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Sobolev regularity of quasiconformal mappings on domains.

Part I

Mart́ı Prats ∗

July 17, 2015

Abstract

Consider a Lipschitz domain Ω and a measurable function µ supported in Ω with ‖µ‖L∞ <
1. Then the derivatives of a quasiconformal solution of the Beltrami equation ∂f = µ∂f
inherit the Sobolev regularity Wn,p(Ω) of the Beltrami coefficient µ as long as Ω is regular
enough. The condition obtained is that the outward unit normal vector N of the boundary of
the domain is in the trace space, that is, N ∈ Bn−1/p

p,p (∂Ω).
In this part we prove that this geometric condition implies that the Beurling transform

Bf = −p.v. 1
πz2 ∗ f satisfies that BχΩ ∈Wn,p(Ω).

1 Introduction

Let µ ∈ L∞ supported in a certain ball B ⊂ C with k := ‖µ‖L∞ < 1 and consider K := 1+k
1−k . We

say that f is a K-quasiregular solution to the Beltrami equation

∂f = µ∂f (1.1)

with Beltrami coefficient µ if f ∈W 1,2
loc , that is, if f and ∇f are square integrable functions in any

compact subset of C, and ∂f(z) = µ(z)∂f(z) for almost every z ∈ C. Such a function f is said
to be a K-quasiconformal mapping if it is a homeomorphism of the complex plane. If, moreover,
f(z) = z +O( 1

z ) as z →∞, then we say that f is the principal solution to (1.1).
Given a compactly supported Beltrami coefficient µ, the existence and uniqueness of the prin-

cipal solution is granted by the measurable Riemann mapping Theorem (see [AIM09, Theorem
5.1.2], for instance). The principal solution can be given by means of the Cauchy and the Beurling
transforms. For g ∈ Lp its Cauchy transform is defined as

Cg(z) :=
1

π

ˆ

g(w)

z − wdm(w) for all z ∈ C,

and its Beurling transform, as

Bg(z) := lim
ε→0

−1

π

ˆ

|w−z|>ε

g(w)

(z − w)2
dm(w) for almost every z ∈ C.

The Beurling transform is a bounded operator in Lp for 1 < p <∞ and for g ∈ W 1,p(C) we have
that B(∂g) = ∂g. Given a ball B, the Cauchy transform sends functions in Lp(B) and vanishing
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in the complement of B to W 1,p(C). Furthermore, the operator I − µB is invertible in L2 and, if
we call

h := (I − µB)−1µ, (1.2)

then
f(z) = Ch(z) + z (1.3)

is the principal solution of (1.1) because ∂f = h and ∂f = Bh+ 1.
A natural question is to what spaces h belongs. The key point to answer that question is

inverting the operator (I − µB) in some space. Astala showed in [Ast94] that h ∈ Lp for 1 + k <
p < 1+1/k (in fact, since h is also compactly supported, one can say the same for every 1 ≤ p ≤ 1+k
even though (I−µB) may not be invertible in Lp for that values of p, as shown by Astala, Iwaniec
and Saksman in [AIS01]). Clop et al. in [CFM+09] and Cruz, Mateu and Orobitg in [CMO13]
proved that if µ belongs to the Sobolev space W s,p(C) (in the Bessel potential sense when s /∈ N)
with sp > 2 then also h ∈ W s,p(C). One also finds some results in the same spirit for the critical
case sp = 2 and the subcritical case sp < 2 in [CFM+09] and [CFR10], but here the space to which
h belongs is slightly worse than the space to which µ belongs, that is, either some integrability or
some smoothness is lost.

When it comes to dealing with a Lipschitz domain Ω with supp(µ) ⊂ Ω, Mateu, Orobitg and
Verdera showed in [MOV09] that, if the parameterizations of the boundary of Ω are in C1,ε with
0 < ε < 1, then for every 0 < σ < ε one has that

µ ∈ C0,ε(Ω) =⇒ h ∈ C0,σ(Ω). (1.4)

Furthermore, the principal solution to (1.1) is bilipschitz in that case. They allow the domain
to have a finite number of holes with tangent boundaries. In [CF12], Giovanna Citti and Fausto
Ferrari proved that, if one does not allow this situation, then (1.4) holds for σ = ε. In [CMO13]
the authors study also the Sobolev spaces to conclude that for the same kind of domains, when
0 < σ < ε < 1 and 1 < p <∞ with σp > 2 one has that

µ ∈Wσ,p(Ω) =⇒ h ∈Wσ,p(Ω). (1.5)

A key point is proving the boundedness of the Beurling transform in Wσ,p(Ω). To do so, the
authors note that BχΩ ∈ Wσ,p(Ω) by means of some results from [MOV09] and then they prove
a T (1) theorem that grants the boundedness of B in Wσ,p(Ω) if BχΩ ∈ Wσ,p(Ω). The other key
point is the invertibility of I − µB in Wσ,p(Ω), which is shown using Fredholm theory.

Cruz and Tolsa proved in [CT12] that for 0 < s ≤ 1, 1 < p < ∞ with sp > 1, if the outward

unit normal vector N is in the Besov space B
s−1/p
p,p (∂Ω) then BχΩ ∈ W s,p(Ω). This condition

is necessary for Lipschitz domains with small Lipschitz constant (see [Tol13]). Moreover, being

N ∈ Bs−1/p
p,p (∂Ω) implies the parameterizations of the boundary of Ω to be in B

s+1−1/p
p,p and, for

sp > 2, the parameterizations are in C1,s−2/p by the Sobolev Embeding Theorem. In that situation,
one can use the T (1) result in [CMO13] to deduce the boundedness of the Beurling transform in
W s,p(Ω). However, their result on quasiconformal mappings only allows to infer that for every
2/p < σ < s−2/p we have that (1.5) holds. Note that the condition 2/p < σ < s−2/p may be too
restrictive (when sp = 3, for instance, we can’t deduce (1.5) for any σ because s−2/p = 1/p < 2/p).

The goal of this paper and its sequel is to prove that for s ∈ N, (1.5) holds for σ = s as long as
p > 2.

Theorem 1.1 (See [Pra15]). Let n ∈ N, let Ω be a bounded domain with outward unit normal

vector N in B
n−1/p
p,p (∂Ω) for some 2 < p < ∞ and let µ ∈ Wn,p(Ω) with ‖µ‖L∞ = k < 1 and

supp(µ) ⊂ Ω. Then, the principal solution f to (1.1) is in the Sobolev space Wn+1,p(Ω).
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Note that this theorem only deals with the natural values of s, but the restrictions σ < s− 2/p
and s < 1 are eliminated. For n = 1 the author expects this to be a sharp result in view of the
result in [Tol13].

The proof is divided in two steps. In this article we perform the first one, that is, we prove

that the Beurling transform is bounded in Wn,p(Ω). To do so we will see that if N ∈ Bn−1/p
p,p (∂Ω),

then BχΩ ∈ Wn,p(Ω), in the same spirit of [CT12]. In the present paper, however, the proof
will be slightly more tricky since we will need to approximate the boundary of the domain by
polynomials instead of straight lines. The derivative of the Beurling transform of the characteristic
function of a half-plane is zero (see [CT12]), but the derivative of the Beurling transform of the
characteristic function of a domain bounded by a polynomial of degree greater than one is not
zero anymore. Using the T (P ) Theorem of [PT15] this will suffice to see the boundedness of the
Beurling transform.

Theorem 1.2. Consider p > 2, and n ∈ N and let Ω be a Lipschitz domain with N ∈ Bn−1/p
p,p (∂Ω).

Then, for every f ∈Wn,p(Ω) we have that

‖B(χΩf)‖Wn,p(Ω) ≤ C‖N‖Bn−1/p
p,p (∂Ω)

‖f‖Wn,p(Ω),

where C depends on p, n, diam(Ω) and the Lipschitz character of the domain.

In [Pra15], the sequel of the present article, we will face the invertibility of (I − µB)(χΩ·) in
Wn,p(Ω) and we will complete the proof of Theorem 1.1.

The plan of the paper is the following. In Section 2 some preliminary assumptions are stated.
Subsection 2.1 explains the notation to be used and recalls some well-known facts. In Subsection
2.2 one finds the definition of some generalized β-coefficients related to Jones and David-Semmes’
celebrated betas. In Subsection 2.3 the definition of the Besov spaces Bsp,p is given along with some
related well-known facts and an equivalent norm in terms of the generalized β-coefficients using a
result by Dorronsoro in [Dor85]. Subsection 2.4 is about some operators related to the Beurling
transform, providing a standard notation for the whole article.

Section 3 is devoted to prove Theorem 1.2. The first step is to study the case of unbounded
domains whose boundary can be expressed as the graph of a Lipschitz function. Subsection 3.1
contains the outline of the proof, reducing it to two lemmas. The first one studies the relation with
the β-coefficients and is proven in Subsection 3.2. The second one, proven in Subsection 3.3, is
about the case where the domain is bounded by the graph of a polynomial, and here one finds the
exponential behavior of the bounds for the iterates of the Beurling transform, which entangles the
more subtle details of the proof. Finally, in Subsections 3.4 and 3.5 one finds a more quantitative
version of Theorem 1.2 for bounded Lipschitz domains using a localization principle and the T(P)
Theorem.

