canonical splitting of TEt which in turn
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generates a covariant derivative of Et. More explicitely, for every Σ′ = (i′, (S′, ∂S′)) ∈ VΣ,
let πΣ′ : S′ → S be the canonical projection. A section, f , of Et is covariant constant at Σ
if and only if there exists a function f0 ∈ C∞(S) such that, up to second order around Σ:

fΣ′ = f0 ◦ πΣ′ .

We advise the reader unfamiliar with the theory of Banach manifolds not to trouble himself
with the details of this construction. In the sequel, it suffices to know that, locally, Et

behaves like the constant bundle UΣ × C∞(S) and it is not really necessary to have an
explicit choice of splitting of E .

We define the Gauss curvature mapping, K, to be the mapping that associates to every
element (t, [Σ]), where Σ = (i, (S, ∂S)), the function f ∈ C∞(S) whose value at the point
p ∈ S is the Gaussian curvature of Σ at p. K defines a smooth section of E over M.

We determine a formula for the covariant derivative, ∇K ofK with respect to the canonical
splitting of Et. Let Σ = (i, (S, ∂S)) be an element of Mt. Let N be the outward pointing
unit normal vector field over Σ. Let R be the Riemann curvature tensor of M . We define
the operator W acting on sections of TS by:

W ·X = RNXN.

Lemma 2.1

With respect to the canonical splitting, identifying T[Σ]Mt with C∞0 (S):

∇fK = KTr(A−1(W −A2))f −KTr(A−1Hess(f)),

where A is the shape operator of Σ.

Proof: See Proposition 3.1.1 of [8]. �

This yields the following result, which will be of use in the sequel:

Corollary 2.2

∇K is a second order linear differential operator. Moreover:

(i) if Σ is strictly convex, then ∇K is elliptic; and

(ii) when Tr(A−1(W −A2)) > 0, ∇K has trivial kernel.

Remark: In particular, if the sectional curvature of M is bounded above by −1 and if
A 6 Id, then W −A2 > 0 and so, by (ii), ∇K is invertible.

Proof: (i) is immediate. (ii) follows by the Maximum Principal. �
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3 - Locally Convex Hypersurfaces.

Let Mn+1 be a Riemannian manifold. A locally convex hypersurface in M is a pair
Σ = (i, Sn) where S is an n-dimensional topological manifold and i : S →M is a continuous
map such that, for all p ∈ S, there exists a neighbourhood, U , of p in S, a convex subset
K ⊆ M with non-trivial interior, and an open subset V ⊆ ∂K such that i restricts to a
homeomorphism from U to V . We refer to such a triplet (U, V,K) as a convex chart of
Σ. Pulling back the metric on M through i yields a natural length metric on Σ which we
denote by dΣ. Let (Σn)n∈N = (in, Sn)n∈N and S0 = (i0, S0) be convex immersions. We say
that (Σn)n∈N converges to Σ0 if and only if:

(i) (Sn, dΣn
)n∈N converges to (S0, dΣ0) in the Gromov-Hausdorff sense; and

(ii) (in)n∈N converges to i0 locally uniformly.

Let Σ = (i, S) and Σ′ = (i′, S′) be two locally convex hypersurfaces in M . We say that Σ
and Σ′ are equivalent if and only if there exists a homeomorphism φ : S → S′ such that:

i = i′ ◦ φ.

Example: Let K ⊆M be a convex subset with non trivial interior. Then any open subset
of ∂K is a locally convex hypersurface. �

Example: Let Σ be a (smooth) hypersurface on M . Σ is a locally convex hypersurface if
and only if its second fundamental form is everywhere non-negative definite. �

Suppose now that M is a Hadamard manifold. Let K ⊆M be a convex set with non-trivial
interior. Let Ko be the interior of K. We define πK : M \Ko → ∂K to be projection onto
the closest point in ∂K. Let V ⊆ ∂K. We call the set π−1

K (V ) the end of V , and we denote
it by E(V ). Trivially, E(V ) is foliated by half geodesics leaving points in V in directions
normal to K. Let Σ be a locally convex hypersurface. Let (U, V,K) and (U ′, V ′,K ′) be
convex charts of Σ. Trivially:

π−1
K (i(U ∩U ′)) = π−1

K′ (i(U ∩U ′)).

We thus define the end of Σ to be the manifold (with non-smooth, concave boundary)
whose coordinate charts are the ends of the convex charts of Σ. We denote this manifold
by E(Σ). E(Σ) has the following properties:

(i) Σ naturally embeds as the boundary of E(Σ);

(ii) in the complement of Σ, E(Σ) has the structure of a smooth Riemannian manifold
with non-positive curvature;

(iii)E(Σ) is foliated by half geodesics leaving points in Σ in directions normal to Σ; and

(iv) there exists a natural embedding I : E(Σ) →M which restricts to i over Σ and which
is a local diffeomorphism over the complement of Σ.

Let K ⊆ E(Σ) be a subset of the end of Σ. Suppose moreover that K contains Σ and
that K coincides with Σ outside a compact set. Let p be a point in E(Σ) \ Σ lying on
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the boundary of K. We say that K is boundary convex at p if and only there exists a
neighbourhood, U , of p in E(Σ), a convex subset K ′ ⊆ M with non trivial interior, and a
neighbourhood V of I(p) in M such that I restricts to a homeomorphism from U to V ,
and:

I(K ∩U) = K ′ ∩V.

Bearing in mind that, near any point p ∈ Σ, E(Σ) may always be extended over an open
set containing p, we extend this definition to also include boundary points lying in Σ. We
then say that K is boundary convex if and only if it is boundary convex at p for every
p ∈ ∂K. Importantly, the image under I of the boundary of a boundary convex set is a
locally convex hypersurface.

We say that a subset K ⊆ E(Σ) is semi-convex if and only if for every geodesic segment
γ : [0, 1] → E(Σ) contained within E(Σ), if γ(0), γ(1) ∈ K, then the whole of γ is contained
in K.

Proposition 3.1

Let K be a subset of the end of Σ which contains Σ and coincides with Σ outside
a convex set. If K is semi-convex, then K is boundary convex.

Proof: Let p ∈ ∂K. If p lies in the interior of E(Σ), then K is trivially boundary convex at
p. Suppose therefore that p ∈ Σ. Let (U, V,K ′) be a convex chart of Σ at p. Let r > 0 be
such that Br(p) ⊆ E(U). Consider X = (K ′ ∩Br(p))∪(K ∩Br(p)). Let γ : [0, 1] → Br(p)
be a geodesic segment with endpoints in X. Let γ′ be a maximal subsegment of γ lying
outside K ′ ∩Br(p). Since Σ ⊆ K, the endpoints of γ′ are contained in K ∩Br(p). Thus,
by semi-convexity, γ′ is contained in K, and therefore also in X. It follows that the whole
of γ is contained in X. Since γ is arbitrary, X is convex and K is therefore boundary
convex at p. This completes the proof. �

Let K be a semi-convex subset of the end of Σ which contains Σ and coincides with Σ
outside a convex set. (∂K, I|∂K) defines a convex immersion in M which, by abuse of
notation, we simply denote by ∂K. Let Σ and Σ′ be two locally convex hypersurfaces in
M . We say that Σ is contained by Σ̂′ (and Σ′ contains Σ) if and only if there exists
a semi-convex subset, K ⊆ E(Σ), which contains Σ and which coincides with Σ outside a
convex set such that Σ′ is equivalent to ∂K. In this case, we often identify Σ′ with ∂K
and thus view it as a subset of E(Σ).

Example: Let K,K ′ ⊆ M be two convex sets. Then ∂K is contained by ∂K ′ if and only
if K ⊆ K ′. �

Let Σ = (i, S) be a locally convex hypersurface. For p ∈ S, let Np ⊆ UM be the set of
supporting normals of Σ at S. We define NΣ by:

NΣ = ∪
p∈S

Np.

NΣ defines a C0 immersed submanifold of UM which we call the normal of Σ.

If Σ′ contains Σ, then there exists an upper semi-continuous function f : NΣ → [0,∞[
such that Σ′ is the graph of f over Σ. Moreover, f vanishes outside a convex set. We call
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f and Supp(f) respectively the graph function and graph support of Σ′ with respect
to Σ.

The property of containment is preserved by passage to limits:

Lemma 3.2

Let (Σn)n∈N,Σ0 and (Σ′n)n∈N,Σ′0 be convex immersions in M . Suppose that, for
all n > 0, Σ′n contains Σn. For all n > 0, let fn and Xn = Supp(fn) be the graph
function and graph support respectively of Σ′n with respect to Σn. Suppose that
there exists R > 0 and that, for all n, there exists a compact set X ′

n ⊆ Σn such
that:

(i) fn 6 R for all n > 0;

(ii) for all n > 0, Xn ⊆ X ′
n; and

(iii)(X ′
n)n∈N converges to X ′

0 in the Hausdorff sense,

then Σ′0 also contains Σ0.

Proof: For all n, let Kn ⊆ E(Σn) be the semi-convex subset such that ∂Kn = Σ′n.
The hypotheses on (fn)n∈N and (Xn)n∈N imply that (Kn)n∈N is uniformly bounded. By
compactness of the family of semi-convex sets, (Kn)n∈N subconverges in the Hausdorf sense
to a semi-convex set K0 ⊆ E(Σ0), say. By Proposition 3.1, K0 is boundary convex and
so (I|∂K0 , ∂K0) is a locally convex hypersurface. Moreover (I|∂Kn

, ∂Kn)n∈N converges to
(I|∂K0 , ∂K0) in the sense of convex immersions. Since (I|∂Kn

, ∂Kn) = Σ′n for all n, and
since (Σ′n)n∈N converges to Σ′0 in the sense of convex immersions, (I|∂K0 , ∂K0) is equivalent
to Σ′0. Σ′0 therefore contains Σ0, and this completes the proof. �

In the sequel, we require a slight variation of this definition. Let Σ = (i, (S, ∂S)) and
Σ′ = (i′, (S′, ∂S′)) be (smooth) immersed hypersurfaces which are also convex. Let NΣ

and NΣ′ be the outward pointing normal vector fields over Σ and Σ′ respectively. Let N∂Σ

be the normal vector field over ∂Σ which is tangent to Σ and points outwards from Σ.

Suppose that ∂Σ′ = ∂Σ =: Γ. We suppose moreover that Σ′ lies “locally strictly above” Σ
along Γ: i.e. for all p ∈ Γ:

〈NΣ′ ,N∂Σ〉 > 0.

Since Σ′ is smooth, it may be extended to a (smooth) convex, immersed hypersurface Σ̃′

strictly containing ∂Σ′ in its interior. Let Σ′c denote the collar region of Σ̃′ lying outside
Σ′. We define the piecewise smooth immersed hypersurface Σ̃ by:

Σ̃ = Σ∪Σ′c.

Since Σ̃′ lies locally strictly above Σ along Γ, Σ̃ is also a locally convex hypersurface. We
now say that Σ′ contains Σ if and only if Σ̃′ contains Σ̃.

