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Abstract

A system modeling bacteriophage treatments with coinfections in a
noisy context is analysed. We prove that in a small noise regime, the
system converges in the long term to a bacteria-free equilibrium. More-
over, we compare the treatment with coinfection with the treatment with-
out coinfection, showing how coinfection affects the convergence to the
bacteria-free equilibrium.
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1 Introduction

The emergence of pathogenic bacteria resistant to most currently available an-
timicrobial agents has become a critical problem in medicine. The development
of alternative antiinfection modalities has become a priority. Bacteriophage
therapies are one of these alternatives. Prior to the discovery and widespread
use of antibiotics, it has been suggested that bacterial infections could be treated
by the administration of bacteriophages, but early clinical studies with bacterio-
phages were not pursued in the United States and Western Europe. Nowadays,
these therapies are reemerging and attracting the attention of the scientific com-
munity.

Let us explain the (lytic) bacteriophage mechanism: the first step of an in-
fection of a bacterium by a bacteriophage is the adsorption, i.e., the attachment
of the virus to a given receptor of the bacterium surface (notice that in the liter-
ature often the word infection is simply used for adsorption, but it is not always
the case that adsorption and infection can be used interchangeably [2]). After
attachment, the virus’ genetic material penetrates into the bacterium and uses
the host’s replication mechanism to self-replicate. After some latency time τ ,
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the bacterium encounters death releasing some new viruses (lysis), free to attack
other bacteria.

Host-pathogen interactions can vary from single to multiple infections. For
multiple infections, the term coinfection is used when the host can be infected
at the same time by more than one pathogen whereas superinfection stands for
subsequent infections of an infected host at a later time.

In the case of bacteriophages, it has been seen [23, 25] that multiple phage
can be adsorbed to a single bacterium which will imply a bigger rate of loss
of phage in the population than if adsorption would happen only between one
phage and one bacterium.

There is a long history of mathematical modelling of phage dynamics. One of
the first papers was the work of Campbell [13] where he proposed a model based
on a system of delay differential equations. Deterministic models can be found,
for instance, in [8], [10], [11], [17], [19], [21], [26]. The literature about stochastic
models is scarce. For instance, in [23] the authors give a stochastic model
allowing multiple bacteriophage adsorption to host. On the other hand, [12]
was one of the first papers dealing with coinfection and superfinfection models
in evolutionary epidemiology, as previous models took only first infections into
account. A general discussion about how superinfections and coinfections have
been modeled in evolutionary epidemiology can be found in [4] and [20].

In [5] we have considered a stochastic model with a constant injection of
phages into the system. This variant corresponds to a treatment for cattle
against Salmonella, which was brought to our attention by the Molecular Bi-
ology Group of the Department of Genetics and Microbiology at Universitat
Autònoma de Barcelona. We modeled the bacteria-phage dynamics by a system
of predator prey type equations.

Let S(t) (resp. Q(t)) denote the non-infected bacteria (resp. bacteriophages)
concentration at time t. Consider a truncated identity function σ : R+ → R+,
such that σ ∈ C∞, σ(x) = x whenever 0 ≤ x ≤ M and σ(x) = M + 1 for
x > M + 1. Then the model reads:
{
dS(t) = [α− k1σ(Q(t))]S(t)dt

dQ(t) =
[
δ −mQ(t)− k1σ(Q(t))S(t) + k1 b e

−µτσ(Q(t− τ))S(t− τ)
]
dt,

(1)

where α is the growth rate of bacteria, k1 is the adsorption rate, δ stands for the
quantity of bacteriophages inoculated per unit of time (dose), m is their death
rate, b is the burst size, i.e., the number of bacteriophages that are released after
replication within the bacteria cell, τ is the delay necessary for the reproduction
of bacteriophages (called latency time) and the coefficient e−µτ represents an
attenuation in the release of bacteriophages (given by the expected number of
bacteria cell’s deaths during the latency time, where µ is the death rate of
bacteria). In fact, α = β − µ where β is the reproduction rate of bacteria. A
given initial condition {S0(t), Q0(t);−τ ≤ t ≤ 0} is also specified.

Note that we have considered a coefficient σ that is a truncation of the
identity. It is useful in order to manipulate bounded coefficients in our equations
and our parameter M can be interpreted as a maximal phage attack rate.
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Given a large enough M we showed that when k1δ/m > α, there exists a
unique stable steady state of (1), E0 = (0, δ/m) (bacteria have been eradicated),
while when k1δ/m < α, the point E0 is still an equilibrium but it becomes un-
stable and there exists another coexistence equilibrium. The paper only studies
results regarding the bacteria-free equilibrium E0, since it corresponds to the
main practical situation, where high doses of phages are usually introduced in
cattle feed.