2 Preliminaries

2.1 Some notation and well-known facts

On inequalities: When comparing two quantities x1 and x2 that depend on some parameters
p1, . . . , pj we will write

x1 ≤ Cpi1 ,...,pij x2

if the constant Cpi1 ,...,pij depends on pi1 , . . . , pij . We will also write x1 .pi1 ,...,pij x2 for short, or

simply x1 . x2 if the dependence is clear from the context or if the constants are universal. We
may omit some of these variables for the sake of simplicity. The notation x1 ≈pi1 ,...,pij x2 will

mean that x1 .pi1 ,...,pij x2 and x2 .pi1 ,...,pij x1.
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On polynomials: We write Pn(Rd) for the vector space of real polynomials of degree smaller
or equal than n with d real variables. If it is clear from the context we will just write Pn. For any
set U ⊂ Rd we will write Pn(U) for the vector space of polynomials in Pn restricted to U .

On sets: Given two sets A and B, their symmetric difference is A∆B := (A ∪ B) \ (A ∩ B).
Given x ∈ Rd and r > 0, we write B(x, r) or Br(x) for the open ball centered at x with radius
r and Q(x, r) for the open cube centered at x with sides parallel to the axis and side-length 2r.
Given any cube Q, we write `(Q) for its side-length, and rQ will stand for the cube with the same
center but enlarged by a factor r. We will use the same notation for balls and one dimensional
cubes, that is, intervals.

At some point we need to use intervals in Rd: given x, y ∈ Rd, we call the interval with endpoints
x and y

[x, y] := {(1− t)x+ ty : t ∈ [0, 1]}.
We may use the “open” interval ]x, y[:= [x, y] \ {x, y}.

We call domain an open and connected subset of Rd.

Definition 2.1. Given n ≥ 1, we say that Ω ⊂ C is a (δ,R)−Cn−1,1 domain if given any z ∈ ∂Ω,
there exists a function Az ∈ Cn−1,1(R) such that

∥∥∥A(j)
z

∥∥∥
L∞
≤ δ

Rj−1
for every 0 ≤ j ≤ n, (2.1)

and, possibly after a translation that sends z to the origin and a rotation that brings the tangent
at z to the real line, we have that

Ω ∩Q(0, R) = {x+ i y : y > Az(x)}.
In case n = 1 the assumption of the tangent is removed (we say that Ω is a (δ,R)-Lipschitz domain).

We call window such a cube.

On measure theory: We denote the d- dimensional Lebesgue measure in Rd by md, or simply
m when the dimension is clear from the context. At some point we use m also to denote a natural
number. We will write dz for the form dx+ i dy and analogously dz = dx− i dy, where z = x+ i y.
Thus, when integrating a function with respect to the Lebesgue measure of a variable z we will
always use dm(z) to avoid confusion, or simply dm.

On indices: In this text N0 stands for the natural numbers including 0. Otherwise we will
write N. We will make wide use of the multiindex notation for exponents and derivatives. For
α ∈ Zd its modulus is |α| =

∑d
i=1 |αi| and its factorial is α! =

∏d
i=1 αi!. Given two multiindices

α, γ ∈ Zd we write α ≤ γ if αi ≤ γi for every i. We say α < γ if, in addition, α 6= γ. Furthermore,
we write (

α

γ

)
:=

d∏

i=1

(
αi
γi

)
=

{∏d
i=1

αi!
γi!(αi−γi)! if α ∈ Nd0 and ~0 ≤ γ ≤ α,

0 otherwise.

For x ∈ Rd and α ∈ Zd we write xα :=
∏
xαii . Given any φ ∈ C∞c (infintitely many times

differentiable with compact support in Rd) and α ∈ Nd0 we write Dαφ = ∂|α|∏
∂
αi
xi

φ.

At some point we will use also use roman letter for multiindices, and then, to avoid confusion,
we will use the vector notation ~i,~j, . . .

On complex notation For z = x + i y ∈ C we write Re (z) := x and Im(z) := y. Note that
the symbol i will be used also widely as a index for summations without risk of confusion. The
multiindex notation will change slightly: for z ∈ C and α ∈ Z2 we write zα := zα1zα2 .

We also adopt the traditional Wirtinger notation for derivatives, that is, given any φ ∈ C∞c ,
then

∂φ(z) :=
∂φ

∂z
(z) =

1

2
(∂xφ− i ∂yφ)(z)
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and

∂φ(z) :=
∂φ

∂z
(z) =

1

2
(∂xφ+ i ∂yφ)(z),

Thus, given any φ ∈ C∞c and α ∈ N2
0, we write Dαφ = ∂α1∂

α2
φ.

On Sobolev spaces: For any open set U , every distribution f ∈ D′(U) and α ∈ Nd0, the
distributional derivative Dα

Uf is the distribution defined by

〈Dα
Uf, φ〉 := (−1)|α|〈f,Dαφ〉 for every φ ∈ C∞c (U).

Abusing notation we will write Dα instead of Dα
U if it is clear from the context. If the distribution

is regular, that is, if it coincides with an L1
loc function acting on D(U), then we say that Dα

Uf is a
weak derivative of f in U . We write |∇nf | = ∑|α|=n |Dαf |.

Given numbers n ∈ N, 1 ≤ p ≤ ∞ an open set U ⊂ Rd and an L1
loc(U) function f , we say

that f is in the Sobolev space Wn,p(U) of smoothness n and order of integrability p if f has weak
derivatives Dα

Uf ∈ Lp for every α ∈ Nd0 with |α| ≤ n. When Ω is a Lipschitz domain, we will use
the norm

‖f‖Wn,p(Ω) = ‖f‖Lp(Ω) + ‖∇nf‖Lp(Ω),

which is equivalent to considering also the fewer order derivatives, that is,

‖f‖Wn,p(Ω) ≈ ‖f‖Lp(Ω) +
∑

|α|≤n
‖Dαf‖Lp(Ω) (2.2)

(see [Tri78, Theorem 4.2.4]) or, if Ω is an extension domain,

‖f‖Wn,p(Ω) ≈ inf
F :F |Ω≡f

‖F‖Wn,p(Rd).

From [Jon81], we know that uniform domains (and in particular, Lipschitz domains) are Sobolev
extension domains for any indices n ∈ N and 1 ≤ p ≤ ∞. One can find deeper results in that sense
in [Shv10] and [KRZ15].

The reader can consider n ∈ N and 1 < p <∞ to be two given numbers along the whole text.
At some point the restriction 2 < p will be needed.

On finite diferences: Given a function f : Ω ⊂ Rd → C and two values x, h ∈ Rd such that
[x, x+ h] ⊂ Ω, we call

∆1
hf(x) = ∆hf(x) = f(x+ h)− f(x).

Moreover, for any natural number i ≥ 2 we define the iterated difference

∆i
hf(x) = ∆i−1

h f(x+ h)−∆i−1
h f(x) =

i∑

j=0

(−1)i−j
(
i

j

)
f(x+ jh)

whenever [x, x+ ih] ⊂ Ω.
On Whitney coverings: Given a domain Ω, we say that a collection of open dyadic cubes

W is a Whitney covering of Ω if they are disjoint, the union of the cubes and their boundaries is
Ω, there exists a constant CW such that

CW`(Q) ≤ dist(Q, ∂Ω) ≤ 4CW`(Q),

two neighbor cubes Q and R (i.e., Q∩R 6= ∅) satisfy `(Q) ≤ 2`(R), and the family {20Q}Q∈W has
finite superposition. The existence of such a covering is granted for any open set different from Rd
and in particular for any domain as long as CW is big enough (see [Ste70, Chapter 1] for instance).
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On the Leibniz rule: The Leibniz formula (see [Eva98, Section 5.2.3]) says that given a
domain Ω ⊂ Rd, a function f ∈ Wn,p(Ω) and a multiindex α ∈ Nd0, if φ ∈ C∞c (Ω), then φ · f ∈
Wn,p(Ω) and

Dα(φ · f) =
∑

γ≤α

(
α

γ

)
DγφDα−γf. (2.3)

On Green’s formula: The Green Theorem can be written in terms of complex derivatives
(see [AIM09, Theorem 2.9.1]). Let Ω be a bounded Lipschitz domain. If f, g ∈ W 1,1(Ω) ∩ C(Ω),
then

ˆ

Ω

(
∂f + ∂g

)
dm =

i

2

(
ˆ

∂Ω

f(z) dz −
ˆ

∂Ω

g(z) dz

)
. (2.4)

On the Rolle Theorem: We state here also a Complex Rolle Theorem for holomorphic
functions [EJ92, Theorem 2.1] that will be a cornerstone of Section 3.3.

Theorem 2.2. [see [EJ92]] Let f be a holomorphic function defined on an open convex set U ⊂ C.
Let a, b ∈ U such that f(a) = f(b) = 0 and a 6= b. Then there exists z in the segment ]a, b[ such
that Im(∂f(z)) = 0.

On the Sobolev Embedding Theorem: We state a reduced version of the Sobolev Em-
bedding Theorem for Lipschitz domains (see [AF03, Theorem 4.12, Part II]). For each Lipschitz
domain Ω ⊂ Rd and every p > d, there is a continuous embedding of the Sobolev space W 1,p(Ω)

into the Hölder space C0,1− dp (Ω). That is, writing

‖f‖C0,s(Ω) = ‖f‖L∞(Ω) + sup
x,y∈Ω
x 6=y

|f(x)− f(y)|
|x− y|s for 0 < s ≤ 1,

we have that for every f ∈W 1,p(Ω),

‖f‖
C

0,1− d
p (Ω)

≤ CΩ‖f‖W 1,p(Ω). (2.5)

On inequalities: We will use the Young’s Inequality. It states that for measurable functions
f and g, we have that

‖f ∗ g‖Lq ≤ ‖f‖Lr‖g‖Lp (2.6)

for 1 ≤ p, q, r ≤ ∞ with 1
q = 1

p + 1
r − 1 (see [Ste70, Appendix A2]).

