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A DUAL CHARACTERIZATION OF
THE C1 HARMONIC CAPACITY

AND APPLICATIONS

ALBERT MAS, MARK MELNIKOV, AND XAVIER TOLSA

Abstract. The Lipschitz and C1 harmonic capacities κ and κc in Rn

can be considered as high-dimensional versions of the so-called analytic
and continuous analytic capacities γ and α (respectively).

In this paper we provide a dual characterization of κc in the spirit of
the classical one for the capacity α by means of the Garabedian function.
Using this new characterization, we show that κ(E) = κ(∂oE) for any
compact set E ⊂ Rn, where ∂oE is the outer boundary of E, and we
solve an open problem posed by A. Volberg, which consists on estimating
from below the Lipschitz harmonic capacity of a graph of a continuous
function.

1. Introduction

Let Lip1
loc(Rn) be the set of real-valued locally Lipschitz functions (with

exponent 1) on Rn and C1(Rn) the set of real-valued continuously differen-
tiable functions on Rn. If E ⊂ Rn is a bounded set and

U ′(E) = {ϕ ∈ Lip1
loc(Rn) : supp∆ϕ ⊂ E,∇ϕ(∞) = 0},

U ′c(E) = {ϕ ∈ C1(Rn) : supp∆ϕ ⊂ E,∇ϕ(∞) = 0},
the Lipschitz and C1 harmonic capacities of E are defined by

κ(E) = sup{〈1,∆ϕ〉 : ϕ ∈ U ′(E), ‖∇ϕ‖∞ ≤ 1},
κc(E) = sup{〈1,∆ϕ〉 : ϕ ∈ U ′c(E), ‖∇ϕ‖∞ ≤ 1},

(1.1)

where 〈f,∆ϕ〉 means the action of the compactly supported distribution ∆ϕ
on a smooth function f , and ‖∇ϕ‖∞ is the L∞ norm of the gradient ∇ϕ
with respect to the Lebesgue measure in Rn. The symbol ∆ denotes the
Laplacian operator in Rn.

In order to deal with the problem of harmonic approximation in the C1-
norm, P. Paramonov introduced in [Pa] the capacities κ and κc, and gave
a description, in terms of these capacities, of the compact sets E ⊂ Rn

(with n ≥ 2) such that any C1 function harmonic in the interior of E can
be approximated in the C1-norm by harmonic functions in a neighborhood
of E.
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2 englishA. MAS, M. MELNIKOV, AND X. TOLSA

The capacities κ and κc can be understood as high-dimensional versions
of the so-called analytic and continuous analytic capacities γ and α (respect-
ively). Recall that, for a compact set E ⊂ C,

γ(E) = sup |f ′(∞)|,

where the supremum is taken over all analytic functions f : C \E → C with
|f | ≤ 1 on C \ E, and f ′(∞) = limz→∞ z(f(z) − f(∞)). The continuous
analytic capacity α has the same definition as γ except that one also requires
the functions f to be continuous in C and |f | ≤ 1 everywhere.

The analytic capacity was first introduced by L. Ahlfors in [Ah] when he
was characterizing the removable compact sets for bounded analytic func-
tions in the plane. The continuous analytic capacity was defined by A.
Vitushkin in [Vi] when he dealt with the problem of rational approximation
in the uniform norm on compact sets of the plane. Both capacities have been
studied by many authors since then (see [Gt] for a nice survey on results re-
lated with γ and α, and [Da] or [To1] for more recent results). In particular,
there exists a dual characterization of α that can be stated as follows: let
Ω ⊂ Rn be the closure of a bounded domain with smooth boundary. Then,

α(Ω) = inf
{

1
2π

∫
∂Ω
|h(z)|ds : h ∈ H1(Ωc), h(∞) = 1

}
,

where ds denotes the arc length and H1(Ωc) is the Hardy space of functions
h analytic in Ωc ∪ {∞} such that the subharmonic function |h(z)| has a
harmonic majorant. It is also proved that the infimum is attained, and
the function ψ that solves the extremal problem is called the Garabedian
function of Ω; so α(Ω) = 1

2π

∫
∂Ω |ψ(z)|ds.

A classical way to construct the Garabedian function is to use the Hahn-
Banach theorem and the F. and M. Riesz theorem. Observe that the quant-
ity α(Ω) is the norm of the functional f 7→ f ′(∞) = 1

2π

∫
∂Ω f(z)dz on the

space of continuous functions outside intΩ that are analytic outside Ω, which
is a subspace of the continuous functions on ∂Ω. By the Hahn-Banach the-
orem one can find a measure µ supported on ∂Ω, orthogonal to the functions
analytic outside Ω, and such that

α(Ω) =
1
2π

∫
∂Ω
|dz + dµ|.

The F. and M. Riesz theorem ensures that, in fact, dz+ dµ(z) = ψ(z)ds for
an analytic function ψ that solves the extremal problem (see [Gt, section
I.4] for more details).

The aim of this paper is to give a dual characterization of the C1 har-
monic capacity κc in terms of some “Garabedian function” and to use this
“function” to deduce some properties of κc and κ. This characterization is
stated in theorem 3.3 and it is based on the Hahn-Banach theorem, as can
be done for the capacity α.

Unfortunately, the F. and M. Riesz theorem can not be generalized to
higher dimensions in the sense that we need, because the capacity κc is
defined in terms of gradients of harmonic functions and there are examples
of measures orthogonal to those gradients which are not absolutely continu-
ous with respect to the surface measure (see [Ma]). This means that, instead
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of a “Garabedian function”, we will just have a “Garabedian measure” that
minimizes some quantity. We will be able to deduce some geometric prop-
erties of that minimal measure by adapting a theorem of B. Gustafsson and
D. Khavinson about measures on ∂Ω orthogonal to harmonic gradients (see
theorem 3.1) and by proving a theorem about restrictions to ∂Ω of ortho-
gonal measures on Ω (see theorem 3.2).

Many properties of the Lipschitz and C1 harmonic capacities were recently
proven. The semiadditivity is a very important one, and it was obtained by
A. Volberg in [Vo] for the capacity κ. A little bit later, A. Ruiz de Villa and
X. Tolsa proved in [RT] that κc is also semiadditive. See [MP] and [Rz] for
other interesting properties about these capacities.