Suppose that Σ′ lies locally strictly above Σ along ∂Σ and contains Σ. Let f be the graph
function of Σ̃′ with respect to Σ̃. Let π : Σ̃′ → N Σ̃ be the canonical projection. We say
that Σ′ strictly contains Σ if and only for all p ∈ S′ \ ∂S′:

f ◦ π(p) > 0.
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In this case, the property of strict containment is preserved by small deformations:

Lemma 3.3

Let (Σn)n∈N,Σ0 and (Σ′n)n∈N,Σ′0 be smooth, convex, immersed hypersurfaces. Sup-
pose that Σ′0 lies locally strictly above Σ0 along ∂Σ0 and strictly contains Σ0. Sup-
pose moreover that, for all n, ∂Σn = ∂Σ′n and that (Σn)n∈N and (Σ′n)n∈N converge
to Σ0 and Σ′0 respectively. Then, for sufficiently large n, Σ′n lies locally strictly
above Σn along ∂Σn and contains Σn.

Proof: For all n, let Σ′n = (i′n, (S
′
n, ∂S

′
n)). For all n, E(Σ̃n) may be extended beyond Σ̃n

to contain a neighbourhood of Σ̃n. Let Eext(Σ̃n) denote this extension. For sufficiently
large N , Σ̂n is contained in Eext(Σ̃n). Let dn : S′n → R be the signed distance in Eext(Σ̃n)
to Σ̃n. For sufficently large n, dn is smooth, and (dn)n∈N converges to d0 in the C∞ sense.
However, d0 > 0 and ∇d 6= 0 along ∂Σ0. Thus, for sufficiently large n, dn > 0 and so
Σ′n ⊆ E(Σ̃n). This completes the proof. �

4 - Convexity in Higher Codimension.

Let Mn+1 be a Riemannian manifold. Let Γk = (i, (Gk, ∂Gk)) ⊆ M be a k-dimensional
immersed submanifold. Let NΓ ⊆ i∗(UM) be the bundle of unit normal vectors over Γ.
NΓ has spherical fibres of dimension (n − k). For all Np ∈ NΓ, let AΓ(Np) be the shape
operator of Γ with respect to Np. In other words, for all vector fields X and Y tangent to
Γ:

AΓ(Np)(X,Y ) = −〈∇XY,Np〉.

For all p ∈ Γ, we define define Xp ⊆ TpΓ by:

Xp = {Np s.t. AΓ(Np) > 0} ,

where, for a matrix, M , we write M > 0 if and only if it is positive definite. Since the
set of positive definite matrices is an open convex cone, Xp is a convex subset of NpΓ. In
particular, it is contained within a hemisphere. We say that Γ is locally strictly convex
at p if and only if Xp is non-empty. We say that Γ is locally strictly convex if and only
if it is locally strictly convex at every point p ∈ Γ.

We now consider the case where Γ is of codimension 2, in which case NΓ is a circle bundle
over Γ and, for all p ∈ Γ, Xp is an open interval of length at most π. We define a convexity
orientation of Γ to be a continuous section, N−, of NΓ over Γ such that, for all p ∈ Γ:

N−(p) ∈ ∂Xp.

We say that Γ carries a convexity orientation when such a section exists. A convexity
orientation defines an order over Xp in the following manner: we say that, given two
vectors, Vp, V

′
p ∈ Xp, Vp lies below V ′p if and only if it lies between N−(p) and V ′p . Given a

convexity orientation, N−, we define the section N+ such that, for all p:

∂Xp =
{
N+,N−

}
.

10



The Plateau Problem in Hadamard Manifolds

We call this vector field the convexity coorientation of Γ.

Example: If (Σ̂, ∂Σ̂) is a strictly convex immersed hypersurface in M , then Γ := ∂Σ̂ is
a locally strictly convex, codimension 2, immersed submanifold. Moreover, Γ inherits a
convexity orientation from Σ̂ in the following manner: For p ∈ Γ, we identify each unit
vector in NpΓ with the (oriented) hyperplane in TpM normal to that vector. TpΣ̂ defines
a half-hyperplane with upward pointing unit normal in Xp. Let Hp be another (oriented)
hyperplane in Xp that is close to TpΣ. We say that Hp lies above (resp. below) TpΣ̂ if
and only if it is a graph over (resp. beneath) TpΣ̂. We extend this to an order on Xp, and
define N−(p) to be the end point of Xp lying below TpΣ̂.

More formally, for p ∈ Γ, let E = TpM/TpΓ. E is a two dimensional vector space.
Moreover, NpΓ projects down to a circle, Sp, in E. We consider Xp as a subinterval of
Sp. Let Np ∈ Xp be the outward pointing exterior normal to Σ̂ at p. TpΣ̂ defines a half-
hyperplane which projects down to a half line in E. This half-line is parallel to the tangent
line to Xp at Np, and thus defines an orientation on Sp at Np. N−(p) is then the boundary
point of Sp towards which TpΣ̂ points. �

Suppose that Γ is locally strictly convex with convexity orientation, and suppose that ∂Σ is
a strictly convex immersed hypersurface such that ∂Σ = Γ. We say that Σ is compatible
with the orientation on Γ if and only if the convexity orientation induced on Γ by Σ
coincides with the pre-existing convexity orientation on Γ.

5 - First Order Upper Bounds.

Let Mn+1 be an (n + 1)-dimensional Riemannian manifold. Let Γn−1 ⊆ M be a strictly
convex, codimension 2, embedded submanifold with convexity orientation. Let N− and N+

be the convexity orientation and coorientation respectively of Γ. Let Σ be a strictly convex
immersed hypersurface in M such that ∂Σ = Γ. Suppose, moreover that Σ is compatible
with the convexity orientation on Γ. We denote by NΣ the outward pointing unit normal
over Σ.

First order bounds near the boundary follow from the following result:

Lemma 5.1

Choose θ > 0. There exists r > 0, which only depends on M , Γ and θ such that if
the angle between NΣ and N+ is always greater than θ, then, for all p ∈ Γ, there
exists a convex subset K ⊆ Br(p) such that the connected component of Σ∩Br(p)
containing p is embedded and is a subset of ∂K.

Proof: This follows immediately from Proposition 5.2 (below). �

We establish the framework. Choose p ∈ Γ. Choose r1 > 0, and denote the connected com-
ponent of Γ∩Br1(p) containing p by Γ0. Reducing r1 if necessary, there exists a smooth,
embedded, locally strictly convex hypersurface Σ̂ ⊆ Br1(p) such that ∂Σ̂ ⊆ ∂Br1(p) and
Γ ⊆ Σ̂. We may suppose, moreover, that Σ̂ and Br1(p) together bound a convex set,
K̂. In the sequel, we will identify M with Br1(p), reducing r1 at various stages whenever

11
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necessary. We may thus assume that Γ divides Σ̂ into two connected components: Σ̂+ and
Σ̂− which correspond to the interior and exterior respectively of Σ̂ with respect to Γ.

Let NΣ̂ be the unit normal vector field over Σ̂. We may suppose that NΣ̂ makes an angle
of less than θ/2 with N+

Γ .

Since Σ̂ is strictly convex, there exists ε > 0 such that the shape operator of Σ̂ is no less
than εId. Let H be a strictly convex embedded hypersurface tangent to Σ̂ at p whose
second fundamental form is strictly bounded above by δId, for δ < ε/2. Let (Ht)t∈]−τ,τ [

be the foliation of M by hypersurfaces equidistant to H. We may assume that each leaf
of this foliation is embedded, strictly convex and complete with second fundamental form
strictly bounded above by δId. Moreover, we may assume that H0 = H meets Σ̂ at a single
point, p. Thus, the upward pointing normal of H0 coincides with that of Σ̂ at this point.

Each leaf of (Ht)t∈]−τ,τ [ divides M into two connected components, one of which we say
lies above the leaf, and the other of which we say lies below the leaf. Recalling section 3,
we say that a subset K of M is semi-convex with respect to a leaf Ht if and only if:

(i) it lies above that leaf; and

(ii) if γ is a geodesic segment lying above Ht whose endpoints are elements of K, then the
whole of γ is contained in K.

Remark: Importantly, in contrast the the situation considered in Section 3, Ht is not
contained in K. Semi-convexity is therefore no longer necessarily preserved by taking
limits. This is a delicate point which will be discussed presently.

We extend Σ to a (piecewise smooth) convex immersed hypersurface by adjoining to it Σ̂−

and denote the resulting immersed hypersurface by Σ̃. For all t, let Σ̃t be the connected
component of Σ̃ lying above Ht and containing p.

Lemma 5.1 follows immediately from the following proposition by taking intersections with
a small ball about p:

Proposition 5.2

There exists t0 < 0 (which only depends on M , Γ, Σ̂, θ and r1) such that Σ̃t0 is
embedded and (along with Ht0) bounds a semi-convex set.

Proof: This follows immediately from Proposition 5.8 (below). �

Let T denote the set of all t < 0 such that, for all s ∈]− t, 0[:

(i) Σ̃s is embedded;

(ii) Σ̃s ⊆ K̂;

(iii) Σ̃s bounds a semi-convex set above Hs; and

(iv) Σ̃s intersects Hs transversally along ∂Σ̃s.

Proposition 5.3

T is non-empty.

12
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Proof: Since Σ̃ is a piecewise smooth, strictly convex immersion, there exists 0 < r2 < r1
(which does depend on Σ) such that the connected component of the intersection of Σ̃ with
Br2(p) containing p is embedded and bounds a convex set. The portion of this convex set
lying above Ht for t small is trivially semi-convex, and (i), (ii) and (iii) are therefore
satisfied for all small t less than 0, likewise so is (iv), and the result follows. �

Let t0 be the infimum of T . We will obtain upper bounds for t0, from which Proposition
5.2 will follow. The first step involves proving that Σ̃t0 is transverse to Ht0 . The main geo-
metric obstacle is the possibility that the outwards pointing normal to Σt0 points upwards
from Ht0 . This is dealt with by the following observation:

Proposition 5.4

For all θ′ < θ, there exists t1 < 0 (which only depends on Σ̂, Γ, M , θ and θ′) such
that, if d is the (signed) distance function in M to H = H0, and if t0 > t1, then,
throughout Σt0 :

〈NΣ,∇d〉 6 cos(θ′) < 1.

Proof: Let ∇ and ∇Σ denote the Levi-Civita covariant derivatives over M and Σ respec-
tively. Define the function φ : Σ → R by:

φ = 〈N,∇d〉.

Let A be the shape operator of Σ. If X is a vector field over Σ, then:

Xφ = 〈∇XNΣ,∇d〉+ 〈NΣ,∇X∇d〉
= 〈A ·X,∇d〉+ Hess(d)(NΣ, X)
= 〈A ·X,∇Σd〉+ Hess(d)(NΣ, X).

The final line follows since the normal component of A · X vanishes. Now let X =
∇Σd/‖∇Σd‖2. Since A is positive definite:

Xφ > Hess(d)(NΣ, X).

Since d is the distance to a hypersurface, ‖∇d‖ = 1 is constant, and so Hess(d)(∇d, ·)
vanishes. Thus, if N0 denotes the component of NΣ tangent to the foliation, (Ht)t∈]−τ,τ [,
of level subsets of d, then:

Xφ > Hess(d)(N0, X).

However:
‖N0‖2 = 1− 〈NΣ,∇d〉2 = ‖∇Σd‖2.

