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QUOTIENT TOPOLOGICAL SPACES UNDER THE ACTION OF THE AFFINE

GROUP OF PLANAR QUADRATIC VECTOR FIELDS WITH INVARIANT LINES OF

TOTAL MULTIPLICITY FOUR AND WITH ONE REAL AND TWO COMPLEX

INFINITE SINGULARITIES

OXANA DIACONESCU1, DANA SCHLOMIUK1 AND NICOLAE VULPE2

Abstract. In this article we consider the class QSLu+vc+wc,∞
4 of all real quadratic differential systems

dx

dt
= p(x, y),

dy

dt
= q(x, y) with gcd(p, q) = 1, having invariant lines of total multiplicity four and two

complex and one real infinite singularities. We first construct compactified canonical forms for the class

QSLu+vc+wc,∞
4 so as to include limit points in the 12-dimensional parameter space of this class. We next

construct the bifurcation diagrams for these compactified canonical forms. These diagrams contain many

repetitions of phase portraits and we show that these are due to many symmetries under the group action.

To retain the essence of the dynamics we finally construct the quotient spaces under the action of the group

G = Aff(2,R)×R∗ of affine transformations and time homotheties and we place the phase portraits in these

quotient spaces. The final diagrams retain only the necessary information to capture the dynamics under

the motion in the parameter space as well as under this group action. We also present here necessary and

sufficient for an affine line to be invariant of multiplicity k for a quadratic system.

1. Introduction

We consider here real planar differential systems of the form

(1) (S)
dx

dt
= p(x, y),

dy

dt
= q(x, y),

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R, their associated vector fields

(2) D̃ = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y

and differential equations

(3) q(x, y)dx − p(x, y)dy = 0.

We call degree of a system (1) (or of a vector field (2) or of a differential equation (3)) the integer n = deg(S) =

max(deg p, deg/, q). In particular we call quadratic a differential system (1) with n = 2.

A system (1) is said to be integrable on an open set U of R2 if there exists a C1 function F (x, y) defined on

U which is a first integral of the system, i.e. such that D̃F (x, y) = 0 on U and which is nonconstant on any

open subset of U . The cases of integrable systems are rare but as Arnold said in [1, p. 405] ”...these integrable

cases allow us to collect a large amount of information about the motion in more important systems...”.

In [9] Darboux gave a method of integration of planar polynomial differential equations in terms of invariant

algebraic curves. Roughly speaking, an invariant algebraic curve of system (1) is a curve f(x, y) = 0, f(x, y) ∈
R[x, y] which is invariant under the flow. For a number of reasons it is not convenient however to consider

curves over the reals. Firstly R is not an algebraically closed field. In particular the curve x2 + y2 + 1 = 0

is empty over the reals. As all systems (1) over the reals generate systems over C, it is better to talk about
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invariant algebraic curves over C of differential systems (1) over C. The theory of Darboux was done over C
but it turns out that it can also be applied for real systems. Darboux formulated his theory for differential

equations over the complex plane.

Definition 1 (Darboux [9]). An affine algebraic curve f(x, y) = 0, f ∈ C[x, y], degf ≥ 1 is invariant for a

system (1) if and only if f | D̃f in C[x, y], i.e. k =
D̃f

f
∈ C[x, y]. In this case k is called the cofactor of f .

Definition 2 (Darboux [9]). An algebraic solution of an equation (3) (respectively of (1), (2)) is an invariant

algebraic curve f(x, y) = 0, f ∈ C[x, y] (degf ≥ 1) with f an irreducible polynomial over C.

Darboux showed that if an equation (3) (or a system (1) or a vector field (2)) possesses a sufficient number

of such invariant algebraic solutions fi(x, y) = 0, fi ∈ C[x, y], i = 1, 2, . . . , s then the equation has a first

integral of the form F = f1(x, y)
λ1 · · · fs(x, y)λs , λi ∈ C.

The simplest class of integrable quadratic systems due to the presence of invariant algebraic curves is the

class of integrable quadratic systems due to the presence of invariant lines. The study of this class was initiated

in articles [14, 18, 16, 17, 19].

An important ingredient in the classification of quadratic systems possessing invariant lines is the notion

of configuration of invariant lines of a polynomial differential system. For this notion we need the concept of

multiplicity of an invariant line.

Definition 3. We say that an invariant straight line L(x, y) = ux+vy+w = 0, (u, v) 6= (0, 0), (u, v, w) ∈ C3

for a quadratic vector field D̃ has multiplicity m if there exists a sequence of real quadratic vector fields D̃k

converging to D̃, in the topology of their coefficients, such that each D̃k has m distinct (complex) invariant

straight lines L1
k = 0, . . . ,Lm

k = 0, converging to L = 0 as k → ∞, in the topology of the complex projective

plane with homogeneous coordinates [u : v : w] ∈ P2(C), and this does not occur for m+ 1.

Definition 4. We say that Z = 0 is an invariant line of multiplicity m for a system (S) of the form (1)

if and only if there exists a sequence of systems (Si) of the form (1) such that (Si) tend to (S) when i → ∞
and the systems (Si) have m − 1 distinct invariant affine lines Lj

i = uj
ix + vji y + wj

i = 0, (uj
i , v

j
i ) 6= (0, 0),

(uj
i , v

j
i , w

j
i ) ∈ C3 (j = 1, . . . ,m− 1) such that for every j, lim

i→∞
[uj

i : v
j
i : wj

i ] = [0 : 0 : 1] and they do not have

m invariant such lines Lj
i , j = 1, . . . ,m satisfying the above mentioned conditions.

Definition 5. We call configuration of invariant lines of a system (1) the set of all its (complex) invariant

lines (which may have real coefficients), each endowed with its own multiplicity [14] and together with all the

real singular points of this system located on these lines, each one endowed with its own multiplicity.

Notation 1. We denote by QSL4 the class of all real quadratic differential systems (1) with p, q relatively

prime ((p, q) = 1), with only a finite number of singularities at infinity, and possessing a configuration of

invariant straight lines of total multiplicity M
IL

= 4 including the line at infinity and including possible

multiplicities of the lines.

The study of QSL4 was initiated in [16] where we proved a theorem of classification for this class in terms

of the configurations of invariant lines of the systems. This classification, which is taken modulo the action

of the group G of real affine transformations and time rescaling, is given in terms of algebraic invariants and

comitants and also geometrically, using cycles on the complex projective plane and divisors on the line at

infinity.

The following two results were proved in [19].

Theorem 1. Consider a quadratic system (1) in QSL4. Then this system has either a polynomial inverse

integrating factor which splits into linear factors over C or an integrating factor which is Darboux generating

in the usual way a Liouvillian first integral. Furthermore the quotient set of QSL4 under the action of the
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group G is formed by: a set of 20 orbits; a set of twenty-three one-parameter families of orbits and a set of

ten two-parameter families of orbits. A system of representatives of the quotient space is also given.

Theorem 2. i) The total number of topologically distinct phase portraits in the class QSL4 is 69.

ii) Necessary and sufficient conditions, invariant with respect to the action of the affine group and time

rescaling, are given for the realization of each one of the phase portraits corresponding to all possible configu-

rations of invariant lines.

Remark 1. In classifying planar differential systems the topological equivalence plays an important role. In

this work, to reduce the number of phase portraits by half, we say that two planar differential systems (S1)

and (S2) are topologically equivalent if and only if there exists an homeomorphism of the plane carrying orbits

to orbits and preserving or reversing globally their orientation. In the above theorems also intervenes a finer

equivalence relation: two systems are equivalent if they are in the same orbit under the action of the group G.

The topological equivalence is expected to yield a finite number of over two thousand equivalence classes for

the family QS of planar quadratic systems. On the other hand the set of equivalence classes of this second

equivalence relation is infinite. However, this second equivalence relation turns out to have great value for

studying the coarser, topological equivalence relation, as it offers the possibility of effective calculations as

illustrated in [19, 17, 18].

We are motivated for studying the systems in the quadratic class QS not only because of their usefulness

in many applications but also for theoretical reasons. Some hard problems on quadratic systems have been

open for over a century. For example the second part of Hilberts 16th problem, which asks for the maximum

number of limit cycles which a planar polynomial system of fixed degree n could have, is still open even for

quadratic differential systems (n = 2). Clearly the topological equivalence relation plays a major role for this

problem as the number of limit cycles stays constant within one equivalence class. We expect the number

of topologically distinct phase portraits of quadratic differential systems to be finite. However, to exhibit all

these distinct phase portraits is a very hard problem.

