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Abstract

In 2012 V. Cruz, J. Mateu and J. Orobitg published a T(1) theorem for the Beurling
transform in the complex plane. It asserts that given 0 < s <1, 1 <p < o0 with sp > 2 and a
domain {2 ¢ C with smooth boundary, the Beurling transform Bf = —p,v.ﬁ # f is bounded
in the Sobolev space W*?(Q) if and only if Bxo € W*P(Q2). They prove this result for a
certain family of operators of even kernel in any ambient space R? when sp > d. In a recent
paper, the first author and Tolsa proved that there is a similar situation for Sobolev spaces
of smoothness s € N, and the assumption on the smoothness was relaxed to any Lipschitz
domain. They stated that this was also possible for uniform domains.

In this paper we prove that the T(1) theorem remains true for 0 < s < 1 for any uniform
domain and for a larger family of Calderén-Zygmund operators in any ambient space R¢ as
long as sp is greater than the dimension of the ambient space. In the process we show the
existence of an extension operator for Triebel-Lizorkin spaces in uniform domains F,, ,(€2) and
we define some equivalent norms for them which are of some interest by themselves.

1 Introduction

The aim of the present article is to find necessary and sufficient conditions on certain singular inte-
gral operators to be bounded in fractional Sobolev spaces of a uniform domain 2 with smoothness
0 < s < 1. However, the results are valid in F;q(Q), that is, the so-called Triebel-Lizorkin spaces,

when s > max {0 d_ 4}.

pq
Consider 0 < o < 1. An operator T defined for f € Li, (R?) and x € R¥\supp(f) as
Tfl) =) K@—y)f(y)dy,
R

is called an admissible convolution Calderdn-Zygmund operator of order o if it is bounded in LP(R%)
for every 1 < p < o0 and its kernel K satisfies the size condition

C
|K(x)] < ﬁ for every x # 0
x
and the Lipschitz smoothness condition
Crlyl”

|K(z —y) - K(z)] <

S Tl for every 0 < 2Jy| < |z]
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(see Section 2 for more details). In the present article we deal with some properties of the operator
T truncated to a domain , defined as To(f) = xaT(xa f).
In the complex plane, for instance, the Beurling transform, which is defined as the principal

value
Bf(z) := L lim _fw)

T e0 Jw—z|>e (Z - w)2

dm(w),

is an admissible convolution Calderén-Zygmund operator of any order with kernel K(z) = 7?122_
In the article [CMO13], Victor Cruz, Joan Mateu and Joan Orobitg, seeking for some results

on the Sobolev smoothness of quasiconformal mappings proved the next theorem.

Theorem (see [CMO13]). Let Q  R? be a bounded C'*¢ domain (i.e. a Lipschitz domain with
parameterizations of the boundary in C17¢) for a given e > 0, and let 1 <p < o0 and 0 < s < 1
such that sp > 2. Then any truncated Calderén-Zygmund operator Tq with smooth, homogeneous
and even kernel is bounded in the Sobolev space W*P(Q) if and only if T (xq) € WP(Q).

Later, Xavier Tolsa and the first author of the present paper, studied the case s € N, finding
the following T'(P) Theorem.

Theorem (see [PT15]). Let Q < R be a Lipschitz domain, T a convolution Calderén-Zygmund
operator with kernel K satisfying

. 1
|V]K($)|<CW forall0<j<n,z#0,

and p > d. Then the following statements are equivalent:
a) The truncated operator Tq is bounded in W™P(Q).
b) For every polynomial P of degree n — 1, we have that To(P) € W™P(Q).

The notation is explained in Section 2. Note that the kernels are not assumed to be even, and
the conditions on the smoothness of the domain are relaxed. The authors assert that the theorem
is valid even for uniform domains.

In the present paper we study again the fractional smoothness, but we deal with the case of uni-

form domains (see Section 3) for Triebel-Lizorkin spaces Fj, with 1 <p,q < o0, max {0, % - %} <

s < 1. Let us note here to illustrate that in case ¢ = 2 we deal with the Sobolev fractional spaces
WP and in case ¢ = p then we deal with the Besov spaces B ,. To avoid misunderstandings, the
reader must be aware that the B, , spaces are called also Sobolev spaces in some books, while the
W$P spaces are sometimes called Bessel potential spaces. See Section 5 for all the definitions of
these spaces.

Our main result is the following.

Theorem 1.1. Let Q < R? be a bounded uniform domain, T an admissible convolution Calderdn-
Zygmund operator of order 0 < o < 1. Consider indices p,q € (1,00) and ;% < s < o. Then the
truncated operator Tq is bounded in F; () if and only if we have that To(1) € F; ().

To prove this result we will need an equivalent norm for F7 . The following result is not present
in the literature in its full generality, but it is found for the Sobolev case in [Ste61] and for the
general Triebel-Lizorkin case when s > m in [Tri83, Theorem 2.5.10]. The result as stated

below will be a corollary of some results in [Tri06].



Theorem 1.2 (see Corollary 5.5). Let 1 < p <o, 1 <g< o0 and 0 < s <1 with s > % — g.

Then,
" 1
.= max(p.a) . HORFOIAEFAN
Fy, =1 fermipa .IfILp+<de<fRd o gra W) o) <o,

(with the usual modification for ¢ = ), in the sense of equivalent norms.

The restriction s > 4 — € is sharp, as we will see in Remark 4.2. One can find some equivalent

norms for Triebel-Lizorkin spaces in terms of differences using means on balls which avoid this
restriction. We refer the reader to [Str67] or [Tri83, Corollary 2.5.11].
Given a domain (2, we say that f € F; () if there is a function h € Fs’q(Rd) such that

hlo = fla. The norm [ f|ps (o) will be defined as the infimum of the norms |hlFs gy for all

admissible h. Our method is based on an intrinsic characterization of this norm, inspired by the
previous theorem. We define

sl \E

Indeed, this norm will be equivalent to the Triebel-Lizorkin one for uniform domains:

| f]

Theorem 1.3. Let Q < R? be a bounded uniform domain, 1 < p,q < © and 0 < s < 1 with
d d s : ; s ;
s> 73— 5. Then feF; () if and only if f € A} () and the norms are equivalent.

To prove this result we will use Theorem 1.2 and the following extension Theorem:

Theorem 1.4. Let Q < R? be a bounded uniform domain, 1 < p,q < © and 0 < s < 1 with
s> % — %. Then there exists a bounded operator Ao : Aj, () — F;,q(Rd) such that Ao flo = f for
every f e Ay ().

However, in the proof of Theorem 1.1 we will make use of a functional which is closely related
to || 45 (- Call d(z) = dist(x, 02). Consider the Carleson boxes (or shadows) Sh(x) := {y € Q :

ly — x| < cqd(x)} with cq > 1 to be fixed (see Section 3). Then we have the following reduction
for the Triebel-Lizorkin norm:

Theorem 1.5 (See Corollary 7.3.). Let Q < R? be a bounded uniform domain, 1 < p < q <
and 0 < s <1 with s > % — %. Then f € F,; ,(Q) if and only if

@ = fwlr ")
vion + e el dr < 00.
171200 J;z <Lh(z) |z — y|satd Y

Furthermore, the left-hand side of the inequality above is equivalent to the norm || f|

Fs (@)
The situation is even better when p > ¢:

Theorem 1.6 (See Corollary 7.3.). Let Q < R? be a bounded uniform domain, 1 < ¢ < p < 0,
0<s<land0<p<1. Then fe F; () if and only if

@ —rwe Y
flle + f J. ——dy dx < ©.
1£1 2o ) o U@ psy o —ylPrte

Furthermore, the left-hand side of the inequality above is equivalent to the norm | f|| p. @)
p,q



The plan of the paper is the following. In Section 2 we set up the notation. In Section 3
we define uniform domains in the spirit of [Jon81] but from a dyadic point of view and then we
prove some basic properties of those domains. The expert reader may skip this part. Section 4
is devoted to proving Lemma 4.4 which is about the change of the domain of integration in the
norm Aj (€2). This Lemma, together with Theorem 1.3, which is proven in Section 5, leads to
Theorem 1.5 (see Corollary 7.3). Section 5 begins with some remarks on Triebel-Lizorkin spaces,
followed by the proof of the implicit characterization of Triebel-Lizorkin spaces given in Theorem
1.2, the Extension Theorem 1.4 and, as a corollary, Theorem 1.3. Section 6 is the core of the paper,
and it contains the proof of the T(1) Theorem 1.1. The key Lemma 6.6 is a discretization of the
transform of a function and it is the cornerstone of the mentioned theorem. Finally, in Section 7
we prove Theorem 1.6 for the sake of completeness of the present article.

2 Notation

On inequalities: When comparing two quantities z; and x5 that depend on some parameters
D1, --.,p; we will write
r1 < sz‘ly»--spij T2

if the constant Cpi17~~-7pij depends on p;,,...,p;;. We will also write x; Spi17'“7pij 9 for short, or
simply x1 < x5 if the dependence is clear from the context or if the constants are universal. We
may omit some of these variables for the sake of simplicity. The notation Rpiysepi; T2 will

mean that x; Spiyepi, T2 and o Sml,.,_,pij T7.

On cubes: GiveJn a cube @, we write £(Q) for its side-length. Given two cubes @, S, we
define their long distance as D(Q, S) = £(Q) + dist(Q, S) + £(S). Given a real number p, we define
pQ as the cube concentric to @), with ratio p and faces parallel to the faces of Q.

For any cube @ and any function f, we call fg = JEQ f dm to the mean of f in Q.

On conjugate indices: Given 1 < p < o0 we write p’ for its Holder conjugate, that is

1 1 _
Lyl

3 On uniform domains

There is a considerable literature on uniform domains and their properties, we refer the reader e.g.
to [GO79] and [V&iss].

