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ABSTRACT. In this paper we study the number of limit cycles bifurcating from
isochronous surfaces of revolution contained in R3, when we consider polynomial
perturbations of arbitrary degree. The method for studying these limit cycles is
based in the averaging theory and in the properties of Chebyshev systems. We
present a new result on averaging theory and generalitzations of some classical
Chebyshev systems which allow us to obtain the main results.

1. INTRODUCTION

Consider a differential system
x = Xo(x) + X (x), (1)

where x € R?, X3, X : R? — R? are vector fields and ¢ is a real small parameter;
the dot denotes the derivative with respect to the time. If we suppose that (1).—o
has an isochronous invariant surface S C R3, that is S is foliated by periodic orbits
with the same period, then natural questions are: For ¢ # 0 sufficiently small does
the differential system (1) possess limit cycles emerging from the periodic orbits of
S? How to compute them? How many? These questions are analogous to the
following about planar differential systems: How many limit cycles emerge under a
perturbation from a planar center? In this last case many results has been obtained
(see for example [2] and the references there in). Recall that a limit cycle of a
differential system is a periodic orbit which is isolated in the set of all periodic orbits
of the system.

A tool for studying these kind of problems is the averaging theory. For instance,
perturbations of isochronous sets of periodic orbits as planes, cylinders and tori in
R? has been studied, see [4, 5, 6]. For a general introduction to this theory see [10]
and [12].

In this paper we consider differential systems (1).— in R* which contain an isolated
isochronous invariant revolution surface of the form

S ={(z,y,2) € R*| F(x,y,2) = 2" +y* — f(2) = 0}, (2)
where f(z) > 0in a nonempty open subset U; of R. Mainly we consider the quadratic
case, that is when X, is quadratic vector field and f(z) is a polynomial of degree
at most 2. The set of all these Sp contains the main quadratic surfaces of R3: the
sphere {22 +y%+ 22 — 1 = 0}, the cylinder {2 +4* — 1 = 0}, the hyperboloid of one
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sheet {22+ — 22 — 1 = 0}, the hyperboloid of two sheets {22 +y*—22+1 = 0}, the
cone {r? +y? — 22 = 0} and the paraboloid {z?+y?—z = 0}. We also consider some
cases where f(z) is a polynomial of arbitrary degree, for instance either f(z) = z#/4
with p and ¢ positive integers such that (p,q) = 1, or f(z) = e*, or f(z) = log z.

The paper is devoted to the study of the number of limit cycles of system (1) for
e # 0 sufficiently small bifurcating from the periodic orbits of Sg under polynomial
perturbations X of degree d > 1.

Frequently it is necessary to use an appropriate system of coordinates in an open
neighborhood of Sg for reducing the differential system (1) to the standard form for
applying the results of the averaging theory. In addition it is well known that the
study of limit cycles of differential systems is in general a hard problem. So some
restrictions have to be imposed to system (1).—o for obtaining satisfactory results.

We will say that a quadratic differential system (1).—¢ with an isochronous invariant
quadratic surface Sg have an invariant dynamic by cylinders if when we transform
the differential system (1).—o by using cylindrical coordinates (#,,z) then we get
that # = 0. This condition and the assumption of isochronism on the periodic orbits
of SF are imposed in order to apply in a simple way the results of averaging theory
for studying the limit cycles bifurcating from the periodic orbits of Sp. We note that
the natural invariant surfaces of a differential system having an invariant dynamic
by cylinders are the revolution ones.

The bifurcation of limit cycles for the cases treated in [4, 5] was studied by applying
Theorem 3.1 of [1]. In [6] an improvement of such a theorem (see Theorem 4 in
Section 2) was proved and applied. When both results cannot be applied (as for
instance for system (1) when f(z) = 1) we need other analogous results. In this
paper we give a new result on the periodic orbits studied by averaging theory (see
Theorem 5 in Section 2) that will allow us to study the bifurcation of limit cycles of
(1) for € sufficiently small and for any f(z).

As we will see in Section 2 the number of limit cycles of system (1) bifurcating from
the periodic orbits of the invariant isochronous surface Sg of (1).—¢ are controlled
by the isolated zeros of a function d(«, €) which is defined in a transversal section to
the surface Sp. If (1) is at least of class C?, then such function can be writen as

d(a,e) =eG(a) + 525(04, £).

In this paper we only study the bifurcated limit cycles which are controlled up to
first order in e, that is, assuming that G(«) does not vanish identically. Hence as
we shall see our problem reduce to study how many isolated zeros has the function
G(«). The results from the averaging theory guaranty the existence of a limit cycle
for each simple zero of this function. If G(«) vanish identically, then results using
higher order averaging theory in € must be applied.

The main result of this paper is the following one.

Theorem 1. Any polynomial perturbation (1) of degree d > 1 of a quadratic differ-
ential system (1).—o, which has an invariant isochronous quadratic surface Sg given
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by (2) and an invariant dynamic by cylinders, can be written as

T = —y‘I—SP(Z',y,Z),
y = x+eQ(r,y,2), (3)
Z = MF(x,y,z)+eR(x,y,2),

where A € R\{0}, F(z,y,z) = 2*+y*— f(2), f(2) is a polynomial of degree s < 2 and
P(z,y,z2), Q(z,y, z) and R(x,y, z) are polynomials of degree d. For e # 0 sufficiently
small the following statements hold.

(1) IfG(«) does not vanish identically, then d—1 is an upper bound for the number
of limit cycles of system (3) that can bifurcate from the periodic orbits of the
invariant isochronous surface Sg of system (3).=o.

