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ió

N
ú
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profiling and classification. In this paper we complete the study of a BN
built from a database set in a previous paper by the same authors, as a
profiler in arson-caused wildfires: from the features of a particular provoked
wildfire (crime variables), the model infers the author characteristics (au-
thor variables). One of the strengths of this type of model is that it allows
to study the most significant and meaningful relationships among the vari-
ables. After analyzing the different author variables from a point of view
of centrality, it is determined that the most valuable is motivation, which
acts as a “bridge” connecting author and crime variables. On the other
hand, a sensitivity analysis is carried out to analyze to what extent motiva-
tion is affected by the crime variables, purpose for which two new measures
are introduced. For motivation we construct different classifiers from the
crime variables, including a Naive Bayes and an Augmented Naive Bayes,
and compare their behaviour with each other and with the constructed BN
itself. Different performance measures are computed for this: accuracy, preci-
sion, recall, Cohen’s kappa and Matthews correlation coefficient. We confirm
the surprisingly good behaviour of Naive Bayes as classifier, although it is
outperformed by the Augmented Naive Bayes.

Keywords: Bayesian network, Bayesian profiler, Bayes classifier, provoked
wildfire, sensitivity analysis, centrality metric, performance measure

1. Introduction

Wildfire can be regarded as an environmental disaster which is one of the
most relevant threats to nature ecosystems and human societies, according to
FAO survey [14], and is triggered by either natural forces or anthropogenic
activities. In this paper we are interested in the latter, the arson-caused
wildfire, understood as the large and destructive fire caused by humans that
spreads quickly out control over woodland or brush, calcining forest fuels
located in the mount and affecting vegetation in principle was not destined
to burn, which is one of major environmental problems in Spain and other
areas with mediterranean climate.

Although arson is one potential cause of many fires, yet the rate of clarifi-
cation of arson-caused wildfires is extremely low compared to other criminal
activities. According to the interim report of the Ministry of Agriculture,
Food and Environment of Spain [29], 11,928 wildfires happened in 2015 in
Spain, of which 429 authors have been identified, representing a clarification
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rate of 6−6.5% since the estimated percentage of wildfires in Spain that were
deemed arson in 2015 ranges from 55 to 60%. This fact highlights the impor-
tance of developing methodologies that can assist investigators to hunt down
the culprits by means of the implementation of the criminal profiling, consist-
ing of inferring features (behavioural, criminological, socio-demographic and
of personality) of the offender from the analysis of the evidences obtained
from the place and time where fire started. Section 2 is devoted to this issue.
In addition, classification of provoked wildfires by author motivation is of
great importance from a criminological point of view. For this reason we
dedicate Section 5 to construct different Bayes classifiers from our database
set, and to compare their performance. Two intermediate sections are rele-
vant. In Section 3 we deal with the question of justify from a quantitative
point of view the pertinence of the election of motivation, among all the au-
thor variables, as classification criterion for arson-caused wildfires. Section 4
contains a sensitivity analysis in which we highlight the more influent crime
variables for classification, by following two criteria, stating that the results
obtained with both are equivalent to practical effects.

Bayesian Networks (also denoted BN from now on) are an increasingly
popular methodology for modeling uncertainty in complex domains, and in
the opinion of many Artificial Intelligence researchers, the most significant
contribution in this area in the last years (see Korb and Nicholson [25]). BN
were introduced in the 1920s as a tool that describes probabilistic under-
standing of cause and effect and other relations between variables, and are
the soundest framework for reasoning under uncertainty. From then, this
methodology has proved to be useful in assisting in many decision-making
procedures in a variety of fields, and its use in risk analysis is gaining popu-
larity and includes applications in areas as diverse as economy (Adusei-Poku
[1]), public health (Spiegelhalter [36] and Cruz-Ramı́rez et al. [8]), environ-
mental risk (Borsuk et al. [5] and Pollino et al. [31]), emerging diseases
(Walshe and Burgman [39]), ecological disasters (Ticehurst et al. [37]) or
nuclear waste accidents (Lee and Lee [27]). Within the criminology scope,
BN have been introduced as a novel methodology in assessing the risk of
recidivism of sex offenders in Delgado and Tibau [9].

Regarding wildfires, there are some recent works as Papakosta and Straub
[30] in which the authors apply a BN to spatial datasets from the Mediter-
ranean island of Cyprus. Dlamini develops a BN model in [11] to determine
factors that influence wildfire activity in Swaziland, and in [12] provides es-
timations of fire risk in Swaziland using GIS and remote sensing data by
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means of a BN, generating fire risk maps. Focusing on the case of arson-
caused wildfires in Spain, the only statistical approach to arsonist profiling
stems from the work of González, Sotoca and collaborators [33]. Their ap-
proach to this problem is through the application of different techniques of
multivariate data analysis. In this paper, however, we use the methodology of
BN, that has only recently been used for criminal profiling (see, for instance,
Baumgartner et al. [3] and [4]). Up to our knowledge, there are no previous
studies on the use of BN for profiling of the perpetrator of a wildfire, nor for
classification attending to wildfire motivation, which justifies the interest of
the present work.

