
P
re

p
u

b
lic

ac
ió
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Abstract

In 2012 V. Cruz, J. Mateu and J. Orobitg published a T(1) theorem for the Beurling
transform in the complex plane. It asserts that given 0   s ¤ 1, 1   p   8 with sp ¡ 2 and a
domain Ω � C with smooth boundary, the Beurling transform Bf � �p.v. 1

πz2 � f is bounded
in the Sobolev space W s,ppΩq if and only if BχΩ P W s,ppΩq. They prove this result for a
certain family of operators of even kernel in any ambient space Rd when sp ¡ d. In a recent
paper, the first author and Tolsa proved that there is a similar situation for Sobolev spaces
of smoothness s P N, and the assumption on the smoothness was relaxed to any Lipschitz
domain. They stated that this was also possible for uniform domains.

In this paper we prove that the T(1) theorem remains true for 0   s   1 for any uniform
domain and for a larger family of Calderón-Zygmund operators in any ambient space Rd as
long as sp is greater than the dimension of the ambient space. In the process we show the
existence of an extension operator for Triebel-Lizorkin spaces in uniform domains F sp,qpΩq and
we define some equivalent norms for them which are of some interest by themselves.

1 Introduction

The aim of the present article is to find necessary and sufficient conditions on certain singular inte-
gral operators to be bounded in fractional Sobolev spaces of a uniform domain Ω with smoothness
0   s   1. However, the results are valid in F sp,qpΩq, that is, the so-called Triebel-Lizorkin spaces,

when s ¡ max
!

0, dp �
d
q

)
.

Consider 0   σ ¤ 1. An operator T defined for f P L1
locpRdq and x P Rdzsupppfq as

Tfpxq �

»
Rd
Kpx� yqfpyqdy,

is called an admissible convolution Calderón-Zygmund operator of order σ if it is bounded in LppRdq
for every 1   p   8 and its kernel K satisfies the size condition

|Kpxq| ¤
CK
|x|d

for every x � 0

and the Lipschitz smoothness condition

|Kpx� yq �Kpxq| ¤
CK |y|

σ

|x|d�σ
for every 0   2|y| ¤ |x|
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ES (Department of Mathematics and Statistics, University of Helsinki, Finland): eero.saksman@helsinki.fi.
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(see Section 2 for more details). In the present article we deal with some properties of the operator
T truncated to a domain Ω, defined as TΩpfq � χΩ T pχΩ fq.

In the complex plane, for instance, the Beurling transform, which is defined as the principal
value

Bfpzq :� �
1

π
lim
εÑ0

»
|w�z|¡ε

fpwq

pz � wq2
dmpwq,

is an admissible convolution Calderón-Zygmund operator of any order with kernel Kpzq � � 1
π z2 .

In the article [CMO13], Vı́ctor Cruz, Joan Mateu and Joan Orobitg, seeking for some results
on the Sobolev smoothness of quasiconformal mappings proved the next theorem.

Theorem (see [CMO13]). Let Ω � Rd be a bounded C1�ε domain (i.e. a Lipschitz domain with
parameterizations of the boundary in C1�ε) for a given ε ¡ 0, and let 1   p   8 and 0   s ¤ 1
such that sp ¡ 2. Then any truncated Calderón-Zygmund operator TΩ with smooth, homogeneous
and even kernel is bounded in the Sobolev space W s,ppΩq if and only if T pχΩq PW

s,ppΩq.

Later, Xavier Tolsa and the first author of the present paper, studied the case s P N, finding
the following T pP q Theorem.

Theorem (see [PT15]). Let Ω � Rd be a Lipschitz domain, T a convolution Calderón-Zygmund
operator with kernel K satisfying

|∇jKpxq| ¤ C
1

|x|d�j
for all 0 ¤ j ¤ n, x � 0,

and p ¡ d. Then the following statements are equivalent:

a) The truncated operator TΩ is bounded in Wn,ppΩq.

b) For every polynomial P of degree n� 1, we have that TΩpP q PW
n,ppΩq.

The notation is explained in Section 2. Note that the kernels are not assumed to be even, and
the conditions on the smoothness of the domain are relaxed. The authors assert that the theorem
is valid even for uniform domains.

In the present paper we study again the fractional smoothness, but we deal with the case of uni-

form domains (see Section 3) for Triebel-Lizorkin spaces F sp,q with 1   p, q   8, max
!

0, dp �
d
q

)
 

s   1. Let us note here to illustrate that in case q � 2 we deal with the Sobolev fractional spaces
W s,p and in case q � p then we deal with the Besov spaces Bsp,p. To avoid misunderstandings, the
reader must be aware that the Bsp,p spaces are called also Sobolev spaces in some books, while the
W s,p spaces are sometimes called Bessel potential spaces. See Section 5 for all the definitions of
these spaces.

Our main result is the following.

Theorem 1.1. Let Ω � Rd be a bounded uniform domain, T an admissible convolution Calderón-
Zygmund operator of order 0   σ   1. Consider indices p, q P p1,8q and d

p   s ¤ σ. Then the

truncated operator TΩ is bounded in F sp,qpΩq if and only if we have that TΩp1q P F
s
p,qpΩq.

To prove this result we will need an equivalent norm for F sp,q. The following result is not present
in the literature in its full generality, but it is found for the Sobolev case in [Ste61] and for the
general Triebel-Lizorkin case when s ¡ d

mintp,qu in [Tri83, Theorem 2.5.10]. The result as stated

below will be a corollary of some results in [Tri06].
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Theorem 1.2 (see Corollary 5.5). Let 1 ¤ p   8, 1 ¤ q ¤ 8 and 0   s   1 with s ¡ d
p �

d
q .

Then,

F sp,q �

$&%f P Lmaxtp,qu : }f}Lp �

�»
Rd

�»
Rd

|fpxq � fpyq|q

|x� y|sq�d
dy


 p
q

dx

� 1
p

  8

,.- ,

(with the usual modification for q � 8), in the sense of equivalent norms.

The restriction s ¡ d
p �

d
q is sharp, as we will see in Remark 4.2. One can find some equivalent

norms for Triebel-Lizorkin spaces in terms of differences using means on balls which avoid this
restriction. We refer the reader to [Str67] or [Tri83, Corollary 2.5.11].

Given a domain Ω, we say that f P F sp,qpΩq if there is a function h P F sp,qpRdq such that
h|Ω � f |Ω. The norm }f}F sp,qpΩq will be defined as the infimum of the norms }h}F sp,qpRdq for all

admissible h. Our method is based on an intrinsic characterization of this norm, inspired by the
previous theorem. We define

}f}Asp,qpΩq :� }f}LppΩq �

�»
Ω

�»
Ω

|fpxq � fpyq|q

|x� y|sq�d
dy


 p
q

dx

� 1
p

.

Indeed, this norm will be equivalent to the Triebel-Lizorkin one for uniform domains:

Theorem 1.3. Let Ω � Rd be a bounded uniform domain, 1   p, q   8 and 0   s   1 with
s ¡ d

p �
d
q . Then f P F sp,qpΩq if and only if f P Asp,qpΩq and the norms are equivalent.

To prove this result we will use Theorem 1.2 and the following extension Theorem:

Theorem 1.4. Let Ω � Rd be a bounded uniform domain, 1   p, q   8 and 0   s   1 with
s ¡ d

p �
d
q . Then there exists a bounded operator Λ0 : Asp,qpΩq Ñ F sp,qpRdq such that Λ0f |Ω � f for

every f P Asp,qpΩq.

However, in the proof of Theorem 1.1 we will make use of a functional which is closely related
to }�}Asp,qpΩq. Call δpxq � distpx, BΩq. Consider the Carleson boxes (or shadows) Shpxq :� ty P Ω :

|y � x| ¤ cΩδpxqu with cΩ ¡ 1 to be fixed (see Section 3). Then we have the following reduction
for the Triebel-Lizorkin norm:

Theorem 1.5 (See Corollary 7.3.). Let Ω � Rd be a bounded uniform domain, 1   p   q   8
and 0   s   1 with s ¡ d

p �
d
q . Then f P F sp,qpΩq if and only if

}f}LppΩq �

��»
Ω

�»
Shpxq

|fpxq � fpyq|q

|x� y|sq�d
dy

� p
q

dx

�1
p

  8.

Furthermore, the left-hand side of the inequality above is equivalent to the norm }f}F sp,qpΩq.

The situation is even better when p ¥ q:

Theorem 1.6 (See Corollary 7.3.). Let Ω � Rd be a bounded uniform domain, 1   q ¤ p   8,
0   s   1 and 0   ρ   1. Then f P F sp,qpΩq if and only if

}f}LppΩq �

��»
Ω

�»
Bpx,ρδpxqq

|fpxq � fpyq|q

|x� y|sq�d
dy

� p
q

dx

�1
p

  8.

Furthermore, the left-hand side of the inequality above is equivalent to the norm }f}F sp,qpΩq.
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The plan of the paper is the following. In Section 2 we set up the notation. In Section 3
we define uniform domains in the spirit of [Jon81] but from a dyadic point of view and then we
prove some basic properties of those domains. The expert reader may skip this part. Section 4
is devoted to proving Lemma 4.4 which is about the change of the domain of integration in the
norm Asp,qpΩq. This Lemma, together with Theorem 1.3, which is proven in Section 5, leads to
Theorem 1.5 (see Corollary 7.3). Section 5 begins with some remarks on Triebel-Lizorkin spaces,
followed by the proof of the implicit characterization of Triebel-Lizorkin spaces given in Theorem
1.2, the Extension Theorem 1.4 and, as a corollary, Theorem 1.3. Section 6 is the core of the paper,
and it contains the proof of the T(1) Theorem 1.1. The key Lemma 6.6 is a discretization of the
transform of a function and it is the cornerstone of the mentioned theorem. Finally, in Section 7
we prove Theorem 1.6 for the sake of completeness of the present article.

2 Notation

On inequalities: When comparing two quantities x1 and x2 that depend on some parameters
p1, . . . , pj we will write

x1 ¤ Cpi1 ,...,pij x2

if the constant Cpi1 ,...,pij depends on pi1 , . . . , pij . We will also write x1 Àpi1 ,...,pij x2 for short, or

simply x1 À x2 if the dependence is clear from the context or if the constants are universal. We
may omit some of these variables for the sake of simplicity. The notation x1 �pi1 ,...,pij x2 will

mean that x1 Àpi1 ,...,pij x2 and x2 Àpi1 ,...,pij x1.

On cubes: Given a cube Q, we write `pQq for its side-length. Given two cubes Q,S, we
define their long distance as DpQ,Sq � `pQq� distpQ,Sq� `pSq. Given a real number ρ, we define
ρQ as the cube concentric to Q, with ratio ρ and faces parallel to the faces of Q.

For any cube Q and any function f , we call fQ �
ffl

Q
f dm to the mean of f in Q.

On conjugate indices: Given 1 ¤ p ¤ 8 we write p1 for its Hölder conjugate, that is
1
p �

1
p1 � 1.

3 On uniform domains

There is a considerable literature on uniform domains and their properties, we refer the reader e.g.
to [GO79] and [Väi88].

Definition 3.1. Given a domain Ω, we say that a collection of open dyadic cubes W is a Whitney
covering of Ω if they are disjoint, the union of the cubes and their boundaries is Ω, there exists a
constant CW such that

CW`pQq ¤ distpQ, BΩq ¤ 4CW`pQq,

two neighbor cubes Q and R (i.e., Q X R � H) satisfy `pQq ¤ 2`pRq, and the family t50QuQPW
has finite superposition. Moreover, we will assume that

S � 5Q ùñ `pSq ¥
1

2
`pQq. (3.1)

The existence of such a covering is granted for any open set different from Rd and in particular
for any domain as long as CW is big enough (see [Ste70, Chapter 1] for instance).
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Figure 3.1: A Whitney decomposition of an pε,8q-uniform domain with and an ε-admissible chain.
The end-point cubes are colored in red and the central one in blue.

Definition 3.2. Let Ω be a domain and W a Whitney decomposition of Ω and Q,S P W. Given
M cubes Q1, . . . , QM P W with Q1 � Q and QM � S, the M -tuple pQ1, . . . , QM q

M
j�1 P WM

is a chain connecting Q and S if the cubes Qj and Qj�1 are neighbors for j   M . We write
rQ,Ss � pQ1, . . . , QM q

M
j�1 for short.

Let ε P R. We say that the chain rQ,Ss is ε-admissible if

• the length of the chain is bounded by

`prQ,Ssq :�
M̧

j�1

`pQjq ¤
1

ε
DpQ,Sq (3.2)

• and there exists j0  M such that the cubes in the chain satisfy

`pQjq ¥ εDpQ1, Qjq for all j ¤ j0 and `pQjq ¥ εDpQj , QM q for all j ¥ j0. (3.3)

The j0-th cube, which we call central, satisfies that `pQj0q Ád εDpQ,Sq by (3.3) and the triangle
inequality. We will write QS � Qj0 . Note that this is an abuse of notation because the central cube
of rQ,Ss may vary for different ε-admissible chains joining Q and S.

We write (abusing notation again) rQ,Ss also for the set tQju
M
j�1. Thus, we will write P P

rQ,Ss if P appears in a coordinate of the M -tuple rQ,Ss. For any P P rQ,Ss we call NrQ,SspP q

5



to the following cube in the chain, that is, for j   M we have that NrQ,SspQjq � Qj�1. We will
write N pP q for short if the chain to which we are referring is clear from the context.