(13) For anyv in{0,1,2,...,d—1} we can find polynomials P, Q and R of degree
d such that system (3) has exactly v limit cycles, bifurcating from the periodic
orbits of the isochronous surface Sg of system (3)e=o.

Theorem 1 implies that the maximum number of limit cycles that can bifurcate
from (3).—o inside the space of polynomial perturbations of degree d is at least d — 1.
In other words the cyclicity of (3).— is at least d — 1.

Inspired in Theorem 1 we consider systems (3) with f(z) either a polynomial, or
2P/ with p and ¢ positive integers such that (p,q) = 1, or exp(z), or log z.

Theorem 2. Consider system (3) with f(z) a polynomial of degree s > 3. Fore #0
sufficiently small the following statements hold.

(1) If G(a) does not vanish identically, then

D=d-1+4(s—2) {dzl}
is an upper bound for the number of limit cycles of (3) that can bifurcate
from periodic orbits of the isochronous invariant surface Sg of system (3)e=o.
Moreover there exist polynomials P, QQ and R of degree d and a polynomial
f of degree s such that system (3) has D limit cycles, bifurcating from the
periodic orbits of the invariant isochronous surface Sg of system (3).—o.

(13) If either 1 < d <4, ors =3, ors =4 and d even, or s = 4 and d < 29
odd, or s =5 and d < 27, or s = 6 and d < 24 even, then for every v €
{0,1,2,..., D} we can find polynomials P,Q, R of degree d and a polynomial
f of degree s such that system (3) has exactly v limit cycles, bifurcating from
the periodic orbits of the invariant isochronous surface Sp of system (3).—o.

As we will see in Section 4 the proof of some cases of Theorem 2(i7) is computational
and cannot be generalized to arbitrary s and d.

Theorem 3. Consider system (3) when f(z) is the function 2P/? with p and q positive
integers such that (p,q) = 1, or exp(z), orlogz. Then for e # 0 sufficiently small

o=([= ) (e )

is an upper bound for the number of limit cycles of (3) that can bifurcate from periodic
orbits of the isochronous invariant surface Sg of system (3).—o. Moreover we can find
polynomials P,Q and R of degree d such that system (3) has exactly D limit cycles,
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bifurcating from the periodic orbits of the invariant isochronous surface S of system
(3)5:0-

The paper is structured as follows. In Section 2 we summarize the result from
the averaging theory that we will use for proving Theorems 1 and 2. In Section 3
we prove some general results that can be applied to any f. Section 4 is devoted to
prove Theorems 1 and 2, and in Section 5 we find some new families of Chebyshev
systems and we prove Theorem 3.

2. A NEW RESULT IN AVERAGING THEORY

We consider the problem of the bifurcation of T-periodic orbits from the differential
system

x = Fy(t,x) + eF1(t,x) + 2 Fy(t, x, €), (4)

with € € (—eg,&0) and €9 > 0 sufficiently small. The functions Fp, F; : R x & — R

and Fy : R x Q X (—g¢, &) — R"™ are C* functions, with k > 2 and T-periodic in the

variable t, where {2 is an open subset of R”. We assume that the unperturbed system

(4).—0 has a submanifold of dimension m with 1 < m < n, foliated by T-periodic
orbits.

Let x(t,z) be the solution of the unperturbed system (4).— such that x(0,z) = z.
We write the linearization of (4).— along the solution x(¢,z) as

y(t) = DxFo(t, x(t,2))y. (5)
In what follows we denote by M, (t) a fundamental matrix of the linear differential
system (5), by £ : R™ x R*™™ — R™ and &4 : R™ x R*™™ — R"™™ the projections
of R™ onto its first m and n — m coordinates respectively; i.e. &(xy,...,x,) =
(21, .., zm), and EX (T, .. 1) = (Tpats -+ Tn)
The result used in [4, 5, 6] can be stated as follows.

Theorem 4. [6] Let V C R™ be open and bounded, let By : CL(V) — R*™ be a C*
function and Z = {z, = (o, fo(a)) |a € CL(V)} C Q its graphic in R™. Assume that
for each z, € Z the solution x(t,2z,) of (4)c—o is T-periodic and that there exists a
fundamental matriz M, (t) of (5) such that the matriz M, '(0) — M, (T)

(a) has in the lower right corner the (n—m)x (n—m) matriz A, with det(A,) # 0,
and
(b) has in the upper right corner the m x (n —m) zero matriz.

Consider the function F : CL(V) — R™ defined by

Fla)=¢ </OT M, (t)Fi(t, x(t, za))dt> . (6)

Suppose that there is ay € V' with F(cg) = 0, then the following statements hold for
e # 0 sufficiently small.
(1) If det((OF /Ocr)(cw)) # 0, then there is a unique T-periodic solution ¢;(t,¢)
of system (4) such that p1(t,e) = x(t,Za,) as e — 0.
(i) If m = 1 and F'(ag) = -+~ = F D(ag) = 0 and F®(ag) # 0 with s < k,
then there are at most s T-periodic solutions p1(t,€),...,s(t,€) of system
(4) such that v;(t,e) — x(t,24,) as e — 0 fori=1,...,s.
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As we shall see in Section 3 this result cannot be applied in some cases for studying
the bifurcation of limit cycles from the invariant isochronous surface Sgp. Then a
natural question is: there exists an analogous result for studying the pertodic orbits
of (4) bifurcating from an isochronous set of (4)e—o?

The answer to the previous question is the following new result.