We will obtain two new results on the capacity κ from theorem 3.3, namely
theorem 4.1 and theorem 4.2. The first one states that κ(E) = κ(∂oE) for
any compact set E ⊂ Rn, where ∂oE denotes the outer boundary of E (i.e.,
the boundary of the unbounded component of Ec). This property is obvious
for the capacity γ because of the defining conditions, but this is no longer
trivial for κ. Evidently, one have κ(E) ≥ κ(∂oE). The difficulties appear
when one tries to prove the reverse inequality. Observe that, by Gauss
formula,

(1.2) 〈1,∆ϕ〉 =
∫

∂oV
∇ϕ · ηdσ

for any ϕ ∈ U ′(E), where V is a sufficiently regular neighborhood of E,
and η and dσ are the normal outward unit vector and surface measure of
∂V , respectively. Suppose, for simplicity, that E is the closure of a bounded
simply connected domain, so ∂oE = ∂E. One can try to prove that κ(E) ≤
κ(∂E) directly from the definition (1.1) and the identity (1.2). The idea is
to modify the functions ϕ ∈ U ′(E) inside E to obtain functions ϕ̃ ∈ U ′(∂E)
such that 〈1,∆ϕ〉 = 〈1,∆ϕ̃〉. The problem is that one cannot ensure that
the gradients ∇ϕ̃ are bounded by 1 in E.

The second new result that we have obtained is theorem 4.2, where we
solve an open problem posed by A. Volberg (private communication). The
problem can be stated as follows:

Problem 1.1. Let f be a real continuous function defined on the cube Q0 =
[0, d]n−1 ⊂ Rn−1 and let Γ = {(x, f(x)) ∈ Rn : x ∈ Q0} be the graph of
f . Prove that there exists a constant C > 0 depending only on n such that
Cdn−1 ≤ κ(Γ).

Note that, if diam(Γ) is comparable to d, problem 1.1 states that κ(Γ) ≥
Cdiam(Γ)n−1. This is a reasonable analogue of an important result in the
area of analytic capacity which says that γ(E) ≥ 1

4diam(E) for any con-
tinuum (i.e., compact and connected set) E ⊂ C. This classical result on
γ is a consequence of the 1/4-theorem of Koebe (see [Ga, theorem 2.1 of
chapter VIII]), and a real variable proof was first obtained by P. Jones by
using the notion of curvature of a measure (see [Pj, Section 3.5]).

One cannot expect this kind of estimates on κ(E) for any continuum
E ⊂ Rn, because, for example, a segment in R3 has zero Lipschitz harmonic
capacity. In fact, by using the identity (1.2), it is not difficult to show that
κ(E) = 0 for any compact set E ⊂ Rn with zero (n− 1)-Hausdorff measure.
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So, to obtain a reasonable analogue of the estimate of the analytic capacity
of a continuum for the capacity κ, one has to restrict himself to continua
with positive (n − 1)-Hausdorff measure or, in an easier way, to graphs of
continuous functions.

The structure of the paper is the following. Section 2 is devoted to the
preliminaries, where we will talk about vector measures, Lipschitz and C1

harmonic capacities, and harmonicity at infinity (which includes the exterior
Dirichlet and Neumann problems). With these notions, we will be ready to
state and prove the dual characterization of κc (i.e., theorem 3.3). This will
be in section 3. Section 4 is devoted to prove the two announced properties
of κ.

2. Preliminaries

In the whole paper, we assume n ≥ 2. The word smooth means of class
C∞, wherever we talk about functions or the boundary of an open set. We
write χE for the characteristic function of a set E ⊂ Rn. The letter C will
denote a constant which may be different at different occurrences and which
is independent of the relevant variables under consideration.

We denote by C(E) the set of real-valued continuous functions defined on
a set E ⊆ Rn, and by C(E)n the cartesian product of n spaces C(E).

Given a C∞ orientable manifold M of dimension d ≤ n and k ∈ N∪{∞},
let Ck(M) be the set of real-valued differentiable functions in M such that
their partial derivatives (with respect to the local coordinates chosen in M)
of order less than k + 1 exist and are continuous functions in M . In case
that ∂M 6= ∅, we can take a system of local coordinates

{U ⊂M,y = (y1, . . . , yd)}

such that U ∩ M = y−1({xd ≥ 0}) and U ∩ ∂M = y−1({xd = 0}), for
x = (x1, . . . , xn) ∈ Rn. For the points p = y−1(x) ∈ U ∩ ∂M , the partial
derivative of a function f : y(U) → R with respect to the coordinate xd at
a point p = (p1, . . . , pn−1, 0) ∈ y(U) is defined by the limit (if it exists)

∂

∂xd
f
∣∣∣
p

= lim
t>0, t→0

f(p1, . . . , pn−1, t)− f(p1, . . . , pn−1, 0)
t

.

When M ⊂ Rn, for any function ϕ ∈ C1(M) we can identify the differ-
ential dϕ with a vector function in C(M)n, so we say that ϕ ∈ C1(M) if
dϕ ∈ C(M)n. Clearly, dϕ = ∇ϕ if M is an open set. Notice that, if M is
the closure of an open set with smooth boundary, ϕ|∂M ∈ C1(∂M) for any
ϕ ∈ C1(M), and d(ϕ|∂M ) is the tangential part of dϕ with respect to ∂M .

It is an exercise to check that this definition of C1(M) agrees with the
classical one for closures of open sets with smooth boundary, i.e., C1(M) is
the set of continuous functions on M such that their gradients on intM can
be extended to continuous vector functions on M . It also agrees with the
definition of C1(M) given in [Pa] or [Wh].

Our typical situation will be that M is equal to U , U or ∂U , for an open
set U ⊂ Rn with smooth boundary.
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2.1. Vector measures. The Riesz representation theorem. Given a
subset E ⊂ Rn and a vector function f = (f1, . . . , fn) : E → Rn, define

‖f‖E = sup{|f(x)| : x ∈ E},

where

|f(x)| =

(
n∑

i=1

(fi(x))2
)1/2

.

