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Abstract

In this article we prove a classification theorem (Main Theorem) of real planar cubic

vector fields which possess four distinct infinite singularities and eight invariant straight

lines, including the line at infinity and including their multiplicities. This classification,

which is taken modulo the action of the group of real affine transformations and time

rescaling, is given in terms of invariant polynomials. The algebraic invariants and comitants

allow one to verify for any given real cubic system with four infinite distinct singularities

whether or not it has invariant lines of total multiplicity eight, and to specify its configuration

of lines endowed with their corresponding real singularities of this system. The calculations

can be implemented on computer.

1 Introduction and the statement of the Main Theorem

We consider here real polynomial differential systems

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where P, Q are polynomials in x, y with real coefficients, i.e. P, Q ∈ R[x, y]. We shall say that

systems (1) are cubic if max(deg(P ), deg(Q)) = 3.

Let

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y

be the polynomial vector field corresponding to systems (1).

A straight line f(x, y) = ux + vy + w = 0, (u, v) ̸= (0, 0) satisfies

X(f) = uP (x, y) + vQ(x, y) = (ux + vy + w)R(x, y)

for some polynomial R(x, y) if and only if it is invariant under the flow of the systems. If some

of the coefficients u, v, w of an invariant straight line belongs to C \ R, then we say that the

straight line is complex; otherwise the straight line is real. Note that, since systems (1) are real,

if a system has a complex invariant straight line ux + vy + w = 0, then it also has its conjugate

complex invariant straight line ūx + v̄y + w̄ = 0.

To a line f(x, y) = ux + vy + w = 0, (u, v) ̸= (0, 0) we associate its projective completion

F (X,Y, Z) = uX + vY + wZ = 0 under the embedding C2 ↪→ P2(C), (x, y) 7→ [x : y : 1].

The line Z = 0 in P2(C) is called the line at infinity of the affine plane C2. It follows from
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the work of Darboux (see, for instance, [5]) that each system of differential equations of the

form (1) over C yields a differential equation on the complex projective plane P2(C) which is

the compactification of the differential equation Qdx − Pdy = 0 in C2. The line Z = 0 is an

invariant manifold of this complex differential equation.

Definition 1.1. We say that an invariant affine straight line f(x, y) = ux + vy + w = 0

(respectively the line at infinity Z = 0) for a cubic vector field X has multiplicity m if there exists

a sequence of real cubic vector fields Xk converging to X, such that each Xk has m (respectively

m − 1) distinct invariant affine straight lines f j
i = uj

ix + vj
i y + wj

i = 0, (uj
i , v

j
i ) ̸= (0, 0),

(uj
i , v

j
i , w

j
i ) ∈ C3, converging to f = 0 as k → ∞ (with the topology of their coefficients), and

this does not occur for m + 1 (respectively m).

We give here some references on polynomial differential systems possessing invariant straight

lines. For quadratic systems see [6,19,20,22,24–26] and [27]; for cubic systems see [10–13,21,30]

and [31]; for quartic systems see [29] and [33]; for some more general systems see [8, 16, 17]

and [18].

According to [2] the maximum number of invariant straight lines taking into account their

multiplicities for a polynomial differential system of degree m is 3m when we also consider the

infinite straight line. This bound is always reached if we consider the real and the complex

invariant straight lines, see [4].

So the maximum number of the invariant straight lines (including the line at infinity Z = 0)

for cubic systems is 9. A classification of all cubic systems possessing the maximum number of

invariant straight lines taking into account their multiplicities have been made in [11]. We also

remark that a subclass of the family of cubic systems with invariant lines was discussed in [30]

and [31]. More precisely, in these articles authors consider the cubic systems with exactly 7

invariant affine line considered with their ”parallel” multiplicity. They say that an invariant line

f(x, y) = ux + vy + w = 0 of a cubic system (1) has the parallel multiplicity 1 ≤ k ≤ 3 if the

identity X(f) = fkR(x, y) holds for some polynomial R(x, y).

In this paper we classify the family of cubic systems with four distinct infinite singularities

(real and/or complex), which possess eight invariant straight lines, including the line at infinity

and taking into account their multiplicities.

It is well known that for a cubic system (1) there exist at most 4 different slopes for in-

variant affine straight lines, for more information about the slopes of invariant straight lines for

polynomial vector fields, see [1].

Definition 1.2. Consider a planar cubic system (1). We call configuration of invariant straight

lines of this system, the set of (complex) invariant straight lines (which may have real coefficients)

of the system, each endowed with its own multiplicity and together with all the real singular points

of this system located on these invariant straight lines, each one endowed with its own multiplicity.

If a cubic system (1) possesses 8 distinct invariant straight lines (including the line at infinity)

we say that these lines form a configuration of type (3, 3, 1) if there exist two triplets of parallel

lines and one additional line every set with different slopes. And we shall say that these lines

form a configuration of type (3, 2, 1, 1) if there exist one triplet and one couple of parallel lines

and two additional lines every set with different slopes. Similarly are defined configurations

of types (3, 2, 2) and (2, 2, 2, 1) and these four types of the configurations exhaust all possible

configurations formed by 8 invariant lines for a cubic system.

Note that in all configurations the straight line which is omitted is the infinite one.

If a cubic system (1) possesses 8 invariant straight lines taking into account their multiplicities

we shall say that these lines form a potential configuration of type (3, 3, 1) (respectively, (3, 2, 2);

(3, 2, 1, 1); (2, 2, 2, 1)) if there exists a sequence of vector fields Xk as in the definition of geometric

multiplicity having 8 distinct line of type (3, 3, 1) (respectively, (3, 2, 2); (3, 2, 1, 1); (2, 2, 2, 1)).
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Our main result is the following one.

Main Theorem. Assume that a cubic system possesses invariant lines of total multiplicity 8,

including the line at infinity with its own multiplicity. In addition we assume that this system

has four distinct infinite singularities. Then:

I. The system possesses only one of the 17 possible configurations Config. 8.1 – Config.

8.17 of invariant lines given in Figure 1. If in a configuration an invariant straight line has

multiplicity k > 1, then the number k appears near the corresponding straight line and this line

is in bold face. Real invariant straight lines are represented by continuous lines, whereas complex

invariant straight lines are represented by dashed lines. We indicate next to the real singular

points of the system, located on the invariant lines, their corresponding multiplicities.

II. This system possesses the specific configuration Config. 8.j (j ∈ {1, 2, . . . , 17} if and only

if the corresponding conditions included below are fulfilled. Moreover the system could be brought

via an affine transformation and time rescaling to the canonical forms, written below next to the

configuration

A) Four real distinct infinite singularities ⇔ D1 > 0, D2 > 0, D3 > 0;

A1) Configuration of type (3, 3, 1) ⇔ V1 = V2 = U 1 = L1 = L2 = K1 = 0, K2 ̸= 0;

• Config. 8.1 ⇔ K3 > 0: ẋ = x(x+1)(x−a), ẏ = y(y+1)(y−a), 0 < a ̸= 1;

• Config. 8.2 ⇔ K3 < 0: ẋ = x
[
(x + a)2 + 1

]
, ẏ = y

[
(y + a)2 + 1

]
, a ̸= 0;

• Config. 8.3 ⇔ K3 = 0: ẋ = x2(1 + x), ẏ = y2(1 + y).

A2) Configuration of type (3, 2, 1, 1) ⇔ V5 = U2 = K4 = K5 = K6 = 0, D4 ̸= 0;

• Config. 8.4 ⇔ L1 ̸= 0 and K7 > 0:

{
ẋ = x(x − 1)(x + r), r > 0,

ẏ = y(y − 1)
[
(1 − r)x + ry + r

]
;

• Config. 8.5 ⇔ L1 ̸= 0 and K7 < 0:

{
ẋ = x(x − 1)(x + r), r < 0,

ẏ = y(y − 1)
[
(1 − r)x + ry + r

]
;

• Config. 8.6 ⇔ L1 = 0: ẋ = rx3, ẏ = (r − 1)xy2 + y3, r ̸= 0.

A3) Configuration of type (2, 2, 2, 1) ⇔ V3 = K2 = K4 = K8 = 0, D4 ̸= 0;

• Config. 8.7 ⇔ K9 > 0:

{
ẋ = (x2 − 1)(rx + 2y + ry), r(r2 − 1) ̸= 0,

ẏ = (y2 − 1)(x + 2rx + y), (r + 2)(2r + 1) ̸= 0;

• Config. 8.8 ⇔ K9 < 0:

{
ẋ = (x2 + 1)(rx + 2y + ry), r(r2 − 1) ̸= 0,

ẏ = (y2 + 1)(x + 2rx + y), (r + 2)(2r + 1) ̸= 0;

• Config. 8.9 ⇔ K9 = 0:

{
ẋ = x2(rx + 2y + ry), r(r2 − 1) ̸= 0,

ẏ = y2(x + 2rx + y), (r + 2)(2r + 1) ̸= 0;

B) Two real and two complex distinct infinite singularities ⇔ D1 < 0;

B1) Configuration of type (3, 3, 1) ⇔ V1 = V2 = U 1 = L1 = L2 = K1 = 0, K2 ̸= 0;

• Config. 8.10 ⇔ K3 > 0:

{
ẋ = (1 − a2)x/4 + x2 − y2 + x3 − 3xy2,

ẏ = (1 − a2)y/4 + 2xy + 3x2y − y3, a2 ̸= 0, 1/9, 1;

• Config. 8.11 ⇔ K3 < 0:

{
ẋ = (1 + a2)x/4 + x2 − y2 + x3 − 3xy2,

ẏ = (1 + a2)y/4 + 2xy + 3x2y − y3, a ̸= 0;

• Config. 8.12 ⇔ K3 = 0:

{
ẋ = x2 − y2 + x3 − 3xy2,

ẏ = 2xy + 3x2y − y3.

B2) Configuration of type (3, 2, 1, 1) ⇔ V5 = U2 = K4 = K5 = K6 = 0, D4 ̸= 0;
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• Config. 8.13 ⇔ L1 ̸= 0:





ẋ = (1 + s2)x
[
(x + s)2 + 1

]
, s ̸= 0,

ẏ = (1 + s2)2y + 2s(1 + s2)xy − sx3

+s2x2y − sxy2 − y3;

• Config. 8.14 ⇔ L1 = 0:

{
x = (1 + s2)x3, s ̸= 0

ẏ = −sx3 + s2x2y − sxy2 − y3.

B3) Configuration of type (2, 2, 2, 1) ⇔ V3 = K2 = K4 = K8 = 0, D4 ̸= 0;

• Config. 8.15 ⇔ K9 > 0:





ẋ = x(x − 1)(1 + s2 − 2x + 2sy), s ̸= 0,

ẏ = −(1 + s2)y + (3 + s2)xy − sx3

−3x2y − 2sy2 + sxy2 − y3;

• Config. 8.16 ⇔ K9 < 0:





ẋ = 2(1 + x2)(sy − x − s), s ̸= 0,

ẏ = s(s2 + 3)x + (1 − s2)y − sx3

−3x2y + sxy2 − y3;

• Config. 8.17 ⇔ K9 = 0:

{
ẋ = −2x2(x − sy), s ̸= 0,

ẏ = −sx3 − 3x2y − 2sy2 + sxy2 − y3.

III. This system could not have exactly 8 invariant lines (including the line at infinity) in

the configuration of the type (3, 3, 2) neither could it have 4 infinite complex singularities.

The symbols (D1, D2, . . . ,K8, K9) used above denote invariant polynomials defined in Sec-

tion 2.1 of the paper.

Corollary 1.1. A cubic system with four distinct infinite singularities possesses the configuration

or potential configuration of a given type if and only if the following conditions are satisfied,

respectively:

(3, 3, 1) ⇔ V1 = V2 = U 1 = L1 = L2 = K1 = 0, K2 ̸= 0;

(3, 2, 1, 1) ⇔ V5 = U2 = K4 = K5 = K6 = 0, D4 ̸= 0;

(2, 2, 2, 1) ⇔ V3 = K4 = K2 = K8 = 0, D4 ̸= 0.

The work is organized as follows. In Section 2 we define the main invariant polynomials

associated to configurations of invariant straight lines of cubic systems and we give some pre-

liminary results needed for this paper. In Section 3 we prove step by step our Main Theorem

considering three subfamilies of cubic systems possessing four distinct infinite singularities, and

namely: systems with four real, systems with two real and two imaginary and systems with four

imaginary singularities.

2 Preliminaries

Consider real cubic systems, i.e. systems of the form:

ẋ = p0 + p1(x, y) + p2(x, y) + p3(x, y),

ẏ = q0 + q1(x, y) + q2(x, y) + q3(x, y)
(2)

with real coefficients and variables x and y. The polynomials pi and qi (i = 0, 1, 2, 3) are

homogeneous polynomials of degree i in x and y:

p0 = a00, p3(x, y) = a30x
3 + 3a21x

2y + 3a12xy2 + a03y
3,

p1(x, y) = a10x + a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q3(x, y) = b30x
3 + 3b21x

2y + 3b12xy2 + b03y
3,

q1(x, y) = b10x + b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let a = (a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03) be the 20-tuple of the coefficients of systems

(2) and denote R[a, x, y] = R[a00, a10, a01, . . . , a03, b00, b10, b01, . . . , b03, x, y].
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Figure 1: The configurations of invariant lines for cubic systems with 4 distinct

infinite singularities

2.1 The main invariant polynomials associated to configurations of

invariant lines

It is known that on the set CS of all cubic differential systems (2) acts the group Aff(2, R) of

affine transformation on the plane [22]. For every subgroup G ⊆ Aff(2, R) we have an induced

action of G on CS. We can identify the set CS of systems (2) with a subset of R20 via the

map CS−→ R20 which associates to each system (2) the 20-tuple a = (a00, a10, a01, . . . , a03,

b00, b10, b01, . . . , b03) of its coefficients.

For the definitions of an affine or GL-comitant or invariant as well as for the definition of a T -
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comitant and CT -comitant we refer the reader to [22]. Here we shall only construct the necessary

T -comitants associated to configurations of invariant lines for the class of cubic systems with four

distinct infinite singularities and with exactly eight invariant lines including the line at infinity

and including multiplicities.

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y) − xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2, 3,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2, 3.

As it was shown in [28] the polynomials

{
C0(a, x, y), C1(a, x, y), C2(a, x, y), C3(a, x, y), D1(a), D2(a, x, y) D3(a, x, y)

}
(3)

of degree one in the coefficients of systems (2) are GL-comitants of these systems.

Notation 2.1. Let f, g ∈ R[a, x, y] and

(f, g)(k) =
k∑

h=0

(−1)h

(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
. (4)

(f, g)(k) ∈ R[a, x, y] is called the transvectant of index k of (f, g) (cf. [7], [14])

Theorem 2.1. [32] Any GL-comitant of systems (2) can be constructed from the elements of

the set (3) by using the operations: +, −, ×, and by applying the differential operation (f, g)(k).

Let us apply a translation x = x′ +x0, y = y′ +y0 to the polynomials p(a, x, y) and q(a, x, y).

We obtain p̃(ã(a, x0, y0), x
′, y′) = p(a, x′ + x0, y

′ + y0), q̃(ã(a, x0, y0), x
′, y′) = q(a, x′ + x0, y

′ +
y0). We construct the following polynomials

Ωi(a, x0, y0) ≡ Res x′

(
Ci

(
ã(a, x0, y0), x

′, y′), C0

(
ã(a, x0, y0), x

′, y′))/(y′)i+1,

Ωi(a, x0, y0) ∈ R[a, x0, y0], (i = 1, 2, 3).

Notation 2.2.

G̃i(a, x, y) = Ωi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2, 3). (5)

Remark 2.1. We note that the constructed polynomials G̃1(a, x, y), G̃2(a, x, y) and G̃3(a, x, y) are

affine comitants of systems (2) and are homogeneous polynomials in the coefficients a00, . . . , b02

and non-homogeneous in x, y and

dega G1 = 3, dega G2 = 4, dega G3 = 5,

deg(x,y) G1 = 8, deg(x,y) G2 = 10, deg(x,y) G3 = 12.

Notation 2.3. Let Gi(a,X, Y, Z) (i = 1, 2, 3) be the homogenization of G̃i(a, x, y), i.e.

G1(a, X, Y, Z) = Z8G̃1(a,X/Z, Y/Z),

G2(a,X, Y, Z) = Z10G̃2(a,X/Z, Y/Z),

G3(a,X, Y, Z) = Z12G̃3(a,X/Z, Y/Z),

and H(a,X, Y, Z) = gcd
(
G1(a, X, Y, Z), G2(a, X, Y, Z), G3(a, X, Y, Z)

)
in R[a,X, Y, Z].

The geometrical meaning of these affine comitants is given by the two following lemmas

(see [11]):
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Lemma 2.1. The straight line L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an

invariant line for a quadratic system (2) if and only if the polynomial L(x, y) is a common factor

of the polynomials G̃1(a, x, y), G̃2(a, x, y) and G̃3(a, x, y) over C, i.e.

G̃i(a, x, y) = (ux + vy + w)W̃i(x, y) (i = 1, 2, 3),

where W̃i(x, y) ∈ C[x, y].

Lemma 2.2. Consider a cubic system (2) and let a ∈ R20 be its 20-tuple of coefficients.

1) If L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an invariant straight line

of multiplicity k for this system then [L(x, y)]k | gcd(G̃1, G̃2), G̃3) in C[x, y], i.e. there exist

Wi(a, x, y) ∈ C[x, y] (i = 1, 2, 3) such that

G̃i(a, x, y) = (ux + vy + w)kWi(a, x, y), i = 1, 2, 3. (6)

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(G1, G2,G3), i.e. we have

Zk−1 | H(a,X, Y, Z).

In order to define the needed invariant polynomials we first construct the following comitants

of second degree with respect to the coefficients of the initial system:

S1 = (C0, C1)
(1)

, S10 = (C1, C3)
(1)

, S19 = (C2, D3)
(1)

,

S2 = (C0, C2)
(1)

, S11 = (C1, C3)
(2)

, S20 = (C2, D3)
(2)

,

S3 = (C0, D2)
(1)

, S12 = (C1, D3)
(1)

, S21 = (D2, C3)
(1)

,

S4 = (C0, C3)
(1)

, S13 = (C1, D3)
(2)

, S22 = (D2, D3)
(1)

,

S5 = (C0, D3)
(1)

, S14 = (C2, C2)
(2)

, S23 = (C3, C3)
(2)

,

S6 = (C1, C1)
(2)

, S15 = (C2, D2)
(1)

, S24 = (C3, C3)
(4)

,

S7 = (C1, C2)
(1)

, S16 = (C2, C3)
(1)

, S25 = (C3, D3)
(1)

,

S8 = (C1, C2)
(2)

, S17 = (C2, C3)
(2)

, S26 = (C3, D3)
(2)

,

S9 = (C1, D2)
(1)

, S18 = (C2, C3)
(3)

, S27 = (D3, D3)
(2)

.