Theorem 5. Let V. C R™ be open and bounded, let By : CI(V) — R™ be a C*
function and Z = {z, = («, Bo(a))|a € CI(V)} C Q its graphic in R*™. Assume
that for each z, € Z the solution x(t,za) of (4)e—o is T-periodic and that there exists
a fundamental matriz M, (t) of (5) such that the matriz M, '(0) — M, *(T)

(a) has in the upper right corner the m x m matriz A, with det(A,) # 0, and
(b) has in the lower right corner the m X m zero matriz.

Consider the function G : CI(V) — R™ defined by

Gla) =&+ (/OT sz(t)Fl(t,x(t,za))dt) . (7)

Suppose that there is ag € V with G(ag) = 0, then the following statements hold for
€ # 0 sufficiently small.

(¢) If det((0G/0a)(cw)) # 0, then there is a unique T-periodic solution ¢1(t,¢)
of system (4) such that p1(t,e) = x(t,Zq,) as e — 0.

(43) If m = 1 and G'(ap) = -+ = G V() = 0 and G (ap) # 0 with s < k,
then there are at most s T-periodic solutions ¢1(t,€), ..., ps(t,€) of system
(4) such that v;(t,e) — x(t,2a,) ase — 0 fori=1,...,s.

Instead Theorem 5 is an analogous result to Theorem 4 and consequently their
proofs are similar, we include it proof for completeness and for increasing the read-
ability of the paper.

Proof of Theorem 5. Since Z is a compact set and x(¢,z,) is T-periodic for each
Z, € Z, there is an open neighborhood D of Z in 2 and 0 < &; < gg such that
any solution x(¢,z, ) of (4) with initial conditions in D x (—&1,¢;) is well defined in
[0, 7]. We consider the function L : D X (—e1,e1) — R*™, (z,¢) — x(T,z,¢) — z. If
(z,&) € D x (—ey,e1) is such that L(z,&) = 0, then x(t,%,€) is a T-periodic solution
of (4).—z. Clearly the converse is true. Hence the problem of finding T-periodic orbits
of (4) close to the periodic orbits with initial conditions in Z is reduced to find the
zeros of L(x,¢).

The sets of zeros of L(z,¢) and L(z,¢) = M, *(T)L(z, ) are the same, since M, (T)

z

is a fundamental matrix. Moreover following the proof of [1] we can compute that
T
D,L(z,e)= (M, (0)— M, (T))+D, (/ M) Fi(t x(t, z, 0))dt)€+0(52). (8)
0

We note that L~1(0) = (€+oL)~1(0)N(£0L)~1(0). From (8) we obtain D,L(z4,0) =
M, 1(0) — M, Y(T). If we write z € R*™ as z = (u,v) with u,v € R™, then D,(£ o

L)(z4,0) is the upper right corner of M;*(0)—M;*(T). Then from (a) we can apply
the Implicit Function Theorem, thus it follows that there exist an open neighborhood

U X (—€2,€2) of CI(V) in {(D) x (—&1,¢€1), an open neighborhood O of fy(Cl(V)) in
R™ and a unique C* function B(a,€) : U X (—eg,&3) — O such that (£ o L)71(0) N
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(U x O x (—e9,9)) is exactly the graphic of 5(a,e). Now if we define the function
§:U X (—e,65) = Ras 6(a, ) = (£+ 0 L) (v, Bav,€), ), then § is a function of class
C* and L71(0) N (U x O x (—¢3,23)) = {(ov, B(av,€),€) | (v, ) € 671(0)}. Therefore
for describing the set 5*1(0) in an open neighborhood of Z in R™ x (—¢q,eg), it is
sufficient to describe 67*(0) in an open neighborhood of C1(V) in R X (—¢q, &).

Since M, '(0) — M, (T) has in the lower right corner the m x m zero matrix
and 0(a,0) = 0 in V' X (—e9,&2), the function §(«,€) can be written as d(a,e) =
£G(a) + 2G (v, €) in V X (—ea,e5), where G(av) is the function given in (7), see [1].
In addition if §(cv, £) = G(a) + £G(av, £), then §72(0) = 6(0).

If there is ap € V such that &(ap, 0) = G(ap) = 0 and det((8G/da)(ag)) # 0, then
from the Implicit Function Theorem there exist 5 > 0 small, an open neighborhood
Vo of ap in V' and a unique function of class C* a(e) : (—es3,e3) — Vp such that
57 H0) N (Vo x (—e3,¢e3)) is the graphic of a(e), which also represents the set §=1(0) N
(Vo X (—¢3,e3)). This prove statement (7).

Moreover if m = 1 the function G(«) is of one variable, so we can consider higher
order derivatives of it. Suppose that

05 019

7(0&0,0) = g/(Oé[)) = 07 ERE) W(

e a9, 0) = g(sfl)(ao) =0

and 804(1(%’ 0) = G (ag) # 0. We want to prove that there are at most s T-periodic
solutions of system (4) bifurcating from x(t,2z,,). Suppose the contrary, that is
suppose that there are at least s + 1 T-periodic solutions of system (4) bifurcating
from x(t, z,, ), then for any integer j there exist €; > 0 and n; > 0,¢; — 0and n; — 0
as j — 0o, such that the function E(z,aj) has at least s + 1 zeros in |z — z,,| < 1;.
Equivalently the function g(a, ¢) has at least s + 1 zeros in |a — ag| < 1;. By using
the Rolle Theorem we find a «; such that |o; — ag| < 7; and

) 00
G® (ay) + €igas (€)= 0,
which implies G**)(ag) = 0 by taking limit as j — oo, which is a contradiction. Hence
statement (i4) is proved. O

From Theorems 4 and 5 and using classical arguments from averaging theory we
get the following result.