Clearly, C(E)n with the norm ‖ · ‖E is a Banach space.
Given a bounded linear functional Λ on C(E)n and a subspace F ⊂ C(E)n,

define

‖Λ‖F = sup{|Λ(f)| : f ∈ F , ‖f‖E ≤ 1}.

For simplicity, we write ‖f‖ and ‖Λ‖ instead of ‖f‖Rn and ‖Λ‖C(E)n ,
respectively (when there is no confusion on what is E).

Let M(E) be the space of finite real Borel measures supported on E and
M(E)n the cartesian product of n spaces M(E). The elements of M(E)n

are commonly called vector measures. For µ = (µ1, . . . , µn) ∈ M(E)n,
define the variation of µ on a subset F ⊂ E as

|µ|(F ) = sup


m∑

j=1

|µ(Fj)| : F =
m⊎

j=1

Fj , Fj is µi-measurable ∀i, j

 ,

where

|µ(Fj)| =

(
n∑

i=1

(µi(Fj))2
)1/2

.

Finally, define the total variation of µ as ‖µ‖E = |µ|(E). It is proved that
|µ| is a positive and finite measure on E (see for example [L2, theorem 3.1
of chapter VII]). It is easily seen that ‖ · ‖E is a norm on the space M(E)n.

Any vector measure µ ∈ M(E)n can be considered as a bounded linear
functional 〈·, µ〉 : C(E)n → R by putting

〈f, µ〉 =
∫
fdµ =

n∑
i=1

∫
fidµi.

On the other hand, the Riesz representation theorem (for scalar measures)
shows that any bounded linear functional on C(E)n can be represented as
〈·, µ〉 for some vector measure µ ∈M(E)n.

The concept of vector measure is widely treated in many text books (see
for example [DS] or [DU]). However, usually in the literature, the Riesz
representation theorem for vector measures is stated in a slightly different
setting. The following theorem contains the detailed arguments to prove the
corresponding Riesz representation theorem for our specific setting.

Theorem 2.1 (Riesz representation). The map µ 7→ 〈·, µ〉 is an isomet-
ric isomorphism of M(E)n onto the space of bounded linear functionals on
C(E)n, so ‖µ‖E = ‖〈·, µ〉‖ for all µ ∈M(E)n.
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Proof. By the previous comments, it is enough to prove that the map µ 7→
〈·, µ〉 is isometric to obtain the isomorphism. We have to check that for any
µ ∈M(E)n,

‖µ‖E = sup{|〈f, µ〉| : f ∈ C(E)n, ‖f‖E ≤ 1}.
We will see first that sup{|〈f, µ〉| : f ∈ C(E)n, ‖f‖E ≤ 1} ≤ ‖µ‖E . By

density, it is enough to prove that |〈f, µ〉| ≤ ‖µ‖E for simple vector functions
of the form f = (

∑
m a1

mχFm , . . . ,
∑

m an
mχFm), where the sums are finite,

the ai
m’s are real numbers, the Fj ’s are disjoint subsets of E, and ‖f‖E =

supm(
∑n

i=1(a
i
m)2)1/2 ≤ 1. By the Cauchy-Schwartz inequality,

|〈f, µ〉| =

∣∣∣∣∣
n∑

i=1

∑
m

ai
mµi(Fm)

∣∣∣∣∣ ≤∑
m

 n∑
i=1

(ai
m)2

n∑
j=1

(µj(Fm))2

1/2

≤ sup
m

(
n∑

i=1

(ai
m)2
)1/2∑

m

|µ(Fm)| ≤ ‖f‖E |µ|(E) ≤ ‖µ‖E .

Let us prove now that ‖µ‖E ≤ sup{|〈f, µ〉| : f ∈ C(E)n, ‖f‖E ≤ 1}. Let ν
be a positive measure such that µi is absolutely continuous with respect to
ν for all i = 1, . . . , n (for example ν =

∑n
i=1 |µi|, where |µi| is the classical

variation of the real measure µi). Then µi = hiν, where hi is a ν-measurable
function. Observe that, if we put h = (h1, . . . , hn), then µ = hν and

(2.1) ‖〈·, µ〉‖ = sup{|〈f, hν〉| : f ∈ C(E)n, ‖f‖E ≤ 1} ≤
∫

E
|h|dν.

Consider the ν-measurable vector function g defined by g(x) = h(x)/|h(x)|
whenever h(x) 6= 0 and g(x) = 0 otherwise. Lusin’s theorem can be adapted
to our situation to prove that given ε > 0 there exists fε ∈ C(E)n with
‖fε‖E ≤ ‖g‖E ≤ 1 and such that∣∣∣∣∫

E
(g − fε)dµ

∣∣∣∣ < ε.

This implies that∫
E
|h|dν =

∫
E
(g · h)dν =

∫
E
gdµ

≤
∣∣∣∣∫

E
(g − fε)dµ

∣∣∣∣+ ∣∣∣∣∫
E
fεdµ

∣∣∣∣ ≤ ε+ ‖〈·, µ〉‖

for all ε > 0. This estimate together with (2.1) proves that ‖〈·, µ〉‖ =∫
E |h|dν. So, to prove that ‖µ‖E ≤ ‖〈·, µ〉‖ it is enough to check that
|µ(F )| ≤

∫
F |h|dν for all F ⊂ E ν-measurable. By a discrete version of

Minkowski’s integral inequality,

|µ(F )| =

(
n∑

i=1

(∫
F
dµi

)2
)1/2

=

(
n∑

i=1

(∫
F
hidν

)2
)1/2

≤
∫

F

(
n∑

i=1

h2
i

)1/2

dν.