We shall use here the following invariant polynomials constructed in [11] to characterize the

family of cubic systems possessing the maximal number of invariant straight lines:

D1(a) = 6S3
24 −

[
(C3, S23)

(4)
]2

,

D2(a, x, y) = −S23,

D3(a, x, y) = (S23, S23)
(2) − 6C3(C3, S23)

(4),

D4(a) = (C3, D2)
(4),

V1(a, x, y) = S23 + 2D2
3,

V2(a, x, y) = S26,

V3(a, x, y) = 6S25 − 3S23 − 2D2
3,

V4(a, x, y) = C3

[
(C3, S23)

(4)
+ 36 (D3, S26)

(2)
]
,

L1(a, x, y) = 9C2 (S24 + 24S27) − 12D3 (S20 + 8S22) − 12 (S16, D3)
(2)

−3 (S23, C2)
(2) − 16 (S19, C3)

(2)
+ 12 (5S20 + 24S22, C3)

(1)
,

L2(a, x, y) = 32 (13S19 + 33S21, D2)
(1)

+ 84 (9S11 − 2S14, D3)
(1)

+8D2 (12S22 + 35S18 − 73S20) − 448 (S18, C2)
(1)

−56 (S17, C2)
(2) − 63 (S23, C1)

(2)
+ 756D3S13 − 1944D1S26

+112 (S17, D2)
(1) − 378 (S26, C1)

(1)
+ 9C1 (48S27 − 35S24) .
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However these invariant polynomials are not sufficient to characterize the cubic systems with

invariant lines of the total multiplicity 8. So we construct here the following new invariant

polynomials:

V5(a, x, y) =6T1(9A3 − 7A4) + 2T2(4T5 − T6) − 3T3(3A1 + 5A2) + 3A2T4 + 36T 2
5 − 3T29,

L5(a) =2A3
1 − A2

3,

K1(a, x, y) =
(
3223 T 2

2 T57 + 2718 T4 T57 − 829T 2
2 T58, T54

)(10)
,

K2(a, x, y) =T40,

K3(a, x, y) =9T57T58 − 100A2
7T

2
1 T117 − 7T 2

57 − 2T 2
58,

K4(a, x, y) =T61 − 2T11,

K5(a, x, y) =45T127 − T2T13 + 2T2T14 + 12T26 + 45T27 − 45T28 + 30T96,

K6(a, x, y) =4T1T8(2663T13 − 8161T14) + 6T8(178T20 + 70T21 + 555T22) + 18T9(30T2T8−
− 488T1T11 − 119T19) + 5T2(25T55 + 16T56) − 15T1(25T57 − 11T58) − 165T59,

K7(a) =A1 + 3A2,

K8(a, x, y) =10A8T1 − 3T2T14 + 4T26 − 8T27,

K9(a, x, y) =3T1(11T14 − 8T13) − T20 + 5T21,

where

A1 = S24/288,

A2 = S27/72,

A3 =
(
S23, C3

)(4)
/27/35,

A4 =
(
S26, D3

)(2)
/25/33,

A7 =
[
72D1A2 + (S22, D2)

(1)
]
/24,

A8 =
[
9D1(S24 − 288A2) + 4

(
9S11 − 2S14, D3

)(2)
+ 8

(
3S18 − S20 − 4S22, D2

)(1)]
/27/33,

are affine invariants, whereas the polynomials

T1 = C3,

T2 = D3,

T3 = S23/18,

T4 = S25/6,

T5 = S26/72,

T6 =
[
3C1(D

2
3 − 9T3 + 18T4) − 2C2(2D2D3 − S17 + 2S19 − 6S21)+

+ 2C3(2D2
2 − S14 + 8S15)

]
/24/32,

T8 =
[
5D2(D

2
3 + 27T3 − 18T4) + 20D3S19 + 12

(
S16, D3

)(1) − 8D3S17

]
/5/25/33,

T9 =
[
9D1(9T3 − 18T4 − D2

3) + 2D2(D2D3 − 3S17 − S19 − 9S21) + 18
(
S15, C3

)(1)−
− 6C2(2S20 − 3S22) + 18C1S26 + 2D3S14

]
/24/33,

T11 =
[(

D2
3 − 9T3 + 18T4, C2

)(2) − 6
(
D2

3 − 9T3 + 18T4, D2

)(1) − 12
(
S26, C2

)(1)
+

+ 12D2S26 + 432(A1 − 5A2)C2

]
/27/34,

T13 =
[(

8S19 + 9S21, D2

)(1) − D2(8S20 + 3S22) + 18D1S26 + 1296C1A2

]
/24/33,
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T14 = 8
(
9S19 + 2S21, D2

)(1)
+ 3

(
9T3 − 18T4 − D2

3, C1

)(2) − 4
(
S17, C2

)(2)
+

+ 4
(
S14 − 17S15, D3

)(1) − 8
(
S14 + S15, C3

)(2)
+ 432C1(5A1 + 11A2)+

+ 36D1S26 − 4D2(S18 + 4S22)
]
/26/33,

T19 =
(
T8, C3

)(1)
,

T20 =
(
T6, C3

)(2)
/6,

T21 =
(
T6, D3

)(1)
/6,

T22 =
(
T9, C3

)(1)
/4,

T26 =
(
T6, D3

)(2)
/12,

T27 =
(
T9, C3

)(2)
/12,

T28 =
(
T9, D3

)(1)
/12,

T29 =
(
(S23, C3)

(1)), D3

)(2)
/5/26/33,

T40 =
[
27C0(9T3 − 18T4 − D2

3)
2 + C1

(
− 62208T11C3 − 3(9T3 − 18T4 − D2

3)×
× (2D2D3 − S17 + 2S19 − 6S21)

)
+ 20736T11C

2
2 + C2(9T3 − 18T4 − D2

3)×
× (8D2

2 + 54D1D3 − 27S11 + 27S12 − 4S14 + 32S15) − 54C3(9T3 − 18T4 − D2
3)×

× (2D1D2 − S8 + 2S9) − 54D1(9T3 − 18T4 − D2
3)S16−

− 576T6(2D2D3 − S17 + 2S19 − 6S21)
]
/28/34,

T54 =
(
T40, C3

)(1)
,

T55 =
(
T40, C3

)(2)
/24,

T56 =
(
T40, D3

)(1)
/6,

T57 =
(
T40, D3

)(2)
/12,

T58 =
(
T40, C3

)(3)
/36,

T59 =
(
(T40, C3)

(2), C3

)(1)
/72,

T61 =
[
27

(
T3, C2

)(2) − 18
(
T4, C2

)(2)
+ 48D3S22 − 216

(
T4, D2

)(1)
+ 36D2S26−

− 432C2(3A1 + 17A2) +
(
D2

3, C2

)(2)
]
/27/34,

T96 =
(
T6, C3

)(3)
/24/32,

T117 =
(
T9, C3

)(1)
/4,

T127 =
(
T13, C3

)(1)
/2

are T -comitants of cubic systems (2) (see for details [22]). We note that these invariant polyno-

mials are the elements of the polynomial basis of T -comitants up to degree six constructed by

Iu. Calin [3].

2.2 Preliminary results

In order to determine the degree of the common factor of the polynomials G̃i(a, x, y) for i = 1, 2, 3,

we shall use the notion of the kth subresultant of two polynomials with respect to a given

indeterminate (see for instance, [9], [14]).

Following [11] we consider two polynomials

f(z) = a0z
n + a1z

n−1 + · · · + an, g(z) = b0z
m + b1z

m−1 + · · · + bm,
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in the variable z of degree n and m, respectively.

We say that the k–th subresultant with respect to variable z of the two polynomials f(z) and

g(z) is the (m + n − 2k) × (m + n − 2k) determinant

R(k)
z (f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . . . . am+n−2k−1

0 a0 a1 . . . . . . am+n−2k−2

0 0 a0 . . . . . . am+n−2k−3

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 b0 . . . . . . bm+n−2k−3

0 b0 b1 . . . . . . bm+n−2k−2

b0 b1 b2 . . . . . . bm+n−2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣





(m − k) − times





(n − k) − times

(7)

in which there are m − k rows of a’s and n − k rows of b’s, and ai = 0 for i > n, and bj = 0 for

j > m.

For k = 0 we obtain the standard resultant of two polynomials. In other words we can say

that the k–th subresultant with respect to the variable z of the two polynomials f(z) and g(z)

can be obtained by deleting the first and the last k rows and the first and the last k columns

from its resultant written in the form (7) when k = 0.

The geometrical meaning of the subresultants is based on the following lemma.

Lemma 2.3. (see [9], [14]). Polynomials f(z) and g(z) have precisely k roots in common (con-

sidering their multiplicities) if and only if the following conditions hold:

R(0)
z (f, g) = R(1)

z (f, g) = R(2)
z (f, g) = · · · = R(k−1)

z (f, g) = 0 ̸= R(k)
z (f, g).

For the polynomials in more than one variables it is easy to deduce from Lemma 2.3 the

following result.

Lemma 2.4. Two polynomials f̃(x1, x2, ..., xn) and g̃(x1, x2, ..., xn) have a common factor of

degree k with respect to the variable xj if and only if the following conditions are satisfied:

R(0)
xj

(f̃ , g̃) = R(1)
xj

(f̃ , g̃) = R(2)
xj

(f̃ , g̃) = · · · = R(k−1)
xj

(f̃ , g̃) = 0 ̸= R(k)
xj

(f̃ , g̃),

where R
(i)
xj (f̃ , g̃) = 0 in R[x1, . . . xj−1, xj+1, . . . , xn].

In paper [11] all the possible configurations of invariant lines are determined in the case,

when the total multiplicity of these line (including the line at infinity) equals nine. For this

propose in [11] there are proved some lemmas concerning the number of triplets and/or couples

of parallel invariant straight lines which could have a cubic system. Here we complete these

results proving the following theorem.

Theorem 2.2. If a cubic system (2) possess a given number of triplets or/and couples of invari-

ant parallel lines real or/and complex, then the following conditions are satisfied, respectively:

(i) 2 triplets ⇒ V1 = V2 = U 1 = 0;

(ii) 1 triplet and 2 couples ⇒ V3 = V4 = U2 = 0;

(iii) 1 triplet and 1 couple ⇒ V4 = V5 = U2 = 0;

(iv) one triplet ⇒ V4 = U 2 = 0;

(v) 3 couples ⇒ V3 = 0;

(vi) 2 couples ⇒ V5 = 0.

Proof: The statements (i), (ii), (iv) and (v) follow directly from [11] (see Lemmas 1-3). It

remains to prove the statement (vi) because the statement (iii) is a consequence of (iv) and (vi).

So assume that a system (S) in the family (2) possesses two distinct couples of parallel

invariant straight lines. According to [11] (see the proof of Lemma 3, page 1314) for the existence
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of two distinct couples of parallel invariant straight lines it is necessary the existence of two

distinct solutions (αi, βi) (i = 1, 2) of the system of equations

F1(α, β) ≡ sα3 + (w − 2r)α2β + (q − 2v)αβ2 + uβ3 = 0,

F2(α, β) ≡ rα3 + (v − 2q)α2β + (p − 2u)αβ2 + tβ3 = 0.
(8)

On the other hand by Lemma 2.4 the homogeneous polynomials F1(α, β) and F2(α, β) has

precisely 2 roots αi/βi or βi/αi (i = 1, 2) if and only if

R
(0)
α/β(F1, F2) = R

(1)
α/β(F1, F2) = 0 ̸= R

(2)
α/β(F1, F2), (9)

or (which is equivalent)

R
(0)
β/α(F1, F2) = R

(1)
β/α(F1, F2) = 0 ̸= R

(2)
β/α(F1, F2). (10)

Remark 2.2. We observe that as F1(α, β) and F2(α, β) are cubic forms in α and β then

R
(0)
α/β(F1, F2) = R

(0)
β/α(F1, F2)

as this is the resultant of the polynomials F1 and F2, whereas for the subresultants we have

R
(1)
α/β(F1, F2) ̸= R

(1)
β/α(F1, F2).

The straightforward computations yield for systems (2)

V5 = 96
[
S1x

4 + S2x
3y + S3x

2y2 + S4xy3 + S5y
4
]
,

where

S1 = − R
(1)
β/α(F1, F2), S5 = −R

(1)
α/β(F1, F2),

S2 =4
[
4su3 − u2(4ps + 3rv) + u(p2s − pqr + 2r2t + 4qst + 2prv − 5stv − rtw)

+ t(q2r − pqs − 2rst − 4qrv + 2psv + 4rv2 + stw)
]
,

S3 =6
[
r2(2qt − 2pu + 3u2 − 4tv) + r(2stu − qtw + puw − 2u2w + 2tvw)

− s(2q2t + st2 − 2pqu + 4qu2 − 5qtv + puv − 2u2v + 2tv2)
]
,

S4 =4
[
4r3t − r2(3qu + 4tw) + r(2quw − 5qst − psu + 2su2 + 4stv − uvw + tw2)

+ s(pst + 4q2u − 2stu − 4quv + uv2 + 2qtw − tvw)
]
.

(11)

We claim that for the system (S) with two distinct couples of parallel invariant straight lines

the conditions

R
(0)
α/β(F1, F2) = V5 = 0

are necessary. Indeed, assume that for the system (S) the conditions (9) (or, equivalently, the

conditions (10)) are satisfied. By (11) this implies S1 = S5 = 0. If we suppose the contrary, that

the invariant polynomial V5 is not identically zero then the condition S2
2 +S2

3 +S2
4 ̸= 0 holds. So

the nonzero polynomial V5 has as factors x and y and clearly via a rotation of the phase plane

of system (S) we could obtain a new invariant polynomial V ′
5 for which S ′

1S ′
5 ̸= 0. After rotation

the system (S) will be transformed in the system (S′) which also possesses two distinct couples

of parallel invariant straight lines. So for this system according to (9) (and (10)) the conditions

S ′
1 = S ′

5 = 0 must hold and the obtained contradiction proves our claim.

Remark 2.3. The condition V5 = 0 implies

R
(0)
α/β(F1, F2) = R

(0)
β/α(F1, F2) = 0,

i.e. the resultant of the polynomials F1 and F2 vanishes.
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To show this it is sufficient to verify the following identity:

24R
(0)
α/β(F1, F2) =2(ru − st)S3 + 3(2rt − 2qu + uv − tw)S4 − 12(qt − pu + 2u2 − 2tv)S5.

So the relations Si = 0 (i = 1, . . . , 5) imply R
(0)
α/β(F1, F2) = 0 and this completes the proof of

the lemma.

We rewrite the systems (2) in the coefficient form:

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + px3 + 3qx2y + 3rxy2 + sy3,

ẏ = b + ex + fy + lx2 + 2mxy + ny2 + tx3 + 3ux2y + 3vxy2 + wy3.
(12)

Let L(x, y) = Ux + V y + W = 0 be an invariant straight line of this family of cubic systems.

Then, we have

UP (x, y) + V Q(x, y) = (Ux + V y + W )(Ax2 + 2Bxy + Cy2 + Dx + Ey + F ),

and this identity provides the following 10 relations:

Eq1 = (p − A)U + tV = 0, Eq6 = (2h−E)U+(2m−D)V −2BW =0,

Eq2 = (3q − 2B)U + (3u − A)V = 0, Eq7 = kU + (n − E)V − CW = 0,

Eq3 = (3r − C)U + (3v − 2B)V = 0, Eq8 = (c − F )U + eV − DW = 0

Eq4 = (s − C)U + V w = 0, Eq9 = dU + (f − F )V − EW = 0,

Eq5 = (g − D)U + lV − AW = 0, Eq10 = aU + bV − FW = 0.

(13)

It is well known that the infinite singularities (real or complex) of systems (12) are determined

by the linear factors of the polynomial

C3 = yp3(x, y) − xq3(x, y).

So in the case of four distinct infinite singularities there can be three possibilities:

• all four infinite singularities are real;

• there are two real and two complex infinite singularities;

• all four infinite singularities are complex.

According to [11, ] (see also [15]) we have the following result.

Lemma 2.5. A cubic system (12) has 4 distinct infinite singularities if and only if D1 ̸= 0. The

types of these singularities are determined by the following conditions:

(i) 4 real iff D1 > 0, D2 > 0, D3 > 0;

(ii) 2 real and 2 imaginary iff D1 < 0;

(iii) 4 imaginary iff D1 > 0 and for every (x, y) where D2D3 ̸= 0 either D2 < 0 or D3 < 0.

Moreover in each one of these cases the respective homogeneous cubic parts of the system (12)

could be brought via a linear transformation to one of the canonical form (Si)−(Siii), respectively.

(Si)

{
x′ = (p + r)x3 + (s + v)x2y + qxy2, C3 = xy(x − y)(rx + sy),

y′ = px2y + (r + v)xy2 + (q + s)y3, rs(r + s) ̸= 0

(Sii)

{
x′ = (u + 1)x3 + (s + v)x2y + rxy2, C3 = x(sx + y)(x2 + y2),

y′ = −sx3 + ux2y + vxy2 + (r − 1)y3,

(Siii)

{
x′ = ux3 + (p + q + v)x2y + rxy2 + qy3, C3 = (px2 + qy2)(x2 + y2),

y′ = −px3 + ux2y + vxy2 + ry3, pq > 0

In what follows we consider each one of three possibilities mentioned in the lemma above.
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3 The proof of the Main Theorem

Following Lemma 2.5 we split the family of cubic systems having 4 distinct infinite singularities

in three subfamilies depending on the types of these singularities and namely: systems with four

real, systems with two real and two complex and systems with four complex infinite singularities.

For each one of this families (except the family with four complex infinite singularities, see

page 48) the proof of the Main Theorem proceeds in 3 steps.

First we construct the cubic homogeneous parts (P̃3, Q̃3) of systems for which the corre-

sponding necessary conditions provided by Theorem 2.2 in order to have the a given number of

triplets or/and couples of invariant parallel lines in the respective directions are satisfied.

Secondly keeping these cubic parts we perturb the quadratic and linear as well as the constant

terms. Then using the equations (13) we determine these terms in order to get the required

number of invariant lines in the required configuration. This leads us to the next remark.

