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Heavy-traffic analysis of a polling model with fluid queues
and heavy-tailed On/Off sources

Rosario Delgado

Abstract We consider a network composed of d single-server workstations with an
infinite buffer at each one, that processes continuous fluid whose arrival processes are
generated by a big number of heavy-tailed On/Off sources. Class- j fluid is primarily
assigned to queue j, j = 1, . . . ,d. Servers are disposed in cascade and each station
can provide help to the previous ones when it becomes free of its own work. We
prove a heavy-traffic limit theorem for an adequate “workload process” associated
to this fluid network model. Our limit process is a d-dimensional reflected fractional
Browian motion (rfBm) living in a convex polyhedron.

Keywords polling model · reflected fractional Brownian motion · convex poly-
hedron · On/Off sources · workload process · heavy-traffic limit · Skorokhod
problem
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1 Introduction

By following the model introduced in [7] for three stations, in this paper we study a
generalization of the two-station cascade fluid model considered in [5]. Indeed, we
investigate the asymptotic behavior under a heavy-traffic regime of a fluid queueing
network consisting of d single-server workstations with arbitrary d ≥ 3, that process
or let pass through them d classes of some kind of fluid, such that for any j = 1, . . . ,d,
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2 Rosario Delgado

class- j fluid is primarily assigned to server j. Servers are disposed in cascade and
each station is allowed to give assistance to any of the previous ones (one at a time)
when it becomes free of its own work. For the heavy-traffic analysis purpose, we
do not need to specify priorities among the previous stations. Indeed, whenever a
server, say server j, become idle while there is fluid awaiting for processing at buffer
of any previous station, a floodgate opens from one of them, say i, 1 ≤ i < j, and
class-i fluid starts to be transferred to station j so that while the situation persists,
it is simultaneously processed by servers i and j (possibly at different speeds). We
assume that there is no travel delay (setup time). This situation persists until the buffer
at station i empties (fluid runs out) or the arrival of fluid (class- j fluid from outside, or
other class of fluid from other previous station) to station j starts, whichever happens
first. In the latter case, transfer from station i immediately ceases (the floodgates
close) to station j, while server i goes on with the processing of class-i fluid. In this
sense, each station supports the previous ones, although the converse is not allowed.
Class-i fluid can be processed simultaneously by station i and any subset of stations
{i+ 1, . . . , d}. For station j, priority is class- j fluid, and the service is exhaustive
within each class. That is, if there is class- j fluid in the system, it is processed by
server j (and perhaps other servers in { j + 1, . . . , d}) until the queue empties, and
only then server j accepts class-k fluid with k < j (by strictly following the priority
ordering, that we do not specify), coming back to class- j fluid as soon as new class- j
fluid arrives to the system. We assume that there is an infinite-capacity buffer at each
station and that no server can be idle if there is fluid awaiting for processing at its
own buffer or buffers of the previous stations (nonidling or work-conserving policy).

This system is a polling model portrayed schematically in Figure 1 for d = 3.
This kind of queueing network with flexible servers, in which servers may transfer
some service capacity to accommodate workload accumulated in another ones, can
be found in the literature as models for a variety of real-life systems, including service
centers, production systems, computer networks with rescheduling of jobs, parallel
computing systems where processors have overlapping capabilities and manufactur-
ing applications in which machines may have differing primary functions and some
overlapping secondary ones (skill-based systems). See for instance [6], [7] and refer-
ences therein. The most related papers focus on an optimal server allocation to min-
imize a cost function of these network systems, while others are devoted to stability
analysis, as [6], [7]. Up to our knowledge, there are very few previous work consid-
ering the question of the heavy-traffic behavior of this type of systems, and even the
concept of “heavy-traffic” itself has not been deeply treated up to now in this context.
An exception is the paper of Harrison [10], that considers dynamic scheduling in a
two-station cascade system with two independent Poisson input streams, determinis-
tic service and linear holding costs, under a heavy-traffic regime where the combined
capacity of the two servers is approximately equal to the total input rate.

We assume that the process of external arrivals to the network system of each
fluid class is a non-deterministic aggregated cumulative process generated by a large
enough number of heavy tailed On/Off sources, N. The aggregated network traffic
generated by the superposition of many On/Off sources with strictly alternating On-
and Off-periods and whose On- and/or Off-periods lengths have high variability, has
the properties of be self-similar and long-range dependent. This justifies our assump-
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tion since actually it has been observed the presence of long-range dependence in
broadband network traffic as well as that of self-similar traffic patterns in modern
high-speed network traffic ([13], [1]). It is that these are the same properties that
characterize the fractional Brownian motion (fBm) process, which is a self-similar
process that has long-range dependent increments, which are positively correlated if
its Hurst parameter H belongs to the interval (1/2, 1).

Adequate definition of “workload process” is introduced in [5] for d = 2 (see jus-
tification and references therein). As mentioned in [5], we follow [10] and define the
workload process for station j, as the total time of service that would be required to
complete processing of all fluid in stations 1, . . . , j at time t, if server j were required
to complete the processing of all of them without help form other servers.

We consider a double sequence of systems indexed by r (a parameter of change
of scale in time) and N, the number of On/Off sources, whose traffic intensities tend
to 1 in some sense as r and N go to infinity (heavy-traffic condition), and we prove
a heavy-traffic limit theorem for the d−dimensional workload process with a conve-
nient change of scale. Indeed, in Theorem 1 we prove that after adequate scaling, the
workload processes converges to a d-dimensional reflected fractional Brownian mo-
tion (rfBm) process living in a convex polyhedron (which is not the positive orthant).

RfBm is a stochastic process that has been introduced previously in the context of
heavy-traffic limit theorems. See for instance [1]-[3], in which the process lives in the
positive orthant, and [4], where the rfBm process lives in a convex polyhedron with
constant directions of reflection along each face. As in [5], in this paper we explore a
different type of fluid network than that considered in [4] for which the rfBm process
lives in a convex polyhedron with constant directions of reflection along each face
also appears as the limit process in a heavy-traffic limit theorem.

A key ingredient in the proof of Theorem1 is an Invariant Principle that we in-
troduce in Section 5 (Appendix), which is a version of the Invariance Principle for
Semimartingale reflecting Brownian motions living in the closure of a domain with
piecewise smooth boundaries presented in Theorem 4.3 [11]. This principle does not
depend, in fact, on the specific law of the processes, as can be seen in [4], and we ap-
ply it to the rfBm process and to a sequence of convex polyhedra that approximates
the convex polyhedron in which the limit rfBm process lives.