Therefore, |µ(F )| ≤
∫
F |h|dν, and the theorem is proved. �
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2.2. The Lipschitz and C1 harmonic capacities. The fundamental solu-
tion φn for the Laplace equation ∆f = 0 in Rn is defined by

φn(x) =

{
an|x|2−n if n > 2,
an log |x| if n = 2,

where an is a constant which depends on the dimension n.
We stated the definitions of the Lipschitz and C1 harmonic capacities κ

and κc in (1.1). The defining conditions for U ′(E) and U ′c(E) imply that
the functions ϕ ∈ U ′(E) are harmonic in Ec and take the form ϕ = φn ∗
∆ϕ+constant, where this last equality is in the sense of distributions; but by
the definitions of κ and κc we can suppose that, in fact, ϕ = φn ∗∆ϕ. Recall
that, if T is a compactly supported distribution, then for each ψ ∈ C∞(Rn)
with compact support, by definition (in view of parity of φn),

〈φn ∗ T, ψ〉 = 〈T, φn ∗ ψ〉,

where φn ∗ ψ(x) =
∫
φn(y)ψ(x − y)dm(y) and m is the Lebesgue measure

on Rn.
Therefore, if we take

U(E) = {ϕ ∈ Lip1
loc(Rn) : supp∆ϕ ⊂ E,ϕ = φn ∗∆ϕ},

Uc(E) = {ϕ ∈ C1(Rn) : supp∆ϕ ⊂ E,ϕ = φn ∗∆ϕ},

we can redefine the Lipschitz and C1 harmonic capacities by

κ(E) = sup{〈1,∆ϕ〉 : ϕ ∈ U(E), ‖∇ϕ‖∞ ≤ 1},
κc(E) = sup{〈1,∆ϕ〉 : ϕ ∈ Uc(E), ‖∇ϕ‖∞ ≤ 1}.

2.3. Harmonicity outside a compact set and at infinity. Most of this
section can be found in [Fo].

Definition 2.2. For any set E ⊂ Rn ∪ {∞} we define E∗ = {x/|x|2 : x ∈
E} ⊂ Rn ∪ {∞}. Given a function u defined on a set E ⊂ Rn \ {0}, define
the Kelvin transform of u by

Ku(x) = |x|2−nu(x/|x|2), for x ∈ E∗.

Theorem 2.3. The Kelvin transform is its own inverse. If V ⊂ Rn \ {0}
is an open set, then a function u is harmonic in V if and only if Ku is
harmonic in V ∗.

Definition 2.4. If E ⊂ Rn is compact and u is harmonic in Ec, then u is
harmonic at ∞ provided Ku has a removable singularity at the origin.

Theorem 2.5. Suppose that u is harmonic in Ec, where E ⊂ Rn is compact.
Then, the following three conditions are equivalent:

(1) u is harmonic at ∞.
(2) |u(x)| = o(1) as x→∞ (n > 2), or

|u(x)| = o(log |x|) as x→∞ (n = 2).
(3) |u(x)| = O(|x|2−n) as x→∞.

In particular, any function which is harmonic at infinity vanishes at infinity
when n > 2 and is bounded when n = 2.
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Theorem 2.6 (Exterior Dirichlet problem). Let Ω ⊂ Rn be the closure of
a bounded domain with smooth boundary. Given h ∈ C(∂Ω) there exists
a unique function u ∈ C(Ωc) such that u is harmonic in Ωc ∪ {∞} and
u|∂Ω = h. If h ∈ C∞(∂Ω), then u ∈ C∞(Ω).

Theorem 2.7 (Exterior Neumann problem). Let Ω ⊂ Rn be the closure
of a bounded domain with smooth boundary and η the outward unit normal
vector on ∂Ω. Let V1, . . . , Vm be the bounded connected components of Ωc

and V0 the unbounded one. Let h ∈ C(∂Ω) such that∫
∂Vi

hdσ = 0 for all i = 1, . . . ,m.

(1) Assume n > 2. Then, there exists a function u ∈ C1(Ωc) such that
u is harmonic in Ωc ∪ {∞} and (∇u · η)|∂Ω = h. The function
u is unique modulo functions which are constant on each bounded
connected component of Ωc.

(2) Assume n = 2. Then, there exists a function u ∈ C1(Ωc) such that
u is harmonic in Ωc ∪ {∞} and (∇u · η)|∂Ω = h if and only if∫

∂V0

hdσ = 0.

In that case, the function u is unique modulo functions which are
constant on each connected component of Ωc.

In both cases, u ∈ C∞(Ω) if h ∈ C∞(∂Ω).

Remark 2.8. Theorem 2.7 corresponds with theorem 3.41 of [Fo]. If we do
not have the assumption

∫
∂V0

hdσ = 0 in theorem 2.7(2), we can still find
a function u ∈ C1(Ωc) harmonic in Ωc and such that (∇u · η)|∂Ω = h, by
looking carefully at the proof of theorem 3.41 in [Fo]. Moreover, u can be
taken as

u(x) =
∫

∂V0

log |x− y|u0(y)dσ(y)

for all x ∈ V0 and for some u0 ∈ C(∂V0) depending on h. But now, u may
not be harmonic at infinity (because it may not be bounded) and we cannot
ensure uniqueness in Ωc modulo constant functions. In fact, in proposition
3.35 of [Fo] it is shown that our particular solution u is harmonic at infinity
if and only if

∫
∂V0

hdσ = 0.

Lemma 2.9 (Green’s formula). Let Ω ⊂ Rn be the closure of a bounded
domain with smooth boundary and η the outward unit normal vector on ∂Ω.
Let u and v be harmonic functions in Ωc, C1 up to ∂Ω, and such that

|(u(x)∇v(x)− v(x)∇u(x)) · x| = o(|x|2−n)

when |x| → ∞. Then,∫
∂Ω

(∇u · η)vdσ =
∫

∂Ω
u(∇v · η)dσ.

Proof. Let BR be the ball centered at the origin with radius R, and take
R > M such that Ω ⊂ BR/2. Define ΩR = BR \Ω and let η denote also the
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inward unit normal vector on ∂BR. By Green’s formula on ΩR,∫
∂Ω

(∇u · η)vdσ =
∫

∂ΩR

(∇u · η)vdσ −
∫

∂BR

(∇u · η)vdσ

=
∫

∂ΩR

u(∇v · η)dσ −
∫

∂BR

(∇u · η)vdσ

=
∫

∂Ω
u(∇v · η)dσ +

∫
∂BR

(u(∇v · η)− (∇u · η)v)dσ.