2.2 Some generalized betas

In [Dor85], Dorronsoro introduces a characterization of Besov spaces in terms of the mean oscilla-
tion of the functions on cubes, and he uses approximating polynomials to do so. If the polynomials
are of degree one, that is straight lines, this definition can be written in terms of a certain sum of
David-Semmes betas (see [CT12] for instance). Following the ideas of Dorronsoro in our case we
will use higher degree polynomials to approximate the Besov function that we want to consider,
giving rise to some generalized betas. The following proposition comes from [Dor85], where it is
not explicitly proven. We give a short proof of it for the sake of completeness.

Proposition 2.3. Given a locally integrable function f : Rd → R and a cube Q ⊂ Rd, there exists
a unique polynomial Rn

Qf ∈ Pn which we will call approximating polynomial of f on Q, such that
given any multiindex γ with |γ| ≤ n one has that

ˆ

Q

(Rn
Qf − f)xγ = 0. (2.7)
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Remark 2.4. In case of existence, the approximating polynomial verifies

sup
x∈Q
|Rn

Qf(x)| ≤ Cn,d
1

|Q|

ˆ

Q

|f | dm.

Proof. Indeed, since Pn is a finite dimensional vectorial space, all the norms are equivalent. In
particular one can easily see that for any P ∈ Pn

‖P‖2L∞(Q) ≈
1

|Q| ‖P‖
2
L2(Q).

Using the linearity of the integral in (2.7), one has

1

|Q|

ˆ

Q

|Rn
Qf |2 dm =

1

|Q|

ˆ

Q

Rn
Qf · f dm.

Combining both facts one gets

∥∥Rn
Qf
∥∥2

L∞(Q)
. 1

|Q|
∥∥Rn

Qf
∥∥
L∞(Q)

‖f‖L1(Q).

Proof of Proposition 2.3. By the Hilbert Projection Theorem, L2(Q) = Pn(Q)⊕ (Pn(Q))⊥. Thus,
if f ∈ L2(Q), we can write f = Rn

Qf + (f −Rn
Qf) satisfying (2.7).

For general f ∈ L1, we can define a sequence of functions {fj}j∈N ⊂ L2(Q) such that |fj | ≤ |f |
and fj

a.e.−−→ f . By Remark 2.4 we have that the approximating polynomials Rn
Qfj are uniformly

bounded in Q by

sup
x∈Q
|Rn

Qfj(x)| . 1

|Q|

ˆ

Q

|fj | dm ≤
1

|Q|

ˆ

Q

|f | dm.

Therefore there exists a convergent subsequence of {Rn
Qfj}j in L1 (and in any other norm). We

call Rn
Qf the limit of one such partial. By the Dominated Convergence Theorem we get (2.7).

To see uniqueness, we observe that if we find two polynomials P1 and P2 satisfying (2.7), then
ˆ

Q

(P1 − P2)P = 0

for any P ∈ Pn. In particular, if we take P = P1 − P2 we get that ‖P1 − P2‖L2(Q) = 0.

Remark 2.5. Given P ∈ Pn, a cube Q and 1 ≤ p ≤ ∞ we have that
∥∥f −Rn

Qf
∥∥
Lp(Q)

≤ Cd,n,p‖f − P‖Lp(Q), (2.8)

and given any cubes Q ⊂ Q′,
∥∥f −Rn

Qf
∥∥
Lp(Q)

≤ Cd,n,p
∥∥f −Rn

Q′f
∥∥
Lp(Q′)

. (2.9)

Proof. By means of the Triangle Inequality and (2.7), we have that for any P ∈ Pn
∥∥f −Rn

Qf
∥∥
Lp(Q)

≤ ‖f − P‖Lp(Q) +
∥∥P −Rn

Qf
∥∥
Lp(Q)

= ‖f − P‖Lp(Q) +
∥∥Rn

Q(P − f)
∥∥
Lp(Q)

.

Therefore, we use twice Hölder’s Inequality and Remark 2.4 to get
∥∥f −Rn

Qf
∥∥
Lp(Q)

.p,n,d ‖f − P‖Lp(Q) + |Q|1/p
∥∥Rn

Q(P − f)
∥∥
L∞(Q)

.n,d ‖f − P‖Lp(Q) +
|Q|1/p
|Q| ‖P − f‖L1(Q) ≤ 2‖f − P‖Lp(Q).

The inequality (2.9) is just a consequence of (2.8) replacing P by Rn
Q′f .
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Remark 2.6. In the one dimensional case, if f is continuous one can easily see that f − Rn
Qf

has n+ 1 zeroes at least. Indeed, if it did not happen, one could find a polynomial P ∈ Pn with a
simple zero at every point where f −Rn

Qf changes its sign, and no more. Therefore, (f −Rn
Qf) ·P

would have constant sign and, thus, the integral in (2.7) would not vanish (see Figure 2.1).

Figure 2.1: If f −R2
Qf had only 2 zeroes, there would exist P ∈ P2 with

´

(f −R2
Qf)P dm > 0.

Now we can define the generalized betas.

Definition 2.7. Let f : Rd → R be a locally integrable function and Q ⊂ Rd a cube. Then we
define

β(n)(f,Q) =
1

|Q|

ˆ

3Q

|f(x)−Rn
3Qf(x)|

`(Q)
dm(x).

Remark 2.8. Taking into account (2.8), we can conclude that

β(n)(f,Q) ≈ inf
P∈Pn

1

|Q|

ˆ

3Q

|f(x)− P (x)|
`(Q)

dm(x).

This can be seen as a generalization of David and Semmes β1 coefficient since β(1) and β1 are
comparable as long as some Lipschitz condition is assumed on f .

2.3 Function spaces

Next we recall some definitions and results on the function spaces that we will use. For a complete
treatment we refer the reader to [Tri83] and [RS96].

Definition 2.9. Let Φ(Rd) be the collection of all the families Ψ = {ψj}∞j=0 ⊂ C∞c (Rd) such that

{
suppψ0 ⊂ D(0, 2),
suppψj ⊂ D(0, 2j+1) \ D(0, 2j−1) if j ≥ 1,

(2.10)

for all multiindex α ∈ Nd there exists a constant cα such that

‖Dαψj‖∞ ≤
cα

2j|α|
for every j ≥ 0 (2.11)

and ∞∑

j=0

ψj(x) = 1 for every x ∈ Rd. (2.12)
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Definition 2.10. Given any Schwartz function ψ ∈ S(Rd) one defines its Fourier transform

Fψ(ζ) =

ˆ

Rd
e−2πix·ζψ(x)dm(x).

One can extend this notion to the tempered distributions S(Rd)′ by duality.
Let s ∈ R, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and Ψ ∈ Φ(Rn). For any tempered distribution f ∈ S ′(Rn)

we define the non-homogeneous Besov space

‖f‖ΨBsp,q =
∥∥{2sjF−1ψjFf

}∥∥
lq(Lp)

=
∥∥{2sj

∥∥F−1ψjFf
∥∥
Lp

}∥∥
lq
, (2.13)

and we call Bsp,q ⊂ S ′ to the set of tempered distributions such that this norm is finite.

These norms are equivalent for diferent choices of Ψ. In general one works with radial ψj and
such that ψj+1(x) = ψj(x/2). Of course we will ommit Ψ in our notation since it plays no role.

Proposition 2.11 (See [Tri83, Sections 2.3.3 and 2.7.1]). The following properties hold:

1. Let 1 ≤ q0, q1 ≤ ∞ and 1 ≤ p ≤ ∞, s ∈ R and ε > 0. Then

Bs+εp,q0 ⊂ Bsp,q1 .

2. Given 1 ≤ p0 ≤ p1 ≤ ∞ and −∞ < s1 ≤ s0 <∞. Then,

Bs0p0,p0
⊂ Bs1p1,p1

if s0 −
d

p0
= s1 −

d

p1
. (2.14)

If we set j ∈ Z instead of j ∈ N in Definition 2.9, then we get the homogeneous spaces of
tempered distributions (modulo polynomials) Ḃsp,q. In particular, by [Tri92, Theorem 2.3.3] we
have that

‖f‖Bsp,q ≈ ‖f‖Ḃsp,q + ‖f‖Lp for any f ∈ S ′. (2.15)

In the particular case of homogeneous Besov spaces with 1 ≤ p, q ≤ ∞ and s > 0, one can give
an equivalent definition in terms of differences of order M ≥ [s] + 1:

‖f‖Ḃsp,q ≈
(
ˆ

Rd

∥∥∆M
h f
∥∥q
Lp

|h|s q
dm(h)

|h|d

) 1
q

. (2.16)

In [CT12] the authors point out that the seminorm of the homogeneous Besov space Ḃsp,q for
0 < s < 1 can be defined in terms of the approximating polynomials of degree 1 from the previous
section. In general, [Dor85, Theorem 1] together with (2.9) and Remark 2.8 can be used to prove
without much effort that for any s > 0 and n ≥ [s],

‖f‖Ḃsp,q ≈
(
ˆ ∞

0

(∥∥β(n)(f,Q(·, t))
∥∥
Lp

ts−d

)q
dt

t

)1/q

.

In the particular case when p = q, which is in fact the one we are interested on, via Fubini’s
Theorem one can conclude that

‖f‖q
Ḃsp,p
≈
∑

Q∈D

(
β(n)(f,Q)

`(Q)s−d

)p
|Q|. (2.17)
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Consider the boundary of a Lipschitz domain Ω ⊂ C. When it comes to the Besov space
Bsp,q(∂Ω) we can just define it using the arc parameter of the curve, z : I → ∂Ω with |z′(t)| = 1
for all t. Then, if 1 ≤ p, q < ∞ and n − 1 ≤ s < n, we define naturally the homogeneous Besov
norm on the boundary of Ω as

‖f‖q
Ḃsp,q(∂Ω)

:=

ˆ

R

(
ˆ

I

|∆n
h(f ◦ z)(t)|p
|h|sp dt

) q
p dh

h
.