The organization of the paper is as follows. In Section 2 we give main notations
and introduce the definitions of convex polyhedron and rfBm process on a convex
polyhedron. In Section 3 we explore the d-station tree-cascade fluid network, first
introducing the model, and then the processes used to measure its performance, the
sequence of convex polyhedra, the normalization factors to scale these processes and
the heavy-traffic condition. The heavy-traffic limit theorem is stated and proved in
Section 4. Section 5 is an Appendix in which the Invariance Principle used in the
proof of the heavy-traffic limit theorem, can be found.

2 Notations and preliminaries

Vectors will be column vectors and vT means the transpose of a vector (or a matrix)
v. By diag(v) we denote the diagonal matrix with diagonal elements the components
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of vector v (in the same order). As usual, we use the notation R− for the half-line
(−∞, 0] and for any x ∈ R, [x] denotes the greatest integer less than or equal to x. In-
equalities for vectors must be understood in the componentwise sense. For any fixed
d ≥ 1, the identity matrix of dimension d is denoted by Id . For any d×m matrix

A = (ai j)i=1,...,d, j=1,...,m , let |A| def
= max

1≤ j≤m

( d

∑
i=1
|ai j|

)
(where |x| denotes the absolute

value of x ∈ R). We will say that a sequence of d ×m matrices {An}n converges
to a d×m matrix A if |An−A| → 0 as n tends to +∞ (this convergence is equiva-
lent to the convergence in the component-wise sense), and we will denote it simply
lim

n→+∞
An = A or An→ A. The same applies for the particular case m = 1, which corre-

sponds to d−dimensional vectors, with |v| def
= ∑

1≤i≤d
|vi| the `1−norm. The Euclidean

norm on Rd is ||v||=
(

∑
1≤i≤d

v2
i
)1/2 ≤ |v| . The inner product of a couple of vectors

u, v ∈ Rd is 〈u,v〉=
d

∑
i=1

ui vi . Let d(x, A) denote the distance between x ∈ Rd and

A⊂Rd , d(x, A) = inf{||x−y|| : y ∈ A} , with the convention d(x, /0) = +∞ . For any
r > 0, let Ur(A) denote the closed set {x ∈ Rd : d(x, A) ≤ r}. For a set A ⊂ Rd , we
denote by Ac the complement of A in Rd , that is, Ac = {x ∈ Rd : x /∈ A}.

Let C d be the space of continuous functions ω from [0,+∞) to Rd , with the
topology of the uniform convergence on compact time intervals, and Dd the space
of continuous on the right with limits on the left functions, endowed with the usual
Skorokhod J1−topology. All stochastic processes in this paper will be assumed to
have paths in Dd , for some d ≥ 1. For each T ≥ 0 and ω ∈ C d , we define

||ω(·)||T def
= sup

t∈[0,T ]
|ω(t)|= sup

t∈[0,T ]

(
∑

1≤`≤d
|ω`(t)|

)
.

We will say that ωn→ω as n→+∞ in C d (uniformly on compacts, u.o.c.) if for any
T ≥ 0, ||ωn(·)−ω(·)||T → 0 , and we will denote it lim

n→+∞
ωn = ω .

A sequence of stochastic processes {Xn}n≥1 is said to be tight if the induced
measures on Dd form a tight sequence (that is, the sequence of induced measures is
weakly relatively compact in the space of probability measures on Dd).

We will use D− lim to denote the convergence in distribution on C d or Dd (or
weak convergence). That is, we write D− lim

n→+∞
Xn = X if the sequence of probability

measures induced in Dd by {Xn}n, say {Pn}n, converges weakly to that induced by
X , P. We denote the weak convergence of probability measures by Pn⇒ P.

The sequence of processes {Xn}n is called C−tight if it is tight, and if each weak
limit point, obtained as a weak limit along a subsequence, almost surely has sample
paths in C d .

The multi-dimensional reflected fractional Brownian motion (rfBm) process on
the positive orthant has been introduced, for instance, in Delgado [1,2] and Konstan-
topoulos and Lin [12]. In this paper we use the extension of this process to a convex
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polyhedron with constant directions of reflection along each face, introduced in Del-
gado [4], reproduced here for the convenience of the reader.

Definition 1 (convex polyhedron) For any d ≥ 1, a convex polyhedron S on Rd can
be defined algebraically as the set of solutions to a systems of linear inequalities:

S def
={x ∈ Rd : 〈v`,x〉 ≥ 0 for all `= 1, . . . , d}= {x ∈ Rd : ϒ x≥ 0}

where v1, . . . , vd in Rd , being ϒ the d× d matrix whose row vectors are v1, . . . , vd .
That is, S =

⋂d
`=1 G` where G` = {x ∈ Rd : 〈v`,x〉 ≥ 0}. The boundary of S is ∂S =

∪d
`=1F̀ , where F̀ = {x ∈ S : 〈v`,x〉 = 0} are the boundary faces of S. Note that

0 ∈ ∂S⊂ S. For each x ∈ S, let `(x) = { j = 1, . . . ,d : x ∈ Fj} .

The fact that the convex polyhedron is determined by the matrix ϒ is made ex-
plicit, when convenient, by means of the notation S(ϒ ) . It is assumed that the inte-
rior of S(ϒ ) is no empty and that the set {v1, . . . , vd} is minimal in the sense that
no proper subset defines S(ϒ ), that is, for any strict subset L ⊂ {1, . . . , d}, the set
{x ∈ Rd : 〈v`,x〉 ≥ 0 for all ` ∈ L} is strictly larger than S(ϒ ). This is equivalent
to the assumption that each of the boundary faces F̀ has dimension d − 1 . Then,
n` = v`

||v`|| is the inward unit normal to F̀ that points into the interior of S.
Associated to the convex polyhedron S(ϒ ) we introduce the directions of reflec-

tion u(y) for any y on its boundary, which are constant along each face, by using a
d×d matrix R whose column vectors are denoted by u1, . . . , ud and are normalized in
such a way that 〈u`, v`〉= 1 for any `= 1, . . . , d, in the following way: if `(y) = {`}
for some `, u(y) is defined as u`. That is, u` is the reflection direction interior to F̀ .
Otherwise,

u(y) def
= {ξ ∈ Rd : ξ = ∑

i∈`(y)
δi ui, with someδi ≥ 0and such that |ξ |= 1}, (1)

that is, the possible directions of reflection at points on the intersections of some faces
are in the convex hull of the directions on the adjoint faces.