For any R big enough, by the assumption on u and v,∣∣∣∣∫
∂BR

(u(∇v · η)− (∇u · η)v)dσ
∣∣∣∣ ≤

∫
∂BR

|u∇v · η − v∇u · η|dσ

≤ o(R1−n)Rn−1,

and letting R→∞ we obtain the desired result. �

Remark 2.10. Let Ω ⊂ Rn be the closure of a bounded open set with smooth
boundary. In the next section, we will need to apply Green’s formula to
pairs of functions ϕ and u, where ϕ ∈ Uc(Ω) and u is a function harmonic
in Ωc ∪ {∞} and continuous up to ∂Ω. For this reason, we give now some
estimates on the behavior of ϕ and u near infinity.

Let ϕ ∈ Uc(Ω). By applying Gauss formula, we have that for all x ∈ Ωc,

ϕ(x) =
∫
φn(x− y)∆yϕ(y)dm(y)

=
∫

Ω
(divy(φn(x− y)∇yϕ(y))−∇yφn(x− y) · ∇yϕ(y))dm(y)

=
∫

∂Ω
φn(x− y)∇yϕ(y) · η(y)dσ(y) +

∫
Ω
∇φn(x− y) · ∇yϕ(y)dm(y),

where η and dσ are the outward unit normal vector and surface measure
related to ∂Ω.

Assume n > 2. By computing the derivatives of φn, it is an exercise to
see that any ϕ ∈ Uc(Ω) satisfies the statement (3) of theorem 2.5, so it is
harmonic at infinity. It is proved in [Fo] (proposition 2.73) that any function
u harmonic outside Ω and at infinity satisfies |∇u(x) · x| = O(|x|2−n), so
lemma 2.9 can be applied to the pair ϕ and u, and Green’s formula holds in
that case.

The case n = 2 is a little bit different, because we cannot ensure that a
function ϕ ∈ Uc(Ω) has the required decay at infinity. We have the estimates
|ϕ(x)| = O(log |x|) and |∇ϕ(x)| = O(|x|−1) near infinity (and we cannot
apply theorem 2.5(2)). For a function u harmonic outside Ω and at infinity,
we still have the estimates |u(x)| = O(1) and |∇u(x) · x| = O(|x|−1), as
can be seen in proposition 2.73 of [Fo]. These estimates are not enough to
use lemma 2.9, because |u(x)∇ϕ(x) · x| = O(1). But, if u(∞) = 0, then
|u(x)| = o(1) and we can still apply lemma 2.9 in that particular case.
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3. The heart of the matter

In the whole section, Ω ⊂ Rn will be the closure of a bounded open set
with smooth boundary and η will denote the outward unit normal vector on
∂Ω.

Consider the following normed spaces related to the compact set Ω:

B(Ω) = {f ∈ C(Ω)n : f = ∇ϕ,ϕ ∈ Uc(Ω)},
B(Ω)⊥ = {µ ∈M(Ω)n : 〈f, µ〉 = 0 for all f ∈ B(Ω)},
bB(Ω)⊥ = {µ ∈ B(Ω)⊥ : suppµ ⊂ ∂Ω},

where B(Ω) is equipped with the norm ‖ · ‖Ω and the orthogonal spaces
B(Ω)⊥ and bB(Ω)⊥ are equipped with the induced norm from M(Ω)n. It is
easily seen that the norm in bB(Ω)⊥ induced by the space M(Ω)n coincides
with the norm induced by the space M(∂Ω)n.

Let A(Ω) be the set of smooth vector fields on ∂Ω. For any g ∈ A(Ω), let
gτ be the tangential component of g and gη ·η the normal one, i.e., gη = g ·η
and gτ = g − gηη. Notice that gη is a scalar function while gτ is a vector
one. Denote by ug the unique harmonic extension of gη to Ωc ∪ {∞} given
by theorem 2.6. Define A0(Ω) = {g ∈ A(Ω) : ug(∞) = 0}. By theorem 2.5,
A0(Ω) = A(Ω) for n > 2.

For any g ∈ A(Ω), the divergence of gτ on ∂Ω can be defined by its action
on smooth and compactly supported functions ϕ as∫

∂Ω
(divgτ )ϕdσ = −

∫
∂Ω
gτ · ∇ϕdσ.

In the right hand side, we can replace ∇ϕ by (∇ϕ)τ , which only depends on
the values of ϕ on ∂Ω (remember that (∇ϕ)τ = d(ϕ|∂Ω)). This definition
agrees with the classical one of divergence in the context of Riemannian
manifolds in Rn (see [Wa]).

The following theorem is a little modification of theorem 3.1 in [GK],
where the orthogonal of the space of harmonic gradients inside Ω is studied.
In our case, we need the harmonicity outside Ω. Our proof is almost the
same as the one of [GK] and, for completeness, we include all the detailed
arguments.

Theorem 3.1. Let g ∈ A0(Ω). Then gdσ ∈ bB(Ω)⊥ if and only if

divgτ = ∇ug · η on ∂Ω.

Such measures are weak∗ dense in bB(Ω)⊥, i.e., for all µ ∈ bB(Ω)⊥ there
exists a sequence {gm}m∈N ⊂ A0(Ω) such that divgm

τ = ∇ugm · η for all m
and

lim
m→∞

〈f, gmdσ〉 = 〈f, µ〉

for all f ∈ C(∂Ω)n.

Proof. Let g ∈ A0(Ω) and take ∇ϕ ∈ B(Ω). Then,

〈∇ϕ, gdσ〉 =
∫

∂Ω
(∇ϕ)τ · gτdσ +

∫
∂Ω

(∇ϕ · η)gηdσ

= −
∫

∂Ω
ϕdivgτdσ +

∫
∂Ω

(∇ϕ · η)ugdσ.
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The pair ϕ and ug satisfies the statements of lemma 2.9 by remark 2.10,
so

〈∇ϕ, gdσ〉 =
∫

∂Ω
ϕ(∇ug · η − divgτ )dσ.

This integral vanishes for all ϕ such that ∇ϕ ∈ B(Ω) if and only if divgτ =
∇ug · η on ∂Ω.