Our main interest was in fact a noisy version of system (1). In this type
of models there exist several random effects as the noise that can appear when
collecting data from laboratory tests, random fluctuations in parameters (like
temperature) that can affect the coefficients of our system or some randomness
in the latency times. We summarized all these random effects in a small global
stochastic term represented by a Wiener process W. That is, we considered a
small random perturbation of the form




dSε(t) = [α− k1σ(Qε(t))]Sε(t)dt+ εσ(Sε(t)) ◦ dW 1(t)

dQε(t) =
[
δ −mQε(t)− k1σ(Qε(t))Sε(t) + k1 b e

−µτσ(Qε(t− τ))Sε(t− τ)
]
dt

+ εσ(Qε(t)) ◦ dW 2(t),
(2)

where ε is a small positive coefficient and W = (W 1,W 2) is a 2-dimensional
Brownian motion and with Stratonovich differentials, denoted by ◦ dW . We
obtained a concentration result for the perturbed system around E0.

Our aim in this paper is to study the problem of coinfection in the models we
have presented in [5]. As mentioned before, due to the ambiguity in terminology
we have to specify what we understand by coinfection in our model: after the
first infection by a bacteriophage and before the death of the bacterium we will
assume that more bacteriophages can be adsorbed to the bacterium. These
later adsorptions will not affect the behaviour of the bacteria but they cause an
extra loss in the free bacteriophage population. Thus, coinfection means here
an extra mortality in the bacteriophage population.

We will show existence of a steady state E0 = (0, 0, δ/m) (bacteria-free equi-
librium) and we we will give conditions for its stability and also for the existence
of a coexistence steady state. Furthermore, we will obtain a concentration result
around E0 for a perturbed system. These results are similar to those obtained
in [5]. Furthermore, we will compare both models to determine the role of the
coinfection in the behaviour of the system. Since some of the proofs are simi-
lar to those given in [5], we only will give some details of the proofs with new
arguments and we will refer to those in [5] in the other cases.

Our article is structured as follows: in Section 2 we introduce both the
deterministic and the stochastic model, in Section 3 we study the deterministic
model showing positivity and boundedness of solutions in subsection 3.1 and
computing the steady states and analysing the stability of the boundary steady
state in subsection 3.2. Section 4 is devoted to the analysis of the stochastic
system and in Section 5 we finish with some concluding remarks.
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2 Formulation of the models

In order to consider coinfection, we introduce a new state variable I(t), that
gives the infected bacteria concentration at time t. Thus, we transform model
(1) into the following





dS(t) = (α− k1σ(Q(t)))S(t)dt
dI(t) = [k1σ(Q(t))S(t)− µI(t)− k1e−µτσ(Q(t− τ))S(t− τ)]dt
dQ(t) = [δ −mQ(t)− k1σ(Q(t))S(t)− k2σ(Q(t))I(t)

+k1be
−µτσ(Q(t− τ))S(t− τ)]dt,

(3)

where α > 0 denotes the growth rate of bacteria, k1 > 0 is the adsorption
rate for noninfected bacteria, k2 > 0 is the adsorption rate by infected ones,
µ > 0 denotes the death rate of infected bacteria, m > 0 is the death rate of
bacteriophages and b > 0 is the burst size (i.e., the average number of virus
released per infected cell).

The first term on the right hand side of the equation for the infected bacteria,
k1σ(Q(t))S(t), stands for the rate of infection, i.e., the number of new infected
bacteria per unit of time (assuming a “truncated” law of mass action) whereas
the terms k1e

−µτσ(Q(t−τ))S(t−τ) and µI(t) stand for loss of infected bacteria
because of lysis (after a latency time τ) and because of a different reason than
lysis (with death rate µ) respectively. On the other hand, in the last equation,
the term −k2σ(Q(t))I(t) accounts for the bacteriophages that the system loses
when they try to infect infected bacteria (coinfection).