Proposition 6. Suppose that a differential system (1) can be written in the form (4)
and that the subset S corresponds to a manifold foliated by periodic orbits of period
T. Under the hypothesis of Theorems 4 or 5 each T-periodic solution given by one
of these theorems corresponds with a limit cycle of system (1) for e small.

Therefore, if F(a) or G(«) does not vanish identically, then the number of isolated
zeros of them is an upper bound for the number of limit cycles of (1) bifurcating
from the periodic orbits of the surface & and each simple zero corresponds with a
limit cycle of (1) for € small.

In general to know the maximum number of limit cycles that system (5) can have
is a very difficult problem. The result described in the previous paragraph gives a
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partial answer in that direction. That is the upper bound provided by the simple
zeros of the function F(a) or G(«), when it is reached, is a lower bound for the
maximum number of limit cycles of system (1).

3. GENERAL RESULTS

Lemma 7. Any quadratic differential system (1).—o in R® with the invariant isochro-
nous quadratic surface Sg of the form (2) with f(z) of degree at most 2 having an
invariant dynamic by cylinders can be written as system (3).—o.

Proof. Let Py(z,vy, 2), Q2(x,y, z) and Ry(x,y, z) be polynomials of degree 2. Consider
in R? the quadratic differential system

dx dy dz
—=PF, == — = Rs. 9
dr > dr @z dr 2 9)
By using cylindrical coordinates x = rcosf,y = rsinf, z = z, we obtain that
i@ Qo —yPy ﬂ_iUP2+yQ2

= —->° and

dr 72 dr r

Therefore dr/dr = 0 if and only if P, = —yQs, whence P, = —yT and Q2 = «T for
a polynomial 7' = T'(z, y, z) of degree 1. By using this, we have that df/dr = T. Now
as {F = 0} is an invariant isochronous surface we have that the linear polynomial
T restricted to the quadratic surface {F' = 0} must be a non zero constant, i.e. we
conclude that T' is a constant p # 0, thus df/dr = u. In addition since {F = 0} is
invariant then there is a polynomial K = K(x,y, z) of degree 1 such that

or or
Ox 0z

Since Py + yQ2 = 0 then Ryf'(z) = —KF, and it follows that Ry = A F with
A1 € R. By using the rescaling 7 = ¢/p in time (9) is transformed into (3).—o. O

oF ,
Py Q287y+32 =aPy+yQs — Rof'(2) = KF.

Lemma 8. By using cylindrical coordinates (0,1, z) system (3) can be written into the
form (4); the transformed system satisfies the conditions (a) and (b) of Theorem 5;
and (7) takes the form

Gla) = /027T (ﬁ <9, V() a) cosf — Q (97 V), a) sin0> do, (10)

where o € R, and P (8, V f(a), oz) and Q (9, V f(a), oz) are the expressions in the

new coordinates of P(x,y,z) and Q(x,y, z) restricted to the surface Sg respectively.
Proof. In cylindrical coordinates system (3) becomes
0=1+¢ (@(9,7‘, z)cos — P(6,r, ) sin0> /r,
r=c (ﬁ(ﬁ,r, z) COSQ—F@(Q,T, z) sin@) , (11)
== f(2)) +eR(0.r,2),
where Y(0,r,2) := Y (rcos,rsin, z) for Y € {P,Q, R}.
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We change the independent variable ¢ of system (11) by the variable 6, and we
obtain the equivalent 2-dimensional system

=A% = f(2)) +e8(0, 7, 2) + O(e?),

¥ =¢ <}~7(0, r,z)cosf + @(9, 7, 2) sin 9) +0(?), (12)

where
S0,r,z) = (ﬁ(@,r, 2) = A(r? = f(2)) (@(9,7", z) cosf — 15(6’,7", z) sin 0) /r) ,

which is defined in R? \ {(0,0,2) |z € R}. The prime denotes the derivative with
respect to the variable 6.

If we use the notation x = ( i >, then system (12) can be written as

x'(0) = Fy(x) +eF1(0,%) + 2 Fy(0, %, €),

i — (A7),

where

and

S(0,r,z) > . (13)

F = ~ Z
1(6,x) < P(O,r,z)cos0 + Q(0,r,z)sinb
It is clear that Fp, F; : R x Q — Q and Fy : R x Q X (—&g,&9) — Q are 2m-periodic
in 0 and analytic. Thus system (12) has the form (4).

Consider the subset

Z:{za:<a,\/Toz)) |a€R,f(a)>0}CQ.

The solution of (12).—o through the point z, is x(0,z,) = < ](‘l(oe) > which is

constant, hence 27-periodic in §. Therefore Z is an invariant 1-dimensional manifold
foliated by periodic orbits of the unperturbed system (12).—¢ (in fact, singular points),
which corresponds to the invariant isochronous surface Sg of system (11).—.

The variational system corresponding to the unperturbed system (12).—, along the

solutions of Z is
()10 =) ()

For obtaining a fundamental matrix M,_ of the previous system we consider two
cases.