When studying a specific family of the quadratic class, the finer equivalence relation induced by the action

of the group G allows us to choose convenient normal forms depending on fewer than the twelve parameters,

the coefficients of a general quadratic system. Clearly the number of limit cycles stays constant within an

equivalence class of this finer equivalence relation.

In [2] the authors studied the class QW2 of all quadratic differential systems possessing a weak focus

of second order. The group action helped in constructing a normal form essentially depending on three

parameters for this class. In [2] the authors gave its bifurcation diagram within the 3-dimensional real

projective space. Via symmetries we can restrict ourselves to a subspace split by bifurcation surfaces into 373

parts. However we only have 95 topologically distinct phase portraits for QW2. In view of these results the

following is a legitimate, natural question:

Is it true that for distinct parts of the bifurcation diagram of some family of systems having identical phase

portraits, there exist affine transformations and time homotheties carrying one part into the other?

The careful study of this group action on the quadratic class could reduce the number of parts on which the

phase portraits need to be obtained. The equivalence relation induced by this group action is also important

because of the possibilities it offers for effective calculations using invariant polynomials (see [18, 17, 19]).

Whenever in mathematics we encounter an equivalence relation R on a structured object A it is customary

to construct its quotient object A/R, i.e. the set of equivalence classes of A and to inquire about its structure.

In particular we have the equivalence relation on QS induced by the group G of affine transformations and

time homotheties. The quotient object QS/G is a five-dimensional topological space. In view of the above

observations, it is interesting to see what kind of space this is. For example in this work for our canonical
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form one of the quotient spaces is the real line, while others are disconnected spaces with three components

homeomorphic with the interior of a disc completed with one or two open segments of its circumference.

In this article we continue the work begun in [19] by focusing our attention on the class

QSLu+vc+wc,∞
4 (i.e. systems in QSL4 having two complex (non-real) and one real singularities at infinity).

Our goals for the study of this class are the following:

• The systems in QSLu+vc+wc,∞
4 , modulo the action of the group G, split into three 2-dimensional and

two 1-dimensional families of orbits. We want to construct compactified canonical forms and compact-

ified bifurcation diagrams so as to include systems belonging to the border set of QSLu+vc+wc,∞
4 in

the 12-parameter space of the quadratic family and also to join whenever possible several of these

families into one coherent whole.

• Furthermore we would like to distinguish in these bifurcation diagrams phase portraits which are

topologically equivalent but whose algebro-geometric structures of invariant lines are distinct.

• As we shall see in some bifurcation diagrams we consider we have many repetitions of phase portraits.

Do we have repetitions of phase portraits which are due to the group action? In other words determine

all symmetries under the group action of the systems in the compactified canonical forms.

• Construct quotient spaces with respect to the action of the group G for all the compactified families

of systems mentioned above and place the corresponding configurations and phase portraits on these

quotient spaces. The resulting diagrams are much simpler and they retain the essence of the dynamics

when parameters vary and when we also allow the group to act. Moreover these bifurcation diagrams

reveal some interesting phenomena which could not be detected in previous studies. For example, a

symmetric system with center and the line at infinity filled up with singularities (Picture C2.2(b)) is a

limit point in the parameter space of systems with centers of the Lotka-Volterra type (Picture 4.2(c)).

This fact first observed on Diagram 2(M) was proved in [13, Theorem 3.2] illustrating the action of

invariant polynomials in constructing bifurcations in the 12-dimensional space R12.

In this article we reach the goals stated above. The bifurcation diagrams and quotient spaces we construct

here are one and two-dimensional, a long way from the five-dimensional quotient space of the whole quadratic

class. However, these diagrams and quotient spaces form stepping stones in that direction. We will use them

later on, in the construction of the bifurcation diagrams for the class of quadratic systems with invariant

lines of total multiplicity at least three, class which contains systems with limit cycles. The quotient space for

this class, under the action of the group G, is three-dimensional and will include as subspaces, the quotient

spaces we construct here. The class of quadratic systems with invariant lines of total multiplicity at least three

includes the Lotka-Volterra differential systems, a class of dynamical systems important for many applications.

Work by D. Schlomiuk and N. Vulpe on the bifurcation diagram in R12 for the Lotka-Volterra class was done in

[20], [21]. The class we study here includes the family of systems with two complex invariant lines intersecting

at a real point which is a different family of quadratic systems with invariant lines of total multiplicity at least

three and which also contains systems with limit cycles. Work is in progress for completing the study of all

quadratic systems with invariant lines of total multiplicity three.

This article is organized as follows:

In Section 2 we give the preliminary definitions and results needed in this article.

In Section 3 we give our main results. In Subsection 3.1 we present necessary and sufficient for an affine

line to be invariant of multiplicity k for a quadratic system.

In Subsection 3.2 we construct compactified canonical forms for all families of quadratic systems (S) ∈
QS with invariant lines of total multiplicity at least four and having one real and two complex (non-real)

singularities at infinity.

In Subsection 3.3 we construct bifurcation diagrams for all the canonical forms obtained in Section 3. We

also construct the quotient spaces obtained from these canonical forms when we identify points via the action
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of the group of G. The information given in these last diagrams is easier to read as many redundancies have

been eliminated and they focus on the essence of the dynamics under the group action.

2. Preliminary statements and definitions

Consider real differential systems of the form:

(4) (S)





dx

dt
= p0(a) + p1(a, x, y) + p2(a, x, y) ≡ p(a, x, y),

dy

dt
= q0(a) + q1(a, x, y) + q2(a, x, y) ≡ q(a, x, y),

where a = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) and

p0(a) = a00, p1(a, x, y) = a10x+a01y, p2(a, x, y) = a20x
2+2a11xy+a02y

2,

q0(a) = b00, q1(a, x, y) = b10x+b01y, q2(a, x, y) = b20x
2+2b11xy+b02y

2.

Notation 2. R[a, x, y] = R[a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02, x, y]. We shall use the notation

a = (a00,a10 . . . , b02) whenever we need to indicate a specified point in R12 and not the parameter a =

(a00, a10 . . . , b02). Each particular system (4) yields an ordered 12-tuple a formed by its coefficients.

Definition 6. A formal expression of the form ∆ =
∑

n(w)w where w ∈ P2(C), n(w) is an integer and only

a finite number of the numbers n(w) are not zero, is called a zero-cycle of P2(C) and it is called a divisor of

the line Z = 0 if w only belongs to this line. We call degree of the expression ∆ the integer deg(∆) =
∑

n(w).

We call support of ∆ the set Supp (∆) of points w such that n(w) 6= 0.

Notation 3. Let
P (X,Y, Z) =p0(a)Z

2 + p1(a,X, Y )Z + p2(a,X, Y ) = 0,

Q(X,Y, Z) =q0(a)Z
2 + q1(a,X, Y )Z + q2(a,X, Y ) = 0.

Definition 7.

∆
S
(C,Z) =

∑

w∈{Z=0}
Iw(C,Z)w if Z ∤ C(X,Y, Z),

SuppDS(C,Z) = {ω ∈ P2(C)|Iw(C,Z) 6= 0},
where C(X,Y, Z) = Y P (X,Y, Z)−XQ(X,Y, Z), Iw(F,G) is the intersection number (see, [10]) of the curves

defined by homogeneous polynomials F, G ∈ C[X,Y, Z], deg(F ), deg(G) ≥ 1 and {Z = 0} = {[X : Y :

0] | (X,Y ) ∈ C2 \ (0, 0)}.

A complex projective line uX + vY + wZ = 0 is invariant for the system (S) if either it coincides with

Z = 0 or it is the projective completion of an invariant affine line ux+ vy + w = 0.

Notation 4. Let (S) ∈ QS . Let us denote

IL(S) =

{
l

∣∣∣∣∣
l is a line in P2(C) such
that l is invariant for (S)

}
;

M(l) = the multiplicity of the invariant line l of (S).

Remark 2. We note that the line l∞ : Z = 0 is included in IL(S) for any (S) ∈ QS .

Let li : fi(x, y) = 0, i = 1, . . . , k, be all the distinct invariant affine lines over C of a system (S) ∈ QS .

Let l′i : Fi(X,Y, Z) = 0 be the complex projective completion of li.