For the stochastic model we will introduce the random effects following the
ideas we have used in [5]. Thus, we consider system (3) with a small random
perturbation of the form





dSε(t) =
(
α− k1σ(Qε(t))

)
Sε(t)dt+ εσ(Sε(t)) ◦ dW 1(t),

dIε(t) =
[
k1σ(Qε(t))Sε(t)− µIε(t)− k1e−µτσ(Qε(t− τ))Sε(t− τ)

]
dt

dQε(t) =
[
δ −mQε(t)− k1σ(Qε(t))Sε(t)− k2σ(Qε(t))Iε(t)

+k1be
−µτσ(Qε(t− τ))S(t− τ)

]
dt+ εσ(Qε(t)) ◦ dW 2(t),

(4)

where ε is a small positive coefficient and W = (W 1,W 2) is a 2-dimensional
Brownian motion defined on a complete probability space (Ω,F , P ) equipped
with the natural filtration (Ft)t≥0 associated to the Wiener process W . Recall
that ◦dW (t) denotes a Stratonovich integral.

Let us note that we assume that the noise enters in a bilineal way and that
we consider the random effects in the coefficients in the noise in the first and
third equation. We do not introduce an additive noise in the new state variable
I(t) to ensure the positivity of the solution.

3 Analysis of the deterministic model

This section is devoted to the study of the deterministic coinfection model (3).
Before going on with the study of the deterministic model, let us present a set
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of hypotheses on the coefficient σ and on the initial condition. The hypotheses
on σ will be the same as those in [5].

Nonnegative initial data for S and Q must be given on [−τ, 0] whereas for I
it only has to be given at t = 0. However (see [9], [22], [24]) I0 cannot be given
by any nonegative value, it will depend on S and Q.

Indeed (see [22],[24]), it can be seen that

I(t) =

∫ t

t−τ
k1e
−µ(t−θ)σ(Q(θ))S(θ)dθ =

∫ τ

0

k1e
−µsσ(Q(t− s))S(t− s)ds (5)

is a solution to the second equation in (3) which is biologically meaningful
because it is the summation of all the rates of infection at previous times (up
to −τ , i.e., the ones that have not lysed yet), k1σ(Q(t− s))S(t− s), multiplied
by the survival probability of infected bacteria e−µs.

To ensure that (5) is then the only solution to the equation for I(t) in (3),
the initial value must be chosen so that (5) holds at t = 0, i.e.

I0 := I(0) =

∫ τ

0

k1e
−µsσ(Q(−s))S(−s)ds. (6)

Hypothesis 3.1 We will make the following assumptions on our models:

(i) The function σ : R+ → R+ is such that σ ∈ C∞, and satisfies σ(x) = x
for 0 ≤ x ≤ M and σ(x) = M + 1 for x > M + 1. We also assume that
0 ≤ σ′(x) ≤ C for all x ∈ R+, with a constant C such that C > 1.

(ii) As far as the initial condition is concerned, we assume that it is given as
continuous nonnegative functions {S0(t), Q0(t);−τ ≤ t ≤ 0} and a constant I0
given by (6).

3.1 Positivity and boundedness of solutions

The first step to analyse the model is to obtain existence and uniqueness of a
global nonnegative solution.

Proposition 3.2 Under hypothesis 3.1 the initial value problem for system (3)
has a unique global nonnegative solution.

Proof: Local existence of a unique solution follows from standard results for de-
lay differential equations ([16], [22]). Let us study the positivity of the solution.
Note that {(S, I) = (0, 0)} is an invariant subspace. Clearly,

S(t) = S(0) exp
(
α− k1σ(Q(t)

)
> 0.

On the other hand, if for some t0 it holds that Q(t0) = 0 then Q′(t0) ≥ δ > 0.
So, Q(t) ≥ 0 for all t.

Since

I(t) =

∫ t

t−τ
k1e
−µ(t−θ)σ(Q(θ))S(θ)dθ

and Q(t) and S(t) are nonnegative on [−τ,+∞) we obtain I(t) ≥ 0 for all t ≥ 0.
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In order to get the existence of global solution it is enough to check that
the local solutions are bounded (see for instance [14]). Since S′(t) ≤ αS(t),
we get that for all t > 0, S(t) ≤ S(0)eαt. On the other hand, Q′(t) ≤ δ +
k1be

−µτσ(Q(t− τ))S(t− τ). Using that σ(x) ≤ x we get that

Q′(t) ≤ δ + k1be
−µτS(0)eαtQ(t− τ).

Applying a Gronwall’s lemma (see [15] Lemma A.1) we obtain that

Q(t) ≤ (Q(0) + δt+ k1bS(0)e−µτ
∫ 0

−τ
eαsds) exp

(
k1bS(0)e−µτ

∫ t

0

eαsds

)
.