Case f'(a) # 0. In this case we compute that

s V@) (e @0)

Then we have

vy 2/F@ (1= @0
M*ww:<@“w < )>, (14)

I'(a)
1
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and consequently

o) 2V (1@
Vo) - e = 1-enre MRS g
0 0
It is clear that 2./ f (1 — ezm\f N /f(a) #
Case f'(a) = = —\d then for f’(a) = 0 we have that

M, (6) = ( é —Q@GA )

Then

Zo

o= (5 V), (16

and

M;H(0) — M (2m) = ( ’ ‘4”V0f(0‘” ) . (17)

Zo

Hence the right upper matrix of M, '(0) — M, !(27) does not vanish for any « in
the domain of f.
Therefore taking V' any compact subset of R, the function 8y : Cl(V) — R*,

a — 4/ f(a), and using (15) it is clear that system (12) satisfies hypotheses of
Theorem 5.
By using (13) and (14) we have that (7) takes the form (10):

g(a):/:w( (9 V@), >C059 Q(9 VI@),a )sme)
O

We note that from (15) and (17) it is clear that if f'(a)) = 0 then Theorem 4 cannot
be applied, even changing the order of the coordinates (z,r). In particular in the
case f(z) =1 (S the cylinder) Theorem 4 cannot be applied. However Theorem 5
can be used.

Lemma 9. If P(x,y,z) and Q(x,y,z) are polynomials of degree at most d, then
expression (10) takes the form

G(a) = VF(@) Y ha-@in(@) (f(@) = VF(a)G(a), (18)

where hq_(a11)(«) s a polynomial of degree d — (21 4+ 1) and whose coefficients are
functions on the coefficients of P(x,y,z) and Q(z,y,z). Moreover if Q(x,y,z) =0
then there exists a polynomial P(x,vy,z) such that all the coefficients of every poly-
nomial hg_(ai41y(a) of (18) are independent.

Proof. Suppose that

CC Y, 2 E ngkx y Z CC Y, 2 E Q’ij:r y Z
i+j+k=0 i+j+k=0
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then

P(0vT@e) = 3 (3 met ) (7)ot o

and
d—i—j

@ (97 \/m, a) = 'f: ( Z Qijkak) < f(Oé))ZH cos’ fsin’ 6.

Therefore

/ N(@ F )cos&d@- Z Pa—(i5) (@ )(f(a))iéj L,

0

i+7=0
2 d itj
| (o i) sinods = 3 (@) () % i
i+j=0

where pg_(i4j) () and gq—i4; (a) are polynomials in « of degree d — (i + j) and
27 2
Ly = / cost'@sin’ df  and  J; = / cos' 0sin’™! 6 df.
0 0

It is well-known that I; ; does no vanish identically if and only if ¢ + 1 and j are
even. Suppose that i = 2u+ 1 and j =2v. Asi+j < d then 2(u+v)+1 < d,
therefore p+ v < [%] If we consider | = p + v and Iyg41) = Z#Jw:l I, 41,9, then

2m ~ [%] 2041
/0 P (6,v/F(@),a) cos0d8 = 3 Lynpa (@) (f(@)F, (19)

Analogously J; ; does no vanish identically if and only if 7 and j+1 are even. Suppose
that i = 2p and j = 2v+1. Asi+j < dthen 2(u+v)+1 < d, therefore p+v < [%]
If we consider | = p + v and Jyq41) = Zu+u:l Jopu,2v+1) then

o {%] 2041
| (o vi@)a)singds = 3 his-crnfe) (@) 0

Then from (19) and (20) we obtain that G(«) given in (10) takes the form (18):

Gla) =/ [(a) Z ha—(a+1)(a) (f(a))l .

Now we will prove the second assertion of Lemma. If Q(z,y,z) = 0 and

d

] sd-1-2 oy
Py z(zmwﬂ -
k=0

C
1=0 {

where p; 91 € R and

2m
ca:=1I= / cos®Osin? 0d #0, 1=0,1,...,[(d—1)/2]. (22)
0
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Then if we replace P (9 Vf ) cosf and Q <9 Vf ) sinf in (10) and by
using (21) and (22) we obtaln

[%5Y] /a—1-2
Gla) = EI(Ejmma>vmW=¢ﬂwam. (23)
1=0
Since the coefficients py o, with 1 =0,1,...,[(d—1)/2] and k =0,1,...,d -1 —2l,
were chosen independent the statement is proved. ]

As we will interested in the number of zeros of G(a) contained in the set Uy, then

from now on we can work with G instead of G because the number and the multiplicity
of their zeros coincide in Uy.

Remark 10. From Lemma 8 and the second assertion of Lemma 9 it follows that if
G(a) does not vanish identically, then for finding limit cycles of system (3) bifurcating
from the periodic orbits of Sg it is sufficient to consider @) = 0, R = 0 and P arbitrary,
in other words is sufficient to study the zeros of G given in (23).

4. THE POLYNOMIAL CASE

The proofs of Theorems 1 and 2 are based in the results of the previous section
and some technical lemmas.

Lemma 11. Let d > 1 be the mazimum of the degrees of the polynomials P(z,y, z),
Q(x,y,z) and R(z,y, z) in (3). If f(2) is a polynomial of degree s in F = x* + y* —
f(z), then Q\(a), defined in (18), is a polynomial function of degree at most D with
D=d-1fors=0,1,2, and D=d — 1+ (s —2) [%2] for s > 3.

Proof. Suppose that f(z) is a polynomial of degree s. Then, from (18), QA(a) =
ha-1(a) + h(a), where

= Y~ () (f(a))'

For each | € {1,2,...,[%2]} the term of maximal degree in hg_(a41)(c) (f(a))

is @D - Since | < [41] then d — 204+ 1) + sl < d—1+ (s —2)[SL].