Every now and then we will mention subchains. That is, for 1 ¤ j1 ¤ j2 ¤ M , the subchain
rQj1 , Qj2srQ,Ss � rQ,Ss is defined as pQj1 , Qj1�1, . . . , Qj2q. We will write rQj1 , Qj2s if there is no
risk of confusion.

Definition 3.3. Let ε, δ P R. We say that a domain Ω � Rd is an pε, δq-uniform domain if there
exists a Whitney covering W of Ω such that for any pair of cubes Q,S P W with DpQ,Sq ¤ δ,
there exists an ε-admissible chain rQ,Ss (see Figure 3.1).

Next we make some observations on the two subchains rQ,QSs and rQS , Ss.

Remark 3.4. Consider a domain Ω with coveringW and two cubes Q,S PW with an ε-admissible
chain rQ,Ss. From Definition 3.2 it follows that

DpQ,Sq �ε,d `prQ,Ssq �ε,d `pQSq �ε,d DpQ,QSq �ε,d DpQS , Sq. (3.4)

If P P rQ,QSs, by (3.3) we have that

DpQ,P q �d,ε `pP q (3.5)

On the other hand, by the triangular inequality, (3.2) and (3.3) we have that

DpP, Sq Àd `prP, Ssq ¤ `prQ,Ssq ¤
DpQ,Sq

ε
Àd

DpQ,P q �DpP, Sq

ε
Àd

1
ε `pP q �DpP, Sq

ε
,

that is,
DpP, Sq �ε,d DpQ,Sq. (3.6)

Using (3.6) it is quite easy to see that a domain satisfying this definition satisfies to the one
given by Peter Jones in [Jon81] (changing the parameters ε and δ if necessary). It is somewhat
more involved to prove the converse implication, but it can be done using the ideas of Remark
3.4. In any case it is not transcendent for the present paper to prove this fact, which is left for the
reader as an exercise.

Now we can define the shadows:

Definition 3.5. Given a cube P P W centered at xP and a real number ρ, the ρ-shadow of P is
the collection of cubes

SHρpP q � tQ PW : Q � BpxP , ρ `pP qqu

and its “realization” is the set
ShρpP q �

¤
QPSHρpP q

Q

(see Figure 3.2).
By the previous remark and the properties of the Whitney covering, we can define ρε ¡ 1 such

that the following properties hold:

• |diampBΩX ShρεpP qq| � `pP q.

• For every ε-admissible chain rQ,Ss, and every P P rQ,QSs we have that Q P SHρεpP q.

• Moreover, every cube P belonging to an ε-admissible chain rQ,Ss belongs to the shadow
SHρεpQSq.

6



Figure 3.2: The shadow Sh13pP q.

Note that the first property comes straight from the properties of the Whitney covering, while
the second is a consequence of (3.5) and the third holds because of the fact that if P P rQ,Ss then
DpP,QSq Àd `prQ,Ssq � DpQ,Sq � `pQSq by (3.4).

Remark 3.6. Given an pε, δq-uniform domain Ω we will write Sh for Shρε . We will write also
SH for SHρε .

If Q P SHpP q and `pP q ¤ C (with C depending on δ and the Whitney constants), we can grant
that DpQ,P q ¤ δ and, therefore, there exists an ε-admissible chain rQ,P s.

For Q PW and s ¡ 0, we have that¸
L:QPSHpLq

`pLq�s Às,W `pQq�s (3.7)

and, moreover, if Q P SHpP q with `pP q ¤ C, then¸
LPrQ,P s

`pLqs Às,W `pP qs and
¸

LPrQ,P s

`pLq�s À `pQq�s. (3.8)

Proof. We only need to prove (3.7) and (3.8). Considering the definition of shadow we can deduce
that there is a bounded number of cubes with given side-length in the left-hand side of (3.7) and,
therefore, the sum is a geometric sum. Again by the definition of shadow we know that the smaller
cube in that sum has side-length comparable to `pQq.

To prove (3.8), first note that `pQP q � DpQ,P q � `pP q by (3.4) and Definition 3.5. For
every L P rQ,P s, although it may occur that L R SHpP q, we still have that by the triangle
inequality DpL,P q À `prQ,P sq � DpQ,P q and, thus, by the definition of shadow we have that
DpL,P q À `pP q, i.e.

DpL,P q � `pP q. (3.9)

When L P rQ,QP s, (3.5) reads as
`pLq � DpQ,Lq,

and when L P rQP , P s by (3.5) and (3.9), we have that

`pLq � DpL,P q � `pP q.

In particular, the number of cubes in rQP , P s is uniformly bounded. Summing up, for L P rQ,P s
we have that `pQq À `pLq À `pP q and all the cubes of a given sidelength r contained in rQ,P s

7



are situated at a distance from Q bounded by Cr. so the number of those cubes is uniformly
bounded. Therefore, the left-hand side of both inequalities of (3.8) are geometric sums, bounded
by a constant times the bigger term. The constant depends on s, but also on the uniformity
constants of the domain.

4 Properties of As
p,q on uniform domains.

Next we introduce a norm which will be the main tool for the proofs in this paper.

Definition 4.1. Consider 1 ¤ p   8, 1 ¤ q ¤ 8 and 0   s   1 with s ¡ d
p �

d
q . Let U be a open

set in Rd. We say that a measurable function f P Asp,qpUq if

• The function f P LppUq.

• The seminorm

}f}
9Asp,qpUq

:�

�»
U

�»
U

|fpxq � fpyq|q

|x� y|sq�d
dy


 p
q

dx

� 1
p

  8. (4.1)

We define the norm
}f}Asp,qpUq :� }f}LppUq � }f}

9Asp,qpUq
.

Remark 4.2. The condition d
p �

d
q   s ensures that the C8

c -functions are in the class Asp,qpRdq.

Proof. Indeed, given a bump function ϕ P C8
c pDq,

}ϕ}Asp,qpRdq ¥

�»
p2Dqc

�»
D

|ϕpxq � ϕpyq|q

|x� y|sq�d
dy


 p
q

dx

� 1
p

�

�»
p2Dqc

�»
D
|ϕpyq|q dy


 p
q 1

|x|sp�
dp
q

dx

� 1
p

which is finite if and only if d
p   s� d

q . The converse implication is an exercise.

We recall the definition of the non-centered Hardy-Littlewood maximal operator. Given f P
L1
locpRdq and x P Rd, we define Mfpxq as the supremum of the mean of f in cubes containing x,

that is,

Mfpxq � sup
Q:xPQ

1

|Q|

»
Q

fpyq dy.

It is a well known fact that this operator is bounded in Lp for 1   p   8. The following lemma is
proven in [PT15] and will be used repeatedly along the proofs contained in the present text.

Lemma 4.3. Let Ω be a bounded uniform domain with an admissible Whitney coveringW. Assume
that g P L1pΩq and r ¡ 0. For every η ¡ 0, Q PW and x P Rd, we have

1) The non-local inequality for the maximal operator»
|y�x|¡r

gpyq dy

|y � x|d�η
Àd

Mgpxq

rη
and

¸
S:DpQ,Sq¡r

³
S
gpyq dy

DpQ,Sqd�η
Àd

infyPQMgpyq

rη
. (4.2)

8



2) The local inequality for the maximal operator»
|y�x| r

gpyq dy

|y � x|d�η
Àd r

ηMgpxq and
¸

S:DpQ,Sq r

³
S
gpyq dy

DpQ,Sqd�η
Àd inf

yPQ
Mgpyq rη. (4.3)

3) In particular we have ¸
SPW

`pSqd

DpQ,Sqd�η
Àd

1

`pQqη
(4.4)

and, by Definition 3.5, ¸
SPSHpQq

»
S

gpxq dx Àd,ε inf
yPQ

Mgpyq `pQqd.

The first lemma we present an equivalent norm for Asp,qpΩq.

Lemma 4.4. Let Ω be a bounded uniform domain with an admissible Whitney covering W, let
1   p, q   8 and 0   s   1 wit s ¡ d

p �
d
q . Then, f P Asp,qpΩq if and only if

}f}
rAsp,qpΩq

� }f}LppΩq �

�� ¸
QPW

»
Q

�»
ShpQq

|fpxq � fpyq|q

|x� y|sq�d
dy

� p
q

dx

�1
p

  8. (4.5)

This quantity defines a norm which is equivalent to }f}
p
Asp,qpΩq

and, moreover, we have that f P

LqpΩq.

Proof. Recall that in (4.1) we defined

}f}
9Asp,qpΩq

�

�»
Ω

�»
Ω

|fpxq � fpyq|q

|x� y|sq�d
dy


 p
q

dx

� 1
p

.

Trivially

}f}
p
9Asp,qpΩq

Á
¸
QPW

»
Q

�»
ShpQq

|fpxq � fpyq|q

|x� y|sq�d
dy

� p
q

dx.

For the converse inequality, we start by proving that if (4.5) holds then f P LqpΩq. If we
choose ρε big enough, we can grant that every point in the boundary is in the shadow of a cube
of side-length equivalent to δ. Therefore, there is a finite collection of cubes Q1, . . . , QM with
Ω �

�M
j�1 ShpQjq. Then, the triangular inequality and the Hölder inequality yield

}f}LqpΩq ¤
M̧

j�1

��fχShpQjq

��
LqpΩq

¤

�� M̧

j�1

�»
ShpQjq

|fpyq|q dy

� p
q

�1
p

M
1
p1 .

Therefore, since we assume that (4.5) holds,

}f}LqpΩq À

�� M̧

j�1

 

Qj

�»
ShpQjq

|fpxq|q dy

� p
q

dx

�1
p

�

�� M̧

j�1

 

Qj

�»
ShpQjq

|fpxq � fpyq|q dy

� p
q

dx

�1
p

À
1

minj `pQjq
d
p

���}f}LppΩq �
�� M̧

j�1

»
Qj

�»
ShpQjq

diampΩqsq�d
|fpxq � fpyq|q

|x� y|sq�d
dy

� p
q

dx

�1
p

��,
9



and thus

}f}LqpΩq À }f}LppΩq �

�� ¸
QPW

»
Q

�»
ShpQq

|fpxq � fpyq|q

|x� y|sq�d
dy

� p
q

dx

�1
p

. (4.6)

Next, we will use the seminorm in the duality form

}f}
9Asp,qpΩq

� sup
}g}

Lp
1
pLq

1
pΩqq

¤1

»
Ω

»
Ω

|fpxq � fpyq|

|x� y|s�
d
q

gpx, yq dy dx. (4.7)

Since the shadow of every cube Q contains 2Q, we just use Hölder’s inequality to find that

sup
}g}

Lp
1
pLq

1
pΩqq

¤1

¸
QPW

»
Q

»
2Q

|fpxq � fpyq|

|x� y|s�
d
q

gpx, yq dy dx ¤

� ¸
QPW

»
Q

�»
2Q

|fpxq � fpyq|q

|x� y|sq�d
dy


 p
q

dx

� 1
p

.

(4.8)
Therefore, we only need to prove that for any function g ¡ 0 with }g}Lp1 pLq1 pΩqq ¤ 1, one has that

¸
QPW

»
Q

¸
S

»
Sz2Q

|fpxq � fpyq|

|x� y|s�
d
q

gpx, yq dy dx À

�� ¸
QPW

»
Q

�»
ShpQq

|fpxq � fpyq|q

|x� y|sq�d
dy

� p
q

dx

�1
p

.

(4.9)
If x P Q, y P Sz2Q, then |x� y| � DpQ,Sq, so we can write¸

QPW

»
Q

¸
S

»
Sz2Q

|fpxq � fpyq|

|x� y|s�
d
q

gpx, yq dy dx À
¸
Q

¸
DpQ,Sq¥δ

»
Q

»
S

|fpxq � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx (4.10)

�
¸
Q

¸
DpQ,Sq δ

»
Q

»
S

|fpxq � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx.

For the first term in (4.10),¸
Q

¸
DpQ,Sq¥δ

»
Q

»
S

|fpxq � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx Àδ

»
Ω

»
Ω

p|fpxq| � |fpyq|qgpx, yq dy dx.

By Hölder’s inequality,»
Ω

»
Ω

p|fpxq| � |fpyq|qgpx, yq dy dx À }f}LppΩq|Ω|
1
q }g}Lp1 pLq1 pΩqq � |Ω|

1
p }f}LqpΩq}g}Lp1 pLq1 pΩqq,

which, by (4.6), yields¸
Q

¸
DpQ,Sq¥δ

»
Q

»
S

|fpxq � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx À|Ω|,δ }f} rAsp,qpΩq
. (4.11)

The second sum in (4.10) deals with the case DpQ,Sq   δ. Since Ω is a pδ, εq-uniform domain,
for every pair of cubes Q and S in this sum, there exists an amdissible chain rQ,Ss joining them.
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Thus, writing fQ �
ffl

Q
f dm for the mean of f in Q, the term can be split as follows:

¸
Q,S:DpQ,Sq δ

»
Q

»
S

|fpxq � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx ¤
¸

Q,S:DpQ,Sq δ

»
Q

»
S

|fpxq � fQ|

DpQ,Sqs�
d
q

gpx, yq dy dx

�
¸

Q,S:DpQ,Sq δ

»
Q

»
S

|fQ � fQS |

DpQ,Sqs�
d
q

gpx, yq dy dx

�
¸

Q,S:DpQ,Sq δ

»
Q

»
S

|fQS � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx

�: 1 � 2 � 3 (4.12)

The first term can be immediately bounded by Cauchy-Schwarz inequality. Namely, writing
Gpxq � }gpx, �q}Lq1 pΩq, by (4.4) we have that

1 ¤
¸
QPW

»
Q

|fpxq � fQ|

� ¸
SPW

»
S

gpx, yqq
1

dy

� 1
q1
� ¸
SPW

`pSqd

DpQ,Sqsq�d

� 1
q

dx

¤
¸
QPW

³
Q
|fpxq � fQ|Gpxq dx

`pQqs
.