Remark 3.1. If the perturbed systems have a triplet (respectively a couple) of parallel lines in

the direction Ux + V y = 0 then the respective cubic homogeneous systems with right-hand parts

(P̃3, Q̃3) necessarily have the invariant line Ux + V y = 0 of the multiplicity three (respectively

two).

Thus the second step ends with the construction of the canonical systems possessing the

required configuration.

The third step consists in the determination of the affine invariant conditions necessary and

sufficient for a cubic system to belong to the family of systems (constructed at the second step)

which possess the corresponding configuration of invariant lines.

A. Cubic systems with four distinct real infinite singularities

Assuming that these systems possess four distinct real infinite singularities (i.e. the conditions

D1 > 0, D2 > 0, D3 > 0 hold), according to Lemma 2.5 via a linear transformations they could

be brought to the family of systems

ẋ = p0 + p1(x, y) + p2(x, y) + (p + r)x3 + (s + v)x2y + qxy2,

ẏ = q0 + q1(x, y) + q2(x, y) + px2y + (r + v)xy2 + (q + s)y3
(14)

with C3 = xy(x − y)(rx + sy) and

rs(r + s) ̸= 0. (15)

As we have four real infinite singularities and the total multiplicity of the invariant lines (includ-

ing the line at infinity) must be 8, then the systems above could have only one of the following

four possible configurations (or potential configurations) of invariant lines:

(i) (3, 3, 1); (ii) (3, 2, 2); (iii) (3, 2, 1, 1); (iv) (2, 2, 2, 1).

3.1 Systems with configuration (3, 3, 1)

Since we have two triplets of parallel invariant lines, according to Theorem 2.2 the conditions

V1 = V2 = U 1 = 0 are necessary for systems (14). Moreover in [11, Section 5.1] it was proved

that in this case via a linear transformation and time rescaling the cubic homogeneities of these

systems could be brought to the forms:

ẋ = x3, ẏ = y3. (16)
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So applying a translation we may assume g = n = 0 in the quadratic parts of systems (14) with

the cubic homogeneities of the form (16). In such a way we get the family of systems

ẋ = a + cx + dy + 2hxy + ky2 + x3,

ẏ = b + ex + fy + lx2 + 2mxy + y3,
(17)

for which we have C3(x, y) = xy(x − y)(x + y).

In order to find out the directions of two triplets according to Remark 3.1 we determine the

multiplicity of the invariant lines of system (16). For this system we calculate (see the definition

of the polynomial H(X,Y, Z) on the page 6, Notation 2.3):

H(X, Y, Z) = gcd(G1,G2, G3) = 3X3(X − Y )Y 3(X + Y ).

So (16) possesses two triple invariant lines x = 0 and y = 0 and by Remark 3.1 systems (17)

could have triplets of parallel invariant lines only in these two directions.

(i) The direction x = 0. Considering equations (13) we obtain

U = 1, V = 0, A = 1, B = 0, C = 0, D = −W, E = 2h, F = c + W 2,

Eq7 = k, Eq9 = d − 2hW, Eq10 = a − cW − W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0

(18)

and obviously we can have a triplet of parallel invariant line (which could coincide) in the

direction x = 0 if and only if k = d = h = 0. Assuming that these conditions hold we consider

the another direction for the second triplet.

(ii) The direction y = 0. In this case we have

U = 0, V = 1, A = 0, B = 0, C = 1, D = 2m, E = −W, F = f + W 2,

Eq5 = l, Eq8 = e − 2mW, Eq10 = b − fW − W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0

(19)

and again we conclude that for the existence of a triplet of parallel invariant lines for systems

(17) the conditions e = l = m = 0 have to be satisfied.

It remains to examine the directions y = x and y = −x in order to determine the conditions

for the existence of exactly one invariant line in one of these two directions.

For the direction y = x we have

U = 1, V = 1, A = 1, B = −1/2, C = 1, D = −W, E = 2W, F = c + W 2,

Eq7 = −3W ; Eq9 = −c + f − 3W 2; Eq10 = a + b − cW − W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0,

(20)

whereas for the direction y = −x we obtain

U = 1, V = 1, A = 1, B = 1/2, C = 1, D = −W, E = −2W, F = c + W 2,

Eq7 = −3W ; Eq9 = c − f + 3W 2; Eq10 = a − b − cW − W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0.

(21)

We observe that in each one of the cases we could have only one invariant line. Moreover the

necessary and sufficient conditions for the existence of such a line are c − f = a + b = 0 in the

first case and c − f = a − b = 0 in the second case.

Thus we conclude that for the existence of a single invariant line in one of the directions the

following conditions are necessary and sufficient:

c − f = (a − b)(a + b) = 0, a2 + b2 ̸= 0.
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Since the respective family of systems is of the form

ẋ = a + cx + x3, ẏ = b + cy + y3 (22)

we may assume b = a ̸= 0 due to the rescaling y → −y in the case b = −a and we arrive at the

family of systems

ẋ = a + cx + x3, ẏ = a + cy + y3. (23)

These systems possess the invariant lines defined by the equations

x3 + cx + a = 0, x − y = 0, y3 + cy + a = 0.

Since the discriminant of the polynomial x3 + cx + c equals ξ = −(27a2 + 4c3) (and clearly it

coincides with the discriminant of the polynomial y3 + yx + a) we conclude that the systems

above possess 7 invariant affine lines which are as follows:

ξ > 0 ⇒ 7 real simple distinct;

ξ < 0 ⇒ 3 real and 4 complex all simple distinct;

ξ = 0 ⇒ 3 simple and 2 double all real distinct.

As we have two triplets of parallel invariant lines it is clear that all 9 finite singularities (real

and/or complex) are located at the intersections of these lines. It remains to observe that in the

case of 4 complex lines we have only one real finite singularity: the intersection of the three real

lines.

Thus we obtain the configuration Config. 8.1 if ξ > 0; Config. 8.2 if ξ < 0 and Config. 8.3

if ξ = 0 (see Figure 1).

3.1.1 Invariant criteria for the realizations of the configurations Config. 8.1, 8.2, 8.3

First of all we recall that by Lemma 2.5 the conditions D1 > 0, D2 > 0, D3 > 0 are necessary

and sufficient for a cubic systems to have four real distinct infinite singularities and via a linear

transformation a cubic system could be brought to the form (14). Secondly by Theorem 2.2 for

the cubic systems with two triplets of parallel invariant lines the conditions V1 = V2 = U 1 = 0

are satisfied and in this case a cubic system (14) via a linear transformation and a time rescaling

could be brought to the form (17). And finally, it was proved in the previous subsection that a

cubic system have the configurations Config. 8.1-3 -Config. 8.3-5 if and only if the conditions

k = d = h = l = e = m = c − f = a2 − b2 = 0, a2 + b2 ̸= 0 (24)

are fulfilled for systems (17). Since for these systems the conditions V1 = V2 = U 1 = 0 hold,

according to the statement A1) of the Main Theorem it remains to prove that the conditions

(24) are equivalent to L1 = L2 = K1 = 0 and K2 ̸= 0.

For systems (17) we calculate

L1 = −2834(lx3 + 2mx2y − 2hxy2 − ky3)

and hence the condition L1 = 0 gives l = m = h = k = 0. Then we obtain

L1 = 0, L2 = 2735
[
− ex2 − 6(c − f)xy + dy2

]

and clearly the condition L2 = 0 implies e = d = c − f = 0 and this leads to the family of

systems (22).

Next for systems (22) we calculate

K1 = 218315547419 · 41(a2 − b2)(x2 − y2), K2 = −27x4y4(bx − ay).
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So clearly the condition a2 − b2 = 0 is equivalent to K1 = 0, whereas the condition a2 + b2 ̸= 0

is equivalent to K2 ̸= 0.

As it was mentioned above we could consider b = a and then for systems (23) we need the

expression Discrim [a + cx + x3, x] = −(27a2 + 4c3) = ξ which governs the type of the invariant

lines (real, complex or coinciding) of these systems.

Finally for systems (23) we calculate

K3 = −5400(27a2 + 4c3)x4(x − y)2y4(x + y)2(x2 + y2).

So clearly 27a2 + 4c3 = 0 if and only if K3 = 0 and sign (K3) = −sign (27a2 + 4c3) = sign (ξ).

To complete the proof of the statement A1) of the Main Theorem we construct the respective

canonical systems corresponding to each of the configurations. We consider systems (23). Since

the equation z3 + cz + a = 0 possesses at least one real solution, say z = z0 then applying the

translation x = x1 + z0, y = y1 + z0 to the systems (23) we get the family of systems

ẋ = x(f + gx + x2), ẏ = y(f + gy + y2). (25)

a) Assume first ξ > 0. Then the systems above possess three distinct real lines in the

direction x = 0 as well as three such lines in the direction y = 0. Therefore g2 − 4f > 0 and

setting g2 − 4f = u2 > 0 we obtain f = (g2 − u2)/4. So this leads to the systems

ẋ = x(g − u + 2x)(g + u + 2x)/4, ẏ = y(g − u + 2y)(g + u + 2y)/4,

where g2 − u2 ̸= 0 because all the lines are distinct. Then via the rescaling

(x, y, t) 7→
(
2x/(g − u), 2y/(g − u), 4t/(g − u)2

)

we obtain the following 1-parameter family of systems

ẋ = x(x + 1)(x − a), ẏ = y(y + 1)(y − a), (26)

where a = (g + u)/(u − g). These systems possess the invariant lines x = 0, x = −1, x = a

y = 0, y = −1, y = a, y = x.

We claim that the parameter a ̸= 0 could be considered positive and different from 1. Indeed

suppose that a < 0. If a < −1 then via the transformation (x, y, t) 7→ (−x − 1, −y − 1, t) we

obtain the systems

ẋ = x(x + 1)(x − a′), ẏ = y(y + 1)(y − a′),

where a′ = −(1 + a) > 0 as a < −1.

Assume now −1 < a < 0. Then applying the transformation (x, y, t) 7→
(
a(x + 1), a(y +

1), t/a2
)

we get the systems above with a′ = −(1 + a)/a > 0 as −1 < a < 0.

On the other hand considering the conditions provided by the statement A1) of the Main

Theorem we calculate for systems (26):

K2 = (a − 1)(2 + a)(1 + 2a)x4(x − y)y4.

So the condition K2 ̸= 0 implies a ̸= 1. Therefore our claim is proved and for the canonical

systems (26) we assume a > 0 and a ̸= 1.

b) Admitting ξ < 0 we have g2 − 4f < 0 and we can set g2 − 4f = −u2 < 0. Then

f = (g2 + u2)/4 and systems (25) becomes

ẋ = x
[
(2x + g)2 + u2

]
/4, ẏ = y

[
(2y + g)2 + u2

]
/4,

and after the additional rescaling (x, y, t) 7→
(
ux/2, uy/2, 4t/u2

)
we arrive at the systems

ẋ = x
[
(x + a)2 + 1

]
, ẏ = y

[
(y + a)2 + 1

]
, (27)
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where a = g/u. We remark that these systems possess the invariant lines x = 0, x = −a ± i,

y = 0, y = −a ± i, y = x. For these systems we have

K2 = 2a(9 + a2)x4(x − y)y4

and considering the condition K2 ̸= 0 we obtain a ̸= 0.

c) Suppose finally ξ = 0, i.e. the equation z3 + cz + a = 0 possesses a real solution z0 of the

multiplicity at least two. Then applying the translation x = x1 + z0, y = y1 + z0 to the systems

(23) we get the family of systems

ẋ = x2(g + x), ẏ = y2(g + y).

For these systems we calculate

K2 = −2g3x4(x − y)y4

and hence the condition K2 ̸= 0 yields g ̸= 0. Therefore via the rescaling (x, y, t) 7→ (gx, gy, t/g2)

we obtain the system

ẋ = x2(1 + x), ẏ = y2(1 + y). (28)

3.2 Systems with configuration (3, 2, 2)

Lemma 3.1. A cubic system (14) could not have a configuration of invariant lines of the type

(3, 2, 2).

Proof: For having the configuration (3, 2, 2) a cubic system has to possess three couples of

parallel invariant lines and, moreover, one couple must increase up to a triplet. Thus according

to Theorem 2.2, if a cubic system possesses 7 invariant affine straight lines in the configuration

(3, 2, 2), then necessarily the conditions V3 = V4 = U2 = 0 hold.

As it was proved in [11, Section 5.2] in this case via an affine transformation and time rescaling

such systems could be brought to the family of systems

ẋ = a + cx + dy + 2hxy + ky2 + 2x3,

ẏ = b + ex + fy + lx2 + 2mxy + 3xy2 − y3.
(29)

On the other hand for the respective homogeneous system ẋ = 2x3, ẏ = 3xy2 −y3 we calculate

H(X, Y, Z) = gcd(G1, G2, G3) = 6X3(X − Y )(2X − Y )2Y 2.

So by Remark 3.1 the systems (29) could possess one triplet of invariant lines only in the direction

x = 0. As regard the two couples of parallel lines we conclude that they could be only in the

direction y = 0 and y = 2x. We shall examine each one of these directions.

(i) The direction x = 0. We obtain

U = 1, V = 0, A = 2, B = 0, C = 0, D = −2W, E = 2h, F = c + 2W 2,

Eq7 = k, Eq9 = d − 2hW, Eq10 = a − cW − 2W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0

(30)

and obviously we can have a triplet of parallel invariant line (which could coincide) in the

direction x = 0 if and only if k = d = h = 0. Assuming that these conditions hold we consider

the directions corresponding to the couples of parallel lines.

(ii) The direction y = 0. In this case we have

U = 0, V = 1, A = 0, B = 3/2, C = −1, D = 2m − 3W, E = W, F = f − W 2,

Eq5 = l, Eq8 = e − 2mW + 3W 2, Eq10 = b − fW + W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0

(31)
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and again we conclude that for the existence of a couple of parallel invariant lines for systems (29)

in this direction it is necessary and sufficient l = 0 and

R
(0)
W (Eq8, Eq10) = R

(1)
W (Eq8, Eq10) = 0.

We calculate

R
(1)
W (Eq8, Eq10) = −3e − 9f + 4m2 = 0

and this implies e = 4m2/3 − 3f . Then we obtain

R
(0)
W (Eq8, Eq10) = (27b + 18fm − 8m3)2/27 = 0

and hence we get b = −2m(9f − 4m2)/27. Then we have

Eq8 = (−9f + 4m2 − 6mW + 9W 2)/3, Eq10 = (2m + 3W )(−9f + 4m2 − 6mW + 9W 2)/29

and therefore systems (29) possess two parallel lines in the direction y = 0 and these lines could

be real (or complex) distinct or coinciding.

Considering the relations detected above among the coefficients of systems (29) we examine

another direction in which could be a couple of parallel lines.

(iii) The direction y = 2x. In this case we have

U = 2, V = −1, A = 2, B = 1/2, C = −1, D = −W, E = −W, F = f − W 2,

Eq6 = −2m, Eq8 = (6c + 3f − 4m2 + 9W 2)/3,

Eq10 = (54a + 18fm − 8m3 − 27fW + 27W 3)/27,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = Eq9 = 0

(32)

and we conclude that for the existence of a couple of parallel invariant lines for systems (29) in

the direction y = 2x it is necessary m = 0. Then we get the relations g = n = k = d = h = l =

m = 0, e = −3f and this leads to the equations

Eq8 = 2c + f + 3W 2 = 0, Eq10 = 2a − fW + W 3 = 0.

By Lemma 2.4 these polynomials have two common roots W1 and W2 if and only if

R
(0)
W (Eq8, Eq10) = R

(1)
W (Eq8, Eq10) = 0.

We calculate

R
(1)
W (Eq8, Eq10) = −6(c + 2f) = 0,

i.e. c = −2f and then we obtain

R
(0)
W (Eq8, Eq10) = 108a2 = 0.

So a = 0 and we arrive at the family of systems

ẋ = 2x(x2 − f), ẏ = (y2 − f)(3x − y),

which possess 8 invariant affine lines x = 0, x2 − f = 0, y2 − f = 0, (2x − y)2 − f = 0 and y = x

in the configuration (3, 2, 2, 1). This completes the proof of Lemma 3.1.

3.3 Systems with configuration (3, 2, 1, 1)

In this subsection we construct the cubic systems with 4 real infinite singular points which possess

7 distinct invariant affine straight lines with configuration or potential configuration (3, 2, 1, 1),

having total multiplicity 8, as always the invariant straight line at the infinity is considered.

For having the configuration (3, 2, 1, 1) a cubic system has to possess two couples of parallel

invariant lines and, moreover, one couple must increase up to a triplet. Thus, according to

Theorem 2.2, if a cubic system possesses 7 invariant straight lines in the configuration (3, 2, 1, 1),

then necessarily the conditions V4 = V5 = U2 = 0 hold.
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3.3.1 Construction of the corresponding cubic homogeneities

As a first step we shall construct the cubic homogeneous parts of systems (14) for which the

conditions above are fulfilled. Since we have 4 real infinite distinct singularities, according to

Lemma 2.5 we consider the family of systems

ẋ = (p + r)x3 + (s + v)x2y + qxy2, ẏ = px2y + (r + v)xy2 + (q + s)y3 (33)

with rs(r + s) ̸= 0 and we shall force the conditions V4 = V5 = U2 = 0 to be satisfied.

We observe that the invariant polynomials V5, U2 and V4 are homogeneous polynomials of

degree four in x and y. So we shall use the following notations:

V5 =
4∑

j=0

V5jx
4−jyj , U 2 =

4∑

j=0

U2jx
4−jyj .

Regarding the polynomial V4, a straightforward computation of its value for systems (33) yields

V4 = −9216 V̂4 C3(x, y), where

V̂4 = r2(3q + s + v) + r(2pq − s2 + 3qv + v2) − s(2pq + 3ps + 3pv + sv + v2).
(34)

As for systems (33) we have C3 = xy(x−y)(rx+sy) ̸= 0, we conclude that the condition V4 = 0

for these systems is equivalent to V̂4 = 0.

Calculating the value of the polynomial V5 for systems (33) we obtain

V52 = 16pq(qr + ps + 3rs)/3, V53 = 108pq(qs − qr − rs + 2s2 + sv)/9

and we consider two cases: pq ̸= 0 and pq = 0.

3.3.1.1 The case pq ̸= 0 Then the condition V5 = 0 gives

qr + ps + 3rs = qs − qr − rs + 2s2 + sv = 0

and considering the condition (15) we get p = −r(q + 3s)/s and v = (qr − qs + rs − 2s2)/s. In

this case for systems (33) we obtain V5 = 0 and we calculate

U 24 = −3 · 212q(q + 3s)(qr + qs + 2rs + s2)(qr + qs + rs + 2s2)/s2.