Thus N0/‖∇Σd‖ has norm equal to 1. Since the shape operator of Ht is bounded above
by δId for all t, the norm of Hess(d) is also bounded above by δ. Thus:

Xφ > −δ.

However:
Xd = 〈X,∇Σd〉 = 1.

13
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Thus, if γ : [0, τ ] → Σ is an integral curve of X starting at q, then γ(s) meets Γ for some
s 6 |t0|. There therefore exists q′ ∈ Γ such that:

φ(q′) > φ(q)− ε |t0| /2
⇒ φ(q) 6 φ(q′) + ε |t0| /2,

6 φ(q′) + ε |t1| /2.

Choosing t1 sufficiently small, for all q′ ∈ Γt1 :

φ(q′) + ε |t1| /2 6 cos(θ′).

The result follows. �

Proposition 5.5

There exists t1 < 0 (which only depends on M , Σ̂, θ and r1) such that, if t0 > t1,
then Σ̃t0 intersects Ht0 transversally along ∂Σ̃t0 .

Proof: Suppose the contrary. Choose q ∈ ∂Σ̃t0 such that Σ̃ is tangent to Ht0 at q. The
normal to Σ̃ at q either points downwards into Ht0 or upwards from Ht0 . By reducing r1
if necessary, we may assume that the normal does not point upwards over Σ̂− \ {p}. By
Proposition 5.4, for t1 sufficiently small, the normal doesn’t point upwards over Σ either,
and it therefore does not point upwards anywhere over Σ̃t0 .

We now show that the normal cannot point downwards. Since Σ̃ and Ht0 are strictly
convex with opposing normals, they meet at a single point. For t > t0, let Σ̃′t denote
the connected component of Σ̃ lying below Ht containing q. Since Σ̃ is piecewise smooth,
for t sufficiently close to t0, Σ̃′t is topologically a ball whose boundary is an embedded
topological sphere in Ht. Moreover, ∂Σ̃′t is a subset of ∂Σ̃t. However, for all s ∈]t0, 0[, Σ̃s

is transverse to Hs and does not self intersect. ∂Σ̃t is thus also an embedded topological
sphere. It follows that ∂Σ̃t and ∂Σ̃′t coincide, and Σ̃ is therefore an embedded topological
sphere lying above Ht0 . Γ is therefore not contained in Σ̃, which is absurd, and thus the
normal to Σ̃′t0 does not point downwards, and this completes the proof. �

The next step uses the fact that Kt0 , being the limit of a sequence of semi-convex sets,
is also semi-convex. Despite being an intuitive result, its proof is rather technical, and is
deferred to Section 7.

Proposition 5.6

There exists t1 < 0 (which only depends on M , Σ̂, θ and t1), such that, if t0 > t1,
then ∂Σ̃t0 is embedded in Ht0 and bounds an open set.

Proof: For t > t0, let Kt be the semi-convex set bounded by Σ̃t and Nt. By Proposition
7.1, Kt0 is also semi-convex. By the preceeding proposition, Σ̃t0 is transverse to Ht0 along
∂Σ̃t0 . It follows that ∂Σ̃t0 is a (piecewise smooth) immersed submanifold of Ht0 . Suppose
it is not embedded. Since ∂Σt is embedded for all t > t0, there exist two open submanifolds
Σ′1,Σ

′
2 ⊆ Σt0 such that:

(i) Σ′1 and Σ′2 are embedded; and

14
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(ii) Σ′1 ∩Ht0 and Σ′2 ∩Ht0 meet tangentially at some point p.

Since Σ̃t0 bounds Kt0 , the hypersurfaces Σ′1 and Σ′2 divide a neighbourhood of p above
Ht0 into three (roughly) wedge-shaped open sets. Consider the central one of these three
wedges. It is either a subset of Kt0 or a subset of its complement. If it is a subset of Kt0 ,
then we say that Σ′1 ∩Ht0 and Σ′2 ∩Ht0 lie on each others interior. Otherwise, we say that
they lie on each others exterior.

Suppose that Σ′1 ∩Ht0 and Σ′2 ∩Ht0 lie on each others interior. Let P1 and P2 be the
respective tangent hyperplanes of Σ′1 and Σ′2 at p. We identify these with their images
under the exponential map. P1 and P2 do not coincide. Indeed, suppose the contrary.
By strict convexity, the interiors of Σ′1 and Σ′2 coincide in a single point. This point is
contained in Kt0 . However, Kt0 is connected and also contains p, which is absurd and the
assertion follows.

By convexity, near p, Σ′1 lies above P1 and Σ′2 lies above P2. However, the region lying
above both P1 and P2 forms a wedge making an angle at p strictly greater than 0 and
strictly less than π. In particular, Σ′1 and Σ′2 intersect transversally at p. They therefore
also intersect over a hypersurface contained inside this wedge. However, sinceHt0 is strictly
convex, this wedge lies strictly above Ht0 , and therefore Σ′1 and Σ′2 also meet at some point
above Ht0 . This contradicts the hypothesis that ∂Σ̃t is an embedded submanifold of Ht

for all t > t0. It follows that these two submanifolds do not lie on each others interior.

Suppose that Σ′1 ∩Ht0 and Σ′2 ∩Ht0 lie on each others exterior. Let γ be a geodesic arc,
tangent to Ht0 at p and normal to the common tangent space of Σ′1 ∩Ht0 and Σ′2 ∩Ht0 .
Near p, γ lies above Ht0 and has endpoints inside Kt0 . Moving γ upwards slightly yields a
geodesic arc lying above Ht0 , having endpoints inside Kt0 whilst itself not being contained
within Kt0 . This contradicts semi-convexity. It follows that these two submanifolds do
not lie on each others exterior, and this completes the proof. �

Proposition 5.7

There exists t1 < 0 (which only depends on M , Σ̂, θ and r1) such that, if t0 > t1,
then Σ̃t ⊆ K̂.

Proof: By Proposition 5.6, for t sufficiently small, Σt does not intersect Σ̂−t . By Propo-
sition 6.2, semi-convexity and the hypotheses on Σ along the boundary, for all sufficiently
small t, Σt does not intersect Σ̂+

t . It is therefore contained within the set bounded by Σ̂t

and Ht, and the result follows. �

Proposition 5.8

There exists t1 < 0 (which only depends on M , Σ̂, θ and r1) such that, if t0 > t1,
then t0 cannot be the infimum of T .

Proof: Let t1 be as in Propositions 5.4, 5.5, 5.6 and 5.7 and suppose that t0 > t1. ∂Σ̃t0

is embedded, is transverse to Ht0 , and is bounded away from Br1(p). Thus, for all t < t0
sufficiently close to t0, Σ̃t is embedded and, along with Ht bounds a subset of Br(p). For
all t, let Kt be the closure of this subset.
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Suppose that there exists a sequence (tn)n∈N converging to t0 such that, for all n, Ktn
is

not semi-convex. Then, for all n, there exists pn, qn ∈ Kn := Ktn
and a geodesic arc γn

such that:

(i) pn and qn are the endpoints of γn;

(ii) γn lies above Htn ; and

(iii) there exists a point rn ∈ γn which lies outside Kn.

Without loss of generality, (pn)n∈N, (qn)n∈N, (γn)n∈N and (rn)n∈N converge to p0, q0, γ0

and r0 respectively. Trivially, γ0 lies above Ht0 . Suppose first that p0 6= q0. Suppose that
r0 does not coincide with either of the endpoints. Since Kt0 is semi-convex, γ0 lies inside
Kt0 . r0 therefore lies on the boundary of Kt0 , and γ0 is therefore an interior tangent to
Σ̃t0 at this point, which contradicts local strict convexity. Likewise, if r0 coincides with an
end point, p0, say, then γ0 is contained inside Kt0 and points outwards (or is tangent) to
Σ̃t0 at p0, which also contradicts local strict convexity and semi-convexity. It follows that
p0 and q0 coincide.

If p0 = q0 is an interior point of Kt0 , then γn trivially lies inside Kt0 for all sufficiently
large n. Suppose therefore that p := p0 = q0 is a boundary point of Σ̃t0 . By local strict
convexity, there exists a neighbourhood of Σ̃ about p which lies on the boundary of a
convex set, X. For all n, the intersection of X with the region lying above Htn

is a subset
of Kn. However, for sufficiently large n, pn and qn both lie in X. For all such n, γn is
contained within X and therefore within Kn, which is absurd.

There therefore exists ε such that, for all t > t0− ε, Σ̃t satisfies the hypotheses defining T ,
and therefore t ∈ T . This is absurd and the result follows. �

6 - Parabolic Limits.

Let Mn+1 be an (n + 1)-dimensional Riemannian manifold. Let Σ̂n be a locally strictly
convex immersed hypersurface in M . Let Γ ⊆ Σ̂ be an embedded hypersurface. Let ε > 0
be such that the shape operator of Σ̂ is everywhere bounded below by ε. Choose p ∈ Γ.
Let Hn be a strictly convex embedded hypersurface of M which is an exterior tangent to
Σ̂ at p. Let δ > 0 be such that the shape operator of H is everywhere bounded above by
δ and suppose that δ < ε/2. For simplicity, we assume throughout the rest of this section
that the shape operator of H at p is equal to δId. The general case is similar.

Let d be the signed distance function in M to H. In particular, for q ∈ Σ̂ near p, d(q) 6 0.
For all t, let Ht be the level hypersurface at distance t from H. For small t < 0, let Σ̂t and
Γt be the connected components of Σ̂ and Γ respectively lying above Ht and containing p,
and let K̂t denote the compact set bounded by Σ̂t and Ht. For small t, Γt divides Σ̂t into
two components, which we denote by Σ̂+

t and Σ̂−t .

Choose t0 < 0. Let (pn)n∈N ∈ K̂t0 be a sequence converging to p. We consider a geodesic
chart for H about p, and thus identify a neighbourhood of p in H with a neighbourhood of
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0 in TpH. Let (e1, ..., en) be an orthonormal basis for TpH. There exists r > 0 such that Σ̂
is the graph of a function, f over Br(p). By Taylor’s Theorem, with respect to (e1, ..., en):

f(x) = −〈x|A|x〉+O(‖x‖3),

where A is a positive definite matrix. With respect to these coordinates, for all n, pn =
(qn, sn), where qn ∈ TpH and sn < 0. For all n, we define f̂n : B

r/
√
|sn|

(p) →]−∞, 0[ and
q̂n ∈ TpH by:

f̂n(x) = f(
√
|sn|x)/ |sn| , q̂n = qn/

√
|sn|.

Trivially, (f̂n)n∈N converges in the C∞loc sense over TpH to f̂0, where:

f̂0(x) = −〈x|A|x〉.

Moreover, for all n, since pn ∈ K̂sn :

|f(qn)| 6 |sn|
⇒ LimSupn→∞

ε
2‖q̂n‖

2 6 LimSupn→∞
1
|sn| |f(qn)| 6 1.

There thus exists q̂0 ∈ H towards which (q̂n)n∈N subconverges. In particular, f̂0(q0) > −1.
We call (f̂0, q̂0) a parabolic limit of (Σ̂, qn)n∈N.