By Jensen’s inequality, |fpxq� fQ| ¤
�

1
`pQqd

³
Q
|fpxq � fpyq|q dy

	 1
q

and thus, since `pQq Ád |x� y|

for x, y P Q, we have that

1 À

� ¸
QPW

»
Q

�»
Q

|fpxq � fpyq|q

|x� y|sq�d
dy


 p
q

dx

� 1
p

}G}Lp1 . (4.13)

Since }G}Lp1 � }g}Lp1 pLq1 q ¤ 1, this finishes this part.

For the second one, for all cubes Q and S we consider the subchain rQ,QSq � rQ,Ss. Then

2 ¤
¸

Q,S:DpQ,Sq δ

»
Q

»
S

gpx, yq

DpQ,Sqs�
d
q

dy dx
¸

PPrQ,QSq

|fP � fN pP q|.

Recall that all the cubes P P rQ,QSs contain Q in their shadow and the properties of the Whitney
covering grant that N pP q � 5P . Moreover, by (3.6) we have that DpQ,Sq � DpP, Sq. Thus,

2 Àd
¸
P

 

P

 

5P

|fpξq � fpζq| dζ dξ
¸

QPSHpP q

»
Q

¸
SPW

»
S

gpx, yq

DpP, Sqs�
d
q

dy dx

and, using Hölder’s inequality, and by (4.4), we have that

2 ¤
¸
P

 

P

 

5P

|fpξq � fpζq| dζ dξ
¸

QPSHpP q

»
Q

�»
Ω

gpx, yqq
1

dy


 1
q1

� ¸
SPW

`pSqd

DpP, Sqsq�d

� 1
q

dx

Àd,s,q
¸
P

 

P

 

5P

|fpξq � fpζq| dζ dξ
¸

QPSHpP q

»
Q

Gpxq dx
1

`pP qs
.
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By (4.3) we have that
³
ShpP q

Gpxq dx Àd,ε infyPPMGpyq`pP qd, so

2 Àd
¸
P

»
P

»
5P

|fpξq � fpζq| dζMGpξq dξ
`pP qd�s

`pP q2d

Àd,p
¸
P

»
P

�»
5P

|fpξq � fpζq|q dζ


 1
q

`pP q
d
q1MGpξq dξ

1

`pP qd�s
.

Note that for ξ, ζ P 5P , we have that |ξ � ζ| Àd `pP q. Thus, using Hölder’s inequality again and
the fact that }MG}Lp1 Àp }G}Lp1 ¤ 1, we bound the second term by

2 À
¸
P

»
P

�»
5P

|fpξq � fpζq|q

|ξ � ζ|sq�d
dζ


 1
q

MGpξq dξ À

�¸
P

»
P

�»
5P

|fpξq � fpζq|q

|ξ � ζ|sq�d
dζ


 p
q

dξ

� 1
p

.

(4.14)

Now we face the boundedness of

3 �
¸

Q,S:DpQ,Sq δ

»
Q

»
S

|fQS � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx.

Given two cubes Q and S with DpQ,Sq   δ, we have that for every admissible chain rQ,Ss the
cubes Q,S P SHpQSq by Definition 3.3 and DpQ,Sq � `pQSq by (3.4). Thus, we can reorder the
sum, writing

3 À
¸
R

¸
QPSHpRq

¸
SPSHpRq

»
Q

»
S

|fR � fpyq|

`pRqs�
d
q

gpx, yq dy dx (4.15)

¤
¸
R

»
R

¸
QPSHpRq

¸
SPSHpRq

»
Q

»
S

|fpξq � fpyq|

`pRqs�p1�
1
q qd

gpx, yq dy dx dξ.

Using Hölder’s inequality, Lemma 4.3 and the fact that for S P SHpRq one has `pRq � DpS,Rq,
we get that

3 ¤
¸
R

»
R

1

`pRqs�p1�
1
q qd

¸
QPSHpRq

»
Q

¸
SPSHpRq

�»
S

|fpξq � fpyq|q dy


 1
q
�»

S

gpx, yqq
1

dy


 1
q1

dx dξ

¤
¸
R

»
R

1

`pRqs�p1�
1
q qd

�»
ShpRq

|fpξq � fpyq|q dy

� 1
q ¸
QPSHpRq

»
Q

Gpxq dx dξ

À
¸
R

»
R

�»
ShpRq

|fpξq � fpyq|q dy

� 1
q

1

`pRqs�p1�
1
q qd

MGpξq`pRqd dξ

and, using the Hölder inequality again and the boundedness of the maximal operator in Lp
1

, we
get

3 À

��¸
R

»
R

�»
ShpRq

|fpξq � fpyq|q

|ξ � y|sq�d
dy

� p
q

dξ

�1
p

}MG}Lp1

À

��¸
R

»
R

�»
ShpRq

|fpξq � fpyq|q

|ξ � y|sq�d
dy

� p
q

dξ

�1
p

. (4.16)

12



Thus, by (4.12), (4.13), (4.14) and (4.16), we have that

¸
Q,S:DpQ,Sq δ

»
Q

»
S

|fpxq � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx À

��¸
R

»
R

�»
ShpRq

|fpξq � fpyq|q

|ξ � y|sq�d
dy

� p
q

dξ

�1
p

.

This fact, together with (4.10) and (4.11) prove (4.9) and thus, using (4.7) and (4.8), we get that

}f}Asp,qpΩq Àd,p,q,s,ε,δ,|Ω| }f} rAsp,qpΩq
.

Remark 4.5. Note that in case δ � 8, we have that the first term in the right-hand side of (4.10)
is zero, and we have proven that in this case the homogeneous seminorms are equivalent, that is,

¸
QPW

»
Q

�»
ShpQq

|fpxq � fpyq|q

|x� y|sq�d
dy

� p
q

dx � }f}
p
9Asp,qpΩq

,

which improves (4.5).

5 Fractional Sobolev spaces

First we recall some results on Triebel-Lizorkin spaces. We refer the reader to [Tri83].

Definition 5.1. Let ΦpRdq be the collection of all the families of smooth functions Ψ � tψju
8
j�0 �

C8
c pRdq such that "

suppψ0 � Dp0, 2q,
suppψj � Dp0, 2j�1qzDp0, 2j�1q if j ¥ 1,

for every multiindex α P Nd there exists a constant cα such that

}Dαψj}8 ¤
cα

2j|α|
for every j ¥ 0

and
8̧

j�0

ψjpxq � 1 for every x P Rd.

We will use the classical notation pf for the Fourier transform of a given Schwartz function,

pfpξq � »
Rd
e�2πix�ξfpxq dx,

and qf will denote its inverse. It is well known that the Fourier transform can be extended to the
whole space of tempered distributions by duality and it induces an isometry in L2 (see for example
[Gra08, Chapter 2]).

Definition 5.2. Let s P R, 1 ¤ p ¤ 8, 1 ¤ q ¤ 8 and Ψ P ΦpRnq. For any tempered distribution
f P S1pRnq we define its non-homogeneous Besov norm

}f}
Ψ
Bsp,q

�
���!2sj

����ψj pf	q���
Lp

)���
lq
,
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and we call Bsp,q � S1 to the set of tempered distributions such that this norm is finite.
Let s P R, 1 ¤ p   8, 1 ¤ q ¤ 8 and Ψ P ΦpRnq. For any tempered distribution f P S1pRnq

we define its non-homogeneous Triebel-Lizorkin norm

}f}
Ψ
F sp,q

�
������!2sj

�
ψj pf	q)���

lq

���
Lp
,

and we call F sp,q � S1 to the set of tempered distributions such that this norm is finite.

These norms are equivalent for different choices of Ψ. Usually one works with radial ψj and
such that ψj�1pxq � ψjpx{2q for j ¥ 1. Of course we will omit Ψ in our notation since it plays no
role (see [Tri83, Section 2.3]).

Remark 5.3. For q � 2 and 1   p   8 these spaces are the so-called Bessel-potential spaces
W s,p. In addition, if s P N they coincide with the usual Sobolev spaces of functions in Lp with
weak derivatives up to order s in Lp, and they coincide with Lp for s � 0 ([Tri83, Section 2.5.6]).
In the present text, we call Sobolev space to any W s,p with s ¡ 0 and 1   p   8, even if s is not
a natural number. Note that complex interpolation between Sobolev spaces is a Sobolev space (see
[Tri78, Section 2.4.2, Theorem 1]).

In some situations, the classical Besov spaces Bsp,ppUq � Asp,ppUq and the fractional Sobolev
spaces W s,ppUq � Asp,2pUq. For instance, when Ω is a Lipschitz domain then Asp,2pΩq � W s,ppΩq
(see [Str67]). We will see that this is a property of all uniform domains.

To use the Sobolev embedding for Triebel-Lizorkin spaces, we will use the following proposition.

Proposition 5.4 (See [Tri83, Section 2.3.2].). Let 1 ¤ q ¤ 8 and 1 ¤ p   8, s P R and ε ¡ 0.
Then

F s�εp,q �W s,p. (5.1)

Next we will prove Theorem 1.2. Let us write ∆1
hfpxq :� fpx�hq�fpxq and, if M P N with M ¡

1 we define the M -th iterated difference as ∆M
h fpxq :� ∆1

hp∆
M�1
h fqpxq �

°M
j�0

�
M
j

�
p�1qM�jfpx�

jhq. For an index 0   u ¤ 8 and t P R, we write

dMt,ufpxq :�

�
t�d

»
|h|¤t

|∆M
h fpxq|

u dh

� 1
u

,

with the usual modification for u � 8. In [Tri06, Theorem 1.116] we find the following result.

Theorem (See [Tri06].). Given 1 ¤ r ¤ 8, 0   u ¤ r, 1 ¤ p   8, 1 ¤ q ¤ 8 and 0   s   M
with d

mintp,qu �
d
r   s, we have that

F sp,qpRdq �

$'&'%f P Lmaxtp,ru : }f}Lp �

��»
Rd

�» 1

0

dMt,ufpxq
q

tsq�1
dt

� p
q

dx

�1
p

  8

,/./-
(with the usual modification for q � 8), in the sense of equivalent quasinorms.

As an immediate consequence of this result, we get the following corollary.

Corollary 5.5. Let 1 ¤ p   8, 1 ¤ q ¤ 8 and 0   s  M with s ¡ d
p �

d
q . Then

F sp,qpRdq �

$&%f P Lmaxtp,qu s.t. }f}Asp,qpRdq :� }f}Lp �

�»
Rd

�»
Rd

|∆M
h fpxq|

q

|h|sq�d
dh


 p
q

dx

� 1
p

  8

,.-
(with the usual modification for q � 8), in the sense of equivalent norms.
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Proof. Let f P Lmaxtp,qu and assume that 1 ¤ q   8 and 0   s   M with s ¡ d
p �

d
q . Choosing

q � u � r all the conditions in the theorem above are satisfied. Therefore,

}f}F sp,qpRdq � }f}Lp �

��»
Rd

�» 1

0

dMt,qfpxq
q

tsq�1
dt

� p
q

dx

�1
p

. (5.2)

Since dMt,q �
�
t�d

³
|h|¤t

|∆M
h fpxq|

q dh
	 1
q

, we can change the order of integration to get that

»
Rd

�» 1

0

dMt,qfpxq
q

tsq�1
dt

� p
q

dx �

»
Rd

�»
|h|¤1

»
1¡t¡|h|

dt

tsq�1�d
|∆M

h fpxq|
q dh

� p
q

dx

�

»
Rd

�»
|h|¤1

|∆M
h fpxq|

q

sq � d

�
1

|h|sq�d
� 1



dh

� p
q

dx.

This shows that }f}F sp,qpRdq À }f}Asp,qpRdq and also that

»
Rd

�»
|h|  1

2

|∆M
h fpxq|

q

|h|sq�d
dh

� p
q

dx À

»
Rd

�» 1

0

dMt,qfpxq
q

tsq�1
dt

� p
q

dx À }f}
p
F sp,qpRdq

(5.3)

by (5.2). It remains to see that
³
Rd

�³
|h|¡ 1

2

|∆M
h fpxq|

q

|h|sq�d
dh

	 p
q

dx À }f}
p
F sp,qpRdq

. Using appropriate

changes of variables and the triangle inequality, it is enough to check that

I :�

»
Rd

�»
Rd

|fpx� hq|q

p1� |h|qsq�d
dh


 p
q

dx À }f}
p
F sp,qpRdq

. (5.4)

Let us assume that p ¥ q. Then, since the measure p1� |h|q�psq�dq dh is finite, we may apply
Jensen’s inequality to the inner integral, and then Fubini to obtain

I À

»
Rd

»
Rd

|fpx� hq|p

p1� |h|qsp�d
dh dx À }f}

p
Lp ,

and (5.4) follows.
If, instead, p   q, cover Rd with disjoint cubes Q~j � Q0 � ~̀j for ~j P Zd. Fix the side-length `

of these cubes so that their diameter is 1{3. By the subadditivity of xÑ |x|
p
q , we have that

I À
¸
~k

»
Q~k

¸
~j

�»
Q~j

|fpyq|q

p1� |x� y|qsq�d
dy

� p
q

dx �
¸
~j

�»
Q~j

|fpyq|q dy

� p
q ¸
~k

1

p1� |~j � ~k|qsp�
dp
q

.