Note that since the domain is bounded, then I is a finite interval with length equal to the length of
the boundary of Ω and we need to extend z perodically to R in order to have a sensible definition.

Lemma 2.12. Let Ω be a (δ,R) − Cn−1,1 domain and consider R-windows {Qj}Mj=1 such that

{ 1
max{10,10δ}Qj} cover the boundary of Ω with Aj the parameterizations of the boundary associated

to each window with support in [−2R, 2R]. Consider N : ∂Ω → R2 to be the unitary outward
normal vector. Then, for any 1 < p <∞

M∑

j=1

∑

I∈D

β(n)(Aj , I)p

`(I)n p−2
≈

M∑

j=1

‖Aj‖p
Ḃ
n+1−1/p
p,p

. ‖N‖p
Ḃ
n−1/p
p,p (∂Ω)

+R2−np .R ‖N‖p
B
n−1/p
p,p (∂Ω)

with constants depending on n, p, δ, the length of the boundary H1(∂Ω) and M .

The proof of this lemma for n = 1 can be found in [CT12, Lemma 3.3]. The general case is
quite technical but uses the same tools, so we leave it to the reader. Note that M can be chosen

to be M ≈ H
1(∂Ω)
R .

2.4 Even Calderón-Zygmund convolution operators in the plane

Definition 2.13. Consider a function K : Rd \ {0} → C. For any f ∈ L1
loc we define

TKf(y) = lim
ε→0

ˆ

Rd\Bε(x)

K(y − x)f(x) dm(x)

as long as the limit exists, for instance, when K is bounded away from 0, f ∈ L1 and y /∈ supp(f)
or when f = χU for an open set U with y ∈ U ,

´

Bε(0)\Bε′ (0)
K dm = 0 for every ε > ε′ > 0 and K

is integrable at infinity. We say that K is the kernel of TK .
In this paper we are interested in the case d = 2 in particular, where we can identify the

ambient space with the complex plane C so that we can use its complex structure. In this case,
for any multiindex γ ∈ Z2, we will consider Kγ(z) = zγ = zγ1zγ2 and then we will put shortly
T γf := TK

γ

f , that is,

T γf(z) = lim
ε→0

ˆ

C\Bε(z)
(z − w)γf(w) dm(w) (2.18)

as long as the limit exists.
For any operator T and any domain Ω, we can consider TΩf = χΩ T (χΩ f).

Example 2.14. As the reader may have observed, the Beurling and the Cauchy transforms are
in that family of operators. Namely, when K(z) = z−2, that is, for γ = (−2, 0), then −1

π T
γ is the

Beurling transform. The operator 1
πT

(−1,0) coincides with the Cauchy transform.
Consider the iterates of the Beurling transform Bm for m > 0. For every f ∈ Lp and z ∈ C we

have

Bmf(z) =
(−1)mm

π
lim
ε→0

ˆ

|z−τ |>ε

(z − τ)m−1

(z − τ)m+1
f(τ) dm(τ) =

(−1)mm

π
T (−m−1,m−1)f(z). (2.19)
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That is, for γ = (γ1, γ2) with γ1 + γ2 = −2 and γ1 ≤ −2, the operator T γ is an iteration of the
Beurling transform modulo constant (see [AIM09, Section 4.2]), and it maps Lp(U) to itself for
every open set U . If γ2 ≤ −2, then T γ is an iterate of the conjugate Beurling transform and it is
bounded in Lp as well.

3 The characteristic function

3.1 The case of unbounded domains Ω ⊂ C
Definition 3.1. Given δ > 0 and R > 0, we say that Ω = {x + i y ∈ C : y > A(x)} is a
(δ,R, n, p)-admissible domain with defining function A if

• The defining function A ∈ Bn+1−1/p
p,p ∩ Cn−1,1.

• We have A(0) = 0 and, if n ≥ 2, A′(0) = 0.

• We have Lipschitz bounds on on the function and its derivatives
∥∥A(j)

∥∥
L∞

< δ
Rj−1 for 1 ≤

j ≤ n.

We associate a Whitney covering W with appropriate constants to Ω. The constants will be
fixed along this section, depending on n and δ.

In this Section we will prove the next result for the operators T γ defined in (2.18).

Theorem 3.2. Consider δ,R, ε > 0, p > 1 and a natural number n ≥ 1. There exists a radius
ρε < R such that for any (δ,R, n, p)-admissible domain Ω and any multiindex γ ∈ Z2 with γ1 +γ2 =
−n− 2 and γ1 · γ2 ≤ 0, we have that T γχΩ ∈ Lp(Ω ∩B(0, ρε)). In particular, we have that

‖T γχΩ‖pLp(Ω∩B(0,ρε))
≤ C|γ|np

(
‖A‖p

Ḃ
n−1/p+1
p,p

+ ρ2−np
ε (1 + ε)|γ|p

)
,

where C depends on p, n and the Lipschitz character of Ω.

Figure 3.1: Disposition in Theorem 3.2.
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Definition 3.3. Consider a given (δ,R, n, p)-admissible domain with defining function A. Then,
for every interval I we have an approximating polynomial Rn

3I := Rn
3IA, and

β(n)(I) =
1

`(I)

ˆ

3I

|A(x)−Rn
3I(x)|

`(I)
dx.

We call
ΩnI := {x+ i y : y > Rn

3I(x)}.
Let π : C→ R be the vertical projection (to the real axis) and Q a cube in C. If π(Q) = I we will
write ΩnQ := ΩnI .

Remark 3.4. Note that π sends dyadic cubes of C to dyadic intervals of R and, in particular,
any dyadic interval has a finite number of pre-images in the Whitney covering W of Ω uniformly
bounded by a constant depending on δ and the Whitney constants of W.

Proof of Theorem 3.2. Assume that A is the defining function of Ω, that is, the graph of A coincides
with the boundary of Ω. By (2.17) we have that

∑

I∈D

(
β(n)(I)

`(I)n−1/p

)p
`(I) ≈ ‖A‖p

Ḃ
n−1/p+1
p,p

,

so it is enough to prove that

‖T γχΩ‖pLp(Ω∩B(0,ρε))
≤ C|γ|np

(∑

I∈D

(
β(n)(I)

`(I)n−1/p

)p
`(I) + ρ2−np

ε (1 + ε)|γ|p
)
. (3.1)

We begin the proof by some basic observation. Let j1, j2 ∈ Z such that j2 6= j1 + 1. Then, the
line integral

ˆ

∂D
wj1wj2 dw = i

ˆ 2π

0

eiθ(j1−j2+1)dθ = 0 (3.2)

so, as long as j2 > 0, given 0 < ε < 1 Green’s formula (2.4) says that

ˆ

D\B(0,ε)

wj1wj2−1 dm(w) =
i

2j2

ˆ

∂D∪∂B(0,ε)

wj1wj2 dw = 0. (3.3)

We may assume that γ2 ≥ 0. The case γ1 ≥ 0 can be proven mutatis mutandis. Consider a
Whitney cube Q and z ∈ B(0, ρε) ∩Q. Then by (3.3) we have that

|T γχΩ(z)| =
∣∣∣∣∣

ˆ

|z−w|>`(Q)

(w − z)γχΩ(w) dm(w)

∣∣∣∣∣ (3.4)

≤
∣∣∣∣∣

ˆ

|z−w|>`(Q)

(w − z)γχΩnQ
(w) dm(w)

∣∣∣∣∣+

ˆ

|z−w|>`(Q)

|χΩnQ
(w)− χΩ(w)|
|w − z|n+2

dm(w).

If we have taken appropriate Whitney constants, then we also have that `(Q) < dist(Q, ∂ΩnQ) (see
Remark 2.4) and, thus, by (3.3) again, we have that

ˆ

|z−w|>`(Q)

(w − z)γχΩnQ
(w) dm(w) = T γχΩnQ

(z). (3.5)

We will see in Section 3.3 that the following claim holds.
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Claim 3.5. There exists a radius ρε (depending on δ, R, n and ε) such that for every z ∈ B(0, ρε)
with z ∈ Q ∈ W, we have that

|T γχΩnQ
(z)| .n

(1 + ε)|γ|

ρnε
. (3.6)

The last term in (3.4) will bring the beta coefficients into play. Recall that we defined the
symmetric difference of two sets A1 and A2 as A1∆A2 := (A1 ∪A2) \ (A1 ∩A2). For our choice of
the Whitney constants we have that Q ⊂ ΩnQ ∩ Ω so

ˆ

|z−w|>`(Q)

|χΩnQ
(w)− χΩ(w)|
|w − z|n+2

dm(w) =

ˆ

ΩnQ∆Ω

1

|w − z|n+2
dm(w). (3.7)

Next we split the domain of integration in vertical strips. Namely, if we call Sj = {w ∈ C :
|Re (w − z)| ≤ 2j`(Q)} for j ≥ 0 and S−1 = ∅, we have that

ˆ

ΩnQ∆Ω

1

|w − z|n+2
dm(w) =

∞∑

j=0

ˆ

(ΩnQ∆Ω)∩Sj\Sj−1

1

|w − z|n+2
dm(w)

≤
∞∑

j=0

∣∣(ΩnQ∆Ω) ∩ Sj
∣∣ 1

(2j−1`(Q))n+2
. (3.8)

We will see in Section 3.2 the following.