Therefore, as q(q + 3s) ̸= 0 (due to pq ̸= 0) we obtain

[
q(r + s) + 2rs + s2

][
q(r + s) + rs + 2s2

]
= 0

and we shall examine these two subcases taking into consideration the condition (15).

3.3.1.1.1 The subcase q = −s(2r + s)/(r + s). Then we obtain the relations

p = −r(r + 2s)

r + s
, q = −s(2r + s)

r + s
, v = −r2 + s2

r + s

and in this case all three polynomials V5, U2 and V̂4 vanish. On the other hand due to the

additional time rescaling t → (r + s)t/s, systems (33) become the systems

ẋ = rx3 + r(r − 1)x2y + (1 + 2r)xy2,

ẏ = r(2 + r)x2y − (r − 1)xy2 + ry3.
(35)
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3.3.1.1.2 The subcase q = −s(r + 2s)/(r + s). This leads to the relations

p = −r(2r + s)

r + s
, q = −s(r + 2s)

r + s
, v = − 2rs

r + s

and we again get V5 = U2 = V̂4 = 0. In this case after the additional time rescaling t → (r+s)t/r

systems (33) become the systems

ẋ = x3 + s(1 − s)x2y + s(1 + 2s)xy2,

ẏ = (2 + s)x2y + (s − 1)xy2 + s2y3.
(36)

Remark 3.2. We observe, that via the change (x, y, t, r) 7→ (−x/r, y, rt, s) the systems (35)

could be written as systems (36).

3.3.1.2 The case pq = 0 Then without loss of generality we may assume p = 0 for systems

(33) due to the change

(x, y, p, q, r, s) 7→ (y, x, q, p, s, r) (37)

which preserves these systems. Then we have

V55 = −32q(q + 2r + 2s + v)(qr + rs + s2 − sv)/9

and we consider the three subcases given by these three factors.

3.3.1.2.1 The subcase q = 0. For systems (33) in this case we have

U 21 = 21232r(r − s)(r + v)(s + v) = 0

and due to the condition (15) (i.e. r ̸= 0) and to the change (37) (as we have p = q = 0) we

arrive at the condition (r − s)(r + v) = 0. So we examine the following three possibilities:

1) r − s = 0 ̸= r + v; 2) r − s = 0 = r + v; 3) r − s ̸= 0 = r + v.

1) The possibility r − s = 0 ̸= r + v. We set s = r and we calculate

U 22 = 3 · 212(2r − v)(r + v)2(4r + v) = 0.

Hence due to r + v ̸= 0 we have either v = 2r or v = −4r.

a) Assume first v = 2r. In this case we get V5 = U2 = V̂4 = 0 and due to the additional time

rescaling t → t/r we obtain the system

ẋ = x3 + 3x2y, ẏ = 3xy2 + y3. (38)

We observe that this system belongs to the family of systems (36) for s = 1.

b) Suppose now v = −4r. Then we have V5 = U2 = V̂4 = 0 and after the the rescaling

(x, y, t) 7→ (x,−y, t/r) we arrive at the system (38).

2) The possibility r − s = 0 = r + v. Then we have s = r and v = −r and this implies

V5 = U2 = V̂4 = 0. So due to a time rescaling we get the system ẋ = x3, ẏ = y3, which could

be brought to the system (38) via the transformation

x1 = x + y, y1 = x − y, t1 = t/4.

3) The possibility r − s ̸= 0 = r + v. Then we have v = −r and we again obtain V5 = U2 =

V̂4 = 0. On the other hand after the time rescaling t → t/r we arrive at the 1-parameter family

of systems

ẋ = x3 + (s − 1)x2y, ẏ = sy3, (39)

for which C3 = x(x − y)y(x + sy) with rs(r + s) ̸= 0. We claim that for any fixed value s0 of

the parameter s satisfying the condition s0(s0 + 1) ̸= 0 there exist a linear transformation and

time rescaling such that this system can be brought to the system (35) corresponding to the

parameter r = s0. To prove this it is sufficient to present the respective transformation:

x1 = x − y, y1 = x + s0y, t1 = t/(s0 + 1)2.

20



3.3.1.2.2 The subcase q ̸= 0 = (q + 2r + 2s + v). Then v = −(q + 2r + 2s) and for

systems (33) we calculate

U 21 = −21232r(q − r + s)(2r + s)(q + r + 2s) = 0.

Since r ̸= 0 we arrive at the three possibilities given by the other three factors above.

1) The possibility q − r + s = 0. We set q = r − s and we get V5 = U2 = V̂4 = 0. On the

other hand after the time rescaling t → t/r we arrive at the 1-parameter family of systems

ẋ = x3 − 3x2y + (1 − s)xy2, ẏ = −(2 + s)xy2 + y3. (40)

We observe that for any fixed value s0 (here s0(s0+1) ̸= 0) of the parameter s the transformation

x1 = (1 + s0)x, y1 = x + s0y, t1 = −(1 + s0)t/s2
0

will brought the system above with s = s0 to the system (35) with r = −1/(1 + s0).

2) The possibility q − r + s ̸= 0 = 2r + s. Then s = −2r (this implies q − r + s = q − 3r ̸= 0)

and we obtain

U 22 = −3 · 212q(q − 6r)(q − 3r)2 = 0.

Therefore due to q(q − 3r) ̸= 0 we get q = 6r. Then via a time rescaling we arrive at the system

ẋ = x3 − 6x2y + 6xy2, ẏ = −3xy2 + 4y3,

which belongs to the family of systems (36) for s = −2.

3) The possibility (q − r + s)(2r + s) ̸= 0 = q + r + 2s. We set q = −(r + 2s) and this gives

V5 = U2 = V̂4 = 0. On the other hand applying a time rescaling we arrive at the 1-parameter

family of systems

ẋ = x3 + (s − 1)x2y − (2s + 1)xy2, ẏ = −(s + 1)y3.

We observe that for any fixed value s0 (here s0(s0+1) ̸= 0) of the parameter s the transformation

x1 = x, y1 = x + s0y, t1 = t/s2
0

will brought the system above with s = s0 to the system (35) with r = −(1 + s0).

3.3.1.2.3 The subcase q(q + 2r + 2s + v) ̸= 0 = (qr + rs + s2 − sv). We obtain v =

r + s + qr/s and this implies q + 2r + 2s + v = (r + s)(q + 3s)/s ̸= 0. In this case for systems

(33) we calculate

U 24 = −3 · 212q(q + 3s)(qr + rs − s2)(qr + 2rs + s2)/s2 = 0

and due to the condition q(q + 3s) ̸= 0 we obtain either qr + rs − s2 = 0, or qr + 2rs + s2 = 0.

1) The possibility qr+rs−s2 = 0. We obtain q = s(s−r)/r and this yields V5 = U2 = V̂4 = 0.

On the other hand applying a time rescaling we arrive at the 1-parameter family of systems

ẋ = x3 + 3sx2y − (1 − s)sxy2, ẏ = (1 + 2s)xy2 + s2y3.

We observe that for any fixed value s0 of the parameter s (where s0(s0 + 1) ̸= 0) the transfor-

mation

x1 = (1 + s0)x/s0, y1 = x − y, t1 = −s0(1 + s0)t

will brought the system above to the system (35) with r = −s0/(1 + s0).

2) The possibility qr + 2rs + s2 = 0. Then we have q = −s(s + 2r)/r and this again implies

V5 = U2 = V̂4 = 0. In this case applying a time rescaling we arrive at the 1-parameter family of

systems

ẋ = x3 + (s − 1)x2y − s(2 + s)xy2, ẏ = −s(1 + s)y3.
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It remains to observe that for any fixed value s0 (where s0(s0 + 1) ̸= 0) of the parameter s the

systems above can be brought to the system (35) with r = −s0/(1 + s0) via the transformation

x1 = x, y1 = x − y, t1 = s2
0t.

Observation 3.1. Examining all the possibilities above we conclude, that the condition V5 =

U2 = 0 implies V4 = 0.

So it remains to consider the cubic systems with cubic homogeneities (35). However we prefer

to pass to simpler ones as it is mentioned by the next remark.

Remark 3.3. In order to construct the whole class of systems possessing the configuration or

potential configuration (3, 2, 1, 1) it is sufficient to consider the family of cubic systems with the

homogeneous cubic parts of the forms (35). However we shall consider the simpler cubic parts

ẋ = rx3, ẏ = (r − 1)xy2 + y3, (41)

which we obtain from (35) applying the transformation x1 = y − x, y1 = rx + y.

Since r ̸= 0, due to a translation we may assume g = n = 0 in the quadratic parts of systems

(12) with the cubic homogeneities of the form (41).

Thus considering the remark above we get the next result.

Lemma 3.2. Assume that a cubic system (14) possesses 7 invariant affine straight lines with

configuration or potential configuration (3, 2, 1, 1). Then via a linear transformation and a time

rescaling this system could be brought to a system belonging to the following family:

ẋ = a + cx + dy + 2hxy + ky2 + rx3, r(r + 1) ̸= 0,

ẏ = b + ex + fy + lx2 + 2mxy + (r − 1)xy2 + y3.
(42)

3.3.2 Construction of the cubic systems possessing configuration or potential con-

figuration (3, 2, 1, 1)

In what follows we shall determine necessary and sufficient conditions for a system (42) to have

a configuration or potential configuration (3, 2, 1, 1).

Considering Remark 3.1 for the homogeneous systems (41) corresponding to (42) we calculate

H(X, Y, Z) = gcd(G1, G2, G3) = X3(X − Y )Y 2(rX + Y ). (43)

So the invariant line x = 0 (respectively y = 0 of systems (41) is of multiplicity three (respectively

two). Hence by Remark 3.1 the systems (42) could possess one triplet (respectively one couple)

of invariant lines in the direction x = 0 (respectively y = 0). However for some values of the

parameter r the common divisor gcd(G1,G2, G3) could contain additional factors. To detect them

we calculate:

ResX(G2/H, G1/H) = (r − 1)(2 + r)(1 + 2r)Y 3,

ResX(G3/H, G1/H) = (r − 1)(2 + r)(1 + 2r)(4 − r)(4r − 1)Y 5;

ResY (G2/H, G1/H) = (r − 1)(2 + r)(1 + 2r)X3,

ResY (G3/H, G1/H) = (r − 1)(2 + r)(1 + 2r)(r − 4)(4r − 1)X3.

Therefore in order to have a nonconstant common factor of the polynomials G1/H, G2/H and

G3/H the condition (r − 1)(2 + r)(1 + 2r) = 0 has to be satisfied. And in this case we obtain

H(X, Y, Z) = gcd(G1, G2, G3) = X3Y 3(X − Y )(X + Y ) if r = 1;

H(X, Y, Z) = gcd(G1, G2, G3) = X3Y 2(X − Y )(2X − Y )2 if r = −2;

H(X, Y, Z) = gcd(G1, G2, G3) = X3Y 2(X − Y )2(X − 2Y ) if r = −1/2.

Thus considering Remark 3.1 we arrive at the next remark.
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Remark 3.4. A cubic system (42) could possess: (i) a triplet of parallel invariant lines in the

direction x = 0 or y = 0 and in the second case the condition r = 1 holds; (ii) a couple of parallel

invariant lines either in the direction y = 0, or y = x (if r = −1/2), or y = 2x (if r = −2).

3.3.2.1 The case (r − 1)(1 + 2r)(2 + r) ̸= 0. Then by the remark above systems (42) could

have a triplet (respectively a couple) of parallel invariant lines only in the direction x = 0

(respectively y = 0). We shall examine these directions.

(i) The direction x = 0. Considering the equations (13) we obtain

U = 1, V = 0, A = r, B = C = 0, D = −rW, E = 2h, F = c + rW 2,

Eq7 = k, Eq9 = d − 2hW, Eq10 = a − cW − rW 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0.

(44)

and obviously we can have a triplet of parallel invariant line (which could coincide) in the

direction x = 0 if and only if k = d = h = 0.

(ii) The direction y = 0. In this case considering the equations (13) and conditions above we

have
U = 0, V = 1, A = 0, B = (r − 1)/2, C = 1,

D = 2m + W − rW, E = −W, F = f + W 2, Eq5 = l,

Eq8 = e − 2mW + (r − 1)W 2, Eq10 = b − fW − W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0.

(45)

So we conclude that for the existence of a couple of parallel invariant lines for systems (42) in

this direction it is necessary and sufficient l = 0 and

R
(0)
W (Eq8, Eq10) = R

(1)
W (Eq8, Eq10) = 0.

We calculate

R
(1)
W (Eq8, Eq10) = −4m2 + e(r − 1) − f(r − 1)2 = 0

and as r ̸= 1 we have e =
[
4m2 + f(r − 1)2

]
/(r − 1). Then we obtain

R
(0)
W (Eq8, Eq10) =

8m3 + 2fm(r − 1)2 + b(r − 1)3

(r − 1)3
= 0

and hence we get b = −2m
[
4m2 + f(r − 1)2

]
/(r − 1)3. Herein we have

Eq8 =
4m2 − f(r − 1)2 − 2m(r − 1)W + (r − 1)2W 2

r − 1
≡ 1

r − 1
Z(f, m, r,W ),

Eq10 = − 1

(r − 1)3
(2m − W + rW )Z(f,m, r,W )

and therefore systems (42) possess in the direction y = 0 two parallel lines, which could be real

(or complex) distinct or coinciding.

Thus in order to have a triplet in the direction x = 0 and a couple in the direction y = 0 in

the case r − 1 ̸= 0 the following conditions are necessary and sufficient for systems (42):

k = d = h = l = 0, e =
[
4m2 + f(r − 1)2

]
/(r − 1),

b = −2m
[
4m2 + f(r − 1)2

]
/(r − 1)3.

(46)

(iii) The direction y = x. In this case we have

U = −1, V = 1, A = r, B = r/2, C = 1, D = rW − l, E = 2h − l − 2m + 2rW,

F = c − e − lW + rW 2, Eq7 = l − 2h − k + 2m − (1 + 2r)W,

Eq9 = −c − d + e + f + 2(l − h + m)W − 3rW 2,

Eq10 = −a + b + (e − c)W + lW 2 − rW 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0.

(47)
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Since 2r + 1 ̸= 0 these equations could have only one solution. Considering the conditions

(46) the equation Eq7 = 0 gives W = 2m/(2r + 1). Then the equations Eq9 = 0 and Eq10 = 0

yield

c = fr +
12m2r(2 + r)

(−1 + r)(1 + 2r)2
, a = − 6fmr

(r − 1)(1 + 2r)
− 72m3r(1 + r + r2)

(r − 1)3(1 + 2r)3
. (48)

(iv) The direction rx + y = 0. In this case we have

U = r, V = 1, A = r, B = −1/2, C = 1, D = 2m + 2hr − kr2 + (1 + r)W,

E = kr − W, F = f + dr − krW + W 2,

Eq5 = l − 2mr − 2hr2 + kr3 − r(2 + r)W,

Eq10 = b + ar − (f + dr)W + krW 2 − W 3,

Eq8 = e + cr − fr − dr2 − 2(m + hr − kr2)W − (1 + 2r)W 2,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0.

(49)

Since r(r + 2) ̸= 0, considering the conditions (46) and (48) the equation Eq5 = 0 gives

W = −2m/(r + 2). Then the equations Eq8 = 0 and Eq10 = 0 take the form

Eq8 = (r + 1)U(f,m, r) = 0, Eq10 = −6m(1 + r)(1 + r + r2)U(f,m, r)

(−1 + r)(2 + r)(1 + 2r)
= 0

where

U(f,m, r) = f(r − 1) +
12m2(1 + 5r + 15r2 + 5r3 + r4)

(−1 + r)(2 + r)2(1 + 2r)2
.

Since r + 1 ̸= 0 the condition Eq8 = 0 gives U(f, m, r) = 0 and then Eq10 = 0. The condition

U(f,m, r) = 0 implies f =
12m2(1 + 5r + 15r2 + 5r3 + r4)

(r − 1)2(2 + r)2(1 + 2r)2
and taking into account (46) and

(48) we arrive at the following relations among the parameters of systems (42) in the case

(r − 1)(2 + r)(1 + 2r) ̸= 0:

k = d = h = l = 0, f = −12m2(1 + 5r + 15r2 + 5r3 + r4)

(r − 1)2(2 + r)2(1 + 2r)2
,

b = − 8m3(1 + 7r + r2)

(r − 1)(2 + r)2(1 + 2r)2
, c = − 108m2r(1 + r + r2)

(r − 1)2(2 + r)2(1 + 2r)2
,

a =
216m3r

(r − 1)2(2 + r)2(1 + 2r)2
, e =

4m2(r − 1)(1 + 7r + r2)

(2 + r)2(1 + 2r)2
.

(50)

So we obtain the following 2-parameter family of systems

ẋ = r
[
x +

6m

(r − 1)(2 + r)

][
x − 6m

(r − 1)(1 + 2r)

][
x − 6m

(1 + 2r)(2 + r)

]
,

ẏ =
[
y +

2m(r − 1)

(2 + r)(1 + 2r)

][
y +

2m(1 + 7r + r2)

(r − 1)(2 + r)(1 + 2r)

][
y + (r − 1)x − 2m

(r − 1)

]
.

Since (r−1)(2+ r)(1+2r) ̸= 0 we set a new parameter u as follows: m =
u

6
(r−1)(2+ r)(1+2r)

and this leads to the systems

ẋ = r
[
x + u(1 + 2r)

][
x − u(2 + r)

][
x − u(r − 1)

]
,

ẏ =
[
y + u(r − 1)2/3

][
y + u(1 + 7r + r2)/3

][
y + (r − 1)x − u(2 + r)(1 + 2r)/3

]
.

(51)

Assume first that u ̸= 0. Since r ̸= 0 by means of the transformation

x1 =
x

3u
+

1 − r

3
, y1 = − y

3ru
− (r − 1)2

9r
, t1 = 9ru2t
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systems (51) become the systems (we keep the old notations of variables)

ẋ = x(x − 1)(x + r),

ẏ = y(y − 1)
[
(1 − r)x + ry + r

]
.

(52)

We observe that the systems above possess seven invariant affine lines

L1 = x, L2 = x − 1, L3 = x + r, L4 = y, L5 = y − 1, L6 = x − y, L7 = x + ry

in the configuration (3, 2, 1, 1). Since r(r +1) ̸= 0 we conclude that we could not have coinciding

invariant lines.