Finally, notice that I ′(t) ≤ k1σ(Q(t))S(t) ≤ k1Q(t)S(t). So, fixed T , the local
solutions are bounded in [0, T ]. �

In order to obtain a result giving the boundedness of the solution we will first
formulate some more hypotheses on the initial condition and on the ingredients
of the model.

Hypothesis 3.3 We will suppose that the ingredients satisfy the following con-
ditions, valid for any t ∈ [−τ, 0]:

(i) The initial condition (S0(t), I0, Q0(t)) of the system lies into the region

R0 := [0,M ]× [0,M ]×
[

δ(be−µτµ)

mbe−µτµ+ k2(mM − δ) ,M
]
.

(ii) We have (mbe−µτµ+ k2(mM − δ))Q0(t)S0(t) > δµS0(0), and b e−µτ > 1.

(iii) The condition S0(t) < mM−δ
k1be−µτM holds.

(iv) I0 <
mM−δ
be−µτµ .

Hypothesis 3.4 We will suppose that δ
m < M and

δ >
αm

k1

be−µτµ+ k2(M − δ
m )

be−µτµ
.

Then under Hypothesis 3.4,

α

k1
<

δ(be−µτµ)

mbe−µτµ+ k2(mM − δ) <
δ

m
< M.

Notice that when k2 = 0 we get the same hypothesis as in the model without
coinfection. Moreover, when k2 is increasing, we find that the constant dose δ
must increase, i.e., if we lose more bacteriophages by coinfection we need to
introduce a bigger dose of them. On the other hand, the region where the
initial condition Q0 lives can have smaller lower boundary. It means that since
the dose will be bigger, the concentration of viruses in the initial condition can
be smaller.
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Remark: System (3) has two steady states (see Section 3.2), E0 = (0, 0, δm )
(for any value of the parameters) and, under certain conditions, a coexistence
equilibrium. Under Hypothesis 3.4, E0 will be asymptotically stable (see Propo-
sition 3.6). Moreover, if b > 1 (which holds under Hypothesis 3.3) and the

latency time is below a threshold that depends on b, (τ∗ = − 1
µ ln(

k1+k2
α
µ

k1b+k2
α
µ

), see

Section 3.2) E0 is the unique steady state.
For simplicity, set

ν =
δ(be−µτµ)

mbe−µτµ+ k2(mM − δ) . (7)

Proposition 3.5 Under Hypotheses 3.1, 3.4 and 3.3, the region

R := R1 ×R2 ×R3

=

[
0,

mM − δ
k1be−µτM

]
×
[
0,
mM − δ
be−µτµ

]
×
[

δ(be−µτµ)

mbe−µτµ+ k2(mM − δ) ,M
]
⊂ [0,M ]3

is left invariant by equation (3).

Proof: We organize the proof in five steps.

Step 1: While Q(t) ≥ ν then S(t) ∈ R1 and is nonincreasing. Since S is positive
it is clear that

S′(t) ≤ 0 whenever Q(t) >
α

k 1
, and S′(t) ≥ 0 whenever Q(t) <

α

k 1
.

On the other hand, our system starts from an initial condition

Q0(0) ≥ ν ≥ α

k1
.

Thus S is non increasing and remains in R1 as long as Q ≥ ν.

Step 2: There exists a strictly positive ε such that Q(t) > ν for all t ∈ (0, ε).
Notice that here a ε0 exists such that I(t) < mM−δ

be−µτµ for all t ∈ (0, ε0). So, we

have, if Q(0) = ν,

Q′(0) ≥ δ −mν − k1νS0(0)− k2ν
mM − δ
be−µτµ

+ k1be
−µτQ0(−τ)S0(−τ)

= k1
(
be−µτQ0(−τ)S0(−τ)− νS0(0)

)
> 0,

where we have used Hypothesis (ii) of 3.3.

Step 3: If S(t) is nonincreasing and I(t) remains in R2 for any t ≤ T and
Q(T ) = ν then Q′(T ) > 0. Let us consider what happens when Q(t0) = ν. We
now introduce the quantity t0 = inf{t > 0 : Q(t) = ν}, and notice that we have

Q′(t0) = δ −mν − k1νS(t0)− k2ν
mM − δ
be−µτµ

+ k1be
−µτσ(Q(t0 − τ))S(t0 − τ).