Remark 1 (See Remark 1 [5]) It is well known that if the matrix product Q =ϒ R is
a completely-S matrix, then fixed any point on the intersection of some faces, there
is a nonnegative linear combination of the reflection directions given by the column
vectors of R that points strictly inward S(ϒ ). Moreover, if matrix Q = (qi j)i, j=1,...,d
verifies that qi j ≤ 0 for all i 6= j, and the following condition, named the generalized
Harrison-Reiman condition,

(HR) : The matrix Θ obtained from Q− Id by replacing its entries by
their absolute values, has spectral radius strictly less than 1 ,

then Q is a completely-S matrix.
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Definition 2 (rfBm on a convex polyhedron) Let S(ϒ ) be a d−dimensional con-
vex polyhedron as in Definition 1, with associated d × d matrix of directions of
reflection R. A reflected fractional Brownian motion on S(ϒ ) associated with data
(x, H, θ , Γ , R), where x ∈ S(ϒ ), H ∈ (0, 1), θ ∈Rd and Γ is a d×d positive definite
matrix, is a d−dimensional process W = {W (t) = (W1(t), . . . ,Wd(t))T , t ≥ 0} such
that
(i) W has continuous paths and W (t) ∈ S(ϒ ) for all t ≥ 0 a.s.,
(ii) W = X +RV a.s., with X and V two d− dimensional processes defined on the
same probability space and verifying:
(iii) X is a fractional Brownian motion (fBm) process with associated data (x,H,θ ,Γ ),
that is, it is a continuous Gaussian process starting from point x, with mean function
E
(
X(t)

)
= x+θ t for any t ≥ 0 (θ is the drift vector), and with covariance function

given by

Cov
(
X(t),X(s)

)
= E

((
X(t)− (x+θ t)

)(
X(s)− (x+θs)

)T
)
= ΓH(s, t)Γ

if t, s≥ 0, where ΓH(s, t) =
1
2
(

t2H + s2H −|t− s|2H ) , and
(iv) V has continuous and non-decreasing paths, and for each ` = 1, . . . , d , a.s.,

V`(0) = 0 and V`(t) =
t∫

0
1{W (s)∈F`} dV`(s) for all t ≥ 0 (that is, V` can only increase

when W is on the boundary face F̀ ).
If conditions (i), (ii) and (iv) are met, we say that the pair (W,V ) is a solution of the
(multidimensional) Skorokhod Problem associated to X on the convex polyhedron
S(ϒ ) with associated matrix of directions of reflection R.

Remark 2 Strong existence and uniqueness of the solution of a Skorokhod problem
can be ensured if the column vectors of R, {u1, . . . , ud}, are linearly independent, and
matrix Q =ϒ R verifies the generalized Harrison-Reiman condition (HR) introduced
in Remark 1. See Remark 1 in Delgado [4] for a detailed justification of this assertion,
based in the couple of papers of Dupuis and Ramanan [8,9].

Rather informally, we can say that the rfBm process starts in the interior of the
convex polyhedron S and behaves like a fractional Brownian motion (fBm) being
constrained to remain within S in the following way: when the fBm process touches
the boundary of S, it is instantaneously “reflected” preventing its exit from it. For
each `, the `−th column vector of matrix R, u`, gives the direction of the reflection on
F̀ , and V` gives its intensity. On the intersection of two or more faces, the direction
of reflection is given by a linear combination of the corresponding vectors u` of the
form given by (1).

3 The d-station polling fluid network

In this section we go deeper into the details of the fluid network with d ≥ 3 stations
in cascade yet introduced in Section 1. The particular case of such a network with
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d = 3 is pictured in Figure 3. Stability of a similar system with the same structure but
where each station is fed by a renewal input with general i.i.d. inter-arrival times and
general i.i.d. service times for customers, in the particular case of d = 3, has been
studied in [7], where sufficient conditions have been found.

µ13

µ23

µ12

Fig. 1 A three-station tree-cascade fluid network.

Suppose that for each fluid class j, there are N i.i.d. sources, each one with its own
binary time series {U (n)

j (t), t ≥ 0}, n = 1, . . . , N, on a common probability space, and

that they are all independent, where U (n)
j (t) = 1 means that at time t source n is On

(and it is sending fluid to station j, at a constant rate), and U (n)
j (t) = 0 means that it is

Off. We suppose that the lengths of the On-periods are independent, those of the Off-
periods are independent, and the lengths of On- and Off-periods are independent of
each other. Let f on and f off be the probability density functions corresponding to the
lengths of On and Off-periods, which are non-negative and heavy-tailed. Therefore,
their (positive) expected values are

µ̃on =
∫ +∞

0
u f on(u)du and µ̃off =

∫ +∞

0
u f off(u)du .

Assume that as x→+∞ ,
∫ +∞

x
f on(u)du∼ x−β on

Lon(x) and
∫ +∞

x
f off(u)du∼ x−β off

Loff(x) , (2)

where 1 < β on, β off < 2 and Lon, Loff are positive slowly varying functions at infinity
such that if β on = β off, then limx→+∞

Lon(x)
Loff(x) exists and belongs to (0,+∞) . Note that

µ̃on and µ̃off are finite while variances are not.
We define the cumulative external class- j fluid arrived up to time t (by the N

sources) at station j by:

EN
j (t)

def
= αN

j

∫ t

0

1
N

( N

∑
n=1

U (n)
j (u)

)
du ,
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where αN
j > 0 is the (possibly dependent on N) deterministic rate at which class- j

fluid would arrive at station j if all sources were On, or external arrival rate. The
d component processes of the (non-deterministic) cumulative external fluid arrival
process EN = {EN(t) =

(
EN

1 (t), . . . , EN
d (t)

)T
, t ≥ 0}, are assumed to be independent.

We also assume EN(0) = 0. We assume that fluid at each server is processed in a first-
in-first-out (FIFO) basis.

Let λ N = (λ N
1 , . . . , λ N

d )T , where λ N
j

def
= αN

j
µ̃on

µ̃on+µ̃off can be thought as the long run

fluid rate for fluid class j . Assume that λ = limN→+∞ λ N exists, λ = (λ1, . . . , λd)
T .

This implies that α = (α1, . . . , αd)
T = limN→+∞(αN

1 , . . . , αN
d )

T also exists.

