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Abstract

Consider a Lipschitz domain § and a measurable function x supported in Q with ||u||; . <
1. Then the derivatives of a quasiconformal solution of the Beltrami equation df = pudf
inherit the Sobolev regularity W™?(Q) of the Beltrami coefficient u as long as Q is regular
enough. The condition obtained is that the outward unit normal vector N of the boundary of
the domain is in the trace space, that is, N € By, "/?(99).

In this part we complete the proof of the main result.

1 Introduction

Let 1 € L™ supported in a certain ball B C C with k := ||u[| ;- <1 and consider K := 1. We
say that f is a K-quasiregular solution to the Beltrami equation

Af = pnof (1.1)

with Beltrami coefficient p if f € lef , that is, if f and V f are square integrable functions in any
compact subset of C, and 9f(z) = u(z)df(z) for almost every z € C. Such a function f is said
to be a K-quasiconformal mapping if it is a homeomorphism of the complex plane. If, moreover,
f(2) =2+ O(%) as 2 — oo, then we say that f is the principal solution to (1.1).

Given a compactly supported Beltrami coefficient p, the existence and uniqueness of the prin-
cipal solution is granted by the measurable Riemann mapping Theorem (see [AIM09, Theorem
5.1.2], for instance). A natural question is to what spaces f belongs. The goal of this paper is to
prove the following theorem.

Theorem 1.1. Let n € N, let Q be a bounded domain with outward unit normal vector N in
B;;l/p(ﬁﬂ) for some 2 < p < oo and let p € W™P(QQ) with ||l = k < 1 and supp(p) C Q.

p

Then, the principal solution f to (1.1) is in the Sobolev space W"T1P(Q).

The principal solution can be given by means of the Cauchy and the Beurling transforms. For
g € LP its Cauchy transform is defined as

Cyg(z) := 1 / Lw)dm(w) for all z € C,
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and its Beurling transform, as

—1
Bg(z) := lim — Mdm(w) for almost every z € C.
e=0 lw—z|>e (Z - w)2

The Beurling transform is a bounded operator in LP for 1 < p < oo and for g € WHP(C) we have
that B(0g) = dg. Given a ball B, the Cauchy transform sends functions in LP(B) and vanishing
in the complement of B to W1?(C). Furthermore, the operator I — uB is invertible in L? and, if
we call

h:= (I - N’B)ilua

then
f(z) =Ch(z) + =

is the principal solution of (1.1) because df = h and df = Bh + 1.

The key point to prove Theorem 1.1 is inverting the operator (I — p3) in some space. Astala
showed in [Ast94] that h € LP for 1+k < p < 1+ 1/k (in fact, since h is also compactly supported,
one can say the same for every 1 < p < 1+ k even though (I — uB3) may not be invertible in LP for
that values of p, as shown by Astala, Iwaniec and Saksman in [AIS01]). Clop et al. in [CFM*09]
and Cruz, Mateu and Orobitg in [CMO13] proved that if 1 belongs to the Sobolev space W*P?(C)
(in the Bessel potential sense when s ¢ N) with sp > 2 then also h € W#P(C). One also finds some
results in the same spirit for the critical case sp = 2 and the subcritical case sp < 2 in [CFM109]
and [CFR10], but here the space to which h belongs is slightly worse than the space to which p
belongs, that is, either some integrability or some smoothness is lost.

When it comes to dealing with a Lipschitz domain Q with supp(u) C Q, Mateu, Orobitg and
Verdera showed in [MOV09] that, if the parameterizations of the boundary of Q are in C*¢ with
0 < e <1, then for every 0 < 0 < € one has that

peC™(Q) = heC'(Q). (1.2)

Furthermore, the principal solution to (1.1) is bilipschitz in that case. The authors allow the
domain to have a finite number of holes with tangent boundaries. In [CF12], Giovanna Citti and
Fausto Ferrari proved that, if one does not allow this degenerate situation, then (1.2) holds for
o = e. In [CMO13] the authors study also the Sobolev spaces to conclude that for the same kind
of domains, when 0 < 0 <e <1 and 1 < p < oo with op > 2 one has that

peWIP(Q) = heWoP(Q). (1.3)

A key point is proving the boundedness of the Beurling transform in W2?(Q2). To do so, the
authors note that Bxo € WP(Q) by means of some results from [MOV09] and then they prove
a T(1) theorem that grants the boundedness of B in W?(Q) if Bxg € W2P(Q). The other key
point is the invertibility of I — uB8 in W2P(Q2), which is shown using Fredholm theory.

Cruz and Tolsa proved in [CT12] that for 0 < s < 1, 1 < p < oo with sp > 1, if the outward

unit normal vector N is in the Besov space B;;,l/p(aQ) then Bxo € W#P(Q). This condition
is necessary for Lipschitz domains with small Lipschitz constant (see [Toll3]). Moreover, being
N € B;;l/p(aﬂ) implies the parameterizations of the boundary of €2 to be in 322171/;; and, for
sp > 2, the parameterizations are in C''*~2/? by the Sobolev Embeding Theorem. In that situation,
one can use the T'(1) result in [CMO13] to deduce the boundedness of the Beurling transform in
W#P(Q). However, their result on quasiconformal mappings only allows to infer that for every
2/p < o0 < s—2/p we have that (1.3) holds. Note that the condition 2/p < ¢ < s—2/p may be too
restrictive (when sp = 3, for instance, we can’t deduce (1.3) for any o because s—2/p = 1/p < 2/p).



Note that this theorem only deals with the natural values of s, but the restrictions ¢ < s —2/p
and s < 1 are eliminated. For n = 1 the author expects this to be a sharp result in view of the
result in [Tol13].

In the first part of this text (see [Pral5]) we have proven that the Beurling transform is bounded
in W™P(Q), reaching the following result:

Theorem 1.2. Considerp > 2, andn € N and let Q be a Lipschitz domain with N € B;L,;l/p(aﬂ).
Then, for every f € W™P(Q) we have that

HB(XQf)HWn,p(Q) < C‘|NHB;;1/?(3Q)HfHW"wP(Q)?

where C' depends on p, n, diam(Q) and the Lipschitz character of the domain.

In this paper we will face the invertibility of (I — uB)(xq-) in W™P(Q). We will follow the
scheme of Iwaniec in [Iwa92] to show that I — puB is invertible in every LP for 1 < p < co when
u € VMO. That is, we will reduce the proof to the compactness of some commutator. In our
context, however, as it happens in [CMO13], we will have to deal with the compactness of the
operator xoB (xa<B (xa-)) as well. Their proof of this fact was based on a result in [MOV09] that
could be useful for the case WP(Q) with o < n —2/p but it is not sufficiently strong to deal with
the endpoint case W™P(£), so we will present a new approach which entangles some interesting
nuances (see Section 3.3).

In Iwaniec’s scheme we find a crucial step. We need to bound not only the Beurling transform
but its iterates B™ or, more precisely, we need the norm of u™B™(xq-) to be small for m big
enough. Thus, Theorem 1.2 above is too naive, and we need a quantitative version of this (see
Section 2.4). The reader may expect to find a bound with a polynomial behavior with respect to
m, but the fact is that with the techniques used in the present text, the author has not been able
to do so. Instead, we will find an upper bound for the norm with exponential growth on m but
the base can be chosen as close to 1 as desired. This will suffice to prove Theorem 1.1.

The plan of the paper is the following. In Section 2 some preliminary assumptions are stated.
Subsection 2.1 explains the notation to be used and recalls some well-known facts. In Subsection
2.3 the definition of the Besov spaces B, , is given along with some well-known facts. Subsection
2.4 is about some operators related to the Beurling transform, providing a standard notation for
the whole article, and recalling the precise results from [Pral5] to be used.

The goal of Section 3 is proving Theorem 1.1. In Subsection 3.1 one finds the outline of the
proof via Fredholm Theory, reducing it to the compactness of a commutator which is proven in
Subsection 3.2 and the compactness of xoB8 (xaeB™ (xq-)) which is studied in Subsection 3.4. In
Subsection 2.2 one recalls some tools to be used in these proofs. Finally, Subsection 3.3 is devoted
to establishing a generalization of the results in [MOVO09] to be used in the last subsection.

2 Preliminaries

2.1 Some notation and well-known facts

On inequalities: When comparing two quantities x; and xo that depend on some parameters
D1, --.,p; we will write
z1 < CPily--wPij T2

if the constant C'pil,,_.,pij depends on p;,,...,p;;- We will also write x; ,§pll7,__7p1j xo for short, or
simply x; < @9 if the dependence is clear from the context or if the constants are universal. We

may omit some of these variables for the sake of simplicity. The notation Ropiy iy L2 will
mean that x; va_“’p,

)

T9 and To gph’._wpi] T1.



On polynomials: We write P"(R?) for the vector space of real polynomials of degree smaller
or equal than n with d real variables. If it is clear from the context we will just write P™. For any
set U C RY we will write P™(U) for the vector space of polynomials in P™ restricted to U.

On sets: Given two sets A and B, we define their long distance as

D(A, B) := diam(A) + diam(B) + dist(A4, B).

Given x € R? and r > 0, we write B(z,7) or B,(x) for the open ball centered at x with radius
r and Q(z,r) for the open cube centered at x with sides parallel to the axis and side-length 2r.
Given any cube @, we write £(Q) for its side-length, and 7@ will stand for the cube with the same
center but enlarged by a factor r. We will use the same notation for balls and one dimensional
cubes, that is, intervals.

We call domain an open and connected subset of R?.

Definition 2.1. Given n > 1, we say that Q C C is a (6, R) — C" ™11 domain if given any z € 09,
there exists a function A, € C"~L1(R) such that

HAij)HL < for every 0 < j <mn,

)
= Ri-1
and, possibly after a translation that sends z to the origin and a rotation that brings the tangent
at z to the real line, we have that

QNQO0,R) ={z+iy:y> A.(x)}.

In case n = 1 the assumption of the tangent is removed (we say that Q is a (6, R)-Lipschitz domain).
We call window such a cube.

On measure theory: We denote the d- dimensional Lebesgue measure in R by m. At some
point we use m also to denote a natural number. We will write dz for the form dx + idy and
analogously dz = dz — i dy, where z = x + 7 y. Thus, when integrating a function with respect to
the Lebesgue measure of a variable z we will always use dm(z) to avoid confusion, or simply dm.

On indices: In this text Ny stands for the natural numbers including 0. Otherwise we will
write N. We will make wide use of the multiindex notation for exponents and derivatives. For
a € Z% its modulus is |a| = Z?Zl |a;| and its factorial is a! = H‘ii:l a;!. Given two multiindices
o, € Z¢ we write o < v if o < 7, for every i. We say a < « if, in addition, o # . Furthermore,

we write .,
(a) .71—‘[((1,») B H?ﬂﬁiml if o € Ng and 0 < v < «a,
V) i1 \Yi 0 otherwise.
For # € R? and o € Z? we write 2 := [[2{*. Given any ¢ € C° (infintitely many times
differentiable with compact support in R%) and a € Ng we write D¢ = l‘? lglj

At some point we will use also use roman letter for multiindices, and then, to avoid confusion,
we will use the vector notation 7, J, ...