On the other hand systems (52) possess 9 finite singularities:

(0, 0), (0, 1), (0,−1), (1, 0), (−r, 0), (1, 1), (1,−1/r), (−r, 1), (−r,−r).

We observe that 8 singular point are located at the intersections of the invariant lines, whereas

the ninth one (and namely, (0,-1)) is located on the invariant line L1 = 0. Moreover, the positions

of the invariant lines which form the triplet depends on the parameter r. More precisely, if r > 0

then the line L1 is placed between the parallel invariant lines L2 and L3 and in the case r < 0

the lines L2 and L3 are located on the right with respect to L1. Thus taking into consideration

that on the line L1 it is located the unique point of the intersection of 4 invariant lines L1, L4, L6

and L7 (the origin of coordinate), we arrive at two different configurations. Namely we obtain

the configuration Config. 8.4 if r > 0 and Config. 8.5 if r < 0 (see Figure 1).

Assume now u = 0. Then systems (51) become the homogeneous systems (41) possessing

invariant lines x = 0 (triple), y = 0 (double), y = x and y = −rx (see (43)). This leads to the

configuration Config. 8.6 (see Figure 1).

3.3.2.2 The case (r − 1)(1 + 2r)(2 + r) = 0. We examine each one of the three cases given

by the three factors. However we observe the subcase r = −2 could be brought to the subcase

r = −1/2 via the rescaling x → x/2. Therefore we consider only two subcases: r = 1 and

r = −1/2.

3.3.2.2.1 The subcase r = 1. According to Remark 3.4 systems (42) could have the

following parallel invariant lines: (i) a triplet in the direction x = 0 and a couple in the direction

y = 0; (ii) a triplet in the direction y = 0 and a couple in the direction x = 0.

However for r = 1 from (44) and (45) it follows that in each one of these directions we could

have either one, or three parallel invariant lines. So in the case r = 1 we could not have a

configuration (or potential configuration) of the type (3, 2, 1, 1).

3.3.2.2.2 The subcase r = −1/2. According to Remark 3.4 systems (42) could have a

triplet of parallel invariant lines in the direction x = 0 and a couple either in the direction y = 0

or y = x.

As we have a triplet in the direction x = 0 then according to (44) for systems (42) the

conditions k = d = h = 0 must be satisfied. On the other hand as these systems must have at

least one line in the direction y = 0 then considering (45) the equation Eq5 = l = 0 gives l = 0.

Similarly as in the direction y = x there must exist at least one invariant line, from (47) due to

r = −1/2 and k = d = h = l = 0 we have Eq7 = 2m = 0, i.e. we get m = 0.

Considering the conditions k = d = h = l = m = 0 we shall examine the direction y = −rx =

x/2. Taking into account (49) and r = −1/2 we obtain

U = −1/2, V = 1, A = −1/2, B = −1/2, C = 1, D = W/2,

E = −W, F = f + W 2, Eq5 = 3W/4, Eq8 = (−c + 2e + f)/2,

Eq10 = (−a + 2b − 2fW − 2W 3)/2,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0.
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So from Eq5 = 0 we get the unique solution W = 0 and thenwe arrive at the conditions

−c + 2e + f = 0 = −a + 2b.

So we get the relations c = 2e + f and a = 2b. Joining all the obtained conditions we have

r = −1/2, k = d = h = l = m = 0, c = 2e + f, a = 2b (53)

and considering them we examine simultaneously the directions y = 0 and y = x.

By (45) and (53) for the direction y = 0 we obtain Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 =

Eq9 = 0 and

Eq′
8 = (2e − 3W 2)/2, Eq′

10 = b − fW − W 3,

On the other hand considering (47) and (53) for the direction y = x we have Eq1 = Eq2 =

Eq3 = Eq4 = Eq6 = Eq7 = Eq8 = 0 and

Eq′′
9 = (−2e + 3W 2)/2, Eq′′

10 =
[
− 2b − 2(e + 2f)W + W 3

]
/2.

Now we need to have in these two directions exactly three invariant lines. We claim, that if in

one of the directions we have a couple of parallel lines, that immediately in the second direction

we also obtain a couple of invariant lines.

Indeed, considering Lemma 2.3 we calculate

R
(0)
W (Eq′

8, Eq′
10) = −

[
27b2 − 2e(2e + 3f)2

]
/8, R

(1)
W (Eq′

8, Eq′
10) = −3(2e + 3f)/4;

R
(0)
W (Eq′′

9 , Eq′′
10) =

[
27b2 − 2e(2e + 3f)2

]
/8, R

(1)
W (Eq′′

9 , Eq′′
10) = −3(2e + 3f)/4.

Therefore by Lemma 2.3 if the polynomials Eq′
8 and Eq′

10 have two common roots them immedi-

ately the polynomials Eq′′
9 and Eq′′

10 have also two common roots, and conversely. So our claim

is proved.

Thus we conclude that in the case r = −1/2 (and clearly in the case r = −2) we could not

have a configurations of the type (3, 2, 1, 1).

Thus we arrive at the next result.

Lemma 3.3. A system (42) possesses the configuration or potential configuration of invariant

lines of the type (3, 2, 1, 1) only in the case (r − 1)(1 + 2r)(2 + r) ̸= 0. Moreover if this system

possesses such a configuration then it could be written either in the form (52) or (41).

3.3.3 Invariant conditions for the configurations Config. 8.4, 8.5, 8.6

According to Lemma 3.3 for the existence of the configuration (3, 2, 1, 1) the condition (r−1)(2+

r)(1 + 2r) ̸= 0 is necessary. On the other hand for systems (42) we have

D4 = −1152(r − 1)(2 + r)(1 + 2r)

and hence the condition above is equivalent to D4 ̸= 0.

Now we concentrate our attention on the conditions (50) and according to the statement A2)

of the Main Theorem we shall prove that these conditions are equivalent to K4 = K5 = K6 = 0.

For systems (42) we calculate

K4 = l(2 + r)(1 + 2r)x3/9 − 2h(−1 + r)rx2y/3 + 2(r − 1)(−h + hr − 3kr)xy2/9 − kry3

and due to the condition r(r−1)(2+r)(1+2r) ̸= 0 clearly that the condition K4 = 0 is equivalent

to k = l = h = 0. Considering these conditions we calculate

K5 = Z1x
4 + Z2x

3y + Z3x
2y2 + Z4xy3 + Z5y

4
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where

Z1 = − 30r
[
3r(1 − r)(c − f) + e(4 + r + 4r2) − 4m2(r − 1)

]
,

Z2 = − 10
[
54fr2 − 27dr2(r − 1) + 8e(r − 1)(2 + r)(1 + 2r) − 18cr(1 + r + r2)−

− 8m2(2 + r)(1 + 2r)
]
/3,

Z3 =10(r − 1)
[
5dr(r − 1) + 2c(1 + 7r + r2) − 2f(4 + r + 4r2) − 24m2

]
,

Z4 =10
[
6c(1 + 7r + r2) − d(r − 1)(4 − 53r + 4r2) − 6f(4 + r + 4r2) − 72m2

]
/3,

Z5 =30d(1 + 7r + r2).

We observe that the following relation holds:

Z3 − (r − 1)Z4 = 20d(r − 1)2(2 − 19r + 2r2)/3.

Therefore it is clear that the conditions Z3 = Z4 = Z5 = 0 imply d = 0 and then from the

relations Z1 = Z2 = Z3 = 0 we obtain:

c = − 108m2r(1 + r + r2)

(r − 1)2(2 + r)2(1 + 2r)2
, e =

4m2(r − 1)(1 + 7r + r2)

(2 + r)2(1 + 2r)2
,

f = −12m2(1 + 5r + 15r2 + 5r3 + r4)

(r − 1)2(2 + r)2(1 + 2r)2
.

(54)

Thus we obtain the respective conditions from (50) and it remains to find the invariant conditions

corresponding to the expressions for the parameters a and b. For systems (42) with the conditions

k = l = h = 0 and (54) we calculate:

Coefficient[K6, x
9y2] = − 6480(r − 1)2r3

(2 + r)2(1 + 2r)2
[
b(r − 1)(2 + r)2(1 + 2r)2 + 8m3(1 + 7r + r2)].

So due to the condition r(r − 1)(2 + r)(1 + 2r) ̸= 0 the condition K6 = 0 implies

b = − 8m3(1 + 7r + r2)

(r − 1)(2 + r)2(1 + 2r)2

and then we calculate:

Coefficient[K6, x
8y3] = − 7560(r − 1)r3

(2 + r)2(1 + 2r)2
[
216m3r − a(−1 + r)2(2 + r)2(1 + 2r)2].

Therefore the condition K6 = 0 implies

a =
216m3r

(r − 1)2(2 + r)2(1 + 2r)2

and we arrive at the conditions (50). It remains to note that for these expressions of the

parameters a and b we have K6 = 0 identically.

On the other hand the conditions u ̸= 0 and u = 0 (see the notation for the parameter u on

the page 24) lead to different configurations of invariant lines for systems (51). So we need an

invariant polynomial which govern this condition. For these systems we calculate

L1 = −6912u(r − 1)r(2 + r)(1 + 2r)x2y

and due to the condition r(r − 1)(2 + r)(1 + 2r) ̸= 0 the condition u = 0 is equivalent to L1 = 0.

As it was shown above in the case u ̸= 0 we obtain the family of systems (52) which possess

two distinct configurations (Config. 8.1-4 and Config. 8.5 ) depending on the sign of the

parameter r. On the other hand for systems (52) we have K7 = 4r and hence this invariant

polynomial distinguishes the mentioned configurations of invariant lines.

Thus the statement A2) of the Main Theorem is proved.

27



3.4 Systems with configuration (2, 2, 2, 1)

In this subsection we construct the cubic systems with 4 real infinite singular points which

possess 7 invariant affine straight lines with configuration or potential configuration (2, 2, 2, 1),

having total multiplicity 8, as always the invariant straight line of the infinity is considered.

For having the mentioned configuration a cubic system has to possess three couples of parallel

invariant lines. Thus, according to Theorem 2.2 if a cubic system possesses 7 invariant straight

lines in the configuration (2, 2, 2, 1), then necessarily the condition V3 = 0 holds.

3.4.1 Construction of the corresponding cubic homogeneities

As a first step we shall construct the cubic homogeneous parts of systems (14) for which the

condition above is fulfilled. So we shall consider the family of systems (33) and we shall force

the condition V3 = 0 to be satisfied.

We observe that the invariant polynomial V3 is a homogeneous polynomial of degree four

in x and y. A straightforward computation of the value of V3 for systems (33) yields: V3 =

32
4∑

j=0

V3jx
4−jyj , where

V30 = −p(p + 3r), V31 = 2p(r − 2s − v),

V32 = 4rs + 3rq − sv − vr + 3ps − 2pq + 2s2 + 2r2 − v2,

V33 = −2q(2r − s + v), V34 = −q(q + 3s).

(55)

So we shall consider two cases: pq ̸= 0 and pq = 0.

3.4.1.1 The case pq ̸= 0. Then by (55), the conditions V3i = 0, i = 0, 1, 3, 4 yield p = q =

−3r = −3s = 3v ̸= 0, and then the condition V32 = −27v2 = 0 implies v = 0, a contradiction.

3.4.1.2 The case pq = 0. Then we can suppose q = 0, otherwise we interchange x ↔ y,

p ↔ q and r ↔ s. We consider two subcases: p = 0 and p ̸= 0.

3.4.1.2.1 The subcase p = 0. Then we have V30 = V31 = 0, and from (55) we obtain

V32 = (2s + 2r + v)(s + r − v) = 0.

1) The possibility v = r + s. Then V3 = 0 and as s ̸= 0 via the time rescaling t → t/s we

arrive at the family of cubic homogeneous systems

ẋ = rx3 + (2 + r)x2y, ẏ = (1 + 2r)xy2 + y3. (56)

2) The possibility v = −2(r + s). Then V3 = 0 and as r ̸= 0 via the time rescaling t → t/r

we arrive at the family of cubic homogeneous systems

ẋ = x3 − (2 + s)x2y, ẏ = −(1 + 2s)xy2 + sy3.

We observe that these systems could be brought to the systems (56) via the change (x, y, t, s) 7→
(y, −rx, t, −1/r).

3.4.1.2.2 The subcase p ̸= 0. Then by (55) we obtain p = −3r and v = r − 2s and this

leads to the systems

ẋ = −2x3 + (1 − s)x2y, ẏ = −3x2y + 2(1 − s)xy2 + sy3.

It is not too difficult to observe that via the change (x, y, t, s) 7→ (x, x − y, −(1 + r)t, −1/(1 + r)

the systems above can be brought to systems (56).
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Since in systems (12) with the homogenous cubic parts of the form (56) due to a translation

we may assume n = 0, we arrive at the next result.

Lemma 3.4. Assume that a cubic system (14) possesses 7 invariant affine straight lines with

configuration or potential configuration (2, 2, 2, 1). Then via an affine transformation and a time

rescaling this system could be brought to a system belonging to the following family:

ẋ = a + cx + dy + gx2 + 2hxy + ky2 + rx3 + (2 + r)x2y,

ẏ = b + ex + fy + lx2 + 2mxy + (1 + 2r)xy2 + y3, r(r + 1) ̸= 0.
(57)

3.4.2 Construction of the cubic systems possessing configuration or potential con-

figuration (2, 2, 2, 1)

In what follows we shall determine necessary and sufficient conditions for a system (57) to have

a configuration or potential configuration (2, 2, 2, 1).

Considering Remark 3.1 for the homogeneous systems (56), corresponding to systems (57)

we calculate

H(X, Y, Z) = gcd(G1,G2, G3) = X2(X − Y )Y 2(rX + Y )2. (58)

So each one of the invariant lines x = 0, y = 0 and rx + y = 0 of systems (56) is of multiplicity

two and in the direction y = x there exists one line.

We claim that in order to have exactly three couples of invariant straight lines, for systems

(57) the condition (r + 2)(2r + 1)(r − 1) ̸= 0 must hold. Indeed using the equations (13) we

evaluate them for each one of the four directions.

(i) For the direction x = 0 we obtain

U = 1, V = 0, A = r, B = (2 + r)/2, C = 0, D = g − rW,

E = 2h − 2W − rW, F = c − gW + rW 2, Eq7 = k,

Eq9 = d − 2hW + (2 + r)W 2, Eq10 = a − cW + gW 2 − rW 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0

(59)

and to have exactly two parallel invariant lines in this direction the condition r + 2 ̸= 0 is

necessary.

(ii) For the direction y = 0 we have

U = 0, V = 1, A = 0, B = (2r + 1)/2, C = 1, D = 2m − W − 2rW, E = −W,

F = f + W 2, Eq5 = l, Eq8 = e − 2mW + (1 + 2r)W 2, Eq10 = b − fW − W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0.

(60)

and clearly to have exactly two parallel invariant lines in this direction the condition 1 + 2r ̸= 0

must be satisfied.

(iii) For the direction y = x we calculate

U = −1, V = 1, A = r, B = r + 1, C = 1, D = g − l + rW, E = −k − W,

F = −d + f + kW + W 2, Eq6 = l − g − 2h − k + 2m − 3(1 + r)W,

Eq8 = e − c − d + f + (l − g + k)W + (1 − r)W 2,

Eq10 = −a + b + dW − fW − kW 2 − W 3

(61)

and as r + 1 ̸= 0 in this direction could be at most one invariant line.
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(iv) For the direction y = −rx we obtain

U = r, V = 1, A = r, B = (r + 1)/2, C = 1, D = 2m + 2hr − kr2 − W, E = kr − W,

F = f + dr − krW + W 2, Eq5 = l + gr − 2mr − 2hr2 + kr3,

Eq8 = e + cr − fr − dr2 − 2mW − 2hrW + 2kr2W + (1 − r)W 2,

Eq10 = b + ar − fW − drW + krW 2 − W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0.

(62)

We observe, that to have exactly two invariant lines in this direction it is necessary r − 1 ̸= 0.

Thus we conclude, that the three needed couples of parallel invariant lines could be only in

the directions x = 0, y = 0 and y = −rx and for this the condition (r + 2)(2r + 1)(r − 1) ̸= 0

must hold. So our claim is proved.

Since r + 2 ̸= 0 without loss of generality in systems (57) we may assume h = 0 due to the

translation

x = x1 + h(1 + 2r)/(3(2 + r)), y = y1 − h/(2 + r),

which conserves the previous relation n = 0. So we have to force the existence of parallel lines

in the mentioned above directions. Considering (59), (60), (62) and h = 0 we obtain: k = l = 0,

r(g − 2m) = 0 and this implies g = 2m.

Now we look for the sufficient conditions under the parameters of systems (57) for the exis-

tence of three couples of parallel lines, assuming that the following conditions hold:

k = l = h = 0, g = 2m. (63)

(i) Direction x = 0. Considering (59) we get

Eq9 = d + (2 + r)W 2 = 0, Eq10 = a − cW + 2mW 2 − rW 3 = 0

and by Lemma 2.3 in order to have two common solutions the following conditions are necessary

and sufficient:

R
(0)
W (Eq9, Eq10) = R

(1)
W (Eq9, Eq10) = 0.

Since R
(1)
W (Eq9, Eq10) = −(2 + r)(2c + cr − dr) and r + 2 ̸= 0 we obtain d = c(2 + r)/r and we

calculate

R
(0)
W (Eq9, Eq10) = (2 + r)3(2cm − ar)2/r2 = 0.

Therefore we get a = 2cm/r and this implies

Eq9 = (2 + r)(c + rW 2)/r, Eq10 = (2m − rW )(c + rW 2)/r

and hence, we have two common solutions, which could be real or complex, distinct or coinciding.

On the other hand for the parameters of systems (57) we obtain the following relations:

(r − 1)(r + 2)(2r + 1) ̸= 0, k = l = h = 0,

g = 2m, d = c(2 + r)/r, a = 2cm/r.
(64)

(ii) Direction y = 0. Taking into account (60) and (64) in this case we obtain

Eq8 = e − 2mW + (1 + 2r)W 2 = 0, Eq10 = b − fW − W 3 = 0,

R
(1)
W (Eq8, Eq10) = e(1 + 2r) − f(1 + 2r)2 − 4m2 = 0

and this implies e = f(1 + 2r) + 4m2/(1 + 2r). Therefore we calculate

R
(0)
W (Eq8, Eq10) =

[
8m3 + 2fm(1 + 2r)2 + b(1 + 2r)3

]2
/(1 + 2r)3 = 0
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and hence we get b = −2
[
4m3 + fm(1 + 2r)2

]
/(1 + 2r)3. Then we obtain

Eq9 =
4m2 + f(1 + 2r)2 − 2m(1 + 2r)W + (1 + 2r)2W 2

1 + 2r
,

Eq10 = − (2m + W + 2rW )
[
4m2 + f(1 + 2r)2 − 2m(1 + 2r)W + (1 + 2r)2W 2

]

(1 + 2r)3

and hence, we have two common solutions, which could be real or complex, distinct or coinciding.