Since s� d
q ¡

d
p , the last sum is finite and does not depend on ~j. On the other hand, we have that°

~j

³
Q~j

�³
Q~j
|fpxq|q dy

	 p
q

dx � }f}
p
Lp because all the cubes have side-length comparable to 1. Let

0   σ   mint1, su. By (5.3) we have that

¸
~j

�»
Q~j

|fpyq|q dy

� p
q

À
¸
~j

»
Q~j

�»
Q~j

|fpyq � fpxq|q dy

� p
q

dx� }f}
p
Lp À }f}

p
Fσp,qpRdq

À }f}
p
F sp,qpRdq

.

Note that in the last step we used (5.1).
The case q � 8 follows the same scheme.

15



Definition 5.6. Let XpRdq be a Banach space of measurable functions in Rd. Let U � Rd be a
open set. Then for every measurable function f : U Ñ C we define

}f}XpUq � inf
gPXpRdq: g|U�f

}g}XpRdq.

Consider a given pε, δq-uniform domain Ω. In [Jon81] Peter Jones defines an extension operator
Λ0 : W 1,ppΩq Ñ W 1,ppRdq for 1   p   8, that is, a bounded operator such that Λ0f |Ω �
f |Ω for every f P W 1,ppΩq. This extension operator is used to prove that we have the intrinsic
characterization of Wn,ppΩq given by

}f}W 1,ppΩq � }f}LppΩq � }∇f}LppΩq.

Next we will see that the same operator is an extension operator for Asp,qpΩq for 0   s   1

with s ¡ d
p �

d
q . To define it we need a Whitney covering W1 of Ω (see Definition 3.1), a Whitney

covering W2 of Ωc and we define W3 to be the collection of cubes in W2 with side-lengths small
enough, so that for any Q P W3 there is a S P W1 with DpQ,Sq ¤ C`pQq and `pQq � `pSq (see
[Jon81, Lemma 2.4]). We define the symmetrized cube Q� as one of the cubes satisfying these
properties. Note that the number of possible choices for Q� is uniformly bounded.

Lemma 5.7. [see [Jon81]] For cubes Q1, Q2 PW3 and S PW1 we have that

• The symmetrized cubes have finite overlapping: there exists a constant C depending on the
parameters ε and d such that #tQ PW3 : Q� � Su ¤ C.

• The long distance is invariant in the following sense:

DpQ�
1 , Q

�
2 q � DpQ1, Q2q and DpQ�

1 , Sq � DpQ1, Sq (5.5)

• In particular, if Q1X2Q2 � H (Q1 and Q2 are neighbors by (3.1)), then DpQ�
1 , Q

�
2 q � `pQ1q.

We define the family of bump functions tϕQuQPW2 to be a partition of the unity associated to 
11
10Q

(
QPW2

, that is, their sum
°
ϕQ � 1, we have the pointwise inequalities 0 ¤ ϕQ ¤ χ 11

10Q
and

}∇ϕQ}8 À 1
`pQq . We can define the operator

Λ0fpxq �
¸

QPW3

ϕQpxqfQ� for any f P L1
locpΩq

(recall that fU stands for the mean of a function f in a set U).

Lemma 5.8. Let Ω be a bounded uniform domain, let 1   p, q   8 and 0   s   1 with s ¡ d
p �

d
q .

Then, Λ0 : Asp,qpΩq Ñ Asp,qpRdq is an extension operator. Furthermore, Λ0f P Lq for every
f P Asp,qpΩq.

Proof. We have to check that

}Λ0f}Asp,qpRdq � }Λ0f}Lp �

�»
Rd

�»
Rd

|Λ0fpxq � Λ0fpyq|
q

|x� y|sq�d
dy


 p
q

dx

� 1
q

À }f}Asp,qpΩq

First, note that }Λ0f}Lp ¤ }f}LppΩq � }Λ0f}LppΩcq. By Jensen’s inequality, we have that

}Λ0f}
p
LppΩcq Àp

¸
QPW3

|fQ� |p}ϕQ}
p
Lp ¤

¸
QPW3

1

`pQqd
}f}

p
LppQ�q

�
11

10
`pQq


d
.
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By the finite overlapping of the symmetrized cubes,

}Λ0f}
p
LppΩcq À }f}

p
LppΩq.

The same can be said about Lq. It remains to check that

}Λ0f} 9Asp,qpRdq �

�»
Rd

�»
Rd

|Λ0fpxq � Λ0fpyq|
q

|x� y|sq�d
dy


 p
q

dx

� 1
q

À }f}Asp,qpΩq.

We will argue by duality. We will prove that

a � b � c À }f}
p
Asp,qpΩq

,

where

a :�

»
Ω

�»
Ωc

|fpxq � Λ0fpyq|
q

|x� y|sq�d
dy


 p
q

dx, b :�

»
Ωc

�»
Ω

|Λ0fpxq � fpyq|q

|x� y|sq�d
dy


 p
q

dx and

c :�

»
Ωc

�»
Ωc

|Λ0fpxq � Λ0fpyq|
q

|x� y|sq�d
dy


 p
q

dx.

Let us begin with

a �

»
Ω

�»
Ωc

|fpxq �
°
SPW3

ϕSpyqfS� |
q

|x� y|sq�d
dy


 p
q

dx.

Call W4 :� tS P W3 : all the neighbors of S are in W3u. Given y P 11
10S, where S P W4, we have

that
°
PPW3

ϕP pyq � 1 and, otherwise 0 ¤ 1�
°
PPW3

ϕP pyq ¤ 1. Thus

a À
¸

QPW1

»
Q

� ¸
SPW3

|fpxq � fS� |
q

DpQ,Sqsq�d

»
11
10S

ϕSpyq dy

� p
q

dx

�
¸

QPW1

»
Q

�� ¸
SPW2zW4

»
11
10S

���1�°
PPW3

ϕP pyq
�
fpxq

��q
DpQ,Sqsq�d

dy

�
p
q

dx �: a1 � a2 .

In a1 by the choice of the symmetrized cube we have that
³

11
10S

ϕSpyq dy � `pS�qd. Jensen’s

inequality implies that |fpxq � fS� |
q
¤ 1

`pS�qd

³
S�
|fpxq � fpξq|q dξ. By (5.5) and the finite over-

lapping of the symmetrized cubes, we get that

a1 À
¸

QPW1

»
Q

� ¸
SPW3

»
S�

|fpxq � fpξq|
q

DpQ,S�qsq�d
dξ

� p
q

dx À }f}
p
9Asp,qpΩq

.

To bound a2 just note that for Q P W1 and S P W2zW4, we have that S is far from the

boundary, say `pSq ¥ `0, where `0 depends only on δ and ε. Thus, by (4.2) we have that

a2 À
¸

QPW1

»
Q

�� ¸
SPW2zW4

»
11
10S

|fpxq|
q

DpQ,Sqsq�d
dy

�
p
q

dx À

�� ¸
SPW2zW4

`pSqd

DpΩ, Sqsq�d

�
p
q

}f}
p
Lp .
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Recall that Whitney cubes have sidelength equivalent to their distance to BΩ. Moreover, the

number of cubes of a given side-length bigger than `0 is uniformly bounded, so
°
SPW2zW4

`pSqd

`pSqsq�d

is a geometric sum, bounded by the maximal element. Therefore,

a2 À

�� ¸
SPW2zW4

1

`pSqsq

�
p
q

}f}
p
Lp ¤ Cε,δ,diampΩq`

�sp
0 }f}

p
Lp .

Next, note that, using the same decomposition as above, we have that

b �

»
Ωc

�»
Ω

|
°
QPW3

ϕQpxqfQ� � fpyq|q

|x� y|sq�d
dy


 p
q

dx

À
¸

QPW3

»
11
10Q

ϕQpxq dx

� ¸
SPW1

»
S

��fQ� � fpyq
��q

DpQ,Sqsq�d
dy

� p
q

�
¸

QPW2zW4

»
11
10Q

p1� ϕQpxqq dx

� ¸
SPW1

»
S

|fpyq|
q

DpQ,Sqsq�d
dy

� p
q

�: b1 � b2 .

We have that

b1 À
¸

QPW3

`pQqd

�� ¸
SPW1

»
S

�
1

`pQqd

³
Q� |fpξq � fpyq| dξ

	q
DpQ�, Sqsq�d

dy

�
p
q

and, thus, by Minkowsky’s integral inequality (see [Ste70, Appendix A1]), we have that

b1 À
¸

QPW3

`pQqd

`pQqdp

��»
Q�

� ¸
SPW1

»
S

|fpξq � fpyq|
q

|ξ � y|sq�d
dy

� 1
q

dξ

�p .
By Hölder’s inequality and the finite overlapping of symmetrized cubes, we get that

b1 À
¸

QPW3

1

`pQqdpp�1q

»
Q�

�»
Ω

|fpξq � fpyq|
q

|ξ � y|sq�d
dy


 p
q

dξ`pQq
dp

p1 À

»
Ω

�»
Ω

|fpξq � fpyq|
q

|ξ � y|sq�d
dy


 p
q

dξ,

that is,

b1 À }f}
p
9Asp,qpΩq

.

To bound b2 , note that as before,

b2 �
¸

QPW2zW4

`pQqd

� ¸
SPW1

»
S

|fpyq|
q

DpQ,Ωqsq�d
dy

� p
q

À }f}
p
LqpΩq

¸
QPW2zW4

`pQqd

distpQ,Ωqsp�
dp
q

.

Now, since s ¡ d
p �

d
q we have that sp� dp

q ¡ d. Therefore,

¸
QPW2zW4

`pQqd

distpQ,Ωqsp�
dp
q

�
¸

QPW2zW4

1

`pQqsp�
dp
q �d

¤ Cε,δ,diampΩq`
d�sp� dp

q

0 .
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On the other hand, }f}LqpΩq À }f}Asp,qpΩq by (4.6).

Let us focus on c . We have that

c �

»
Ωc

�»
Ωc

|
°
PPW3

ϕP pxqfP� �
°
SPW3

ϕSpyqfS� |
q

|x� y|sq�d
dy


 p
q

dx.

Given x P 11
10Q where Q P W4 and y P Ωc X Bpx, `010 q, then neither x nor y are in the support of

any bump function of a cube in W2zW3, so
°
PPW3

ϕP pyq � 1 and
°
PPW3

ϕP pxq � 1. Therefore¸
PPW3

ϕP pxqfP� �
¸
SPW3

ϕSpyqfS� �
¸

PX2Q�H

¸
SPW3

ϕP pxqϕSpyq pfP� � fS�q .

If, moreover, y P B
�
x, 1

10`pQq
�
, since the points are ‘close’ to each other, we will use the Hölder

regularity of the bump functions, so we write¸
PPW3

ϕP pxqfP� �
¸
SPW3

ϕSpyqfS� �
¸

PPW3

pϕP pxq � ϕP pyqq fP� .

This decomposition is still valid if Q P W2zW4 and y P B
�
x, 1

10`pQq
�
, that is, y P B

�
x, `010

�
, but

we will treat this case apart since we lose the cancellation of the sums of bump functions but we
gain a uniform lower bound on the side-lengths of the cubes involved. Finally, we will group the
remaining cases, when x P Ωc and y R Bpx, `010 q in an error term. Considering all these facts we get

c À
¸

QPW4

»
Q

�»
ΩczBpx, 1

10 `pQqq

¸
PX2Q�H

¸
SPW3

|ϕP pxqϕSpyq|
|fP� � fS� |

q

DpP�, S�qsq�d
dy

� p
q

dx

�
¸

QPW4

»
Q

�»
Bpx, 1

10 `pQqq

|
°
SX2Q�H pϕSpxq � ϕSpyqq fS� |

q

|x� y|sq�d
dy

� p
q

dx

�
¸

QPW2zW4

»
Q

�»
Bpx, `010 q

|
°
SPW3:SX2Q�H pϕSpxq � ϕSpyqq fS� |

q

|x� y|sq�d
dy

� p
q

dx

�

»
Ωc

�»
ΩczBpx, `010 q

|Λ0fpxq � Λ0fpyq|
q

|x� y|sq�d
dy

� p
q

dx

�: c1 � c2 � c3 � c4 .

Using the same arguments as in a1 and b1 we have that

c1 À }f}
p
9Asp,qpΩq

.

Also combining the arguments used to bound a2 and b2 we get

c4 À
�
}f}LppΩq � }f}LqpΩq

	p
.