Claim 3.6. We have

∣∣(ΩnQ∆Ω) ∩ Sj
∣∣ .n

∑

I∈D
π(Q)⊂I⊂2jπ(Q)

β(n)(I)

`(I)n−1
(2j`(Q))n+1. (3.9)

Summing up, plugging (3.5) and (3.6) in the first term of the right-hand side of (3.4) and
plugging (3.7), (3.8) and (3.9) in the other term, we get

|T γχΩ(z)| .n
∞∑

j=0

∑

I∈D
π(Q)⊂I⊂2jπ(Q)

β(n)(I)

`(I)n−1
(2j`(Q))n+1 1

(2j`(Q))n+2
+

(1 + ε)|γ|

ρnε
.

Reordering and computing,

|T γχΩ(z)| .n
∑

I∈D
π(Q)⊂I

β(n)(I)

`(I)n−1

∑

j∈N0

I⊂2jπ(Q)

1

2j`(Q)
+

(1 + ε)|γ|

ρnε
.

∑

I∈D
π(Q)⊂I

β(n)(I)

`(I)n
+

(1 + ε)|γ|

ρnε
. (3.10)

Raising to power p, integrating in Q and adding we get that for ρε small enough

‖T γχΩ‖pLp(Ω∩B(0,ρε))
.n

∑

Q∈W
Q∩B(0,ρε) 6=∅

|Q|



∑

I∈D
π(Q)⊂I

β(n)(I)

`(I)n
+

(1 + ε)|γ|

ρnε




p

.p
∑

Q∈W
Q∩B(0,ρε)6=∅

|Q|



∑

I∈D
π(Q)⊂I

β(n)(I)

`(I)n




p

+ ρ2−np
ε (1 + ε)|γ|p. (3.11)
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Regarding the double sum, we use Hölder Inequality to find that

∑

Q∈W
Q∩B(0,ρε)6=∅

|Q|



∑

I∈D
π(Q)⊂I

β(n)(I)

`(I)n




p

≤
∑

Q∈W
|Q|

∑

I∈D
π(Q)⊂I

(
β(n)(I)

`(I)n−
1
2p

)p


∑

I∈D
π(Q)⊂I

1

`(I)
p′
2p




p
p′

.p
∑

Q∈W
`(Q)2

∑

I∈D
π(Q)⊂I

(
β(n)(I)

`(I)n−
1
2p

)p
`(Q)

−1
2 (3.12)

≤
∑

I∈D

(
β(n)(I)

`(I)n−
1
2p

)p ∑

Q∈W
π(Q)⊂I

`(Q)
3
2 .W

∑

I∈D

(
β(n)(I)

`(I)n−
1
p

)p
`(I),

where the constant in the last inequality depends on the maximum number of Whitney cubes that
can be projected to a given interval, depending only on δ and n.

Thus, by (3.11) and (3.12) we have proven (3.1) when γ2 ≥ 0. The case γ2 ≤ 0 can be proven
analogously.

3.2 The interstitial region

Proof of Claim 3.6. Recall that we have a point z ∈ Q ∈ W, and a vertical strip Sj = {w ∈ C :
|Re (w − z)| ≤ 2j`(Q)} for a certain j ∈ N0. For j = 0 the proof is quite simple. Assume j > 0.
Let J0 = π(Q), r = 2j−1`(Q). Let Jj−1 be the dyadic interval of length r containing J0. Then it
is enough to see that

∣∣(ΩnJ0
∆Ω) ∩ Sj

∣∣ .n
∑

I∈D
J0⊂I⊂Jj−1

β(n)(I)
rn−1

`(I)n−1
r2. (3.13)

We write N = j − 1 for the sake of clarity. Then,

∣∣(ΩnJ0
∆Ω) ∩ S

∣∣ =

ˆ Re (z)+r

Re (z)−r
|A−Rn

3J0
| dm1 (3.14)

≤
ˆ

3JN

|A−Rn
3JN | dm1 +

ˆ

3JN

|Rn
3JN −Rn

3J0
| dm1 = 11 + 22 .

Trivially,
11 = β(n)(JN )`(JN )2. (3.15)

To deal with the second term, we consider the chain of dyadic intervals

J0 ⊂ · · · ⊂ Jk ⊂ Jk+1 ⊂ · · · ⊂ JN ,

with 0 < k < N and `(Jk) = 2k`(J0). We use the Triangle Inequality in the chain of intervals:

22 ≤
N−1∑

k=0

ˆ

3JN

|Rn
3Jk+1

−Rn
3Jk
| dm1 =

N−1∑

k=0

∥∥∥Rn
3Jk+1

−Rn
3Jk

∥∥∥
L1(3JN )

. (3.16)

For any polynomial P (x) =
∑n
i=1 aix

i of degree n and any interval J centered at 0, using the
linear map φ that sends the interval (−1, 1) to J as a change of coordinates, we have that

‖P‖L1(J) ≈ `(J)‖P ◦ φ‖L1(−1,1),
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and using the fact that all norms in a finite dimensional vector space are equivalent (in particular
the L1(−1, 1) norm and the sum of coefficients) we have that

‖P‖L1(J) ≈n `(J)

n∑

i=1

`(J)i |ai| .

By the same token, for any k0 ∈ N,

‖P‖L1(2k0J) ≈n 2k0`(J)
n∑

i=1

(
2k0`(J)

)i |ai| .n 2k0(n+1)‖P‖L1(J).

Fix 0 ≤ k < N . Then,

∥∥∥Rn
3Jk+1

−Rn
3Jk

∥∥∥
L1(3JN )

.n
∥∥∥Rn

3Jk+1
−Rn

3Jk

∥∥∥
L1(3Jk)

`(JN )n+1

`(Jk)n+1
,

with constants depending only on n. Thus, by Remark 2.5

∥∥∥Rn
3Jk+1

−Rn
3Jk

∥∥∥
L1(3JN )

.n
(
β(n)(Jk+1) + β(n)(Jk)

) `(JN )n+1

`(Jk)n+1
`(Jk)2. (3.17)

Thus, combining (3.14), (3.15), (3.16) and (3.17) we get (3.13).

3.3 Domain bounded by a polynomial graph

We will consider only very “flat” polynomials. Let us see what we can say about their coefficients.

Lemma 3.7. Let n ≥ 2, A ∈ Cn−1,1(R) with A(0) = 0, A′(0) = 0,
∥∥A(j)

∥∥
L∞

< δ
Rj−1 for j ≤ n and

consider two intervals J ⊂ I = [−R,R]. Then we have the following bounds for the approximating
polynomial P = Rn

JA in the interval I:

∥∥∥P (j)
∥∥∥
L∞(I)

≤ 3n−jδ
Rj−1

for j ≤ n.

Furthermore, if ρ > 0 and J ⊂ [−ρ, ρ], then

‖P‖L∞(−ρ,ρ) ≤
3nδρ2

R
and ‖P ′‖L∞(−ρ,ρ) ≤

3n−1δρ

R
. (3.18)

Proof. By Remark 2.6 we know that there are at least n + 1 common points τ0
0 , · · · , τ0

n ∈ 3J for
A and P , that is, A(τ0

j ) = P (τ0
j ) for every j. By the Mean Value Theorem, there are n common

points τ1
0 , · · · , τ1

n−1 ∈ 3J for their derivatives. By induction we find points τk0 · · · τkn−k ∈ 3J where

the k-th derivatives coincide for 0 ≤ k ≤ n−1, that is, A(k)(τkj ) = P (k)(τkj ) for every 0 ≤ j ≤ n−k.

Note that the polynomial derivative P (n), which is in fact a constant, coincides with the differ-
ential quotient of P (n−1) evaluated at any pair of points. In particular given x ∈ R, for the points
τn−1
0 and τn−1

1 we have that

∣∣∣P (n)(x)
∣∣∣ =

∣∣∣∣
P (n−1)(τn−1

0 )− P (n−1)(τn−1
1 )

τn−1
0 − τn−1

1

∣∣∣∣ =

∣∣∣∣
A(n−1)(τn−1

0 )−A(n−1)(τn−1
1 )

τn−1
0 − τn−1

1

∣∣∣∣ ≤
δ

Rn−1
.

Now we argue by induction again. Assume that
∥∥P (j+1)

∥∥
L∞(I)

≤ 3n−j−1δ/Rj for a certain

j ≤ n − 1. Consider x ∈ I and, by the Mean Value Theorem, we have a point ξ such that
|P (j)(x)− P (j)(τ j0 )| = |P (j+1)(ξ)||x− τ j0 |. Thus, since P (j)(τ j0 ) = A(j)(τ j0 ) we have that

|P (j)(x)| ≤ |P (j+1)(ξ)||x− τ j0 |+ |A(j)(τ j0 )| ≤ 3n−j−1δ

Rj
2R+

δ

Rj−1
=

3n−jδ
Rj−1

.
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We have not used yet the fact that A′(0) = A(0) = 0. Let us fix ρ ≤ R and assume that
I ⊂ [−ρ, ρ]. Then for x ∈ [−ρ, ρ], we can write P ′(x) = P ′(x)− P ′(τ1

0 ) +A′(τ1
0 )−A′(0), so

|P ′(x)| ≤ ‖P ′′‖L∞(I)|x− τ1
0 |+ ‖A′′‖L∞(I)|τ1

0 | ≤
3n−2δ

R
2ρ+

δ

R
ρ ≤ 3n−1δρ

R
.

By the same token,

|P (x)| ≤ ‖P ′‖L∞([−ρ,ρ])|x− τ0
0 |+ ‖A′‖L∞([−ρ,ρ])|τ0

0 | ≤
3n−1δρ

R
2ρ+ δ ρ ≤ 3nδρ2

R
.