To prove that such measures gdσ are weak∗ dense in bB(Ω)⊥ it is enough
to prove that if f ∈ C(∂Ω)n and 〈f, gdσ〉 = 0 for all such g, then there exists
ψ ∈ Uc(Ω) with (∇ψ)|∂Ω = f . So, consider f ∈ C(∂Ω)n with

(3.1) 0 = 〈f, gdσ〉 =
∫

∂Ω
(fτ · gτ + fηgη)dσ

for all g ∈ A0(Ω) such that divgτ = ∇ug ·η on ∂Ω. By Hodge’s decomposition
theorem on the Riemannian manifold ∂Ω (see [MC, lemma 9.1]), fτ = dϕ+
hτ , where ϕ ∈ C1(∂Ω) and hτ is a tangential vector field on ∂Ω such that
divhτ = 0. If we take gη = 0 and gτ = hτ in (3.1), we obtain

0 = 〈f, gdσ〉 =
∫

∂Ω
(dϕ · gτ + hτ · gτ )dσ =

∫
∂Ω
|hτ |2dσ,

so hτ = 0 and fτ = dϕ. This implies that∫
∂Ω
fτ · gτdσ =

∫
∂Ω
dϕ · gτdσ = −

∫
∂Ω
ϕdivgτdσ = −

∫
∂Ω
ϕ(∇ug · η)dσ,

and then (3.1) takes the form

(3.2)
∫

∂Ω
fηugdσ =

∫
∂Ω
ϕ(∇ug · η)dσ.

For any hole H of Ω (i.e. H is a bounded connected component of Ωc),
consider a vector field g ∈ A0(Ω) such that g = η on ∂H and g = 0 elsewhere.
Then (3.2) shows that

∫
∂H fηdσ = 0, so we can apply theorem 2.7 (and also

remark 2.8 for n = 2) to solve the Neumann problem on the complement
of Ω with boundary data fη. Let ψ ∈ C∞(Ωc) ∩ C(Ωc) be a solution such
that ∇ψ(∞) = 0 (this is automatically satisfied for n > 2 using the Kelvin
transform and computing the derivatives, and can be assumed for n = 2 by
remark 2.8).

As we did in remark 2.10, it is easily checked that ug and ψ satisfy the
statements of lemma 2.9 if n ≥ 2, so we deduce from (3.2) that

(3.3)
∫

∂Ω
(ϕ− ψ)(∇ug · η)dσ = 0.

This equality holds for all ug harmonic in Ωc and smooth up to ∂Ω such
that there exists g ∈ A0(Ω) with ug = g · η and divgτ = ∇ug · η on ∂Ω. We
are going to see that (3.3) implies that ϕ−ψ is constant on each connected
component of ∂Ω.

Suppose we have a smooth function q on ∂Ω such that
∫
S qdσ = 0 for each

connected component S of ∂Ω. Then, by the maximal de Rham cohomology
theorem on the Riemannian manifold S (see [L1], theorem 1.1 of chapter
XVIII), the differential form qdσ is exact, i.e., there exists a smooth vector
field w tangent to S and such that divw = q. On the other hand, the
Neumann problem with boundary data q can be solved on Ωc by theorem
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2.7. Therefore, we can assume that this solution (call it ug) vanishes at
infinity. Summarizing, given the function q we have constructed a smooth
vector field w + ug · η ∈ A0(Ω) such that divw = ∇ug · η on ∂Ω.

So, we deduce from (3.3) that

(3.4)
∫

∂Ω
(ϕ− ψ)qdσ = 0

for all smooth functions q on ∂Ω such that
∫
S qdσ = 0 for each connected

component S of ∂Ω.
Therefore, we deduce from (3.4) that ϕ−ψ is constant on each component

of ∂Ω, and we obtain (∇ψ)τ = dϕ = fτ on ∂Ω. Remember that ∇ψ ·η = fη,
so ∇ψ = f on ∂Ω. As f ∈ C(∂Ω)n and ∆ψ = 0 in Ωc, we have ψ ∈ C1(Ωc)
because each coordinate of ∇ψ must be given by the Poisson integral of
the corresponding coordinate of f . By the Whitney extension theorem (see
[Wh], or [Pa] theorem [8]), we can extend ψ inside Ω to have ψ ∈ C1(Rn).
We have finally obtained ψ ∈ Uc(Ω) and ∇ψ|∂Ω = f , so the theorem is
proved. �

Proposition 3.2. If µ ∈ B(Ω)⊥, then µ|∂Ω ∈ bB(Ω)⊥.

Proof. Let ∇ϕ ∈ B(Ω). We have to check that 〈∇ϕ, µ|∂Ω〉 = 0.
Because of µ ∈ B(Ω)⊥,

〈∇ϕ, µ|∂Ω〉 =
∫

∂Ω
∇ϕdµ = 〈∇ϕ, µ〉 −

∫
intΩ

∇ϕdµ = −
∫

intΩ
∇ϕdµ.

Consider a Whitney decomposition intΩ =
⋃

i∈NQi, where {Qi}i∈N are
disjoint cubes such that 2Qi ⊂ intΩ for all i ∈ N and the family {2Qi}i∈N
has finite overlap of order M , and consider a partition of unity subordinated
to this decomposition: let {ψi}i∈N be a family of C∞ functions such that
0 ≤ ψi ≤ 1, ‖∇ψi‖ ≤ C/diam(Qi) and suppψi ⊂ 3

2Qi for each i ∈ N, so that∑
i∈N ψi = 1 in intΩ. Then ϕ =

∑
i∈N ψiϕ in intΩ and at most M terms are

non zero in the last sum for all x ∈ intΩ.
Observe that ∫

intΩ
∇(ψiϕ)dµ = 〈∇(ψiϕ), µ〉 = 0,

because supp(ψiϕ) ⊂ intΩ and ∇(ψiϕ) ∈ B(Ω). Hence, for N ∈ N∫
intΩ

∇ϕdµ =
∫

intΩ
∇ϕdµ−

N∑
i=1

∫
intΩ

∇(ψiϕ)dµ

=
∫

intΩ
∇ϕdµ−

N∑
i=1

∫
intΩ

(ϕ∇ψi + ψi∇ϕ)dµ

=
∫

intΩ
∇ϕ

(
1−

N∑
i=1

ψi

)
dµ+

∫
intΩ

N∑
i=1

ϕ∇ψidµ = I + II.