Likewise, if we suppose that (e1, ..., en−1) is tangent to Γ at p, then, reducing r if necessary,
the projection of Γ onto H is the graph of some function g, over the space spanned by
(e1, ..., en−1). For all n, we define ĝn : B

r/
√
|sn|

(p) → R by:

ĝn(x′) = g(
√
|sn|x′)/

√
|sn|.

Trivially, (ĝn)n∈N subconverges in the C∞loc sense over the space spanned by (e1, ..., en−1)
to ĝ0 := 0. It follows that the parabolic limit of Γsn is the intersection of the graph of f̂0
with a vertical hyperplane in Rn × R.

For p ∈M , we call a geodesic hyperplane at p an immersed hypersurface consisting of
geodesics passing through p. Explicitely, P ⊆ M is a geodesic hyperplane if and only if
there exists a hyperplane H ⊆ TpM such that:

P = {Exp(Vp) s.t. Vp ∈ H} .

For all n, let Pn be the geodesic hyperplane tangent to Hsn
at pn. Reducing r if necessary,

Pn is the graph of the function φn : Br(qn) → R, where, by convexity:

−sn 6 φn(x) 6 −sn + 〈x− qn|Bn|x− qn〉+O(‖x‖3),

where (Bn)n∈N converges to δId. For all n, we define φ̂n by:

φ̂n(x) = φn(
√
|sn|x)/ |sn| .
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(φ̂n)n∈N converges in the C∞loc sense over TpH to φ̂0 where:

φ̂0(x) = δ‖x− q̂0‖2 − 1.

Thus, the parabolic limit of the geodesic hyperplanes tangent to Hsn at pn is a paraboloid
on (q̂0,−1). Finally, in like manner, the parabolic limit of a sequence of geodesics tangent
to Hsn

at pn is the intersection of this paraboloid with a vertical plane in Rn × R.

Parabolic limits are of use in obtaining technical results concerning Σ.

Proposition 6.1

For δ sufficiently small, there exists t0 < 0 (which only depends on Σ̂, Γ, H and
M) such that, for all q ∈ Kt0 \ {p}, if t > t0 is such that q ∈ Ht, and if P is the
geodesic hyperplane tangent to Ht at q, then:

(i) P intersects Σ̂t transversally; and

(ii) P intersects Γt transverally.

Proof: (i) Suppose the contrary. Let (pn)n∈N ∈ K̂t0 be a sequence converging to p. For
all n, let sn < 0 be such that pn ∈ Hsn

and let Pn be the geodesic hyperplane tangent to
Hsn

at pn. Trivially, Pn intersects Σ̂n non-trivially for all n. Suppose that, for all n, Pn

is tangent to Σ̂sn
at some point. It follows that the parabolic limit of (Pn)n∈N is tangent

to the parabolic limit of (Σ̂sn
)n∈N at some point. This is absurd, and the first assertion

follows.

(ii) Suppose the contrary. Let (pn)n∈N ∈ Σ̂ be a sequence converging towards p. For all
n, let sn < 0 be such that pn ∈ Hsn

, let Γn = Γsn
and let Pn be the geodesic hyperplane

tangent to Hsn
at pn. We suppose that, for all n:

Pn ∩Γn = ∅.

The parabolic limit of Pn intersects the parabolic limit of Γn transversally. Thus, for
sufficiently large n, Pn ∩Γn 6= ∅, which is absurd. It follows that, for t0 sufficiently small,
P intersects Γt0 . Transversality follows as in the proof of part (i), and this completes the
proof. �

Proposition 6.2

Choose θ ∈]0, π/2[. For δ sufficiently small, there exists t0 < 0 (which only depends
on Σ̂, Γ, H, M and θ) such that for t > t0 and for all q ∈ Σ̂t ∩Ht, there exists a
geodesic segment, γ, joining q to Γ such that the hyperplane spanned by ∂tγ and
TΓ at the point of intersection of γ with Γ makes an angle strictly less than θ
with T Σ̂.
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Proof: Suppose the contrary. Let (pn)n∈N ∈ Σ̂ be a sequence converging to p, and let
p̂0 be its parabolic limit. For all n, let sn < 0 be such that pn ∈ Hsn

and let γn be a
geodesic segment tangent to Hsn at p and terminating in Γsn . Suppose that, for all n,
the hyperplane spanned by ∂tγn and TΓsn at the point of intersection of γn with Γsn

makes an angle of at least θ with T Σ̂. Let γ̂0 and Γ̂0 be the parabolic limits of (γn)n∈N
and (Γsn

)n∈N respectively. Then, at its point of intersection with Γ̂0, γ̂0 is tangent to the
vertical hyperplane containing Γ̂0. γ̂0 is thus entirely contained in this vertical hyperplane.
It follows that every parabolic limit of every sequence of geodesic segments joining (pn)n∈N
to Γ is contained in the vertical hyperplane containing Γ̂0. When p̂0 /∈ Γ̂0, this is trivially
absurd. When p̂0 ∈ Γ̂0, there exists a parabolic limit of such geodesic segments which is
normal to the hyperplane containing Γ̂0, which is also absurd. The result follows. �

Proposition 6.3

For δ sufficiently small, there exists t0 < 0 (which only depends on Σ̂, Γ, H and
M) such that, for t > t0, if γ is a geodesic segment lying in K̂t0 such that:

(i) γ is tangent to Ht; and

(ii) the endpoints of γ both lie in Γ,

then there exists a sequence of geodesic segments (γn)n∈N converging to γ such
that, for all n:

(i) γn is tangent to Ht; and

(ii) the end points of γn lie in Σ̂−t .

Proof: Suppose the contrary. Let (pn)n∈N ∈ K̂t0 be a sequence converging to p. For all n,
let sn < 0 be such that pn ∈ Hsn and let γn be a geodesic segment tangent to Hsn at pn

with both end points in Γsn
. We suppose that, for all n, there exists εn > 0 such that if

qn ∈ Hsn
is such that d(qn, pn) < εn, then no geodesic segment tangent to Hsn

at qn has
both endpoints in Σ̂−sn

. Let γ̂0, p̂0, Γ̂0 and Σ̂−sn
be the parabolic limits of (γn)n∈N, (pn)n∈N,

(Γn)n∈N and (Σ̂−sn
)n∈N respectively. Let V̂0 be the horizontal unit vector at (p0,−1) normal

to the vertical hyperplane containing Γ̂0 and pointing towards Σ̂−0 . For all n, let Vn be a
unit vector tangent to Hsn at pn and suppose that V̂0 is the parabolic limit of (Vn)n∈N.
For all n, let ηn : R → Hsn

be the geodesic in Hsn
such that:

∂tηn(0) = Vn,

and let Xn be the parallel transport of ∂tγn(0) along ηn (with respect to the Levi-Civita
covariant derivative of Hsn

). Let Exp be the exponential map of M and for all n define:

φn,t(s) = Exp(sXn(t)).

If X̂0 is the unit tangent vector to γ̂0 at p̂0, then the parabolic limit of (φn)n∈N is φ̂0,t(s),
where:

φ̂0,t(s) = (sX̂0 + tV̂0, δs
2 − 1).

The intersection of this family with Σ̂−0 is transverse to Γ̂0 at the intersection of γ̂0 with
Γ̂0. Thus, for sufficiently large n, and sufficiently small t, the two endpoints of the geodesic
segment s 7→ φn,t(s) both lie in Σ̂−0 . This is absurd, and the result follows. �
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7 - Semi-Convexity.

In this section we show that the property of being semi-convex is preserved after taking
limits. Using the same notation as in the Section 5, we show:

Proposition 7.1

There exists t1 < 0 (which only depends on M , Σ̂, θ and r1) such that, if t0 > t1,
then Σ̃t0 bounds a semi-convex set above Ht0 .

If P is a geodesic hyperplane (see Section 6), we say that two points q1, q2 ∈ P are coaxial
if and only if they both lie on the same radial geodesic on opposite sides of p. We require
the following technical result:

Lemma 7.2

Choose ϕ > 0. Let K ⊆ M be compact. There exists r > 0 (which only depends
on ϕ and K) such that, if P is a geodesic hyperplane at p ∈ K, if q1, q2 ∈ P are
coaxial points and if X is a Jacobi field over the geodesic joining q1 to q2 such
that:

(i) d(q1, p), d(q2, p) < r;

(ii) ‖X(q0)‖ 6 1 and X lies strictly above TP at q0; and

(iii)‖X(q1)‖ = 1 and X lies strictly above TP at q1, making an angle of at least ϕ
with TP at that point.

Then X lies strictly above TP at every point of the geodesic joining q0 to q1.

Proof: Assume the contrary. Let (rn)n∈N be a sequence converging to 0. For all n, let
pn ∈ K be a point, Pn a geodesic hyperplane at pn, q1,n, q2,n two coaxial points in Pn and
Xn a Jacobi field over the geodesic joining q1,n to q2,n such that:

(i) Max(d(q1,n, pn), d(q2,n, pn)) = rn;

(ii) ‖Xn(q1,n)‖ 6 1 and Xn lies strictly above TPn at q1,n; and

(iii) ‖Xn(q2,n)‖ = 1 and Xn lies strictly above TPn at q2,n, making an angle of at least ϕ
with TPn at this point.

Suppose, moreover, that, for all n, Xn is tangent to TPn at some point lying between
q1,n and q2,n, xn, say. By compactness, there exists p0 ∈ K towards which (pn)n∈N
subconverges. Let g be the Riemannian metric of M . For all n, define gn = r−2

n g.
The sequence of pointed manifolds (M, gn, pn)n∈N converges towards (Rn+1, gEuc, 0) in the
C∞ Cheeger/Gromov sense, where gEuc is the Euclidean metric over Rn+1. For all n,
Pn is also a geodesic hyperplane of (M, gn) and so (Pn, pn)n∈N subconverges in the C∞

Cheeger/Gromov sense for pointed, immersed submanifolds to a pointed, affine hyperplane
(P0, 0). Likewise, there exist coaxial points q1,0, q2,0 ∈ P0, a Jacobi field X0, and a point
x0 lying between q1,0 and q2,0 towards which (q1,n)n∈N, (q2,n)n∈N, (rnXN )n∈N and x0

subconverge respectively. Moreover:
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(i) Max(d(q1,0, 0), d(d2,0, 0)) = 1;

(ii) ‖X0(q1,0)‖ 6 1 and X0 lies (not necessarily strictly) above TP at q1,0; and

(iii)‖X0(q2,0)‖ = 1 and X0 lies strictly above TP at q2,0.

It follows that X0 is not tangent to P at any point along the closed geodesic joining q1,0

to q2,0, except possibly at q1,0. Moreover, if X0 is tangent to P at q1,0, then its derivative
in the direction normal to P at this point is non vanishing. However, X0 is tangent to TP
at x0. It follows from the first assertion that x0 = q1,0, but then the derivative of X0 in
the direction normal to P at q1,0 vanishes, and this contradicts the second assertion. This
is absurd and the result follows. �

This lemma allows us to prove Propostion 7.1:

Proof of Proposition 7.1: LetKt0 be the set bounded by Σ̃t0 andHt0 . Let γ : [0, 1] →M
be a geodesic above Ht0 with endpoints in Kt0 . We aim to show that the whole of γ is
contained in Kt0 . It suffices to consider the case where both endpoints of γ lie in Σ̃t0 . The
remaining cases are similar and much simpler. Recall that Σ̃t0 divides into two components,
Σ̂−t0 and Σt0 . These components have different properties and we thus consider the various
resulting cases seperately. Let K̂t0 be the set bounded by Σ̂t0 and Ht0 . We may assume
that K̂t0 is semi-convex. Since the endpoints of γ lie in Σ̃t0 ⊆ K̂t0 , the whole of γ therefore
lies in K̂t0 . Thus, by choosing t1 sufficiently small, we may assume that γ is sufficiently
short to satisfy the hypotheses of Proposition 7.1 with ϕ = θ/2.