Definition 3.1. Given a domain 2, we say that a collection of open dyadic cubes W is a Whitney
covering of Q if they are disjoint, the union of the cubes and their boundaries is S, there exists a
constant Cyy such that

CWl(Q) < dist(Q, 002) < 4CwH(Q),

two neighbor cubes Q and R (i.e., @ n R # &) satisfy £(Q) < 20(R), and the family {50Q}oew

has finite superposition. Moreover, we will assume that

Sc5Q = 49) = Q). (3.1)

N

The existence of such a covering is granted for any open set different from R¢ and in particular
for any domain as long as Cyy is big enough (see [Ste70, Chapter 1] for instance).



Figure 3.1: A Whitney decomposition of an (e, o0)-uniform domain with and an e-admissible chain.
The end-point cubes are colored in red and the central one in blue.

Definition 3.2. Let Q be a domain and W a Whitney decomposition of Q and Q,S € W. Given
M cubes Q1,...,Qn € W with Q1 = Q and Qp = S, the M-tuple (Ql,...,QM)jNil e WM
is a chain connecting Q and S if the cubes Q; and Q;11 are neighbors for j < M. We write

[Q,5]=(Q1,...,Qum)}L, for short.
Let e € R. We say that the chain [Q, S] is e-admissible if

e the length of the chain is bounded by

S
m | =

D(Q,S) (3.2)

J

(@, 5 = ), HQ)) <
1

e and there exists jo < M such that the cubes in the chain satisfy
0Q;) 2 eD(Q1,Q;) for all j < jo  and  £(Q;) = eD(Q;, Q) for all j = jo. (3.3)

The jo-th cube, which we call central, satisfies that £(Qj,) Za €D(Q, S) by (3.3) and the triangle
inequality. We will write Qg = Qj,. Note that this is an abuse of notation because the central cube
of [Q, S] may vary for different e-admissible chains joining @ and S.

We write (abusing notation again) [Q,S] also for the set {Q; }]Ail Thus, we will write P €
[Q, S] if P appears in a coordinate of the M-tuple [Q, S]. For any P € [Q,S] we call Ng,¢(P)



to the following cube in the chain, that is, for j < M we have that /\f[Q,s](Qj) = Qj+1. We will
write N'(P) for short if the chain to which we are referring is clear from the context.
Every now and then we will mention subchains. That is, for 1 < j1 < jo < M, the subchain

[ansz][Q,S] c [Q,S] is defined as (Qj,, Qjy+1,---,Qj,). We will write [Qj,,Qj,] if there is no

risk of confusion.

Definition 3.3. Let ¢,6 € R. We say that a domain Q  R? is an (g, d)-uniform domain if there
exists a Whitney covering W of Q such that for any pair of cubes Q,S € W with D(Q, S) < 4,
there exists an e-admissible chain [Q, S] (see Figure 3.1).

Next we make some observations on the two subchains [@, Qs] and [@s, S]-.

Remark 3.4. Consider a domain Q with covering W and two cubes Q, S € W with an e-admissible
chain [Q, S]. From Definition 3.2 it follows that

D(Q,S) = U([Q, S]) ~e,a U(Qs) ~ea D(Q, Qs) ~:a D(Qs, 5). (34)
If Pe[Q,Qs], by (3.3) we have that
D(Q, P) ~a, ((P) (3.5)

On the other hand, by the triangular inequality, (3.2) and (3.3) we have that

D(P,5) <a ([P, 5]) < (([Q,S])

~d )

. D(@.S) _ DQ.P)+D(P.S) _ H(P)+D(P,S)
3 3 3

that 1is,
D(P7 S) Re,d D(Q7 S) (36)

Using (3.6) it is quite easy to see that a domain satisfying this definition satisfies to the one
given by Peter Jones in [Jon81] (changing the parameters € and ¢ if necessary). It is somewhat
more involved to prove the converse implication, but it can be done using the ideas of Remark
3.4. In any case it is not transcendent for the present paper to prove this fact, which is left for the
reader as an exercise.

Now we can define the shadows:

Definition 3.5. Given a cube P € VW centered at xp and a real number p, the p-shadow of P is
the collection of cubes
SH,(P) = {Q e W : Q < Blap, pl(P))}
and its “realization” is the set
shr) = | ©
QeSH,(P)
(see Figure 3.2).

By the previous remark and the properties of the Whitney covering, we can define p. > 1 such
that the following properties hold:

o |diam (02 n Sh,_(P))| =~ (P).
o For every e-admissible chain [Q, S], and every P € [Q, Qs] we have that Q € SH,_(P).

e Moreover, every cube P belonging to an e-admissible chain [Q,S] belongs to the shadow
SHPE(QS)-



Figure 3.2: The shadow Shy3(P).

Note that the first property comes straight from the properties of the Whitney covering, while
the second is a consequence of (3.5) and the third holds because of the fact that if P € [@, S] then

D(P,Qs) <a U([Q,S]) # D(Q,S) ~ £(Qs) by (3.4).

Remark 3.6. Given an (g,0)-uniform domain Q we will write Sh for Sh,_. We will write also
SH for SH,_.

If Q € SH(P) and ¢(P) < C (with C depending on ¢ and the Whitney constants), we can grant
that D(Q, P) < § and, therefore, there exists an e-admissible chain [Q, P].

For Q € W and s > 0, we have that

DAL T < UQ)TE (3.7)

L:QeSH(L)

and, moreover, if Q € SH(P) with {(P) < C, then

DAL Saw U(P)* and doUn) T UQ)T. (3.8)

Le[Q,P] Le[Q,P]

Proof. We only need to prove (3.7) and (3.8). Considering the definition of shadow we can deduce
that there is a bounded number of cubes with given side-length in the left-hand side of (3.7) and,
therefore, the sum is a geometric sum. Again by the definition of shadow we know that the smaller
cube in that sum has side-length comparable to ¢(Q).

To prove (3.8), first note that 4(Qp) ~ D(Q,P) ~ £(P) by (3.4) and Definition 3.5. For
every L € [Q, P], although it may occur that L ¢ SH(P), we still have that by the triangle
inequality D(L, P) < ¢([Q, P]) ~ D(Q, P) and, thus, by the definition of shadow we have that
D(L,P) < {(P), i.e.

D(L, P) = {(P). (3.9)

When L € [Q,Qp], (3.5) reads as
(L) ~D(Q, L),

and when L € [@Qp, P] by (3.5) and (3.9), we have that
{L) ~D(L, P) ~ ¢P).

In particular, the number of cubes in [@Qp, P] is uniformly bounded. Summing up, for L € [Q, P]
we have that ¢(Q) < ¢(L) < £(P) and all the cubes of a given sidelength r contained in [Q, P]



are situated at a distance from ) bounded by Cr. so the number of those cubes is uniformly
bounded. Therefore, the left-hand side of both inequalities of (3.8) are geometric sums, bounded
by a constant times the bigger term. The constant depends on s, but also on the uniformity
constants of the domain. O

4 Properties of A) on uniform domains.

Next we introduce a norm which will be the main tool for the proofs in this paper.

Definition 4.1. Consider 1 <p< o, 1<g¢g< o and0<s <1 with s> % — g. Let U be a open
set in R%. We say that a measurable function f € A J(U) if

e The function f e LP(U).

o The seminorm

1

17y = ( [ (], Wdy)gdm>p e (w.1)

| f]

Remark 4.2. The condition % — % < s ensures that the CJ -functions are in the class A;ﬁq(Rd).

We define the norm

A3 (U) = Hf”LP(U) + Hf| AZ.Q(U)‘

Proof. Indeed, given a bump function ¢ € CZ (D),

lo(z) — e)|” | \*
Aa(R%) 2 (J(m)c ( b |z —ylsatd dy) dr
q . 1 ’
~ le)|?dy ) ——— dx
(2p)e \JD |z|*P*

which is finite if and only if % <s+ %. The converse implication is an exercise. O

Bl

el

We recall the definition of the non-centered Hardy-Littlewood maximal operator. Given f €
L} (R%) and x € RY, we define M f(z) as the supremum of the mean of f in cubes containing ,
that is,

1
M) = s o | Ty
Q:zeQ |Q| Q
It is a well known fact that this operator is bounded in L? for 1 < p < o0. The following lemma is
proven in [PT15] and will be used repeatedly along the proofs contained in the present text.

Lemma 4.3. Let Q) be a bounded uniform domain with an admissible Whitney covering W. Assume
that g € L' () and r > 0. For everynn >0, Q € W and x € R?, we have

1) The non-local inequality for the mazximal operator

f swdy  Mgle) D lso)dy _ infeq Mg(y)
\ — | Tn sinigs)sr D@ Syt "

(4.2)

y—z|>r |y



2) The local inequality for the mazimal operator

gswdy _ Ssody _
7 <" Mg(x) and —=—=_— <, inf Mg(y)r". (4.3)
‘J,‘y zl<r |y - m|d K S:D(;S)<7' D(Q7 S)d n yeQ (
3) In particular we have
d 1
> ) (4.4)

S, D@, )T Q)
and, by Definition 3.5,
| st do <. s 29 Q)"
yeQ

SesH(Q) Y5

The first lemma we present an equivalent norm for A3 (€2).

Lemma 4.4. Let Q be a bounded uniform domain with an admissible Whitney covering W, let

1<pg<oo and0<s<1wit5>%f§. Then, f € A3 () if and only if

W3y 00 = Wl + | T | (L h(@)Wdy) i) <o @)

Qew
This quantity defines a norm which is equivalent to | f|*. () and, moreover, we have that f €
LI(). ’
Proof. Recall that in (4.1) we defined

el NE O\
o= ([ ([ V1) o)

D fwr
% 2, (Lw e dy) L.