For any r > 0 real valued parameter, we can consider a sequence of fluid models
indexed by (r, N), where N is the number of On/Off sources feeding the system. We
will use r as a scalar parameter in time. For the (r, N) fluid model, suppose that for
any j = 1, . . . , d, server j processes or lets pass through it class- j fluid at a constant
rate µr,N

j > 0 if station j were devoted all time to it (that is, 1/µr,N
j is the mean

service time for class- j fluid at station j). By the other hand, class- j fluid is processes
at a constant rate µr,N

j` > 0, not necessarily equal to µr,N
j nor to µr,N

` , if station ` ∈
{ j+1, . . . , d} devoted all time to this fluid class (1/µr,N

j` is the mean service time for

class- j fluid processed by server `). Let µr,N = (µr,N
j , µr,N

j` ) j,`∈{1,...,d}, j<` as column
vector. We assume that limN→+∞ µr,N exists and does not depend on r; we denote
it simply by µ . Finally, we also introduce the fluid traffic intensity for the system,
ρr,N = (ρr,N

1 , . . . , ρr,N
d )T , by

ρr,N
1

def
=

λ N
1

µr,N
1

, ρr,N
j

def
=

j−1

∑̀
=1

λ N
` −µr,N

`

µr,N
` j

+
λ N

j

µr,N
j

j = 2, . . . ,d . (3)

The heavy-traffic condition establishes that the fluid traffic intensity ρr,N tends to
e = (1, . . . ,1)T ∈ Rd in some sense that will be specified later.

Let introduce the following notation: for all 1 ≤ i < j ≤ d, si j =
µi
µi j

, and for all

pair (r,N), sr,N
i j =

µr,N
i

µr,N
i j

. Throughout this work we suppose the following assumption

holds:

Assumption (s): If d ≥ 3, 1≤ i < j < k ≤ d and r and N are big enough, then

sr,N
i j sr,N

jk = sr,N
ik .

Remark 3 Assumption (s) is accomplished, for instance, if for all 1 ≤ i < j ≤ d,

µr,N
i j = f ( j− i)µr,N

j with f (x) = eax for some a ∈ R, that is, in case that
µr,N

i j

µr,N
j

, which

is the rate ratio or relative difference measure to compare the rate at which server
j processes class-i and class- j fluids, grows (if a > 0) or decays (if a < 0) at a rate
proportional to the difference j− i. Case a = 0 corresponds to µr,N

i j = µr,N
j .
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3.1 Performance processes

Some nonnegative processes will be used to measure the performance of the two-
station cascade fluid network:

The workload process W r,N = (W r,N
1 , . . . ,W r,N

d )T is introduced analogously to [5]:
for any station j = 1, . . . ,d, W r,N

j (t) represents the total time of service that would be
required to complete processing of all class-k fluid in the system at time t for k =
1, . . . , j, if server j were required to complete the processing of all of them without
help from other servers. We assume that W r,N(0) = 0. We denote by W̃ r,N

j (t) the

portion of the workload W r,N
j (t) that is exclusively due to fluid arriving from outside

the system, that is, due to all class- j fluid. That is,

W̃ r,N
j (t) def

=
EN

j (t)

µr,N
j

−
(
T r,N

j (t)+
d

∑
`= j+1

1

sr,N
j`

T r,N
j` (t)

)
≥ 0 if j = 1, . . . ,d−1 , (4)

W̃ r,N
d (t) def

=
EN

d (t)

µr,N
d

−T r,N
d (t)≥ 0 ,

where T r,N
j (t) is the total service time devoted to class- j fluid (by server j) in the

interval [0, t], and T r,N
j` (t) is the total service time devoted to class- j by server ` in

the same time interval. Indeed, EN
j (t)/µr,N

j would be the amount of time required
by server j to process all the class- j fluid arrived up to time t to the system, while

T r,N
j (t)+

d
∑

`= j+1

1
sr,N

j`
T r,N

j` (t) represents the part of this time yet consumed at instant t,

by server j, which is T r,N
j (t), and if j < d also by other servers to which part of this

fluid has been transferred, which is T r,N
j` (t) conveniently rescaled since the service

time for class- j fluid is different when processed by server j and when processed by
server `, for `= j+1, . . . ,d. If j = d, it only appears the term T r,N

d (t) .
Then, by definition of workload W r,N

j and recurrence, we have that

W r,N
1 (t) = W̃ r,N

1 (t), (5)

W r,N
j (t) = W̃ r,N

j (t)+W̆ r,N
j (t), with W̆ r,N

j (t) = sr,N
j−1 jW

r,N
j−1(t), j = 2, . . . ,d, (6)

that is, to obtain W r,N
j (t) from W̃ r,N

j (t) we add W r,N
j−1(t) conveniently rescaled repre-

senting the amount of time required by server j to process all the class-` fluid for
`= 1, . . . , j−1 stored at the system at time t.

The cumulative idle-time process Y r,N = (Y r,N
1 , . . . ,Y r,N

d )T is defined by: Y r,N
j (t)

is the cumulative amount of time that server j has been idle during the time interval
[0, t], that is,

Y r,N
j (t) =

∫ t

0
1{W r,N

1 (s)=···=W r,N
j (s)=0} ds , (7)
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and the total service time process and the cumulative idle-time process are related by
means of the following equalities:

Y r,N
1 (t) = t−T r,N

1 (t) , Y r,N
j (t) = t−

(
T r,N

j (t)+
j−1

∑
i=1

T r,N
i j (t)

)
, j = 2, . . . ,d . (8)

Note that with this notations, for any j = 1, . . . ,d and for any pair (i, j) with
1≤ i < j ≤ d, respectively, we can write

T r,N
j (t) =

∫ t

0
1{W̃ r,N

j (s)>0}ds ,

T r,N
i j (t) =

∫ t

0
1{W̃ r,N

i (s)>0,W̃ r,N
j (s)=0}∩ τ̃r,N

i j (s) ds , (9)

where τ̃r,N
i j (s) depends on the priorities among stations 1, . . . , j− 1 when server j

becomes idle. Only to mention two examples, if priority is given to the nearest station,
then

τ̃r,N
i j (s) = {W̃ r,N

i+1(s) = · · ·= W̃ r,N
j−1(s) = 0} ,

but

τ̃r,N
i j (s) = {i = argmax`=1,..., j−1W̃ r,N

` (s)}

if priority is given to the previous station with a greater workload due exclusively to
fluid arriving from outside. What is important is that we do not need to specify τ̃r,N

i j (·)
for performing the heavy-traffic analysis of our system.

Finally, we introduce the process V r,N = (V r,N
1 , . . . ,V r,N

d )T by:

V r,N
1 (t) def

= Y r,N
1 (t)+

d

∑̀
=2

1

sr,N
1`

Y r,N
` (t), (10)

V r,N
j (t) def

=
(
Y r,N

j (t)+
j−1

∑
h=1

T r,N
h j (t)

)

+
d

∑
`= j+1

1

sr,N
j`

(
Y r,N
` (t)+

j−1

∑
h=1

T r,N
h` (t)

)
, 1 < j < d, (11)

V r,N
d (t) def

= Y r,N
d (t)+

d−1

∑
h=1

T r,N
hd (t) . (12)

3.2 Sequence of convex polyhedra in Rd

Let we define G1 = {(x1, . . . ,xd) ∈ Rd : x1 ≥ 0},

G j = {(x1, . . . ,xd) ∈ Rd : x j ≥ s j−1 j x j−1}, for j = 2, . . . ,d,
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and S = ∩d
j=1G j . Then, S is the convex polyhedron in Rd determined by matrix

ϒ =




1 0 0 0 · · · · · · 0
−s12 1 0 0 · · · · · · 0

0 −s23 1 0 · · · · · · 0
...