Suppose that γ lies strictly above Ht0 . Then there exists ε > 0 such that γ lies above
Ht0+ε. Since Σ̃t0+ε is semi-convex, γ lies in Kt0+ε ⊆ Kt0 and the result follows in this
case. We thus assume that γ meets Ht0 at some point, s ∈ [0, 1].

Suppose that γ is transverse to Ht0 at s. Then, s is an endpoint of [0, 1] and, without loss
of generality, s = 0. By strict convexity of Ht0 , γ(]0, 1]) lies strictly above Ht0 . Suppose
that γ(0) lies in Σ̂−t0 . By Proposition 6.1, both Σ̂ and Γ are transverse to Ht0 at this point.
There thus exists a smooth curve η : [0, ε[→M such that:

(i) η(0) = γ(0);

(ii) ∂tη(0) is transverse to THt0 ;

(iii) for s > 0, η(s) lies strictly above Ht0 ; and

(iv) for all s, η(s) lies in Σ̂−.

For all s ∈ [0, ε[, let γs be the unique geodesic joining η(s) to γ(1). For sufficiently small s,
γs lies strictly above Ht0 . Since, for all t > t0, Σ̃t is semi-convex, for all sufficiently small
s, γs is contained in Kt0 . The result follows in this case by taking limits.

Suppose that γ(0) lies in Σ \ Γ. By Proposition 5.4, after reducing t1 if necessary, the
outward pointing normal to Σ makes an angle of at least θ/2 with Ht0 at γ(0). There
therefore exists a smooth curve η : [0, ε[→M such that:

(i) η(0) = γ(0);
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(ii) ∂tη(0) is transverse to THt0 ;

(iii) for s > 0, η(s) lies strictly above Ht0 ; and

(iv) for all s, η(s) lies in Kt0 .

For all s ∈ [0, ε[, let γs be the unique geodesic joining η(s) to γ(1). For sufficiently small
s, γs lies strictly above Ht0 , and the result follows in this case as before. This completes
the case where γ is transverse to Ht0 at s, and we thus suppose that γ is tangent to Ht0

at s.

Let P be the geodesic hyperplane tangent to Ht0 at γ(s). Suppose that γ(0) and γ(1)
both lie in Σ̂−t0 \ Γ. Since Σ̂ bounds a strictly convex set, K, γ is transverse to Σ̂− at γ(0)
and γ(1) (for otherwise, by strict convexity, it could only intersect Σ̂− at one point, which
is absurd). Let X be a Jacobi field over the geodesic joining γ(0) and γ(1) such that X
equals the unit upward pointing normal to P at both endpoints. By Lemma 7.2, X lies
everywhere above TP . Thus, if γt is a geodesic variation of γ with Jacobi field X, then,
for sufficiently small t, γt lies strictly above P and therefore also above Ht0 . Moreover, by
transversality, for sufficiently small t, γt intersects Σ̂−t0 at two points near γ(0) and γ(1).
We thus obtain a family of geodesic segments lying strictly above Ht0 with endpoints in
Σ̃t0 converging towards γ. By semi-convexity, all these geodesic segments are contained
within Kt0 , and thus, taking limits, γ is contained within Kt0 . This proves the result in
this case.

Suppose that γ(0) lies in Σ̂−t0 \ Γ and γ(1) lies in Σ \ Γ. As before, γ is transverse to Σ̂ at
γ(0). By Proposition 5.4, after reducing t1 if necessary, the outward pointing normal to Σ
makes an angle of at least θ/2 with TP at γ(1). Let X be a Jacobi field over γ such that
X(0) is the upward pointing normal vector over P at γ(0) and X(1) points into Kt0 making
an angle of at least θ/2 with TP at γ(1). By Lemma 7.2, X lies everywhere above TP .
Thus, if γt is a geodesic variation of γ with Jacobi field X, then, for sufficiently small t, γt

lies strictly above P and therefore also above Ht0 . Moreover, for small t, γt(1) lies inside
Kt0 , and, by transversality, γt intersects Σ̂−t0 at some point near γ(0). We thus obtain
a family of geodesic segments lying strictly above Ht0 with endpoints in Kt0 converging
towards γ. By semi-convexity, all these geodesic segments are contained within Kt0 , and
thus, taking limits, γ is contained within Kt0 . This proves the result in this case.

Suppose that both γ(0) and γ(1) lie in Σ \ Γ. By Proposition 5.4, after reducing t1 if
necessary, the outward pointing normal to Σ makes an angle of at least θ/2 with P at both
these points. Let X be a Jacobi field over γ such that both X(0) and X(1) point into Kt0

at γ(0) and γ(1) respectively, making an angle of at least θ/2 with TP at these points. By
Lemma 7.2, X lies everywhere above TP , and the result follows in this case as before.

We now consider the case where at least one end point of γ lies on Γ. Suppose that γ(0)
lies on Γ but γ(1) doesn’t. By Proposition 6.1, Γ is transverse to P at γ(0). Let X be a
Jacobi field over γ such that X(0) is tangent to Γ and points strictly upwards from P at
γ(0). If γ(1) lies in Σ̂−t0 , then we suppose that X(1) is the upward pointing unit normal
over P at γ(1). If γ(1) lies in Σt0 , then we assume that X(1) points into Kt0 at γ(1),
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making an angle of at least θ/2 with TP at this point. By Lemma 7.2, X lies everywhere
above TP , and the result follows in this case as before.

Finally suppose that both γ(0) and γ(1) lie on Γ. It follows by Proposition 6.3 that, after
increasing t1 if necessary, there exists a small deformation of γ whose end points both lie
on Σ̂−t0 \ Γ. We thus reduce this case to an earlier case, and this completes the proof. �

8 - Immersed Boundaries.

Let Mn+1 be an (n + 1)-dimensional manifold. We recall that the reasoning of Section 5
is only valid when the boundary is embedded. We now show how this reasoning may be
adapted by a simple modification to also treat the case where the boundary is permitted
to have self intersections.

Let Γn−1 = (i, (Gn−1, ∂Gn−1)) be a compact, codimension 2, immersed submanifold in M .
We say that Γ is generic if and only if, for all p 6= q such that i(p) = i(q):

TpΓ 6= TqΓ.

This definition is motivated by the following elementary result:

Proposition 8.1

(i) Let Γ ⊆M be a compact, codimension 2, immersed submanifold. There exists
a sequence (Γn)n∈N of generic, compact, codimension 2, immersed submanifolds
which converges to Γ in the C∞ sense.

(ii) Let (Γt)t∈[0,1] ⊆ M be a smooth family of compact, codimension 2, immersed
submanifolds such that Γ0 and Γ1 are generic. There exists a sequence (Γn,t)n∈N
of smooth families of generic, compact, codimension 2, immersed submanifolds
such that:

(a) for all n, Γn,0 = Γ0 and Γn,1 = Γ1; and

(b) (Γn,t)n∈N converges to (Γt) in the C∞ sense.

Proof: This follows from Sard’s Lemma in the usual manner. Explicitely, a generic codi-
mension 2 immersion self-intersects over a submanifold of codimension 4, from which (i) fol-
lows, and every immersion in a generic isotopy of codimension 2 immersions self-intersects
over a submanifold of codimension 3, from which (ii) follows. See [7] for details. �

Let (Γn)n∈N be a sequence of strictly convex, codimension 2, immersed submanifolds with
convexity orientation. For all n ∈ N∪{0}, let N+

n be the convexity coorientation of Γn.
Suppose that (Γn)n∈N converges in the C∞ sense to a strictly convex, codimension 2,
immersed submanifold, Γ0 and suppose, moreover, that Γ0 is generic. In particular, by
taking a subsequence, we may suppose that Γn is also generic for all n.

Lemma 8.2

Choose θ > 0. There exists r > 0 such that if (Σn)n∈N is a sequence of strictly
convex, immersed hypersurfaces such that, for all n:
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(i) ∂Σn = Γn; and

(ii) the outward pointing unit normal over Σn makes an angle of at least θ with
N+

n along Γn,

then, for all n, and for all p ∈ Γn:

(i) the connected component of Σn ∩Br(p) is embedded and lies on the boundary
of a convex subset of Br(p); and

(ii) this connected component only meets one connected component of Γn ∩Br(p).

Remark: Using this result in conjunction with the compactness of the family of bounded
convex sets, we obtain C0,α compactness near the boundary for families of locally convex
immersed hypersurfaces. In particular, this result may be used to extend the conclusions
of [11] to the case of compact hypersurfaces with non-trivial boundary (see [13]).

Proof: For all n ∈ N∪{0}, choose pn ∈ Γn and suppose that (pn)n∈N converges to
p0. For all n ∈ N∪{0}, let qn ∈ M be the image of pn. Choose r > 0 such that, for
all n ∈ N∪{0}, the connected component of Γn ∩Br(qn) containing pn is embedded, and
denote this component by Γn,0. For all n, we identify M with Br(pn), reducing r whenever
necessary.

As in Section 5, for all n ∈ N∪{0}, let Hn be a strictly convex, embedded hypersurface
tangent to Γn at pn such that:

(i) the outward pointing normal to Hn at pn makes an angle of no more than θ/2 with
N+

n at pn; and

(ii) the shape operator of Hn is everywhere strictly above by δId, where δ is small.

We suppose, moreover, that (Hn)n∈N converges to H0 in the C∞ sense. Likewise, as in
Section 5, for all n ∈ N, we extend Hn to a foliation (Hn,t)t∈R.

Since Γ0 is generic, we may suppose that H0 is transverse at q0 to every connected com-
ponent of Γ0 ∩Br(q0) not equal to Γ0,0 which passes through q0. Thus, reducing r if
necessary, for all n, if Γ′n,0 is a connected component of Γn ∩Br(qn) which is different from
Γn,0, then Γ′n,0 is transverse to Hn,t, for all t.

Let t0 < 0 be as in Section 5, and, for all t ∈]t0, 0[, let Σn,t be the connected component of
Σn containing pn which lies above Hn,t. Define T to be the set of all t ∈]− t0, 0[ such that
Γn,0 is the only connected component of Γn ∩Br(qn) which intersects Σn,t. Trivially, T is
non-empty. Let t1 = Inf T and suppose that t1 > t0. Let Γ′n,0 6= Γn,0 be the connected
component of Γn ∩Br(qn) which intersects Σn,t1 . For t > t1, the reasoning of Section
5 proceeds as in the case where the boundary is embedded, and it follows that Σn,t1 is
embedded, is transverse to Ht1 and bounds a semi-convex set above Ht1 . Γ′n,0 is therefore
tangent to Hn,t1 at the point of intersection, since, otherwise Γ′n,0 would intersect Σn,t non
trivially at some point lying above Hn,t1 , which is absurd. However, this contradicts the
definition of r. It follows that t1 = t0, and the result now follows as in the case of Lemma
5.1 by taking intersections with a ball of radius less than t0. �
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9 - First Order Lower Bounds.