For the converse inequality, we start by proving that if (4.5) holds then f € L%(Q). If we
choose p. big enough, we can grant that every point in the boundary is in the shadow of a cube
of side-length equivalent to §. Therefore, there is a finite collection of cubes Q1,...,Qy with
Qc Uﬁl Sh(Q;). Then, the triangular inequality and the Holder inequality yield

Trivially

1
P

QD

M

M
1100y < 20 [ Fxs0@) ] L) < Z(f If(y)lqdy> M7
j=1 j=1 \/Sh(@y)

Therefore, since we assume that (4.5) holds,
M

e Z 1, (me )Qdy> w) (%] (fSh(Q})f(x)—f(y)lqdy> d

1 . sqralf(@) — f(y)]? ‘ ’
- Z f <Lh(Q diam(9) ¢I+d|(x)y|sq(+()i|dy> x| |,

min; E(Qj)%

S0

P
q



and thus

i@ sl LY ,
HfHLq(Q) N HfHLP(Q)+ (Q;Wf (Lh(@) |z — y|satd y) I) . (4.6)

Next, we will use the seminorm in the duality form

g yo= s ngw y)dyda. (47)

Hglw’(m’(n))gl

Since the shadow of every cube ) contains 2@, we just use Holder’s inequality to find that

2 f <J = )Z E
WD) = PO g,y dyde < (S @) = FO N 0}
1QewJ LQ |$*y\s+d ( Qew 2 lo =yl

(4.8)
Therefore, we only need to prove that for any function g > 0 with |g| (Lo’ () S 1, one has that

QEWJQZSIJS\QQ o —y|" e ooy dyde < (Q;W.[Q (Lh(Q) |z — y|se+d dy) d)

If x € Q, y € S\2Q, then |z — y| ~ D(Q, S), so we can write

fta) —fa) V@) =0y
QEWJ _L\QQ |z — —ay(, y)dydx<2 Z f _L ) S)SJ“% g(z,y) dydz (4.10)

”qllu ' @S

Z/|er Q D(Q,8)=6
|f(z) — f(y)]
+ 7d9(w y) dy dx.
%D(@%)«;J j D(Q,8) "«
For the first term in (4.10),
5 f P =Ty yayae <o [ [ 1@+ 176)Dgte,) dyda.
Q D(Q,8)=6 QJe

By Holder’s inequality,
L L(If(w)l + W9, y) dyde < [ f] o) 12179 Lo (Lo @) + U7 1 F Loy 190 Lo (Lo (@)
which, by (4.6), yields

P Lz SWg(m y)dydz Siois 1z, @) (4.11)
Q D(Q,5)=¢ ,

The second sum in (4.10) deals with the case D(Q, S) < ¢. Since § is a (9, €)-uniform domain,
for every pair of cubes ) and S in this sum, there exists an amdissible chain [@, S] joining them.

10



Thus, writing fg = JCQ f dm for the mean of f in @, the term can be split as follows:

[ [ Ty yayan < 57 [ [ LTy ayas

0.50(0,9)<s°Q s D(Q,S9)* i 0.5D(0,9)<s @ 45 D(Q, S)
J f lfa — fosl Vo =Jasl ooy iy s
QSD(QS)<5 s D(Q,S)® st
N ) j lfos — fy )1|g( ) dy dx
0.,80(0,9)<s @ Js D(Q, S)*ta

=O+@+G) (4.12)

The first term can be immediately bounded by Cauchy-Schwarz inequality. Namely, writing
G(w) = g2, )| s by (4.4) we have that

flx)— f z,9)7 d q da
@< g, f s (3 [oter)” (5 o)
<y §o lf(@) f@IG( ) dx

QeW )S

Q=

By Jensen’s inequality, |f(z) — fo| < (@ SQ |f(x) — f(y)|? dy) and thus, since £(Q) 2q |z —y|
for z,y € Q, we have that

@<<Z < wdyyczm) 1G] o (4.13)
Qew Q lr—yl

Since |G| = 9] » (o) < 1, this finishes this part.
For the second one, for all cubes @ and S we consider the subchain [@Q, Qs) < [@, S]. Then

2)< fj Ss+d dydz Y. |fp— fxp)l
Q.5 D(Q $)<é Q Pe[Q.Q5)

Recall that all the cubes P € [Q, Qs] contain @ in their shadow and the properties of the Whitney
covering grant that A/(P) < 5P. Moreover, by (3.6) we have that D(Q, S) ~ D(P,S). Thus,

© <d2][][ |d<d£@e§<p> fQ S;\;L]%dydx

and, using Hoélder’s inequality, and by (4.4), we have that

1

@< Z][][ Olacds Y JU ;ryqdy)ll<ZD SM)(,dw

QeSH(P) Sew

sd,s,qgﬁ]ﬁp|f< G JG

QESH(P)

11



y (4.3) we have that SSh(P> G(x)dx <ae infyep MG(y)l(P)?, so
((P)d—s
OED) || 1@ - ronacarce as é( P))Qd
1

<X, (jp 16~ £011c) " P M@ e

Note that for £,{ € 5P, we have that |§ — | <4 ¢(P). Thus, using Holder’s inequality again and
the fact that |MG| ;. <p |G| < 1, we bound the second term by

@<, (], 2090 w) waaes (3 ([, 10190 )

(4.14)

Now we face the boundedness of
fo. —
®= f fgs = /)] ii‘g(m y) dy da.
0,8:0(Q,8)<5 Y@ s D(Q, S)’

Given two cubes Q and S with D(Q,S) < ¢, we have that for every admissible chain [Q, S] the
cubes @, S € SH(Qg) by Definition 3.3 and D(Q, S) ~ ¢(Qs) by (3.4). Thus, we can reorder the
sum, writing

@<Z > > f |fR 6+,|9($7y)dydx (4.15)

R QeSH(R) SeSH(R)
\f( ()P
<Zf f o Js G PtV dy e d

R QeSH(R) SeSH(R)

Using Holder’s inequality, Lemma 4.3 and the fact that for S € SH(R) one has ¢(R) ~ D(S5, R),
we get that

1
ol

®< EJ R+ (1) JQ o U 1£(&) — f(w)l? dy>é (L gz, y)7 dy) " dwde

‘7 QeSH(R)

<2J P (me |f(§)—f(y)qdy>; D f ) dx d¢

QeSH(R)

) L d
S;JR (Lh(R) |£(§) = f(y)] dy) Z(R)s+(1+%)dMG(§)£(R) de

and, using the Holder inequality again and the boundedness of the maximal operator in Lp’7 we

get
®< (ZJ. (JSh(R) € — y|9q(+()i‘ dy> d‘f) MGl

r© -\ L\
s (;Lz (JSh(R) € — y|sa+d dy) df) . (4.16)
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Thus, by (4.12), (4.13), (4.14) and (4.16), we have that

JoJe byt senaie= (2], <Lh<m € gl dy) *

This fact, together with (4.10) and (4.11) prove (4.9) and thus, using (4.7) and (4.8), we get that

| £1

Q.5:D(Q,8)<é

Az () Sd,p,qﬁsﬁs,é,\m Hf”A;,q(Q)'
]

Remark 4.5. Note that in case § = o0, we have that the first term in the right-hand side of (4.10)
is zero, and we have proven that in this case the homogeneous seminorms are equivalent, that is,

f@) =l \*
2 f f e AR L s
gavde Usn@) [z -l P

which improves (4.5).

5 Fractional Sobolev spaces

First we recall some results on Triebel-Lizorkin spaces. We refer the reader to [Tri83].

Definition 5.1. Let ®(R?) be the collection of all the families of smooth functions ¥ = {1); 1o ©
C*(R?) such that

supp 1/}0 c D(07 2)7 )
suppey; © D(0, 27 \D(0,277)  if j > 1,
for every multiindex o € N¢ there exists a constant co, such that
a Ca .
g = >
[D*9;].,. < 5Tl for every 7 =0
and

o0
Z Yj(x) =1 for every xz € R%
j=0
We will use the classical notation f for the Fourier transform of a given Schwartz function,
flo) = | et
R4

and f will denote its inverse. It is well known that the Fourier transform can be extended to the
whole space of tempered distributions by duality and it induces an isometry in L? (see for example
[Gra08, Chapter 2]).

Definition 5.2. Let se R, 1<p< o0, 1< qg< o0 and ¥ e ®(R™). For any tempered distribution
f e S'(R™) we define its non-homogeneous Besov norm
)

(wF)°
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and we call By , S’ to the set of tempered distributions such that this norm is finite.

Let se R, 1 <p<ow,1<qg<o0and ¥ e ®(R™). For any tempered distribution f € S'(R™)
we define its non-homogeneous Triebel-Lizorkin norm

171% = {27 (vs)}

and we call Fj; < S' to the set of tempered distributions such that this norm is finite.

9
talipe

These norms are equivalent for different choices of ¥. Usually one works with radial ¢; and
such that ©;,1(x) = ¥;(x/2) for j = 1. Of course we will omit ¥ in our notation since it plays no
role (see [Tri83, Section 2.3]).

Remark 5.3. For ¢ = 2 and 1 < p < o0 these spaces are the so-called Bessel-potential spaces
WP, In addition, if s € N they coincide with the usual Sobolev spaces of functions in LP with
weak derivatives up to order s in LP, and they coincide with LP for s = 0 ([Tri83, Section 2.5.6]).
In the present text, we call Sobolev space to any W*P with s > 0 and 1 < p < o0, even if s is not
a natural number. Note that complex interpolation between Sobolev spaces is a Sobolev space (see
[Tri78, Section 2.4.2, Theorem 1]).

In some situations, the classical Besov spaces B, (U) = A7 (U) and the fractional Sobolev
spaces W*P(U) = A; ,(U). For instance, when € is a L1psch1tz domain then A2 5(2) = WP(Q)
(see [Str67]). We Wlll see that this is a property of all uniform domains.

To use the Sobolev embedding for Triebel-Lizorkin spaces, we will use the following proposition.

Proposition 5.4 (See [Tri83, Section 2.3.2].). Let 1 < g < w0 and 1 < p < o0, s€ R and ¢ > 0.
Then
s+ S,
Fite c wor, (5.1)

Next we will prove Theorem 1.2. Let us write Al f(z) := f(z+h)—f(z) and, if M € N with M >
1 we define the M-th iterated difference as AM f(x) := A} (AN f)(x) = Z (]\f) (=1)M=I f(z+
jh). For an index 0 < u < o0 and t € R, we write

dp f(w) = (t_d thm IAi”f(x)"dh> :

with the usual modification for u = 0o. In [Tri06, Theorem 1.116] we find the following result.
Theorem (See [TriO6}.). Givenl1<r<ow,0<u<r,l1<p<ow,1<g<0andd<s<M

with —%— < s, we have that
mm{p ay

s d max{p,r} ! d%i (T)q “ ’
Fp,q(R): fEL ’ :Hf”Lp+ Wdt dx < 0
R4 0

(with the usual modification for ¢ = ), in the sense of equivalent quasinorms.