...
...

... · · ·
...

...
0 0 0 0 · · · −sd−1d 1




, (13)

and the set of row vectors {v1, . . . ,vd} is minimal, n j are the inward unit normal to
the closed half spaces G j, with n j = v j/||v j||, and the boundary faces are

F1 = {(x1, . . . ,vd) ∈ S : x1 = 0} and
Fj = {(x1, . . . ,xd) ∈ S : x j = s j−1 j x j−1}, for j = 2, . . . ,d.

The boundary of S is ∂S = ∪d
j=1Fj. The sequence of convex polyhedron Sr,N =

Sr,N(ϒ r,N) is introduced analogously to S. The matrices of reflection Rr,N and R are
introduced in Lemmas 1 and 2, respectively, in the next subsection. Matrices ϒ r,N

converge to ϒ as N→+∞ (and the limit does not depend on r).
We wish to stress that the key technical difficulty of our main result (Theorem 1)

stems from the fact that the faces of the convex polyhedron associated to the (r,N)
fluid model depend on r and N.

3.3 Scaled processes

In order to define the scaled processes associated with the (r, N) fluid model we
have to introduce some notation by following Taqqu, Willinger and Sherman [13]
(see also Delgado [1], [2]). Set aon = Γ (2−β on)

(β on−1) and aoff = Γ (2−β off)

(β off−1) , where β on and

β off are defined by (2). The normalization factors used below depend on b, defined by
b def
= limt→+∞

Lon(t)
Loff(t) tβ off−β on

, which exists although it could be infinite. If 0< b<+∞

(implying β on = β off and b = lim
t→+∞

Lon(t)
Loff(t)

), set β = β on = β off, L = Loff and

σ2,lim def
=

2
(
(µ̃off)2 aon b+(µ̃on)2 aoff

)
(

µ̃on + µ̃off
)3 Γ (4−β )

. (14)

If, on the other hand, b =+∞ (β off > β on), set L = Lon, β = β on and

σ2,lim def
=

2(µ̃off)2 aon

(
µ̃on + µ̃off

)3 Γ (4−β )
.

If b = 0 (β off < β on), set L = Loff, β = β off and

σ2,lim def
=

2(µ̃on)2 aoff

(
µ̃on + µ̃off

)3 Γ (4−β )
.
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In either case, β ∈ (1, 2). Let we define

H def
=

3−β
2

. (15)

Therefore, H ∈ ( 1
2 , 1).

Now we can introduce the heavy-traffic condition, which establishes that the fluid
traffic intensity ρr,N defined by (3) tends to e = (1, . . . , 1)T in the following sense:

(HTd)





lim
N→+∞

√
N (ρr,N− e) = γ̂r for some γ̂r ∈ Rd−1×R− and

lim
r→+∞

r1−H

L1/2(r)
γ̂r = γ for some γ ∈ Rd−1×R− .

Remark 4 Heavy-traffic condition (HT) generalizes that introduced in Delgado [1]
since γ̂r was taken there to be identically zero, by following Delgado [3], where
motivation for this kind of generalization in terms of what is known as “thin control”
is given. Moreover, it also generalizes that of [5] for d > 2.

We can introduce the scaled processes associated with the (r, N) fluid model and
use a hat to denote them: Ŵ r,N , Êr,N , Ŷ r,N , V̂ r,N and T̂ r,N by

Êr,N
j (t) def

=
√

N
EN

j (r t)−λ N
j r t

rH L1/2(r)
, (16)

Ŵ r,N
j (t) def

=
√

N
W r,N

j (r t)

rH L1/2(r)
(for j = 1, . . . , d) , (17)

and analogously to Ŵ for the rest of the processes.
The following lemma generalizes the Skorokhod decomposition given by formula

(17) [1] to our setting, and will be used in the proof of Theorem 1 below.

Lemma 1 Under Assumption (s) the scaled processes are related by means of

Ŵ r,N(t) = X̂ r,N(t)+Rr,N V̂ r,N(t) , (18)

with X̂ r,N = (X̂ r,N
1 , . . . , X̂ r,N

d )T defined by

X̂ r,N
1 (t) def

=
Êr,N

1 (t)

µr,N
1

+

√
N r1−H

L1/2(r)
(ρr,N

1 −1) t , (19)

X̂ r,N
j (t) def

=
j−1

∑
i=1

Êr,N
i (t)

µr,N
i j

+
Êr,N

j (t)

µr,N
j

+

√
N r1−H

L1/2(r)
(ρr,N

j −1) t, j = 2, . . . ,d, (20)
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where ρr,N is defined by (3), and Rr,N is the matrix

Rr,N def
=




1 − 1
sr,N
12

0 0 · · · · · · 0

sr,N
12 0 − 1

sr,N
23

0 · · · · · · 0

sr,N
13 0 0 − 1

sr,N
34

· · · · · · 0

...
...

...
... · · ·

...
...

sr,N
1d−1 0 0 0 · · · · · · − 1

sr,N
d−1d

sr,N
1d 0 0 0 · · · 0 0




. (21)

Proof:
We prove (18) for each component of process Ŵ r,N , Ŵ r,N

j , by induction on j =
1, . . . ,d.

The base case: j = 1.
By (5) first, and then by (4) and (8) with j = 1, we have that

Ŵ r,N
1 (t) =

√
N

W̃ r,N
1 (r t)

rH L1/2(r)

=

√
N

rH L1/2(r)

(EN
1 (rt)−λ N

1 rt

µr,N
1

+
λ N

1

µr,N
1

rt− rt +Y r,N
1 (rt)−

d

∑̀
=2

1

sr,N
1`

T r,N
1` (t)

)

=
Êr,N

1 (t)

µr,N
1

+

√
N

rH L1/2(r)
(ρr,N

1 −1)rt + Ŷ r,N
1 (t)−

d

∑̀
=2

1

sr,N
1`

T̂ r,N
1` (t)

= X̂ r,N
1 (t)+

(
V̂ r,N

1 (t)− 1

sr,N
12

V̂ r,N
2 (t)

)
, (22)

where in the last equality we used (19), (10) and (11) with j = 2. We can check that
(22) corresponds exactly to the first component of process Ŵ r,N in (18).

Inductive step: we assume that the result is proved up to j, with j ∈ {1, . . . ,d− 1},
and then we will prove that it also holds for component j+1.