Let Mn+1 be an (n + 1)-dimensional Riemannian manifold. Let Γn−1 ⊆ M be a generic,
strictly convex, codimension 2, immersed submanifold with convexity orientation. Let
AΓ be the shape operator of Γ and let N− and N+ be the convexity orientation and
coorientation respectively of Γ. As in [2], second order bounds require uniform lower
bounds on the angle between N− and the normal to any hypersurface of constant Gaussian
curvature with boundary equal to Γ. This is guaranteed by the following result:

Proposition 9.1

For all k > 0, there exists φ > 0 (which only depends on M , Γ and θ) such that if
(Σn, ∂Σn) is a smooth, convex immersed hypersurface such that:

(i) ∂Σ = Γ;

(ii) the Gaussian curvature of Σ is at least k; and

(iii) the outward pointing normal to Σ over Γ makes an angle of at least θ with
N+(p),

then the outward pointing normal to Σ over Γ also makes an angle of at least φ
with N−(p).

Let r > 0 and let Σ be a C0,1 locally convex hypersurface in M such that:

(i) ∂Σ ⊆ Γ∪Br(p);

(ii) Σ is compatible with the orientation on Γ; and

(iii)N−(p) coincides with the outward pointing normal of Σ at p.

Let Symm(Rn) denote the set of positive definite, symmetric matrices over Rn. For t > 0,
we define Ft ⊆ Symm(Rn) by:

Ft = {A ∈ Symm(Rn) s.t. A > 0 & Det(A) > t} .

Observe that if A ∈ Ft and if M > 0, then A + M ∈ Ft. In the language of [1], this
implies that Ft is a Dirichlet set. In particular, if A /∈ Ft and M > 0, then A −M /∈ Ft.
Proposition 9.1 is proven using barriers, which are constructed using the following result:

Proposition 9.2

Choose δ > 0. There exists a neighbourhood U of p and a smooth function
f : U → R such that:

(i) f > 0 along ∂(U ∩Σ);

(ii) there exists q ∈ U ∩Σ such that f(q) < 0; and

(iii)for all q ∈ Br(p), the shape operator of the level subset of f passing through
q with respect to ∇f is conjugate to an element of F c

δ .
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Let S be a smooth, immersed hypersurface in M such that:

(i) ∂S = ∂Γ;

(ii) the upward pointing normal to S at p is equal to N−(p); and

(iii) the shape operator of S at p is supported along the subspace TpΓ.

Let H be a strictly concave immersed hypersurface in M such that:

(i) the upward pointing normal to H at p lies in the interior of −Xp; and

(ii) Γ, Σ and S locally lie strictly above H.

Let dp, dS and dH denote the (signed) distance in M to p, S and H respectively. Observe
that (∇dS ,∇dH) is a linearly independant pair which spans the space of normal vectors
to Γ at p. For any two functions, f and g, we define the (n− 2)-dimensional distribution,
E(f, g), near p by:

E(f, g) = 〈∇f,∇g〉⊥,

where 〈U, V 〉 here represents the subspace spanned by the vectors U and V . Let e1, ..., en−1

be an orthonormal basis for TpΓ with respect to which AΓ(N−) is diagonal. Let λ1, ..., λn−1

be the corresponding eigenvalues. We may suppose that 0 = λ1 6 λ2 6 ... 6 λn−1. We
extend (e1, ..., en−1) to a local frame in TM such that, for all vectors, X, at p:

〈∇Xei,∇dS〉 = −Hess(dS)(X, ei),
〈∇Xei,∇dH〉 = −Hess(dH)(X, ei).

Define the distribution E near P to be the span of e1, ..., en−1.

Proposition 9.3

If D represents the Grassmannian distance between two (n− 1)-dimensional sub-
spaces, then:

D(E,E(dS , dH)) = O(d2
p).

Proof: By definition of ei, for all vectors X at p:

X〈ei,∇dS〉 = X〈ei,∇dH〉 = 0.

The result follows. �

For any smooth function, f , we define D(f,E) by:

D(f,E) = Det(Hess(f)|E),

where Hess(f)|E is the restriction of the Hessian of f to E.

Proposition 9.4

Let f be such that f(p),∇f(p) = 0 and the restriction of Hess(f) to H at p is
positive definite. There exists a function x such that x(p),Hess(x)(p) = 0 and:

D(dS + x(dH − f), E) = O(dp)2.
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Proof: The Hessian of xf vanishes at p. Likewise, the Hessian of the second order term
xdH vanishes over (∇dH)⊥ and therefore over E at p. It follows that the term x(dH − f)
does not affect the restriction of the Hessian of the function to E at p. Thus:

∇D = Tr(Adj(Hess(dS)|E)∇(Hess(dS + x(dH − f))(ei, ej))),

where Adj(Hess(dS)|E) is the adjugate matrix of Hess(dS)|E . If more than one of the
eigenvalues of Hess(dS)|E vanishes, then Adj(Hess(dS)|E) also vanishes, and the result
follows trivially by taking x = 0. Suppose therefore that only one eigenvalue of Hess(dS)|E
vanishes. Let µ1, ..., µn−1 be the eigenvalues of the adjugate matrix, then µ1 = λ2...λn−1

and µ2 = ... = µn−1 = 0. Define the vectors U and V at p by:

U = ∇D(dS , E),
V = ∇D(dS + x(dH − f), E).

Denote P = x(dH − f). At p:

Hess(P ) = ∇x⊗∇dH +∇dH ⊗∇x.

At p, for all i, by definition, 〈ei,∇dH〉 = 0. Thus, recalling the formula for ∇ei:

XHess(P )(ei, ej) = (∇XHess(P ))(ei, ej) + Hess(P )(∇Xei, ej) + Hess(P )(ei,∇Xej)
= (∇XHess(P ))(ei, ej)

+〈∇x, ej〉〈∇Xei,∇dH〉+ 〈∇x, ei〉〈∇Xej ,∇dH〉
= (∇XHess(P ))(ei, ej)−Hess(dH)(X, ei)x;j −Hess(dH)(X, ej)x;i.

We extend (ei)16i6n−1 to an orthonormal basis (ei)06i6n for TpM . With respect to this
basis, for all k:

1
µ1
〈V − U, ek〉 = (dH;11 − f;11)x;k − 2f;1kx;1.

Consider the linear map, M , given by:

(Mξ);k = (dH;11 − f;11)ξk − 2f;1kξ1.

Suppose that Mξ = 0. Then, in particular, bearing in mind that dH;11 6 0 and f;11 > 0:

(dH;11 − 3f;11)ξ1 = 0
⇒ ξ1 = 0
⇒ ξ = 0.

M is therefore invertible, and there exists ξ such that:

Mξ = −U.

If we define x such that:

x(p) = 0, ∇x(p) = ξ, Hess(x)(p) = 0,
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then:
∇D(dS + x(dH − f), E) = 0.

This completes the proof. �

Define Φ0 by:
Φ0 = dS + x(dH − f).

For M > 0, define Φ by:
Φ = dS + x(dH − f) +Md2

H .

Proposition 9.5

If D represents the Grassmannian distance between two (n− 2)-dimensional sub-
spaces then:

D(E(dS , dH), E(Φ, dH)) = O(d2
p) +O(dH).

Proof: Since xf is of order 3 at p:

∇Φ = ∇dS + (x+ 2MdH)∇dH +O(d2
p) +O(dH).

Thus:
〈∇Φ,∇dH〉 = 〈∇dS +O(d2

p) +O(dH),∇dH〉,

where 〈·, ·〉 here represents the subspace generated by two vectors. The result follows. �

Corollary 9.6

If D represents the Grassmannian distance between two (n− 2)-dimensional sub-
spaces, then:

D(E,E(Φ, dH)) = O(d2
p) +O(dH).

Proof: This follows from the triangle inequality and Proposition 9.3. �

We now prove Proposition 9.2:

Proof of Proposition 9.2: For ε > 0, define the open set Uε ⊆M by:

Uε =
{
p ∈M s.t. dp(x) < ε and dH(x) < ε2

}
.

∂(Σ∩Uε) consists of two components: ∂Σ∩Uε = Γ∩Uε and ∂Uε ∩Σ. We first obtain
lower estimates for Φ0 along these two components.

We choose f such that, along Γ, (f − dH) = O(d3
p). Consequently, x(f − dH) = O(d4

p)
along Γ. Thus, since O(d2

p) = O(dH) along Γ, and since dS vanishes along Γ, there exists
K1 > 0 such that, along Γ:

|dS + x(dH − f)| 6 K1d
2
H .

This yields lower bounds for Φ0 along ∂Σ∩Uε.
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Since Σ is a convex immersion, and since ∂Σ = Γ is smooth, Σ has a unique supporting
normal at p, which concides with ∇dS . Thus, by the continuity of supporting normals to
convex sets, there exists an increasing, continuous function δ : [0,∞[→ [0,∞[ such that:

(i) δ(0) = 0; and

(ii) for all q ∈ Σ:
‖NΣ(q)−∇dS(q)‖ 6 δ(dp(q)).

Moreover dS vanishes along Γ. There thus exists K2 which only depends on the angle
between TpH and TpS such that throughout Σ∩Uε, for sufficiently small ε:

|dS(q)| 6 δ(ε)dΣ(q, ∂Σ)
6 K2δ(ε)d(q,H)
6 K2δ(ε)ε2.

Moreover, along Σ∩ ∂Uε:

|xf | = O(d3
p) = O(ε3),

|xdH | = O(dp)O(dH) = O(ε3).

There thus exists δ1 > 0 such that, along Σ∩ ∂Uε:

|Φ0| < δ1dH .

Moreover, δ1 tends to 0 as ε tends to 0.

Thus, if we choose M = Max(δ1ε−2,K1), then Φ > 0 along ∂(Σ∩U). Since Hess(Φ0) is
bounded, by Proposition 9.4 and Corollary 9.6:

D(Φ0, E(Φ, dH)) = O(ε2).

However:
Hess(Φ) = Hess(Φ0) + 2M∇dH ⊗∇dH + 2MdHHess(dH).

Since Mε2 tends to 0 as ε tends to 0, and since ‖∇Φ‖ remains uniformly bounded away
from 0, for sufficiently small ε:

‖∇Φ‖−nDet((Hess(Φ0) + 2M∇dH ⊗∇dH)|∇Φ⊥) < δ
⇒ 1

‖∇Φ‖ (Hess(Φ0) + 2M∇dH ⊗∇dH)|∇Φ⊥ /∈ Fδ.

However, since H is concave, 2MdHHess(dH) is negative definite, and therefore:

1
‖∇Φ‖

Hess(Φ)|∇Φ⊥ /∈ Fδ.