As an immediate consequence of this result, we get the following corollary.

Corollary 5.5. Let 1 <p<oo, 1< <ooand0<s<Mwiths>%—g. Then

1

s dy __ max{p, . |A£/[f(1‘)|q g ’
Fp,q(R )=3fel pal g, ”fHA}SW(]Rd) = ”fHLp + (J;w (fRd Wdh dx <

(with the usual modification for ¢ = o), in the sense of equivalent norms.
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Proof. Let f e L™a{P:4} and assume that 1 < ¢ < o0 and 0 < s < M with s > % — g. Choosing
q = u = r all the conditions in the theorem above are satisfied. Therefore,

P

1dM (x)q q »
g s ~ 1o+ { [ (j Sl ) | (5.2

Since d%] = (t*d S|h\st |AM f ()| dh) , we can change the order of integration to get that

A gt ;
t,q M
LIl S dr = f f f — A 29 dh dx
fRd (J;) $sq+1 > Rd ( <t Jise=n) t§q+1+d| h f( )|
| A f ()] 1 K
= _1 .
de (fhsl sq+d |h|sa+d dh ) dr

This shows that HfHFp L (BY) < Hf”A; L(ED) and also that

AMF(x)le " LaMf(z)T \° )

. AM 7 g . .
by (5.2). It remains to see that {p, (S\h,|>1 ‘Ih\% dh) a dr < ”fHII):‘lfyq(]Rd)' Using appropriate
changes of variables and the triangle inequality, it is enough to check that

+h H
@ f <Jﬂgd % dh‘> dr < Hf”Z}JT‘;)q(Rd)' (5‘4)

Let us assume that p > ¢. Then, since the measure (1 + |h])~ 9+ dh is finite, we may apply
Jensen’s inequality to the inner integral, and then Fubini to obtain

Af@+h)P
dhdx
@ fRd J;Rd 1+ |h| ép+d Hf”Lp»

Q|-

and (5.4) follows. o
If, instead, p < ¢, cover R? with disjoint cubes Q; = Qo +/j for j € Z*. Fix the side-length ¢

of these cubes so that their diameter is 1/3. By the subadditivity of  — ||7, we have that

el i) 1
®<Zf Z(J (1+ [z — y|)sq+ddy> d ;(L;U(yﬂ dy) Z,;:(l+|f—l§|)5p+%'

Since s + % > %7 the last sum is finite and does not depend on j On the other hand, we have that

2550 (SQ«. |f(x)]? dy) " dr ~ [ £1%,» because all the cubes have side-length comparable to 1. Let
J J
0 < 0 <min{l, s}. By (5.3) we have that

Z (Li |f(y)|qdy> < ZJQ (L 1 (y) - f(x)‘Idy> do+ | fI5e S 1Fy @y S 117 g
j Ei 7 i i

Note that in the last step we used (5.1).
The case g = oo follows the same scheme. O
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Definition 5.6. Let X (R?) be a Banach space of measurable functions in R?. Let U < R? be a
open set. Then for every measurable function f:U — C we define

I lxwy ~ 9l x (®a)-

inf
geX(RY): glu=f

Consider a given (e, §)-uniform domain Q. In [Jon81] Peter Jones defines an extension operator
Ag : WhP(Q) — WLP(RY) for 1 < p < oo, that is, a bounded operator such that Agf|o =
fla for every f € WLP(Q). This extension operator is used to prove that we have the intrinsic
characterization of W™P(2) given by

flwre) ~ 1F o) + IV L)

Next We will see that the same operator is an extension operator for A5 () for 0 < s <1

with s > 4 — 4. To define it we need a Whitney covering W of Q (see Deﬁn1t10n 3.1), a Whitney
covering W, of Q¢ and we define Wj to be the collection of cubes in W, with side-lengths small
enough, so that for any @ € Wjs there is a S € Wy with D(Q,S) < C¥(Q) and £(Q) = £(S) (see
[Jon81, Lemma 2.4]). We define the symmetrized cube @Q* as one of the cubes satisfying these
properties. Note that the number of possible choices for Q* is uniformly bounded.

Lemma 5.7. [see [Jon81]] For cubes Q1,Q2 € W5 and S € Wy we have that

o The symmetrized cubes have finite overlapping: there exists a constant C depending on the
parameters € and d such that #{Q € W5 : Q* = S} < C.

e The long distance is invariant in the following sense:
D(QT,Q3) ~D(Q1,Q2)  and  D(QF,5) ~ D(Q1,9) (5.5)

o In particular, if Q1 n2Q2 # & (Q1 and Q2 are neighbors by (3.1)), then D(QF, Q%) ~ £(Q1).

We define the family of bump functions {¢g}gew, to be a partition of the unity associated to
%Q}Qewz, that is, their sum )} ¢g = 1, we have the pointwise inequalities 0 < g < X11q and
Vool < ﬁ. We can define the operator

Nof(w) = 3 a(@)fox for any f € Li,.(2)
QEW;3
(recall that fyy stands for the mean of a function f in a set U).

Lemma 5.8. Let Q) be a bounded uniform domain, let 1 < p,q < 00 and 0 < s < 1 with s > % - %.

Then, Ao : Aj ,(Q) — A;,Q(Rd) is an extension operator. Furthermore, Aof € L% for every
feds (9.

Proof. We have to check that

Ao f(x) = Aof@)l7 , \ ¢ \*
”AOfHA;q(Rd) = HAOfHLP + (J}Rd <J-]Rd |$ _ y|sq+d dy dx S ”quf,,q(Q)

First, note that |[Aof ., < [f]1eq) + [AoflLs(qe)- By Jensen’s inequality, we have that

d
of e < 3 lfarPleeltn < ¥ gl Minom (154Q) -

QeWs QEW3
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By the finite overlapping of the symmetrized cubes,

”AOfH]Zp(Qc) < ”f“ip(g)-

The same can be said about LY. It remains to check that

1

Ao f(x) = Aof@)l” , \ ¢ \*
Ay (RY) T (L{d (J]Rd : |:E*y|sq0+d dy) dif) <l

We will argue by duality. We will prove that

@+ +©@ =< IR, o

Ao f]

Ap ()

where

@:= J Ucwﬁmdyfdi, (b) = f (QW@)Z)M and
©:= 0 <f . \Aoﬂim)_;é\qofd(y)w dy> ! dz.

Let us begin with

— Nsew, es@)fsxl? 7
@ J(J |x—y|5‘1+d dy) dx.

Call Wy := {S € W5 : all the neighbors of S are in W5}. Given y € %S, where S € Wy, we have
that > peyy, ¢p(y) =1 and, otherwise 0 <1 — >y, ¢p(y) < 1. Thus

O 3 [, (3 Basme [ ) o

QeEWr L
+ Q;vl j ( ﬁl Zpegdg)isii) f(@)] dy) de =: + ,

SeW\W4 ¥ 10
In by the choice of the symmetrized cube we have that {1, o ps(y)dy ~ £(S*)?. Jensen’s
10
inequality implies that |f(z) — fox|? < W Sou | f(@) = f(£)|7dE. By (5.5) and the finite over-
lapping of the symmetrized cubes, we get that

() - 1©F \°
OB f (szf (QS*)SM‘E> dz 5 115, @)

QeW,

To bound just note that for Q € Wy and S € Wo\W,, we have that S is far from the
boundary, say £(S) = £y, where £y depends only on § and €. Thus, by (4.2) we have that

: 0(9)? : »
.< D J ( D JQ QSsq+ddy> de( ) D(Q,(S))sqﬂl> IF 1z

QeEWr SEWQ\W SEWQ\W4
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Recall that Whitney cubes have sidelength equivalent to their distance to 0. Moreover, the

number of cubes of a given side-length bigger than ¢y is uniformly bounded, so Y, SEWa\Wy z(g()%

is a geometric sum, bounded by the maximal element. Therefore,

1 —s
< > 7Sy ”fHLP < Cesdiam@)lo " If 170

SEW\W,

Next, note that, using the same decomposition as above, we have that

®- [, ([, B i)
[fox — FW)|" .
S 3 Jyqrewee (ZW .+ D@5 dy)

’ Z Jl (= pele (ZZJ QS<q+d >q=5@+.

QeEW2\W,y w6 Sew

Q

==

‘We have that

QEW;3

and, thus, by Minkowsky’s integral inequality (see [Ste70, Appendix Al]), we have that

Q) ro— ol \
W= % fom L»(Z € — gl dy) “

SEWl S

By Hoélder’s inequality and the finite overlapping of symmetrized cubes, we get that

O -\ 2 &=l \
2 d(p ) <de.ﬂ) d€£(Q)P$L<QWw) de,

that is,
< p .
@ S A5, o)

To bound , note that as before,
% Y d
@~ 3 (3 [ radlan) sie ¥ A9

QEWa\ W, Sew, Qemmw, dist(Q, Q)P
Now, since s > % — g we have that sp + % > d. Therefore,

d— 91777

d
% ~ Z ﬁ < CE 5d1am(Q)£
Qewaiw, dist(Q, Q) Qewa\w L(Q) 4
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On the other hand, [l qy < |lLa; ) by (46)
Let us focus on @ We have that

©- ( [ | Spew, () frx = S, 05 fsx1? dy)f? .

|z — ylsatd

Given z € % where Q € Wy and y € Q° n B(x ,ﬁ) then neither x nor y are in the support of
any bump function of a cube in Wo\Ws, so > pcyy, ¢p(y) =1 and >y, ¢p(z) = 1. Therefore

Dy wep@)fer— D) esWfse = Y, Y, er(@)es(y) (fox — fsx) .

PeWs SeEWs Pr2Q#Q SEW;

If, moreover, y € B (ac, %E(Q)), since the points are ‘close’ to each other, we will use the Holder
regularity of the bump functions, so we write

D1 ep@)fer— D) wsW)fsx = Y. (ep(@) —@p(y)) frx.