Considering the new obtained conditions we arrive at the following relations among the

parameters of systems (57):

(r − 1)(r + 2)(2r + 1) ̸= 0, k = l = h = 0, g = 2m,

d = c(2 + r)/r, a = 2cm/r, e = f(1 + 2r) + 4m2/(1 + 2r),

b = −2
[
4m3 + fm(1 + 2r)2

]
/(1 + 2r)3

(65)

(iii) Direction y = −rx. Considering (62) we get

Eq8 = (1 + r)(f − cr) +
4m2

1 + 2r
− 2mW − (r − 1)W 2 = 0,

Eq10 = 2cm − 8m3

(1 + 2r)3
− 2fm

1 + 2r
− (2c + f + cr)W − W 3 = 0,

R
(1)
W (Eq8, Eq10) = 2c(r − 1) − 2fr(r − 1) − 12m2r

1 + 2r
= 0

and therefore we obtain c = fr +
6m2r

(r − 1)(1 + 2r)
. Then we calculate

R
(0)
W (Eq8, Eq10) = −144m2r2(1 + r)2

[
f(r − 1)2(1 + 2r)2 + 3m2(1 − 2r + 4r2)

]2

(2 + r)6(1 + 2r)4
= 0

and clearly we have either m = 0 or m ̸= 0 and f = − 3m2(1 − 2r + 4r2)

(−1 + r)2(1 + 2r)2

1) The case m = 0. Then by (65) we get the conditions

(r − 1)(r + 2)(2r + 1) ̸= 0, k = l = h = g = m = a = b = 0,

d = f(2 + r), e = f(1 + 2r), c = fr
(66)

and for the direction y = −rx we obtain

Eq8 = (1 − r)(f + 2fr + fr2 + W 2), Eq10 = −W (f + 2fr + fr2 + W 2).

So we have two common solutions, which could be real or complex, distinct or coinciding.

In this case for the last direction (y = x) we calculate

Eq6 = −3(1 + r)W, Eq8 = (1 − r)W 2,

Eq10 = W (f + fr − W 2)

and the common solution is W = 0. Thus we get the family of systems

ẋ = (f + x2)(rx + 2y + ry), ẏ = (f + y2)(x + 2rx + y) (67)

with the condition r(r2 −1)(r +2)(2r +1) ̸= 0 and f ∈ {−1, 0, 1} due to the rescaling (x, y, t) 7→
(|f |1/2x, |f |1/2y, t/|f |). These systems possess the invariant lines

x2 + f = 0, y2 + f = 0, y − x = 0, (rx + y)2 + f(1 + r)2 = 0.
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We observe that the line y = x is real and all other lines are distinct real (respectively complex)

if f < 0 (respectively f > 0) and we have three double invariant lines in the case f = 0.

Thus we obtain the configuration Config. 8.7 if f < 0; Config. 8.8 if f > 0 and Config. 8.9 if

f = 0 (see Figure 1).

2) The case f = − 3m2(1 − 2r + 4r2)

(−1 + r)2(1 + 2r)2
and m ̸= 0. We claim that in this case in the direction

y = x we could not have any invariant line. Indeed, considering (61) we obtain

Eq6 = −3(1 + r)W = 0, Eq8 = − 8m2(2 + r)

(r − 1)(1 + 2r)
− 2mW + (1 − r)W 2 = 0

and we observe that these equations could have only the common solution W = 0. However in

this case we must have m(2 + r) = 0 which contradicts m(2 + r) ̸= 0. So our claim is proved.

3.4.3 Invariant conditions for the configurations Config. 8.7, 8.8, 8.9

It was proved in the previous subsection that a system (57) with h = 0 possesses the configuration

or potential configuration of invariant lines (2, 2, 2, 1) if and only if the following conditions are

satisfied:
(r − 1)(r + 2)(2r + 1) ̸= 0, k = l = g = m = a = b = 0,

d = f(2 + r), e = f(1 + 2r), c = fr.
(68)

Following the statement A3) of the Main Theorem we shall prove that these conditions are

equivalent to

D4 ̸= 0, V3 = K4 = K2 = K8 = 0.

First of all we observe that for systems (57) with h = 0, i.e. for systems

ẋ = a + cx + dy + gx2 + ky2 + rx3 + (2 + r)x2y,

ẏ = b + ex + fy + lx2 + 2mxy + (1 + 2r)xy2 + y3,
(69)

we have D4 = −1152(r−1)(2+r)(1+2r). Hence the first condition (68) is equivalent to D4 ̸= 0.

For systems (69) we calculate

K4 =
2

9

[
l(r − 1)(2 + r)x3 + (2 + r)(3l + g − 2m + 2gr − mr)x2y+

+3(2m − kr + mr − 2kr2)xy2 + k(r − 1)(1 + 2r)y3
]

and it is obvious to detect that due to (r−1)(r+2)(2r+1) ̸= 0 the condition K4 = 0 is equivalent

to k = l = g = m = 0.

Next we examine the conditions for the coefficients of linear terms given in (68). Considering

the conditions above we calculate

K8 = Z1x
4 + Z2x

3y + Z3x
2y2 + Z4xy3 + Z5y

4

where

Z1 = − 5r2(4c + e − f + 8cr − 4er − 2fr),

Z2 =r(16c + 40e − 40f + 89cr − 3dr − 7er − 83fr + 6cr2 − 6dr2 − 60fr2),

Z3 = − 16c − 40e + 40f − 134cr + 28dr − 49er + 89fr − 89cr2 + 49dr2 − 28er2+

+ 134fr2 − 40cr3 + 40dr3 + 16fr3,

Z4 = − 60c − 6e + 6f − 83cr − 7dr − 3er + 89fr − 40cr2 + 40dr2 + 16fr2,

Z5 =5(2c + 4d − 8f + cr − dr − 4fr).
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It is not too difficult to detect, that the relations Z1 = Z2 = Z5 = 0 yield c = fr, d = f(2 + r)

and e = f(1 + 2r) and then we get K8 = 0. Thus we obtain the respective conditions from (68)

and it remains to find out the invariant conditions equivalent to a = b = 0. We observe that for

systems (69) in this case we have

K2 = −3x2y2(rx + y)2(bx − ay)(x + 2rx + 2y + ry)2

and evidently the condition K2 = 0 is equivalent to a = b = 0.

In such a way we get the 2-parameter family of systems (67) possessing the configuration

Config. 8.7 if f < 0; Config. 8.8 if f > 0 and Config. 8.9 if f = 0 (see Figure 1).

On the other hand for these systems we calculate

K9 = −180f(1 + r)2x2y2(rx + y)2

and as r(r + 1) ̸= 0 we conclude that f = 0 if and only if K9 = 0 and sign (K9) = −sign (f).

This completes the proof of the statement A3) of the Main Theorem.

B. Cubic systems with 2 real and 2 complex infinite singularities

According to Lemma 2.5 in this case the condition D1 < 0 holds and the systems (12) due to a

linear transformation and time rescaling could be brought to the systems

ẋ = p0 + p1(x, y) + p2(x, y) + (u + 1)x3 + (s + v)x2y + rxy2,

ẏ = q0 + q1(x, y) + q2(x, y) − sx3 + ux2y + vxy2 + (r − 1)y3.
(70)

For these systems we have C3 = x(sx+y)(x2+y2) and hence, infinite singular points are situated

at the “ends” of the straight lines: x = 0, y = −sx and y = ±ix.

As we have two real and two complex infinite singularities and the total multiplicity of the

invariant line (including the line at infinity) must be 8, then the systems above could have only

one of the following four possible configurations of invariant straight lines:

(i) (3, 3, 1); (ii) (3, 2, 2); (iii) (3, 2, 1, 1); (iv) (2, 2, 2, 1).

3.5 Systems with configuration (3, 3, 1)

Since we have two triplets of parallel invariant lines, according to Theorem 2.2 the conditions

V1 = V2 = U 1 = 0 are necessary for systems (14). Moreover in [11, Section 6.1] it was proved

that providing the conditions above, a cubic homogenous system with two real and two complex

(all distinct) infinite singularities via a linear transformation and time rescaling could be brought

either to the system

ẋ = x3, ẏ = −y3

if L4 < 0, or to the system

ẋ = x3 − 3xy2, ẏ = 3x2y − y3

if L4 > 0. For the first system we calculate

H(ã, X, Y, Z) = gcd(G1,G2, G3) = 3X3Y 3(X2 + Y 2), C3(x, y) = xy(x2 + y2),

whereas for the second one we have

H(ã, X, Y, Z) = gcd(G1,G2, G3) = 6XY (X2 + Y 2)3, C3(x, y) = −2xy(x2 + y2).

In the first case we must have two triplets of parallel lines in the real directions and hence,

forcing the existence of a line in the complex direction we get 8 invariant affine lines.
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Thus it remains to consider only the systems with cubic homogeneities of the second type.

We observe that due to a translation we may assume g = n = 0 in the quadratic parts of the

systems (70) and so we examine the family of systems

ẋ = a + cx + dy + 2hxy + ky2 + x3 − 3xy2,

ẏ = b + ex + fy + lx2 + 2mxy + 3x2y − y3.
(71)

(i) The direction x + iy = 0. In this case we obtain

U = 1, V = i, A = 1, B = i, C = −1, D = il − W, E = −i(k + W ),

F = c + W 2 + i(e − lW ), Eq10 = a + ib − (c + ie)W + ilW 3 − W 3,

Eq6 = l + 2h + i(k + 2m), Eq9 = d + e + i(f − c) − (l − ik)W,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq7 = Eq8 = 0.

(72)

As all the parameters of systems (71) are real we conclude, that to have exactly three parallel

invariant lines (which could coincide) in this direction it is necessary and sufficient to be satisfied

the conditions l = k = h = m = 0, d = −e and f = c.

Thus we arrive to the family of systems

ẋ = a + cx − ey + x3 − 3xy2,

ẏ = b + ex + cy + 3x2y − y3
(73)

for which we shall examine simultaneously the real directions: x = 0 and y = 0.

For the direction x = 0 we calculate

U = 1, V = 0, A = 1, B = 0, C = −3, D = −W, E = 0, F = c + W 2,

Eq7 = 3W, Eq9 = −e, Eq10 = a − cW − W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0,

(74)

whereas for the direction y = 0 we have

U = 0, V = 1, A = 3, B = 0, C = −1, D = 0, E = W, F = c − W 2,

Eq5 = −3W, Eq8 = e, Eq10 = b − cW + W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0.

(75)

We observe that in each one of the cases we could have only one invariant line (which is either

x = 0 or y = 0). Moreover the necessary and sufficient conditions for the existence of such line

are e = a = 0 in the first case and e = b = 0 in the second case.

Thus we conclude, that for the existence for systems (73) of exactly one invariant line in one

of the real directions, the following conditions are necessary and sufficient:

e = ab = 0, a2 + b2 ̸= 0.

Since the respective family of systems is of the form

ẋ = a + cx + x3 − 3xy2, ẏ = b + cy + 3x2y − y3 (76)

we may assume b = 0 due to the change (x, y, t) 7→ (y, x, −t) in the case a = 0.

Thus we arrive at the family of systems

ẋ = a + cx + x3 − 3xy2, ẏ = cy + 3x2y − y3 (77)

possessing the invariant lines

y = 0, (x + iy)3 + c(x + iy) + a = 0, (x − iy)3 + c(x − iy) + a = 0.
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Since the discriminant of the cubic polynomial ϕ(z) = z3 + cz + a, where z = x ± iy equals

ξ = −(27a2 + 4c3), we conclude that systems above possess 7 invariant affine lines (considered

with their multiplicity), which are as follows:

ξ ̸= 0 ⇒ one real simple and 6 complex distinct simple;

ξ = 0 ⇒ one real simple, two complex simple and 2 complex double, all distinct.

As we have two triplets of parallel complex invariant lines it is clear that all 9 finite singularities

(real and/or complex) are located at the intersections of these lines. Moreover, as there exist

three pair of complex conjugate lines we have three real finite singularities, which are distinct if

ξ ̸= 0 and two of them coincide if ξ = 0.

We observe that the singular points (xi, 0), i = 1, 2, 3, where xi are the solutions of the cubic

equation x3 + cx+ a = 0 are located on the real invariant line y = 0. As the discriminant of this

equation is also ξ, we deduce that all the real singularities are located on the real line y = 0 if

ξ ≥ 0 and there are one real and two complex singularities on this line if ξ < 0.

Thus we obtain the configuration Config. 8.10 if ξ > 0, Config. 8.11 if ξ < 0 and Config. 8.12

if ξ = 0 (see Figure 1).

3.5.1 Invariant conditions for the configurations Config. 8.10, 8.11, 8.12

It was shown above that for having the configurations of the type (3, 3, 1) the conditions

k = h = l = m = e = d = c − f = ab = 0, a2 + b2 ̸= 0

must hold for systems (71). According to the statement B1) of the Main Theorem we shall prove

theta these conditions are equivalent to the affine invariant conditions

V1 = V2 = U 1 = L1 = L2 = K1 = 0, K2 ̸= 0.

For systems (71) we calculate

L1 = 2834
[
(3l + 2h)x3 + (k + 6m)x2y − (l + 6h)xy2 − (3k + 2m)y3

]

and hence the condition L1 = 0 gives l = h = k = m = 0. Then we obtain

L1 = 0, L2 = 2835
[
(7d − 5e)x2 − 2(c − f)xy + (5d − 7e)y2

]

and clearly the condition L2 = 0 implies e = d = c − f = 0 and we arrive at the family of

systems (73) with e = 0. So it remains to determine the invariant polynomials which govern the

conditions ab = 0 and a2 + b2 ̸= 0 for these systems. We calculate

K1 = 232315547419 · 43abxy, K2 = −27(bx − ay)(x2 + y2)4.

So clearly the condition ab = 0 is equivalent to K1 = 0, whereas the condition a2 + b2 ̸= 0 is

equivalent to K2 ̸= 0.

As it was mentioned above we could consider b = 0 and then for systems (76) we need the

expression Discrim [a + cz + z3, z] = −(27a2 + 4c3) = ξ which governs the type of the invariant

lines (distinct or coinciding) of these systems. We calculate

K3 = 2103352(27a2 + 4c3)x2y2(x − y)2(x2 + y2)4.

So clearly 4a2 + 27c3 = 0 if and only if K3 = 0 and sign (K3) = −sign (27a2 + 4c3) = sign (ξ).

To complete the proof of the statement B1) of the Main Theorem it remains to construct

the respective canonical systems for each one of the configurations. Since on the line y = 0 of
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systems (77) there exist a real solution x0 of the cubic equation x3 + cx + a = 0, then via the

translation (x, y) 7→ (x + x0, y) we get the family of systems

ẋ = c1x + d1x
2 − d1y

2 + x3 − 3xy2, ẏ = y(c1 + 2d1x + 3x2 − y2), (78)

where c1 = c + 3x2
0 and d1 = 3x0. Then on the invariant line y = 0 besides the singular

point (0, 0) there are locate two more singularities: (x1,2, 0), where x1,2 are the solution of the

quadratic equation c1 + d1x+x2 = 0. The discriminant of this equation equals δ = d2
1 − 4c1 and

obviously we must have sign (δ) = sign (ξ) and δ = 0 if and only if ξ = 0.

For systems (78) we calculate

K2 = d1(2d2
1 − 9c)y(x2 + y2)4

and by the statement B1) of the Main Theorem the condition d1 ̸= 0 must be satisfied.

a) Assume first ξ ̸= 0. Then we can set d2
1 − 4c1 = u2sign (ξ) and we have c1 = (d2

1 −
u2sign (ξ))/4. Since d1 ̸= 0 and sign (ξ) = sign (K6) the systems (78) after the rescaling

(x, y, t) 7→ (dx, dy, t/d2) could be brought to the systems

ẋ =gx + x2 − y2 + x3 − 3xy2,

ẏ =gy + 2xy + 3x2y − y3,
(79)

where g = (1 − a2sign (K6))/4 ̸= 0. So depending of the sign of the invariant polynomial K6 we

get the corresponding canonical systems given by the Main Theorem (see the statement B1)).

b) Suppose now ξ = 0. Then we have c1 = d2
1/4 and due to the same rescaling above we

obtain systems (79) with a = 0.

3.6 Systems with configuration (3, 2, 2)

For having the configuration (3, 2, 2) a cubic system has to possess three couples of parallel

invariant lines and in addition, one couple must increase up to a triplet. Thus, according to

Theorem 2.2, if a cubic system possesses 7 invariant straight lines in the configuration (3, 2, 2),

then necessarily the conditions V3 = V4 = U2 = 0 hold.

As it was proved in [11, Subsection 6.2] in this case via an affine transformation and time

rescaling such systems could be brought to the family of systems

ẋ = a + cx + dy + 2hxy + ky2 + 2x3,

ẏ = b + ex + fy + lx2 + 2mxy + 3x2y + y3,
(80)

for which C3(x, y) = −xy(x2 + y2). Considering Remark 3.1 for the respective homogeneous

system

ẋ = 2x3, ẏ = 3x2y + y3

we calculate

H(X, Y, Z) = gcd(G1,G2, G3) = 6X3Y (X2 + Y 2)2.

So by Remark 3.1 the systems (80) could possess one triplet of invariant lines only in the direction

x = 0. As regard the two couples of parallel lines we conclude that they must be complex and

in complex directions.

(i) The direction x = 0. In this case we obtain

U = 1, V = 0, A = 2, B = 0, C = 0, D = −2W, E = 2h, F = c + 2W 2,

Eq7 = k, Eq9 = d − 2hW, Eq10 = a − cW − 2W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0

(81)
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and to have exactly three parallel invariant lines in this direction the condition k = d = h = 0 is

necessary and sufficient. Therefore we get the family of systems

ẋ =a + cx + 2x3, ẏ = b + ex + fy + lx2 + 2mxy + 3x2y + y3. (82)

(ii) The direction x + iy = 0. In this case we have

U = 1, V = i, A = 2, B = i/2, C = 1, D = 2(m − W ), E = iW, F = f − W 2,

Eq5 = il − 2m, Eq8 = c − f + ie − 2mW + 3W 2,

Eq10 = a + ib − fW − W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0

(83)

and to have exactly two parallel invariant lines in this direction it is necessary and sufficient

l = m = 0 and

R
(0)
W (Eq8, Eq10) = R

(1)
W (Eq8, Eq10) = 0.