Therefore h(a) is a polynomial of degree at most d — 1 + (s — 2) [41]. Therefore

G(a) = hg_1(c) + h(e) is a polynomial of degree at most d — 1 if s = 0,1,2, and of
degree at most d — 1+ (s — 2) [52] if s > 3. O
Lemma 12. If f(z) is a polynomial of degree s, with s = 0,1,2, and f(z) > 0
in a nonempty open subset Uy of R, then for any positive integer d and any v in
{1,2,...,d—1}, we can find a polynomial P(x,y, z) of degree d such that the function
G(a) given in (23) has ezactly v zeros in Uy and each one of them is simple.

Proof. If we consider the polynomial P(x,y,z) defined in (21) with py o, = 0 for
1=1,2,..., [%] and py o, # 0 then G(«) given in (23) reduces to

d-1
a) = Zpl,o,k a” (24)
k=0
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which is a polynomial of degree d — 1 with all its coefficients independents. Therefore
for every v € {1,2,...,d — 1} we can choose the coefficients p; o, in such a way that

G(o) has exactly v simple zeros in Uj. O

Proof of Theorem 1. From Lemma 7 any quadratic differential system (1).—o in R3
with the invariant isochronous quadratic surface Sg (f(2) is a polynomial of degree
at most 2) having an invariant dynamic by cylinders can be written in the form
(3)e=0. From Lemma 8 the perturbed system (3), with f(z) a polynomial of degree
at most 2, is reduced to the form (4) and we can apply Theorem 5 for studying the
limit cycles of the original system (3).

If d is the maximum of the degrees of P(x,y,z) and Q(x,y,z) and the function
G (c), given by (18), does not vanish identically, then it has at most d—1 isolated zeros,
counting multiplicities, as we have proved in Lemma 11. Therefore the statement (7)
follows from Theorem 5(ii) and Proposition 6.

Statement (i7) follows from Remark 10, Lemma 12, Theorem 5(i) and Proposi-
tion 6. 0

Proof of Theorem 2. Proof of statement (7). The first assertion of this statement
follows from Lemma 11, Theorem 5(éi) and Proposition 6.

For the second assertion we can suppose that @Q = 0, R = 0 (see Remark 10) and
we need to prove that there are a polynomial f of degree s > 3 and a polynomial P
of degree d such that G(«) given in (23) has D simple zeros contained in the set Uy.

The second assertion of this statement is trivial if d =1 and if d =2, D = 1 and
from (23) we have that G (@) = p1o0 + P11, hence the assertion is valid also in
this case. If d = 3 (respectively d = 4) then D = s (respectively D = s+ 1). By
considering py 29 = 1 (respectively p1og =0 and p1o; = 1) and f(a) = ag + aza® +
-+ agsa®, with ag > 0, from (23) we have that

S
G(a) = (p1o,0 + ao) + projo + p1,o,2042 + Z ao’
1=3

(respectively é\(@) = pro0 + (Pro1 + ao)a + pro20® + proga® + 3 s a®™!) has
independent coefficients. Thus Q\(a) can have v zeros, with v = 0,1,..., D, in (0, 00)
and since qq is a free parameter, we can assume that f(a) > 0 in (0, 00). Therefore
for the cases d = 3 and d = 4 also the second assertion of (i) is true.

If d > 5 then the expression of G(«) has powers of the polynomial f(c) (see (23)),
hence we can not ensure a priori that the polynomial G () has all its coefficients
independent as in the previous cases. For proving that the second assertion of (i) is
also true for d > 5 we will use another approach. We only need to prove the existence
of f and P such that G () has D simple zeros contained in the set Uy. We will do
that in two steps. In the first step we construct an auxiliary function, which will
allow us to find f and P. In a second step we obtain the expressions for f and P.

First step. We can splitd > 5asd =5+4j+1, with j =0,1,... and7=0,1,2,3.

In such a cese the expression of D =d — 1+ (s — 2) [451] can be writted as

Djis =20+ 1)s + M s+i—2 [;] : (25)
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For each pair (j,7) and s > 3 we will construct a polynomial h;; ;(«) of degree which
will have D, ; ; simple zeros in [0, 00). With h;; s(o) we will find f and P.

We choose a polynomial f(oz) =ag+ a1+ -+ asa® of degree s > 3, with a, > 0,
such that it has s simple zeros in (0,00). Thus (f(a))? > 0 has a double zero at each
zero of f (). For any integer j > 0 we can choose j + 1 small enough real numbers
Ag, .. A, with0 < A; < Aj_y < -+ < Ay, such that each function (f(a))2 — Ay, for
1 =0,...,7, has exactly 2s simple zeros in (0,00). Then for the pair (j,7) we define
the polynomial

(@) = (@2 (Fe)) 1 ((f<a>)2 - Al) ,

of degree D;; s (see (25)) with D;,, simple zeros in [0,00), since the 2s zeros of
(f(a))? — Ay, are all different from the 2s zeros of (f (f f(a))? — A, for all k # [ and the
s zeros of f(a) are all different from the zeros of (f(a ))? = A foralll =0,...,j and
of course o = 0 is not a zero neither of f(a) nor of (f(a))> — A, forall [ =0,...,j

Second step. There is a constant K > 0 such that the polynomial f(a) = f(a)+ K
of degree s is strictly positive in [0, 00), and by using this relation we can write

2(+1)+[£] v
his(@) = > ()2l A (@), (26)

where the coefficients AM are functions of Ay, Ay,..., A; and K.

i
Now, if d = 544+ as above and let G, ;(«) the resulting expression of considering

all the coefficients in (23) nulls, except py gx, With k; = ¢ — 2[5]. Then

2(+1)+(4]

Gal)= > praw (@2 ().