Indeed, by (6) and (4) for j+1 we have that

Ŵ r,N
j+1(t) =

√
N

W r,N
j+1(r t)

rH L1/2(r)
=
√

N
W̃ r,N

j+1(r t)+W̆ r,N
j+1(r t)

rH L1/2(r)

=

√
N

rHL1/2(r)

(EN
j+1(rt)

µr,N
j+1

−
(
T r,N

j+1(rt)+
d

∑
`= j+2

1

sr,N
j+1`

T r,N
j+1`(rt)

)
+ sr,N

j j+1W r,N
j (rt)

)

=
ÊN

j+1(t)

µr,N
j+1

+

√
N r1−H

L1/2(r)

λ N
j+1

µr,N
j+1

t

−
(
T̂ r,N

j+1(t)+
d

∑
`= j+2

1

sr,N
j+1`

T̂ r,N
j+1`(t)

)
+ sr,N

j j+1 Ŵ r,N
j (t) (23)
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(where the summatory does not appear in the case j = d− 1). By the induction hy-
pothesis,

Ŵ r,N
j (t) = X̂ r,N

j (t)+
(
sr,N

1 j V̂ r,N
1 (t)− 1

sr,N
j j+1

V̂ r,N
j+1(t)

)

=
j−1

∑
i=1

Êr,N
i (t)

µr,N
i j

+
Êr,N

j (t)

µr,N
j

+

√
N r1−H

L1/2(r)
(ρr,N

j −1) t

+
(
sr,N

1 j V̂ r,N
1 (t)− 1

sr,N
j j+1

V̂ r,N
j+1(t)

)

by (20). By replacing this expression into (25) and taking into account (3) we obtain

Ŵ r,N
j+1(t) =

j

∑
i=1

Êr,N
i (t)

µr,N
i j+1

+
Êr,N

j+1(t)

µr,N
j+1

+

√
N r1−H

L1/2(r)
ρr,N

j+1 t− T̂ r,N
j+1(t)

−
d

∑
`= j+2

1

sr,N
j+1`

T̂ r,N
j+1`(t)+

(
sr,N

1 j+1 V̂ r,N
1 (t)−V̂ r,N

j+1(t)
)
. (24)

By the other hand, by (8) for j+1 we can write

T̂ r,N
j+1(t) =

√
N r1−H

L1/2(r)
t− Ŷ r,N

j+1(t)−
j

∑
i=1

T̂ r,N
i j+1(t) ,

which can be replaced into (24) implying that

Ŵ r,N
j+1(t) = X̂ r,N

j+1(t)+ sr,N
1 j+1 V̂ r,N

1 (t)

−
( d

∑
`= j+2

1

sr,N
j+1`

T̂ r,N
j+1`(t)+

d

∑
`= j+2

1

sr,N
j+1`

(
Ŷ r,N
` (t)+

j

∑
h=1

T̂ r,N
h` (t)

))
, (25)

by applying (20) and (11) with j+ 1 (if j+ 1 < d) or (12) (if j+ 1 = d), where the
two summatories indexed by ` do not appear in the latter case. Therefore, if j+1 = d
we obtain directly

Ŵ r,N
d (t) = X̂ r,N

d (t)+ sr,N
1d V̂ r,N

1 (t)

as desired. Otherwise, j+1 < d and we can easily check that

d

∑
`= j+2

1

sr,N
j+1`

T̂ r,N
j+1`(t)+

d

∑
`= j+2

1

sr,N
j+1`

(
Ŷ r,N
` (t)+

j

∑
h=1

T̂ r,N
h` (t)

)
=

1

sr,N
j+1 j+2

V̂ r,N
j+2(t)

by (11) if j+2 < d, and by (12) if j+2 = d, implying that (25) can be rewritten as

Ŵ r,N
j+1(t) = X̂ r,N

j+1(t)+ sr,N
1 j+1 V̂ r,N

1 (t)− 1

sr,N
j+1 j+2

V̂ r,N
j+2(t) ,

which corresponds to the component j+ 1 of Ŵ r,N(t) in expression (18), what ends
up the proof. �
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Lemma 2 For the (r,N) fluid model and under Assumption (s), the column vectors
of matrix Rr,N given by (21) are linearly independent and the product of matrices
Qr,N =ϒ r,N Rr,N verify that the entries outside the main diagonal are nonpositive and
also condition (HR), where matrix ϒ r,N is given by (13) by adding superscript r,N in
all the entries (except zeros and ones). Moreover, by taking the limit as N → +∞ in
(21), which does not depend on r, we introduce

R def
= lim

N→+∞
Rr,N

=




1 − 1
s12

0 0 · · · · · · 0
s12 0 − 1

s23
0 · · · · · · 0

s13 0 0 − 1
s34

· · · · · · 0
...

...
...

... · · ·
...

...
s1d−1 0 0 0 · · · · · · − 1

sd−1d
s1d 0 0 0 · · · 0 0




and the column vectors of matrix R are linearly independent, and Q = ϒ R verifies
that the entries outside the main diagonal are nonpositive and also condition (HR)
too, where matrix ϒ is given by (13).

Proof:
Indeed, we only show the justification for matrices R and ϒ , since for their (r,N)

counterparts, the proof is analogous. First of all we can see that the column vectors
of R are linearly independent since its determinant is 6= 0. Then,

Q =ϒ R =




1 − 1
s12

0 0 · · · · · · 0
0 1 − 1

s23
0 · · · · · · 0

0 0 1 − 1
s34

· · · · · · 0
...

...
...

... · · ·
...

...
0 0 0 0 · · · 1 − 1

sd−1d
0 0 0 0 · · · 0 1




which verifies that the entries of the main diagonal are all equal to 1 while the others
are nonpositive numbers, as well as condition (HR) in Remark 1. Indeed, if Θ denotes
the matrix obtained from Q− Id by replacing all the entries by their absolute value,
we have that the spectral radius of matrix

Θ =




0 1
s12

0 0 · · · · · · 0
0 0 1

s23
0 · · · · · · 0

0 0 0 1
s34

· · · · · · 0
...

...
...

... · · ·
...

...
0 0 0 0 · · · 0 1

sd−1d
0 0 0 0 · · · 0 0




is 0 < 1. �
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Remark 5 In the main result of the paper (Theorem 1 below), we will prove that
matrix R introduced in Lemma 2 plays the role of the matrix of directions of reflection
on the boundary faces of a rfBm process on the convex polyhedron S(ϒ ), where ϒ is
introduced in (13). Then, the column vectors of matrix R are the reflection vectors on
the boundary faces.