We can now distinguish two cases:
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1. If t0 > τ , since S(t) is nonincreasing in [0, t0], S(t0− ζ) ≥ S(t0) and hence

Q′(t0) ≥ k1S(t0)
(
be−µτσ(Q(t0 − τ))− ν

)
> 0,

due to the fact that be−µτ > 1, M > ν and Q(t0 − ζ) > ν.

2. If t0 ≤ τ , since S(t0) ≤ S0(0) we obtain

Q′(t0) ≥ k1
(
be−µτQ0(t0 − τ)S0(t0 − τ)− νS0(0)

)
> 0,

where we have used again Hypothesis (ii) of 3.3.

This discussion allows thus to conclude that t0 cannot be a finite time.

Step 4: If S(t) is nonincreasing for any t ≤ T and Q(T ) = M then Q′(T ) < 0.
To this aim notice that, whenever Q0(0) = M we have

Q′(0) ≤ δ −mM + k1be
−µτMS0(−τ) < 0,

where we recall that S0(−τ) < mM−δ
k1be−µτM according to Hypothesis 3.3. This

yields the existence of ε > 0 such that Q(t) < M for all t ∈ (0, ε). We now
define t1 = inf {t > 0 : Q(t) = M}. It is readily checked that

Q′(t1) ≤ δ −mM + k1be
−µτσ(Q(t1 − τ))S(t1 − τ)

= δ −mM + k1be
−µτMS(t1 − τ),

and we can distinguish again two cases:

1. If t1 > τ , thanks to the fact that t 7→ S(t) is non-increasing on [0, t1], we
have

Q′(t1) ≤ δ −mM + k1be
−µτMS0(0) < 0,

since we have assumed that S0(0) < mM−δ
k1be−µτM .

2. If t1 ≤ τ then

Q′(t1) ≤ δ −mM + k1be
−µτMS0(t1 − τ) < 0,

thanks to the fact that S0(t) < mM−δ
k1be−µτM for all t ∈ [−τ, 0].

We have thus shown Q(t) ≤M for all t ≥ 0, which finishes the proof.
Step 5: While S remains in R1 and Q remains in R3 then I lives in R2. Notice
first that

I ′(t) ≤ k1M
mM − δ
k1be−µτM

− µI(t)− k1e−µτσ(Q(t− τ))S(t− τ)

=
mM − δ
be−µτ

− µI(t)− k1e−µτσ(Q(t− τ))S(t− τ).

We have seen before that I is always nonnegative. Assume now that there exist
t1 such that I(t1) = mM−δ

be−µτµ . Then

I ′(t1) ≤ −k1e−µτσ(Q(t− τ))S(t− τ) ≤ 0,

and so, I(t) ≤ mM−δ
be−µτµ for all t ≥ 0.

Conclusion: From the previous steps we get that there exists ε > 0 such that
(S(t), I(t), Q(t)) ∈ R for any t ∈ [−τ, ε). Combining all the steps it is clear that
they can not leave the region. �
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3.2 Steady states. Stability

Let us study the equilibrium points. We have to solve the following equations:





0 = (α− k1σ(Q))S
0 = k1σ(Q)S − µI − k1e−µτσ(Q)S
0 = δ −mQ− k1σ(Q)S − k2σ(Q)I + k1be

−µτσ(Q)S.
(8)

Clearly, when S = 0 we get that I = 0 and Q = δ
m . So, we obtain the bacteria-

free equilibrium E0 = (0, 0, δm ) that exists for any value of the parameters. In
the case M + 1 < α

k1
it is clear that no other equilibrium exists (because then

α− k1σ(Q) > 0 for any Q).
Furthermore, if M ≥ α

k1
a possible coexistence equilibrium should be

Qc =
α

k1
, Ic(S) =

α

µ
(1− e−µτ )S,

and

Sc =
m− k1δ

α

k1(be−µτ − 1)− k2 αµ (1− e−µτ )
.

Notice that the function in the denominator of Sc,

f(τ) := e−µτ (k1b+
k2α

µ
)− (k1 + k2

α

µ
)

is a decreasing function of τ for which we have

a) f(0) < 0 ⇐⇒ b < 1,

b) f(0) > 0 ⇐⇒ b > 1. in this case there exists a unique τ∗=− 1
µ ln(

k1+k2
α
µ

k1b+k2
α
µ

)

such that f(τ∗) = 0.

The coexistence equilibrium should be positive. We can distinguish the cases

1) δ
m > α

k1
. Then, if b < 1 there is always (for any latency time τ) a

coexistence equilibrium (Sc, Ic, Qc). If b > 1 the coexistence equilibrium
exists only for τ > τ∗.