The novelty comes from the fact that we are integrating in Ωc both terms in c , so the

variables in the integrals c2 and c3 can get as close as one can imagine. Here we need to use the
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smoothness of the bump functions, but also the smoothness of f itself. The trick is to use that tϕQu
is a partition of the unity with ϕQ supported in 11

10Q, that is,
°
SPW3

ϕSpxq �
°
SX2Q�H ϕSpxq � 1

if x P 11
10Q with Q PW4. Thus,

c2 �
¸

QPW4

»
Q

�»
Bpx, 1

10 `pQqq

|
°
SX2Q�H pϕSpxq � ϕSpyqq

�
fS� � fQ�

�
|q

|x� y|sq�d
dy

� p
q

dx,

and using the fact that }∇ϕQ}8 À 1
`pQq and (4.3), we have that

c2 Àq
¸

QPW4

»
Q

� ¸
SX2Q�H

��fS� � fQ�

��q »
Bpx, 1

10 `pQqq

|x� y|
q

`pQqq
1

|x� y|sq�d
dy

� p
q

dx

Às
¸

QPW4

`pQqd

�°
SX2Q�H

��fS� � fQ�

��q
`pQqsq

� p
q

�
¸

QPW4

`pQqd

� ¸
SX2Q�H

��fS� � fQ�

��q
DpQ�, S�qsq

� p
q

,

which can be bounded as c1 .

Finally, we bound the error term c3 . Here we cannot use the cancellation of the partition

of the unity anymore. Instead, we will use the Lp norm of f , the Hölder regularity of the bump
functions and the fact that all the cubes considered are roughly of the same size:

c3 �
¸

QPW2zW4

»
Q

�»
Bpx, `010 q

|
°
SX2Q�H pϕSpxq � ϕSpyqq fS� |

q

|x� y|sq�d
dy

� p
q

dx

À
¸

QPW2

`0¤`pQq¤2`0

»
Q

¸
SPW3

SX2Q�H

|fS� |
p

�»
Bpx, `010 q

1

`q0

1

|x� y|ps�1qq�d
dy

� p
q

dx

Àε,δ,q,p
¸
SPW3

`0
2 ¤`pSq¤`0

}f}
p
LppS�q À C}f}

p
LppΩq.

The finite number of cubes in the sum allows us to deduce the last inequality.

Corollary 5.9. Let Ω be a bounded uniform domain with an admissible Whitney covering W.
Given 1   p   8, 1   q   8 and 0   s   1 with s ¡ d

p �
d
q , we have that Asp,qpΩq � F sp,qpΩq, and

}f}F sp,qpΩq � }f}Asp,qpΩq for all f P F sp,qpΩq.

Proof. By Corollary 5.5, given f P F sp,qpΩq we have that

}f}Asp,qpΩq ¤ inf
gPLmaxtp,qu:g|Ω�f

}g}Asp,qpRdq � inf
g:g|Ω�f

}g}F sp,qpRdq � }f}F sp,qpΩq.

By the Lemma 5.8 we have the converse. Given f P Asp,qpΩq we have that

}f}F sp,qpΩq � inf
g:g|Ω�f

}g}F sp,qpRdq ¤ }Λ0f}F sp,qpRdq � }Λ0f}Asp,qpRdq ¤ C}f}Asp,qpΩq.
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6 Calderón-Zygmund operators

We will make use of the notion of distributional convolution. Given Schwartz functions f and g,
the convolution coincide with multiplication at the Fourier side, that is, f � gpxq � p pf �pgqq. Given a
tempered distribution W , a function f P S and x P Rd, the tempered distribution W � f is defined
as

xW � f, gy � xxW, pf � qgy � xW, f� � gy for every g P S,
where f�pxq � fp�xq. Note that f� �gpxq �

³
fp�yqgpx�yq dy, so in case supppfqX supppgq � H

then f� � g � 0 in a neghborhood of 0. The distribution W � f coincides with the C8 function
W � fpxq � xW, τxf�y, where τxf�pyq � f�py � xq (see [SW71, Chapter I, Theorem 3.13]).

Definition 6.1. We say that a measurable function K P L1
locpRdzt0uq is an admissible convolution

Calderón-Zygmund kernel of order σ ¤ 1 if

|Kpxq| ¤
CK
|x|d

for x � 0, (6.1)

|Kpx� yq �Kpxq| ¤
CK |y|

σ

|x|d�σ
for 0   2|y| ¤ |x|, (6.2)

for a positive constant CK and that kernel can be extended to a convolution with a tempered
distribution WK in Rd in the sense that for every Schwartz functions f, g P S with supppfq X
supppgq � H, one has

xWK � f, gy �

»
Rdzt0u

Kpxq pf� � gq pxq dx. (6.3)

There are some cancellation conditions that one can impose to a kernel satisfying the size
condition (6.1) to grant that it can be extended to a convolution with a tempered distribution.
For instance, if K satisfies (6.1) and WK is a principal value operator in the sense that

xWK , ϕy � lim
jÑ8

»
|x|¥δj

Kpxqϕpxq dx for all ϕ P S, (6.4)

for a certain sequence δj × 0, then WK satisfies (6.3) (see [Gra08, Section 4.3.2]).

Definition 6.2. Let 1   p, q   8. We say that an operator T : S Ñ S 1 is a p, q-admissible
convolution Calderón-Zygmund operator of order σ P p0, 1s with kernel K if

1. K is an admissible convolution Calderón-Zygmund kernel of order σ which can be extended
to a convolution with a tempered distribution WK ,

2. T satisfies that Tf �WK � f for all f P S and

3. T extends to an operator bounded in F 0
p,q, in Lp and in Lq.

Remark 6.3. The Fourier transform of a p, q-admissible convolution Calderón-Zygmund operator
T is a Fourier multiplier for F 0

p,q, L
p and Lq, following the notation in [Tri83, Section 2.6]. This

Section also contains some results on Fourier multipliers that we sum up now. Being a Fourier
multiplier for F 0

p,q implies being a Fourier multiplier also for F sp,q for every s, also for F 0
p,p and for

F 0
p1,q1 , and the property is stable under interpolation (i.e., the set of indices 1

p , 1
q such that a T is

bounded in F 0
p,q is a convex set, see Figure 6.1). In particular it is a Fourier multiplier for L2 and

this implies that yWK P L8 (see [SW71, Chapter I, Theorem 3.18]).
Therefore, condition 3) in Definition 6.2, can be reduced to asking
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• that T extends to an operator bounded in F 0
p,q when 8 ¡ p ¥ q1 ¥ 2 or 8 ¡ p1 ¥ q ¥ 2,

• that T extends to an operator bounded in Lp when 8 ¡ p ¥ q ¥ 2 or 8 ¡ p1 ¥ q1 ¥ 2 and

• that T extends to an operator bounded in F 0
p,q and in Lq when 8 ¡ q ¥ p ¥ q1 or 8 ¡ q1 ¥

p ¥ q.

Figure 6.1: Indices 1
rp , 1

rq such that a p, q-admissible operator is bounded in F s
rp,rq.

1
rp

1
1

1
2

1
8

1
rq

1
1

1
2

1
8

Lp Lq
1

L2 Lq Lp
1

F 0
p,q

B0
p,p

B0
p1,p1

F 0
p1,q1

(a) The case 8 ¡ p ¥ q1 ¥ 2.

1
rp

1
1

1
2

1
8

1
rq

1
1

1
2

1
8

LpLq L2 Lq
1

Lp
1

F 0
p,q

B0
p,p

B0
p1,p1

F 0
p1,q1

(b) The case 8 ¡ p ¥ q ¥ 2.

1
rp

1
1

1
2

1
8

1
rq

1
1

1
2

1
8

Lq Lp
1

Lq
1LpL2

F 0
p1,q1

B0
p,p

B0
p1,p1

F 0
p,q

(c) The case 8 ¡ q ¥ p ¥ q1.

Remark 6.4. If Tf �WK �f for an admissible convolution Calderón-Zygmund kernel K of order
σ which can be extended to the convolution with tempered distribution WK satisfying (6.4), thenyWK P L8 implies that T extends to an operator bounded in Lp for every 1   p   8 (see [Gra08,
Theorem 4.3.3]).

It is a well-known fact that the Schwartz class is dense in F sp,q for p   8, 1 ¤ q ¤ 8. Thus, if
f P Lp and x R supppfq, then

Tfpxq �

»
Kpx� yqfpyqdy. (6.5)

To prove Theorem 1.1 we need the following lemma which says that it is equivalent to bound
the transform of a function and its approximation by constants on Whitney cubes.

To do so, we define the fractional derivative,

Definition 6.5. Given a uniform domain Ω and f P LppΩq for certain values 0   s   1 and
1   q   8, the s-th fractional gradient of index q of f in a point x P Q PW is

∇sqfpxq :�

�»
ShpQq

|fpxq � fpyq|q

|x� y|sq�d
dy

� 1
q

.

Then, by Corollary 5.9 and Lemma 4.4, for 1   p   8 with d
p �

d
q   s, we have that

}f}F sp,qpΩq � }f}LppΩq �
��∇sqf��LppΩq. (6.6)

Key Lemma 6.6. Let Ω be a uniform domain with Whitney covering W, let T a p, q-admissible
convolution Calderón-Zygmund operator of order 0   σ   1, 1   p   8, 1   q   8 and 0   s ¤ σ
with s ¡ d

p �
d
q . Then ¸

QPW

»
Q

|∇sqTΩpf � fQqpxq|
p dx ¤ C}f}

p
F sp,qpΩq

. (6.7)
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Proof. Again we use duality. That is, to prove (6.7) it suffices to prove that given a function
g P Lp

1

pLq
1

pΩqq with }g}Lp1 pLq1 pΩqq � 1, we have that¸
Q

»
Q

»
ShpQq

|TΩ pf � fQq pxq � TΩ pf � fQq pyq|

|x� y|s�
d
q

gpx, yq dy dx À }f}F sp,qpΩq.

Given a cube Q P W, we can define a bump funcion ϕQ such that χ6Q ¤ ϕQ ¤ χ7Q and
}∇ϕQ}L8 ¤ C`pQq�1. Given a cube S � 5Q we define ϕQS :� ϕQ. Otherwise, take ϕQS :� ϕS .
Note that in both situations, by (3.1) we have that suppϕQS � 23S. Then, we can express the
difference between TΩpf � fQq evaluated at x P Q and in y P S as

TΩpf � fQqpxq � TΩpf � fQqpyq � TΩ rpf � fQqϕQs pxq � TΩ rpf � fQqϕQSs pyq (6.8)

� TΩ rpf � fQq p1� ϕQqs pxq � TΩ rpf � fQq p1� ϕQSqs pyq.

Note that the first two terms in the right-hand side of (6.8) are ‘local’ terms in the sense that the
functions to which we apply the operator TΩ are supported in a small neighborhood of the point
of evaluation (and are globally F sp,q) and the other two terms are ‘non-local’. What we will prove
is that the non-local part

11 :�
¸
Q

»
Q

¸
SPSHpQq

»
S

|TΩ rpf � fQq p1� ϕQqs pxq � TΩ rpf � fQq p1� ϕQSqs pyq|

|x� y|s�
d
q

gpx, yq dy dx

and the local part

22 :�
¸
Q

»
Q

¸
SPSHpQq

»
S

|TΩ rpf � fQqϕQs pxq � TΩ rpf � fQqϕQSs pyq|

|x� y|s�
d
q

gpx, yq dy dx

are both bounded as
11 � 22 ¤ C}f}F sp,qpΩq. (6.9)

We begin by the non-local part. Consider x P Q P W. By (6.5), since x is not in the support
of pf � fQq p1� ϕQq, we have that

TΩ rpf � fQq p1� ϕQqs pxq �

»
Ω

Kpx� zq pfpzq � fQq p1� ϕQpzqq dmpzq

and by the same token for y P S P SHpQq

TΩ rpf � fQq p1� ϕQSqs pyq �

»
Ω

Kpy � zq pfpzq � fQq p1� ϕQSpzqq dmpzq.

To shorten the notation, we will write

λQSpz1, z2q � Kpz1 � z2q pfpz2q � fQq p1� ϕQSpz2qq ,

for z1 � z2. Then we have that���TΩ rpf � fQq p1� ϕQqs pxq � TΩ rpf � fQq p1� ϕQSqs pyq
��� � ����»

Ω

pλQQpx, zq � λQSpy, zqq dmpzq

���� ,
that is,

11 �
¸
Q

»
Q

¸
S�ShpQq

»
S

��³
Ω
pλQQpx, zq � λQSpy, zqq dz

��
|x� y|s�

d
q

gpx, yq dy dx.
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For ρ2 big enough, Sh2pQq :� Shρ2pQq �
�
SPSHpQq ShpSq (call SH2pQq :� SHρ2pQq), we can

decompose

11 ¤
¸
Q

»
Q

¸
S�ShpQqz2Q

»
S

³
Sh2pQq

|λQQpx, zq � λQSpy, zq| dz

|x� y|s�
d
q

gpx, yq dy dx (6.10)

�
¸
Q

»
Q

¸
S�ShpQqz2Q

»
S

³
ΩzSh2pQq

|λQQpx, zq � λQSpy, zq| dz

|x� y|s�
d
q

gpx, yq dy dx

�
¸
Q

»
Q

»
5Q

³
Ω
|λQQpx, zq � λQQpy, zq| dz

|x� y|s�
d
q

gpx, yq dy dx �: AA � BB � CC .

In the first term in the right-hand side of (6.10) the variable z is ‘close’ to either x or y, so
smoothness does not help. Thus, we will take absolute values, giving rise to two terms separating
λQQ and λQS . That is, we use that

AA ¤
¸
Q

»
Q

¸
S�ShpQqz2Q

»
S

³
Sh2pQq

p|λQQpx, zq| � |λQSpy, zq|q dz

|x� y|s�
d
q

gpx, yq dy dx.

