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A numerical study is presented to assess the performance of two different models of kinetic trans-
port coefficients for granular materials, namely the Jenkins-Richman theory for moderately dense,
quasielastic grains, and the improved Lutsko-Garzó theory for arbitrary inelasticity. For this purpose
a time-dependent problem such as the granular Faraday instability is selected to perform numerical
simulations of the granular Navier-Stokes equations. Both solutions are compared with event-driven
simulations of the same system under the same conditions, by analyzing the density, the temper-
ature and the velocity field. Important differences are found between the two models leading to
interesting implications. In particular the heat transfer mechanism coupled to the density gradient
which is a distinctive feature of inelastic granular gases, is responsible for a major discrepancy in
the temperature field and hence in the diffusion mechanisms.

I. INTRODUCTION

The hydrodynamics of granular materials is far from
being well understood. The first difficulty comes from
the kinetic theory level, where the far-from-equilibrium
nature of the problem leads to both conceptual and tech-
nical limitations. Many contributions, starting in the ’80
of the last century [1, 2], have helped to develop a well
established hydrodynamic theory of granular gases, in-
cluding mixtures and multi-component materials. How-
ever the application to other types of granular materials
is still uncertain.
In academy as well as in industry, one would like to

have a good numerical solver for a variety of granular flow
problems under different conditions. In the process of
going from theory to real applications, one must resort to
good choices of kinetic transport coefficients to ensure the
appropriate modeling of the system. Strictly speaking,
kinetic theory expansions cease to be valid as we enter
the realm of moderately dense gases. On the other hand,
a purely empirical approach, like the one used for regular
liquids and where one measures the transport coefficients,
to use them later in the Navier-Stokes equations, does not
apply for granular hydrodynamics. The reason is that
the system properties depend on a tricky combination
of the ingredients, each one of them inextricably linked
to the rest. The inherent difficulty of these problems
lies on the dissipative character of real grain interactions,
which is responsible for microscopic irreversibility, lack
of scale separation, mesoscopic nature of the flow, and
strong nonlinearities in the governing equations.
Numerical validation of transport coefficients from ki-

netic theories has been analyzed for the Jenkins-Richman
expressions [1, 2] by molecular dynamics simulations in
[3] and in experiments such as granular flow past an
obstacle [4] and vertically oscillated granular layers [5–
9]. This choice as a test case for hydrodynamic theo-
ries comes from being one of the simplest experiments

in which all different regimes of the granular flow are
present while leading to interesting standing-wave pat-
tern formation and dynamics [10, 11], clustering [12, 13]
and phase transitions [14–16].

In a previous paper [7] we studied computationally the
Faraday instability [17] in vibrated granular disks, com-
paring the output from hydrodynamic and particle simu-
lations in detail. This served to validate a Navier-Stokes
code for granular material based on a WENO (Weighted
Essentially Non-Oscillatory) approach [18] which is capa-
ble of capturing the features of the highly supersonic flow
generated by the impact of a piston. For this purpose we
used the well-known Jenkins-Richman expressions [1, 2]
for the kinetic coefficients, valid for moderately dense
gases in the limit of vanishing inelasticity. The conclu-
sion of the study was that, even far beyond the conditions
where the kinetic theory expansions are valid, the re-
sults showed qualitative and quantitative agreement with
those from event-driven molecular dynamics simulations,
in a range of parameters which covered the entire bifurca-
tion diagram of the Faraday instability at the coefficient
of restitution α = 0.75. The errors did not exceed 20%.

The Jenkins-Richman (JR) theory, however, fails de-
scribing the heat flux accurately, since in the limit of
elastic gases the heat flux term coupled to the density
gradient vanishes. Beyond the JR theory, more recently
kinetic expansions at finite inelasticity have been devel-
oped to model moderately dense gases [19–21]. Here we
follow a similar approach to [7], that is, we will use the
kinetic transport coefficients derived in [19–21] to com-
pare the performance of the granular Navier-Stokes solver
with respect to particle simulations. We will also ana-
lyze the differences between the results provided by the
JR theory and those from the current theory, to check
whether the use of proper kinetic transport coefficients
reduces the aforementioned discrepancy.
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II. HYDRODYNAMIC THEORY OF
GRANULAR GASES