Now we can prove Claim 3.5. Recall that we want to find a radius ρint < R depending on ε
such that every point z contained in a Whitney cube Q ⊂ B(0, ρint) satisfies (3.6), that is,

|T γχΩnQ
(z)| .n

(1 + ε)|γ|

ρnint
,

where γ ∈ {(−j1, j2) : j1, j2 ∈ N0 and j1 − j2 = n + 2} (recall that we assumed that γ2 ≥ 0).
According to the previous lemma, when n ≥ 2 we are dealing with a domain ΩnQ whose boundary

is the graph of a polynomial P (x) =
∑n
j=0 ajx

j such that

|a0| = |P (0)| ≤ 3nδρ2
int

R
,

|a1| = |P ′(0)| ≤ 3n−1δρint
R

and

|aj | =
|P (j)(0)|

j!
≤ 3n−jδ
j!Rj−1

for 2 ≤ j < n. (3.19)

We call ΩP := {x+ i y : y > P (x)} to such a domain. Note that (3.18) implies that for ρint small
enough the polynomial P is “flat”, namely |P (x)| < ρint

4 for |x| < ρint.
One can think of the “exterior” radius ρext below as a geometric version of ε, namely ρext =

(ε/16)2. Further, we can assume that ρext < R.

Proposition 3.8. Consider two real numbers δ,R > 0 and n ≥ 2. For ρext small enough, there
exists 0 < ρint < ρext depending also on n, δ and R such that for all j1, j2 ∈ N0 with j1−j2 = n+2,
all P ∈ Pn such that, if n ≥ 2, P satisfies (3.19), all z ∈ Q(0, ρint)∩ΩP and 0 < ε < dist(z, ∂ΩP )
we have ∣∣∣∣∣

ˆ

ΩP \B(z,ε)

(z − w)j2

(z − w)j1
dm(w)

∣∣∣∣∣ ≤
Cn
ρnint

(
1 + 16ρ

1/2
ext

)j2
, (3.20)

with Cn depending only on n.
If P ∈ P1, that is, if n = 1, then for all j1, j2 ∈ N0 with j1 − j2 = 3 we have that

ˆ

ΩP \B(z,ε)

(z − w)j2

(z − w)j1
dm(w) = 0.

Proof. First consider n = 1. In that case, ΩP is a half plane. By rotation and dilation, we

can assume ΩP = R2
+ := {w = x + i y : y > 0}. Note that (z−w)j2

(z−w)j1−1 is infinitely many times
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z

P
ΩP

Qext

I

Qint
ρint

ρext

ε

Figure 3.2: Disposition in Proposition 3.8.

differentiable with respect to w in any ring centered in z. Then we can apply Green’s formula (2.4)
and use the decay at infinity of the integrand and (3.2) to see that for ε > 0 small enough

ˆ

R2
+\B(z,ε)

(z − w)j1−3

(z − w)j1
dm(w) = cj1

ˆ

R

(z − w)j1−3

(z − w)j1−1
dw = cj1

ˆ

R

(z − w)j1−3

(z − w)j1−1
dw

= cj1

ˆ

R2
+\B(z,ε)

(z − w)j1−4

(z − w)j1−1
dm(w). (3.21)

When j1 = 3 the last constant is zero. By induction, all these integrals equal zero.
So we can assume n ≥ 2. Consider a given ρext > 0. We define the interval I := [−ρext, ρext],

the exterior window Qext := Q(0, ρext), and the interior window Qint := Q(0, ρint). Note that
(3.19) implies that for ρext small enough, the set {x+ i P (x) : x ∈ I} ⊂ Qext, that is, the boundary
∂ΩP , intersects the vertical sides of the window Qext but does not intersect the horizontal ones.
The same can be said for the sides of Qint.

Fix z ∈ Qint and ε < dist(z, ∂Ω). Splitting the domain of integration in two regions we get

ˆ

ΩP \B(z,ε)

(z − w)j2

(z − w)j1
dm(w) =

ˆ

ΩP \Qext

(z − w)j2

(z − w)j1
dm(w) +

ˆ

ΩP∩Qext\B(z,ε)

(z − w)j2

(z − w)j1
dm(w).

(3.22)
We bound the non-local part trivially by taking absolute values and using polar coordinates.
Choosing ρint < ρext/2, we have that

ˆ

ΩP \Qext

1

|z − w|j1−j2 dm(w) ≤
ˆ ∞

ρext
2

1

rj1−j2

ˆ 1

0

dm1 2πr dr =
2π

j1 − j2 − 2

2j1−j2−2

(ρext)j1−j2−2
, (3.23)

where dm1 stands for the Lebesgue length measure. Note that j1 − j2 − 2 = n.
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To bound the local part, we can apply Green’s Theorem again and we get

2(j1 − 1)

i

ˆ

ΩP∩Qext\B(z,ε)

(z − w)j2

(z − w)j1
dm(w) = −

ˆ

|z−w|=ε

(z − w)j2

(z − w)j1−1
dw

−
ˆ

ΩP∩∂Qext

(z − w)j2

(z − w)j1−1
dw

+

ˆ

∂ΩP∩Qext

(z − w)j2

(z − w)j1−1
dw. (3.24)

The first term in the right-hand side of (3.24) is zero by (3.2). For the second term we note
that z ∈ Qint, and every w in the integration domain is in ∂Qext, so |z − w| > ρext − ρint. Thus,

ˆ

ΩP∩∂Qext

1

|z − w|j1−j2−1
dw ≤ 1

|ρext − ρint|j1−j2−1
6ρext. (3.25)

Summing up, by (3.22), (3.23), (3.24) and (3.25), since ρint <
ρext

2 , we get that

∣∣∣∣∣

ˆ

ΩP \B(z,ε)

(z − w)j2

(z − w)j1
dm(w)

∣∣∣∣∣ ≤
∣∣∣∣
ˆ

∂ΩP∩Qext

(z − w)j2

(z − w)j1−1
dw

∣∣∣∣+
Cn
ρnext

, (3.26)

with Cn depending only on n.
It remains to bound the first term in the right-hand side of (3.26). We begin by using the

change of coordinates w = x+ i P (x) to get a real variable integral:

ˆ

∂ΩP∩Qext

(z − w)j2

(z − w)j1−1
dw =

ˆ

I

(z − (x− i P (x)))j2

(z − (x+ i P (x)))j1−1
(1− i P ′(x)) dx. (3.27)

Note that the denominator on the right-hand side never vanishes because z /∈ ∂ΩP . Now we take
a closer look to the fraction in order to take as much advantage of cancellation as we can, namely

(z − (x− i P (x)))j2

(z − (x+ i P (x)))j1−1
=

((z − z + 2i P (x)) + (z − (x+ i P (x))))
j2

(z − (x+ i P (x)))j1−1

=

j2∑

j=0

(
j2
j

)
(z − z + 2i P (x))j(z − (x+ i P (x)))j2−j−j1+1

=

j2∑

j=0

(
j2
j

)
(−2i Im(z) + 2i P (x))j

(z − (x+ i P (x)))n+1+j
. (3.28)

Next, we complexify the right-hand side of (3.28) so that we have a holomorphic function in a
certain neighborhood of I to be able to change the integration path. To do this change we need a
key observation. If τ ∈ Qext, then |τ | <

√
2ρext and by (3.19) writing δ̃ = 3nδ we have that

|P ′(τ)| ≤ |a1|+ 2|a2||τ |+ · · · ≤ δ̃
(
ρint
R

+
2

R−1
2ρext +

3

R−2
(2ρext)

2 + · · ·
)
< 1/2 (3.29)

if ρext is small enough. Thus, we have that Re (1 + i P ′(τ)) > 1
2 in Qext and, by the Complex

Rolle Theorem 2.2, we can conclude that τ 7→ τ + i P (τ) is injective in Qext. In particular,
z− (τ + i P (τ)) has one zero at most in Qext, and this zero is not real because z /∈ ∂ΩP . Therefore,
since the real line divides Qext in two congruent open rectangles, there is one of them whose closure

18



has a neighborhood containing no zeros of this function. We call this open rectangle R. Now, for

any j ≥ 0 we have that τ 7→ (P (τ)−Im(z))j

(z−(τ+i P (τ)))n+1+j (1− i P ′(τ)) is holomorphic in R, so we can change

the path of integration and get

ˆ

I

2j(P (x)− Im(z))j

(z − (x+ i P (x)))n+1+j
(1− i P ′(x)) dx = −

ˆ

∂R\I

2j(P (τ)− Im(z))j

(z − (τ + i P (τ)))n+1+j
(1− i P ′(τ)) dτ.

(3.30)
On the other hand, if |τ | <

√
2ρext, then we have that

|P (τ)| ≤ |a0|+ |a1||τ |+ |a2||τ |2 + |a3||τ |3 + · · · (3.31)

≤ δ̃
(
ρ2
int

R
+
ρint
R

2ρext +
1

R
(2ρext)

2 +
1

R2
(2ρext)

3 + · · ·
)
≤ ρ3/2

ext

for ρext small enough. Then, taking absolute values inside the last integral in (3.30) and using
(3.29) and (3.31) we get

ˆ

∂R\I

2j |P (τ)− Im(z)|j
|z − (τ + i P (τ))|n+1+j

|1− i P ′(τ)| |dτ | ≤ 3

2

ˆ

∂R\I

2j(ρ
3/2
ext + ρint)

j

|z − (τ + i P (τ))|n+1+j
|dτ |. (3.32)

Finally, we have that for any τ ∈ ∂R \ I ⊂ ∂Qext,

|z − (τ + i P (τ))| ≥ |τ | − |z| − |P (τ)| ≥ ρext −
√

2ρint − ρ
3
2
ext ≥

ρext
2
− 2ρint (3.33)

for ρext small enough. Using this fact we rewrite (3.32) as

ˆ

∂R\I

2j |P (τ)− Im(z)|j
|z − (τ + i P (τ))|n+1+j

|1− i P ′(τ)| |dτ | ≤ 3

2

2j(ρ
3/2
ext + ρint)

j

(ρext/2− 2ρint)n+1+j

ˆ

∂R\I
|dτ |. (3.34)

Putting together (3.27), (3.28), (3.30) and (3.34) we can write

∣∣∣∣
ˆ

∂ΩP∩Qext

(z − w)j2

(z − w)j1−1
dw

∣∣∣∣ ≤
3

2 (ρext/2− 2ρint)n+1

j2∑

j=0

(
2 · ρ

3/2
ext + ρint

ρext/2− 2ρint

)j (
j2
j

)
4ρext

=
6ρext

(ρext/2− 2ρint)n+1

(
1 + 2 · ρ

3/2
ext + ρint

ρext/2− 2ρint

)j2
,

and, choosing ρint = min{ρext/8, ρ3/2
ext},

∣∣∣∣
ˆ

∂ΩP∩Qext

(z − w)j2

(z − w)j1−1
dw

∣∣∣∣ ≤
Cn
ρnext

(
1 + 16ρ

1/2
ext

)j2
, (3.35)

where the constant Cn depends only on n.
Now, (3.26) together with (3.35) prove (3.20).