Assuming l = m = 0 (then Eq5 = 0) we calculate

R
(1)
W (Eq8, Eq10) = −3(c + 2f + ie) = 0

and as the parameters c, f and e are real we obtain c = −2f and e = 0. Herein we calculate

R
(0)
W (Eq8, Eq10) = 27(a + ib)2 = 0 which implies a = b = 0. Thus we arrive at the family of

systems

ẋ =2x(x2 − f), ẏ = y(f + 3x2 + y2), (84)

which possess 8 invariant lines, defined by the factors

x(x2 − f)y(−f + x2 − 2ixy − y2)(−f + x2 + 2ixy − y2) = 0.

So in the case of two complex and two real infinite singularities we also could not have cubic

systems with the configuration (3, 2, 2).

3.7 Systems with configuration (3, 2, 1, 1)

For having the configuration (3, 2, 1, 1) a cubic system has to possess two couples of parallel

invariant lines and, in addition, one couple must increase up to a triplet. Thus, according to

Theorem 2.2, if a cubic system possesses 7 invariant straight lines in the configuration (3, 2, 1, 1),

then necessarily the conditions V4 = V5 = U2 = 0 hold.

3.7.1 Construction of the corresponding cubic homogeneities

As a first step we shall construct the cubic homogeneous parts of systems (70) for which the

conditions above are fulfilled. So we consider the family homogeneous cubic of systems

ẋ = (u + 1)x3 + (s + v)x2y + rxy2, ẏ = −sx3 + ux2y + vxy2 + (r − 1)y3 (85)

and we shall force the conditions V4 = V5 = U2 = 0.

Similarly as before (see page 19) we use the following notations:

V5 =
4∑

j=0

V5jx
4−jyj , U 2 =

4∑

j=0

U2jx
4−jyj .

Consider first the polynomial V4. A straightforward computation of its value for systems (85)

yields

V4 = 9216 V̂4 C3(x, y), where

V̂4 = 6r2s − r(9s − 2su + 3v) + (s + v)(sv − 3u).
(86)
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As for systems (85) we have C3 = x(sx+ y)(x2 + y2) ̸= 0, we conclude that the condition V4 = 0

for these systems is equivalent to V̂4 = 0.

Calculating the value of V5 for systems (85) we obtain

V53 = −128r(9s − 6rs + r2s + 2su − rsu + uv)/9

and we shall consider two cases: r ̸= 0 and r = 0.

3.7.1.1 The case r ̸= 0. Then the condition V5 = 0 gives s(9 − 6r + r2 + 2u − ru) + uv = 0

and we consider two subcases: u ̸= 0 and u = 0.

3.7.1.1.1 The subcase u ̸= 0. In this case we get v = −s(9 − 6r + r2 + 2u − ru)/u and

we calculate

V52 = 64r(r − 3 − u)
[
s2(r − 3)2 + u2

/
(3u) = 0.

So due to ru ̸= 0 we obtain r − 3 − u = 0, i.e. r = u + 3 ̸= 0 and we calculate V5 = 0 and

U 2 = −12288
[
(3 + 2u)2 + s2

]
(x2 + y2)

[
(6s2 − 3u − u2)x2 + 6sxy − u(3 + u)y2

]
.

Since ur = u(u + 3) ̸= 0 the condition U 2 = 0 is equivalent to s = 0 and u = −3/2. In this case

V̂4 = 0 and after a time rescaling we arrive at the system

ẋ = 2x3, ẏ = 3x2y + y3. (87)

3.7.1.1.2 The subcase u = 0. Then we get V53 = −128rs(r − 3)2/9 = 0 and therefore

we have either s = 0 or r = 3. We claim that in this case the condition r = 3 must be satisfied.

Indeed, supposing s = 0 we get V54 = −32r
[
(r − 3)2 + v2

]
/9 = 0 and since r ̸= 0 this implies

r = 3. Then V54 = −32(s − v)2/3 and therefore the condition V5 = 0 implies v = s. Therefore

for u = 0, r = 3 and v = s we calculate

V5 = 0, U 2 = −73728s(9 + s2)x(sx + y)(x2 + y2), V̂4 = 2s(9 + s2).

Thus the condition U 2 = 0 gives s = 0 (this implies V̂4 = 0) and we arrive at the following

system

ẋ = x3 + 3xy2, ẏ = 2y3.

which could be brought to (87) via the change (x, y, t) 7→ (y, x, t).

3.7.1.2 The case r = 0. Then we have

V50 = −32(2s2 − u + sv)
[
(s − v)2 + (3 + u)2

]
/9

and hence the condition V5 = 0 implies either u = s(v + 2s) or s − v = u + 3 = 0.

3.7.1.2.1 The subcase u = s(v + 2s). Then we calculate V5 = 0 and

U 2 = − 12288(s + v)(3s + v)x(sx + y)
[
s(3 + (2s + v)2)x2+

+ (9 + (2s + v)2)xy − 6sy2
]
, V̂4 = −2s(s + v)(3s + v).

We observe that the condition U 2 = 0 is equivalent to (s+v)(3s+v) = 0 and this implies V̂4 = 0.

So we consider two possibilities: v = −s and v = −3s.

1) The possibility v = −s. In this case we arrive at the following family of systems

ẋ = (1 + s2)x3, ẏ = −sx3 + s2x2y − sxy2 − y3. (88)
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2) The possibility v = −3s. In this case we obtain the following family of systems

ẋ = (s2 − 1)x3 + 2sx2y, ẏ = sx3 + s2x2y + 3sxy2 + y3.

We remark that these systems could be brought to the systems (88) with the same parameter s

via the transformation

x1 = sx + y, y1 = x − sy, t1 = t/(1 + s2).

3.7.1.2.2 The subcase s − v = u + 3 = 0. Then we have v = s, u = −3 and calculation

yields

V5 = 0, V̂4 = 2s(9 + s2) = 0,

U 2 = −73728s(9 + s2)x(sx + y)(x2 + y2) = 0.

So the condition U 2 = 0 gives s = 0 (then V̂4 = 0) and this leads to the system (87).

Thus for the further examination it remains two family of systems: with cubic homogeneities

(87) and (88).

Remark 3.5. We note that for system (87) we have V3 = 0, whereas for systems (88) we have

V3 = −32(9 + s2)x2(sx + y)2 ̸= 0. So for V4 = V5 = U2 = 0 we get system (87) if V3 = 0 and the

family of systems (88) if V3 ̸= 0. We observe also that for system (87) we have D4 = 0.

3.7.2 Construction of the cubic systems possessing configuration or potential con-

figuration (3, 2, 1, 1)

3.7.2.1 The family of systems with cubic homogeneities (87). In order to determine

the possible directions for a triplet and couples of invariant straight lines we shall use the affine

comitants Gi (i = 1, 2, 3). Considering Remark 3.1 for system (87) we calculate

H(X, Y, Z) = gcd(G1,G2, G3) = 6X3Y (X2 + Y 2)2.

So by Remark 3.1 the cubic systems with homogeneous parts (87) could possess one triplet of

invariant lines only in the direction x = 0. As regard the two couples of parallel lines we conclude

that they must be complex and in complex directions y = ±ix. Therefore it is clear that in this

case we could not have the configuration or potential configuration of the type (3, 2, 1, 1).

3.7.2.2 The family of systems with cubic homogeneities (88). For homogeneous cubic

systems (88) we have

H(ã, X, Y, Z) = gcd(G1, G2, G3) = (1 + s2)X3(sX + Y )2(X2 + Y 2). (89)

Hence systems (88) possess one triple (x = 0) and one double (sx + y = 0) real lines as well as

two complex invariant lines y = ±ix. So by Remark 3.1 we conclude, that cubic systems

ẋ =a + cx + dy + 2hxy + ky2 + (1 + s2)x3,

ẏ =b + ex + fy + lx2 + 2mxy − sx3 + s2x2y − sxy2 − y3
(90)

with the cubic homogeneities (88) (here we assume g = n = 0 due to a rescaling) could have a

triplet only in the direction x = 0 and a couple of parallel lines only in the direction y = −sx.

Moreover these systems could have two simple complex conjugate invariant lines. Using the

equations (13) we evaluate them for each one of these directions.
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(i) The direction x = 0. In this case we obtain

U = 1, V = 0, A = 1 + s2, B = 0, C = 0, D = −(1 + s2)W,

E = 2h, F = c + (1 + s2)W 2, Eq7 = k,

Eq9 = d − 2hW, Eq10 = a − cW − (1 + s2)W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0

(91)

and to have exactly three parallel invariant lines in this direction the condition k = d = h = 0 is

necessary and sufficient. Therefore we get the family of systems

ẋ =a + cx + (1 + s2)x3,

ẏ =b + ex + fy + lx2 + 2mxy − sx3 + s2x2y − sxy2 − y3.
(92)

(ii) The direction sx + y = 0. Then for the systems above we calculate

U = s, V = 1, A = s2, B = 0, C = −1, D = 2m − sW,

E = W, F = f − W 2, Eq5 = l − 2ms,

Eq8 = e + s(c − f) − 2mW + 2sW 2, Eq10 = b + as − fW + W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0

(93)

and to have exactly two parallel invariant lines in this direction the conditions l = 2ms and

s ̸= 0 must hold. Moreover in order to have two invariant lines in the direction sx + y = 0 the

following conditions are necessary and sufficient:

R
(0)
W (Eq8, Eq10) = R

(1)
W (Eq8, Eq10) = 0.

Assuming l = 2ms (then Eq5 = 0) we calculate R
(1)
W (Eq8, Eq10) = −2

[
es− 2m2 +(c+ f)s2

]
= 0

and as s ̸= 0 we obtain e =
[
2m2 − (c + f)s2

]
/s. Then we calculate

R
(0)
W (Eq8, Eq10) = 8(fms2 + bs3 + as4 − m3)2/s3 = 0,

and this yields b = −
[
fms2 + as4 − m3

]
/s3. So we obtain

Eq9 = −2

s
(fs2 − m2 + msW − s2W 2), Eq10 = − 1

s3
(m + sW )(fs2 − m2 + msW − s2W 2)

and hence we have two common solutions which could be real or complex, distinct or coinciding.

(iii) The direction x + iy = 0. In this case we obtain

U = 1, V = i, A = 1 − is + s2, B = −(i + s)/2, C = −1,

D = 2m + (2 − is)W, E = −iW, F = f + W 2,

Eq5 = i(i + s)
[
2m + (3 + is)W

]
,

Eq8 = c − f + i(2m2/s − cs − fs) − 2mW + (is − 3)W 2,

Eq10 = a + i(m3/s3 − fm/s − as) − fW − W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0.

(94)

So for the existence of an invariant line in this complex direction we must have W = −2m/(3+is)

and then we calculate

Eq8 = (c − f) +
48m2s2

(9 + s2)2
− i

[
(c + f)s +

6m2(s4 − 18s2 − 27)

s(9 + s2)2

]
,

Eq10 = a +
6fm

9 + s2
− 72m3(s2 − 3)

(9 + s2)3
− i

[
as +

3fm(3 + s2)

s(9 + s2)
− 9m3(s2 − 3)(s4 − 18s2 − 27)

s3(9 + s2)3

]
.
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Since the coefficients of systems (92) are real, the conditions Eq8 = Eq10 = 0 lead to the following

four equalities:

(c − f) +
48m2s2

(9 + s2)2
= (c + f)s +

6m2(s4 − 18s2 − 27)

s(9 + s2)2
= 0,

a +
6fm

9 + s2
− 72m3(s2 − 3)

(9 + s2)3
= as +

3fm(3 + s2)

s(9 + s2)
− 9m3(s2 − 3)(s4 − 18s2 − 27)

s3(9 + s2)3
= 0.

Herein we obtain the following relations

c = −27m2(s2 − 3)(1 + s2)

s2(9 + s2)2
, f =

3m2(27 + 18s2 + 7s4)

s2(9 + s2)2
, a = −54m3(1 + s2)

s2(9 + s2)2

and therefore we get the following dependencies among the parameters of systems (90) with

g = n = 0 (due to a translation):

k = d = h = 0, l = 2ms, c = −27m2(−3 + s2)(1 + s2)

s2(9 + s2)2
, e =

8m2s(s2 − 9)

(9 + s2)2

f =
3m2(27 + 18s2 + 7s4)

s2(9 + s2)2
, a = −54m3(1 + s2)

s2(9 + s2)2
, b =

2m3(9 + 17s2)

s(9 + s2)2
.

(95)

Thus we arrive to the family of systems

ẋ =(1 + s2)

(
x − 6m

9 + s2

)[
x2 +

6m

9 + s2
x +

9m2

s2(9 + s2)

]
,

ẏ =b + ex + fy + 2msx2 + 2mxy − sx3 + s2x2y − sxy2 − y3,

(96)

where the parameters b, e and f have the values indicated above.

Assume first m ̸= 0. Since s ̸= 0 it is easy to find out that via the transformation

x1 =
s(9 + s2)

9m
x − 2s

3
, y1 =

s(9 + s2)

9m
+

2s2

9
, t1 =

81m2

s2(9 + s2)2
t

the systems above could be brought to the 1-parameter family of systems (we keep the old

notations of variables)

ẋ =(1 + s2)x
[
(x + s)2 + 1

]
,

ẏ =(1 + s2)2y + 2s(1 + s2)xy − sx3 + s2x2y − sxy2 − y3.
(97)

These systems possess the invariant lines

L1 = x, L2 = x + s + i, L3 = x + s − i, L4 = sx + y,

L5 = sx + y + 1 + s2, L6 = y + ix, L7 = y − ix

and it is clear that all these lines are distinct. Systems (97) possess the following 3 real and 6

complex finite singularities:

(0, 0), (0, ±(1 + s2)),
(
i − s,±(1 + is)

)
,

(
− i − s,±(1 − is)

)
,

(
i − s, s(s − i)

)
,

(
− i − s, s(s + i)

)
.

We observe that all singular points except (0, 1 + s2) are located at the intersections of the

invariant lines and this leads to the configuration Config. 8.13 (see Figure 1).

Assume now m = 0. Then systems (96) become the homogeneous systems (88) and consid-

ering (89) we deduce that these systems possess two real invariant straight lines x = 0 (triple)

and y + sx = 0 (double), as well as two complex lines y = ±ix. Therefore in this we obtain the

configuration Config. 8.14 from Figure 1.
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3.7.3 Invariant conditions for the configurations Config. 8.13, 8.14

As it was proved in the previous subsection for the existence of the configuration (3, 2, 1, 1) the

condition s ̸= 0 is necessary. On the other hand for systems (90) we have D4 = 2304s(9 + s2)

and hence the condition above is equivalent to D4 ̸= 0. Considering Remark 3.5 we conclude that

the condition V3 ̸= 0 to distinguish the systems (87) and (88) could be substituted by D4 ̸= 0.

Now we concentrate our attention on the conditions (95). Following the statement B2) of

the Main Theorem we shall prove that these conditions for systems (90) are equivalent to the

affine invariant conditions

K4 = K5 = K6 = 0.

First we claim that the condition K4 = 0 is equivalent to k = h = 0 and l = 2ms. Indeed, for

systems (90) we calculate

Coefficient[K4, y3] = k(s2 + 1)

and clearly the condition K4 = 0 implies k = 0. Then we have Coefficient[K4, xy2] = 8hs2/9 = 0,

i.e. h = 0 and in this case we calculate

K4 = (2ms − l)(9 + s2)x3/9 = 0

and this implies l = 2ms. So our claim is proved.

Thus it remains to prove that for the family of systems

ẋ =a + cx + dy + (1 + s2)x3,

ẏ =b + ex + fy + 2msx2 + 2mxy + ny2 − sx3 + s2x2y − sxy2 − y3
(98)

the conditions

d = 0, c = −27m2(−3 + s2)(1 + s2)

s2(9 + s2)2
, e =

8m2s(s2 − 9)

(9 + s2)2
,

f =
3m2(27 + 18s2 + 7s4)

s2(9 + s2)2
, a = −54m3(1 + s2)

s2(9 + s2)2
, b =

2m3(9 + 17s2)

s(9 + s2)2
.

(99)

are equivalent to the conditions K5 = K6 = 0.

Indeed, if for the systems above the conditions (99) are fulfilled then K5 = K6 = 0.

Conversely, assume that K5 = K6 = 0 for systems (98). Calculations yield

Coefficient[K5, y4] = 30d(9 + 5s2) = 0

and this implies d = 0. Then we obtain

K5 = 10Z1x
4/3 + 20Z2x

3y/3 + 20Z3xy2(sx + y),

where

Z1 =cs(81 + 180s2 − 5s4) + fs(5s4 − 108s2 − 81) + e(81 + 162s2 − 47s4) + 136m2s3,

Z2 =c(2s4 + 27s2 − 27) + f(27 + 9s2 − 2s4) + 8es(9 + s2) + 4m2(8s2 − 9),

Z3 =c(9 + 5s2) + f(7s2 − 9) − 12m2.

So solving the system of equations Z1 = Z2 = Z3 = 0 with respect to the parameters c, f and

e we get the respective expressions from (99). Considering these values of the parameters we

calculate

Coefficient[K6, x5y6] =
40(9 + 5s2)2(225 + 493s2)

9s2(9 + s2)2
[
as2(9 + s2)2 + 54m3(1 + s2)

]
= 0
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and this implies a = −54m3(1 + s2)

s2(9 + s2)2
. Then we obtain

K6 = − 40

9s(9 + s2)2
[
bs(9 + s2)2 − 2m3(9 + 17s2)

]
x6(sx + y)2

[
(s2 − 3)sx − (9 + 5s2)y

]
×

[
s2(2781 + 5718s2 + 409s4)x2 + 4s(9 + s2)(125s2 − 33)xy + (9 + 5s2)(407s2 − 225)y2

]

and we observe that the condition K6 = 0 implies b =
2m3(9 + 17s2)

s(9 + s2)2
. So we get for the

parameters a and b the expressions given in (99) and this completes the proof of the fact, that

the conditions (99) are equivalent to the conditions K5 = K6 = 0.