On complex notation For z = z + iy € C we write Re () := z and Im(z) := y. Note that
the symbol 7 will be used also widely as a index for summations without risk of confusion. The
multiindex notation will change slightly: for z € C and o € Z? we write 2® := 2172,

We also adopt the traditional Wirtinger notation for derivatives, that is, given any ¢ € C°,

then
09 1

0p(z) = E(z) = 5(3z¢ —i0y9)(2)



and
Fo(2) = 92() = (016 +10,0)(2),

Thus, given any ¢ € C° and a € N2, we write D¢ = 019" .
On Sobolev spaces: For any open set U, every distribution f € D'(U) and o € N¢, the
distributional derivative D f is the distribution defined by

(DG f,d) == (~1)I°l(f, DY¢) for every ¢ € C°(U).

Abusing notation we will write D instead of D} if it is clear from the context. If the distribution
is regular, that is, if it coincides with an Llloc function acting on D(U), then we say that D f is a
weak derivative of f in U. We write [V"f| =3, _, [D*f].

Given numbers n € N, 1 < p < 0o an open set U C R? and an L}OC(U) function f, we say
that f is in the Sobolev space W™P(U) of smoothness n and order of integrability p if f has weak
derivatives D& f € LP for every o € N with || < n. When Q is a Lipschitz domain, we will use
the norm

[fllwne@y = 1fllLe@) + IV Lo @)

which is equivalent to considering also the fewer order derivatives, that is,

d
£ w1 llzoy + D 1D f oy = HfIILp(m+Zl|3§lfHLp(Q) (2.1)
j=1

la|<n

(see [Tri78, Theorem 4.2.4]) or, if §2 is an extension domain,
np() 1 Fllynemray-
11l ©) F:I{}‘lﬂzf” [ (R4)

From [Jon81], we know that uniform domains (and in particular, Lipschitz domains) are Sobolev
extension domains for any indices n € N and 1 < p < co. One can find deeper results in that sense
in [Shv10] and [KRZ15].

The reader can consider n € N and 1 < p < 0o to be two given numbers along the whole text.
At some point the restriction 2 < p will be needed.

On finite diferences: Given a function f : Q € R* — C and two values z, h € R? such that
[z, + h] C 2, we call

ALf(@) = A f(2) = flz+h) — f(a).

Moreover, for any natural number i > 2 we define the iterated difference

() = AL () — AL () = 3 (<1 (J)f(w - jh)

=0

whenever [z, z + ih] C Q.

On Whitney coverings: Given a domain {2, we say that a collection of open dyadic cubes
W is a Whitney covering of 2 if they are disjoint, the union of the cubes and their boundaries is
Q, there exists a constant Cyy such that

Cwl(Q) < dist(Q, 0Q) < 4CwH(Q),

two neighbor cubes Q and R (i.e., QN R # 0) satisfy £(Q) < 2¢(R), and the family {20Q}ge)y has
finite superposition. The existence of such a covering is granted for any open set different from R?
and in particular for any domain as long as Cyy is big enough (see [Ste70, Chapter 1] for instance).



On the Leibniz rule: The Leibniz formula (see [Eva98, Section 5.2.3]) says that given a
domain Q C R?, a function f € W™P(Q2) and a multiindex a € N&, if ¢ € C°(Q2), then ¢ - f €
Wm™P(£2) and

Do)=Y (3) DY$D 7 f. (2.2)

Y<a

On Green’s formula: The Green Theorem can be written in terms of complex derivatives
(see [AIMO09, Theorem 2.9.1]). Let Q be a bounded Lipschitz domain. If f,g € WH1(Q) N C(Q),
then

/Q (0f +g) dm = % ( @ | g(2) dz) : (2.3)

On the Sobolev Embedding Theorem: We state a reduced version of the Sobolev Em-
bedding Theorem for Lipschitz domains (see [AF03, Theorem 4.12, Part II]). For each Lipschitz
domain Q C R? and every p > d, there is a continuous embedding of the Sobolev space WP ()

into the Holder space C%'~% (€0). That is, writing

o0

[f(x) = f(y)]
Hf”co,s(ﬁ) = ||fHLoo(Q) + sup_ | s for 0 <s <1,
z,yeN - y‘
z#y
we have that for every f € WiP(Q),
HfHLOC(Q) < Hf“co.p%(ﬁ) < CQHfHWLp(sz)- (2-4)

On inequalities: We will use the Young’s inequality. It states that for measurable functions
f and g, we have that

1f*glle < FNIz-llgllzo (2.5)

for 1 < p,q,r < oo with % ==+ % — 1 (see [Ste70, Appendix A2]).

1
P
2.2  On chains and approximating polynomials

In the proof of Lemmas 3.1 and 3.2 we will use some techniques from [PT15, Sections 3 and 4].
We sum up some results here and refer the reader to that paper for the details. First we need the
concept of ‘chain of cubes’, which can be seen as some kind of hyperbolic path between the centers
of those cubes.

Remark 2.2. Consider a Lipschitz domain 2, a Whitney covering W, and o fixed Whitney cube
Qo € W with size comparable to the diameter of Q). For every pair of Whitney cubes Q and S there
exists an admissible chain [Q,S] € Uy _ WM satisfying the following properties:

1. The chain [Q,S] = (Q1,...,Qun) satisfies that Q1 = Q, Qu = S and for any 1 < j < M,
the cubes Q; and its next cube in the chain [Q,S], N(Q;) := Qj4+1 are neighbors. Abusing
the notation, we also write [Q, S] for the set {Q1,...,Qn}-

2. The length of the chain £(]Q,S]) = Z;‘il (Q;) satisfies that £([Q,S]) ~ D(Q,S), with
constants depending only on the Lipschitz character of €.

3. If M > 1, there exist two neighbor cubes Qs,Sq € [Q, S] such that the subchains [Q,Qs] and
[Sq,S] are disjoint, the union [Q,Qs]U[Sq, S| = [Q,S] and there are two admissible chains
[Q, Qo] and [Qo, S] such that the subchains [Q, Qs] C [Q, Qo] and [Sq,S] C [Qo, S]. In other
words, [Q,Qs] is the “ascending” subchain and [Sg, S] is the “descending” subchain.



Figure 2.1: A Whitney decomposition of a Lipschitz domain with and an admissible chain. In
green, the prolongation to Qo (see Remark 2.2).

4. For P € [Q,Qs]|, L € [Sq,S] we have that
D(P,$) ~D(Q, $) ~ D(Q, L). (2.6)
Moreover
D(P,Q) = {(P) and D(L,S) = ¢(L). (2.7)
In particular,
All the constants depend only on the Lipschitz character of ).

Definition 2.3. If Q, S € [P, Qo] for some Whitney cube P and N7(Q) = S for a certain j, then
we say that Q < S.

We call shadow of Q to Sh,(Q) := US:D(S,Q)gpQ S. For py big enough, we have that every
Whitney cube Q satisfies that

J S csh,(@Q).

5<Q
We will write Sh(Q) := Sh,,(Q) (see Figure 2.2).

We are interested also in the properties of the maximal function exposed in that paper.
Lemma 2.4. Assume that g € Li,.(C) and r > 0. For every @ € W, we have
1) If n>0,

> Js9(@)de _ infyeq Mg(y)

29 ~
S;D(Q,S)>TD(Q’S) ! ™

2) Ifn >0,
Js9(@)dz _
g == < inf Mg(y)r". (2.8)
2—m ~
5:D(Q,S)<r D(@,5)*" ™ yeQ

3) In particular,

> [ gtwds S it Moly) €@

5:5<Q’8



Figure 2.2: A Whitney decomposition of a Lipschitz domain with the shadows of three different
cubes (see Definition 2.3).

We will also use some approximating polynomials of a Sobolev function f around 3Q). Namely,
given a function f € W™P(Q), we define P f as the unique polynomial such that for every
multiindex a with |a| < n, we have that

/D"‘fdm:/Danfdm.
Q Q

These polynomials have the following properties:
1. Let zg be the center of ). If we consider the Taylor expansion of ng L1 at 20,
PLo ()= > moa(z—2q), (2.9)
[vl<n

then the coefficients mg , are bounded by

ImQA| Sn ||f||Wn—1,oo(3Q)(1 + diam(Q)" ). (2.10)

2. Let us assume that, in addition, the function f is in the Sobolev space W™P(3Q) for a
certain 1 < p < oc. Given 0 < j < n, if we have a smooth function ¢ € C*°(3Q) satisfying
||V’go||Loo(3Q) < @ for 0 < ¢ < j, then we have the Poincaré inequality

[ ((r-Pia's) ¢)]

3. Given a domain with a Whitney covering W two Whitney cubes @, S € W, an admissible
chain [@, S] as in Remark 2.2, and f € W™P(Q), we have that

(S)2D(P,S) 1
L(S) = Z L(P)

< kA val ) 2.11
gy = CUQ IV fllnag) (211)

|f - Pig's|

IV £l L sy (2.12)
Pe[s,Q]

2.3 Function spaces

Next we recall some definitions and results on the function spaces that we will use. For a complete
treatment we refer the reader to [Tri83] and [RS96].



Definition 2.5. Let ®(R?) be the collection of all the families ¥ = {1); 1320 C C2° (R%) such that

supp 1y C (0, 2),
supp¢y; C D(0,27TH) \ D(0,2771)  ifj>1,

for all multiindez o € N there exists a constant co such that

c .
| Dbl < 2T°;| for every j >0

and

o0
ij(m) =1 for every x € R%.
§=0

Definition 2.6. Given any Schwartz function v € S(R?) one defines its Fourier transform
FoQ) = [ e uadmz).
Rd

One can extend this notion to the tempered distributions S(R?) by duality.
Let se R, 1 <p<o0,1<qg< o0 and ¥ e O(R™). For any tempered distribution f € S'(R™)
we define the non-homogeneous Besov space

17155, = 42 1F = 0 F £

and we call By, , C S’ to the set of tempered distributions such that this norm is finite.

These norms are equivalent for diferent choices of ¥. In general one works with radial ); and
such that ¢;41(z) = ¢,(x/2). Of course we will ommit ¥ in our notation since it plays no role.

Consider the boundary of a Lipschitz domain 2 C C. When it comes to the Besov space
B; ,(09Q) we can just define it using the arc parameter of the curve, z : I — 9Q with |2'(t)| = 1
for all ¢. Then, if 1 < p,g < co and n — 1 < s < n, we define naturally the homogeneous Besov
norm on the boundary of Q) as

_ AR (fo)B)P  \? dh
1 o = [, (S5 ) 5

Note that since the domain is bounded, then I is a finite interval with length equal to the length of
the boundary of Q and we need to extend z perodically to R in order to have a sensible definition.
For more information on these norms, we refer the reader to [Pral5, Section 2.3].