2) δ
m < α

k1
. Then the coexistence equilibrium exists only if b > 1 and τ < τ∗.

From the biological point of view, these situations correspond to the cases of
a “large” dose of “nonefficient” viruses, “large” dose of viruses with burst size
bigger than one but “big” latency time and “small” dose of viruses with burst
size bigger than one and “small” latency time respectively.

As we have explained in the introduction we are interested in the behaviour
of the bacteria-free equilibrium E0 = (0, 0, δm ). We now state the local stabil-
ity result for this boundary equilibrium which ensures local stability when the
”carrying capacity” ([7]) of phages, δ

m , is bigger than the one for susceptible
bacteria, α

k1
.
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Notice that, if we assume δ
m > α

k1
(large dose) and b > 1 then E0 is the

unique steady state as long as τ < τ∗ (which implies in particular that be−µτ > 1
i.e., that the viruses are “efficient” in the sense that the expected increase in
the virus population by infection is positive) .

Proposition 3.6 The bacteria-free equilibrium E0 = (0, 0, δm ) is asymptotically

stable if α− k1 δm < 0 and unstable if α− k1 δm > 0.

Proof: When τ = 0, using that σ(Q(t)) = Q(t), around E0 the differential
matrix is: 


α− k1 δm 0 0

0 −µ 0
k1(b− 1) δm −k2 δm −m


 ,

with eigenvalues λ0 = α − k1 δm , λ1 = −µ < 0 and λ2 = −m < 0. Thus E0 is

stable if and only if α− k1 δm < 0. In order to study the system with delay, we

linearize it around E0, i.e, S(t) = 0 + s(t), I(t) = 0 + i(t) and Q(t) = δ
m + q(t)

and we assume that the solutions are exponential, i.e. (abusing the notation)
s(t) = eλts, i(t) = eλti and q(t) = eλtq. We get





λeλts = (α− k1 δm )eλts
λeλti = k1

δ
me

λts− µeλti− k1e−µτ δmeλ(t−τ)s
λeλtq = −meλtq − k1 δmeλts− k2 δmeλti+ k1be

−µτ δ
me

λ(t−τ)s.
(9)

Thus the characteristic equation is

p(λ) =

∣∣∣∣∣∣

λ− (α− k1 δm ) 0 0
−k1 δm + k1e

−(µ+λ)τ δ
m λ+ µ 0

k1
δ
m − k1be−(µ+λ)τ δm k2

δ
m λ+m

∣∣∣∣∣∣
= 0,

and the eigenvalues will be λ1 = α− k1 δm , λ2 = −µ < 0 and λ3 = −m < 0 and
so E0 is stable under the same condition that when τ = 0. �

The previous result implies that the stability of the bacteria-free steady
state is assured by supplying a large dose of viruses (notice that the condition
implying this stability was also needed in order to obtain boundedness of the
solutions (hypothesis 3.4)).

Characteristic equations for delay differential equations are usually trascen-
dental. However, for our model, due to the type of nonlinearity of the model,
this characteristic equation is a cubic polynomial which implies that we have
exactly three eigenvalues.

We state now the result about the exponential convergence to the bacteria-
free equilibrium point.

Theorem 3.7 Let us assume that Hypotheses 3.1, 3.3 and 3.4 hold. Let R
be the region defined in Proposition 3.5. Then the solution of system (3) with
initial condition (S0, I0, Q0) ∈ R exponentially converges to the equilibrium E0:

|(S(t), I(t), Q(t))− E0| ≤ c e−ηt, with η = γ ∧m ∧ µ, (10)

where γ = νk1 − α > 0 and ν is given by (7).
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Remark: Notice that γ is decreasing with respect to k2 (adsorption rate of
infected bacteria) and that if k2 = 0 then γ = k1δ

m − α as in [5].

Proof: According to Proposition 3.5, we have Q(t) ≤ M for all t. Doing now
the change of variables Q̃ = Q− δ

m we get:

dS(t) = −
(

(k1δm − α)S(t) + k1Q̃(t)S(t)
)
dt,

dI(t) =
(
k1

δ
mS(t) + k1Q̃(t)S(t)− µI(t)− k1 δme−µτS(t− τ)

−k1e−µτ Q̃(t− τ)S(t− τ)
)
dt,

dQ̃(t) =
(
−mQ̃(t)− k1 δmS(t)− k1Q̃(t)S(t)− k2 δmI(t)− k2Q̃(t)I(t)

+k1
δ
mbe

−µτS(t− τ) + k1be
−µτ Q̃(t− τ)S(t− τ)

)
dt.