PeWs SEW3 PeWs

This decomposition is still valid if @ € Wo\W, and y € B (w, 10@(@)), that is, y € B (, %), but
we will treat this case apart since we lose the cancellation of the sums of bump functions but we
gain a uniform lower bound on the side- lengths of the cubes involved. Finally, we will group the
remaining cases, when x € Q¢ and y ¢ B(z, 10) in an error term. Considering all these facts we get

[fpr — fsxl® "
o< 3 [ ([ ortorpstnl L2020}
Q;V < Qe\B wxme(Q)) Pm%#@ S;VJ (P*’S*) atd

| Ysn2qrg (Ps(@) = ¢s(y)) fox|? . N
+Q§V4 JQ <J B(z,54(Q)) |x7y|sq+d y> d

‘ZSGV\&.:S"\?Q#Q (ps(x) —ps(y)) fsx]? g
" Qev%\vm JQ (JB(m ) |z — y|sa+d dy | d

10

A —A @ \°
([ of () = Aot )" N,
¢ QC\B(J:’HJ) ‘x—y|“1
- @+ @+@+@
Using the same arguments as in and we have that
ORI,
Also combining the arguments used to bound and we get
P
< (/120 + 1l ace)

The novelty comes from the fact that we are integrating in ¢ both terms in @, so the

variables in the integrals @ and @ can get as close as one can imagine. Here we need to use the
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smoothness of the bump functions, but also the smoothness of f itself. The trick is to use that {¢q}
is a partition of the unity with ¢q supported in 1@, that is, 2isews P5(%) = Xgngeg ps(z) =1
ifre %Q with @ € Wy. Thus,

|25n2Q¢g (ps(z) —os(y)) (fsx — fox) |7 a i
Z f (‘[ 71(‘;Z(Q)) |.’I — y|S‘I+d dy d s

QEW,
and using the fact that Vg, —Q) and (4.3), we have that
e —y* 1 ‘
fex — fox J dy | dx
Q;\QJ (Sm2Q¢Q | s @ | (2,154(Q)) K(Q)q |z — y|sat+d

i [ Zsmoorg | s+ — fox ' a M 2
5. ( Hey * 2 A 2 e ey )

QeEW, QeWy Sn2Q#Q

which can be bounded as @

Finally, we bound the error term @ Here we cannot use the cancellation of the partition
of the unity anymore. Instead, we will use the L? norm of f, the Holder regularity of the bump
functions and the fact that all the cubes considered are roughly of the same size:

| Ssmsoss (0s@) — os@) fsxlt \*
_ oy f(f s Q¢®|;0i Wd s y) .

QEW2\W,y

1 1 g
< | fsx]” J- S dy | dx
2, Lz Sews B(x,t8) {6 o —y|(s—Hat+d

QEW:
Lo<(Q)<24y SN2Q#J

Sebap Z Hf”Lp(s*) S C”fHLp(Q)~
SEW3

Y <e(S)<to

The finite number of cubes in the sum allows us to deduce the last inequality.

O

Corollary 5.9. Let Q be a bounded uniform domain with an admissible Whitney covering WW.

Givenl<p<ow,l<g<oand<s<1 wzths>ffg, we have that A3 () = F; (), and
/] Fs ()~ Hf”As () for all f € FJ ().

Proof. By Corollary 5.5, given f € F; () we have that

g 00 < ppndit, 9lag ey~ nE g oy = 1

By the Lemma 5.8 we have the converse. Given f € A7 (£2) we have that

Hf”Fqu(Q)= mf ||9HFs R = HAOfHFs LR ”AOfHAs (R = C”f‘A*
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6 Calderén-Zygmund operators

We will make use of the notion of distributional convolution. Given Schwartz functions f and g,
the convolution coincide with multiplication at the Fourier side, that is, f*g(z) = (f-g)" Given a
tempered distribution W, a function f € S and x € R%, the tempered distribution W # f is defined
as

W fogy=CW.f-Gy=(W,f_xg)y foreverygeS,

where f_(z) = f(—x). Note that f_ *g(z) = § f(—y)g(z —y) dy, so in case supp(f) nsupp(g) = &
then f_ # g = 0 in a neghborhood of 0. The distribution W * f coincides with the C* function
W s f(x) = (W, f), where 7. f_(y) = f_(y — z) (see [SWT1, Chapter I, Theorem 3.13]).

1

L (RI\{0}) is an admissible convolution

Definition 6.1. We say that a measurable function K € L
Calderén-Zygmund kernel of order o < 1 if

|K(x)] < P for x #0, (6.1)
Cklyl”
|K(z —y) — K(z)| < |t Jor 0 <2Jy| < |z, (6.2)

for a positive constant Ck and that kernel can be extended to a convolution with a tempered
distribution Wi in R? in the sense that for every Schwartz functions f,g € S with supp(f) N
supp(g) = &, one has
Wk = f.g) = K(z) (f- *g) (z)dz. (6.3)
RA\{0}
There are some cancellation conditions that one can impose to a kernel satisfying the size
condition (6.1) to grant that it can be extended to a convolution with a tempered distribution.
For instance, if K satisfies (6.1) and W is a principal value operator in the sense that

Wk, )y = lim K(x)p(x)dz forall p € S, (6.4)

127 Jja|2s;
for a certain sequence d; \, 0, then W satisfies (6.3) (see [Gra08, Section 4.3.2]).

Definition 6.2. Let 1 < p,q < . We say that an operator T : S — S’ is a p, g-admissible
convolution Calderén-Zygmund operator of order o € (0, 1] with kernel K if

1. K is an admissible convolution Calderon-Zygmund kernel of order o which can be extended
to a convolution with a tempered distribution Wy,

2. T satisfies that Tf = Wi = f for all f €S and

3. T extends to an operator bounded in F;?’q, in LP and in LY.

Remark 6.3. The Fourier transform of a p, q-admissible convolution Calderdn-Zygmund operator
T is a Fourier multiplier for F;?,q, L? and L9, following the notation in [Tri83, Section 2.6]. This
Section also contains some results on Fourier multipliers that we sum up now. Being a Fourier
multiplier for ngq implies being a Fourier multiplier also for FJ  for every s, also for Fg’p and for

0
19 p'sq"”
bounded in F;?,q is a convex set, see Figure 6.1). In particular it is a Fourier multiplier for L? and
this implies that Wy € L* (see [SWT1, Chapter I, Theorem 3.18]).

Therefore, condition 3) in Definition 6.2, can be reduced to asking

and the property is stable under interpolation (i.e., the set of indices %, % such that a T is
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e that T extends to an operator bounded in Fz()),q when 0 >p=2q¢ =22o0rw>p =>q=2,
e that T extends to an operator bounded in LP when 0 >p=q=2orwo>p =q¢ =2 and
e that T extends to an operator bounded in F;(,),q and in L? when 0 >q>=p>=4q oro >q =

p=gq.

Figure 6.1: Indices %, % such that a p, g-admissible operator is bounded in Fg i

1 1 1
A7 A7 A1
1 1 1
1 1 1
Bg’ﬁp’ Bg’ﬁp’
b0 0
}p,q FP'KI'
1 1 1
2 P o 2 P q/Lp/ 2
0 0
Fp’,q’ FPH’I
0 1 0 1
1 By P 1 By b 1
“1 1 [ 1 1o
ee] 2 1 e) 2 1 %0
(a) The case 0 >p = ¢ = 2. (b) The case o0 >p = q = 2. (c) The case 00 > q=p = ¢ .

Remark 6.4. If Tf = Wk = f for an admissible convolution Calderon-Zygmund kernel K of order
o which can be extended to the convolution with tempered distribution Wy satisfying (6.4), then
Wi € L™ implies that T extends to an operator bounded in LP for every 1 < p < oo (see [Gra08,
Theorem 4.8.3]).
It is a well-known fact that the Schwartz class is dense in FJ  for p < o0, 1 < ¢ < c0. Thus, if
f € LP and x ¢ supp(f), then
7f() = | K- 1)f Wiy (65)

To prove Theorem 1.1 we need the following lemma which says that it is equivalent to bound
the transform of a function and its approximation by constants on Whitney cubes.
To do so, we define the fractional derivative,

Definition 6.5. Given a uniform domain Q and f € LP(Q)) for certain values 0 < s < 1 and
1 < g < o0, the s-th fractional gradient of index q of f in a point x € Q € W is

o HOETOTIRE
vl]f( ) . (Lh(Q) |.TJ _y|sq+d dU) .

Then, by Corollary 5.9 and Lemma 4.4, for 1 < p < oo with % - g < s, we have that

Iz @) = 1) + HVZfHLp(Q)- (6.6)

Key Lemma 6.6. Let Q) be a uniform domain with Whitney covering W, let T a p, q-admissible
convolution Calderdn-Zygmund operator of order 0 <o <1, 1<p<w,l<g<wandl<s<o
with s > % — g. Then

3 |, 19370l = fa) @l de < CUSIE, oy (6.7)
QeW
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Proof. Again we use duality. That is, to prove (6.7) it suffices to prove that given a function
g€ LV (L7 (2)) with |g| 1 (1« () =1, we have that

jj T (f = fo) (=) = TQ(f fo) W)
Sh(Q) |z —y|**

g(@,y)dyde < | flps (o)

Given a cube Q € W, we can define a bump funcion ¢¢g such that xeq < ¢o < x7¢ and
Vool » < CUQ)™. Given a cube S < 5Q we define pggs := ¢q. Otherwise, take ¢gg 1= @s.
Note that in both situations, by (3.1) we have that supppgg < 23S. Then, we can express the
difference between T (f — fq) evaluated at z € @ and in y € S as

To(f = fo)(x) = Talf = fQ)y) = Ta [(f — fQ) val (x) = Ta [(f — fq) vas] (v) (6.8)
+To[(f = f@) M =)l (z) = Ta [(f — fq) (1 — ¢qs)] (¥)-

Note that the first two terms in the right-hand side of (6.8) are ‘local’ terms in the sense that the

functions to which we apply the operator T are supported in a small neighborhood of the point

of evaluation (and are globally F; ) and the other two terms are ‘non-local’. What we will prove
is that the non-local part

n Z f f'T“ (f = fo) 1= o)l (=) — [(f—fQ)(l_‘PQS)](y”g(x,y)dydas

@ SeSH(Q) z—yl**

and the local part

2-%, %

@ SeSH(Q)

J To(f = Ja) vel (2) = To[(f = fo) sl Wl . 4y ds

@yt

are both bounded as

+12] < CHfHF;yq(Q)' (6.9)

We begin by the non-local part. Consider z € Q € W. By (6.5), since z is not in the support
of (f — fo) (1 — ¢g), we have that

Tol(f - fo) (1 - 90)] f K(z—2) (f(2) - f@) (1 — po(2) dm(z)
and by the same token for y € S € SH(Q)
Tol(f — fo) (1 — vos)] (4) = L K(y - 2) (f(2) - fo) (1 pas(2) dm(2).