It is known that on the set QS of all quadratic differential systems (4) acts the group Aff(2,R) of affine

transformations on the plane (cf. [14]). For every subgroup G ⊆ Aff(2,R) we have an induced action of G

on QS . We can identify the set QS of systems (4) with a subset of R12 via the map QS −→ R12 which

associates to each system (4) the 12-tuple a = (a00, . . . , b02) of its coefficients.
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Our work here is based on our previous papers [16], [19] where we gave necessary and sufficient conditions,

in terms of algebraic invariants, for a quadratic system to have invariant straight lines of total multiplicity

four.

For the definitions of an affine or GL-comitant or invariant as well as for the definition of a T -comitant and

CT -comitant we refer the reader to [15] (see also [5]). Here we shall only construct the necessary invariant

polynomials associated to configurations of invariant lines for the class of quadratic systems with exactly four

invariant lines including the line at infinity and including multiplicities.

We recall further below some results in [14], [15], [23] which will be needed.

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2.

As it was shown in [22] the polynomials

(5)
{
C0(a, x, y), C1(a, x, y), C2(a, x, y), D1(a), D2(a, x, y)

}

of degree one in the coefficients of systems (4) are GL-comitants of these systems.

Notation 5. Let f, g ∈ R[a, x, y] and

(6) (f, g)(k) =

k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

(f, g)(k) ∈ R[a, x, y] is called the transvectant of index k of (f, g) (cf. [11], [12]).

Theorem 3. [23] Any GL-comitant of systems (4) can be constructed from the elements of the set (5) by

using the operations: +, −, ×, and by applying the differential operation (f, g)(k).

Notation 6. Consider the polynomial Φα,β = αP + βQ ∈ R[a,X, Y, Z, α, β] where P = Z2p(X/Z, Y/Z),

Q = Z2q(X/Z, Y/Z), p, q ∈ R[a, x, y] and max(deg(x,y)p, deg(x,y)q) = 2. Then

Φα,β = c11(α, β)X
2 + 2c12(α, β)XY + c22(α, β)Y

2 + 2c13(α, β)XZ+

+ 2c23(α, β)Y Z + c33(α, β)Z
2, ∆(a, α, β) = det ||cij(α, β)||i,j∈{1,2,3} ,

D(a, α, β) = 4∆(a,−β, α), H(a, α, β) = 4
[
det ||cij(−β, α)||i,j∈{1,2}

]
.

Lemma 1. [14] Consider two parallel invariant affine lines Li(x, y) ≡ ux + vy + wi = 0, Li(x, y) ∈ C[x, y],
(i = 1, 2) of a quadratic system (S) of coefficients a. Then H(a,−v, u)=0, i.e. the T-comitant H(a, x, y)

captures the directions of parallel invariant lines of systems (4).

We construct the following T -comitants:

Notation 7.

(7)

B3(a, x, y) = (C2, D)(1) = Jacob (C2, D) ,

B2(a, x, y) = (B3, B3)
(2) − 6B3(C2, D)(3),

B1(a) = Res x (C2, D) /y9 = −2−93−8 (B2, B3)
(4)

,

where by Res x(∗, ∗) we denote the resultant with respect to x of the corresponding polynomials.

Lemma 2. [14] A necessary condition for the existence of one (respectively 2; 3) invariant straight line(s) in

one (respectively 2; 3 distinct) directions in the affine plane is B1 = 0 (respectively B2 = 0; B3 = 0).
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Let us apply a translation x = x′ + x0, y = y′ + y0 to the polynomials p(a, x, y) and q(a, x, y). We obtain

p̃(ã(a, x0, y0), x
′, y′) = p(a, x′ +x0, y

′+ y0), q̃(ã(a, x0, y0), x
′, y′) = q(a, x′ +x0, y

′+ y0). Let us construct the

following polynomials

Γi(a, x0, y0) ≡ Res x′

(
Ci

(
ã(a, x0, y0), x

′, y′
)
, C0

(
ã(a, x0, y0), x

′, y′
))

/(y′)i+1,

Γi(a, x0, y0) ∈ R[a, x0, y0], (i = 1, 2).

Notation 8.

(8) Ẽi(a, x, y) = Γi(a, x0, y0)|{x0=x, y0=y} ∈ R[a, x, y] (i = 1, 2).

Observation 1. We note that the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) are affine comitants of systems (4)

and are homogeneous polynomials in the coefficients a00, . . . , b02 and non-homogeneous in x, y and degaẼ1 =

3, deg (x,y)Ẽ1 = 5, degaẼ2 = 4, deg (x,y)Ẽ2 = 6.

Notation 9. Let Ei(a,X, Y, Z) (i = 1, 2) be the homogenization of Ẽi(a, x, y), i.e.

E1(a,X, Y, Z) = Z5Ẽ1(a,X/Z, Y/Z), E2(a,X, Y, Z) = Z6Ẽ1(a,X/Z, Y/Z)

and H(a,X, Y, Z) = gcd
(
E1(a,X, Y, Z), E2(a,X, Y, Z)

)
in R[a,X, Y, Z].

The geometrical meaning of these affine comitants is given by the following two lemmas:

Lemma 3. [14] Let (S) ∈ QS and let a ∈ R12 be its 12-tuple of coefficients. The straight line L(x, y) ≡
ux+ vy + w = 0, u, v, w ∈ C, (u, v) 6= (0, 0) is an invariant line for this system if and only if the polynomial

L(x, y) is a common factor of the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) over C, i.e.

Ẽi(a, x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2),

where W̃i(x, y) ∈ C[x, y].

Lemma 4. [14] Let (S) ∈ QS and let a ∈ R12 be its 12-tuple of coefficients. 1) If L(x, y) ≡ ux+ vy+w = 0,

u, v, w ∈ C, (u, v) 6= (0, 0) is an invariant straight line of multiplicity k for a quadratic system (4) then

[L(x, y)]k | gcd(Ẽ1, Ẽ2) in C[x, y], i.e. there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2) such that

(9) Ẽi(a, x, y) = (ux+ vy + w)kWi(a, x, y), i = 1, 2.

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(E1, E2).

Let us consider the following GL-comitants of systems (4):

Notation 10.

M(a, x, y) = 2Hess
(
C2(a, x, y)

)
, η(a) = Discriminant

(
C2(a, x, y)

)
,

K(a, x, y) = Jacob
(
p2(a, x, y), q2(a, x, y)

)
, µ(a) = Discriminant

(
K(a, x, y)

)
,

N(a, x, y) = K(a, x, y) +H(a, x, y), θ(a) = Discriminant
(
N(a, x, y)

)
.

The geometrical meaning of these invariant polynomials is revealed by the next 2 lemmas.

Lemma 5. [14] Let (S) ∈ QS and let a ∈ R12 be its 12-tuple of coefficients. The common points of P = 0 and

Q = 0 on the line Z = 0 are given by the common linear factors over C of p2(x, y) and q2(x, y). Moreover,

deg gcd(p2(x, y), q2(x, y)) =





0 iff µ(a) 6= 0;

1 iff µ(a) = 0, K(a, x, y) 6= 0;

2 iff K(a, x, y) = 0.

Lemma 6. [14] A necessary condition for the existence of one couple (respectively, two couples) of parallel

invariant straight lines of a system (4) corresponding to a point a ∈ R12 is the condition θ(a) = 0 (respectively,

N(a, x, y) = 0).
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From [15] it easily follows

Lemma 7. [15] The type (as defined in [14]) of the divisor DS(C,Z) on Z = 0 for systems (1) is determined

by the corresponding conditions indicated in Table 1, where we write ωc
1 + ωc

2 + ω3 if two of the points, i.e.

ωc
1, ω

c
2, are complex but not real. Moreover, for each type of the divisor DS(C,Z) given in Table 1 the quadratic

systems (1) can be brought via a linear transformation to one of the following canonical systems (SI)− (SV )

corresponding to their behavior at infinity.

Table 1

Case Type of DS(C,Z)
Necessary and sufficient

conditions on the comitants

1 ω1 + ω2 + ω3 η > 0

2 ωc
1 + ωc

2 + ω3 η < 0

3 2ω1 + ω2 η = 0, M 6= 0

4 3ω M = 0, C2 6= 0

5 DS(C,Z) undefined C2 = 0





dx

dt
= k + cx+ dy + gx2 + (h− b)xy,

dy

dt
= l + ex+ fy + (g − b)xy + hy2;

(SI)





dx

dt
= k + cx+ dy + gx2 + (h+ b)xy,

dy

dt
= l + ex+ fy − bx2 + gxy + hy2;

(SII)





dx

dt
= k + cx+ dy + gx2 + hxy,

dy

dt
= l + ex+ fy + (g − b)xy + hy2;

(SIII )





dx

dt
= k + cx+ dy + gx2 + hxy,

dy

dt
= l + ex+ fy − bx2 + gxy + hy2,

(SIV )





dx

dt
= k + cx+ dy + gx2,

dy

dt
= l + ex+ fy + gxy.