With this change of variables, we have also shifted the equilibrium to the point
(0, 0, 0). We now wish to prove that S(t), I(t) and Q̃(t) exponentially converge
to 0.

The bound on S(t) is easily obtained: just note that by Proposition 3.5, we
have Q(t) ≥ ν and since by Hypothesis 3.4 we have α

k1
< ν < δ

m

S′(t) = −
(

(k1δm − α)S(t) + k1Q̃(t)S(t)
)
≤ −(νk1 − α)S(t)

which yields S(t) ≤ S0(0) e−γt where γ = (νk1 − α) > 0.
As far as Q̃(t) is concerned, one gets the bound

Q̃′(t) ≤ −mQ̃(t) + k1be
−µτ (

δ

m
+ Q̃(t− τ))S0(0) e−γ(t−τ)

≤ −mQ̃(t) + c e−γt,

with c = 2k1bMS0(0) e(γ−µ)τ , and where we have used the fact that Q(t) ≤M
uniformly in t. Using that equation x′(t) = −mx(t)+c e−γt with initial condition
x0 = Q̃0(0) can be explicitly solved as

x(t) =

(
Q̃0(0)− c

m− γ

)
e−mt +

c

m− γ e
−γt

and by comparison, this entails the inequality Q̃(t) ≤ c1 e−(m∧γ)t, where c1 > 0.
Finally, let us consider I(t). Clearly

I ′(t) ≤ k1
δ

m
S(t) + k1Q̃(t)S(t)− µI(t) ≤ 2k1MS0(0)e−γt − µI(t).

Following the same method, we get that I(t) ≤ c2 e−(µ∧γ)t. �
Summarizing, the boundary equilibrium point is, in some sense, the same

point that in the model without coinfection [5]. That is, the concentration
of bacteria is 0 and the concentration of bacteriophages is δ

m . We also have
exponential convergence but in our model with coinfection it will be slower or
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equal that in the model without coinfection. More precisely, in [5] it was of order
e−(γ

′∧m)t with γ′ = k1δ
m −α whereas in the model with coinfection we treat here

it is of order e−(γ∧m∧µ)t with γ = νk1−α (ν given by (7)), a decreasing function
of k2.

4 Analysis of the stochastic model

For the stochastic model (4) existence of solution follows from the fact that
the coefficients of the equation are locally Lipschitz with linear growth (see
Theorem 2.7 in [5]). The positivity holds using the same arguments that in
Proposition 2.8 in [5]. In order to give the convergence result for the stochastic
model (4) we will introduce some notation: for a continuous function f , we
set ‖f‖∞,L = supx∈L |f(x)| and Zε = (Sε, Iε, Qε). Let us also recall that
γ = νk1 − α > 0 where ν is given by (7). Then we can state the result about
convergence to E0 as follows:

Theorem 4.1 Given positive initial conditions and assuming that Hypotheses
3.4, 3.1, and 3.3 hold, equation (4) admits a unique solution which is almost
surely an element of C(R+,R3

+). Set η = m∧γ ∧µ and consider three constants
1 < κ1 < κ2 < κ3. Then there exists ρ0 such that for any ρ ≤ ρ0 and any
interval of time of the form L = [κ1 ln(c/ρ)/η, κ2 ln(c/ρ)/η], we have

P (‖Zε − E0‖∞,L ≥ 2ρ) ≤ exp

(
−c1ρ

2+λ

ε2

)
, (11)

where λ is a constant satisfying λ > κ3/η.

The last theorem can be interpreted as follows: assume that we observe a
small noise with intensity ε, then the deviation we can expect from the noisy
system with respect to the equilibrium E0 is of order ε2θ with θ = 2η/κ3.
This range of deviation happens at a time scale of order ln(ρ−1)/η. As in
the exponential convergence for deterministic model, the convergence of the
stochastic model with coinfection will be slower or equal that the convergence
of the stochastic model without coinfection.

Proof: Since we have exponential convergence for the deterministic delayed
system, it is enough to check (see subsection 3.1 in [5]) that for any ε ≤ ε(M,T )

P (‖Zε − Z0‖∞,[0,T ] ≥ ρ) ≤ exp−
( c2ρ

2

eK2T ε2
)
.