We consider a granular fluid composed of smooth in-
elastic hard disks of unit mass m = 1 and diameter σ.
Collisions are characterized by a (constant) coefficient of
normal restitution 0 < α ≤ 1. In a kinetic theory de-
scription, the relevant information on the system is con-
tained in the one-particle velocity distribution function.
At moderate densities and assuming molecular chaos, the
velocity distribution function obeys the (inelastic) En-
skog kinetic equation [22, 23]. Starting from this kinetic
theory, one can easily obtain the (macroscopic) hydrody-
namic equations for the number density n(~r, t), the flow
velocity ~u(~r, t), and the local temperature T (~r, t) [24]. In
the case of two-dimensional granular gases, the balance
equations read

∂n

∂t
+ ~∇ · (n~u) = 0 , (1)

n

(
∂~u

∂t
+ ~u · ~∇~u

)
= −~∇ · P̂ + n~F , (2)

and

n

(
∂T

∂t
+ ~u · ~∇T

)
= −∇ · ~q − P̂ : ~∇~u− ζnT . (3)

In the above equations, ~F is the external force per unit
mass acting on the system, P̂ is the pressure tensor, ~q is
the heat flux, and ζ is the cooling rate due to the energy
dissipated in collisions. It is worthwhile to note that the
macroscopic equations given in Eqs. (1)-(3) differ from
their counterparts for elastic fluids only via the appear-
ance of the cooling rate ζ on the right-hand side of Eq.
(3). On the other hand, the corresponding transport co-
efficients defining the momentum and heat fluxes must
depend in general on the coefficient of restitution α.
As it happens for elastic fluids, the usefulness of the

balance equations (1)-(3) is limited unless the fluxes and
the cooling rate are specified in terms of the hydrody-
namic fields and their spatial gradients. To first order
in the spatial gradients, the Navier-Stokes constitutive
equations provide a link between the exact balance equa-
tions and a closed set of equations for the hydrodynamic
fields. The constitutive relation of the pressure tensor
Pij is

Pij = pδij − η
(
∂jui + ∂iuj − δij ~∇ · ~u

)
− γδij ~∇ · ~u, (4)

where p is the hydrostatic pressure, η is the shear viscos-
ity, and γ is the bulk viscosity. The constitutive equation
for the heat flux is

~q = −κ~∇T − µ~∇n, (5)

where κ is the coefficient of thermal conductivity, and µ
is a new coefficient which does not have an analogue for a

gas of elastic particles. Finally, to first order in gradients,
the cooling rate ζ can be written as [22]

ζ = ζ0 + ζ1∇ · ~u . (6)

The explicit forms of the hydrostatic pressure p, the
Navier-Stokes transport coefficients η, γ, κ, and µ and
the coefficients ζ0 and ζ1 can be obtained by solving the
corresponding Enskog equation. However, due to the
mathematical complexity of this kinetic equation, only
approximate results for the above coefficients can be ob-
tained. Here, we consider two independent approaches
for hard disks proposed by Jenkins and Richman [2] and
Lutsko and Garzó [19, 21]. Let us consider each method
separately.

A. Jenkins-Richman (JR) theory

The results derived by Jenkins and Richman [1, 2] are
obtained by solving the Enskog equation for spheres [1]
and disks [2] by means of Grad’s method [25]. The idea
behind Grad’s moment method is to expand the veloc-
ity distribution function in a complete set of orthogonal
polynomials (generalized Hermite polynomials), the coef-
ficients being the corresponding velocity moments. Next,
the expansion is truncated after a certain order k. When
this truncated expansion is substituted into the hierarchy
of moment equations up to order k one gets a closed set of
coupled equations. In the case of a two-dimensional sys-
tem, the eight retained moments are the hydrodynamic
fields (n, ~u, and T ) plus the irreversible momentum and
heat fluxes (Pij − pδij and ~q ).
Although the application of Grad’s method to the En-

skog equation is not restricted to nearly elastic particles,
the results derived by Jenkins and Richman [2] (JR the-
ory) neglect the cooling effects on temperature due to
the cooling rate in the expressions of the transport co-
efficients [see for instance, Eqs. (70), (89), (98), (99),
and (100) of Ref. [2] when the disks are smooth]. Given
that this assumption can only be considered as accept-
able for nearly elastic systems, the authors of Ref. [2]
conclude that their theory only holds in the quasielastic
limit (α → 1).
The explicit forms of the hydrostatic pressure, the

Navier-Stokes transport coefficients and the cooling rate
in the JR theory are given by

pJR =
4

πσ2
φT [1 + (1 + α)G(φ)], (7)

ηJR =
φ

2σ

√
T

π

[
1

G(φ)
+ 2 +

(
1 +

8

π

)
G(φ)

]
, (8)

γJR =
8

πσ
φG(φ)

√
T

π
, (9)
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κJR =
2φ

σ

√
T

π

[
1

G(φ)
+ 3 +

(
9

4
+

4

π

)
G(φ)

]
,

µJR = 0,

(10)

ζ0,JR =
4

σ
(1− α2)

√
T

π
G(φ) ,

ζ1,JR = 0.