(SV )
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In this paper we shall also use the following invariant polynomials, constructed in papers [14]–[19]:

H1(a) = −
((
(C2, C2)

(2), C2

)(1)
, D

)(3)
;

H2(a, x, y) = (C1, 2H −N)
(1) − 2D1N ;

H3(a, x, y) = (C2, D)(2);

H4(a) =
(
(C2, D)(2), (C2, D2)

(1)
)(2)

;

H5(a) =
(
(C2, C2)

(2), (D,D)(2)
)(2)

+ 8
(
(C2, D)(2), (D,D2)

(1)
)(2)

;

H6(a, x, y) = 16N2(C2, D)(2) +H2
2 (C2, C2)

(2);

H7(a) = (N,C1)
(2);

H8(a) = 9
(
(C2, D)(2), (D,D2)

(1)
)(2)

+ 2
[
(C2, D)(3)

]2
;

H9(a) = −
((

(D,D)(2), D,
)(1)

D
)(3)

;

H10(a) =
(
(N,D)(2), D2

)(1)
;

H11(a, x, y) = 8H
[
(C2, D)(2) + 8(D,D2)

(1)
]
+ 3H2

2

N1(a, x, y) = C1(C2, C2)
(2) − 2C2(C1, C2)

(2),

N2(a, x, y) = D1(C1, C2)
(2) −

(
(C2, C2)

(2), C0

)(1)
,

N3(a, x, y) = (C2, C1)
(1)

,

N4(a, x, y) = 4 (C2, C0)
(1) − 3C1D1,

N5(a, x, y) =
[
(D2, C1)

(1) +D1D2

]2 − 4
(
C2, C2

)(2)(
C0, D2

)(1)
,

N6(a, x, y) = 8D + C2

[
8(C0, D2)

(1) − 3(C1, C1)
(2) + 2D2

1

]
,

G1(a) = ((C2, Ẽ)(2), D2)
(1),

G2(a) = 8H8 − 9H5,

G3(a) = (µ0 − η)H1 − 6η(H4 + 12H10),

where µ0(a) = Res x(p2, q2)/y
4 (µ = 4µ0) and

Ẽ(a, x, y) =
[
D1(2ω1 − ω2)− 3(C1, ω1)

(1) −D2(3ω3 +D1D2)
]
/72,

ω1(a, x, y) = (C2, D2)
(1)

, ω2(a, x, y) = (C2, C2)
(2)

, ω3(a, x, y) = (C1, D2)
(1)

.

To construct other needed invariant polynomials we use the differential operator L = x · L2 − y · L1 acting

on R[a, x, y] (see [4]), where

L1 = 2a00
∂

∂a10
+ a10

∂

∂a20
+

1

2
a01

∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1

2
b01

∂

∂b11
,

L2 = 2a00
∂

∂a01
+ a01

∂

∂a02
+

1

2
a10

∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1

2
b10

∂

∂b11
.

Using the affine invariant µ0(a) we construct the following polynomials:

µi(a, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4;

κ(a) = (M,K)(2)/4; κ1(a) = (M,C1)
(2);



10 O. DIACONESCU, D. SCHLOMIUK AND N. VULPE

L(a, x, y) = 4K(a, x, y) + 8H(a, x, y)−M(a, x, y);

R(a, x, y) = L(a, x, y) + 8K(a, x, y);

K1(a, x, y) = p1(x, y)q2(x, y)− p2(x, y)q1(x, y);

K2(a, x, y) = 4 Jacob(J2, ξ) + 3 Jacob(C1, ξ)D1 − ξ(16J1 + 3J3 + 3D2
1);

K3(a, x, y) = 2C2
2 (2J1 − 3J3) + C2(3C0K − 2C1J4) + 2K1(3K1 − C1D2),

where L(i)(µ0) = L(L(i−1)(µ0)) and

J1 = Jacob(C0, D2), J2 = Jacob(C0, C2), J3 = Discrim(C1),

J4 = Jacob(C1, D2), ξ = M − 2K.

We shall also use the following remark:

Remark 3. Assume s, γ ∈ R, γ > 0. Then the transformation x = γsx1, y = γsy1 and t = γ−st1 does

not change the coefficients of the quadratic part of a quadratic system, whereas each coefficient of the linear

(respectively constant ) part will be multiplied by γ−s (respectively by γ−2s).

3. Main results

3.1. Necessary and sufficient conditions for a line to an invariant of multiplicity k of a system

in QS. We use some results, definitions and notations introduced in paper [6].

Definition 8. ([6, Definition 5.1]) If X is a polynomial vector field on C2, the n-th extactic curve En(X)

of X is given by the equation

En(X) ≡ det




v1 v2 . . . vl

X(v1) X(v2) . . . X(vl)
. . .. . . . . .. . .

X l−1(v1) X l−1(v2) . . . X l−1(vl)




= 0,

where v1, v2, . . . , vl is a basis of Cn[x, y], the C-vector space of polynomials in Cn[x, y] of degree at most n,

and and we take l = (k + 1)(k + 2)/2, X0(vi) = vi and Xj(v1) = X(Xj−1(v1)).

Proposition 1. ([6, Proposition 5.2]) Assume that f(x, y) = 0 is an invariant algebraic curve of degree n of

a polynomial vector field X. Then f(x, y) is a factor of the polynomial En(X).

Definition 9. ([6, Definition 5.4]) An invariant algebraic curve f = 0 of degree n for a vector field X has

algebraic multiplicity k if fk divides En(X) and k is the greatest positive integer satisfying this condition.

Definition 10. ([6, Definition 6.1]) An invariant algebraic curve f = 0 of degree n of the vector field X has

geometric multiplicity m if m is the largest integer for which there exists a sequence of vector fields (Xi)i>0

of bounded degree, converging to hX, for some polynomial h, not divisible by f , such that each Xr has m

distinct invariant algebraic curves, fr,1 = 0, . . . , fr,m = 0, of degree at most n, which converge to f = 0 as r

goes to infinity. If we set h = 1 in the definition above, then we say that the curve has strong geometric

multiplicity m.

Remark 4. Here by convergence of the vector fields we understand convergence in the topology of their

coefficients. By the convergence of a sequence of algebraic algebraic curves fr,1 = 0, . . . , fr,m = 0 of degree

at most n to an algebraic curve f = 0 of degree n we understand convergence in the topology of the complex

projective space PN (C), where N = (n+ 1)(n+ 2)/2 of all these curve towards f = 0.

Remark 5. We note that our Definition 3 of multiplicity of an invariant line coincides with the concept of

strong geometric multiplicity above in the case of lines.

According to [6] we have the next result.
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Proposition 2. ([6, Main Theorem]) Algebraic multiplicity and strong geometric multiplicity of an invariant

algebraic curve of a polynomial vector field X coincide.

Using the invariant polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) associated to a quadratic differential system,

defined in Section 2 and Lemmas 3 and 4 we arrive at the next result.

Theorem 4. Consider an affine straight line L(x, y) = ux+ vy +w = 0, (u, v) 6= (0, 0), (u, v, w) ∈ C3. This

line is an invariant line of multiplicity k for a quadratic vector field D̃ if and only if Lk divides the greatest

common divisor of the invariant polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) (Lk| gcd
(
Ẽ1(a, x, y), Ẽ2(a, x, y)

)
).

Proof: Consider an affine straight line L(x, y) = ux+ vy+w = 0, (u, v) 6= (0, 0), (u, v, w) ∈ C3. According to

Lemma 3 this line is an invariant line for a quadratic differential system if and only if the polynomial L(x, y)
is a common factor of the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) over C, i.e.

Ẽi(a, x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2),

where W̃i(x, y) ∈ C[x, y].

On the other hand by Definition 9 this invariant line has algebraic multiplicity k, if and only if Lk divides

the first extactic polynomial E1(D̃).

For quadratic vector fields X a straightforward calculation gives

E1(D̃) = P ·X(Q)−Q ·X(P ) = −Ẽ1(a, x, y).