Recall that ‖S0‖∞ + ‖I0‖∞ ≤ c4 and set J1(t) =
∫ t
0
σ(Sε(t)) ◦ dW 1(t) and

J2(t) =
∫ t
0
σ(Qε(t))◦dW 2(t). Then, using that σ is a truncated identity function,
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we can write

|Sε(t)− S0(t)| ≤
∫ t

0

|(α− k1σ(Qε(s)))(Sε(s)− S0(s))|ds

+

∫ t

0

|k1(σ(Qε(s))− σ(Q0(s)))S0(s)|ds+ ε|J1(t)|

≤
∫ t

0

(α+ k1M)|Sε(s)− S0(s)|ds+

∫ t

0

k1c4C|Qε(s)−Q0(s)|ds

+ε|J1(t)|,

|Qε(s)−Q0(s)|ds ≤
∫ t

0

m|Qε(s)−Q0(s)|ds

+

∫ t

0

k1be
−µτ [|σ(Qε(s− τ))− σ(Q0(s− τ))||S0(s− τ)|

+|Sε(s− τ)− S0(s− τ)||σ(Qε(s− τ)|]ds

+

∫ t

0

k2[|σ(Qε(s))− σ(Q0(s))||I0(s)|+ |Iε(s)− I0(s)||σ(Qε(s)|]ds

+

∫ t

0

k1[|σ(Qε(s))− σ(Q0(s))||S0(s)|+ |Sε(s)− S0(s)||σ(Qε(s)|ds

+ε|J2(t)|]ds

≤
∫ t

0

(m+ c4C(k1 + k1be
−µτ + k2))|Qε(s)−Q0(s)|ds

+

∫ t

0

(Mk1(1 + be−µτ ))|Sε(s)− S0(s)|ds

+

∫ t

0

Mk2|Iε(s)− I0(s)|ds+ ε|J2(t)|

and doing the same computations

|Iε(t)− I0(t)| ≤
∫ t

0

µ|Iε(s)− I0(s)|ds

+

∫ t

0

Mk1(1 + e−µτ )|Sε(s)− S0(s)|ds

+

∫ t

0

k1c4C(1 + e−µτ )|Qε(s)−Q0(s)|ds.

Thus

|Zε(t)− Z0(t)|2 ≤ c5ε2(|J1(t)|2 + |J2(t)|2) + c6

∫ t

0

|Zε(s)− Z0(s)|2ds.

The proof finishes using a Gronwall’s lemma type and exponential inequalities
for martingales (see the proof of Proposition 3.2 in [5] for the detailed methods).

�
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5 Concluding Remarks

Bacteriophage therapy has lately been considered an alternative to the increas-
ing resistance of pathogenic bacteria to antibiotic treatment ([3, 18, 21]). Math-
ematical modelling of bacteria-phage interactions could then be a helpful tool
for this therapy. Since the first work of Campbell [13] there have been quite
some papers devoted to bacteria-phage dynamics, most of them considering de-
terministic models of ordinary differential equations or delay differential equa-
tions. In order to consider random effects (noise in data, random fluctuations
in parameters...) it is also important to study stochastic models of bacteria-
phage dynamics. In [5] we studied a stochastic model of susceptible bacteria
and free phages with a constant injection of phages into the system, inspired by
the experiments carried in [6].

Since it has been seen that many bacteriophages can be adsorbed to a single
bacterium, we consider in the present paper a variant (both deterministic and
stochastic) of the model in [5] where we add infected bacteria and include the
possibility of this multiple adsorption which is what we call coinfection (meaning
an extra mortality for the bacteriophage population).

We have then a system of susceptible bacteria, infected bacteria and free
bacteriophages for which we have assumed a constant supply of viruses in order
to model therapy. We have also assumed a constant latency time (time passing
between the phage-bacteria binding and the lysis of the virus) which introduces
a delay in the system. We have shown global existence of a unique positive
solution of the initial value problem for both models, the deterministic and the
stochastic and we have proved boundedness of the solutions. Moreover we have
seen (also for both models) that for any value of the parameters a bacteria-free
equilibrium exists which is locally asymptotically stable if a large dose of phages
is supplied (if this large dose is given and the phages are ”efficient” the bacteria-
free equilibrium is unique as long as the latency time is not too big) and we have
shown exponential convergence to this steady state. This convergence decreases
when the adsorption rate of infected bacteria increases and it is slower than the
exponential convergence to the bacteria-free equilibrium of the model without
coinfection in [5].

Acknowledgments: The authors would like to thank the Referees for their
helpful comments.
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