To shorten the notation, we will write

A@s(21,22) = K(21 — 22) (f(22) — f@) (1 — pgs(22)),

for z; # z5. Then we have that

Tol(f - fo) (1= Q) (0) = Ta [/ = fo) (1 = pa)) )] = | (o (e:2) = Xes(o2) ().

“2),.2

that is,

J S Poo(z,2) AQs(y,z)) dz|

g(x,y) dy dz.
|z — y|**

ScSh(Q)
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For ps big enough, Sh*(Q) := Sh,,(Q) Usesn(q) Sh(S) (call SH?*(Q) := SH,,(Q)), we can
decompose

msﬁﬂf
Q Ve ScSh(Q)\zQ

+zf

Qk%@mQ

J SShQ(Q) P‘QQ( ) )‘QS(yaZ)| dzg($7y) dy dz (610)

oyt

J’ Sovsnz(o) Mealz, 2) — AQs(y72)| dz
|z —y[*"

g(z,y) dy dx

2o(x, 2) — Mooy, 2)| d
+ZJ Ja ol %@”'%mwmm:m+ﬂ+n.
Q JQJ5Q

|z —y|*ta

In the first term in the right-hand side of (6.10) the variable z is ‘close’ to either x or y, so
smoothness does not help. Thus, we will take absolute values, giving rise to two terms separating
Agq and Ags. That is, we use that

([Aoo(z, 2)| + [Nos(y, 2)]) dz
ZJ‘ f Ssn2(q) (Meq(z,2)] | as(, 2)]) o(y) dy do
Q ScSh(Q)\QQ |z —y|**
Using (6.1),
|f(2) = fal
[A@q(z, 2)| < CKWH —¢q(2)]
. 1£G) ol
Pasy 2 < O 211 = vas(2)l

Summing up,

|f(2) = fol 11 — ¢q(2)| dz dod
<CKZJ JSh(Q)\QQ fShZ’(Q) 9(z,y) dy dx (6.11)

o — y[*F o — 2|

— 1- d
+ZJ j f |/ (=) fQ|.| . vqs(2)] zg(:v,y)dydw — L1 +[12)
Q 7@ JSh(Q)\2Q Jsh*(Q)

|z —y* iy — 2|4

with constants depending linearly on the Calderén-Zygmund constant Ck in (6.1).
We begin by the shorter part, that is

=2H 1F(2) = fol [1 — wa(2)|d2
Q Y@

Sh(Q)\2Q jsrﬁ(@) |z — y|5+5’f |z — z]d

g(z,y) dy dz.

Using the fact that 1 —¢g(z) = 0 when z is close to the cube @, we can say that

iKIE Lo o-tel| [ ey
Z )t atd Sh?(Q)\6Q Q JSh(Q)\2Q

Now, by the Holder inequality we have that

1
Py

f o) dy < (f g(x,y)q’dy> ISh(Q)[F <4 G)Q)
Sh(Q)\2Q Sh(Q)\2Q

d
q
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where G(z) = |g(z, )]s Thus,

Vi FORFGIFmS
<ZJ112(Q) @)+ QG( vdrdz s stm(@ (@) MG(E) dzdt.

Finally, by Jensen’s inequality and the boundedness of the maximal operator in L*" we have that

1£(2) = £(©) e - ror .\’
ZJ Lhw) Q)+ gy MO© dZd£<ZJ (Lm(@ ((Q)satd d) MaE)ar (6.12)

F@-fOr N\ )
s(“ e gt dz) df) IMG] 0,

[ (6.13)

that is,

The second term in (6.11) is the most delicate one. Take cubes @, S and P and points y € S
and z € P with 1 —¢gg(2) # 0. Then |z — y| ~ D(S, P) and, therefore, we can write

_ |f(2) = fol 1 — ¢qs(2)|dz
B Zj Lh(Q)\QQ fShQ(Q) |x — y|s+% ly — 2|4 9(zy) dy d (6.14)
<dZJ f J e) fzjd g(w,y) dy dz

s PESHQ(Q) D(P, S)>6

J

s PESH2(Q) D(P,S)<6

Q 5eSH(Q)

+2j

@ 5esH(Q)

| Wgu,y)dydx ~ (2D +[2Z
,

Q)" aD(S, P)

To bound [L.2.1], note that given Q, S € SH(Q) and P € SH?*(Q) with D(P, S) > 4, then also
£(Q) = Cs. Moreover, SSh(Q) 9(z,y)dy Sedyq G(m)Z(Q)g by the Holder inequality, so

<2J

[ e - falowazas < S [ [ 150 - 5@ G azde
@ pesa2(Q) *P o JQJsh?(Q)
S o) S e, 0 (6.15)

To bound |[1.2.2], we change the focus on the sum. Consider an admissible chain connecting
two given cubes S and P both in SH*(Q). Then D(S, P) ~ £(Sp). Of course, since S and P are
in SH?(Q) we have that

D(Q,5p) £ D(Q,5) +D(S,Sp) » D(Q, 5) + D(S, P) < 2D(Q, 5) + D(Q, P) < Q)

and, therefore, it is contained in some SH,,(Q) for a certain constant p3 depending on d and e.
For short, we write L := Sp € SH*(Q) and Sh?’(Q) :=Sh,,(Q). Then

Zf J 1f(2) = fal d=

i d
QLESH3(Q) SeSH(L) S pesa(r) VP Q) Tag(L)d

1 1
< Z i d Z Lh(L) |f(2) — fol dz JQ e Lh(L) g(x,y) dy dz. (6.16)

Q UQ)e LeSH?3(Q)

g(z,y) dy dx
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If we write ¢.(y) = g(z,y), we have that for any cube L the integral
Sh*(Q) and therefore

f g(x,y)dy < £(L)"inf Mg,
Sh(L)

By the same token, for ps big enough, we have that Sh(L) c Sh,,(Q)
2)dz < [ MG - fo)esmia€) de
L

|- tolds= | 176) = folxswa

Sh(L) Sh(L)

Thus, by (6.16) we have that
Loy j f MI(f = fa)Xsnt(0)) () Man (€) de da

L2933,

Q!

(@)
1
Z:Q)

Q
and, by Holder’s inequality and the boundedness of the maximal operator in L? and L4

+ LeSH?(Q)
N [(f — fo)xsmt (o)) (€)Moa (€) dé da
Sh?(Q)
i ', we have
f(j (f fQ>xSh4(Q)](5)Qd5> (f Mg, (€)" d&) dz
Q \Jsh3(Q) Sh3(Q)

1
Py

that

| (f 1O~ fol d£> ([ at07 de) " aa
Q \Jsn*(Q) Q
)|« and by Minkowski’s integral inequality (see [Ste70, Ap-

Sa ),
~q B
g UQ)*"
Again, we write G(z) = |g(z, -
pendix Al]) we get that
> L)
173 < (L ([ro-sra) a) | cwa
o Q) et \Usni@) \Jo Q
(f 7O - 1" d&) MG(Q) de
Sh*(Q)
Thus,
(&) — £ )5 ’
100 < J ( W) Z TSV ge) ac ) \mal,, <If 6.17
( ([ MGl < fle; o (6.17)
Back to (6.10), it remains to bound [B] and [C]] For the first one
2 Aog(z,2) — Ags(y, 2)| dz
[B] = ZJ J s ool ) as(v:2) 9(x,y) dy dx,
Q ScSh(Q)\ZQ |z — yl
just note that if z € Q, y € S c Sh(Q) and z ¢ Sh*(Q) we have that pog(z) = vgs(2) = 0
and, if po is big enough, |z — z| > 2|z — y|. Thus, we can use the smoothness assumption, that is
Aos(y,2)| < |[K(x—2) = K(y = 2)| | () — fol < Cx TELLZ by (6.2).
26

Ao, 2)



In the last term in (6.10),

_ Zf . SQ ‘)‘QQ(%Z) - /\QQ(%Z” dzg(w,y) dy dx

|z —y|**

we are integrating in the region where x € @), y € 5Q and z ¢ 6Q because otherwise 1 — ¢ (2)
would vanish. Also |z —z| > Cy|r —y| and |z — 2| & |y — z|. Thus, we have again that |Agg(z, 2) —

Moo, 2)| < |K(x—2)— K(y — 2)||f(2) — f SC’KMby 6.2) and (6.1) (one may
QQ Q |z—z[d+
use the last one when 2|z — y| > |z — z| > Cylz — y|, that is |z — y| = |x — z| = |y — 2]).