According to Proposition 2 the algebraic multiplicity coincides with the strong geometric multiplicity.

Therefore according to Lemma 4, Lk divides the greatest common divisor of the invariant polynomials

Ẽ1(a, x, y) and Ẽ2(a, x, y). Since E1(D̃) = −Ẽ1(a, x, y) this completes the proof of the Theorem.

3.2. Construction of compactified canonical forms.

Theorem 5. (i) Any system (S) ∈ QSL4 with divisor DS(C,Z) = ωc
1 +ωc

2 + ω3 can be brought via an affine

transformation and time rescaling to one of the following four canonical forms depending on the parameter

[b : g : h] ∈ P2[R] for (10)–(12) and on [c : d] ∈ P1[R] for (13):

ẋ = gx2 + (h+ b)xy,

ẏ = h[g2 + (h+ b)2] + (g2 + b2 − h2)x+ 2ghy − bx2 + gxy + hy2;(10)

ẋ = gx2 + (h+ b)xy, ẏ = −b+ g x+ (h− b)y − bx2 + gxy + hy2;(11)

ẋ = gx2 + (h+ b)xy, ẏ = −bx2 + gxy + hy2;(12)

ẋ = 2cx+ 2dy, ẏ = c2 + d2 − x2 − y2.(13)

(ii) All systems (S) ∈ QSL4 included in the family (10) (respectively (11); (12); (13)) have the configuration

of invariant lines Config. 4.2 (respectively Config. 4.6 or 4.7; Config. 4.8; Config. 4.27) and lie in the affine

chart corresponding to b 6= 0 for (10)–(12) and to d 6= 0 for (13).

Proof: According to Lemma 7 the systems with this type of divisor can be brought by linear transformations

to the canonical form (SII) for which we calculate the main classifying invariant polynomials (see Table 2

[19]):

(14)
θ =8b(h+ b)[(h− b)2 + g2], C2 = bx(x2 + y2),

N =(g2 − 2bh+ 2b2)x2 + 2g(h+ b)xy + (h2 − b2)y2.
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Remark 6. We observe that the condition C2 = 0 is equivalent to b = 0 and this leads to systems with the

line at infinity filled up with singularities. This class was studied in [18].

Remark 7. We note that two of the infinite singular points of the systems (SII) are not real. Therefore

according to [16] a system in this class could belong to QSL4 only if for this system the condition B3 = 0

holds.

In what follows we shall assume that for a system (SII) the condition B3 = 0 is fulfilled.

We view P2[R] as a disk with opposite points on the circumference identified. We use the homogeneous

coordinates [b : g : h] for P2[R] placing the line b = 0 on the circumference of the disk.

3.2.1. The case θ 6= 0. The condition θ 6= 0 yields (h+ b) 6= 0 and we may assume c = d = 0 in (SII) via the

translation x → x− d/(h+ b) and y → y + (2dg − c(h+ b))/(h+ b)2. Thus we obtain the systems

(15) ẋ = k + gx2 + (h+ b)xy, ẏ = l + ex+ fy − bx2 + gxy + hy2,

for which we have: Coefficient[B3, y4] = −3bk(h + b)2. Therefore since θ 6= 0 the condition B3 = 0 implies

k = 0 and we have

B3 = 3b[ef(h+ b) + 2gl(h− b)− f2g]x2(x2 − y2) + 6b[bf2 + efg − e2h+ l(h− b)2 − g2l]x3y.

So, the condition B3 = 0 yields the following system of equations

(16)
Eq1 ≡ ef(h+ b) + 2g(h− b)l − f2g = 0,

Eq2 ≡ bf2 + efg − e2h+
[
(h− b)2 − g2]l = 0.

Both equations are linear in l. We first note that we cannot have both coefficients of l zero. Indeed, if we

suppose g(h− b) = (h− b)2 − g2 = 0 then this contradicts θ 6= 0.

Hence, at least one of the coefficients in front of l is not zero. We consider two subcases: g(h− b)
[
(h− b)2−

g2
]
6= 0 and g(h− b)

[
(h− b)2 − g2

]
= 0.

3.2.1.1. The subcase g(h − b)
[
(h − b)2 − g2

]
6= 0. In this case we calculate Res l(Eq1, Eq2) = (be − eh +

fg)[2egh+ f(h2− b2− g2)]. We observe that for systems (15) with k = 0 we have: H7 = 4(h+ b)[be− eh+ fg]

and we shall consider two possibilities: H7 6= 0 and H7 = 0.

3.2.1.1.1. The possibility H7 6= 0. Then the equality Res l(Eq1, Eq2) = 0 yields 2egh = f(g2 + b2 − h2).

Since θ 6= 0 from (14) we have (gh)2 + (g2 + b2 − h2)2 6= 0 then without loss of generality we may set:

e = (g2 + b2 − h2)u and f = 2ghu where u is a new parameter. Therefore from (16) we obtain

g(h− b)
[
l − hu2(g2 + (h+ b)2)

]
= 0 =

[
(h− b)2 − g2

][
l − hu2(g2 + (h+ b)2)

]

and hence, l = hu2[g2 + (h+ b)2]. In this case H7 = 4u(h+ b)2[g2 + (h− b)2] 6= 0 and we may assume u = 1

via Remark A (γ = u, s = 1). This leads to the systems:

(17)
ẋ = gx2 + (h+ b)xy,

ẏ = h[g2 + (h+ b)2] + (g2 + b2 − h2)x+ 2ghy − bx2 + gxy + hy2.

Hence the conditions

(18) η < 0, B3 = 0, θ 6= 0, H7 6= 0

necessarily lead us to the canonical form (17), which coincides with (10) and which according to Table 2 ([19])

due to (18) includes the systems with Config. 4.2.

We now observe that the change of parameter (b, g, h) 7→ (λb, λg, λh) leads to a system (Sλ) equivalent to

(17) under the group action. Indeed the change (x, y, t) 7→ (λx, λy, λ−2t) applied to (Sλ) yields a system of

the family (17).
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Remark 8. We point out that whenever we have the conditions (18), they lead us to the canonical form (17).

However not every system of the form (17) satisfies these conditions. Hence if not all three parameters are

zero, the parameter space is P2(R) for the form (17) and it contains points in the border of the set of the

systems possessing the Config. 4.2.

3.2.1.1.2. The possibilityH7 = 0. Then e(h−b) = fg and since the condition θ 6= 0 yields g2+(h−b)2 6= 0, we

may assume e = gu and f = (h−b)u, where u is a new parameter. Then from (16) we have g(h−b)(l+bu2) =

0 = [(h− b)2 − g2](l + bu2). Due to g2 + (h− b)2 6= 0 we obtain l = −bu2 and this leads to the systems:

(19) ẋ = gx2 + (h+ b)xy, ẏ = −bu2 + gu x+ u(h− b)y − bx2 + gxy + hy2.

For these systems we have H9 = 2304b4u8(h+ b)8.

1) The case H9 6= 0. Then u 6= 0 and we may assume u = 1 via Remark 3 (γ = u, s = 1). So we get the

family of systems

(20) ẋ = gx2 + (h+ b)xy, ẏ = −b+ g x+ (h− b)y − bx2 + gxy + hy2

which coincides with (11) and which includes the systems with the Configurations 4.6 and 4.7. Due to the

transformation (x, y, t) 7→ (x, y, t/λ) the parameter here could be consider Λ = [b : g : h] ∈ P2(R).

2) The case H9 = 0. Then u = 0 and we obtain the family of systems

(21) ẋ = gx2 + (h+ b)xy, ẏ = −bx2 + gxy + hy2,

i.e. the family (12), which includes the systems with Configuration 4.8. Due to the transformation (x, y, t) 7→
(x, y, t/λ)) the parameter here could be consider Λ = [b : g : h] ∈ P2(R).

3.2.1.2. The subcase g(h−b)
[
(h−b)2−g2

]
= 0. Here we have to do a case by case discussion, more precisely,

we must consider the cases: g = 0, h = b and g = ±(h− b).

Considering the equations (16) it is not too hard to show, that in each one of the cases mentioned above

we also arrive at one of the systems (17) or (19).