Theorem 2.7. Letn € N and d < p < co. IfQ C R? is a Lipschitz domain with parameterizations
in O, then for every pair f,g € W™P(Q) we have that

Hngme(Q) < Cd,n,p,QHfHme(Q)HQHme(Q)

and for m € N with m > n we have that
1™ lwmriey < Campam™ (1A 1 e -

Proof. We have that W™P(R9) is a multiplicative algebra (see [RS96, Section 4.6.4]), that is, if
f,g € WnP(R?), then
HngWn,p S Cn,p

£l g llyrn o



Since 2 an extension domain (see [Eva9d8, Section 5.4]), we have a bounded operator E : W™P(Q) —
WP (C) such that (Ef)|q = fla for every f € W™P(2). The first property is a consequence of
this fact.

To prove the second property, first assume that f € C*(Q). By (2.1) we only need to prove

that (07 (f")l| sy < Cnpom” (Hf||LOO(Q) | £l p(m) for 1 < k < d. Without loss of generality,
we will assume k = 1. By the Leibniz’ rule, it is an exercise to check that

n
orum)y=rmr Z o H N f, (2.13)
JENG i=1
jiZjiJrLfor 1<i<n
|7]=n

with ¢; . >0 and Z~c~ = m™. Consider j = (n,0,---,0). Then, by (2.4), that is, the Sobolev
embedding Theorem, we get

n

Ha{’f = H@"f o 1HL,,(Q) < |lor fHLp(Q)Hf”Loo(Q) Sp Hf||€v7,,,,,(9). (2.14)
i LP(Q)

For j # (n,0,--- ,0), the indices j; < n for 1 <i < n and we use (2.4) again to state that

n

n n
| | Ji | | Ji s I | Ji n
Y - 1 Hal fHLoc(Q)|Q| o i=1 H(91 fHWLP(Q) = Hf”Wn’p(Q). (2.15)

i=1 Lr(Q) i=

By (2.13), (2.14), (2.15) and the triangle inequality, this implies that

n
lor (fm)”Lp(Q) Hfm "”Lm(g) Z i m Ha{if S manHLOO(Q)HfHWn P(Q)
jenz i=1 Lr(Q)
ji>jin for 1<i<n
lil=n
By an approximation procedure this property applies to every f € W™P(Q). O

2.4 Even Calderén-Zygmund convolution operators in the plane

Definition 2.8. Consider a function K : R4\ {0} — C. For any f € L} we define

loc

T%f(y) = lim K(y —z)f(x) dm(x)

€20 Jra\B, ()

as long as the limit exists, for instance, when K is bounded away from 0, f € L' and y ¢ supp(f)
or when f = xy for an open set U with y € U, fB (O\B.s (0) Kdm =0 for everye >¢' >0 and K

is integrable at infinity. We say that K is the kernel of T

In this paper we are interested in the case d = 2 in particular, where we can identify the
ambient space with the complex plane C so that we can use its complex structure. In this case,
for any multiindex v € Z2, we will consider KV(z) = 27 = 2M2" and then we will put shortly
TYf :=TK"f, that is,

T7f(z) = lim (z —w)7 f(w) dm(w)
20Je\B.(2)

as long as the limit exists.

For any operator T and any domain Q, we can consider Tof = xaT(xa f)-

10



Example 2.9. As the reader may have observed, the Beurling and the Cauchy transforms are in
that family of operators. Namely, when K(z) = 272, that is, for v = (—2,0), then %T”f is the
Beurling transform. The operator %T(*l’o) coincides with the Cauchy transform.

Consider the iterates of the Beurling transform B™ for m > 0. For every f € LP and z € C we
have

_1\m —_r m—1 _1\m
B f(z) = T iy . %m) amfr) = E oty g,

That is, for v = (y1,7v2) with y1 +v2 = —2 and v < —2, the operator T7 is an iteration of the
Beurling transform modulo constant (see [AIMO09, Section 4.2]), and it maps LP(U) to itself for
every open set U. If vo < =2, then T is an iterate of the conjugate Beurling transform and it is
bounded in LP as well.

Let us sum up some properties of the Cauchy transform which will be useful in the subsequent
sections (see [AIM09, Theorems 4.3.10, 4.3.12, 4.3.14]). We write Ing := xq g for every g € L}

loc®

Theorem 2.10. Let 1 < p < co. Then
o For every f € LP, we have that Cf = Bf and OCf = f.

o For every function f € L' with compact support, we have that
ICfIlL» Sp diam(supp(f))[| 1] Lo- (2.16)

e Let Q be a bounded open subset of C. Then, we have that
InoC: LP(C) = W'P(Q) (2.17)
is bounded.

In the first part of this article, we proved the following theorem.

Theorem 2.11 (See [Pralb, Theorem 3.16].). Consider p > 2, n > 1 and let Q be a Lipschitz
n+1-1/p
P

domain with parameterizations in Bp, . Then, for every € > 0 there exists a constant C such
that for every multiinder v € Z2 \ {(—=1,—1)} with 1 + 2 > —2, one has
HT(:ZHWn.p(Q)_>Wn+'v1+72+2,p(Q) S C€|7‘n+71+72+2 (HNHBZ;UP(@Q) + (1 =+ 6)"”) + diam(Q)’YhLWJrZ'

In particular, for every m € N we have that the iteration of the Beurling transform (B™)q is
bounded in W™P(Q), with norm

H(Bm)QHWmP(Q)eW”vP(Q) < Cemn'H (”N| By P (09) + (1 + e)m) :

3 Quasiconformal mappings

3.1 Proof of Theorem 1.1
Consider m € N. Recall that (B™)ag = xoB™(xag) for g € L}, (see Definition 2.8) and Ing =

loc
Xog- Note that Ig is the identity in W™P(Q). Let us define P, := Ig + pBa + (uBo)? +
<4 (uBq)™ L. Since W™P(Q) is a multiplicative algebra (by Theorem 2.7), we have that P, is

bounded in W™P(Q). Note that

Ppoo(Ig — uBgo) = (Ig — uBg) o Py, = Ig — (uBa)™, (3.1)

11



and
I — (uBa)™ = (I — p™(B™)a) + u™ ((B™)a — (Ba)™) + (1™ (Ba)™ — (1Ba)™)
=AW 4+ umAR 4 A (32)

Note the difference between (Bo)™g = xaB(...xaB(xaB(xqg))) and (B™)ag = xaB™(xa9).
Next we will see that for m large enough, the operator I — (uBgq)™ is Fredholm.

First we will study the compactness of AP = w™(Ba)™ — (uBg)™. To start, note that writing
[, Ba](+) for the commutator puBqg(-) — Bo(p-) we have the telescopic sum

m—1

AP =7 i, Bal (57 (Ba)™ ) + () (™ (Bo)™ ! = ()™ )

7j=1

m—1
Zu (14, Ba) (™17 (Ba)™ 1) + (uBa) ALY |

Arguing by induction we can see that Ag) can be expressed as a sum of operators bounded in
WP () which have [u, Bg] as a factor. It is well-known that the compactness of a factor implies
the compactness of the operator (see for instance [Sch02, Section 4.3]). Thus, the following lemma,

which we prove in Section 3.2 implies the compactness of A( ).

Lemma 3.1. The commutator [u, B is compact in W"P(Q).

Consider now A( ) = = (B™)q — (Ba)™. We define the operator R,,g := xolB8 (XQCB’”’l(XQ g))
whenever it makes sense. This operator can be understood as a (regularizing) double reflection
with respect to the boundary of Q. For every g € W™P(Q) we have that

AP g = xa (B ((xa + xa:)B" " (xa9)) — B (xa ((Ba)"9)))
= xaB (xa:B" ' (xa9)) + xoB (xo (B™ ' (xa') = Ba(-))™ ") g) = Rimg + Ba o Afi),lg
Note that by definition
= (4 ~BaoAl),) (3.3)
is bounded in W™P(Q). In Section 3.4 we will prove the compactness of R,,, which, by induction,
will prove the compacity of Ag).
Lemma 3.2. For every m, the operator R, is compact in W™P(Q).
Now, the following claim is the remaining ingredient for the proof of Theorem 1.1.
Claim 3.3. For m large enough, AsrlL) is invertible.

Proof. Since np > 2 we can use Theorem 2.7 to conclude that for every g € W™P(Q)

1™ (B™)agllwnr @y S 11" lwns @) | (B™)agllwns @)

m—n

S m Ml el e @) | (B™)ellwns @) s wrr @ 191w @)

By Theorem 2.11, for any ¢ > 0 there are constants depending on the Lipschitz character of 2
(and other parameters) but not on m, such that

m P (n+1)p mp P
1B™)allbymr @y swrsey S MO ()™ 4 NIy Y-

In particular, if we choose 1 + ¢ < W, we get that for m large enough, the operator norm

™ (B™)ellwn.s @) wnw(o) < 1 and, thus, ALY in (3.2) is invertible. O
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Proof of Theorem 1.1. Putting together Lemmas 3.1 and 3.2, Claim 3.3, and (3.2), we get that
Io — (uBg)™ can be expressed as the sum of an invertible operator and a compact one for m big
enough and, by (3.1), we can deduce that I — uBq is a Fredholm operator (see [Sch02, Theorem
5.5]). The same argument works with any other operator Ig — tuBg for 0 < ¢t < 1/||p|.. It is
well known that the Fredholm index is continuous with respect to the operator norm on Fredholm
operators (see [Sch02, Theorem 5.11]), so the index of I — uBg must be the same index of I,
that is, 0.

It only remains to see that this operator is injective to prove that it is invertible. Since p
is continuous, by [Iwa92] the operator I — uBB is injective in LP. Thus, if ¢ € W™P(Q), and
(Ig — uBq)g = 0, we define G(z) = g(z) if z € Q and G(z) = 0 otherwise, and then we have that

(I = pB)G = (I — pxaB)(xeG) = (In — pBa)g = 0.

By the injectivity of the former, we get that G = 0 and, thus, g = 0 as a function of W™?(2).
Now, remember that the principal solution of (1.1) is f(z) = Ch(z) + z where

h=(I—pB)~"p,

that is, h + uB(h) = p, so supp(h) C supp(p) C Q and, thus, xoh + uBa(h) = h + uB(h) = p
modulo null sets, so
h = (Io — pBo) 1,

proving that h € W™P(€2). By Theorem 2.10 we have that Ch € LP(C). Since the derivatives of
the principal solution, df = h and 9f = Bh + 1 = Bqoh + xq:Bh + 1, are in W™P(Q), we have
f e wntlr(Q). O

3.2 Compactness of the commutator

Proof of Lemma 3.1. We want to see that for any p € W™P(Q) N L*>°, the commutator [u, Bq] is
compact. The idea is to show that it has a regularizing kernel. In particular, we will prove that
assuming some extra condition on the regularity of p, then the commutator maps W™ (Q) to
Wn+LpP(Q). This will imply the compactness of the commutator as a self-map of W™?(Q2) and, by
a classical argument on approximation of operators, this will be extended to any given pu.