4 The heavy-traffic limit

Our goal now is to state that the scaled workload process Ŵ r,N converges in distribu-
tion to a d-dimensional rfBm process in the convex polyhedron S(ϒ ), when N first
and then r, tend to infinity in this order, under heavy-traffic, where ϒ is given by
(13) and S = S(ϒ ) is drawn in Figure 2 for d = 3, and with matrix of directions of
reflection R given by Lemma 2.

Theorem 1 (heavy-traffic limit for the d-station tree-cascade fluid network)
Under the heavy-traffic condition (HTd) and Assumption (s), there exist:

̂̂W
r
= D− limN→+∞Ŵ r,N (in Dd) and W = D− limr→+∞

̂̂W
r
(in C d) ,

and W is a d-dim. rfBm process on the convex polyhedron S(ϒ ) with associated data
(x = 0, θ = γ, H, Γ , R) , where H ∈ ( 1

2 , 1) is defined by (15), γ ∈Rd−1×R− is given
by condition (HTd), and Γ is the symmetric matrix whose entries are:

Γjk = σ2,lim
j

∑
i=1

α2
i

µi j µik
, 1≤ j ≤ k ≤ d (26)

with the convention µ`` = µ` for all `= 1, . . . ,d, and σ2,lim given by (14).

Proof:
The proof of this result is similar to that of Theorem 1 [5]. of which it is a gener-

alization, and therefore we only highlight the main particularities.

The limit as N→ ∞.
In order to see that (Ŵ r,N , X̂ r,N , V̂ r,N)N verifies (i)-(iv) in Assumption (h) in the Ap-
pendix, we take into account that:

(i) First, Ŵ r,N
1 ≥ 0 since W r,N

1 = W̃ r,N
1 ≥ 0 by (5). Second, by (6), for any j = 2, . . . ,d,

Ŵ r,N
j (t)≥ sr,N

j−1 j Ŵ
r,N
j−1(t), that is, Ŵ r,N(t) ∈ Sr,N for all t ≥ 0 .

(ii) follows from Lemma 1.

(iii) by (10) and (7) we have that

V̂ r,N
1 (t) = Ŷ r,N

1 (t)+
d

∑̀
=2

1

sr,N
1`

Ŷ r,N
` (t)

=

√
N r1−H

L1/2(r)

(∫ t

0
1{Ŵ r,N

1 (s)=0} ds+
d

∑̀
=2

1

sr,N
1`

∫ t

0
1{Ŵ r,N

1 (s)=···=Ŵ r,N
` (s)=0} ds

)
,
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and therefore, V̂ r,N
1 only can increase if Ŵ r,N

1 = 0, that is,

V̂ r,N
1 (t) =

∫ t

0
1{Ŵ r,N(s)∈Fr,N

1 } dV̂ r,N
1 (s)

using that Fr,N
1 = {(x1, . . . ,vd))∈ Sr,N : x1 = 0}. Analogously, for j = 2, . . . ,d−1 we

have by (11), (7) and (9) that

V̂ r,N
j (t) =

(
Ŷ r,N

j (t)+
j−1

∑
h=1

T̂ r,N
h j (t)

)
+

d

∑
`= j+1

1

sr,N
j`

(
Ŷ r,N
` (t)+

j−1

∑
h=1

T̂ r,N
h` (t)

)
=

√
Nr1−H

L1/2(r)

((∫ t

0
1{Ŵ r,N

1 (s)=···=Ŵ r,N
j (s)=0}ds+

j−1

∑
h=1

∫ t

0
1
{ ̂̃W

r,N
h (s)>0 ̂̃W

r,N
j (s)=0}∩ ̂̃τr,N

h j (s)
ds
)

+
d

∑
`= j+1

1

sr,N
1`

(∫ t

0
1{Ŵ r,N

1 (s)=···=Ŵ r,N
` (s)=0}ds+

j−1

∑
h=1

∫ t

0
1
{ ̂̃W

r,N
h (s)>0, ̂̃W

r,N
` (s)=0}∩ ̂̃τr,N

h` (s)
ds
))

,

where ̂̃τ
r,N
i j (·) is defined analogously to τ̃r,N

i j (·) but substituting W̃ by ̂̃W .

Then, for j = 2, . . . ,d−1, V̂ r,N
j is only allowed to increase if ̂̃W

r,N

j = 0, that by (6)
implies that

V̂ r,N
j (t) =

∫ t

0
1{Ŵ r,N(s)∈Fr,N

j }
dV̂ r,N

j (s)

since Fr,N
j = {(x1, . . . ,xd) ∈ Sr,N : x j = sr,N

j−1 j x j−1}. Finally, if j = d, by (12), (7) and
(9),

V̂ r,N
d (t) = Ŷ r,N

d (t)+
d−1

∑
h=1

T̂ r,N
hd (t) =

√
Nr1−H

L1/2(r)

((∫ t

0
1{Ŵ r,N

1 (s)=···=Ŵ r,N
d (s)=0}ds+

d−1

∑
h=1

∫ t

0
1
{ ̂̃W

r,N
h (s)>0, ̂̃W

r,N
d (s)=0}∩ ̂̃τr,N

hd (s)
ds
)
,

which implies by similar arguments that

V̂ r,N
d (t) =

∫ t

0
1{Ŵ r,N(s)∈Fr,N

d } dV̂ r,N
d (s) .

(iv) It is a consequence of the fact that by the heavy-traffic condition (HTd) we can

ensure the existence of ̂̂X
r
= D− limN→+∞ X̂ r,N , with ̂̂X

r
= (
̂̂X

r

1, . . . ,
̂̂X

r

d)
T given by

̂̂X
r

1(t) =
̂̂E

r

1(t)
µ1

+
r1−H

L1/2(r)
γ̂r

1 t ,

̂̂X
r

j(t) =
j−1

∑
i=1

̂̂E
r

i (t)
µi j

+

̂̂E
r

j(t)
µ j

+
r1−H

L1/2(r)
γ̂r

j t, j = 2, . . . ,d,

that implies the continuity of the paths of process ̂̂X
r
.
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Moreover, hypothesis (b) in Proposition 1 is accomplished by Lemma 2, and as a
consequence, in Dd there exists

D− lim
N→+∞

(
Ŵ r,N , X̂ r,N , V̂ r,N)= (

̂̂W
r
,
̂̂X

r
,
̂̂V

r
)

and (
̂̂W

r
,
̂̂V

r
) is a solution of the Skorokhod Problem associated to ̂̂X

r
on the convex

polyhedron S(ϒ ) with associated matrix of directions of reflection R.