3.2.2. The case θ = 0. According to (14) we have b(h+ b)[(h− b)2 + g2] = 0.

3.2.2.1. The subcase N 6= 0. Then assuming b 6= 0 (see Remark 6) by (14) the condition θ = 0 yields h = −b

and in addition we may assume f = 0 due to the translation: x → x and y → y + f/(2b). Hence, we obtain

the systems

(22) ẋ = k + cx+ dy + gx2, ẏ = l + ex− bx2 + gxy − by2,

for which by Remark 7 the condition B3 = 0 must be satisfied. Calculations yield: H7 = 4d(g2 + 4b2),

Coefficient[B3, y
4] = −3 bd2g. So the condition B3 = 0 implies dg = 0. According to [16] for systems (22)

to be in the class QSL4 the condition d 6= 0 (i.e. H7 6= 0) must be fulfilled. Then g = 0 and we may

assume e = 0 via the translation: x → x + e/(2b), y → y. After that for systems (22) calculations yield:

B3 = 12b3kx2(x2 − y2)− 6(c2 − 4bl+ d2)x3y. Therefore the condition B3 = 0 yields k = 0 and 4bl = c2 + d2.

As b 6= 0 due to time rescalling we may set b = 1 and replacing c with 2c and d with 2d we get the systems:

(23) ẋ = 2cx+ 2dy, ẏ = c2 + d2 − x2 − y2,

i.e. the family (13), which includes the systems with Configuration 4.27. Due to the transformation (x, y, t) 7→
(λx, λy, λ−1t) the parameter here is Λ = [c : d] ∈ P1(R).

3.2.2.2. The subcase N = 0. According to [16] in this case systems (SII) cannot belong to the class QSL4.

Since all the cases were analysed Theorem 5 is proved.
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3.3. Construction of bifurcation diagrams. There are the systems for which we have η < 0 (see Table

1, page 8) and each such system has the configuration of invariant lines corresponding to one of the configu-

rations Config. 4.j, j=2,6,7,8,27 (see [16]). Pictures for corresponding configurations together with invariant

conditions are listed in Diagram 1 where we also have the bifurcation diagram in R12 for this family in terms

of invariant polynomials.

We shall examine these configurations one by one.

3.3.1. Configuration 4.2.

Theorem 6. (i) The family (10) contains as a subfamily representatives of all the systems with configuration

Config. 4.2 and has the projective plane as a parameter space. The bifurcation diagram of the family (10)

is indicated in Diagram 2 which contains 10 topologically distinct phase portraits. These are stratified as

folllows: 4 of them have systems with configuration Config. 4.2 and Pictures 4.2(i) (i ∈ {a, b, c, d}. The

remaining portraits correspond to systems which are

• degenerate (D4, D8, D9, D10)

• with the line at infinity filled up with singularities (Picture C2.2(a) and Picture C2.2(b))

• with invariant lines of total multiplicity five (Picture 5.10, which is topologically equivalent to Picture

D.10)

• with 6 invariant lines (Picture 6.4, which is topologically equivalent to Picture 4.2(d))

All systems have at least 3 distinct affine invariant lines (one real line and two complex)

(ii) The family (10) yields a quotient topological space homeomorphic to a closed disk modulo the group

action. This orbit space carries the bifurcation diagram indicated in Diagram 2(M) where we give all phase

portraits of systems in the family as well as their corresponding configurations of invariant lines.

(iii) In this diagram the subspace of orbits of systems with configuration Config. 4.2 is disconnected with

three connected components, two of which homeomorphic to the interior of a disc completed with an open arc

of its circumference and one of them is homeomorphic to the interior of a disc completed with two open arcs

with a common limiting point on its circumference. Two of these three components have systems with the

same phase portrait Picture 4.2 (a) with a focus and a saddle and the third component with Picture 4.2(b)

has a focus and a center. On the first two arcs we have a center and a saddle and on the arcs for the third

component we have two centers.

Proof: According to Theorem 5 all the systems having the Configuration 4.2 are included in the family:

(24)
ẋ = gx2 + (h+ b)xy,

ẏ = h[g2 + (h+ b)2] + (g2 + b2 − h2)x+ 2ghy − bx2 + gxy + hy2,

where [b : g : h] ∈ P2(R).

We construct now the bifurcation diagram for this canonical form. This diagram will be drawn on the

projective plane viewed on the disk with opposite points on the circumference identified. We place on the

circumference the line b = 0.

3.3.1.1. The case b 6= 0. Then we may consider b = 1 and following the Table 2 of [19] we compute invariant

polynomials necessary for each one of the Pictures 4.2(u), u ∈ {a, b, c, d}:

(25)

θ = 8(h+ 1)[g2 + (h− 1)2], µ0 = −h[g2 + (h+ 1)2], B3 = 0,

G1 = 2g(h+ 1)[g2 + (3h+ 1)2], H7 = 4(h+ 1)2[g2 + (h− 1)2],

N = (g2 − 2h+ 2)x2 + 2g(h+ 1)xy + (h2 − 1)y2.
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Diagram 1. Phase portraits: the case η < 0
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3.3.1.1.1. The subcase µ0 6= 0. We consider two possibilities: θ 6= 0 and θ = 0.

1) The possibility θ 6= 0. This implies H7 6= 0 and according to [19] the phase portrait of a system

(24) with b = 1 corresponds to Picture 4.2(a) (respectively Picture 4.2(b); Picture 4.2(c); Picture 4.2(d))

if µ0 > 0, G1 6= 0 (respectively µ0 > 0, G1 = 0; µ0 < 0, G1 6= 0; µ0 < 0, G1 = 0). So, if θµ0 6= 0, i.e.

h(h + 1)[g2 + (h − 1)2][g2 + (h + 1)2] 6= 0 then we end up with the phase portraits above indicated placed

inside the circle of Diagram 2.

Diagram 2. Bifurcation diagram associated to Config. 4.2

2) The possibility θ = 0. Then (h+ 1)[g2 + (h− 1)2] = 0 and we consider two cases: N 6= 0 and N = 0.

a) Assume first N 6= 0. Then considering (25) we get h = −1 and we have:

B3 = θ = H1 = 0, µ0 = g2 6= 0, N = (g2 + 4)x2 6= 0.

So, according to [17] the phase portrait of systems (24) in this case corresponds to Picture 5.10.

b) Suppose now N = 0. From (25) we obtain h = 1, g = 0 and then we have B3 = N = 0, H1 = 36864 > 0.

Hence, by [15] we get Picture 6.4.
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3.3.1.1.2. The subcase µ0 = 0. Then h[g2 + (h+ 1)2] = 0.

1) If h = 0 then we get the family of degenerate systems

(26) ẋ = gx2 + xy, ẏ = (g2 + 1)x− x2 + gxy.

We observe, that the associated linear systems possess a focus if g 6= 0 and for g = 0 the system (26) possesses

a center. Considering the affine line x = 0 filled up with singularities, we get Picture D.8 if g 6= 0 and Picture

D.9 if g = 0.

2) Assuming g = h+1 = 0 we get the degenerate system ẋ = 0, ẏ = −(x2+ y2) the phase portrait of which

is given by Picture D.10.

3.3.1.2. The case b = 0. Then from (24) we get the following family of systems:

(27) ẋ = gx2 + hxy, ẏ = h[g2 + h2] + (g2 − h2)x+ 2ghy + gxy + hy2,

possessing the infinite line filled up with singularities. For these systems according to Table 1 of [18] we

calculate:

C2 = 0, H10 = 36h4(g2 + h2)2, H9 = 2304h12(g2 + h2)4, N7 = 16gh3(g2 + 9h2).

Hence, if H10 6= 0 then h 6= 0 and this implies H9 > 0. According to [18] in this case the phase portrait of

systems (27) corresponds to Picture C2.2(a) if N7 6= 0 (i.e. g 6= 0) and to Picture C2.2(b) if N7 = 0 (i.e.

g = 0).

For H10 = 0 we get h = 0 and this leads to degenerate systems ẋ = gx2, ẏ = gx(g + y), where g 6= 0 due to

the condition g2 + h2 + b2 6= 0 for the family of systems (24). Clearly in this case we get Picture D.4.