First we will see that we can assume p to be C2°(C) without loss of generality by an approx-
imation procedure. Indeed, since 2 is an extension domain, for every u € W™P(2), there is a
function Eu with ||Eu|\wn,p(c) < C||,u||Wn_,,(Q) such that Fulg = pxq. Now, Eu can be approxi-
mated by a sequence of functions {y;}jen € C°°(C) in W™P(C) and one can define the operator
(i, Ba] : W™P(Q) — W™P(Q). Since W™P(Q) is a multiplicative algebra, one can check that
{15, Bal}jen is a sequence of operators converging to [u, Bo] in the operator norm. Thus, it is
enough to prove that the operators [u1;, Bo] are compact in W™?(Q) for all j (see [Sch02, Theorem
4.11]).

Let p be a C°(C) function. We will prove that the commutator [u, Bg) is a smoothing operator,
mapping W™P(Q) into W"T1P(Q). Consider f € W™P(Q), a Whitney covering W with appropriate
constants and, for every Q € W, choose a bump function X3Q < ¥Q < X20 with ||Vj90Q”L<>° <

e(%) 5. Recall that we defined ng L f to be the approximating polynomial of f around 3Q. Then,

13



we break the norm in three terms,

an+1[M7BQ}fHZ£p(Q) <p Z “vn+l[ﬂyBS2] ((f Pn 1f) ) ZP(Q) 4
QeW
+ > HV"“ (1, Bol ((f ) f)(XQ—SOQ)) p L7(Q)
Qew
+ Z "V"+1[M789](Pg ‘LP(Q) @ @+@
QewW

First we study @ In this case, we can use the following classical trick for compactly supported
functions. Given ¢ € C°(C) and g € LP, then Cg € W1P(supp(p)) by (2.17). Therefore, we can
use Leibniz’ rule (2.2) for the first order derivatives of ¢ - Cg (see [Eva98, Section 5.2.3]), and, by
Theorem 2.10 we get

©-Blg)—B(p-g)=¢-0Cg—B(p-9Cg) = —d¢-Cg+d(p-Cg) — 0B(p - Cg) + B(dy - Cg)
= B0y - Cg) — Oy - Cg. (3.5)

Thus, for a fixed cube @, since we assumed that p € C°(C), we have that
B (£ -P5a" 1) va) =B (Fu-c((£-Pig'f) va)) —ou-c (£ -Pig'f) va).

Therefore, using the boundedness of the Beurling transform and the fact that it commutes with
derivatives, we have that

@ZZHV"H[“’B]((f Pio 1f) m)’im@)
& I e (=P ) ), - Sl e (- piz ) )
Q
nguuu%m\lv’c ((r-53'1) wa)[,
Q =0

and, using the identities C = B, 9C = Id (when j > 0 in the previous sum) together with (2.16)
from Theorem 2.10 (when j = 0) we can estimate

n+1

. P
S Il |77t ((r=P5a"7) 2a)] s -]
p 1l nsz.e ZQ: Jzz:l / 3Q PQ Lr(2Q) Q| f f L7 (20)
and, by the Poincaré inequality (2.11) we get
n+1 ,
(D) S I1lnsoe 30362V FIE ) St [lfyrso e [V F 10 -
Q j=0

Second, we bound @ Let Q be a Whitney cube, let z € Q and let o € N? with |a| = n + 1.

Then, if we call
1(z) — p(w)
KN(va) = (wa)z 5

14



then, since z is not in the support of (f — Pg‘él )(xXa — ¢q), we have that

DBl (7 = P3g" Nl = 90)) (2) = | DEK,(z0w) () = Pl Hw) (1 = g (w) dm).
Note that
DK, (2,0) = (n(2) — p(w)) D2 +Z( oot
S0 using j(2) — ()| < [Vl 2 — ] we et
D2z 0)] < Gl -y

This bound in the kernel is the same used to bound [PT15, (6.4)], so

@ =3 v 0w Bal ((£ - Pig"s) (o = v0)) [,
QEW

< p mn p
= VI P

Next we use a T'(1) argument reducing @ to the boundedness of [u, Ba](1). Consider the
monomials Py g(z) := (z — zg)" where z¢ stands for the center of Q. The Taylor expansion (2.9)
of PgQ_lf around z¢ can be written as Pgélf(z) =2 |y)<n My,@P,q(2). Thus, we have that

[ T( 20)} Pn 1f( )= Z My,Q [N»Ts(;%))} Py o(2),
[v|<n
and using the binomial expansion (w — zg)? = ZASV(—l)A (1) (z —w)*(z — 2¢)"* we have
i, BalP3g £(2) = [ TS| PG ()
= ¥ e D0 () [T @Rl (36)
[vl<n A<y

that is,

@ Z anH /%BQ 3@ f)‘

Qew

S Z Z Z |m7,Q‘pHV"+1 ([/%T((;ZOHA} (1) P'V*NQ)’

[v|<n G<a<y QEW

L7(Q)
p
Lr(Q)

But every coefficient [m. | is bounded by || f|[yyn-1.0(g) by (2.10) and all the derivatives of Py q
are uniformly bounded in 2. Therefore, we have that

ORI LD DD DI |7 St bl .

QEW 0< | |<n

Using the Sobolev Embedding Theorem, we get

S 0 [z
@NHf”W"“’(Q) Z H[MT ! Wntlr(Q) Z g Wt (Q)

0<|A|<n QEW
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Note that if A > 0, then the operator TS()_Z’O)H‘ has homogeneity bigger than —2 and, therefore, by
Theorem 2.11, T 29 . Wnp(Q) — Wn+LP(Q) and, since p > 2 and W™1(Q) is a multiplica-
tive algebra, we have that HMT( 2040 H T, 20+

Q S”J%,Q HN’HZ{;[/n+1,p(Q)-
Therefore,

Wnt1p(Q) H HW HLp ()

@ S (Il + Nl B D Eyrnssney ) 15y

so we have reduced the proof of Lemma 3.1 to the following claim.

Claim 3.4. Let 2 < p < oo, n € N. Given a Lipschitz domain  with parameterizations in
But MP and a function p € C2(C), then [, Bol(1) € W+1r(Q).

We know that [i1, Bq](1) = uBq(1) — Ba (i) € W™P(£2). We want to prove that V"1 [u, Bo]l €
LP. To do so, we split the norm in the same spirit of (3.4), but chopping p instead of f:

p

Lr(Q)

|V 1, Bal (1 LP(Q) <p Z an+1 [( Pn+2u) ¢Q7BQ] (1)

P

+szKumwmmmem

oo Lr(Q)
+ Z HVn+1 [P””uv BQ:| () —@ @ @
QeEW

First we consider @ Since ( P"+2,u) po € C, by (3.5) we have that

S 17 (=) et 5 17 (0 (- 250) ) €20)
Sl 0 (o) ve) )l

and, using Leibniz’ rule (2.2), Holder inequality, and the finite overlapping of double Whitney
cubes,

n+1
) P .
<2 (g [ (- P5gn) v ) Avrriexalt g BT
’ Jz::o <Qew i0°1) #0)| n o) ollzr@) 31
. . i+1 n+2 P .
To bound @ it remains to see that supgeyy HVJ (( - P ,u) ¢Q> HL 20) < 0o. Again

Leibniz’ rule together with the Poincaré inequality (2.11) leads to

ot (o) ) = 2 umumuvﬁ“( P

N Z f zp (z+n+27]')17an+3u”iw(2Q). (3‘8)

1<j+1

Thus, the bounds (3.7) and (3.8) yield

@ S Cp,n,diamﬂ |}vn+3u‘|iw(ﬂ) ||CXQ||€Vn+1.p(Q)7
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which is finite by Theorem 2.11.
Next we face @ Note that for a given Whitney cube @, if z € @, then xq(z) — g () =0, so

®= 3 75 (- Pig) (o - v0))
Qew

Moreover, for z € Q € W, we have

P
r(Q)

() = PE&2uw)) (1 - po(w))

)3+n

015 ( (1~ PI0) (xa ~ w0)) (2) = ca [ m(w).

oA\2Q (z -
Since 0B ((,u — P§52u) (xa — @Q)) (2) = 0, only 0"*! is non zero in the (n + 1)-th gradient, so

- "”u‘

1
VB (1= Pi%n) (xa —¢@)) ()| S ) = a5 :
‘ (( 3Q ) @ Q) . s;v D(Q, S)3+ LY(S)
By (2.12) we have that

+2 2 +3
Py HV” /‘HL1(3P)'

HM B M’ L(S)
PG[S,Q]

Combining all these facts with the expression of the norm by duality, we get
: ((S)°D(P,S)"*2
G's  sw | gam - 2 |9l
geLP'az):Hgnp,gZQ: Q SGZ;V D(Q, S)3+ PE%Q] ((P) L1(3P)

Vi 2
< diam(Q)? sup (5)
geL? (gl <17g 5 PE[S,Q] ( ) Q,

n+3
sV s, [ 9m.
One can see that this quantity is bounded by

1
@p S anJrgl‘LHLP(Q)

(see the proof of [PT15, Lemma 6.1]).

Finally we focus on
®- ¥ [ pams o
QeEW

p
Lr(Q)

Consider first a monomial P, g(z) = (2 — 2g)? for a multiindex v € N2. Then, as we did in (3.6),
we use the binomial expression P, o(w) = 2:/\?{(71)‘)‘| (1) (z — w)*(z = 2)"~* to deduce that

AP () = T 2 Pa() = X (-0M(})TE W - 20
0<A<y

Note that the term for A = 0 in the right-hand side of this expression is Tg(Z_Q"O)(l)(z)P%Q(z), S0
it cancels out in the commutator:

AP0 Bal)) = X 0 ()T WP qle) (39)

<A<~y
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Now, writting ngzu(z) =2 hy1<nt2 M7, (2 = 2Q)Y = X1, j<ny2 My, Py, (2) we have that

© =Y ||V Psu Bl < ST 3T Imaal [ VP Bal(D)]f ),

QeWw Lr(@) QeW y<n+2

so using (2.10) and (3.9) together with Leibniz’ rule (2.2), we get

n+1
@S [l tll 2,00 Z Z Z ZHV]'TS(Z—ZOH-/\(l)

QEW y<n+2 < A<y =0

(—2,0)+A p
G [ RPSED DI (Ol S (3.10)
0<X:|A|<n+2

p

Lr(Q)

IV 9P, a0

In the last sum we have that TS({2"0)+>‘(1) € WntL2(Q) for all X > 0 by Theorem 2.11 because the
operators T(~29+X have homogeneity —2 + A\; + Ay > —2. Thus, the right-hand side of (3.10) is
finite. O
3.3 Some technical details

Given m = (m1, mo, m3) € N3, let us define

Kia(z,6) = / (w—&)ms

o (2 —w)™ (w — §)m=

for all z, ¢ € Q, where the path integral is oriented counterclockwise.
Given a j times differentiable function f, we will write

dw (3.11)

PicpEe) =3 2 ¢y

- il
il <i

for its j-th degree Taylor polynomial centered in the point z. We will write P/ f if there is no risk
of confusion.