By dominated convergence, |I| → 0 as N →∞.
In order to estimate |II|, define the set

ΩN = {x ∈ intΩ : ∃i > N with x ∈ suppψi}.
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Clearly, ΩN+1 ⊂ ΩN and
⋂

N∈N ΩN = ∅. Because of the finite overlap of the
squares 2Qi, we also have

(3.5)
N∑

i=1

∇ψi(x) = 0 for all x ∈ intΩ \ ΩN .

Let xi be the center of Qi. Using that ∇ψi ∈ B(Ω), that suppψi ⊂ intΩ and
equation (3.5), we deduce

II =
∫

ΩN

N∑
i=1

(ϕ(x)− ϕ(xi))∇ψi(x)dµ(x).

For all x ∈ ΩN ,∣∣∣∣∣
N∑

i=1

(ϕ(x)− ϕ(xi))∇ψi(x)

∣∣∣∣∣ ≤
N∑

i=1

|ϕ(x)− ϕ(xi)||∇ψi(x)|

≤
N∑

i=1

‖∇ϕ‖Ω|x− xi||∇ψi(x)|.

If x ∈ suppψi, then |∇ψi(x)||x−xi| ≤ C. Because of the finite overlap of the
cubes 2Qi, each x ∈ ΩN belongs to the support of at most M functions ψi,
so the last sum is less than or equal to CM‖∇ϕ‖Ω (which does not depend
on x ∈ ΩN ). This implies that

|II| ≤ CM‖∇ϕ‖Ω|µ|(ΩN ).

Now, limN→∞ |µ|(ΩN ) = |µ|(
⋂

N∈N ΩN ) = 0, so |II| → 0 when N → ∞.
This completes the proof. �

Theorem 3.3.

κc(Ω) = min
{
‖ηdσo + µ‖∂oΩ : µ ∈ B(Ω)⊥, suppµ ⊂ ∂oΩ

}
,

where dσo is the surface measure of ∂oΩ, i.e., the restriction of dσ to ∂oΩ.

Proof. By definition,

(3.6) κc(Ω) = sup{〈1,∆ϕ〉 : ϕ ∈ Uc(Ω), ‖∇ϕ‖ ≤ 1}.
Using Gauss formula, for each ϕ ∈ Uc(Ω) we have

〈1,∆ϕ〉 =
∫

∂Ω
∇ϕ · ηdσ

=
∫

∂oΩ
∇ϕ · ηdσ +

∫
∂Ω\∂oΩ

∇ϕ · ηdσ =
∫

∂oΩ
∇ϕ · ηdσo,

because each connected component of ∂Ω\∂oΩ is the boundary of a smooth
bounded domain where ϕ is harmonic.

Define the functional Φ : C(Ω)n → R as Φ(f) =
∫
∂Ω f · ηdσo. Then (3.6)

becomes

κc(Ω) = sup {|Φ(∇ϕ)| : ∇ϕ ∈ B(Ω), ‖∇ϕ‖ ≤ 1}
= sup {|Φ(∇ϕ)| : ∇ϕ ∈ B(Ω), ‖∇ϕ‖Ω ≤ 1} = ‖Φ‖B(Ω),

because |∇ϕ| is subharmonic when ϕ is harmonic, and the maximum prin-
ciple can be applied.
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Clearly, a functional Φ̃ on C(Ω)n is an extension of Φ|B(Ω) if and only if
Ψ := Φ̃−Φ is orthogonal toB(Ω), and for all such extensions ‖Φ‖B(Ω) ≤ ‖Φ̃‖.
Hence,

‖Φ‖B(Ω) = min
{
‖Φ̃‖ : Φ̃ is an extension of Φ|B(Ω) to C(Ω)n

}
= min {‖Φ + Ψ‖ : Ψ is orthogonal to B(Ω)}

= min
{
‖ηdσo + µ‖Ω : µ ∈ B(Ω)⊥

}
,

where we have used by Hahn-Banach’s theorem in the first equality, and
Riesz’s representation theorem 2.1 in the third one.

Observe that for any measure ν supported on Ω,

‖ν|∂Ω‖∂Ω = ‖ν|∂Ω‖Ω ≤ ‖ν‖Ω,

so by proposition 3.2,

min
{
‖ηdσo + µ‖Ω : µ ∈ B(Ω)⊥

}
= min

{
‖ηdσo + µ‖∂Ω : µ ∈ bB(Ω)⊥

}
.

It only remains to check that the last minimum is attained on a measure
µ ∈ bB(Ω)⊥ with suppµ ⊂ ∂oΩ.

By theorem 3.1, for every µ ∈ bB(Ω)⊥ we can find a sequence hn ∈
A0(Ω) ∩ bB(Ω)⊥ that tends weakly∗ to µ. Since the connected compon-
ents of ∂Ω are a finite number of disjoint compact sets, we see that hnχS

tends weakly∗ to µ|S for every connected component S of ∂Ω. In particular,
hnχ∂oΩ tends weakly∗ to µ|∂oΩ and, by theorem 3.1, hnχ∂oΩ ∈ bB(Ω)⊥ for all
n, so µ|∂oΩ ∈ bB(Ω)⊥. We also clearly have ‖ηdσo+µ|∂oΩ‖∂Ω ≤ ‖ηdσo+µ‖∂Ω.

To summarize, for every measure µ ∈ B(Ω)⊥ with suppµ ⊂ ∂Ω we have
seen that µ|∂oΩ ∈ B(Ω)⊥ and that

‖ηdσo + µ|∂oΩ‖∂oΩ = ‖ηdσo + µ|∂oΩ‖∂Ω ≤ ‖ηdσo + µ‖∂Ω,

so the theorem is proved. �

4. Some consequences of theorem 3.3

Theorem 4.1. For every compact set E ⊂ Rn, κ(E) = κ(∂oE).