Summing up,

—ylod
B] +[C <o ZJ J J — Jollz — ] Zg(m,y) dy dz =: [1.3]. (6.18)
Sh(Q) J0\6Q |:c y|“+q|x — z|dte

with constants depending linearly on the Calderén-Zygmund constant Cx. Reordering,

1f(2) — foldz g(z,y) dy
Z d+o ; d dx
oo 1T — 7| Sh(Q) |z —y|* 7T

The last integral above is easy to bound by the same techniques as before: Given x € Q € W, since
§s—0+ g < d, by (4.3), Holder’s Inequality and the boundedness of the maximal operator in L9
we have that

d a
J IEDW < @ ing My, < 0Q) f Mg,
ShQ) |z —y|* 77t Q

SUQ)T P Mge Lo Sq UQ)7°G(x)

Thus, since s < o, we

SZZ( fzf /(= pr(fle (x)dxgng
+ZJ

Q p. D(P Q)<é

f(z) — foldz
J ‘ P o) cj_L G(z)dx
P:D(P,Q)=6

f |z PQng‘rzl G(z) de =: [1.31] + D] (6.19)

Using the same techniques as in |[1.2.1]| we can see that

< £l (o (6.20)

For using admissible chains and writing [P, Pg) = [P, Po]\{Pq}, we get

<ZJ Zj L PQf’;LfZG(x)dx (6.21)
|fL = v o(P)?
+Z o P LEPPQ) D(P,Q)d+s G(z)dz
+Z = I AP G(z) do =: [L3.2) + [13.3] + [1.3.4].

d+s
Q P LeP Q) D(P, Q)
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The first term in (6. 21) can be bounded by rcordcrmg and using (4.2). Indeed, we have that

T [ S [ g [ Ve

that is, by (6.12) we have that

< 1fly. 0 (6.22)

For the second term in (6.21) note that given cubes L € [P, Pg] we have that D(P, Q) ~ D(L, Q)
by (3.6) and P € Sh(L) by Definition 3.5. Therefore, by (4.2) we have that

1 1
<3 qy | | o= €3 g f Gyde ) Py

PGSH(L)

! ) ME©) 1£(6) = FOIMG(Q)
<y ), [, vo-rogaeeny =3 [ | 1 QMG o

and, again by (6.12), we have that

Sl o (623)

Finally, the last term of (6.21) can be bounded analogously: Given cubes L € [Pg, Q] we have
that D(Q, P) ~ D(L P) by (3.6), and

58 Y |, [, 170 - r@lacae 3 fG )= 3 p 1y

QeSH(L)

gzL] Qdf LL O)|MG(C) d¢ dee(L Zf LL dﬁ\m( )dcdf,

< |‘f‘|F;7q(Q)' (6.24)
Now, putting together (6.10), (6.11), (6.14), (6.18), (6.19) and (6.21) we have that
O <o, [T1 + 123 + [12:2] + [133] + [132] + [13:3] + [1.34],
and by (6.13), (6.15), (6.17), (6.20), (6.22), (6.23) and (6.24) we have that
< Ol o) (6.25)

with constants depending on 4, €, ||, p, ¢, s and d.
Now we bound the local part in (6.9), that is, we want to prove that

_ [T 1(f = fo) 2] (@) ~ Ta [ — fo) 2as] W)
2,2 <

4 gz, y)dyde < [ fllps (o)
Note that for x € Q and y n S, if y € 3Q) then @Qs = g and, otherwise |z — y| ~ ¢(Q). Thus,

SeSH(Q) |z -y

To [(f — fo) ¢l () — [(f*f@)sﬁczs] W v du da 6.26
.<ZJ LQ —— g9(z,y) dy (6.26)
J J Tal(f - chzJ)er]( )| o(zsy) dy do
Sh(Q)\3Q UQ)
+Zj J |T§l f st_:iQS] (y)|g(;r,y) dy dz =: ++.

Q SeSH(Q)
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Of course, by Holder’s inequality we have that

p

5 [, (], el =fodsal(e)—Told — o) easl OF o) e,

|z — y[sa+e

It 2 € Q, then To [(f — fo) pal (2) = T[(f — fo) eql (x). Thus,

< DI = fo)vallh, o) < DT = o) vallf, z
Q Q

Now, the operator T' is bounded in F; , by assumption (see Definition 6.2 and Remark 6.3). Using
Corollary 5.5, it follows that

< 20 o) vally ey < DI = fo) salleey + TS = fa paly, oy

Since g < x7¢, the first term is bounded by || f||,, by the finite overlapping of the Whitney cubes
and the Jensen inequality, and the second is

5 [ ([ W= to)vele) =) =) satl ) o,

|z — ylsatd

where the integrand vanishes if both x,y ¢ 8Q. Therefore, we can write

r

. (F(@) — fo) vale) — (F) — fo) el | \*
S|pr+§LQ(LQ dy> i

|z — ylsatd
(F() — fQ)po®)" >5 " .
- %: fRd\BQ (J;Q |z — ylsatd Y (627
@) - f) oI’ \*
+§LQ (L@\SQ oy dy> dr =:||f|,, + 210 + 212 + 213],

where the constant depends linearly on the operator norm |T'|%., _ p. -
P, P,q

Adding and substracting (f(z) — fo) ¢o(y) in the numerator of the integral in [2.1.1] we get
that

— s;fw UQ |f (@) = fol lea(@) = po)I” dy>5 "

|z — ylsatd

+ %: J-SQ (LQ —"]f)__m{q(fif'q dy) " dr

The second term is bounded by HfH%;’q(Q)’ S0

2.1.1

A

IVeoll. |z —ylr | \*
)y LQ (LQ |z —Lyls‘”d dy ) 1f(@) = fol” do+ /ey o
Q
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Using Vgl S 7 ﬁ and the local inequality for the maximal operator (4.3) we get that

175p|f($) | P
311 S%LQK(Q)( ) Wd e+ 11, (6.28)
§o (@) = f(©)] de\" )
Sys@( @ > e Wl o

By Jensen’s inequality W Solf(@) = f(O)] d€ < (SQ @ |f(z) — f(O)* df) * and, therefore,
S e @) (6.29)

Now we undertake the task of bounding in (6.27). Writing x¢ for the center of a given
cube ), we have that

dx ) ) 7
N e (f () — fol” dy)
Q JRNEQ |z — x| 7Q

Since s > % — % we have that sp + %p > d. Thus

ND)

1.

N

Qs

N

ey L (LQ ) fol® dy>2 _y (5 (o170 — £(©)1 d)" dy)

dp _
) E(Q)sp+ 2 o K(Q)Sp-'—T d+dp

By Minkowski’s inequality we have that

(SQ (Vo 1£0) = 17 ) d&)p

K(Q)sp+%+d(p71)

DN

1.2 <

~

)

Q

and by Holder’s inequality, using that p — 1 = }% we get that

S (10 170) — FOI ) det@) D= FOF A\’
—_— 2 d
s %: YQ) P %:j (LQ ly — &|sa+d ) ¢
and
< £ o) (6.30)

The last term in (6.27) is somewhat easier. Note that by (4.2)

P fQ|
s %] LQ IFe) = fal (Jﬂad\sQ |z — y|sq+d dy> s Zj e

and, since this quantity is bounded by the right-hand side of (6.28), we have that

S A (6.31)
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Summing up, by (6.27), (6.29), (6.30) and (6.31) we have that
Wy Wl oy (6.32)
Back to (6.26), it remains to bound and [2.3]. Recall that
J Ta [ f fo) vol (@)

9+E

g(x,y) dy dx.
Sh(Q)\3Q

Writing G(z) = |g(=, )| 1o () and using Holder’s inequality twice we get that
d
<Zf [Ta1(f = Jo) ol @I G
UQ)™i

Ta (/- fo) pal @P . \*
< (ZQ: JQ E(Q)Sp dx) HGHLP’(Q)'

() S 1. Now, by Definition 6.2 we can use the boundedness of Tq in L? to find

Of course, |G|
that

1

I~ fo) ealtue \ * 1f = Falbeay\
22 < |\ T\ o e = T 0)sp ’
1Tl @ 0oy <2 @

and we can argue again as in (6.28) to prove that

Il oy (6.33)

Finally, for the last term in (6.26), that is, for

:ZJ Z |TQ f fQ ©qQs] (y ”g(:r,y)dydx,

.s+*
SESH(Q)

by Holder’s inequality we have that

3<%}L(

The boundedness of T in L? leads to

1

5 J To [(f - stqus]( s dy) G(z) da.

SeSH(Q)

1

3 L )—fg)sﬁQS(y)‘q dy) g(Q)dingG.

SeSH(Q) Y5uPp(pQs) (@)t

STl asra ), (

Given a cube @, the finite overlapping of the family {50S}seyy (see Definition 3.1) implies the
finite overlapping of the supports of the family {pgg} (recall that supp(¢gs) < 235), so there is
a certain ratio ps such that naming Shs(Q) := Sh,, (Q) we have that

0N
/() = fol” o (Jsnia (o lrw) = 7€)1 de)" ay) "
S ZQ: (jShS(Q) W dy) inf MG = Z E(Q)S‘F%*d‘*d lgf MG.
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Finally, using Minkowski’s inequality and Hdélder’s inequality we get that
1

To (Ssna(o) /) = FOI" dy) " MG for NG\
ey )OS (] (| 10108 )

UQ)™" s

that is,
< 1Tyl oo (6.34)

Now, by (6.26), (6.32), (6.33) and (6.34) we have that

S (T o P P 1 T (6.35)

O
Corollary 6.7. Let Q be a uniform domain with Whitney covering W, let T a p,q-admissible

convolution Calderdn-Zygmund operator of order 0 <o <1,1<p<ow,1<qg<wandd<s<o

with s > % — g. The following statements are equivalent:

i) For every f € F; () one has
ITafles @ = 1fles @

ii) For every f € F; () one has

Z |fQ|pHV;TxQHiP(Q) < \|f|\z};q(ﬂ)'
QeW

Proof. By Definition 6.5, we have that

Tafl2, @~ [Taflhm + 3 j V5T f (@) da

QeW

= Tafltr) + 2, f IVaTalf = fo + fo) ()" dx (6.36)

QeW

Since Tq is bounded in LP(Q2) we have that [T f|| 1.0y < |f]Lrq)-
Inequality (6.7) proves that

flVanf D) de < S, o = 3. f FalfIV5Tal @) dx < IF12, g
Qew ' Qew '
O

Theorem 6.8. Let 2 be a bounded uniform domain with Whitney covering W, T a p, q-admissible

convolution Calderdn-Zygmund operator of order 0 <o < 1,1 <p< 0,1 <g< and% <s<o.
Then

‘|TQ1‘|F;ﬂ(Q) < — Tq is bounded in F,; ,(€2).
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Proof. Note that since s > % > % — g, we can use (6.6) from Definition 6.5 and, by the Corollary

6.7 of the Key Lemma we have that

)y fQ IViTo(f — fQ)(@)I" dz < Clfl; (o)

QeWw

where C' depends only on d, s, p, T and the uniform character of €.
Given f € F; (2), by (6.6) we have that Tq is bounded if and only if

3 ol IVsTxalp, o) < 115 (-
QeEW

Since sp > d, by (5.1) and the Sobolev Embedding Theorem we have the continuous embedding
Fj () c L*. Therefore, given a cube @ we have that |fo| < |f|.» < HfHF;’q(Q) and, by (6.36)
we get

<
ITofle; @ < (1+ Talls @) Mlrs o) (6.37)

p,q
with C' depending only on d, p, q, s, €, §, diam(2) and T O
To end this section, we make some observations.