Mateu, Orobitg and Verdera study the kernel K3, 41,m)(2,&) for m € N in [MOV09, Lemma
6] assuming the boundary of the domain € to be in C*¢ for € < 1. They prove the size inequality

1
K (2m+1,m) (2, )] S Foep=

and a smoothness inequality in the same spirit. In [CMO13], when dealing with the compactness
of the operator Ry, f = xaB (xa-B™ ' (xaf)) on WP(Q) for 0 < s < 1, this is used to prove
that the Beltrami coefficient ;1 € W*P(Q) implies the principal solution of df = udf being in
Ws+LP(Q) only for s < . This bounds are not enough for us in this form and, moreover, we will
consider my > 2 (this comes from differenciating the kernel of R,,, which we have to do in order
to study the classical Sobolev spaces). Nevertheless, their argument can be adapted to the case
of the boundary being in the space Bg;fl_l/p C C™1=2/P o get Proposition 3.6 below, which will
be used to prove Lemma 3.2. The proof follows the same pattern but it is more sophisticated and
some combinatorial lemma will be handy.

We will use some auxiliary functions.
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Definition 3.5. Let us define

1 —&)ms
Hypg e (w) = 27 o, % dr  for every w,& ¢ 0N
and
(T —7z)ms )
himg (2) == ————dr =2miHp, .(z) for every z € Q. (3.12)
on T—Z

Proposition 3.6. Let Q be a Lipschitz domain, and let 7 = (my, ma, m3) € N3. Then, the weak
derivatives of order ms of hy,, are such that
mg—j

9’0 Bing = Cms.iBxa, for 0<j <ms. (3.13)

Moreover, for every pair z,& € Q with z # &, we have that

_ m1—2 (5_72)"“371 Cﬁl»jRZz:f-‘rmg—&*(zvf)
K7?L(z7§) =cp0 BXQ(Z)W +j§§_1 (5 — Z)mz-&-mlil—j (3.14)
where _ o
Ry (2,€) 1= 0 hny (€) — P77 (8 P, ) (€) (3.15)

is the Taylor error term of order M — j for the function 07 hy,,.
We begin by noting some remarkable properties of these functions.

Remark 3.7. Given & ¢ 0Q and w € 909, if we write H;l?”é(w) for the interior non-tangential
limit of Hy, e(C) when ¢ — w and Hntg,g(w) for the exterior one, we have the Plemelj formula

(w=&™ =H,  (w)—H; (w) (3.16)
(see [Ver01, p. 143] for instance).
Remark 3.8. Given j = (j1,j2) with jo > ms, by (3.12) we have that

(T—z)ms—d>
(7 — 218

- L 145.1 .
D7 hany (2) = 3315]2}%3(2) = M(—l)”/ dr  for every z € Q
(ms — j2)! o0

and, in particular, hy,, is infinitely many times differentiable in Q2. Therefore, by Green’s formula
(2.3) and the cancellation of the integrand (see [Pral5, (3.2)]), for j > 0 we have

I S
(Gma—i) e T—2) . (w—z)’ e B
DYmsmI o (2) = Cmg,j /asz (r —2)hi AT = Cmy.j N\ Be) (W — 2 dm(w) = cmy ;B xa(2)

for e < dist(z,00) and, in case j =0, by the Residue Theorem

—m 1
0 Py (2) = Ciny / dr = emy2mixa(z),
T %

proving (3.13).
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Remark 3.9. We can also relate the derivatives of both huy,,(2) and Hy,, ¢(2) for any pair z,§ € Q

by
2miH, (z)_f/ m3 (ﬁ)ms_l(ﬁ)ld
Ty ¢ = 2~ o ! — -
ms3 | o
-\ M F (ms =DV vie—yi(_ 1)
_l; (ms—l)!uahm(z) €=
that is,
5 RS L
2mid) Hyy 6(2) = 3 D9 hny (2)(€=2)" )
=0
H’”Bé(“’)

Proof of Proposition 3.6. Consider z,£ € 2. Then
by Green’s Theorem we have that

G=wym (w7 is holomorphic in Q¢ and, thus,

o @=gm [ @O HLw)
Ka(e8) = [ oo g e = [ e .

and using (3.16),

dw.

H- . (w
Kﬁ(z7£):(_1)"nl/ mg,g( )

o0 (W —2)™ (w — &)™
Note that H,,, ¢(w) is holomorphic in £, implying that the integrand above is meromorphic in
Q with poles in z and £. Using the Residue Theorem, we get

(—1)™ Ky (z,€) = 2mi {ﬁ@ml’l {Hm“ig()} (z) + ¥8m2’1 {HL&U] (5)}.

L U R (G
Therefore,

(—1)m B 1 (mi = 1) 0”2 Hypy e (2) L, (ma 451 = 1)!

2mi Kl2:8) = (mp —1)! z;o Jiljal (2 = &)meth =) (mg —1)!

J'1+]Jl'2d:277711*1
1 (mg —1)! 2 Hp,, ¢(€) i (m1 41 —1)!
+— = BEL ()i

(mg —1)! jljzpo Jiljel (€= z)mtn =1) (mq —1)!

Jitjz=ma—1
Simplifying and using (3.17) on the first sum of the right-hand side and (3.12) on the second
one, we get

m3

(_1)m1+m2Kﬁ‘l(27€) _ Z (mz +1— 1>i;Z%D(]‘2’l)hm3(z)(f—7z)l

mo — 1 j2' (5 — Z)m2+j1

J1,j220 =0
Jitjz=mi—1
mi +j1 —1 1 8j2hm3 (5) ;.
—_— ms ] (_1)dz 3.18
" jjz>o ( my — 1 )jQ!(f—Z)mlﬂl( ) (3.18)
1,22

Jitje=ma—1

The key idea for the rest of the proof is that the first term in the right-hand side of (3.18) contains
the Taylor expansion of the functions in the second one.
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Let M < mj+ms—2 (we will consider M = mj+m3—3). Then, using the Taylor approximating
polynomial of each 972h,,,, and multiplying by (£ — 2)™ ™2~ we get

mi—1 . ms
gL — mo +mp — 2 — 1 1 ) )
—Ka(5 6z —gmimt= ( . J);E217D“J>hm3<z>(s—z><ﬂ’”
bl

mo — 1
=0 2

mo—1 9 _ . .
_ Z <m1 +ma —2 J) ( j%)] (¢ — Z)jRTJ\Y/lﬁj(ng)
=0 '

mi — 1
o—1 . . ; .
_ mi: my+mg —2— ) (=1) 3 D' b,y (2) (€ = 2)+G0)
- my — 1 j! - ; '
j=0 li|<M—j

To simplify notation, let us define the error

mo—1 . j
_ . _ ¢\ymi+ma—1 S mip+me—2—j (_1)]
Ey ==K (2,6)(z — ™" + jZ:o < my — 1 )

(£ — 2V Ry (2,6). (3.19)

Then,
my+mg —2— ay\ D%, (2)
En = T maE) e e
w= X ( e ) m ) e )
a>0
a(mi—1,m3)
2T I G o e
— 1l — 4)! | !
0>0 0<j<min{ma—1,a1} m1 —1 gt laa = jlast
la|l<M

Note that if ap > mg, we have that D%h,,,(z) = 0 by (3.13). The same happens for the case
a = (ar,m3) with a; > 0. On the other hand, if oy > my — 1, then (ml'*';’:;__f_al) = 0. By the
mi+mo—2—j

1 ) = 0. Thus, we can write

same token, if j > mq — 1, (

Ey = Z Dahms (Z) (5 . Z)a

a!

m1+me—2—a (my+my—2—75\ [
_ _1)
( my — 1 > Xla|<M Z( ) < my — 1 j

Jj<aa

|a|<mi+msz—2

Note that we have added many null terms in the previous expression, but now the proof of the
proposition is reduced to Claim 3.10 below which implies that

my +mo —2—ay\ D%y, (2) o
e o (M)
M<|a|<mi+mz—2 2 ’

Taking M = my + m3 — 3 in this expression, only the terms with |a| = m; + m3 — 2 remain and,
arguing as before, if &y > m; — 1 then (mﬁrrr’;j:f_o‘l) = 0 and if ag > mgz then D%h,,, = 0.
Summing up, by (3.13) we have that
D(ml_l’mB_l)th(Z)
Em1+m373 =
(m1 — 1)!(ms — 1)!

By (3.19) this implies (3.14). O

(§ _ Z)(m171,m371) — C77Lam172BXQ(Z)(§ N Z)(mlfl,mgfl)_
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Claim 3.10. For any natural numbers my, mo and oy we have that

<m1 +mg—2— a1> _ i(fl)j <Oz1) <m2 +mp—2 —])
mo — 1 =0 j my — 1
Proof. We have the trivial identity
m1+m2—2—a1 _ m1+m2—2—a1 :i(—l)z 0 m1+m2—2—a1—i
mgfl mlflfal Pt ) mlflfal '

Let k1, ko, k3 € Z with k1 > 0. We have that
at (K1 K3 — 1 at : K1 kKs+1—1 K1 K3 — 1
—1)¢ - —1)? _

S () () -2 (D) () ()]
r1+1 . .
_ (k1) (rs+1—3j K1 kg +1—7
=Y (17| +1{
=0 J kg +1 j—1 Ko +1

Een()en)

Jj=0

Arguing by induction to get that

> (- (S) <m1 +m”32__12_‘a°1“ - ’) T (cy) <m2 +mn:1_—12 - j).
0

Lemma 3.11. Let 2, be two points in an extension domain Q C R? (open and connected), M a
natural number, p > d and f € WMHLP(Q). Then, writing o4, = 1 — %, the Taylor error term
satisfies the estimate

1£(&) = PMFE)] < Cllfllyyasrangylz — €740

Proof. Let us assume that 0 € Q. Using the extension E : WM+Lr(Q) — Wéwﬂ’p(B(O, 2 diam(Q))
and the Sobolev Embedding Theorem, we can assume that f € CM-7ar(R?). We will prove only
the case d = 1 leaving to the reader the generalization. In that case, we define

ft) = PMf(t)
(t—7)M

for any 7 # t € R. We want to see that |Fi(s)| < C||f|lomoa,l|s —t|74» for t # s. Note
that the M-differentiability of f implies that lim,_,; F;(7) = 0. Thus, decomposing PM f(t) =
PM=1g(t) + 5 fM(s)(t — s)M, we have that

L _ o (FO = PMER) - (f() - PMTE()
Fi(s) fll_riltFt(s) — Fy(1) —‘Il_l_rg L

+lm (£(6) = PY17(0) (t_s ~a=w)

ﬂlggtM(f(M)() F00(r)) =@+ 1)+ (). (320

Fy(7) :=
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The first term in (3.20) is
@ U0 =)

(t—s)M

and, using the mean value form of the remainder term of the Taylor polynomial, there exists a

point ¢; € (s,t) such that
-5
oM

The second term in (3.20) is

s M _ — 8 M
@ = lim (f(t) = P71 f(1)) ((t(t = )S)M(t(t_ 7)131 >

T—t

M

. I—1 1
:}_lglt(f(t)_P'gw f(t)) (S_T) ;(t—s)j(t—T)MJrl*j

Cs—T (s JO-PMUM) ) & ()= PMQ@)
S\ L | - T s )

Aplying the Taylor Theorem, only the term j = 1 has a non-null limit in the last sum, with

FOD (¢
®:_ M!( )’

SO
(M) (1)

LY M M 2
~= lim 700 (5) = FO0(7)| < ol v |s = €70
Recall that in (3.15) we defined the Taylor error terms
Ry (2,€) 1= 0 hny (€) — P77(0 ) (€)
for M,j,ms € N and z,£ € . Next we give bounds on the size of this terms.