We now see that the portraits on the left-hand side (g < 0) of Diagram 2 coincide with those on the

right-hand side (g > 0) and we wonder if they could be identified via the group action. Indeed, this is the case

as we see by using the transformation (x, y, t) 7→ (x,−y,−t) inducing the map (b, g, h) 7→ (b,−g, h). Therefore

we can limit ourselves to the case g ≥ 0 and thus we can discard the left-hand side of this diagram. We check

if under the group action we can still identify points. It can be easily verified that two systems corresponding

to two distinct points inside the half disk cannot lie on the same orbit. Secondly we limit ourselves to the

line b = 0. In the affine chart corresponding to g = 1 using the coordinates (b, h), the line b = 0 becomes

the h-axis. In the resulting equations, via the transformation (x, y, t) 7→ (−x, y,−t) we can change h to −h

obtaining a system in the same orbit. So we can identify the points with h ≥ 0 with those with h ≤ 0. On

the other hand one can easily prove that two systems with b = 0 and |h1| 6= |h2| cannot lie on the same orbit.

Projecting the cone obtained by identifying the points with h > 0 with those with h < 0 on the disk with

circumference the line g = 0, and placing on this picture the portraits previously obtained for the half disk of

Diagram 2 we obtain Diagram 2(M).

3.3.2. Configurations 4.6 and 4.7.

Theorem 7. (i) The family (11) contains as a subfamily representatives of all the systems with configurations

Config. 4.6 and Config. 4.7 and has the projective plane as a parameter space. The bifurcation diagram of the

family (11) is indicated in Diagram 3 which contains 5 topologically distinct phase portraits. These are

stratified as folllows: 3 of them have systems with configuration Config. 4.6 with Pictures 4.6(i) (i ∈ {a, b, }
and Config. 4.7 with Picture 4.7. The remaining portraits correspond to systems which are

• degenerate (D4, D10)

• with invariant lines of total multiplicity five (Picture 5.10, which is topologically equivalent to D10 )

• with 6 invariant lines (Picture 6.3, which is topologically equivalent to the Picture 4.6(b) )

(ii) The family (11) yields a quotient topological space homeomorphic to a closed disk modulo the group

action. This orbit space carries the bifurcation diagram indicated in Diagram 3(M) where we give all phase

portraits of systems in the family as well as their corresponding configurations of invariant lines.
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Diagram 2(M) Bifurcation diagram on the quotient space

(iii) In this diagram the subspace of orbits of systems with configurations Config. 4.6 and Config. 4.7 is dis-

connected with three connected components, each of which is homeomorphic to the interior of a disk completed

with an open arc of its circumference. Two of these components have the same phase portrait Picture 4.6(a)

with a node and a saddle and the third one with phase portrait Picture 4.6(b) with two nodes.

Proof: According to Theorem 5 all the systems having the Configurations 4.6 and 4.7 are included in the

family:

(28) ẋ = gx2 + (h+ b)xy, ẏ = −b+ g x+ (h− b)y − bx2 + gxy + hy2,

where [b : g : h] ∈ P2(R). We construct now the bifurcation diagram for this canonical form. This diagram

will be drawn on the projective plane viewed on the disk with opposite points on the circumference identified.

We place on the circumference the line b = 0.

3.3.2.1. The case b = 1. Then for systems (28) calculations yield:

(29)
θ = 8(h+ 1)[g2 + (h− 1)2], µ0 = −h[g2 + (h+ 1)2], B3 = H7 = 0,

N = (g2 − 2h+ 2)x2 + 2g(h+ 1)xy + (h2 − 1)y2, H9 = 2304(h+ 1)8.

3.3.2.1.1. The subcase µ0 6= 0, i.e. h[g2+(h+1)2] 6= 0. We shall consider two possibilities: θ 6= 0 and θ = 0.

1) Assume θ 6= 0. Then we have h + 1 6= 0 and this implies H9 6= 0. According to [19] the phase portrait

of a system (28) with b = 1 corresponds to Picture 4.6(a) if µ0 > 0 (i.e. h < 0) and to Picture 4.6(b) if
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µ0 < 0 (i.e. h > 0). So, if g(h+ 1)[g2 + (h− 1)2][g2 + (h+ 1)2] 6= 0 then we arrive to the situation given by

Diagram 3.

Diagram 3. Bifurcation diagram associated to Configs. 4.6 and 4.7

2) Suppose now θ = 0. Then (h + 1)[g2 + (h − 1)2] = 0 and we shall consider two subcases: H9 6= 0 and

H9 = 0.

a) If H9 6= 0 then from (29) we have h+ 1 6= 0 and hence we get g = 0 and h = 1. So, from (28) we get a

single system, for which calculation yields: B3 = N = 0 and H1 = −9216 < 0. According to [17] the phase

portrait of this system corresponds to Picture 6.3.

b) Assume now H9 = 0, i.e. h = −1. Then we get the family of systems

(30) ẋ = gx2, ẏ = −1 + g x− 2y − x2 + gxy − y2,

for which we have θ = B3 = H1 = 0, µ0 = g2, N = (g2 + 4)x2. Since µ0 6= 0 according to [17] the phase

portrait of systems (30) corresponds to Picture 5.10.

3.3.2.1.2. The subcase µ0 = 0. In this case we have h[g2 + (h+ 1)2] = 0.

1) If h = 0 then we get the family of systems

(31) ẋ = gx2 + xy, ẏ = −1 + g x− y − x2 + gxy,

for which we have θ = 8(g2 + 1), B3 = H7 = µ0 = 0. So, by [19] the phase portrait of these systems

corresponds to Picture 4.7.

2) Assuming g = h+ 1 = 0 we get the degenerate system ẋ = 0, ẏ = −x2 − (y + 1)2 the phase portrait of

which is given by Picture D.10.
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Diagram 3(M) Bifurcation diagram on the quotient space

3.3.2.2. The case b = 0. Then from (28) we get the following family of degenerate systems:

(32) ẋ = x(gx+ hy), ẏ = (y + 1)(gx+ hy),

possessing the affine singular line gx + hy = 0 (as for for systems (28) we have b2 + g2 + h2 6= 0). Then we

get the phase portrait Picture D.4.

We observe that the transformation (x, y) 7→ (−x, y) change the sign of the parameter g in systems (28).

Then the portraits on the left-hand side (g < 0) of Diagram 3 coincide with those on the right-hand side

(g > 0) and they are identified under the group action. Therefore we can limit ourselves to the case g ≥ 0

and thus we can discard the left-hand side of this diagram.

Firstly we observe that under the group action we cannot identify systems corresponding to points inside

the half disk as it can easily be seen. However on the line b = 0 in the affine chart corresponding to g = 1 using

the coordinates (b, h), the line b = 0 becomes the h-axis. In the resulting equations, via the transformation

(x, y, t) 7→ (−x, y,−t) we can change h to −h obtaining a system in the same orbit. Moreover we can actually

identify via the group action any two systems corresponding to two points 0 6= |h1| 6= |h2| 6= 0 on the line

b = 0.

So we first identify the points with h ≥ 0 with those with h ≤ 0. Projecting the cone thus obtained on

the disk with circumference the line g = 0 and placing on this picture the portraits previously obtained for

the half disk of Diagram 3 we obtain Diagram 3 (M). In view of the previous arguments we can identify
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all the points from the open segment corresponding to Picture D.4 with the point on the disk with phase

portrait Picture D.4.

Remark 9. We observe that the moduli space thus obtained is not Hausdorff. Indeed, the two points obtained

via the group action from the segment mentioned above cannot be separated in the topology of this moduli

space.

3.3.3. Configuration 4.8.

Theorem 8. (i) The family (12) contains as a subfamily representatives of all the systems with configuration

Config. 4.8 and has the projective plane as a parameter space. The bifurcation diagram of the family (12) is

indicated in Diagram 4 which contains 5 topologically distinct phase portraits. These are stratified as follows:

2 of them have systems with configuration Config. 4.8 and phase portraits Pictures 4.8(i) (i ∈ {a, b, }. The

remaining portraits correspond to systems which are

• degenerate (D7, D10 (equivalent to Picture 4.8(a)), D11, D12)

• with invariant lines of total multiplicity five (Picture 5.10, topologically equivalent to pictures D10 and 4.8(a))

• with 6 invariant lines (Picture 6.6 which is topologically equivalent to Pictture 4.8(b) )

(ii) The family (13) yields a quotient topological space homeomorphic to a closed disk modulo the group

action. This orbit space carries the bifurcation diagram indicated in Diagram 4(M) where we give all phase

portraits of systems in the family as well as their corresponding configurations of invariant lines.

(iii) In this diagram the subspace of orbits of systems with configuration Config. 4.8 is disconnected with

three connected components, each of which is homeomorphic to the interior of a disc completed with an open

arc of its circumference. Two of these components have systems phase portraits Picture 4.8(a) and the third

one has Picture 4.8(b).