It remains to find out the invariant polynomial which governs the condition m = 0 for systems

(96). For these systems we calculate

L1 = 41472m(1 + s2)x2(sx + y)

and it is clear that the condition L1 = 0 is equivalent to m = 0. Thus the statement B2) of the

Main Theorem is proved.

3.8 Systems with configuration (2, 2, 2, 1)

In this subsection we determine the normal form of the family of cubic systems with 2 real and

two complex infinite distinct singular points which possess 7 invariant affine straight lines with

the configuration or potential configuration (2, 2, 2, 1).

For having this configuration a cubic system has to possess three couples of parallel invariant

lines. Thus, according to Theorem 2.2 in the considered case the condition V3 = 0 necessarily

holds.

3.8.1 Construction of the corresponding cubic homogeneities

As a first step we shall construct the cubic homogeneous parts of systems (70) for which the

condition above is fulfilled. So we shall consider the family of systems (85) and we shall force

the condition V3 = 0 to be satisfied.

As in the Subsection 3.4 we shall use here the notation V3 =
4∑

j=0

V3jx
4−jyj . A straightforward

computation of the value of V3 for systems (85) yields:

V33 = 64r(s − v), V34 = −32r(r − 3). (100)

So we shall consider two cases: r ̸= 0 and r = 0.

3.8.1.1 The case r ̸= 0. Then by (100) we get r = 3, v = s and then we calculate

V30 = −32u(3 + u), V31 = −192su, V32 = −288u.

So in this case the condition V3 = 0 yields r = 3, v = s and u = 0 and we arrive at the family

of systems

ẋ = x3 + 2sx2y + 3xy2, ẏ = −sx3 + sxy2 + 2y3. (101)

3.8.1.2 The case r = 0. Then we have V33 = V34 = 0 and we calculate V32 = 32(−9+2s2 −
3u − sv − v2) = 0. So we get u = (−9 + 2s2 − sv − v2)/3 and we obtain

V30 = −32/9(s − v)2
[
9 + (2s + v)2

]
, V31 = −64/3(s − v)

[
9 + (2s + v)2

]
.
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Thus in this case the condition V3 = 0 implies r = 0, v = s u = −3 and we get the family of

systems

ẋ = −2x3 + 2sx2y, ẏ = −sx3 − 3x2y + sxy2 − y3. (102)

We remark that a system (101) could be brought to a system above with the same parameter s

via the transformation

x1 = sx + y, y1 = x − sy, t1 = −t/(1 + s2).

So the systems (102) are affine equivalent to systems (101) and in what follows we shall consider

the cubic systems with cubic non-linearities defined by systems (102). Moreover, as due to a

translation we can consider g = n = 0 we arrive at the next result.

Lemma 3.5. Assume that a cubic system (70) possesses 7 invariant affine straight lines with

configuration or potential configuration (2, 2, 2, 1). Then via an affine transformation and a time

rescaling this system could be brought to a system belonging to the following family of systems:

ẋ =a + cx + dy + 2hxy + ky2 − 2x3 + 2sx2y,

ẏ =b + ex + fy + lx2 + 2mxy − sx3 − 3x2y + sxy2 − y3.
(103)

Remark 3.6. We observe that due to the change y → −y for (103) we may assume s ≥ 0.

3.8.2 Construction of the cubic systems possessing configuration or potential con-

figuration (2, 2, 2, 1)

For homogeneous cubic system (102) we have

H(ã, X, Y, Z) = gcd(G1,G2, G3) = 2X2(sX + Y )(X2 + Y 2)2. (104)

So systems (102) possess three double invariant lines: the real line x = 0 and two complex

invariant lines y = ±ix. So by Remark 3.1 we conclude, that cubic systems (103) could have

three couples of parallel lines only in these directions. Moreover these systems could have one

simple real invariant line in the direction y = −sx.

(i) The direction x = 0. In this case we obtain

U = 1, V = 1, A = −2, B = s, C = 0, D = 2W, E = 2(h − sW ), F = c − 2W 2,

Eq7 = k, Eq9 = d − 2hW + 2sW 2, Eq10 = a − cW + 2W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0.

(105)

Therefore to have exactly two parallel invariant lines in this direction it is necessary and sufficient

Eq7 = 0, s ̸= 0 and

R
(0)
W (Eq9, Eq10) = R

(1)
W (Eq9, Eq10) = 0.

The equality Eq7 = 0 gives k = 0 and then we calculate

R
(1)
W (Eq9, Eq10) = 4(2h2 − ds − cs2) = 0.

So we get d = (2h2 − cs2)/s and we have

R
(0)
W (Eq9, Eq10) = 8(−2h3 + chs2 + as3)2/s3 = 0.

Therefore we obtain a = h(2h2 − cs2)/s3 and this implies

Eq9 = (2h2 − cs2 − 2hsW + 2s2W 2)/s,

Eq10 = (h + sW )(2h2 − cs2 − 2hsW + 2s2W 2)/s3.
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So we have two common solutions, which could be real or complex, distinct or coinciding.

(ii) The direction x + iy = 0. We obtain

U = 1, V = i, A = −(2 + is), B = (s − i)/2, C = −1, D = 2W + i(l + sW ),

E = l + 2h + i(2m − W ), F = c − 2W 2 + i(e − lW − sW 2), Eq7 = 2m − i(l + 2h),

Eq10 = (2h3 − chs2)/s3 + ib − (c + ie)W + ilW 2 + (2 + is)W 3,

Eq9 = (2h2)/s − cs + e + i(f − c) − 2(l + h + im)W + (3i − s)W 2,

Eq1 = Eq2 = Eq3 = Eq4 = Eq5 = Eq6 = Eq8 = 0

(106)

and to have exactly two parallel invariant lines in this direction it is necessary Eq7 = 0. As the

parameters of cubic systems are real the equality Eq7 = 0 gives m = 0, l = −2h. So considering

the relations

k = 0, d = (2h2 − cs2)/s, a = h(2h2 − cs2)/s3, m = 0, l = −2h, (107)

determined at this moment among the parameters of systems (103), we examine the fourth

direction: sx + y = 0.

(iii) The direction sx + y = 0. Considering the conditions (107) we find out

U = s, V = 1, A = −3, B = s, C = −1, D = 2hs − 3sW,

E = W, F = f + 2h2 − cs2 − W 2,

Eq5 = (1 + s2)(3W − 2h), Eq8 = e + (c − f − 2h2)s + cs3 − 2hsW + 4sW 2,

Eq10 = b − ch + 2h3/s2 − (f + 2h2 − cs2)W + W 3,

Eq1 = Eq2 = Eq3 = Eq4 = Eq6 = Eq7 = Eq9 = 0.

(108)

Hence the unique value for the parameter W given by the equality Eq5 = 0 is W = 2h/3. Then

calculations yield:

Eq8

∣∣
W=2h/3

= e + (c − f)s + cs3 − 14h2s/9 = 0,

Eq10

∣∣
W=2h/3

= b − h(3c + 2f − 2cs2)/3 + 2h3(27 − 14s2)/(27s2) = 0

and we get

e = (f − c)s − cs3 + 14h2s/9, b =
h
[
(27c + 18f + 28h2)s2 − 18cs4 − 54h2

]

27s2

Therefore, considering (106) for the direction x + iy = 0 we obtain

Eq9 =2h2(9 + 7s2))/(9s) − 2cs + fs − cs3 + i(f − c) + 2hW + (3i − s)W 2,

Eq10 =
h(2h2 − cs2)

s3
− ih(54h2 − 27cs2 − 18fs2 − 28h2s2 + 18cs4)

27s2
−

−
[
c + i(fs − cs − cs2 + 14h2s/9

]
W − 2ihW 2 + (2 + is)W 3

and the conditions

R
(0)
W (Eq9, Eq10) = R

(1)
W (Eq9, Eq10) = 0 (109)

have to be satisfied. We calculate

R
(1)
W (Eq9, Eq10) = Φ1(c, f, h, s) + iΦ2(c, f, h, s) = 0,

where
Φ1 = (3 − s2)(c + 2f − cs2) + 2h2(27 − 7s2)/9,

Φ2 = 8fs − 4cs(s2 − 1) + 4h2(5s2 − 9)/(3s).
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Therefore the relation Φ2 = 0 gives f =
[
3cs2(s2 − 1) + h2(9 − 5s2)

]
/(6c2) and then we obtain

Φ1 = h2(s2 − 9)2/9s2 = 0. (110)

So we have either s = ±3 or h = 0 and in both cases the conditions (109) are fulfilled.

In the case s = ±3 by Remark 3.6 we may assume s = 3 and we get f = 2(6c − h2)/3. Then

we obtain Φ1(c, f, h, s) = Φ2(c, f, h, s) = 0 and R
(0)
W (Eq9, Eq10) = 0. In such a way we arrive at

the following relations among the parameters of systems (103):

s = 3, k = m = 0, l = −2h, d = (2h2 − 9c)/3, e = 2(4h2 − 27c)/3,

f = 2(6c − h2)/3, a = h(2h2 − 9c)/27, b = h(10h2 − 63c)/27
(111)

and this leads to the family of systems (for the further necessity we set here h = h1 and c = c1)

ẋ =
[
(h1 + 6x)2 + 3(h2

1 − 6c1)
]
(h1 − 3x + 9y)/54,

ẏ =
h1

27
(10h2

1 − 63c) +
2

3
(4h2

1 − 27c1)x +
2

3
(6c1 − h2

1)y − 2h1x
2−

− 3x3 − 3x2y + 3xy2 − y3.

(112)

In the case h = 0 we arrive at the following relations among the parameters of systems (103):

k = m = h = l = 0, d = −cs, e = −cs(3 + s2)/2,

f = c(s2 − 1)/2, a = b = 0
(113)

and this leads to the family of systems

ẋ =(c − 2x2)(x − sy),

ẏ = − cs(3 + s2)x/2 + c(s − 1)y/2 − sx3 − 3x2y + sxy2 − y3.
(114)

We observe that systems (112) (respectively systems (114)) possess two parallel invariant lines

in the direction x = 0, which are real if 6c1 −h2
1 > 0 (respectively c > 0); complex if 6c1 −h2

1 < 0

(respectively c < 0) and they coincide if 6c1 − h2
1 = 0 (respectively c = 0).

It is easy to check that in the case (6c1 − h2
1)c ̸= 0 as well as in the case 6c1 − h2

1 = c = 0

systems (112) could be brought to the systems (114) with s = 3 via the transformation

x1 = αx + h1α/6, y1 = αy + h1α/6, t1 = t/α2,

where α =
√

6c/(6c1 − h2
1) if (6c1 − h2

1)c > 0 and α = 1 if 6c1 − h2
1 = c = 0.

Thus it was proved the next lemma.

Lemma 3.6. A system (103) possesses the configuration or potential configuration of invariant

lines (2, 2, 2, 1) if and only this system via an affine transformation and time rescaling could be

brought to a cubic system belonging to the subfamily (114), which is defined in the family (103)

by the conditions

s ̸= 0, k = m = h = l = 0, d = −cs, e = −cs(3 + s2)/2,

f = c(s2 − 1)/2, a = b = 0.
(115)

Next we examine systems (114), considering each one of of the cases: c > 0, c < 0 and c = 0.

3.8.2.1 The subcase c > 0. Then we may assume c = 2u2 ̸= 0 and via the transformation

(
x, y, t) 7→ (−(2x + 1)u, (s − 2y)u, t/(4u2)

)
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systems (114) can be brought to the systems

ẋ =x(x − 1)(1 + s2 − 2x + 2sy),

ẏ = − sx3 − y − s2y + 3xy + s2xy − 3x2y − 2sy2 + sxy2 − y3.
(116)

These systems possesses the invariant lines

x = 0, x = 1, y = −sx, y = ±ix, y ± i(x − 1) + s = 0

and considering its nine finite singularities

(0, 0), (1, −s), (1/2, −s/2), (1, ±i), (0, −s ± i),
(
(1 + is)/2, (i − s)/2

)
,

(
(1 − is)/2, (−i − s)/2

)

we arrive at theConfig. 8.15 (see Figure 1).

3.8.2.2 The subcase c < 0. Then we may assume c = −2u2 ̸= 0 and due to the rescaling

(x, y, t) 7→ (ux, uy, t/u2) we obtain the systems

ẋ =2(1 + x2)(sy − x − s),

ẏ =s(s2 + 3)x + (1 − s2)y − sx3 − 3x2y + sxy2 − y3.
(117)

These systems possess the invariant lines

y = −sx, x = ±i, y − ix ± (1 − is) = 0, y + ix ± (1 + is).

So considering the nine finite singularities

(0, 0), (−s, −1), (s, 1),
(
i, is ± 2

)
,

(
− i, −is ± 2

)
,

(
i, −is

)
,

(
− i, is

)

of the above systems, we arrive at the configuration given by Config. 8.16 from Figure 1.

3.8.2.3 The subcase c = 0. Then systems (114) become the homogeneous systems (102),

which possess the real invariant lines x = 0 (double) and y = −sx (simple) as well as the complex

invariant lines y = ±ix (both doubles). As a result we get the configuration of invariant lines

given by Config. 8.17 in Figure 1.

3.8.3 Invariant conditions for the configurations Config. 8.15, 8.16, 8.17

Considering the statement B3) of the Main Theorem and Lemma 3.6 we shall prove we shall

prove that the affine invariant conditions

D4 ̸= 0, V3 = K4 = K2 = K8 = 0. (118)

applied to a cubic system (103) force this system to be from the class determined by Lemma 3.6.

For the family of systems (103) we have D4 = 2304s(9 + s2) and hence the condition s ̸= 0

is equivalent to D4 ̸= 0. Assume that for a system (103) the condition K4 = 0 is satisfied. Then

we obtain Coefficient[K4, y
3] = −2k(9 + s2)/9 and hence the condition K4 = 0 implies k = 0. In

this case we obtain

K4 =
2

9

[
(6ms − 9h − 2ls2 − 3hs2)x3 − 2s(3l + 6h + 2ms)x2y − (9h + 6ms − hs2)xy2

]

and equalizing with zero the first two coefficients of the polynomial K4 due to s ̸= 0 we get

l = −3h(9 + s2)

9 + 2s2
, m = − 3h(s2 − 9)

2s(9 + 2s2)
, K4 = −4h(s2 − 9)(s2 + 9)xy2

9(9 + 2s2)
. (119)

Therefore the condition K4 = 0 gives either h = 0, or s = ±3.
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3.8.3.1 The case h = 0. Then we obtain k = l = m = h = 0 and we calculate

K2 = −3x2(bx − ay)(3x + s2x − 2sy)2(x2 + y2)2,

K8 = Z1x
4 + Z2x

3y + Z3x
2y2 + 3Z4xy3 + 5Z5y

4,

where
Z1 = − 2(99d − 63e − 9fs + 15ds2 − 10es2 − 32cs3 − 10fs3),

Z2 =2(3c + 6f + 159ds − 103es − 3fs2 + 50ds3),

Z3 =2(54d + 27e + 105cs + 21fs + 45ds2 − 20es2 + 8cs3 − 20fs3),

Z4 =6(−9c − 18f + 3ds − es + 10cs2 − fs2),

Z5 =10(−3d − cs + 4fs + 2ds2).

So setting Z2 = Z4 = Z5 = 0 we find out that d = −cs, e = −cs(3 + s2)/2, f = c(s2 − 1)/2 and

then K8 = 0.

On the other hand the condition K2 = 0 obviously gives a = b = 0 and hence in this case we

arrive at the conditions (115).

3.8.3.2 The case s = ±3. By Remark 3.6 we may assume s = 3. Then K4 = 0 and we

calculate

K8 = Z ′
1x

4 + Z ′
2x

3y + Z ′
3x

2y2 + 3Z ′
4xy3 + 5Z ′

5y
4,

where
Z ′

1 =18(96c − 26d + 17e + 33f − 6h2),

Z ′
2 =6(c + 609d − 103e − 7f − 136h2),

Z ′
3 = − 18(59c + 51d − 17e − 53f − 24h2),

Z ′
4 =6(81c − 4l2 + 9d − 3e − 27f),

Z ′
5 = − 10(3c − 15d − 12f + 2h2).

Setting Z ′
2 = Z ′

4 = Z ′
5 = 0 we obtain d = (2h2 − 9c)/3, e = 2(4h2 − 27c)/3, f = 2(6c − h2)/3

and then K8 = 0 and

K2 = −4x2(2x − y)2(x2 + y2)2
[
(27b + 63ch − 10h3)x + (−27a − 9ch + 2h3)y

]
,

Therefore the condition K2 = 0 yields

a = h(2h2 − 9c)/27, b = h(10h2 − 63c)/27

and we arrive at the conditions (111) corresponding to the case s = 3. These conditions lead

to the systems (112), which via an affine transformation and time rescaling could be brought to

systems (114) as it was shown on the page 46.

Next we consider the necessary and sufficient conditions to distinguish the configurations

Config. 8.15 – Config. 8.17. For systems (114) we calculate

K9 = 90c(1 + s2)2x2(x2 + y2)2.

Therefore we obtain that K9 = 0 if and only if c = 0. Moreover if K9 ̸= 0 then sign (K9) =

sign (c). Thus we get Config. 8.15 if K9 > 0, Config. 8.16 if K9 < 0 and Config. 8.17 if

K9 = 0. This completes the proof of the statement B3) of the Main Theorem.

C. Cubic systems with four complex infinite singularities

If a cubic system has 4 imaginary infinite singular points via a linear transformation can written

into the form (see Lemma 2.5):

x′ = p0 + p1(x, y) + p2(x, y) + ux3 + (p + q + v)x2y + rxy2 + qy3,

y′ = q0 + q1(x, y) + q2(x, y) − px3 + ux2y + vxy2 + ry3,
(120)
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for which C3(x, y) = (px2 + qy2)(x2 + y2), pq > 0.

We claim that systems above could not have invariant lines of total multiplicity 8 (including

the line at infinity). Indeed as it was mentioned on the page 13, a cubic system with exactly 7

affine distinct invariant lines could possess only one of the following configurations:

(i) (3, 3, 1); (ii) (3, 2, 2); (iii) (3, 2, 1, 1); (iv) (2, 2, 2, 1).

Moreover if it possesses a potential configuration of one of the types above, then via a small

perturbation, which conserve the 4 infinite complex singularities, we arrive at one of the same

configurations above with 7 distinct invariant affine lines.

On the other hand as the number (seven) of affine invariant straight lines is odd we conclude

that at least one of the invariant lines must be real. However this contradicts to the existence

of only complex infinite singular points of systems (120). Hence our claim is proved.

As all the cases are examined the Main Theorem is proved.
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