Using (6.1),

|λQQpx, zq| ¤ CK
|fpzq � fQ|

|x� z|d
|1� ϕQpzq|

and

|λQSpy, zq| ¤ CK
|fpzq � fQ|

|y � z|d
|1� ϕQSpzq|.

Summing up,

AA ÀCK
¸
Q

»
Q

»
ShpQqz2Q

»
Sh2pQq

|fpzq � fQ| |1� ϕQpzq| dz

|x� y|s�
d
q |x� z|d

gpx, yq dy dx (6.11)

�
¸
Q

»
Q

»
ShpQqz2Q

»
Sh2pQq

|fpzq � fQ| |1� ϕQSpzq| dz

|x� y|s�
d
q |y � z|d

gpx, yq dy dx �: 1.11.1 � 1.21.2 ,

with constants depending linearly on the Calderón-Zygmund constant CK in (6.1).
We begin by the shorter part, that is

1.11.1 �
¸
Q

»
Q

»
ShpQqz2Q

»
Sh2pQq

|fpzq � fQ| |1� ϕQpzq| dz

|x� y|s�
d
q |x� z|d

gpx, yq dy dx.

Using the fact that 1� ϕQpzq � 0 when z is close to the cube Q, we can say that

1.11.1 À
¸
Q

1

`pQqs�
d
q�d

»
Sh2pQqz6Q

|fpzq � fQ|

»
Q

»
ShpQqz2Q

gpx, yq dy dx dz.

Now, by the Hölder inequality we have that

»
ShpQqz2Q

gpx, yq dy ¤

�»
ShpQqz2Q

gpx, yqq
1

dy

� 1
q1

|ShpQq|
1
q Àρε,d Gpxq`pQq

d
q
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where Gpxq � }gpx, �q}Lq1 . Thus,

1.11.1 À
¸
Q

»
Sh2pQq

|fpzq � fQ|

`pQqs�d

»
Q

Gpxq dx dz À
¸
Q

»
Q

»
Sh2pQq

|fpzq � fpξq|

`pQqs�d
MGpξq dz dξ.

Finally, by Jensen’s inequality and the boundedness of the maximal operator in Lp
1

we have that

¸
Q

»
Q

»
Sh2pQq

|fpzq � fpξq|

`pQqs�d
MGpξq dz dξ À

¸
Q

»
Q

�»
Sh2pQq

|fpzq � fpξq|
q

`pQqsq�d
dz

� 1
q

MGpξq dξ (6.12)

À

�»
Ω

�»
Ω

|fpzq � fpξq|
q

|z � ξ|sq�d
dz


 p
q

dξ

� 1
p

}MG}Lp1 ,

that is,
1.11.1 À }f}F sp,qpΩq. (6.13)

The second term in (6.11) is the most delicate one. Take cubes Q, S and P and points y P S
and z P P with 1� ϕQSpzq � 0. Then |z � y| � DpS, P q and, therefore, we can write

1.21.2 �
¸
Q

»
Q

»
ShpQqz2Q

»
Sh2pQq

|fpzq � fQ| |1� ϕQSpzq| dz

|x� y|s�
d
q |y � z|d

gpx, yq dy dx (6.14)

Àd
¸
Q

»
Q

¸
SPSHpQq

»
S

¸
PPSH2pQq:DpP,Sq¥δ

1

δd

»
P

|fpzq � fQ| dz

`pQqs�
d
q

gpx, yq dy dx

�
¸
Q

»
Q

¸
SPSHpQq

»
S

¸
PPSH2pQq:DpP,Sq δ

»
P

|fpzq � fQ| dz

`pQqs�
d
q DpS, P qd

gpx, yq dy dx �: 1.2.11.2.1 � 1.2.21.2.2

To bound 1.2.11.2.1 , note that given Q, S P SHpQq and P P SH2pQq with DpP, Sq ¥ δ, then also

`pQq ¥ Cδ. Moreover,
³
ShpQq

gpx, yq dy Àε,d,q Gpxq`pQq
d
q by the Hölder inequality, so

1.2.11.2.1 À
¸
Q

»
Q

¸
PPSH2pQq

»
P

|fpzq � fQ|Gpxq dz dx ¤
¸
Q

»
Q

»
Sh2pQq

|fpzq � fpξq|MGpξq dz dξ

À }f}LppΩq À }f}F sp,qpΩq. (6.15)

To bound 1.2.21.2.2 , we change the focus on the sum. Consider an admissible chain connecting
two given cubes S and P both in SH2pQq. Then DpS, P q � `pSP q. Of course, since S and P are
in SH2pQq we have that

DpQ,SP q À DpQ,Sq �DpS, SP q � DpQ,Sq �DpS, P q À 2DpQ,Sq �DpQ,P q À `pQq

and, therefore, it is contained in some SHρ3pQq for a certain constant ρ3 depending on d and ε.
For short, we write L :� SP P SH3pQq and Sh3pQq :� Shρ3

pQq. Then

1.2.21.2.2 À
¸
Q

»
Q

¸
LPSH3pQq

¸
SPSHpLq

»
S

¸
PPSHpLq

»
P

|fpzq � fQ| dz

`pQqs�
d
q `pLqd

gpx, yq dy dx

¤
¸
Q

1

`pQqs�
d
q

¸
LPSH3pQq

»
ShpLq

|fpzq � fQ| dz

»
Q

1

`pLqd

»
ShpLq

gpx, yq dy dx. (6.16)

25



If we write gxpyq � gpx, yq, we have that for any cube L the integral»
ShpLq

gpx, yq dy ¤ `pLqd inf
L
Mgx.

By the same token, for ρ4 big enough, we have that ShpLq � Shρ4
pQq �: Sh4pQq and therefore»

ShpLq

|fpzq � fQ| dz �

»
ShpLq

|fpzq � fQ|χSh4pQqpzq dz ¤

»
L

M rpf � fQqχSh4pQqspξq dξ.

Thus, by (6.16) we have that

1.2.21.2.2 À
¸
Q

1

`pQqs�
d
q

¸
LPSH3pQq

»
Q

»
L

M rpf � fQqχSh4pQqspξqMgxpξq dξ dx

�
¸
Q

1

`pQqs�
d
q

»
Q

»
Sh3pQq

M rpf � fQqχSh4pQqspξqMgxpξq dξ dx

and, by Hölder’s inequality and the boundedness of the maximal operator in Lq and Lq
1

, we have
that

1.2.21.2.2 À
¸
Q

1

`pQqs�
d
q

»
Q

�»
Sh3pQq

M rpf � fQqχSh4pQqspξq
q dξ

� 1
q
�»

Sh3pQq

Mgxpξq
q1 dξ

� 1
q1

dx

Àq
¸
Q

1

`pQqs�
d
q

»
Q

�»
Sh4pQq

|fpξq � fQ|
q
dξ

� 1
q �»

Ω

gpx, ξqq
1

dξ


 1
q1

dx.

Again, we write Gpxq � }gpx, �q}Lq1 and by Minkowski’s integral inequality (see [Ste70, Ap-
pendix A1]) we get that

1.2.21.2.2 À
¸
Q

1

`pQqs�
d
q�d

�»
Sh4pQq

�»
Q

|fpξq � fpζq| dζ


q
dξ

� 1
q »

Q

Gpxq dx

À
¸
Q

1

`pQqs�
d
q

»
Q

�»
Sh4pQq

|fpξq � fpζq|
q
dξ

� 1
q

MGpζq dζ.

Thus,

1.2.21.2.2 À

�»
Ω

�»
Ω

|fpξq � fpζq|
q

|ξ � ζ|sq�d
dξ


 p
q

dζ

� 1
p

}MG}Lp1 À }f}F sp,qpΩq. (6.17)

Back to (6.10), it remains to bound BB and CC . For the first one,

BB �
¸
Q

»
Q

¸
S�ShpQqz2Q

»
S

³
ΩzSh2pQq

|λQQpx, zq � λQSpy, zq| dz

|x� y|s�
d
q

gpx, yq dy dx,

just note that if x P Q, y P S � ShpQq and z R Sh2pQq we have that ϕQQpzq � ϕQSpzq � 0
and, if ρ2 is big enough, |x� z| ¡ 2|x� y|. Thus, we can use the smoothness assumption, that is,

|λQQpx, zq � λQSpy, zq| ¤ |Kpx� zq �Kpy � zq| |fpzq � fQ| ¤ CK
|fpzq�fQ||x�y|

σ

|x�z|d�σ
by (6.2).
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In the last term in (6.10),

CC �
¸
Q

»
Q

»
5Q

³
Ω
|λQQpx, zq � λQQpy, zq| dz

|x� y|s�
d
q

gpx, yq dy dx

we are integrating in the region where x P Q, y P 5Q and z R 6Q because otherwise 1 � ϕQpzq
would vanish. Also |x� z| ¡ Cd|x�y| and |x� z| � |y� z|. Thus, we have again that |λQQpx, zq�

λQQpy, zq| ¤ |Kpx� zq �Kpy � zq| |fpzq � fQ| À CK
|fpzq�fQ||x�y|

σ

|x�z|d�σ
by (6.2) and (6.1) (one may

use the last one when 2|x� y| ¥ |x� z| ¡ Cd|x� y|, that is |x� y| � |x� z| � |y � z|).
Summing up,

BB � CC ÀCK
¸
Q

»
Q

»
ShpQq

»
Ωz6Q

|fpzq � fQ||x� y|σ dz

|x� y|s�
d
q |x� z|d�σ

gpx, yq dy dx �: 1.31.3 . (6.18)

with constants depending linearly on the Calderón-Zygmund constant CK . Reordering,

1.31.3 �
¸
Q

»
Q

»
Ωz6Q

|fpzq � fQ| dz

|x� z|d�σ

»
ShpQq

gpx, yq dy

|x� y|s�σ�
d
q

dx.

The last integral above is easy to bound by the same techniques as before: Given x P Q PW, since
s� σ � d

q   d, by (4.3), Hölder’s Inequality and the boundedness of the maximal operator in Lq
1

we have that »
ShpQq

gpx, yq dy

|x� y|s�σ�
d
q

À `pQqσ�s�
d
q�d inf

Q
Mgx ¤ `pQqσ�s�

d
q

»
Q

Mgx

¤ `pQqσ�s}Mgx}Lq1 Àq `pQq
σ�sGpxq.

Thus, since s ¤ σ, we

1.31.3 À
¸
Q

`pQqσ�s
»
Q

¸
P

»
P

|fpzq � fQ| dz

DpP,Qqd�σ
Gpxq dx ¤

¸
Q

»
Q

¸
P :DpP,Qq¥δ

»
P

|fpzq � fQ| dz

DpP,Qqd�s
Gpxq dx

�
¸
Q

»
Q

¸
P :DpP,Qq δ

»
P

|fpzq � fQ| dz

DpP,Qqd�s
Gpxq dx �: 1.3.11.3.1 � DD (6.19)

Using the same techniques as in 1.2.11.2.1 we can see that

1.3.11.3.1 À }f}F sp,qpΩq. (6.20)

For DD using admissible chains and writing rP, PQq � rP, PQsztPQu, we get

DD À
¸
Q

»
Q

¸
P

»
P

|fpzq � fP | dz

DpP,Qqd�s
Gpxq dx (6.21)

�
¸
Q

»
Q

¸
P

¸
LPrP,PQq

|fL � fN pLq|`pP q
d

DpP,Qqd�s
Gpxq dx

�
¸
Q

»
Q

¸
P

¸
LPrPQ,Qq

|fL � fN pLq|`pP q
d

DpP,Qqd�s
Gpxq dx �: 1.3.21.3.2 � 1.3.31.3.3 � 1.3.41.3.4 .
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The first term in (6.21) can be bounded by reordering and using (4.2). Indeed, we have that

1.3.21.3.2 ¤
¸
P

»
P

»
P

|fpzq � fpξq| dξ dz

`pP qd

¸
Q

»
Q

Gpxq

DpP,Qqd�s
dx À

¸
P

»
P

»
P

|fpzq � fpξq| dξMGpzq dz

`pP qd�s
,

that is, by (6.12) we have that

1.3.21.3.2 À }f}F sp,qpΩq. (6.22)

For the second term in (6.21) note that given cubes L P rP, PQs we have that DpP,Qq � DpL,Qq
by (3.6) and P P ShpLq by Definition 3.5. Therefore, by (4.2) we have that

1.3.31.3.3 À
¸
L

1

`pLq2d

»
L

»
5L

|fpξq � fpζq| dζ dξ
¸
Q

1

DpL,Qqd�s

»
Q

Gpxq dx
¸

PPSHpLq

`pP qd

¤
¸
L

1

`pLq2d

»
L

»
5L

|fpξq � fpζq|
MGpζq

`pLqs
dζ dξ`pLqd �

¸
L

»
L

»
5L

|fpξq � fpζq|MGpζq

`pLqd�s
dζ dξ,

and, again by (6.12), we have that

1.3.31.3.3 À }f}F sp,qpΩq. (6.23)

Finally, the last term of (6.21) can be bounded analogously: Given cubes L P rPQ, Qs we have
that DpQ,P q � DpL,P q by (3.6), and

1.3.41.3.4 À
¸
L

1

`pLq2d

»
L

»
5L

|fpξq � fpζq| dζ dξ
¸

QPSHpLq

»
Q

Gpxq dx
¸
P

`pP qd

DpP,Lqd�s

¤
¸
L

1

`pLq2d

»
L

»
5L

|fpξq � fpζq|MGpζq dζ dξ`pLqd�s �
¸
L

»
L

»
5L

|fpξq � fpζq|MGpζq

`pLqd�s
dζ dξ,

and

1.3.41.3.4 À }f}F sp,qpΩq. (6.24)

Now, putting together (6.10), (6.11), (6.14), (6.18), (6.19) and (6.21) we have that

11 ÀCK 1.11.1 � 1.2.11.2.1 � 1.2.21.2.2 � 1.3.11.3.1 � 1.3.21.3.2 � 1.3.31.3.3 � 1.3.41.3.4 ,

and by (6.13), (6.15), (6.17), (6.20), (6.22), (6.23) and (6.24) we have that

11 À CK}f}F sp,qpΩq (6.25)

with constants depending on δ, ε, |Ω|, p, q, s and d.
Now we bound the local part in (6.9), that is, we want to prove that

22 �
¸
Q

»
Q

¸
SPSHpQq

»
S

|TΩ rpf � fQqϕQs pxq � TΩ rpf � fQqϕQSs pyq|

|x� y|s�
d
q

gpx, yq dy dx À }f}F sp,qpΩq.