Proof: According to Theorem 5 all the systems having the Configuration 4.8 are included in the family:

(33) ẋ = gx2 + (h+ b)xy, ẏ = −bx2 + gxy + hy2,

where [b : g : h] ∈ P2(R). We construct now the bifurcation diagram for this canonical form. This diagram

will be drawn on the projective plane viewed on the disk with opposite points on the circumference identified.

We place on the circumference the line b = 0.

3.3.3.1. The case b = 1. Then for systems (33) calculations yield:

(34)
θ = 8(h+ 1)[g2 + (h− 1)2], µ0 = −h[g2 + (h+ 1)2], B3 = H7 = 0,

N = (g2 − 2h+ 2)x2 + 2g(h+ 1)xy + (h2 − 1)y2, H9 = 0.

3.3.3.1.1. The subcase µ0 6= 0, i.e. h[g2 + (h+ 1)2] 6= 0 and we shall consider two cases: θ 6= 0 and θ = 0.

1) Assume first θ 6= 0. Then we have h+ 1 6= 0 and according to [19] the phase portrait of a system (33)

with b = 1 corresponds to Picture 4.8(a) if µ0 > 0 (i.e. h < 0) and to Picture 4.8(b) if µ0 < 0 (i.e. h > 0).

So, if g(h+ 1)[g2 + (h− 1)2][g2 + (h+ 1)2] 6= 0 then we arrive to the situation given by Diagram 4.

2) Admit now θ = 0. Then (h+ 1)[g2 + (h− 1)2] = 0.

a) If h = −1 then we get the family of systems

(35) ẋ = gx2, ẏ = −x2 + gxy − y2,

for which we have θ = B3 = H1 = 0, µ0 = g2, N = (g2 + 4)x2. Since µ0 6= 0 according to [17] the phase

portrait of systems (30) corresponds to Picture 5.10.

b) Assume now g = 0 and h = 1. So, from (33) we get a single system, for which calculation yields:

B3 = N = H1 = 0. So, according to [17] the phase portrait of this system corresponds to Picture 6.6.
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Diagram 4. Bifurcation diagram associated to Config. 4.8

3.3.3.1.2. The subcase µ0 = 0. In this case we have h[g2 + (h+ 1)2] = 0.

1) If h = 0 then we get the family of degenerate systems

(36) ẋ = x(gx+ y), ẏ = x(−x + gy).

We observe that for the respective linear systems the point (0, 0) is a focus if g 6= 0 (Picture D.11 ) and it is

a center if g = 0 (Picture D.12 ).

2) Assuming g = h+1 = 0 we get the degenerate system ẋ = 0, ẏ = −(x2+ y2) the phase portrait of which

is given by Picture D.10.

3.3.3.2. The case b = 0. Then from (33) we get the following family of degenerate systems:

(37) ẋ = x(gx+ hy), ẏ = y(gx+ hy),

possessing the affine singular line gx + hy = 0 (as for systems (33) we have b2 + g2 + h2 6= 0). Then we get

the phase portrait Picture D.7.

We now see that the portraits on the left-hand side (g < 0) of Diagram 4 coincide with those on the

right-hand side (g > 0) and we wonder if they could be identified via the group action. Indeed, this is the

case as we see by using the transformation (x, y, t) 7→ (−x, y, t). Therefore we can limit ourselves to the case

g ≥ 0 and thus we can discard the left-hand side of this diagram.

Firstly we observe that under the group action we cannot identify systems corresponding to points inside the

half disk as it can easily be shown. However on the line b = 0 in the affine chart corresponding to g = 1 using

the coordinates (b, h), the line b = 0 becomes the h-axis. In the resulting equations, via the transformation

(x, y, t) 7→ (x,−y, t) we can change h to −h obtaining a system in the same orbit. Moreover we can actually

identify via the group action any two systems corresponding to two points |h1| 6= |h2| on the line b = 0.
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Diagram 4(M) Bifurcation diagram on the quotient space

So we first identify the points with h ≥ 0 with those with h ≤ 0. Projecting the cone thus obtained on the

disk with circumference the line g = 0 and placing on this picture the portraits previously obtained for the

half disk of Diagram 4 we obtain Diagram 4(M). In view of the previous arguments we can identify all the

points from the segment corresponding to Picture D.7 with the point on the disk with phase portrait Picture

D.7. Because all the cases were considered Theorem 8 is proved.

3.3.4. Configuration 4.27.

Theorem 9. (i) The family (13) contains as a subfamily representatives of all the systems with configuration

Config. 4.27 and has the projective line as a parameter space. The bifurcation diagram of the family (13) is

indicated in Diagram 5 which contains 3 topologically distinct phase portraits. These are stratified as folllows:

2 of them have systems with configuration Config. 4.27 with phase portraits Pictures 4.27(i) (i ∈ {a, b, }. The
remaining portrait corresponds to systems with invariant lines of total multiplicity five (Picture 5.9)

(ii) The family (13) yields a quotient topological space homeomorphic to S1 modulo the group action. This

orbit space carries the bifurcation diagram indicated in Diagram 5(M) where we give all phase portraits of

systems in the family as well as their corresponding configurations of invariant lines.

(iii) In this diagram the subspace of orbits of systems with configuration 4.27 is the complement of a point

in S1 which have phase portraits with a focus and a saddle and a phase portrait with saddle and a center.
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Proof: According to Theorem 5 all the systems having the Configuration 4.27 are included in the family:

(38) ẋ = 2cx+ 2dy, ẏ = c2 + d2 − x2 − y2

with [c : d] ∈ P1(R), for which we calculate:

B3 = θ = 0, N = x2, H7 = 32d, G1 = 16c.

1) If H7 6= 0 then according to [19] the phase portrait corresponds to Picture 4.27(a) if G1 6= 0 (i.e. c 6= 0)

and to Picture 4.27(b) if G1 = 0 (i.e. c = 0).

2) Assume now H7 = 0, i.e. d = 0. In this case for systems (38) we have µ0 = 0, H6 = 0 and according to

[17] the phase portrait of these systems with d = 0 and c 6= 0 corresponds to Picture 5.9.

Diagram 5 Diagram associated to Config. 4.27 Diagram 5(M) Bifurcation in quotient space

We consider the projective line as a circle with opposite points on diameters identified. Then the bifurcation

diagram is indicated in Diagram 5. We observe that under the action of the affine group and time rescaling

the systems corresponding to the points points [c1 : d1] and [c2 : d2] could not be identified, unless these are

opposite points on the circle.

Discarding the left hand-side of this diagram and identifying the north and south poles we obtain the

Diagram 5(M).
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Mathématiques, 2me série, 2 (1) (1878), 60-96; 123-144; 151-200.

[10] W. Fulton, Algebraic curves. An introduction to Algebraic Geometry, W.A. Benjamin, Inc., New York, 1969.

[11] J. H. Grace, A. Young, The algebra of invariants. New York: Stechert, 1941.

[12] P.J. Olver, Classical Invariant Theory. London Mathematical Society student texts: 44, Cambridge University Press, 1999.

[13] D. Schlomiuk, Topological and polynomial invariants, moduli spaces, in classification problems of polynomial vector fields,

Publ. Mat. Vol. extra (2014), 461–496.

[14] D. Schlomiuk, N. Vulpe, Planar quadratic differential systems with invariant straight lines of at least five total multiplicity,

Qualitative Theory of Dynamical Systems, 5 (2004), 135–194.

[15] D. Schlomiuk, N. Vulpe, Geometry of quadratic differential systems in the neighborhood of infinity, J. Differential Equa-

tions, 215 (2005), 357–400.

[16] D. Schlomiuk, N. Vulpe, Planar quadratic differential systems with invariant straight lines of total multiplicity four,

Nonlinear Anal., Theory, Methods and Appl. 68 (2008), 681–715.

[17] D. Schlomiuk, N. Vulpe, Integrals and phase portraits of planar quadratic differential systems with invariant lines of at

least five total multiplicity, Rocky Mountain J. Math. 38 (2008), 2015–2076.

[18] D. Schlomiuk, N. Vulpe, The full study of planar quadratic differential systems possessing exactly one line of singularities,

finite ore infinite, J. Dynam. Differential Equations 20 (2008), 737–775.

[19] D. Schlomiuk, N. Vulpe, Integrals and phase portraits of planar quadratic differential systems with invariant lines of total
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