(11)

In the above equations, φ = nπσ2/4 is the (dimension-
less) volume fraction occupied by the granular disks, also
called packing fraction, G(φ) = φχ(φ), and χ(φ) is the
pair correlation function.

Because of the assumption of near elastic particles in
the JR theory, Eqs. (7)–(11) show clearly that the coeffi-
cient of restitution α only enters in the equation of state
(7) and in the expression (11) for the zeroth-order cooling
rate ζ0. At this level of approximation, the expressions
of the Navier-Stokes transport coefficients ηJR, γJR, and
κJR are the same as those given by the Enskog equation
for elastic disks [26].

In order to get the dependence of the transport coeffi-
cients and the cooling rate in both JR and LG theories,
one has to chose an approximate form for the pair corre-
lation function χ(φ). In this paper, we have chosen the
forms proposed by Torquato [27],

χ(φ) =





1− 7
16φ

(1− φ)2
for 0 ≤ φ < φf ,

1− 7
16φf

(1− φf )2
φc − φf

φc − φ
for φf ≤ φ ≤ φc,

(12)

which go through the freezing point φf = 0.69 and ap-
proach the random close packing fraction, φc = 0.82 with
reasonable accuracy.

B. Lutsko-Garzó (LG) theory

The results derived independently by Lutsko [19] and
Garzó [21] (LG theory) are based on the application of
the Chapman-Enskog expansion [28] to the Enskog equa-
tion. Both works extend previous results [20] obtained for
hard spheres to an arbitrary number of dimensions. The
Chapman-Enskog method is a procedure to construct an

approximate perturbative solution to the Enskog equa-
tion in powers of the spatial gradients. More specifically,
one assumes that the spatial variations of the hydrody-
namic fields n, ~u, and T are small on the scale of the mean
free path. On the other hand, while the strength of the
gradients can be controlled by the boundary conditions in
the case of elastic collisions, the problem is more compli-
cated for granular fluids since in some cases (e.g., steady
states such as the simple shear flow [29, 30]) there is an
intrinsic relation between dissipation and some hydro-
dynamic gradient. The LG theory considers situations
where the spatial gradients are sufficiently small and in-
dependent of the coefficient of restitution α. As a con-
sequence, the corresponding forms of the Navier-Stokes
transport coefficients are not limited a priori to weak in-
elasticity since they incorporate the complete nonlinear
dependence on α.
As for elastic collisions [28], the transport coefficients

in the Chapman-Enskog method are given in terms of
the solutions of a set of coupled linear integral equa-
tions that are solved by means of a polynomial Sonine
expansion. For simplicity, usually only the lowest So-
nine polynomial (first Sonine approximation) is retained
[19, 20] and the results obtained from this simple ap-
proach agree well with Monte Carlo simulations, except
for the heat flux transport coefficients at high dissipa-
tion [31, 32]. Motivated by this disagreement, a modi-
fied version of the first Sonine approximation has been
proposed [33]. The modified Sonine approximation re-
places the Gaussian weight function (used in the stan-
dard Sonine method) by the homogeneous cooling state
distribution. This new method significantly improves the
α-dependence of κ and µ since partially eliminates the
discrepancies between simulation and theory for quite
strong dissipation (see for instance, Figs. 1-3 of Ref. [33]).
The modified Sonine solution has been recently employed
by Garzó [21] to determine the Navier-Stokes transport
coefficients of dense d-dimensional granular gases.
The results obtained in the LG theory for the equation

of state and the Navier-Stokes transport coefficients for
hard disks (d = 2) are

pLG = pJR =
4

πσ2
φT [1 + (1 + α)G(φ)], (13)

γLG =
4

πσ
φG(φ)

√
T

π
(1 + α)

(
1− c

32

)
, (14)

ηLG =

√
T/π

2σ

[
1− 1

4 (1 + α)(1 − 3α)G(φ)
] [

1 + 1
2G(φ)(1 + α)