Note that for x P Q and y X S, if y P 3Q then ϕQS � ϕQ and, otherwise |x� y| � `pQq. Thus,

22 ¤
¸
Q

»
Q

»
3Q

|TΩ rpf � fQqϕQs pxq � TΩ rpf � fQqϕQSs pyq|

|x� y|s�
d
q

gpx, yq dy dx (6.26)

�
¸
Q

»
Q

»
ShpQqz3Q

|TΩ rpf � fQqϕQs pxq|

`pQqs�
d
q

gpx, yq dy dx

�
¸
Q

»
Q

¸
SPSHpQq

»
S

|TΩ rpf � fQqϕQSs pyq|

`pQqs�
d
q

gpx, yq dy dx �: 2.12.1 � 2.22.2 � 2.32.3 .
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Of course, by Hölder’s inequality we have that

2.12.1
p
¤

¸
Q

»
Q

�»
3Q

|TΩ rpf � fQqϕQs pxq � TΩ rpf � fQqϕQSs pyq|
q

|x� y|sq�d
dy


 p
q

dx}g}
p

Lp1 pLq1 pΩqq
.

If x P Ω, then TΩ rpf � fQqϕQs pxq � T rpf � fQqϕQs pxq. Thus,

2.12.1
p
À

¸
Q

}T rpf � fQqϕQs}
p
F sp,qpΩq

¤
¸
Q

}T rpf � fQqϕQs}
p
F sp,qpRdq

Now, the operator T is bounded in F sp,q by assumption (see Definition 6.2 and Remark 6.3). Using
Corollary 5.5, it follows that

2.12.1
p
À

¸
Q

}pf � fQqϕQ}
p
F sp,qpRdq

À
¸
Q

}pf � fQqϕQ}
p
LppRdq �

¸
Q

}pf � fQqϕQ}
p
9Asp,qpRdq

.

Since ϕQ ¤ χ7Q, the first term is bounded by }f}Lp by the finite overlapping of the Whitney cubes
and the Jensen inequality, and the second is

¸
Q

»
Rd

�»
Rd

|pfpxq � fQqϕQpxq � pfpyq � fQqϕQpyq|
q

|x� y|sq�d
dy


 p
q

dx,

where the integrand vanishes if both x, y R 8Q. Therefore, we can write

2.12.1
p
À }f}Lp �

¸
Q

»
8Q

�»
8Q

|pfpxq � fQqϕQpxq � pfpyq � fQqϕQpyq|
q

|x� y|sq�d
dy


 p
q

dx

�
¸
Q

»
Rdz8Q

�»
7Q

|pfpyq � fQqϕQpyq|
q

|x� y|sq�d
dy


 p
q

dx (6.27)

�
¸
Q

»
7Q

�»
Rdz8Q

|pfpxq � fQqϕQpxq|
q

|x� y|sq�d
dy

� p
q

dx �: }f}Lp � 2.1.12.1.1 � 2.1.22.1.2 � 2.1.32.1.3 ,

where the constant depends linearly on the operator norm }T }
p
F sp,qÑF sp,q

.

Adding and substracting pfpxq � fQqϕQpyq in the numerator of the integral in 2.1.12.1.1 we get
that

2.1.12.1.1 À
¸
Q

»
8Q

�»
8Q

|fpxq � fQ|
q
|ϕQpxq � ϕQpyq|

q

|x� y|sq�d
dy


 p
q

dx

�
¸
Q

»
8Q

�»
8Q

|fpxq � fpyq|
q

|x� y|sq�d
dy


 p
q

dx

The second term is bounded by }f}
p
F sp,qpΩq

, so

2.1.12.1.1 À
¸
Q

»
8Q

�»
8Q

}∇ϕQ}qL8 |x� y|q

|x� y|sq�d
dy


 p
q

|fpxq � fQ|
p
dx� }f}

p
F sp,qpΩq

.
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Using }∇ϕQ}L8 À 1
`pQq and the local inequality for the maximal operator (4.3) we get that

2.1.12.1.1 À
¸
Q

»
8Q

`pQqp1�sqp
|fpxq � fQ|

p

`pQqp
dx� }f}

p
F sp,qpΩq

(6.28)

À
¸
Q

»
8Q

�³
Q
|fpxq � fpξq| dξ

`pQqs�d

�p
dx� }f}

p
F sp,qpΩq

.

By Jensen’s inequality 1
`pQqd

³
Q
|fpxq � fpξq| dξ À

�³
Q

1
`pQqd

|fpxq � fpξq|
q
dξ
	 1
q

and, therefore,

2.1.12.1.1 À }f}
p
F sp,qpΩq

. (6.29)

Now we undertake the task of bounding 2.1.22.1.2 in (6.27). Writing xQ for the center of a given
cube Q, we have that

2.1.22.1.2 À
¸
Q

»
Rdz8Q

dx

|x� xQ|
sp� dp

q

�»
7Q

|fpyq � fQ|
q
dy


 p
q

Since s ¡ d
p �

d
q we have that sp� dp

q ¡ d. Thus

2.1.22.1.2 À
¸
Q

1

`pQqsp�
dp
q �d

�»
7Q

|fpyq � fQ|
q
dy


 p
q

¤
¸
Q

�³
7Q

�³
Q
|fpyq � fpξq| dξ

	q
dy
	 p
q

`pQqsp�
dp
q �d�dp

.

By Minkowski’s inequality we have that

2.1.22.1.2 À
¸
Q

�³
Q

�³
7Q
|fpyq � fpξq|

q
dy
	 1
q

dξ


p
`pQqsp�

dp
q �dpp�1q

,

and by Hölder’s inequality, using that p� 1 � p
p1 we get that

2.1.22.1.2 À
¸
Q

³
Q

�³
7Q
|fpyq � fpξq|

q
dy
	 p
q

dξ`pQq
dp

p1

`pQq
sp� dp

q �
dp

p1

À
¸
Q

»
Q

�»
7Q

|fpyq � fpξq|
q
dy

|y � ξ|sq�d


 p
q

dξ

and

2.1.22.1.2 À }f}
p
F sp,qpΩq

. (6.30)

The last term in (6.27) is somewhat easier. Note that by (4.2)

2.1.32.1.3 ¤
¸
Q

»
7Q

|fpxq � fQ|
p

�»
Rdz8Q

1

|x� y|sq�d
dy

� p
q

dx ¤
¸
Q

»
7Q

|fpxq � fQ|
p

`pQqsp
dx

and, since this quantity is bounded by the right-hand side of (6.28), we have that

2.1.32.1.3 À }f}
p
F sp,qpΩq

. (6.31)
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Summing up, by (6.27), (6.29), (6.30) and (6.31) we have that

2.12.1 À }T }F sp,qÑF sp,q
}f}F sp,qpΩq. (6.32)

Back to (6.26), it remains to bound 2.22.2 and 2.32.3 . Recall that

2.22.2 �
¸
Q

»
Q

|TΩ rpf � fQqϕQs pxq|

`pQqs�
d
q

»
ShpQqz3Q

gpx, yq dy dx.

Writing Gpxq � }gpx, �q}Lq1 pΩq and using Hölder’s inequality twice we get that

2.22.2 À
¸
Q

»
Q

|TΩ rpf � fQqϕQs pxq|Gpxq`pQq
d
q

`pQqs�
d
q

dx

À

�¸
Q

»
Q

|TΩ rpf � fQqϕQs pxq|
p

`pQqsp
dx

� 1
p

}G}Lp1 pΩq.

Of course, }G}Lp1 pΩq ¤ 1. Now, by Definition 6.2 we can use the boundedness of TΩ in Lp to find
that

2.22.2 À }T }LpÑLp

�¸
Q

}pf � fQqϕQ}
p
LppΩq

`pQqsp

� 1
p

¤

�¸
Q

}f � fQ}
p
Lpp7Qq

`pQqsp

� 1
p

,

and we can argue again as in (6.28) to prove that

2.22.2 À }T }LpÑLp}f}F sp,qpΩq. (6.33)

Finally, for the last term in (6.26), that is, for

2.32.3 �
¸
Q

»
Q

¸
SPSHpQq

»
S

|TΩ rpf � fQqϕQSs pyq|

`pQqs�
d
q

gpx, yq dy dx,

by Hölder’s inequality we have that

2.32.3 ¤
¸
Q

»
Q

�� ¸
SPSHpQq

»
S

|TΩ rpf � fQqϕQSs pyq|
q

`pQqsq�d
dy

�1
q

Gpxq dx.

The boundedness of T in Lq leads to

2.32.3 À }T }LqÑLq

¸
Q

�� ¸
SPSHpQq

»
supppϕQSq

|pfpyq � fQqϕQSpyq|
q

`pQqsq�d
dy

�1
q

`pQqd inf
Q
MG.

Given a cube Q, the finite overlapping of the family t50SuSPW (see Definition 3.1) implies the
finite overlapping of the supports of the family tϕQSu (recall that supppϕQSq � 23S), so there is
a certain ratio ρ5 such that naming Sh5pQq :� Shρ5pQq we have that

2.32.3 À
¸
Q

�»
Sh5pQq

|fpyq � fQ|
q

`pQqsq�d�dq
dy

� 1
q

inf
Q
MG �

¸
Q

�³
Sh5pQq

�³
Q
|fpyq � fpξq| dξ

	q
dy
	 1
q

`pQqs�
d
q�d�d

inf
Q
MG.
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Finally, using Minkowski’s inequality and Hölder’s inequality we get that

2.32.3 À
¸
Q

³
Q

�³
Sh5pQq

|fpyq � fpξq|
q
dy
	 1
q

MGpξq dξ

`pQqs�
d
q

À

�¸
Q

»
Q

�»
Ω

|fpyq � fpξq|
q

|x� y|sq�d
dy


 p
q

dξ

� 1
p

,

that is,

2.32.3 À }T }LqÑLq}f}F sp,qpΩq. (6.34)

Now, by (6.26), (6.32), (6.33) and (6.34) we have that

22 À
�
}T }F sp,qÑF sp,q

� }T }LpÑLp � }T }LqÑLq

	
}f}F sp,qpΩq. (6.35)

Corollary 6.7. Let Ω be a uniform domain with Whitney covering W, let T a p, q-admissible
convolution Calderón-Zygmund operator of order 0   σ   1, 1   p   8, 1   q   8 and 0   s ¤ σ
with s ¡ d

p �
d
q . The following statements are equivalent:

i) For every f P F sp,qpΩq one has

}TΩf}F sp,qpΩq À }f}F sp,qpΩq.

ii) For every f P F sp,qpΩq one has¸
QPW

|fQ|
p
��∇sqTχΩ

��p
LppQq

À }f}
p
F sp,qpΩq

.

Proof. By Definition 6.5, we have that

}TΩf}
p
F sp,qpΩq

� }TΩf}
p
LppΩq �

¸
QPW

»
Q

|∇sqTΩfpxq|
p dx

� }TΩf}
p
LppΩq �

¸
QPW

»
Q

|∇sqTΩpf � fQ � fQqpxq|
p dx (6.36)

Since TΩ is bounded in LppΩq we have that }TΩf}LppΩq À }f}LppΩq.

Inequality (6.7) proves that¸
QPW

»
Q

|∇sqTΩfpxq|
p dx À }f}

p
F sp,qpΩq

ðñ
¸
QPW

»
Q

|fQ|
p|∇sqTΩ1pxq|p dx À }f}

p
F sp,qpΩq

.

Theorem 6.8. Let Ω be a bounded uniform domain with Whitney covering W, T a p, q-admissible
convolution Calderón-Zygmund operator of order 0   σ   1, 1   p   8, 1   q   8 and d

p   s ¤ σ.
Then

}TΩ1}F sp,qpΩq   8 ðñ TΩ is bounded in F sp,qpΩq.
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Proof. Note that since s ¡ d
p ¡

d
p �

d
q , we can use (6.6) from Definition 6.5 and, by the Corollary

6.7 of the Key Lemma we have that¸
QPW

»
Q

|∇sqTΩpf � fQqpxq|
p dx ¤ C}f}

p
F sp,qpΩq

,

where C depends only on d, s, p, T and the uniform character of Ω.
Given f P F sp,qpΩq, by (6.6) we have that TΩ is bounded if and only if¸

QPW
|fQ|

p
��∇sqTχΩ

��p
LppQq

À }f}
p
F sp,qpΩq

.