Property (iii) now follows. Since f is non-negative over ∂(Σ∩Uε), property (i) also follows.
Since f(p) = 0 and (∇f)(p) = N+(p), deforming f slightly yields a function which still
satisfies conditions (i) and (iii) but also satisfies condition (ii). This completes the proof. �
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We now obtain Proposition 9.1:

Proof of Proposition 9.1: Assume the contrary. Let (Σn, ∂Σn)n∈N be a sequence of
convex immersed hypersurfaces such that:

(i) ∂Σn = Γ; and

(ii) the Gaussian curvature of Σ is at least k.

Suppose, moreover, that there exists (pn)n∈N, p0 ∈ Γ such that (pn)n∈N converges to p0

and the angle that the exterior normal of Σn makes with N−(pn) at pn tends to 0.

By Lemma 8.2, there exists r > 0 such that, for all n, the connected component of
Σn ∩Br(pn) containing pn is embedded and bounds a convex set. For all n, we denote this
connected component by Σn,0. By compactness of the family of convex sets, there exists a
convex immersion Σ0 to which (Σn,0)n∈N converges in the C0,α sense for all α. Let f be as
in Proposition 9.2 with δ < k. For sufficiently large n, f achieves a strict local minimum
at some point qn ∈ Σn,0.

Let Hess0(f) be the Hessian of f over M , and, for all n, let Hessn(f) be the Hessian of
the restriction of f to Σn. At qn:

Hessn(f) = Hess0(f)|∇f⊥ − ‖∇f‖An,0,

where An,0 is the shape operator of Σn,0 at qn. By the Maximum Principal, at qn:

Hess0(f)|∇f⊥ − ‖∇f‖An,0 > 0
⇒ Hess0(f)|∇f⊥ > ‖∇f‖An,0

⇒ 1
‖∇f‖Hess0(f)|∇f⊥ ∈ Fk.

This is absurd by definition of f , and the result follows. �

10 - Compactness.

Let Mn+1 be a Hadamard manifold. Let (Γn−1
m )m∈N,Γn−1

0 ⊆ M be generic, locally
strictly convex, codimension 2, immersed submanifolds with convexity orientation such
that (Γm)m∈N converges to Γ0. For all m, let N−m and N+

m be the convexity orientation
and coorientation respectively of Γm. Let (φm)m∈N, φ0 : M →]0,∞[ be smooth, positive
functions such that (φm)m∈N converges to φ0 in the C∞loc sense. Let (Σn

m)m∈N ⊆ M be
smooth, immersed, strictly convex, compact hypersurfaces such that, for all m:

(i) ∂Σm = Γm;

(ii) Σm is compatible with the orientation of Γm; and

(iii) the Gaussian curvature of Σm at any point p ∈ Σm is equal to φm(p).

We obtain the folllowing precompactness result:
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Lemma 10.1

Let θ ∈]0, π[ be an angle and let D > 0 be a positive real number. Suppose that,
for all m:

(i) the outward pointing normal to Σm makes an angle of at least θ with N+
m at

every point of Γm; and

(ii) the diameter of Σm is no greater than D.

Then there exists a strictly convex, immersed hypersurface, (Σ0, ∂Σ0) ⊆M towards
which (Σm)m∈N subconverges. Moreover:

(i) ∂Σ0 = Γ0; and

(ii) the Gaussian curvature of Σ0 at any point p ∈ Σ0 is equal to φ0(p).

Proof: By the Arzela-Ascoli Theorem of [12], it suffices to obtain a-priori bounds for all
the derivatives of the shape operators of the hypersurfaces (Σm)m∈N. For all m, let Am

be the shape operator of Σm. Let (pm)m∈N, p0 be points such that:

(i) for all m, pm ∈ Γm; and

(ii) (pm)m∈N converges to p0.

Choose ε > 0. There exists r1 > 0 and, for all m, a smooth, embedded, strictly locally
convex hypersurface Σ̂m such that:

(i) pm ∈ Σ̂m;

(ii) Σ̂m is complete with respect to Br1(pm), and along with ∂Br1(pm) bounds a convex
set;

(iii) the connected component of Γm ∩Br1(pm) containing pm, which we denote by Γm,0,
is itself contained in Σ̂m;

(iv) the outward pointing normal over Σ̂m makes an angle of no more than θ/2 with N+
m

along Γm,0; and

(v) the Gaussian curvature of Σ̂m at the point q is at least φm(q) + ε.

Moreover, we may assume that (Σ̂m)m∈N converges towards Σ̂0.

By Lemma 8.2, reducing r1 if necessary we may assume that, for all m, the connected
component of the intersection of Σm with Br1(pm) containing pm, which we denote by
Σm,0, is embedded and lies on the boundary of a convex set, Km. By compactness of
the family of compact sets, there exists a convex set K0 to which (Km)m∈N converges in
the Haussdorf sense. The angle that the normal to K0 makes with TΣ0 at p0 is strictly
less than π. Thus, for all m, Σm is a graph over some (almost) fixed hypersurface over a
uniform radius about p: formally, reducing r1 further if necessary, for all m, there exists
a smooth embedded hypersurface Sm ⊆ M and an open subset Ωm ⊆ Sm with smooth
boundary such that:

(i) pm ∈ Sm and Sm is complete with respect to Br1(pm);
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(ii) the shape operator of Sm vanishes at pm;

(iii) Γm is a graph over ∂Ωm; and

(iv) Σm,0 and Σ̂m are graphs of functions fm and f̂m respectively over Ωm such that
f̂m > fm.

Moreover, we may suppose that (Sm)m∈N converges to S0 and that (f̂m)m∈N converges to
f̂0 in the C∞loc sense. Using this construction in conjunction with Proposition 5.1 of [10]
and Proposition 9.1, we obtain K1 > 0 such that, for all m and for all p ∈ Γm:

‖Am(p)‖ 6 K1.

Since the diameter of Σm is uniformly bounded above, by Proposition 6.1 of [10], we obtain
K2 > 0 such that, for all m, and for all p ∈ Σm:

‖Am(p)‖ 6 K2.

Again, using the above construction along with Theorem 1 of [3], we show that there exists
ε > 0 and uniform C0,α bounds for (Am)m∈N. The Schauder estimates then yield uniform
Ck bounds for (Am)m∈N. The result now follows by the Arzela-Ascoli Theorem of [12]. �

Let (Σ̂m)m∈N,Σ0 ⊆ M be locally strictly convex, immersed hypersurfaces in M with
generic boundaries such that (Σ̂m)m∈N converges to Σ0. Let (φm)m∈N, φ0 : M →]0,∞[ be
smooth, positive functions such that (φm)m∈N converges to φ0 in the C∞loc sense.

Lemma 10.1 can be refined to the following result:

Lemma 10.2

Let (Σm)m∈N be strictly convex immersed hypersurfaces in M such that, for all m:

(i) Σm is contained by Σ̂m; and

(ii) for all p ∈ Σm, the Gaussian curvature of Σm at p is equal to φm(p).

There exists a strictly convex immersed hypersurface, Σ0 in M to which (Σm)m∈N
subconverges. Moreover:

(i) Σ0 is contained by Σ̂0; and

(ii) for all p ∈ Σ0, the Gaussian curvature of Σ0 at p is equal to φ0(p).

Proof: Since (Σ̂m)m∈N converges to Σ̂0, there exists D > 0 such that, for all m, the
diameter of Σ̂m is bounded above D. Likewise, for all m, Γm := ∂Σ̂m is locally strictly
convex and, if N−m and N+

m denote the convexity orientation and coorientation respectively
of Γm, then there exists θ > 0 such that the angle that the outward pointing unit normal
to Σ̂m makes with N+

m along Γm is everywhere bounded below by θ.

For all m, let πm : Σ̂m → Σm be the canonical projection. Since M has non-positive
curvature, for all m, πm is distance decreasing, and the diameter of Σm is thus bounded
above by D. Moreover, for all m, since Σ̂m contains Σm, the angle that the outward
pointing unit normal to Σm makes with N+

m along Γm is everywhere bounded below by θ.
It follows by Lemma 10.1 that there exists a strictly convex immersed hypersurface, Σ0

towards which (Σm)m∈N subconverges such that, for all p ∈ Σ0, the Gaussian curvature of
Σ0 at p is equal to φ0(p). By Lemma 3.2, Σ̂0 contains Σ0 and this completes the proof. �
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11 - Local Deformation.

Let Mn+1 be a Hadamard manifold. Let (Σ̂t)t∈[0,1] be a smooth family of locally convex
immersed hypersurfaces in M with generic boundary. For all t, denote Γt = ∂Σ̂t. Let ε > 0
and let (φt)t∈[0,1] ∈ C∞(M, ]0,∞[) be a smooth family such that, for all t, the Gaussian
curvature of Σ̂t is everywhere greater than φt + ε.

For all t ∈ [0, 1] letMt be as in Section 2 and let Nt be the family of (equivalence classes) of
convex immersed hypersurfaces, [Σ] in M such that ∂Σ = ∂Σ̂t and Σ is strictly contained
by Σ̂t. By Lemma 3.3, Nt is an open subset of Mt and is therefore interpreted as a smooth
Banach manifold. Let M be as in Section 2 and let N be the family of all pairs (t, [Σ])
where t ∈ [0, 1] and [Σ] ∈ Nt. N is likewise an open subset of M.

Let X0 ⊆ N be the set of all pairs (t, [Σ]) in N such that the Gaussian curvature of Σ is
equal to φt. By Lemma 10.2, X0 is compact. Let P = (t0, [Σ]) be a point in X0, where
Σ = (i, (S, ∂S)). Let (it)t∈]t0−ε,t0+ε[ be a smooth family of immersions such that i0 = i
and, for all t, Γt = (it, ∂S). We define the family (Σt)t∈]t0−ε,t0+ε[ by:

Σs = (is, (S, ∂S)).

Let (UP , VP ,ΦP ) be the resulting graph neighbourhood of N about Σ.

Consider the Gauss curvature mapping K. This is a smooth section of E . If we identify
TPNt with C∞0 (S), then its covariant derivative, ∇K, defines a mapping from C∞0 (S) to
C∞(S). By Corollary 2.2, ∇K is a second order elliptic linear differential operator. It is
therefore Fredholm. Since it maps from C∞0 (S) to C∞(S), it is of index 0. There therefore
exists a finite dimensional vector subspace E ⊆ C∞(S) such that if M is defined by:

M : E ⊕ C∞0 (S) → C∞(S); (f, φ) 7→ ∇K · φ+ f,

then M is surjective. Since M differs from ∇K by a compact (in fact, finite rank) operator,
it is Fredholm of index m, where m is the dimension of E. Let f1, ..., fn be a basis of E.
For Q := (tQ,ΣQ) ∈ UP , where ΣQ = (iQ, (SQ, ∂SQ)), let πQ : (SQ, ∂SQ) → (S, ∂S)
be the canonical projection (recall that ΣQ is a graph over ΣtQ

). For all i, we define
fi,Q ∈ C∞(SQ) by:

fi,Q = fi ◦ πQ.

For all i, Q 7→ fi,Q defines a section of E|UP
, which we denote by Fi. We now define

K̂P : Rm × UP → E|UP
by:

K̂P (
n∑

i=1

λiei, (t, [Σ])) = K(Σ) +
n∑

i=1

λiFi(t, [Σ]).