]

ν∗η − 1
2ζ

∗
0

+
1

2
γLG, (15)

κLG =
2

σ

√
T

π

{[
1 +

3

4
G(φ)(1 + α)

]
κ∗
k +

2

π
φG(φ)(1 + α)

(
1 +

7c

32

)}
, (16)
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µLG =
Tσ

φ

√
πT

[
1 +

3

4
G(φ)(1 + α)

]
µ∗
k (17)

where the (reduced) kinetic contributions κ∗
k and µ∗

k are

κ∗
k =

1 + c+ 3
8G(φ)(1 + α)2

[
2α− 1 + c

2 (1 + α)
]

2(ν∗κ − 2ζ∗0 )
, (18)

µ∗
k =

ζ∗0κ
∗
k(1 + φ∂φ lnχ) +

c
4 + 3

8G(φ)(1 + α)(1 + 1
2φ∂φ lnχ)

[
α(α − 1) + c

12 (14− 3α+ 3α2)
]

2ν∗κ − 3ζ∗0
. (19)

In Eqs. (15)–(19) we have introduced the quantities [21]

ζ∗0 =
1

2
χ(φ)(1 − α2)

(
1 +

3c

32

)
, (20)

ν∗η =
1

8
χ(φ)(7 − 3α)(1 + α)

(
1 +

7c

32

)
, (21)

ν∗κ =
1

4
χ(φ)(1 + α)

[
1 +

15

4
(1− α) +

365− 273α

128
c

]
,

(22)
where

c(α) =
32(1− α)(1 − 2α2)

57− 25α+ 30α2(1− α)
(23)

is the fourth cumulant coefficient measuring the devia-
tion of the homogeneous reference state from its Gaus-
sian form. Also taking into account Eq. (12), we obtain
the expression

∂

∂φ
lnχ(φ) =





25− 7φ

(16− 7φ)(1 − φ)
for 0 ≤ φ < φf

1

(φc − φ)
for φf ≤ φ < φc

,

(24)
to be used in Eq. (19).
It is quite apparent that, except the equation of state

(13), the expressions for the Navier-Stokes transport co-
efficients of the LG theory clearly differ from those ob-
tained in the JR theory. In fact, Eqs. (14), (15), (16), and
(17) of the LG theory reduce to Eqs. (8), (9), and (10), re-
spectively, in the elastic limit (α = 1, and so ζ∗0 = c = 0).
Note that the expressions derived by Lutsko [19] neglect
in the expressions (21) and (22) of ν∗η and ν∗κ, respec-
tively, the factors of c coming from the non-Gaussian
corrections to the reference state. These extra factors
will be accounted for in our numerical results since their
effect on transport becomes non negligible at small val-
ues of α. In Fig. 1 we show the ratio between the bulk
viscosity, shear viscosity, and thermal conductivity given
by the LG and JR theories as a function of the coeffi-
cient of restitution for different packing fractions. Note
that the bulk viscosity ratio does not depend on φ. We
also observe the order of magnitude of the new term in

the heat flux due to the density gradient in the LG the-
ory with respect to the heat flux of the JR theory. The
quantitative percentage of deviation of the transport co-
efficients with the LG theory from the JR theory is quite
significant for α = 0.8 and the different packing fractions
φ used. We emphasize how the LG-term related to the
density gradient in the heat flux becomes very important
for α ≤ 0.8.
Finally, the contributions to the cooling rate are given

by

ζ0,LG =
4

σ
(1− α2)

√
T

π
G(φ)

(
1 +

3c

32

)
, (25)

ζ1,LG =
3

2
G(φ)(1−α2)

[
3

32

1
8ω

∗ − c(1 + α)(13 − α)

ν∗ζ − 3
4 (1− α2)

− 1

]
,

(26)
where

ν∗ζ = −1 + α

192
(30α3 − 30α2 + 153α− 185), (27)

ω∗ = (1 + α)
[
(1− α2)(5α− 1)

− c

12
(15α3 − 3α2 + 69α− 41)

]
. (28)

Equation (25) agrees with its corresponding counterpart
in the JR theory, Eq. (11), when one neglects the non-
Gaussian corrections to the reference state (c = 0). Note
that ζ1 vanishes in limits of elastic gases (α = 1, arbitrary
volume fraction φ) and of dilute inelastic gases (φ = 0,
arbitrary values of the coefficient of restitution α). In
Fig. 2, we plot the α-dependence of ζ1,LG. We observe
that the first-order contribution to the total cooling rate
appears to be more significant as the gas becomes denser.