Remark 3.9. Note that we have assumed γ2 ≥ 0 in the proof Theorem 3.2. When proving the case
γ2 ≤ 0, we would have to prove Proposition 3.8 with γ ∈ {(j1,−j2) : j1, j2 ∈ N0 and j2−j1 = n+2}.
The proof is analogous to the one shown above with slight modifications, and it is left to the reader
to complete the details.
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3.4 Bounded domains: a localization principle

We are going to follow a standard localization argument, so we will give a sketch, leaving some
details for the reader.

Let us start with some remarks. First we make some general observations on admissible do-
mains. In these first two remarks we assume n ≥ 2 since the case n = 1 is simpler (there is no
need for rotations) and it is fully covered in [CT12].

Remark 3.10. If Ω is a (δ,R, n, p)-admissible domain with defining function A, then for every
τ ∈ ∂Ω one can perform a translation of the domain that sends τ to the origin and a rotation
in the same spirit of Definition 2.1, so that ∂Ω coincides with the graph of a new function Ã ∈
Cn−1,1(R) in a certain ball B(0, R̃) with fixed radius R̃ (depending on δ and R) with Ã(0) = 0,

Ã′(0) = 0,
∥∥∥Ã′

∥∥∥
L∞
≤ δ̃ and supp(Ã) ⊂ [−2R̃, 2R̃]. One can see that

∥∥∥Ã
∥∥∥
Ḃsp,p

. ‖A‖Bsp,p for

s < n + 1. Therefore Ã determines a (δ̃, R̃, n, p)-admissible domain Ω̃ with compactly supported
defining function (see Figure 3.10).

Consider γ ∈ Z2 with γ1+γ2 = −n−2 and γ1 ·γ2 ≤ 0. Note that χΩ(z) = χΩ̃(z) for z ∈ B(0, R̃).

For every z ∈ Ω ∩B
(

0, R̃2

)
we use the decomposition T γχΩ(z) = T γχΩ̃(z) + T γ(χΩ − χΩ̃)(z):

|T γχΩ(z)| ≤ |T γχΩ̃(z)|+
ˆ

|w|>R̃

|χΩ(w)− χΩ̃(w)|
|w − z|n+2

dm(w) . |T γχΩ̃(z)|+ 1

R̃n
. (3.36)

Figure 3.3: Disposition in Remark 3.10 before the rotation and the translation.

Next we take a look at admissible domains with compact support.

Remark 3.11. Let Ω be a (δ,R, n, p)-admissible domain with defining function A supported in
I = [−2R, 2R]. For a given ε > 0 small enough, take ρ to be the radius ρε from Theorem 3.2

associated to the parameters δ̃, R̃, n, p of the previous remark. We assume ρ < R̃/2.
Since A is supported in I, we can cover the area close to the graph G = {x + i A(x) : x ∈ I}

by a finite number of balls of radius ρ (see Figure 3.4). In each ball we can apply (3.36) for the

corresponding domain Ω̃. Thus, given γ ∈ Z2 with γ1 + γ2 = −n − 2 and γ1 · γ2 ≤ 0, writing
UρG =

⋃
z∈G B

(
z, ρ2

)
and using Theorem 3.2 we have that

‖T γχΩ‖pLp(Ω∩UρG) ≤ C
(
‖A‖p

B
n+1−1/p
p,p (∂Ω)

+ (1 + ε)|γ|p
)
,

with C depending on n, p, δ, R and ε (but not on |γ|).

Finally, for z /∈ UρG we can use the same argument of (3.36) replacing the domain Ω̃ by the
half plane R2

+. Namely,

|T γχΩ(z)| ≤
∣∣∣T γχR2

+
(z)
∣∣∣+

ˆ

Ω∆R2
+

1

|w − z|n+2
dm(w).

20



Figure 3.4: Decomposition of a (δ,R, n, p)-admissible domain Ω with defining function A supported
in I = [−2R, 2R] considered in Remark 3.11.

In that case, the first term is zero just by (3.21). Since A is compactly supported in [−2R, 2R]
and it is Lipschitz with constant δ, the domain of integration of the second term is contained in
Q(0, 2(1+δ)R). Thus, when z ∈ Ω\Q(0, 4(1+δ)R) then |T γχΩ(z)| is bounded by a constant times
R2

|z|n+2 . When z ∈ Ω ∩ Q(0, 4(1 + δ)R) \ UρG then |T γχΩ(z)| is bounded by C
ρn . Summing up, we

have a global bound

‖T γχΩ‖pLp(Ω) ≤ C
(
‖A‖p

B
n+1−1/p
p,p

+ (1 + ε)|γ|p +
R2

ρnp

)
. ‖A‖p

B
n+1−1/p
p,p

+ (1 + ε)|γ|p,

with constants depending on n, p, δ, R and ε.

Now we turn to the case of bounded domains. First we note how differentiation works for
T γχΩ.

Remark 3.12. Consider a (δ,R)−C(n−1,1) domain Ω and let us fix γ ∈ Z2 with either γ1 ≥ 0 or
γ2 ≥ 0, and α ∈ N2

0 with modulus |α| = n. Then for z ∈ Ω we have

DαT γΩ1(z) =





CnχΩ(z) if γ = (n− 1,−1) and α = (n, 0)

or γ = (−1, n− 1) and α = (0, n)

0 if α1 > γ1 ≥ 0 or α2 > γ2 ≥ 0 except in the previous case,

Cγ,αT
γ−α
Ω 1(z) otherwise,

where Dα stands for the weak derivative in Ω. The constants satisfy |Cγ,α| . (|γ|+ n)n.

Proof. Let us assume that γ2 ≥ 0. If γ1 ≥ 0 as well, differenciating a polynomial under the integral
sign makes the proof trivial, so we assume γ1 ≤ −1. Recall that we write wγ = wγ1wγ2 . For every
z ∈ Ω choose εz := dist(z, ∂Ω)/2. By (3.3), Green’s formula and (3.2) we get that

T γχΩ(z) =

ˆ

Ω\B(z,εz)

(z − w)γ dm(w) =
i

2(γ2 + 1)

ˆ

∂Ω

(z − w)γ+(0,1) dw (3.37)

and we can differenciate under the integral sign.

21



If γ2 ≥ α2, then we have

DαT γχΩ(z) =
i

2(γ2 + 1)
(−1)α1

(γ2 + 1)!

(γ2 − α2 + 1)!

(−γ1 + α1 − 1)!

(−γ1 − 1)!

ˆ

∂Ω

(z − w)γ−α+(0,1) dw.

Since γ2 − α2 ≥ 0, we can apply (3.37) to γ − α instead of γ and, thus,

DαT γχΩ(z) = (−1)α1
(γ2)!

(γ2 − α2)!

(−γ1 + α1 − 1)!

(−γ1 − 1)!
T γ−αχΩ(z).

If γ2 + 1 = α2 we must pay special attention. In that case differentiating under the integral
sign in (3.37) we get

DαT γχΩ(z) =
i

2
(−1)α1

(γ2)!

(γ2 − α2 + 1)!

(−γ1 + α1 − 1)!

(−γ1 − 1)!

ˆ

∂Ω

(z − w)γ−α+(0,1) dw

= Cγ,α

ˆ

∂Ω

1

(z − w)−γ1+α1
dw,

where |Cγ,α| . (|γ|+ n)n. If, moreover, γ1 − α1 ≤ −2, we can use (3.2) to write

DαT γχΩ(z) = Cγ,α

ˆ

∂Ω∪∂B(0,εz)

1

(z − w)−γ1+α1
dw = Cγ,α

ˆ

Ω\∂B(0,εz)

0 dm(w) = 0 (3.38)

Otherwise, that is, if γ2 + 1 = α2 and γ1 − α1 = −1, then α = (0, n) and γ = (−1, n − 1). This
implies that

DαT γχΩ(z) = Cn

ˆ

∂Ω

1

(z − w)
dw = CnχΩ(z), (3.39)

with |Cn| ≤ (n− 1)!. Let us remark the fact that γ = (−1, 0) together with α = (0, 1) is the case
of the ∂-derivative of the Cauchy transform, which is the identity.

Finally, if γ2 < α2 − 1, then differentiating (3.38) or (3.39) we get

DαT γχΩ(z) = 0.

One can argue analogously if γ1 ≥ 0.

Remark 3.13. If Ω is a (δ,R)−C(n−1,1) domain, by Definition 2.1 we have that for every z ∈ ∂Ω,
the parameterization Az of the boundary around z satisfies Az(0) = 0 and A′z(0) = 0. Multiplying
by an appropriate bump function, we can see that there is no loss of generality in assuming that
the parameterizations Az are compactly supported in [−2R, 2R] (possibly increasing the value for
δ).