Lemma 3.12. Consider a real number p > 2 and naturals n,m € N and let Q C C be a Lipschitz

domain with parameterizations of the boundary in B;.?;l‘l/”. Writing o :=1 — %, for 3 < m we
have )
Rt (28] < Capmlz — g™/ (3:21)

and, if 21,292, € Q with |z, — &| > %\zl — 25|, then

IR in1,5(21,8) = Rip 1 (22,6)] < Coynmlzn — 22| 7]z — €770 (3.22)

Proof. Recall that By € W™P(Q) for every m by Theorem 2.11. Thus, by (3.13) we have that
V™ b, € W™P(Q) and, since hy,, 41 is continuous and bounded in 2 as well, we have that
B hppry € WrHmHL=IP(Q) for 0 < j < m +n. By Lemma 3.11, it follows that

B2 (5] < Ol sy syl — €774,
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The second inequality is obtained by the same procedure as [MOV09, Lemma 7]. We quote it
here for the sake of completeness. Assume that 21, 22,£ € Q with |23 — & > %\zl — 29|. Then

:z#nfl,j(zlv 5) - R::LLJrnfl,j (227§) = P;:H-n—l—jajhm(g) - P$+n_1_jajhm(§)'

But for a natural number M and a function f € CM-7»(Q) one has that

pife) - Pape = Y Py s By
37— ISV

Since (£ — 29)7 = <j (%) (21 — 22)77H(€ — 21)%, one can write

PYfE) - PM e = Y PIE) ey v Mz(ﬁ)@l—@w@—zlf

£ 1! i
li|<M lFl<m

li<Mm <M
i<j
-y (E—=2) (fo( _ pM-lilpi
= 3 S (DY) - PED ).
li<m ’

Therefore, arguing as before,

IPM (&) = PEFEOIS D 1€ = a1l fllganon gylzn — 2o Mo

i<M

S €= z1Mz1 = 2217 | fll oo (0 -

3.4 Compactness of R,,

We begin by a short lemma that we will use in the proof of Lemma 3.2.

Lemma 3.13. Let o be a radial function in L? such that ¢|p = 0. Then, for every m € N,
BMp(z) =0 for z € D.
Proof. Since By is in L? and it is radial by linearity, by induction, it is enough to prove that
Byp(z) =0 for z € D.

Let ¢ > 0 and consider a simple radial function s such that ||¢ — s||;. <e. Let z € D. Recall
that Bxp(z) = 0 (see [AIMO09, (4.24)]). Since s is a finite combination of characteristic functions
of concentric disks {D;}}, with z € D? for all 4, then, Bs(z) = 0.

Therefore xpBy = xpB(¢ — s) and, thus, we get |[xpBel|l;2 < [|B(e —s)||;2 < . Since € can
be chosen as small as desired, xpBy = 0. O
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Proof of Lemma 3.2. Recall that we want to prove that R,, : f — xoB (XQCBmil(XQf)> is a
compact operator in WP (Q).

Since R, f is analytic in , it is enough to see that T, := 0"R,, : W™P(Q) — LP(Q) is a
compact operator.

Indeed, we have that R,, is bounded in W™P(Q) by (3.3) and, thus, since the inclusion
WnP(Q) — Wn=1P(Q) is compact for any extension domain (see[Tri83, 4.3.2/Remark 1]), we have
that R, : W™P(Q) — Wn—1P(Q) is compact. That is, given a bounded sequence {f;}; C W™ (Q),
there exists a subsequence {fj, }x and a function ¢ € W™ 1P(Q) such that R,,fj;, — ¢ in
wnr=tr(Q). If T,, : W™P(Q) — LP(2) was a compact operator, then there would be a sub-
subsequence {fj;, }; and a function g, such that 7. f;,, — gn in LP(Q). It is immediate to see
that g, is the weak derivative 0"¢ in €. Therefore, if 7, is compact then R,, is compact as well.

We will prove that 7y, is compact. Let f € W™P(Q). For every cube @, let fo be the mean of f
in Q. Consider a partition of the unity {¢q}gew such that supp g C %Q and [Vig| S 0(Q)™7
for every Whitney cube Q.

For every i € N we can define a finite partition of the unity {wég}QeW such that

o If £(Q) > 27 then ¢b = 1.

o If £(Q) = 277 then supp ¢é) C Sh(Q) (see Definition 2.3) and |ijé2\ < Q).

o If /(Q) < 27" then ¢ = 0.
Then, writing fo = fQ fdm for the mean of f in Q and (T (f - fQ))g = fQ T (f — fo)dm, we
can define

Tl = > TaDEWe+ D (Tulf = fa)gval2)
QEW:(Q)>2i QEW:H(Q)=2""

We will prove the following two claims.

Claim 3.14. For every i € N, the operator T\, : W™P(Q) — LP(2) is compact.

Claim 3.15. The norm of the error operator £ := T, — T8 : WPP(Q) — LP(Q) tends to zero as
i tends to infinity.

Then the compactness of 7y, is a well-known consequence of the previous two claims (see [Sch02,
Theorem 4.11]). By all the exposed above, this proves Lemma 3.2. O

Proof of Claim 3.14. We will prove that the operator 7,0 : W™P(Q) — W1P(Q) is bounded. As
before, since (2 is an extension domain, the embedding W1P(Q) — LP(Q) is compact. Therefore
we will deduce the compacity of 7% : W™P(Q) — LP(Q). Note that the specific value of the
operator norm is not important for our argument, since we only care about
compactness.

Consider a fixed i € N and f € W™P(Q). For every z € 2, and any first order derivative D, by
the Leibniz’ rule (2.2) we have that

DTif= Y DTu(fe+ Y. Tul)Dbo+ >,  (Tulf—fQ)o Dt
Q:(Q)>2~1 Q:(Q)>2~1 Q:(Q)=2""*

By Jensen’s inequality |7, (f — fQ)|Q <N T (f — fQ)HLP@)g(Q)*?/p7 SO

VTaf@I S Y xue@IVTafGl+ DY IVee@)ITmf(2)]

7ol ) w00

Q:A(Q)>2" Q:A(Q)>2—1
+ > IVYE@INT(f = fo)ll gy (27 P (3.23)
Q:(Q)=2""
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Using the finite overlapping of the double Whitney cubes and the fact that Vg, (2)| < 2° for every
Whitney cube Q, writing €; for UQ:Z(Q)>2*i supp(¢g) we can conclude that

VT oy Sio IV T f ey + 1Tl ey + D0 (1T W) + I Tl 0 ) ) -

Q:(Q)=2""
By the Sobolev Embedding Theorem
[fol < Ifllp~ (o) Sep 1flwir@): (3.24)
Thus, since T, : W™P(Q) — LP(Q) is bounded, we have that
||V7;foHLp(Q) i VT fll iy + 1 s - (3.25)

To see that VT fl 1o, Si lfllwns(q). note that VT, f = VOB (xa-B™ (xaf)). We
have that B™~! : LP(Q) — LP(Q°) is bounded trivially, and for z € Q; and g € LP supported in

Q¢ we have that )

2 — w|n3?

VO By(2)] < /

[z—w|>277

(w) dm(w).

This is the convolution of g with an L! kernel, so Young’s inequality (2.5) tells us that
IVO" Byl v,y < Cillgll Lo

proving that

Hvaf”LP(Qi) SZ ||Bm_1(XQf)HLp(Qc) 5 Hf”LP(Q) 5 ||fHW"P(Q) (326)

Combining (3.25) and (3.26), we have seen that ||V7;f1fHLp(Q) S I fllwnr()- The reader
can use Jensen’s inequality as in (3.23) to check that HTrfszLp(Q) S N fllwnn oy as well. This,
proves that the operator T : W™P(Q) — W1P(Q) is bounded and, therefore, composing with the
compact inclusion, the operator 7 : W™P(Q)) — LP(f2) is compact. O
Proof of Claim 3.15. We want to see that the error operator

gi =Tm — 7;riz

satisfies that HgiHW"vP(Q)HLP(Q) tends to zero as i tends to infinity.