C. Numerical scheme for the hydrodynamic
granular equations

The compressible Navier-Stokes-like equations for
granular materials (1), (2), and (3) are solved in con-
servation form for the convective terms, that is, we nu-
merically solve the system for the density, the momentum
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FIG. 1: Bulk viscosity ratio γLG/γJR (top), shear viscos-
ity ratio ηLG/ηJR (second), thermal conductivity ratio
κLG/κJR (third), and nµLG/TκJR ratio (bottom) as a
function of the restitution coefficient α for three differ-
ent values of the packing fraction φ: φ = 0 (solid line),

φ = 0.2 (dashed line), and φ = 0.4 (dotted line).
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FIG. 2: First order correction of the cooling coefficient for
LG theory as a function of the coefficient of restitution α
for three different values of the packing fraction φ: φ = 0
(solid line), φ = 0.2 (dashed line), and φ = 0.4 (dotted

line).

and the total energy: (n, n~u,W ) where the total energy
density W is given by

W = nT +
1

2
n|~u|2 . (29)

This system can be rewritten as a system of nonlinear
conservation laws with sources as in Ref. [7]. Local eigen-
values and both local left- and right-eigenvectors of the
Jacobian matrices of the fluxes are explicitly computable
(see Appendix of Ref. [7]). We only mention here that
the characteristic speeds of the waves in the hyperbolic
part of the equation can be written in terms of the speed
of sound, given by

c2s =
∂p

∂n
+

p

n2

∂p

∂ǫ
, (30)

for a general equation of state where p = p(n, ǫ) with the
enthalpy ǫ = T for a two dimensional system. We refer
to Ref. [7] for the full details of the numerical scheme
that here is applied to both the LG and the JR hydro-
dynamic equations since they share the same structure.
Let us just briefly mention that Navier-Stokes terms are
treated by simple centered high-order explicit in time fi-
nite difference approximations and considered as sources
for the method of lines in the time approximation. Mean-
while the Euler (convective) terms are solved in local
coordinates by a fifth-order explicit in time finite dif-
ference characteristic-wise WENO method in a uniform
grid following Refs. [18, 34]. Thus, typical wave speeds
and vectors, eigenvalues and eigenvectors of the purely
hyperbolic part, are correctly resolved.
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III. RESULTS

We have applied the traditional molecular dynamics
(MD) approach to compare the results from the two dif-
ferent hydrodynamic models, corresponding to the JR
and LG sets of kinetic coefficients. In all simulations,
the frequency of the piston motion is f = 3.75 Hz and
the amplitude is A = 5.6 particle diameters. The sys-
tem size is tuned to fit three pattern wavelengths in the
(horizontal) x-direction (125 σ), which is periodic. In the
(vertical) y-direction, the hydrodynamic simulations are
constrained into a box of finite height of 60 diameters,
whereas the MD system is not limited (particles reach
the height of 60 diameters very rarely). The coefficient
of restitution is α = 0.8 and disks are of unit mass.
The top and bottom walls in both hydrodynamic sim-

ulations are adiabatic and impenetrable. More precisely,
the normal velocity is zero at the walls, the energy flux
is zero, and the tangential velocity remains unchanged.
The simulation is carried over in the comoving frame of
the wall, and thus the force per unit mass of the simulated

system is ~F = −g(1 +A sin(2πft))~j, with ~j = (0, 1).
We refer the reader to Ref. [7] regarding the details

of the averaging procedure applied to the MD sequence,
here consisting of 1,000 cycles, which leads to the aver-
aged MD hydrodynamic fields for the density (packing
fraction), linear momentum and thermal energy. From
the latter, the temperature field is also obtained. These
are compared to the corresponding ones generated by the
two hydrodynamic simulations.
We disregard the transient originating from the initial

condition until the pattern of the Faraday instability has
fully developed and no changes are observed from period
to period. After this transient time, which takes about
50 periods of forcing, the system reveals a subharmonic
periodic dynamics where the period is twice the period of
the forcing f−1. In this regime, we fix the reference time,
t = 0 and consider the evolution of the profiles of pack-
ing fraction, Fig. 3, scaled thermal energy, Fig. 4, scaled
granular temperature, Fig. 5 and scaled kinetic energy,
Fig. 9 using Eq. (29). The subfigures (a-h) correspond
to the times t = 0; 1/4f−1; 2/4f−1; . . . ; 7/4f−1. The
corresponding position of the piston is y = −A sin 2πft.
The profiles shown in Figs. 3-5 are taken at a representa-
tive location along the abscissa, where the amplitude of
the Faraday pattern is developed. The evolution of these
profiles over the period of excitation is also presented as
supplementary online material [35], showing the profiles
at many more intermediate times.