By the preceeding remarks, Lemma 2.12 and other standard arguments, one gets the following
theorem, which is the keystone of this paper.

Theorem 3.14. Let Ω be a (δ,R)-Cn−1,1 domain with parameterizations in B
n+1−1/p
p,p . Then, for

any γ ∈ Z2 \ {(−1,−1)} with γ1 + γ2 = −2, we have that T γχΩ ∈Wn,p(Ω) and, in particular, for
any ε > 0, we have that

‖∇nT γχΩ‖pLp(Ω) . Cε|γ|np
(
‖N‖p

B
n−1/p
p,p (∂Ω)

+ (1 + ε)|γ|p
)
,

where Cε depends on p, n, δ, R, the length of the boundary H1(∂Ω) and ε but not on |γ|.
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3.5 The case p > 2

From [PT15, Theorem 1.1], we have the following corollary.

Corollary. Let Ω ⊂ C be a Lipschitz domain, let γ ∈ Z2 \ (−1,−1) with γ1 + γ2 = −2 and let
p > 2. Then the following statements are equivalent:

a) The truncated operator T γΩ is bounded in Wn,p(Ω).

b) For every polynomial P of degree at most n− 1, we have that T γΩ(P ) ∈Wn,p(Ω).

We will use a quantitative version of this corollary. We state it below without proof. We refer
the reader to [PT15, pages 2965–2969] for the details.

Let us fix some notation. Given a multiindex λ ∈ N2
0, we write Pλ(z) = zλ1zλ2 , that is,

Pλ(z) = zλ.

Corollary 3.15. Let Ω ⊂ C be a Lipschitz domain, let γ ∈ Z2 \ (−1,−1) with γ1 + γ2 = −2 and
let p > 2. Then

‖∇nT γΩf‖Lp(Ω) .n


‖T γ‖Lp→Lp + Cδ‖Kγ‖CZ +

∑

|λ|<n
‖∇nT γΩPλ‖Lp(Ω)


 ‖f‖Wn,p(Ω), (3.40)

where we wrote
‖Kγ‖CZ = sup

j≤n,z∈C
|∇jKγ(z)||z|j+2.

Using Theorem 3.14 and Corollary 3.15, we will prove the following theorem.

Theorem 3.16. Consider p > 2, n ≥ 1 and let Ω be a Lipschitz domain with parameterizations

in B
n+1−1/p
p,p . Then, for every ε > 0 there exists a constant Cε such that for every multiindex

γ ∈ Z2 \ {(−1,−1)} with γ1 + γ2 ≥ −2, one has

‖T γΩ‖Wn,p(Ω)→Wn+γ1+γ2+2,p(Ω) ≤ Cε|γ|n+γ1+γ2+2
(
‖N‖

B
n−1/p
p,p (∂Ω)

+ (1 + ε)|γ|
)

+ diam(Ω)γ1+γ2+2.

(3.41)
In particular, for every m ∈ N we have that the iteration of the Beurling transform (Bm)Ω is

bounded in Wn,p(Ω), with norm

‖(Bm)Ω‖Wn,p(Ω)→Wn,p(Ω) ≤ Cεmn+1
(
‖N‖

B
n−1/p
p,p (∂Ω)

+ (1 + ε)m
)
. (3.42)

Proof. Note that by (2.14), we have that B
n+1−1/p
p,p ⊂ B

n+1−2/p
∞,∞ and, since 1 − 2/p > 0, we

also have that B
n+1−2/p
∞,∞ = Cn,1−2/p (see [Tri83, Section 2.5.7]) so Ω is in fact a (δ,R)-Cn−1,1-

domain, where δ and R depend on the size of the local parameterizations of the boundary and on
‖N‖Ḃn−1/p(∂Ω) +H1(∂Ω), and we can use Theorem 3.14.

First we study the case γ1 + γ2 + 2 = 0. Consider a given γ ∈ Z2\{(−1,−1)} with γ1+γ2 = −2.

Recall that Bm = (−1)mm
π T (−m−1,m−1) by (2.19). The proof of the Lp boundedness of these

operators with norm smaller than Cm2 can be found in [AIM09, Section 4]. Thus,

‖T γ‖Lp→Lp =
π

m
‖Bm‖Lp→Lp . m =

|γ|
2
. (3.43)

On the other hand, a short computation shows that

‖Kγ‖CZ = sup
j≤n,z∈C

|∇jKγ(z)||z|j+2 . |γ|n, (3.44)
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with constant depending on n.
In order to use Corollary 3.15, it only remains to check the bounds for

∥∥DαT γΩP
λ
∥∥
Lp(Ω)

for

all multiindices α, λ ∈ N2
0 with |α| = n and |λ| < n. Using the binomial expansion wλ =∑

ν≤λ(−1)|ν|
(
λ
ν

)
(z − w)νzλ−ν , we can write

T γΩPλ(z) = lim
ε→0

ˆ

C\Bε(z)
(z − w)γwλ dm(w) =

∑

~0≤ν≤λ

(−1)|ν|
(
λ

ν

)
zλ−νT γ+νχΩ(z).

Differentiating (and assuming that 0 ∈ Ω) we find that

|∇nT γΩPλ(z)| . 2n
∑

~0≤ν≤λ

n∑

j=0

(1 + diam(Ω))n|∇jT γ+νχΩ(z)|

and, thus, by the equivalence of norms in the Sobolev space (2.2), we have that

‖∇nT γΩPλ‖
p

Lp(Ω) .Ω

∑

~0≤ν≤λ

(∥∥∥∇n+|ν|T γ+νχΩ

∥∥∥
p

Lp(Ω)
+
∥∥T γ+νχΩ

∥∥p
Lp(Ω)

)
,

with constants depending on n, p and the diameter and the Sobolev embedding constant of Ω. By
Remark 3.12, Theorem 3.14 and (3.43), we have that

‖∇nT γΩPλ‖
p

Lp(Ω) .
∑

γ≤ν≤γ+λ

|ν|np
(
‖N‖p

B
n−1/p
p,p (∂Ω)

+ (1 + ε)|ν|p
)

+
∑

γ<ν≤γ+λ

‖T νχΩ‖pLp(Ω). (3.45)

The Young Inequality says that for all functions f ∈ Lp and g ∈ L1, ‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1 .
Thus, since χΩKν ∈ L1, for γ < ν ≤ γ + λ we have that

‖T νΩf‖Lp ≤ diam(Ω)ν1+ν2+2‖f‖Lp , (3.46)

and taking f = χΩ, ‖T νχΩ‖pLp ≤ diam(Ω)(n−1)p+2.
Since p > 2, putting (3.40), (3.43), (3.44), (3.45) and (3.46) together, we get

‖∇nT γΩ‖Wn,p(Ω)→Lp(Ω) . |γ|+ |γ|n + |γ|n
(
‖N‖

B
n−1/p
p,p (∂Ω)

+ (1 + ε)|γ|
)

. |γ|n
(
‖N‖

B
n−1/p
p,p (∂Ω)

+ (1 + ε)|γ|
)
,

with constants depending on n, p, δ, the diameter of Ω, its Sobolev embedding constant and ε, but
not on γ. This proves (3.41) when γ1 + γ2 = −2 and (3.42) for every m > 0.

It remains to study the operators of homogeneity greater than −2. In that case we will see that
we can differentiate under the integral sign to recover the previous situation. Fix γ ∈ Z2 such that
γ1 + γ2 + 2 > 0. By (3.46) we have that ‖T γΩf‖Lp ≤ diam(Ω)γ1+γ2+2‖f‖Lp . Thus, to prove (3.41),
one only needs to see that for f ∈Wn,p(Ω) one has

∥∥∇n+γ1+γ2+2T γΩf
∥∥
Lp(Ω)

≤ Cε|γ|np
(
‖N‖p

B
n−1/p
p,p (∂Ω)

+ (1 + ε)|γ|p
)
‖f‖Wn,p(Ω).

By (3.40) it is enough to check that for any ν ∈ N2
0 with |ν| = γ1 + γ2 + 2, one has

DνT γΩf(z) =





CnχΩf(z) if γ = (|ν| − 1,−1) and ν = (|ν|, 0)

or γ = (−1, |ν| − 1) and ν = (0, |ν|)
0 if ν1 > γ1 > 0 or ν2 > γ2 > 0 except in the previous case,

Cν,γT
γ−ν
Ω f(z) otherwise.

(3.47)
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To prove this statement, one can express the partial derivative as

∂xT
γ
Ωf(z) = lim

h→0

T γΩ(f − f(z))(z + h)− T γΩ(f − f(z))(z)

h
+ ∂xT

γ
ΩχΩ(z)f(z)

and use that f ∈ C0,ε for a certain ε > 0 by the Sobolev Embedding Theorem, allowing one to
apply the Dominated Convergence Theorem to differenciate under the integral sign. The same
happens for ∂y. The details are left to the reader (see Remark 3.12).
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53(1):197–230, 2009.

[CFR10] Albert Clop, Daniel Faraco, and Alberto Ruiz. Stability of Calderón’s inverse conduc-
tivity problem in the plane for discontinuous conductivities. Inverse Probl. Imaging,
4(1):49–91, 2010.

[CMO13] Victor Cruz, Joan Mateu, and Joan Orobitg. Beltrami equation with coefficient in
Sobolev and Besov spaces. Canadian Journal of Mathematics, 65(1):1217–1235, 2013.

[CT12] Victor Cruz and Xavier Tolsa. Smoothness of the Beurling transform in Lipschitz
domains. Journal of Functional Analysis, 262(10):4423–4457, 2012.
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