The limit as r→ ∞.
By (HTd), there exists the limit D− lim

r→+∞
̂̂X

r
= X = (X1, . . . ,Xd)

T , with

X1(t) =
BH

1 (t)
µ1

+ γ1 t, X j(t) =
j−1

∑
i=1

BH
i (t)
µi j

+
BH

j (t)

µ j
+ γ j t, j = 2, . . . ,d,

which is a d-dimensional fBm process with associated data
(
x = 0, θ = γ, H, Γ

)
,

where Γ is the d×d positive definite matrix given by (26).
In addition, limN→+∞ Rr,N = R, independent of r, and by Lemma 2, Q =ϒ R sat-

isfies assumption (HR). Then, by Proposition 1 again, there exists

D− lim
r→+∞

( ̂̂W
r
,
̂̂X

r
,
̂̂V

r)
= (W, X ,V ) ,

where W = X +RV is a d-dimensional rfBm process on the convex polyhedron S(ϒ )
with associated data (x = 0, θ = γ, H, Γ , R) . �

5 Appendix: An Invariance Principle for rfBm processes living in convex
polyhedra

Kang and Williams prove in Theorem 4.3 [11] an Invariance Principle for Semi-
martingale reflecting Brownian motions (SRBMs) living in the closure of a domain
with piecewise smooth boundaries. This provides sufficient conditions for a process
that satisfies the definition of a SRBM except for small random perturbations in the
defining conditions, to be close in distribution to an SRBM, and a crucial ingredient
in its proof is an oscillation inequality for solutions of a perturbed Skorokhod prob-
lem (Theorem 4.1 [11]). This invariance principle is used in [11], in particular, to
give sufficient conditions for validating approximations involving SRBMs in convex
polyhedra with a constant reflection vector field on each face. As showed in Lemma
4 [4], this principle does not depend on the specific law of the processes and can be
applied to the rfBm process instead of SRBM.

In this section we recall a different version of this principle stated in [5], also ap-
plied to the rfBm process, as in [4], but considering a sequence of convex polyhedra.
This result gives sufficient conditions for validating approximations involving rfBm
processes in convex polyhedra with a constant reflection vector field on each face,
in such a way the approximating processes live in a sequence of convex polyhedra.
This sequence of convex polyhedra approximates the convex polyhedron in which
the limit rfBm process lives.
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Remark 6 Results reported in this section are based on the following assumptions on
a convex polyhedron S = S(ϒ ) on Rd with matrix of directions of reflection R (see
Kang and Williams [11]):

(A1) S = ∩d
j=1G j with /0 6= G j 6= Rd and ∂G j = Fj is C1 for each j = 1, . . . , d . (For

the definition of what the feature C1 of a boundary means, we refer the reader to
Section 1.1 [11].)
(A2) For each ε ∈ (0, 1) there exists R(ε)> 0 such that for each j = 1, . . . , d, x ∈ Fj
and y ∈ S satisfying ||x− y||< R(ε), we have that 〈n j, y− x〉 ≥ −ε||x− y|| .
(A3) The function D : [0,∞)→ [0,∞] defined such that D(0)= 0 and for r > 0, D(r)=
sup /0 6=J⊂{1,...,d} sup{d

(
x, ∩ j∈J Fj

)
: x ∈ ∩ j∈J Ur(Fj)} satisfies limr→0 D(r) = 0 .

(A4) If {u`(·)}`=1,...,d are the reflection vector fields, there is a constant L > 0 such
that for each ` = 1, . . . ,d, u`(·) is uniformly Lipschitz continuous function from Rd

into Rd with Lipschitz constant L and ||u`(x)||= 1 for each x ∈ Rd .
(A5) There is a constant a ∈ (0,1) and there are vector valued functions b(·) =
(b1(·), . . . ,bd(·))T and c(·) = (c1(·), . . . ,cd(·))T from ∂S into Rd

+ such that for each
x ∈ ∂S,

(i) ∑i∈`(x) bi(x) = 1, min j∈`(x)〈∑i∈`(x) bi(x)ni, v j〉 ≥ a ,
(ii) ∑i∈`(x) ci(x) = 1, min j∈`(x)〈∑i∈`(x) ci(x)vi, n j〉 ≥ a ,

When the reflection vector fields are constant at each face, as in our case, as-
sumption (A4) holds trivially, while assumption (A5) is equivalent to the most easily
verifiable Assumption 5.1 [11], reproduced here for convenience of the reader:
Assumption 5.1 [11]: For each maximal K ⊂ {1, . . . , d} (that is, K 6= /0 with FK 6=
/0 and FK 6= FL for any L ⊃K such that L 6= K , where FK denotes ∩`∈K F̀ ),

(S.a) there is a positive linear combination u=∑i∈K bi ui with bi>0, such that 〈u, vi〉>
0 for all i ∈K ,

(S.b) there is a positive linear combination v=∑i∈K ci vi with ci > 0, such that 〈ui, v〉>
0 for all i ∈K .

The invariance principle (Proposition 1 below) requires the following additional
assumption, which is a version of the Assumption 4.1 in Kang and Williams [11] (see
[5]):

Assumption (h) For each positive integer n, there are processes W n, Xn having paths
in Dd and V n having paths in C d defined on some probability space (Ω n, F n, Pn)
such that Xn(0) ∈ Sn and:

(i) Pn−a.s., W n(t) ∈ Sn for all t ≥ 0 ,
(ii) Pn−a.s., W n(t) = Xn(t)+Rn V n(t) for all t ≥ 0,

(iii) Pn−a.s., for each i = 1, . . . , d , V n
i (0) = 0,V n

i is nondecreasing and V n
i (t) =∫ t

0 1{W n(s)∈Fn
i } dV n

i (s) ,
(iv) {Xn}n is C−tight.

We can state the following invariance principle, which is a version of Theorem
4.3 [11], and is proved in [5]:
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Proposition 1 (invariance principle) Suppose that Assumption (h) and assumptions
(A1)-(A5) hold. Then, the sequence of processes {(W n, Xn,V n)}n is C−tight and any
(weak) limit point of this sequence is of the form (W, X ,V ) where W, X and V are
continuous d−dimensional processes defined on some probability space (Ω , F , P),
such that conditions (i), (ii) and (iv) of Definition 2 hold, W (0) = X(0) and V (0) = 0,
that is, (W,V ) is a solution of the Skorokhod Problem associated to X on the convex
polyhedron S(ϒ ) with associated matrix of directions of reflection R. If, in addition,

(a) {Xn}n converges in distribution to a d−dimensional fBm process with associated
data (x, H, θ , Γ ) , and

(b) the Skorokhod Problem associated to X on the convex polyhedron S(ϒ ) with as-
sociated matrix of directions of reflection R has a unique strong solution,

then W is a rfBm process on S(ϒ ) with associated data (x, H, θ , Γ , R) .
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