A. Density

First of all we are going to discuss the behavior of the
packing fraction, Fig. 3. Since the packing fraction is
proportional to the number density φ = πσ2n/4, then
we will use both terms indistinctly. As in subsequent
figures, the abscissa represents the height, in diameters.
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FIG. 3: The profiles of the packing fraction (φ) as a
function of height (in units of σ) at selected times over
two oscillation periods. For time evolution of the profiles

see [35].

On the ordinate we show here the packing fraction. The
evolution is shown from left to right, and then from top
to bottom. Note that the integral of each curve is not
the same for the HD and the MD simulations since it
corresponds just to a vertical cut at a position where
the maximum height of the pattern is achieved. Total
conservation of mass is maintained in all simulations with
high accuracy, see [7] for more details.

At time t = 0, Fig. 3(a), the piston is going down
through the equilibrium position. The height of the ma-
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FIG. 4: Scaled internal energy (φT/(σg)) as a function of
height (in units of σ) at selected times over two oscillation

periods. For time evolution of the profiles see [35].

terial at this location has already grown to a maximum,
formed at the end of the previous cycle (g, h). Shortly
after this time the granular layer experiences the impact
against the bottom wall and the propagation of a shock
wave. Between (a) and (c), we see the dissolution of the
peak. We observe that the LG system is denser than the
JR at a distance of 10 diameters from the plate. Just
instants following frame (c), the layer becomes flat –so
does after frame (g), and the material floods to neigh-
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FIG. 5: Profiles of the temperature (T/(σg)) as a func-
tion of height (in units of σ) at selected times over two
oscillation periods for the MD system and the JR and
LG solutions. For time evolution of the profiles see [35].

boring positions to create peaks where valleys previously
existed. Shortly after (d), another impact with the plate
takes place. From frame (d) to frame (g), we see the
evolution of the density at a valley.
The MD sequence reveals that the maximum density

0.69 in packing fraction is smaller than in both hydro-
dynamic simulations, reaching the value 0.78. This can
be due to the irregularity of the MD pattern due to the
elasticity of the system at α = 0.80, which makes the lo-
cation of any of the peaks of the MD sequence somewhat
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uncertain. We recall that the granular Navier-Stokes
solver does not contain fluctuational –mesoscopic– contri-
butions, while the local noise is enhanced by increasing
the coefficient of restitution. That is why one needs a
factor of 20 times more cycles to obtain smooth fields, as
compared with the results at ǫ = 0.75, obtained in our
previous study [7]. There the regularity was much more
pronounced, and a much better agreement was achieved.
While the LG and JR profiles do not differ greatly,

there are some differences: the LG density is higher at the
core of peaks and valleys, as compared to the JR system
at equivalent times. Correspondingly, the packing frac-
tion at the bottom plate is smaller in the LG simulation,
and so is the minimum density (0.054 vs. the value of
0.112 obtained in the JR simulation). However, the min-
imum density in the averaged MD profile is still smaller:
0.004. Also, the impact with the plate occurs later as
compared with both hydrodynamic simulations, the de-
lay being about 0.16f−1. Therefore we may argue that
in general the LG model for the kinetic coefficients does
not greatly improve the density profile obtained with the
JR model to match the MD results. A direct comparison
of the time evolution of densities and velocity fields in
full spacial resolution can be found in the supplementary
material [35].
A zoom of the region of the MD system close to the

plate during the airborne phase will show a few particles
stuck to the base of the peaks and empty areas with no
particles at all below the valleys (Fig. 6). As a conse-
quence, the impact of the wall against the material hap-
pens at t = 0.16f−1 (instead of t = 0). We want to
remark that this piece of the system is not in the hy-
drodynamic regime at this moment, but in the Knudsen
regime, and there is little hope that any hydrodynamic
model can reproduce this feature in full detail. However
the LG model improves the dynamics of the gap formed
as compared with the JR model in the sense that the
minimum density at the bottom plate is reduced. On
the other hand, the density gradients are higher in the
LG model, a feature which is not observed in the MD
profiles, which are smoother. The differences are basi-
cally due to the presence of the coefficient µLG (Eq. (19)
of the LG model), which is absent (µJR = 0) in the JR
theory.