Consider the set € = {Jg.¢(g)>2-+ Supp(¢q). We define the modified error operator &k acting
in fe W™P(Q) as

EIE) = xae (2 > D [Tl = 1)) = (Tulf = fa))o| x3s(2)
Q:(Q)=2"" 5:4(5)<27"¢
SCSh(Q)

for every z € 2. The first step will be proving that

€7

Lr(Q) S ||géfHL1’(Q) + Cinle,p(Q) (3.27)

1—>00
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Note that 7,1 = T xo because T, = 0" xaoBB (XQCBmil(XQf))‘ Let us write
Tuf(z)= D TuDWs)+ Y. (fsTm)(2) + Tulf — [9)(2) ¥s(2)
SeW:£(S)>2-" SeW:(S)<2-i
for z € . Recall that
Talf(z) = > TaNEe)+ > (Talf = fo)q ¥a(2)-
Qew:(Q)>2—i Qew:(Q)=2—i
Thus, for the error operator £ we have the expression

Ef(R)=Tuf () = Tof(2) = D fsTu(D)(2)ts(2)

S:0(8)<2—i

+ ( Yo Talf—f)@sz) = Y (Tulf — fa)g %(@)

5:4(5)<2-i Q:4(Q)=2—"
=E1f(2) + ELf(2). (3.28)
The first part is easy to bound using again (3.24). Indeed, we have that
|’5iif||ip(g> Sp Z |fS‘pH7;n(1)H1£p(11/1os) Se Hf”zi:[/hp(ﬂ)HTm(]‘)HZL),P(Q\Qi71)7 (3:29)
S:4(S)<2-i
where || T, (D)%, \q,) —— 0.
To control &£ f in (3.28), note that

Yoo owsx) = Y Wp) <, (330)

S:4(S)<2-1 Q:(Q)=2—"

with equality when z ¢ UZ(Q)>2*1' supp(%q), that is, when z € Q\ Q;. Recall that

&)=Y Tall—f)@es(z) = D (Tulf = f@) g ¥o(2)-

S:4(S)<2-i Q:(Q)=2—"

If z € O\ Q;, we have equality in (3.30), i.e., D g.505)<2-i ¥s(2) = 2 g (@)=2— WQ(z) = 1. Thus

i) = > Talf—f)@sz) > vh(2)

S:0(S)<2—1 Q:(Q)=2""
- Y (Talf=1)gta) > ¥s(2)
Q:(Q)=2"" S:4(S)<2—i

= Y Y (T 1906 - (Talf — fa)g) ¥sCliz).  (331)

Q:0(Q)=2—1 S:4(S)<2—1

If, instead, z € Q; = UQ:Z(Q)>2*¢ supp(¢g) then there is a cube Sy with z € supp(¢s,) and

£(Sy) > 27+, Therefore, any other cube S with ¥g(z) # 0 must have side-length £(S) > 27¢
because any neighbor cube of Sy has side-length at most %E (So) (see Section 2.1). Therefore,

Ef) = Y. Talf—f)@vs(x)= > (Tulf = f@)ovb(2)

S:(S)=2—" Q:(Q)=2—"%
= Y (Tl f)Eal) — (Tulf — ) ¥a().
Q:(Q)=2-1
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Adding and substracting T, (f — fQ)(z)w&(z) at each term of this sum, we get

Ef(2)= D Tulf - fo)2) (¥q(2) —¥5(2))
Q:(Q)=2~"

+ Y (Tl = 1)) = (Tulf = fa))g) o l2)- (3.32)
Q:(Q)=2""

Summing up, by (3.31) and (3.32) we have that

GG =xaaz) Y Y (Talf = 1)) = (Tulf = fa))g) ¥s(2)(2)

QU(Q)=2"1 5:4(S)<2~"
txonea () D (Tl = 1)) = (Tulf = fa))g) ¥i()
Q:(Q)=2""
txone () D Talf = fQ)(2) (Yol2) — ().
Q:(Q)=2""

Therefore, since every cube @ with £(Q) = 27 satisfies that supp wiQ C Sh(Q), we get that

NS xoa () Y D [Tl — f9)(E) — (Talf = fa)g| xps(z)  (3:33)

Q:(Q)=2"" 5:4(5)<27¢
ScSh(Q)

Y Talf — fQ)(2) (Yal2) — vy (2))
Q:(Q)=2""

+ X0 (2)

For the last term, just note that for z € Q; \ Q,;_1, using the first equality in (3.30) we have
that

> Tm(fxz)(%(z)¢Q(z))—Tm<f>(z>< PRI wQ(z>>:0-

Q:U(Q)=2"" Q:(Q)=2" Q:(Q)=2—"

Thus,

Yo Tulf —f)) (Wol2) = o) = Y ~Tulfo)(z) (¥4(2) — (),

Q:(Q)=2"" Q:4(Q)=2—1

which can be bounded as & in (3.29). This fact, together with (3.28), (3.29) and (3.33) settles
(3.27), that is, _ '
||51f||LP(Q) N HgéfHLP(Q) + Cionpll fllwisq)
with Cy..np —2 0.
Next we prove that for the modified error term,

GBI =xaw () Y Y [Tl = )@~ (Talf = Ja))o| xaps(2),
Q:(Q)=2"" 5:¢(S)<27"*
SCSh(Q)

< 1—00

we have that Hé’éf“mm) S Cill fllwro(q) with C; —— 0.
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Arguing by duality, we have that

leésll, = suw_ /| \QHQ:Z%ZW\T (f = 1)(2) = (Toalf = f@))o| X 5(2) lg(2) | dm()
S:4(8)<27¢
SCSh(Q)

(3.34)

First note for every pair of Whitney cubes @ and S with S C Sh(Q) and every point z, using the
chain [S,Q) =[S, Q] \ {Q} we get that

T (f = fs)(z) = (T (f = fQ)) g = Tm(f = fs)() (T (f = f$))s
+ Z )p_(Tm(f_fN(P)))N(p)a

PeSQ)

where NV (P) stands for the “next” cube in the chain [S,Q] (see Remark 2.2). Note that the
shadows of cubes of fixed side-length have finite overlapping since |Sh(Q)| ~ |@| and, therefore,
every Whitney cube S appears less than C' times in the right-hand side of (3.34). Thus,

Jeisle s s ([Tl 50 - s Ssllline) 659

g:||ng,:1 S:0(S)<2-i

+ Y ‘ T (f = 1)) p = (T f = fnv(p) N(P)‘/ @)l dm(z )>

Q:4(Q)=2"" P€[S,Q)
S:0(S)<2
SCSh(Q)

All the cubes P € [S,Q] with S € Sh(Q), satisfy that £(P) < D(Q,S) ~ £(Q) by Remark 2.2.
If we assume that £(QQ) = 27% this implies that £(P) < C2~%. Moreover, we have that

(Tt = o) = (Tald = Sxo) | € 30 Tl = 1)) = (Tl = )| (o).
LmQP;é(ZJ
(3.36)

Finally, we observe that P € [S, Q] with S C Sh(Q) imply that D(P,S) < C4(P). Indeed, if P €
[S, Sg] then this comes from (2.7) and, if P € [Qg, Q] by (2.7) we have that £(P) =~ D(P, Q) > £(Q)
and by (2.6) £(Q) ~ D(Q,S) ~ D(P,S). Thus, for a fixed P with £(P) < C27% and g € L?, we
have that

Q:(Q)y=2"" 1 S:D(P,S)<C(P)
S:SCSh(Q)
Pe[s,Q]

3 / o) dmz s Y / 2)ldm(z) S (P inf Mg, (337)

Note that in the first step, as we did in (3.35), we have used that every cube S appears less than
C times in the left-hand side. By (3.35), (3.36) and applying (3.37) after reordering, we get that

leifl,, S s 3 / (Tonlf — £5)(2) — (Tea(F — 1)) (19(2)] + Mo(2))] dm(z).

S
llgll = 13!(5)302‘1 065
LN2S#0
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Since ||Mg|l;» S llgll 7 < 1, we have that

il S swp X[ Tl = £8)e) = (s = £ 9G] dm(e)
ol =1 (s, Dyew, ! 15
where Wo = {(S, L) : £(S) < C27% and 25 N L # (}.

For every cube @, let ¢g be a radial bump function with x100 < ¢g < Xx20¢@ and the usual
bounds in their derivatives. Now we use these bump functions to separate the local and the non-
local parts. In the local part we can neglect the cancellation and use the triangle inequality (and
the fact that f% s lgl dm < infzg Mg), but in the non-local part the smoothness of a certain kernel
will be crucial, so we write

[€ifll, S swp > I Tonl(f = f5)s)(2)] lg(2)] dm(z)

||9” 1= 15/(S)<CQ i/28

s Y [T = sl O] Mgl dm(©

Hg”p/:l (S,L)eW, 2

+osp ST = )0 = 0s))0) = (Tallf = £1)(1 = @) lo@lam()

Hgllp'zl (S,L)eW,
=@+ @+ 8 (338)

Note that the inequality |g| < Mg (which is valid almost everywhere for g in L} ) imply that
<@

First we take a look at . For any pair of neighbor Whitney cubes S and L and z € 2L, using
the definition of weak derivative and Fubini’s Theorem we find that

Tlld = fesle) = o | s [ (o e (€ — f)ps(€) dm(© ()

=c ! (=" 5 — m m(w
= | e [ el = fu)es) ) dmi(e) dm(u)

e [ ([ g () ) 217 - fu)esl(© am(©)

In the right-hand side above, we have that £,z € . Therefore, we can use Green’s Theorem in
the integral on Q¢ and then (3.11) to get

</a o )anw)a[(f fr)es](§) dm(€)

o (0 )z
f%m/ Koo (2. )0(f — F1)os)(€) dm(e),

where Mo := (24+n,m+1,m+1).
Using Proposition 3.6 we have that

an—nwd@wu%m/

208

Rm+1

Kﬁio(zyé) = C'm,nanBXQ(z) (@)m n Z Cm,n,j ern](z f)

€= " L gy

The first part is 9" Byq(z) times the kernel of the bounded operator T(=™=1m) . [P(Q) — WP(Q)
(see Theorem 2.11). For the second part, we have that by Lemma 3.12

m+1
|Rm+n](z 5)‘ < 1

|§ _ Z‘m+n+2 A |§ _ Z|2—O'p7

j<m
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where 0, =1 — %. Thus,

BRI 1Tl = Fu)esl() Mo(e) dm:) (3.39)
9 (SL EWo
s s Y [ | Bra@remm @is - pues) ()| Ma(z) )

=L (s, Lyew, 72

+ sup / / f fr)es](§ )‘ dm(€)Mg(z) -+-
2L J20S

2—
9l =1 (5, Fy2we |§ — 2=

In the first sum we use that in W"?(C) we have the identity TEm=bm 6g = doT-m=1m) =
emB™ and, therefore, TC-=L™[(f — fr)ps] = emB"(f — fr)ps] € WP € L™=, so

EO< sw Y / 10" Bxa ()| Mg(2) dm(=)[B™((f - f1) sl

”g” r=1 (S,LYeWo

S sup Z HanBXQHLP(QL)H]\/‘[g”LP’(QL)HBm[(f_fL)9QS}|‘W1,p(C)-
lglly =1 (s,L)ew,

By the boundedness of B™ in W1P(Q) we have that

1B™(f — fL)(pS}HWLP((C) S - fL)SOS”Wl,p(gog)'

Moreover, the Poincaré inequality (2.11) allows us to deduce that

I1f = fLllogzos) S UV o208y < 27 IV Flloaos)

and
H(f - fL)SOSHWLP(zos) S vaHLp(zos)' (3'40)

On the other hand, there is a certain i such that for £(S) < C27% and L N2S # (), we have
that S,2L C Q\ Q;_;,, and

10"Bxall Lo 2ry < 10" Bxall Lo o\o

i—io)'

Thus, by the Holder inequality and the boundedness of the maximal operator in L?" we have that

S ”anBXﬂ”LP(Q\Ql i) ‘ sup Z HMg||LP'(2L)vaHLP(2OS)

lll, =1 (s, Lyew,

< CailVEllLe @ e 1Myl Lo Sp CaillV fll Lo (e (3.41)
gll,r=1

with Cq ; NNy}
To bound the term in (3.39), note that given two neighbor cubes S and L and a point

z € 2L, integrating on dyadic annuli we have that

/ |O1(f — fr)esl(©)]
205

€= 2P~

dm(&) < M (O[(f — fr)ws]) (2)0(S)7.
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Thus,
TI< s S [ M@ - fues) ()AS)Mg() dm(e)
Hg”pl=1(S’L)eW0 2L

S22 oswp o >0 IM Q@I — fr)esD) | ooy M3l oy
gl =1 (s, Lyew,

and, by the boundedness of the maximal operator, (3.40) and the Holder inequality, we get
S27i | SHUP ) > ol - @8 o208y M9l Loery S 277 IV Ipoiy-  (3:42)
9llp =% (5,L)eWs

By (3.39), (3.41) and (3.42), we have that
< CaillV 1o (3.43)

with Co.; ~=2% 0.