By comparing éﬂ with (26) it is clear that if we choose py o, = AH ;» then QA” has
21

D;; s simple zeros in [0, 00) C Uy. Hence, Theorem 5(i) and Proposition 6 completes

the proof of statement (7).

Proof of statement (7). Again we can suppose that @ = 0, R = 0 (see Remark
10). The case 1 < d < 4 follows from third paragraph of the proof of statement (7).

For s = 3, or s = 4, we consider f(«) = a°. Hence from (23) we have that

{d71

S sic1-a
G(a Z < Z provk ) :
1=0
As the coefficients of the previous expression are all independent we only need to
show that every monomial o, p = 0,1,..., D appears.

For s = 3 it is enough to consider p; 9 = 0 when k > 3. Then sl +k = 3l + k for
k =0,1,2 cover all the naturals hence all the monomials appear.

For s = 4 if we consider p; 2% = 0 when k& > 4 we have that sl +k = 4l + k
for k = 0,1,2,3 cover all naturals only when d is even because when d is odd the
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corresponding monomial to power 4] 4+ 3 when [ = [%] does not appear. Hence G
has all the monomials.

The proof of the other cases follows arranging all the monomials of (23), as we have
done in the proof of previous statement when d = 3, and changing the coeffients of G
by new independent parameters. This is possible when the rank of the corresponding
linear system of the coefficients is maximal. This happens, choosing a concrete f for
each case, when s =4 and d < 24 odd, or s =5 and d < 24, or s =6 and d < 24
even. All the computations for these concrete values of d and s have been done with
a computer and MAPLE as algebraic manipulator.

The proof ends applying Theorem 5(i) and Proposition 6. O

Remark 13. We can not improve the values of d and s in Theorem 2(ii). Because,
for example, the computations involved in the case d = 26 and s = 6 are too big for
a computer with 32Gb of Ram.

5. PARTICULAR CASES

When f is not a polynomial, the techniques for controlling the number of zeros
of (23) usually use the properties on the Chebyshev systems, that is the natural
generalization concept of knowing the number of zeros, like polynomials, of a linear
combination of functions. We first recall some properties on them.

The set of j + 1 real functions { fo(x), fi(x),..., fj(x)} defined in a closed interval
A forms a Chebyshev system in A if any nontrivial linear combination agfo(z) +
arfi(z) 4+ - -+ a;fj(x) has at most j zeros in A counting multiplicities.

Proposition 14. Suppose that the set of real functions {fo(x), fi(x),..., fj(x)}
forms a Chebyshev system in A. If xg,x1,...,2; are 7 + 1 different points in A

and co, ¢y, ..., c¢j are j+ 1 arbitrary real numbers, then the system of equations
aofo(wi) + arfi(wi) + - +ajfj(zi) =ci, 1=0,1,...,7,
has a unique solution for ap,ai,...,a;.

For a proof of Proposition 14 see [7, pp. 24].

Proposition 15. Suppose that the set of real functions {fo(x), fi(z),..., fj(x)}
forms a Chebyshev system in A. Then the set{ [ fo(z)dx, [ fi(x)dz,..., [ fj(z)dz, 1}
also forms a Chebyshev system in A.

For a proof of Proposition 15 see [11, pp. 589].

Now we will introduce three families of Chebyshev systems that are used for prov-
ing Theorem 3. Proposition 16 can be found, without proof, in [8, pp. 138] but
for completeness we include its proof. It is well known that for any real num-
ber o and any natural number n the set {z® z®™' ... %™} is a Chebyshev sys-
tem. Some generalizations of this family can be found in [3] or in Proposition 17.
Finally Proposition 18 is a generalitzation of the well known Chebyshev family

{1,1log(z), z,xlog(x),...,2", 2" log(x)} where n is a natural number.

Proposition 16. Let a1 < ... < ay, be real numbers and let ny,...,ny be positive
integers. The set of L+ mny + ---+ ng funtions

A1, alx alx ny,Q1x arx apT ng QLT
T = {eM T xe™T L a™Me™MT L e pe T L g e}

is a Chebyshev system in any closed interval A.
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Proof. Given a positive integer n; and a real number (i, from the definition of a
Chebyshev system, we observe that the set Tfll = {eh12 xehre . ameh T} s also a
Chebyshev system in any closed interval A. Computing the primitive, see Proposi-
tion 15, of every element of the set Tfll we obtain the Chebyshev system

1 Bz i = Brz < i n1> Brz }
{51 ,( 51+513]>6 o pm,l(;c)+ﬁlx e 1y,

where p,,, _1(z) is a explicit polynomial of degree n; — 1. Now adding to each one of
the first n; + 1 elements of the above set a precise linear combination of the previous
elements, and after multiplying by ; we obtain the next Chebyshev system

70 — {eﬁlx zeh® . amehT 1} .

ny,0

By doing the similar procedure n, — 1 times more and after multiplying by ¢”* we
obtain that

TB1+B2.82 {8(514-52)1?7 xe(ﬂl"_ﬁQ)I, o 711"16(514-52)967 eﬁzﬂﬁ’ xeﬂﬁ xnzeﬁﬂ}

ni,n2

is a Chebyshev system. The proof that T is a Chebyshev system follows from
the application of the previous procedure untll B, and doing the change of parameters
Br=ar, bra+Br=ar1,. .., Bi+...+BL=a.