Since sp ¡ d, by (5.1) and the Sobolev Embedding Theorem we have the continuous embedding
F sp,qpΩq � L8. Therefore, given a cube Q we have that |fQ| ¤ }f}L8 ¤ }f}F sp,qpΩq and, by (6.36)

we get

}TΩf}F sp,qpΩq À
�

1� }TΩ1}F sp,qpΩq

	
}f}F sp,qpΩq (6.37)

with C depending only on d, p, q, s, ε, δ, diampΩq and T .

To end this section, we make some observations.

Remark 6.9. Note that putting together (6.25), (6.35) and (6.36), the precise dependence on T
in equation (6.37) can be shown to be

}TΩf}F sp,qpΩq À
�
CK � }T }F sp,qÑF sp,q

� }T }LpÑLp � }T }LqÑLq � }TΩ1}
9F sp,qpΩq

	
}f}F sp,qpΩq.

Remark 6.10. The Key Lemma is valid in a wider range of indices than Theorem 6.8 because
in the second case we have the restriction of the Sobolev embedding. In the cases where the Key
Lemma can be applied but not the theorem above, that is, when

max

"
0,
d

p
�
d

q

*
  s ¤ min

"
σ,
d

p

*
,

there is room to do some steps forward.
In [PT15, Theorems 1.2 and 1.3], the authors consider the measures µP pxq � |∇sTΩP pxq|

p dx
for polinomials P of degree smaller than the smoothness s P N (here the s-th gradient has its usual
meaning). They conclude that if µP is a p-Carleson measure for every such P , that is, if»

�Shpaq

distpx, BΩqpd�pqp1�p
1qpµP pShpxq X Shpaqqqp

1 dx

distpx, BΩqd
¤ CµP pShpaqq,

then TΩ is bounded in W s,ppΩq, and, in case s � 1, the condition is necessary and sufficient.
The authors of the present article expect that some similar result can be found in the case

max
!

0, dp �
d
q

)
  s ¤ min

!
σ, dp

)
.

Furthermore, the restriction d
p�

d
q   s comes from the intrinsic characterization that we use for

the present article, which we think is the easier to handle in our proofs. However, there are other
characterizations (see [Str67] or [Tri06, Section 1.11.9]) which cover all the range of indices. There
is hope that this characterizations may be used to obtain a result analogous to the Key Lemma 6.6
for a wider range.
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Remark 6.11. For 1   p, q   8 and 0   s   1
p , we have that the multiplication by the charac-

teristic functions of a half plane is bounded in F sp,qpRdq. This implies that for domains Ω whose
boundary consists on a finite number of polygonal boundaries, the pointwise multiplication with χΩ

is also bounded and, using characterizations by differences, this property can be seen to be stable
under bi-Lipschitz changes of coordinates. Summing up, we have that given any Lipschitz domain
Ω and any function f P F sp,qpRdq, we have that

}χΩ f}F sp,qpRdq À }f}F sp,qpRdq.

Therefore, if s ¡ d
p �

d
q and T is an operator bounded in F sp,q, using the extension Λ0 : F sp,qpΩq Ñ

F sp,qpRdq (see Corollary 5.9), for every f P F sp,qpΩq we have that

}TΩf}F sp,qpΩq � }T pχΩ Λ0fq}F sp,qpΩq ¤ }T pχΩ Λ0fq}F sp,q ¤ }T }F sp,qÑF sp,q
}χΩ Λ0f}F sp,q À }Λ0f}F sp,q

À }f}F sp,qpΩq.

In particular, given a p, q-admissible convolution Calderón-Zygmund operator T and a Lipschitz
domain Ω we have that TΩ is bounded in F sp,qpΩq for any 0   s   1

p .

7 Refinement of Lemma 4.4 for p ¥ q

In some situations we can improve Lemma 4.4.

Lemma 7.1. Let Ω be a bounded uniform domain with an admissible Whitney covering W, let

1   q ¤ p   8 and max
!
d
p �

d
q , 0

)
  s   1. Then, f P Asp,qpΩq if and only if

}f}LppΩq �

� ¸
QPW

»
Q

�»
5Q

|fpxq � fpyq|q

|x� y|sq�d
dy


 p
q

dx

� 1
p

  8.

Furthermore, this quantity defines a norm which is equivalent to }f}Asp,qpΩq.

Proof. Arguing as before by duality, we consider a function g ¡ 0 with }g}Lp1 pLq1 pΩqq ¤ 1. Consider

a constant Cδ   δ to be fixed. Combining (4.13) and (4.14) we know that

¸
Q,S:SX2Q�H

DpQ,Sq Cδ

»
Q

»
S

|fpxq � fQS |

DpQ,Sqs�
d
q

gpx, yq dy dx À

� ¸
QPW

»
Q

�»
5Q

|fpxq � fpyq|q

|x� y|sq�d
dy


 p
q

dx

� 1
p

and, thus, we have

¸
Q,S:SX2Q�H

DpQ,Sq Cδ

»
Q

»
S

|fpxq � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx �

� ¸
QPW

»
Q

�»
5Q

|fpxq � fpyq|q

|x� y|sq�d
dy


 p
q

dx

� 1
p

� 3 .

where

3 :�
¸

Q,S:DpQ,Sq Cδ

»
Q

»
S

|fQS � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx

À
¸

R:`pRqÀCδ,ε

¸
Q,SPSHpRq

»
Q

»
S

|fR � fpyq|

`pRqs�
d
q

gpx, yq dy dx
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by (4.15).
Using Hölder’s inequality and Lemma 4.3 we get that

3 À
¸

R:`pRqÀCδ,ε

1

`pRqs�
d
q

�� ¸
SPSHpRq

»
S

|fR � fpyq|q dy

�1
q ¸
QPSHpRq

»
Q

Gpxq dx

À
¸

R:`pRqÀCδ,ε

�� ¸
SPSHpRq

»
S

|fR � fpyq|q dy

�1
q ³

R
MGpξq dξ

`pRqs�
d
q

and, using the Hölder inequality again, we get

3 À

��� ¸
R:`pRqÀCδ,ε

�� ¸
SPSHpRq

»
S

|fR � fpyq|q dy

�
p
q

`pRqd

`pRqsp�
dp
q

��
1
p

}MG}Lp1 .

Now, given R and S P SHpRq, there exists a chain rS,Rs as in Remark 3.6 (taking Cδ small
enough). Using the boundedness of the maximal operator in Lp

1

we can decompose the previous
expression as

3
p
À

¸
R:`pRqÀCδ,ε

�� ¸
SPSHpRq

������
¸

PPrS,Rq

�
fP � fN pP q

� `pP q sq
`pP q

s
q

������
q

`pSqd

�
p
q

`pRqd�sp�d
p
q (7.1)

�
¸
R

�� ¸
SPSHpRq

»
S

|fS � fpyq|q dy

�
p
q

`pRqd�sp�d
p
q �: 3.1 � 3.2 ,

where we wrote rS,Rq � rS,RsztRu.
Using Hölder’s inequality

3.1 À
¸

R:`pRqÀCδ

��� ¸
SPSHpRq

¸
PPrS,Rq

|fP � fN pP q|
q

`pP qs

�� ¸
PPrS,Rq

`pP q
sq1

q

�
q

q1

`pSqd

��
p
q

`pRqd�sp�d
p
q .

But for S P SHpRq by Remark 3.6 we have that
°
PPrS,Rq `pP q

sq1

q À `pRq
sq1

q . We also know that°
SPSHpP q `pSq

d À `pP qd, so writing UP for the union of the neighbors of P , we get

3.1 À
¸
R

�� ¸
PPSHpRq

�
ffl

UP
|fpξq � fP | dξ

	q
`pP qd

`pP qs

�
p
q

`pRqd�
sp
q �sp�

dp
q .

Recall that p ¥ q and, therefore, by Hölder’s inequality and (3.7) we have that

3.1 À
¸
R

¸
PPSHpRq

�
ffl

UP
|fpξq � fP | dξ

	p
`pP qd

`pP q
sp
q

�� ¸
PPSHpRq

`pP qd

�p1�
q
p q

p
q

`pRq
d� sp

q1
� dp
q

�
¸
P

�
ffl

UP
|fpξq � fP | dξ

	p
`pP qd

`pP q
sp
q

¸
R:PPSHpRq

`pRq
� sp

q1 �
¸
P

�
ffl

UP
|fpξq � fP | dξ

	p
`pP qd

`pP qsp
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Using Jensen’s inequality we get

3.1 À
¸
P

»
UP

|fpξq � fP |
p

`pP qsp
dξ, (7.2)

and Jensen’s inequality again leads to

3.1 À
¸
P

»
UP

�³
P
|fpξq � fpζq|q dζ

`pP qd


 p
q 1

`pP qsp
dξ À

¸
P

»
P

�³
5P
|fpξq � fpζq|q dζ

|ξ � ζ|sq�d


 p
q

dξ. (7.3)

To bound 3.2 we follow the same scheme. Since p ¥ q we have that

3.2 �
¸
R

�� ¸
SPSHpRq

»
S

|fS � fpyq|q dy
`pSqdp1�

q
p q

`pSqdp1�
q
p q

�
p
q

`pRqd�sp�d
p
q

¤
¸
R

�� ¸
SPSHpRq

�³
S
|fS � fpyq|q dy

� p
q

`pSqdp
p
q�1q

�
q
p �
p
q
�� ¸
SPSHpRq

`pSqd

�p1�
q
p q

p
q

`pRqd�sp�d
p
q ,

and, since
°
SPSHpRq `pSq

d � `pRqd, reordering and using (3.7) we get that

3.2 À
¸
S

�³
S
|fS � fpyq|q dy

� p
q

`pSqdp
p
q�1q

¸
R:SPSHpRq

`pRq�sp À
¸
S

�³
S
|fS � fpyq|q dy

`pSqd


 p
q `pSqd

`pSqsp
.

Thus, by Jensen’s inequality,

3.2 À
¸
S

³
S
|fS � fpyq|p dy

`pSqd
`pSqd

`pSqsp

and, arguing as in (7.2), we get that

3.2 À
¸
S

»
S

�³
S
|fpyq � fpζq|q dζ

|y � ζ|sq�d


 p
q

dy. (7.4)

Thus, by (4.12), (4.13), (4.14), (7.1), (7.3) and (7.4), we have that

¸
Q,S:DpQ,Sq Cδ

»
Q

»
S

|fpxq � fpyq|

DpQ,Sqs�
d
q

gpx, yq dy dx À

�¸
S

»
S

�»
5S

|fpξq � fpyq|q

|ξ � y|sq�d
dy


 p
q

dξ

� 1
p

with constants depending on d, p and ε. This fact, together with (4.7), (4.8), (4.9), (4.10) and
(4.11) finishes the proof of Lemma 7.1.

Remark 7.2. An analogous result to Lemma 7.1 for Besov spaces Bsp,p can be found in [Dyd06,
Proposition 5] where it is stated in the case of Lipschitz domains.

Corollary 7.3. Let Ω be a uniform domain. Let δpxq :� distpx, BΩq for every x P C.
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Given 1   p   q   8, and 0   s   1 with s ¡ d
p �

d
q , we have that Asp,qpΩq � F sp,qpΩq and,

moreover, for ρ1 ¡ 1 big enough, we have that

}f}F sp,qpΩq � }f}LppΩq �

��»
Ω

�»
Bρ1δpxqpxqXΩ

|fpxq � fpyq|q

|x� y|sq�d
dy

� p
q

dx

�1
p

for all f P F sp,qpΩq.

Given 1   q ¤ p   8, and 0   s   1, we have that Asp,qpΩq � F sp,qpΩq and, moreover, for
0   ρ0   1 we have that

}f}F sp,qpΩq � }f}LppΩq �

��»
Ω

�»
Bρ0δpxqpxq

|fpxq � fpyq|q

|x� y|sq�d
dy

� p
q

dx

�1
p

for all f P F sp,qpΩq.

Proof. This comes straight forward from Corollary 5.9, Lemma 4.4 and Lemma 7.1, taking smaller
cubes in the Whitney covering if necessary when ρ0    1.

Remark 7.4. In particular, for every 1   p   8 and 0   s   1 we have that Asp,ppΩq � Bsp,ppΩq,
with

}f}Bsp,ppΩq � }f}LppΩq �

�»
Ω

»
Bρ0δpxqpxq

|fpxq � fpyq|p

|x� y|sp�d
dy dx

� 1
p

for all f P Bsp,ppΩq.

If in addition s ¡ d
p �

d
2 , then Asp,2pΩq �W s,ppΩq. If p ¥ 2 we have that

}f}W s,ppΩq � }f}LppΩq �

��»
Ω

�»
Bρ0δpxqpxq

|fpxq � fpyq|2

|x� y|2s�d
dy

� p
2

dx

�1
p

for all f PW s,ppΩq,

and, if 1   p   2, we have that

}f}W s,ppΩq � }f}LppΩq �

��»
Ω

�»
Bρ1δpxqpxqXΩ

|fpxq � fpyq|2

|x� y|2s�d
dy

� p
2

dx

�1
p

for all f PW s,ppΩq.
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[Tri06] Hans Triebel. Theory of function spaces III. Birkhäuser, 2006.
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