By reducing UP if necessary, we may assume that ∇K̂ is Fredholm and surjective at every
point of Rm × UP . Since K̂ is now a function over an open subset of M (as opposed to
Mt), it has index (m+ 1). Let ψ : UP → [0,∞[ be a smooth function such that:
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(i) ψ = 1 near (t0, [Σ]); and

(ii) the support of ψ is contained in UP .

Let U ′P ⊆ UP be a neighbourhood of (t0, [Σ]) such that ψ = 1 over U ′P . We define
ΨP : Rm → Γ(E) by:

ΨP (
n∑

i=1

λiei) =
n∑

i=1

λiψFi.

By compactness of X0, there exist finitely many points P1, ..., Pn ∈ X0 such that:

X0 ⊆
n
∪

i=1
U ′Pi

=: Ω.

Denote m = m1 + ...+mn and define Ψ : Rm → Γ(E) by:

Ψ = ΨP1 ⊕ ...⊕ΨPn
.

Define K̂ : Rm ×N → E by:

K̂(v, (t, [Σ])) = K([Σ]) + Ψ(v).

For v ∈ Rm, define Xv by:

Xv =
{

(t, [Σ]) ∈ N s.t. K̂(v, (t, [Σ])) = φt

}
.

Proposition 11.1

There exists r > 0 such that:

(i) for ‖v‖ < r, Xv is compact; and

(ii) for ‖v‖ < r, Xv ⊆ Ω.

Proof: (i) Let (tm, [Σm])m∈N be a sequence in Xv. Let (Σ′m)m∈N be a sequence of smooth,
immersed, compact hypersurfaces in M such that, for all m, Σm is a graph over Σ′m.
Suppose, moreover, that (Σ′m)m∈N converges to Σ′0. For all m ∈ N∪{0}, choose fm ∈
C∞(Σ′m) and suppose that (fm)m∈N converges in the C∞ sense to f0. For all m, let πm

be the canonical projection onto Σ′m. With small modifications, Lemma 10.2 adapts to
the case where φm = fm ◦ πm for all m, and likewise to the case where φm is a finite
linear combination of such functions. It follows that the closure of Xv in M is relatively
compact.

Let (t, [Σ]) be a limit point of Xv. By Lemma 3.3, Σ is contained by Σ̂t. Suppose that
Σ /∈ Nt. Then Σ̂t does not strictly contain Σ, and Σ is thus an interior tangent to Σ̂t at
some point, p, say (possibly in ∂Σ̂). However, for v sufficiently small, ‖Ψ(v)‖ 6 ε and so
the Gaussian curvature of Σ̂t at p is strictly greater than that of Σ at p. This contradicts
the Geometric Maximum Principal (see, for example, [10]). There thus exists r > 0 such
that for ‖v‖ < r, the closure of Xv is contained in N and so Xv is compact. (i) follows.
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(ii) Suppose the contrary. There exists (vn)n∈N which converges to 0 and (tn, [Σn])n∈N
such that, for all n:

(tn, [Σn]) ∈ Xvn , (tn, [Σn]) /∈ Ω.

As in the previous paragraph, by Lemma 10.2, (tn, [Σn])n∈N subconverges to (t0, [Σ0]) ∈
X0. Thus, for sufficiently large n, (tn, (Σn))n∈N ∈ Ω, which is absurd. (ii) follows, and
this completes the proof. �

Define X ⊆ Rm × Ω by:

X =
{

(v, (t, [Σ])) ∈ Rm × Ω s.t. K̂(v, (t, [Σ])) = φt

}
.

Proposition 11.2

X is an (m+ 1)-dimensional smooth, embedded submanifold of Rm × Ω.

Proof: By construction, K̂ is everywhere Fredholm of index (m+ 1) and surjective. The
result now follows by the Implicit Function Theorem for Banach manifolds. �

Proposition 11.3

There exists (vn)n∈N ∈ Rm such that:

(i) (vn)n∈N converges to 0;

(ii) for all n, Xvn is a (potentially empty) 1-dimensional, smooth, compact, em-
bedded submanifold of Ω; and

(iii)∂Xvn
⊆ N0 ∪N1.

Proof: Let π : Rm×Ω → Rm be projection onto the first factor. Let πX be the restriction
of π to X. By Sard’s Lemma, the set of critical values of πX has Lebesgue measure 0.
Let (vn)n∈N ∈ Rm be a sequence of non-critical values of πX converging to 0. By the
Submersion Theorem, for all n, Xvn

is a 1-dimensional, smooth, embedded submanifold
of Ω. By Proposition 11.1 we may suppose moreover that, for all n, Xvn

⊂ Ω and that
Xvn is compact. (i) and (ii) follow. For all n, the end points of Xvn lie in the (manifold)
boundary of X. Since the (manifold) boundary of X is contained in N0 ∪N1, (iii) follows.
This completes the proof. �

12 - Local and Global Rigidity.

Let Mn+1 be an (n + 1)-dimensional Hadamard manifold. Let Σ̂ ⊆ M be a convex
immersed hypersurface. Choose φ ∈ C∞(M). Let Σ = (i, (S, ∂S)) be another convex
immersed hypersurface. We say that Σ is a solution to the problem (Σ̂, φ) if and only if:

(i) ∂Σ = ∂Σ̂;

(ii) Σ is contained by Σ̂; and

(iii) for all p ∈ S, the Gaussian curvature of Σ at p is equal to (φ ◦ i)(p).
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De�nition 12.1

(i) We say that (Σ̂, φ) is locally rigid if and only if, for all solutions, Σ to (Σ̂, φ),
the linearisation, DK, of the Gauss Curvature Operator, K, over Σ is invertible.

(ii) We say that (Σ̂, φ) is globaly rigid if and only if there exists at most one
solution, Σ to (Σ̂, φ).

We recall the following properties of local and global rigidity:

Proposition 12.2

(i) If (Σ̂, φ) is locally rigid, then (Σ̂, φ′) is also locally rigid for all φ′ sufficiently
close to φ.

(ii) If (Σ̂, φ) is locally and globally rigid, then (Σ̂, φ′) is globally rigid for all φ′

sufficiently close to φ.

Proof: See [10]. �

Now let (Σ̂t)t∈[0,1] be a smooth family of locally strictly convex, immersed hypersurfaces
in M with generic boundaries. Let ε > 0 and let (φt)t∈[0,1] ∈ C∞(M, ]0,∞[) be a smooth
family of smooth, positive functions such that, for all t, the Gaussian curvature of Σt at
any point p is no less than φt(p) + ε. Using local and global rigidity, we obtain existence:

Lemma 12.3

Suppose that (Σ̂0, φ0) is both locally and globally rigid. If there exists a solution
Σ0 to (Σ̂0, φ0), then there exists a solution to (Σ̂1, φ1).

Remark: It follows that proving existence of solutions for a given problem reduces to
showing the existence of a smooth isotopy by locally strictly convex immersions to a locally
and globally rigid problem for which solutions are known to exist.

Proof: Let N , m ∈ N and Ψ : Rm → Γ(E) be as in Section 11 and, for all v ∈ Rm, define
Xv ⊆ N by:

Xv = {(t, [Σ]) ∈ N s.t. K([Σ]) + Ψ(v) = ψt} .

Let (vn)n∈N ⊆ Rm be as in Proposition 11.3. Since (Σ̂0, φ0) is locally rigid, there exists
N > 0 such that, for all n > N , Xvn ∩N0 is non-empty, and thus, in particular, Xvn is
non-empty. Since (Σ̂0, φ0) is also globally rigid, it follows by Proposition 12.2 that, for
sufficiently large n, Ψ(vn) + φ0 is too, and therefore that Xvn

∩N0 consists of a single
point.

Let π : N → [0, 1] be the canonical projection. For all n > N , Xvn
is a smooth, embedded,

compact, 1-dimensional submanifold of N . It is thus homeomorphic, either to a compact
interval or to a circle. By local and global rigidity, the restriction of π to Xvn

is a local
diffeomorphism near the unique point lying in π−1({0}). It follows that Xvn has non-
trivial (manifold) boundary, and is therefore not a circle. It is thus a compact interval.
By Proposition 11.3, the endpoints of Xvn

lie in N0 ∪N1. By global rigidity, only one
endpoint of Xvn

lies in N0, and the other therefore lies in N1.
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For all n, let Σn be such that (1, [Σn]) is the unique endpoint of Xvn
in N1. By Lemma

10.2, there exists Σ0 to which (Σn)n∈N subconverges and Σ0 is a solution of (Σ̂1, ψ1). This
completes the proof. �

Lemma 12.3 may be easily adapted to treat the case where the metric of the underlying
manifold also varies, and we obtain Theorem 1.1:

Proof of Theorem 1.1: Let (Σ̂t)t∈[0,1] be an isotopy by convex, immersed hypersurfaces
such that Σ̂0 = Σ̂ and Σ̂1 is a finite covering of Ω. For ease of presentation, we will assume
that the covering is of order one: the general case is almost identical. Let p ∈ K be an
interior point. Let d0, d1 : M → R be given by:

d0(x) = d(x,K), d1(x) = d(x, p).

Both d0 and d1 are smooth outside K. For t ∈ [0, 1], define dt by:

dt = td1 + (1− t)d0.

Trivially, ∂K is isotopic by smooth convex immersions to d−1
0 ({r}) for all r > 0. Choose

r0 such that K ⊆ Br0(p). For all t, d−1
t ({r0}) is a convex, embedded hypersurface and we

thus obtain an isotopy by smooth convex immersions between d−1
0 ({r0}) and d−1

1 ({r0}).
We may thus define (Σ̂t)t∈[1,2] such that Σ̂2 is a geodesic sphere with a finite number of
open sets removed. Let g be the Riemannian metric on M . Define (gt)t∈[0,2] such that
gt = g for all t.

We may assume that Σ̂2 is as small as we wish. Define (Σ̂t)t∈[2,3] and (gt)t∈[2,3] such that:

(i) g2 = g;

(ii) g3 is complete with constant curvature equal to 1;

(iii) for all t, Σ̂t is a geodesic sphere with respect to gt with a finite number of open sets
removed.

Define (Σ̂t)t∈[3,4] and (gt)t∈[3,4] such that:

(i) for all t, gt = g3 is the complete hyperbolic metric;

(ii) for all t, (Σ̂t) is a geodesic sphere with a finite number of open sets removed; and

(iii) Σ̂4 is a horosphere with a finite number of open sets (including a neighbourhood of
the infinite point) removed.

Let (ψt)t∈[0,4] ∈ C∞(M) be a smooth family of smooth, positive valued functions such
that:

(i) ψ0 = ψ;

(ii) for all t and for all p ∈ Σ̂t, the Gaussian curvature of Σ̂t at p is greater than ψt(p);
and

(iii)ψ4 is constant and equal to 1− δ for some δ < 1.
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The problem (Σ4, ψ4) in (M, g4) = Hn+1 is locally and globally rigid and has a non-trivial
solution (see [10]). By Proposition 8.1, this isotopy by locally strictly convex, immersed
hypersurfaces may be deformed to an isotopy by locally strictly convex, immersed hyper-
surfaces whose boundaries are generic. Existence therefore follows by (an appropriately
modified version of) Lemma 12.3, and this completes the proof. �
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