The other statements follows from the Chebyshev system properties. U

Proposition 17. Let ay,...,ay be different non positive integers and nq,...,ny be
positive integers. The set of L +mny + ---+ny functions

QLo f{ (e} a1+ny a2 ag+na arx nL+aL}
N1y, T ,..., X I sy L yeeoy, L

1s a Chebyshev system in any closed interval A contained in the positive axis.

Proof. Given a positive integer n; and a non integer number [y, it is well known
that the set V2 = {z#1,... 2™} is a Chebyshev system in any closed interval A
contained in the positive axis. Computing the primitive, see Proposition 15, of every
element of the set Vfll we obtain also the Chebyshev system

pr+1 pr+2 B1+n+1

Now multiplying any element for a non zero constant, all can be different, we obtain
also the Chebyshev system

Vnﬁll,’ {xﬂlJrl prt2 7$711+ﬁ1+1’ 1} .
Using the same procedure ny — 1 times more and after multiplying by 22 we obtain
that

B2+B1t+n2,B2 {x52+ﬂ1+n2+17 pPetitfitna+l 7Iﬁ2+n1+ﬁ1+n2+17 xﬁz’ o 73352-‘1-712}

ni,n2

is a Chebyshev system. The proof that V1% is a Chebyshev system follows
repeating the previous procedure until 5, assuming every time that 5y + 5, ..., 51+

-+ 4+ 1, are non integers numbers, and by doing the change of parameters 8, = oy,
(ﬁL—l + 7’LL_1) + (BL + TLL) =01y -+, (51 + nl) + ...+ (ﬁL + nL) = Q. [
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Proposition 18. The sets Uy = {1}, Uy = {1, 2} and

Ug = {1, x, ..zt (logm)[d%l],x(log:c)[%], o ,xd_z[%}_l(logx)[%}}
for d > 3 are Chebyshev systems in any closed interval A contained in the positive
azxis.

Proof. For d = 1,2, 3,4 it is well known that the corresponding set Uy is a Chebyshev
system in any closed interval contained in the positive axis. Now we will prove the
case d = 5 using that U, is a Chebyshev system. Computing the primitive, see
Proposition 15, of every element of the set

U, = {1,x,x2,x3,logx,xlogx}
we obtain also the Chebyshev system

1,1 .1 1 1
{1, x, 5332, gx?’, Zx‘l, rlogr — x, §x2 logx — 4} .
Now adding an specific multiple of some element of the set and multiplying any ele-
ment for a non zero constant, all can be different, we obtain also the next Chebyshev
system

3 2t xlogx, x? logx} .

{1, x, xQ, T
Dividing by z, doing a primitive and arranging all the elements with the previous

procedure we obtain that
{1,1‘, 22, 2% 2 log x, xlog z, 2 loga:} .

Now repeating the previos argument, a division by z, a primitive and an arranging
of the elements, we obtain that

Us = {1,z,2% 2% 2, log z, x log z, 2” log z, (log z)* }
is also a Chebyshev system.

To prove the statement for any d we can use the previous arguments starting
with the set U;_;. Then the proof follows doing one primitive, then [%} times the
procedure of a division by z, a primitive and an arranging of the elements. As it is

shown in the previous case [dgl] = 2 when d = 5. ]

Proposition 18 could be improved in some sense considering polynomials of different
degrees multiplying the function log x, but they cannot be chosen in an arbitrary way
like in Propositions 16 or 17. The difficulties to control the number of zeros of this
family can be showed with the next examples. The family

{1, z, 2% logz, rlog x, 2° log x, (log z)?, 2(log )2, 2% (log 3:)2}
is a Chebyshev system because the corresponding Wronskian has no zeros but
{1,2,2% log z, (log z)*, z(log z)?, 2*(log 2)* }

is not a Chebyshev system because the function
56939 75109 36927 , 27797

_ _ 1
f@) 5500 2000 © 2500 © 4000 °%”
17757 23137
——— 1 2 1 2+ 220 2 27
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has 7 zeros, one more than it would have in case that the Chebyshev property was
satisfied. We can prove that the seven zeros are localized inside the seven intervals

1 1 1 1 1 1 11 1
Tonn’ o0l l3anaonl > lon?anl 2 729l 0 772 7{276]7[6a11]
1000 100 100° 20 20° 10 107 2 2

The size of the coefficients in the previous example can be chosen as an indication of
the difficulties that appear in the problem of controlling the number of zeros of such
functions. Moreover the high sensibility on the coefficients can be also considered.

Proof of Theorem 3. Given a function f(a), from Lemma 9, Theorem 5(iz) and
Proposition 6, the limit cycles of (3) that bifurcate from the periodic orbits of (3)__,

for ¢ small enough are controlled by the zeros of G(a) of (18).
When the sets Wy = {1}, Wy = {1,a} and
]

W, = {1,a,...,ad—1,...,(f(a))[%],a(f(a))[ : ,...,ad—Z[d%]—l(f(a))[%]}

for d > 3 are Chebyshev systems in any closed interval A the number of zeros of (18)
is at most the number of elements of the set W, minus one, that is

o= ) ()

Moreover this bound is reached as ensures Proposition 14. Therefore Theorem 3
is proved when f(z) = log z using Propostion 18 and when f(z) = e* (respectively
f(z) = 2#/7) we apply Proposition 16 (respectively 17) taking L = [52]+1, oy = -1
(resp. oy =p/q+1—1) andnl:d—2l+1forl:1,...,[%} + 1. O

As it can be seen in the previous proof, the statements of Theorem 3 can be
extended to any f such that the set W, satisfies the Chebyshev property. In fact, as
it can be showed in this section, this is the main difficulty.
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