Remark 6.9. Note that putting together (6.25), (6.35) and (6.36), the precise dependence on T
in equation (6.37) can be shown to be

HTSZfHF;q(Q) < (CK + ”THF;an;q + HT”LP—>LP + ||THL<I—>L‘1 + HTSllﬂﬁqu(Q)) Hf”F;Yq(Q)'

Remark 6.10. The Key Lemma is valid in a wider range of indices than Theorem 6.8 because
in the second case we have the restriction of the Sobolev embedding. In the cases where the Key
Lemma can be applied but not the theorem above, that is, when

e A
max<{0,— — - <s<min{o, -,
p q p

there is room to do some steps forward.

In [PT15, Theorems 1.2 and 1.3], the authors consider the measures pp(x) = |V*TqP(x)[P dzx
for polinomials P of degree smaller than the smoothness s € N (here the s-th gradient has its usual
meaning). They conclude that if up is a p-Carleson measure for every such P, that is, if

dx
—_— < h ,
dist(z, 0Q)4 Crup(Sh(a)

f dist(z, 39) @) (4 (Sh(z) ~ Sh(a)))”
Sh(a)
then Tq is bounded in W*P(Q), and, in case s = 1, the condition is necessary and sufficient.

The authors of the present article expect that some similar result can be found in the case

max{O,%— g} <s< min{a,%}.

Furthermore, the restriction 4 — 24 < s comes from the intrinsic characterization that we use for
the present article, which we think is the easier to handle in our proofs. However, there are other
characterizations (see [Str67] or [Tri06, Section 1.11.9]) which cover all the range of indices. There
is hope that this characterizations may be used to obtain a result analogous to the Key Lemma 6.6
for a wider range.
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Remark 6.11. For 1 <p,q < 0 and 0 < s < ;1), we have that the multiplication by the charac-

teristic functions of a half plane is bounded in sz’q(]Rd). This implies that for domains € whose
boundary consists on a finite number of polygonal boundaries, the pointwise multiplication with xq
18 also bounded and, using characterizations by differences, this property can be seen to be stable
under bi-Lipschitz changes of coordinates. Summing up, we have that given any Lipschitz domain
Q and any function f € F, (Rd), we have that

Ixe f||Fpé;yq(Rd) < Hf”F]qu(Rd)'
Q) »

Therefore, if s > % - g and T is an operator bounded in F; ,, using the extension Ao :

s d s
Fj (R?) (see Corollary 5.9), for every f € F; (2) we have that
ITaflps @ = [T(xa Aof)
S 171

In particular, given a p,q-admissible convolution Calderon-Zygmund operator T and a Lipschitz
domain Q we have that Tq is bounded in F; () for any 0 < s < %

P‘I(

Fo @ ST Aoy < ITlpe rs, Fs, S 1Aoflgs

FE,Q(Q)‘

7 Refinement of Lemma 4.4 for p > q

In some situations we can improve Lemma 4.4.

Lemma 7.1. Let ©Q be a bounded uniform domain with an admissible Whitney covering W, let

1<q<p<ooandmax{%—70}<s<1 Then, f € A; () if and only if

D@ \E o\’
|f|LP(Q)+<Q§WJ <£Q|x—y|5q+ddy) dl’) < 00.

Furthermore, this quantity defines a norm which is equivalent to HfHAS (@)

Proof. Arguing as before by duality, we consider a function g > 0 with [g| (@) S 1. Consider
a constant Cs < ¢ to be fixed. Combining (4.13) and (4.14) we know that

JQ ) Wg(x y)dydz < (Q;W JQ (LQ W dy> ' dw) '

and, thus, we have

fQ . |]J;((Q),S)S£I)g($ y)dydx ~ (Q;W JQ (LQ % dy> a dac) v + @

Q,5:512Q=g
D(Q,5)<Cs

|

Q,5:512Q=g
D(Q,8)<Cs

where

— |st ( )| du dx
@ Q,S:D(%;S)<C(5J s D(Q,S)4 o)ty

< 3 [ [, =10

RiU(R)SCs.c Q, SESH(R)
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by (4.15).
Using Holder’s inequality and Lemma 4.3 we get that

1
< |fr — f(y)|?dy
@ R:Z(g]sc&s g(R)- 4 (SeSH(R)J R ) Z J

QeSH(R)

SB’ MG(&) d¢
< |fr — Y
R;zu;scs,g (SESH(R) f : ) UR)* e

and, using the Holder inequality again, we get

@sz(

R:(R)SCs

o=

—Ts
SeSH(R) R)*T

H ey
I IR |Qdy> E& MG,

Now, given R and S € SH(R), there exists a chain [S, R] as in Remark 3.6 (taking Cs small
enough). Using the boundedness of the maximal operator in LP we can decompose the previous

expression as
L
D1 (e —fneey)

4
@ R5e(1;505,s (Ses%(R) Pe[S,R) ((P)i

n (SES%RJ s = 1 |qdy>e<R)“”5 = (30)+(2)

where we wrote [S, R) = [S, R]\{R}.
Using Hoélder’s inequality

A
Qs

E(S)d) ((R)3—5P=d4q (7.1)

R:4(R)SCs \ SeSH(R) Pe[S,R) (P)* P€[S,R)

@$ Z Z Z ‘fP_fN(P)‘ ( Z g ) (S)d E(R)dfspfdg.

!
q

But for S € SH(R) by Remark 3.6 we have that ZPE[S R) é(P)ST < K(R) . We also know that
2.SeSH(P) £(8)¢ < €(P)?, so writing Up for the union of the neighbors of P, we get

£ 15©) — folde) ep)t\" N
@$Z< y Ll ) >€<R>d+ i

R \ PeSH(R)

Recall that p > ¢ and, therefore, by Holder’s inequality and (3.7) we have that

P (1-2)z
— fplde) o(p)e v "
Gy 3 (fir, 15 fol ¢)" e(p) ( 5 E(P)d> v
4 PeSH(R)

R PeSH(R) (P)

Z(fU,,|f (:Slpf) s wz(fmf f;zlpdf) (py
P

R:PGSH(R)
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Using Jensen’s inequality we get

and Jensen’s inequality again leads to

Lp(SPU et )|qu> (;)s,, sy, fP(SWIJ';(&_)Zi(Ql”C)gdg. (7.3)

To bound @ we follow the same scheme. Since p > ¢ we have that

P

0(5)-3) d—sp—d?
- fs— @7 dy"2 2| p(Ryd—rik
@ ; (SESZHI(R)J s & yg(s) (1")> .

NE (1-9)s
(SS |[fs = f(y)l"dy)° d d—sp—d?
S os UR
; (SES%(R) é(S)d(%l) SGS%:(R) ) w

and, since £(S)4 ~ £(R)?, reordering and using (3.7) we get that
SeSH(R)

f _ qd % e f _ qd ngd
D e T e G

(S) (Efl) R:SESH(R)

Thus, by Jensen’s inequality,

Is Ifs - lp dy ¢(5)*
@ 2 ((S)SP
and, arguing as in (7.2), we get that
§s /) = £ d<>5
S %L (g ) (74
Thus, by (4.12), (4.13), (4.14), (7.1), (7.3) and (7.4), we have that

e W\ )
QSD(QS)<CJ-j Qs$+dg(xy dydx<<2f (LSW@) ds)

with constants depending on d, p and €. This fact, together with (4.7), (4.8), (4.9), (4.10) and
(4.11) finishes the proof of Lemma 7.1. O

Remark 7.2. An analogous result to Lemma 7.1 for Besov spaces B, , can be found in [Dyd06,
Proposition 5] where it is stated in the case of Lipschitz domains.

Corollary 7.3. Let Q be a uniform domain. Let §(z) := dist(x, Q) for every x € C.
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Givenl <p<qg< o, and 0 < s <1 with s > % — g, we have that A5 () = F () and,
moreover, for p1 > 1 big enough, we have that

f@—fwe N\ Y .
Wbty o0 = lawi + | [ (fB ) | prange o
p18(2)\T)N

Given 1 < q < p < o0, and 0 < s < 1, we have that A3 () = F, (Q) and, moreover, for
0 < po <1 we have that

f@) =\ ) .
1z @) = 1o (o) + L (L “ Tlr— gt dy| dz for all f e Fj ().
pod(z) (T

Proof. This comes straight forward from Corollary 5.9, Lemma 4.4 and Lemma 7.1, taking smaller
cubes in the Whitney covering if necessary when pg << 1. O

Remark 7.4. In particular, for every 1 <p < o0 and 0 < s <1 we have that A3 () = B, ,(Q),
with

=

f xz _f Yy P s
|f|B;,p<Q>~|f|Lp<m+(LL ()' SO ayas ) jorait £ e 57,0,
pos(a) (T

If in addition s > % — 4 then A2 5(2) = WP(Q). If p = 2 we have that

f@ =P\ Y .
1 ey = 1 o) + L (L . | |$_y|25+d| dy| de for all f € W*P(Q),
pos(e) (T

and, if 1 < p <2, we have that

x) — 2 2
ey = 1l + V@ =T ) for il fews»(9).
Q \VB (z)"Q |z —yl
p15(2) (@)
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