FIG. 6: A snapshot of the MD simulation at the max-
imum opening of the gap (t ≈ 0.12 f−1), showing the
material stuck at the bottom, between the peaks and the
plate, whereas there is a completely empty space below

the valleys.

B. Temperature and internal energy

In Figure 4 we plot the scaled internal energy, φT/(σg),
where g denotes the gravity acceleration. Here we see the
evolution of the shock wave travelling across the granular
layer. We can observe that the energy is smaller every-
where in the LG system, except at intermediate and large
heights. Remarkably, the energy of the LG shock wave is
lower than the JR after an impact with the wall, however
the remnants persist for long at larger heights. The MD
profile indicates a higher energy at the bottom after an
impact (c), as compared with both LG and JR results,
but specially with the latter. The LG shock wave is very
much damped. It also shows that the impact with the
bottom wall occurs effectively later, as pointed out when
discussing the density profiles. In addition, the MD pro-
file shows that the energy vanishes quicker than in the
LG solution. Let us examine then the temperature field.
The most striking difference between the LG and JR

solutions is the temperature field, Fig. 5. At large
heights, the LG temperature is one order of magnitude
larger than the JR. Moreover, the LG temperature gra-
dient is positive at middle heights (it starts to grow)
whereas there the JR, like the MD temperature gradi-
ent, is negative once the shock wave is dissipated. It is
clear that the term µ∇n helps to sustain large tempera-
ture gradients in the system, transferring heat from the
dense to the dilute regions at the top wall. This term is
the genuine contribution of the higher order expansions
to the kinetic coefficients, although we find no hint in
the obtained MD profile that the temperature gradient
should be positive instead of negative when ascending
from the dense to the dilute region.
As the LG temperature is higher than the JR temper-

ature at the top, the LG solution is more diffusive. Fig-
ure 7 shows the vertical component of the heat flux as a
function of height, where this effect is shown: note the
enhanced heat transport at intermediate heights, as com-
pared with the JR solution. Unlike the JR case, the LG
heat flux consists of two terms, the one coming from the
temperature gradient, and the one associated, through
the coefficient µ, to the density gradient. An analysis of
the data reveals that both terms have generally opposite
signs. The role of the latter contribution is to transfer
heat from the dense towards the dilute regions at the top,
while the former brings energy into the granulate, from
the high temperature regions at the top. Both terms are
relevant and contribute in the same order of magnitude.
So, the heat transfer dynamics is quite different in the
LG and the JR models, not only at the top but also at
the bottom plate when the impacts occur, in such a way
that gives rise to entirely different solutions for the tem-
perature field.
In general, the LG system is less diffusive very close

to the plate and more at intermediate heights and at the
top, as compared with the JR system. The viscosities
and the cooling term (see Fig. 8) also follow this pattern.
The analysis of the results allows us to conclude that
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FIG. 7: Vertical component of the (reduced) heat flux as
a function of height (in units of σ) at selected times over
two oscillation periods, for the JR and LG simulations.

For time evolution of the profiles see [35].

in the JR system, most of the energy is dissipated very
close to the plate, whereas much less is diffused; in the
LG, comparatively, there is less dissipation at the plate
and more diffusion.
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FIG. 8: The profiles of the cooling term ζnT as a func-
tion of height (in units of σ), at selected times over two
oscillation periods, for the JR and LG simulations. For

time evolution of the profiles see [35].

C. Kinetic energy and Mach number

Figure 9 shows the scaled kinetic energy profiles. An
examination of the entire sequence shows that the max-
imum of the kinetic energy is achieved at t = 0.38f−1

in the LG simulation, at t = 0.42f−1 in the JR and at
t = 0.54f−1 in the MD. The LG peak is the highest,
more than 4 times bigger than the MD, and about 50%
bigger than the JR. This shows that the LG solution for
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the velocity field is also quantitatively different from the
JR, a consequence of the inelasticity contributing to the
viscosities. Leaving aside the mismatch at the maximum,
the JR and LG solutions go close to each other, and dif-
ferently from the MD profile, due to the delayed landing
of the granular layer in the MD simulation. In any case
the comparison of the kinetic energy profiles reinforces
the quite unexpected result that the LG solution is not
closer to the MD, but even further away, than the JR.
Since the LG temperature is about one order of mag-

nitude higher than JR in the dilute region, the Mach
number is also smaller. In Fig. 10 we can see how the
differences are very relevant during the stages (c)-(d),
when the layer has achieved its maximal extension, and
where the JR Mach number is about twice that of the
LG. This is another fact showing that the LG system is
more diffusive than the JR.
The MD curve for the Mach number has been produced

using the averaged density and temperature fields into
Eq. (30) for the soundspeed, supplied with the equation
of state (13).
Unlike JR and LG theory, the second MD peak in the