Proof. Since κ is non decreasing set function, κ(E) ≥ κ(∂oE).
In order to prove the converse inequality, let {Ω1

m}m∈N be a sequence of
closures of smooth neighborhoods of E collapsing to E, i.e.

E ⊂ Ω1
m+1 ⊂ intΩ1

m,
⋂

m∈N
Ω1

m = E.

Denote by V the unbounded connected component of Ec and consider the
bounded open set V ′ = V

c. Take an increasing sequence of open sets {V ′m}m

such that

V ′m ⊂ V ′, V ′m ⊂ V ′m+1, ∂V ′m ⊂ Ω1
m,

⋃
m∈N

V ′m = V ′

and with smooth boundary, for all m. Finally, define the sequence

{Ω2
m := Ω1

m \ V ′m}m∈N.
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By construction, the sequence {Ω2
m}m∈N is a decreasing sequence of closures

of bounded open sets with smooth boundary. Observe also that ∂oΩ1
m =

∂oΩ2
m for all m ∈ N.

Now, if x ∈ ∂oE = ∂V , then x ∈ Ω2
m for all m ∈ N. On the other hand,

if x ∈ Ω2
m ⊂ Ω1

m for all m ∈ N, then x ∈ V ∩ E, so x ∈ ∂oE. Therefore, we
have proved that

⋂
m∈N Ω2

m = ∂oE.
By [Pa] lemma 2.2(7),

lim
m→∞

κ(Ω1
m) = κ(E),

lim
m→∞

κ(Ω2
m) = κ(∂oE).

Let ηm be the outward unit normal vector on ∂oΩ1
m and dσm the surface

measure on ∂oΩ1
m. It is easy to see that a measure µ supported in ∂oΩ1

m

belongs to B(Ω1
m)⊥ if and only if it belongs to B(Ω2

m)⊥. Applying theorem
3.3,

κc(Ω1
m) = min

{
‖ηmdσm + µ‖∂oΩ1

m
: µ ∈ B(Ω1

m)⊥, suppµ ⊂ ∂oΩ1
m

}
= min

{
‖ηmdσm + µ‖∂oΩ2

m
: µ ∈ B(Ω2

m)⊥, suppµ ⊂ ∂oΩ2
m

}
= κc(Ω2

m).

By definition, κc is also monotone and κc ≤ κ and by [Pa] lemma 2.2(1),
both capacities coincide on open sets. So, we have

κ(Ω1
m+1) ≤ κ(intΩ1

m) = κc(intΩ1
m) ≤ κc(Ω1

m) = κc(Ω2
m) ≤ κ(Ω2

m).

The theorem is proved by letting m tend to infinity. �

Theorem 4.2. Let f be a real continuous function defined on the cube
Q0 = [0, d]n−1 ⊂ Rn−1 and let Γ = {(x, f(x)) ∈ Rn : x ∈ Q0} be the graph
of f . Then, there exists a constant C > 0 depending only on n such that

Cdn−1 ≤ κ(Γ).

Proof. The proof is based on theorem 4.1 and the semiadditivity of κ. Start-
ing from Q0, consider a decomposition of Rn−1 into cubes Qi of side length
d and with disjoint interiors. By doing reflections with respect to the sides
of the cubes Qi, we can extend f to a function f̃ continuous on Rn−1 and
such that f̃ in Qi is a reflection of f in Q0.

Let Qm be a cube in Rn−1 of side length md made by the union of mn−1

cubes Qi. Let Γm be the graph of the function f̃ on Qm, i.e.,

Γm = {(x, f̃(x)) ∈ Rn : x ∈ Qm},

and consider its translation

Γt
m = {(x, f̃(x) + 4‖f‖Q0) ∈ Rn : x ∈ Qm}.

Clearly, the sets Γm and Γt
m do not intersect. Moreover, they are separated

by the set Pm = {(x, 2‖f‖Q0) : x ∈ Qm}.
Finally, let Em be the region enclosed by Γm, Γt

m and the 2(n−1) pieces of
vertical hyperplanes of Rn that join the endpoints of Γm and Γt

m. Roughly
speaking, Em is a kind of n-dimensional rectangle which has Γm as the
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bottom side and Γt
m as the top side. By construction, Em is a compact set

that contains Pm, so

(4.1) κ(Em) ≥ κ(Pm) = C(md)n−1

by [Pa] lemma 2.2(8). Applying theorem 4.1, the countable semiadditivity
of κ and [Pa] lemma 2.2(8), we have

(4.2) κ(Em) = κ(∂oEm) ≤ C(κ(Γm) + κ(Γt
m) + 20(n− 1)‖f‖Q0(md)

n−2).

By the construction of Γm and the countable semiadditivity of κ, κ(Γt
m) =

κ(Γm) ≤ Cmn−1κ(Γ), so (4.2) becomes

(4.3) κ(Em) ≤ C(2mn−1κ(Γ) + 20(n− 1)‖f‖Q0(md)
n−2).

Combining (4.1) and (4.3), we get

κ(Γ) ≥
Cmn−1dn−1 − C ′‖f‖Q0(md)

n−2

2mn−1
= Cdn−1 − C ′

‖f‖Q0d
n−2

m
,

where C ′ > 0 is an absolute which only depends on the dimension n. Letting
m→∞, we obtain

κ(Γ) ≥ Cdn−1,

and the theorem is proved. �

Remark 4.3. One can show that κ(E) ≥ Cdiam(E) for any continuum E ⊂
R2 by using the same ideas as in the proof of theorem 4.2. One starts by
choosing two points a, b ∈ E such that diam(E) = |b − a| and assuming
that these points belong to the real axis in R2. Then, one extends the set
E by symmetries along the real axis as we did before. The rest of the proof
remains the same.

The inequality κ(E) ≥ Cdiam(E) for a continuum E ⊂ R2 was stated as
an open question in problem 2.6 of [Pa] and was first proved by P. Jones by
using the notion of curvature of a measure and other capacities called γ+

and κ+ (see [Pj], [To2], and [Vo]). We have proved it by a different method.
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