Back to (3.38) it remains to bound
= s Y [T - 1) - ps)le) — (Tl = £1)(0 = w5 l9(a) d(2)
gl =1 (s Lyew, /25

Fix g > 0 such that ||g[[,, = 1. Then we will prove that
< CﬂJHf”wl,p(Q)

with Cq ; izoo, 0, where

= X[ 1Tl 190 = 060 = Tl = 1)1 = )] dm(Qg(z) ().

(S,L)eWo

First, we add and subtract 7,,[(f — fL)(1 — ¢5)](2) in each term of the last sum to get

Bl< Y / ) |Tm[<fL—fs><1—sos>}<z>\fL dm(C)g(=) dm(2)

(S,L)EW()
b Y[ I - - 00 = Tallf — )01 - 95))Q)] dm(Q)g(z) dm).
(S,Lyew, V28 /L
For a given z € ,
|f(€) — fil / | log(dist (w, 2))| + | log(diam(£2))
d d < o
A(:KI |sz\"+2|wf§\2 m(g) m(w)m ||f”L Qe |27w‘n+2
which is finite since Q is a Lipschitz domain (hint: compare the last integral above with the length

of the boundary #!(9Q) times the integral fol |log(t)| dt). Thus, we can use Fubini’s Theorem and
then Green’s Theorem to state that

dm(w),

Toll7 = 1) =gl =en | e [ (wjg:; (F(6) = £u)(1 = ps(€)) dmi(€) dm(w)

e (z—w) w

=c (w=g)™ w - — m
o [ ([ o e ) [ = F)(1 = )€ dm(©
= un [ Ko (2 €0 = £2)(1 = 05))©) dm),
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where My := (24 n,m + 1,m). Arguing analogously,

Tml(fL = fs)(1 = 05)l(2) = cnm(fL — fs)/ Ky (2,9)[(1 = ¢9)] (&) dm(§).

Q\108
Thus, we get that

G /|fL—fs\

/ K (5 )11 = 05)(©) dm<5>\g<z>dm<z>

(S,L)eWy
i (2,8) = K, (GO — fL) (1 = s)](€) dm(§)| dm({)g(z)dm(z)
(s L)EW 28
=[B1 +[B2] (3.44)
Recall that Proposition 3.6 states that for z € 25 and £ €
n E-—2)m" cmang Boin—1,5(2,€)
Kml (Z’ 6) = Cm’na BXQ (Z) (g _ Z)'nnLl + g;n (£j_ Z):LJr'rLlJr]Z*j (345)

and, for any z,£ € €, by (3.21) we have that

Rm+n71,]‘(275) 1
o= gyminiz— | = Canm W ) (3.46)
b 1-2. Th 22) and the id (b-a) Xl a1 s
where o), = —; us, using (3.22) and the i entlty = == whenz,(€5
and £ € '\ 205 we have that
R:Z—Q—n—l,j(‘z?g) _ m+n IJ(C &) Rm (Z é.) 1 o 1
(€ — z)mAn+2—i (¢ — ()m+n+2—j| = | mAn=Li (€ — z)mHn+2—j (& — ()m+nt+2-j
R™ (2,6)—R™. . _4.(C, — —(loe _ (lop
' m+n71’]( g) ernT;,n' LJ(C g)‘ Sﬁl,n,m ‘Z 4<;|0 |Z C| 3 S, |Z C| 3 (347)
€-0 J |z =&+ |2 = ¢ |z = ¢

Then, using that dist(2S5,supp(l — ¢s)) > 0, we have that fg%[(l — @g)](&)dm(§) =
emBE(1 = ps)](2) for z € 25 and, by (3.44), (3.45) and (3.46) we get that

EDS Y 1fi—tsl [ 0"Bra()B510 - ¢s))(2) o(:) dm(2)

(S,L)EWy
— dm z)dm(z
L3 51 [ e s m(©a(e) ()
=[B11+B12Y (3.48)
and by the same token, using (3.44), (3.45) and (3.47) we get
S Y[ 0 Ba@BE — 1)1 = el dn(Qt:) dm(:)
(S,L)eEW,

_ / f 10" Bxa(OBRL(S — f2)(1 — 0s)](0)] dm(C)g(z) dm(2)

(S,L)EW,
/25][ /{2\103 |z — 5\3 ‘f §) — frldm(§) dm(¢)g(z) dm(z)
(S,L)YeEWy
=B21 + 822 + [B2.3]. (3.49)
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We begin by the first term in the right-hand side of (3.48), that is,

Eig- Ifofsl/ 10" Bxa(2)BR (1 — ¢5))(2)] 9(=) dm(2).

(S,LYEW,

By the Poincaré and the Holder inequalities, we have that

1 ¢(L) _2
=151 < g5z [ 1F€ = fsldm(©) € {519 Sls 59y S US)H IV esy: (350

On the other hand, by Lemma 3.13 we have that B™pg(z) = 0 for z € 25. Therefore, using (3.50)
we have that

ELOS Vil 3 487 [ 10"Bro()Bixa(:)ls(:) dm(:) (351)

S:4(S)<C2—i
<27 DNV F N Loy 9l o (0 197" Bl oy BB X0l 1y S 27 PV F L ocey-

Let us recall that the second term in the right-hand side of (3.48) is

B1Zl= > \fL—fS|/2S/Q

(S,L)EWq

\10s 12 — §|3 5 dm(§)g(2) dm(z)

and, by (3.50),

_2 1
8.1.2] 5 Z K(S)l pvaHLP(SS)mHgHLl(ZS)
S:4(S)<C2-

N

o242
4(5) i p+p||foLz)(5S)Hg|lLP'(2S)'

<
)<C

5:6(8
By Hoélder’s inequality,
S 27Vl oy 91l 1o @) = 277 IV Fll 1oy -
Using this fact together with (3.48) and (3.51), we have that
S Cail VIl ey (3.52)

1—00

with Cq; —— 0.
Let us focus now on the first term in the right-hand side of (3.49), that is,

Bzi= > / 10" Bxa ()| IBG[(f — fL)(1 — ¢s)](2)] 9(2) dm(z) (3.53)
(S,L)eWq
SO 19l @) 10" Bxall e @s) IBEIS = 1) (1 = 03)ll e 2) -
S:0(S)<C2—i

By the Sobolev Embedding Theorem and the boundedness of B in W1?(£2) (granted by Theorem
2.11) we have that

I1BSI(f — fr)(1 - QOS)H‘LOO(Q) < |B&(f = fu)(1 - @S)]HWW(Q) S = fo)d - ¢5)||W1=P(Q)
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and, using Leibniz’ rule, Poincaré’s inequality and the Sobolev embedding Theorem, we get

1
||66n[(f - fL)(l - SDS)]HLoo(Q) < vaHLP(Q) + m”f - fLHLp(2os) + Hf - fLHLP(Q)
S IV Fllri@) + IVl Loaos) + 1 ey + 1l S I lwano)-

Thus, by Holder’s inequality we have that

5 ||f”W1,p(Q)||9HLp’(Q)HanBXQHLp(Q\QZ_io) = Hf”leP(Q)HanBXQHLP(Q\Ql_iO)‘ (3'54)
T 1—0
Note that [[0"Bxal 1 o\q, W) 0

The second term in (3.49), that is,

Bzg- Y ﬁ / 0" Bxa(OBI(S — f1)(1 - 98)](C)] dm() / 4(=) dm(2)

(S,L)eWq 28

follows the same pattern. Since S and L in the sum above are neigbors, they have comparable
side-length, and for ¢ € L we have that [, g(z) dm(z) < ¢(L)*Mg(¢). Therefore,

s29< Y / 0" Bxa(QBEIS — f2)(1 - 9s)](O)] Mg(¢) dm(Q)

(S,L)EWo

SO N9l s 10" Bxall o) 1B = 1) (1= 0)ll e (s)-
S:0(8)<C2-i

The last expression coincides with the right-hand side of (3.53) changing g by Mg and 2S by 5S.
Arguing analogously to that case, we get that

S HfHWLp(Q)||M9HLP'(Q)HanBXQ”Lp(sz\m i) ~ S e, P(Q) H8 BXQ”LP(SZ\Q (3.55)

i— io)'
Finally, we consider
8.2.3|= d d d .
(SLX)G:W /237[/9\105 |z —¢& |3 |f( §) = Juldm(&) dm(C)g(2) dm(z)

Note that for z,¢ € 35 we have that |z — (| < £(S). Separating Q \ 105 in Whitney cubes we get

£(S)o»
29 Y [ o L g = il
D(S, P)
(S,L)eW, Pew
But using the chain connecting two cubes P and L, by (2.12) we get that
(p)?
I =Sl < D2 IV lso) giay
o @
Thus,
io (p)?
<2 pZugHm Z 5z > Vil 77
BZ 7P o2 (@)
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Note that if @ € [P, L] then either L < Q < Lp and D(P,L) = D(P,Q) or P < Q < P and
D(P,L) = D(Q, L) by (2.6) and Definition 2.3. Thus, changing the summation order, we get

o v fHLl(dQ) o P 2 ||g||L1(7L)
AL DRARITEE Y D DY PTRD pie oA Dp< = DN
Q L<Q Pew LeWw P<Q
: 2 llgll infso M
Using Lemma 2.4 we get that > 5y, % S 7 ( and Y3, oy &E&? < ) - By (2.8),

ZL<Q Hgl|L1(7L) < K(Q)%nfSQ Mg and ZPSQ (P ) 6(Q)?, so

—io, vaHLl(E)Q) 9. 1 infsg Mg 9
8.2.3] <2 EQ: —q0) <£(Q) %fMg@ + Wﬁ(@) ) ;

that is, using Holder’s inequality,

823] <277 > IVF - Myl sy S 277 IVl Loy (3.56)
Q

and the Claim 3.15 is proven. Indeed, by (3.49), (3.54), (3.55) and (3.56), we have that
S Coill Ve

This fact combined with (3.44) and (3.52) prove that

[8] < sup < CaillVIlize@

llg ,)/*
and, together with (3.27), (3.38) and (3.43), gives
!

fHLP(SZ) < Ca

with Co.; ~22% 0. O
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