Mach number is higher than the first one. Anyway LG
predicts better the behavior of the Mach number than
JR. The values of the Mach number have been computed
at the heigths shown by the red curves in Fig. 10. They
correspond to the first point, going from the dense to the
dilute phase, where the packing fraction is 0.1. There we
also find discrepancies when comparing the MD results
with those of JR and LG simulations. This is a conse-
quence of the discrepancies in the density field discussed
above.

IV. CONCLUSIONS

We have compared the Jenkins-Richman and the
Lutsko-Garzó models for the kinetic coefficients of two
dimensional granular gases in a highly nonlinear, far-
from-equilibrium problem such as the periodic impact of
a horizontal piston which gives rise to the characteristic
pattern formation of the Faraday instability. After com-
paring both theories with coarse-grained MD results, we
can conclude on the following relevant aspects.
First, we conclude that the latest knowledge available

regarding the kinetic coefficients at the Navier-Stokes
level of description is not capable of reducing the discrep-
ancy between discrete particle simulations and hydrody-
namic simulations of moderately dense, inelastic gases.
This discrepancy generally increases in the case of the

LG theory, making the less aproppriate Jenkins-Richman
a better choice when it comes to describe the temperature
field and the shock wave propagation. This fact refers
directly to the modeling of the heat flux as the major
source of mismatch.
The coefficient µ, characteristic of inelastic gases and

thus vanishing in the JR theory, constitutes the signif-
icant contribution to an enhanced heat transfer mecha-
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FIG. 9: The scaled kinetic energy profiles as a function
of height (in units of σ), at selected times over two oscil-
lation periods for the MD, JR and LG systems. For time

evolution of the profiles see [35].

nism which leads to a high temperature solution in the
dilute region, which is not supported by the particle sim-
ulations. In fact, if one makes µ = 0 while keeping the
rest of the LG coefficients in the Navier-Stokes equations,
a globally better agreement with MD is achieved as com-
pared with JR (result which has not been shown here).

The next level of description, beyond Navier-Stokes,
might prove a better approximation to problems like this
one, where the first order in the gradients expansion looks
insuficient. However it is rather surprising that the coef-
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FIG. 10: (color online) Mach number for MD system
and JR and LG theories as a function of time, along
two periods (f−1) of oscillation of the plate. The red
curves indicate the variable height (in diameters) which
corresponds to the Mach number shown. These heights
are found as the first point in vertical direction from the

plate where the packing fraction is 0.1.

ficients for the quasielastic gas work better than the more
appropriate LG theory in the Navier-Stokes description.
Although the entire domain is showing the effects of an
altered heat transfer, this is especially true in the dilute
region at the top of the system. It is interesting to note
that, for a dilute gas, which is the region of larger dis-
crepancies, the coefficient µ is very different from zero
(Fig. 1).

On the other hand, it has been found that for the
simple shear granular flow, the non-Newtonian viscosity
to be plugged into the Navier-Stokes equations is bet-
ter modeled by the elastic than the inelastic theory [30];
here we face a similar situation with respect to the heat
flux terms, diffusion mechanism which is governing the

dynamics in our problem.
These discrepancies do not imply that the LG theory is

deficient in any respect. Rather differently, they show the
limits of the Navier-Stokes description applied to com-
plex granular flow. Indeed, research on other problems
has shown its applicability —see for example [36], where
MD results of the critical length for cluster formation
in the homogeneous cooling state are successfully com-
pared with the predictions from linear stability analysis
[37] performed on the basis of the LG kinetic coefficients.
As a global conclusion, the linear theory has shown

limitations when exploring the highly nonlinear problem
of the granular Faraday instability. In spite of that, both
LG and JR models work quite well, although here —as
in some other cases, the JR elastic theory is preferable
to the more sophisticated LG development.
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