As in our preliminary work [10], from which the present paper is a con-
siderable improvement and enlargement, in Section 2 we learn a BN model
from available data and expert knowledge considering as variables both the
features of the provoked wildfire (crime variables) and the characteristics of
the author (author variables). Using this model we can predict the characte-
ristics (profile) of the offender from the particular features of an arson-caused
wildfire. The inferred arsonist characteristics include confidence levels that
represent their expected probability, which could help investigators to know
who sparked the blaze. Roughly speaking, we construct the most probable
BN given the observed cases (learning procedure), and this model provides
the optimal prediction for future cases (inference procedure). Considering
that its effectiveness for prediction purposes essentially depends on the suf-
ficiency of the training database, we introduce different performance metrics
to address this issue, and conclude that our database is actually large enough
for our purposes. Having done that, we learn (train) both BN structure and
parameters, to subsequently validate them both by split-validation and by
k−fold cross-validation, providing performance information.

Moreover, in Section 5 we compare the performance of the (full) BN as a
classifier attending to the wildfire motivation, with other classifiers including
a Naive Bayes and an Augmented Naive Bayes, which represents a novelty
with respect to [10]. Motivation turns out to be the most important au-
thor variable. Indeed, motivation has a key role in the model since acts as
a bridge connecting author and crime variables, fact that is evidenced us-
ing different centrality metrics borrowed from graph theory and the social
networks analysis in Section 3.

In regard to the reasons for choosing this methodology, BNs have several
properties that make them useful in many real-life data analysis in scenarios
with uncertainty. In particular, they allow to combine data with domain
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knowledge and facilitate learning about causal relationships between vari-
ables. The probabilistic modeling of the interactions is one of the key points
of BNs, and it allows for the estimation of risks and uncertainties better
than models that only account for expected values. The usefulness of BNs
lies in the fact that by using Bayes’s theorem (named after Reverend Thomas
Bayes, 1702-1762), one can calculate the distributions of the parents given
the values of their children from the probability distributions of children given
the values of their parents. That is, one can proceed not only from causes
to consequences, but also deduce the probabilities of different causes given
the consequences. Because BNs are solved analytically, once the model is
compiled they can provide fast responses to different queries. The compiled
form of a BN contains a conditional probability distribution for every vari-
able with respect to its parents, and thus, unlike simulation models, allows
to get instantly any distribution related to the variables.

In contrast with what happens with other machine learning architectures
as neural networks, BN is not black-box, allowing to infer relationships be-
tween the variables from the model itself, generating new knowledge in the
corresponding field. In our setting, these relationships will show, from a
quantitative and objective point of view, the central paper of variable moti-
vation in provoked wildfire studies, which gives rise to construct and compare
different classifiers attending to motivation.

To summarize, the organization of the paper is as follows. In section 2
we introduce the database and brief background in BNs, with special em-
phasis on the foundations of learning structure and parameters. Internal
consistency, robustness and validation of the constructed model as Bayesian
profiler are also considered. Section 3 is devoted to analyze the central role
played by the author variable A15 =motivation, by means of different central-
ity measures. In Section 4 we carry on a sensitivity analysis to know to what
extent variable A15 is affected by the different crime variables in the model,
by introducing two new different measures: the Maximum Sensitivity Range
(MSR) and the Corrected Maximum Sensitivity Range (CMSR). From this
analysis we identify four crime variables as those that most affect motivation.
Finally, in Section 5 we analyze the constructed BN as a Bayes classifier for
motivation, and compare it with other classifiers, including the Naive Bayes
and the Augmented Naive Bayes. For comparison we use different score func-
tions and compute some performance measures for classification including, as
usual, accuracy, precision and recall (sensitivity), but also the something less
commonly used F-score, Cohen’s Kappa statistic and Matthews Correlation
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Coefficient. A discussion about the surprisingly good behaviour of the Naive
Bayes has been included. We also highlight the problems associated to the
extension of some performance measures that are found usually in the liter-
ature, from binary to multi-class classification. Final Section 6 comprehends
some concluding remarks and prospective about future work.

2. Materials and Methods

2.1. The Database

The 1,423 cases used to construct our probabilistic model come from
a database of policing clarified arson-caused wildfires throughout the en-
tire Spanish territory, under the leadership of the Prosecution Office of En-
vironment and Urbanism of the Spanish state. According of the experts,
n = 25 variables were considered because of their usefulness and predictive
relevance. These variables are relatives to crime (C1, . . . , C10) and to the
author (A1, . . . , A15), and are described in Table 1.

2.2. Basics on Bayesian Networks

BNs are graphical structures for representing the probabilistic relation-
ships among a large number of variables, and for doing probabilistic inference
with those variables.

A BN of a set of random variables V = {X1, . . . , Xn} is a model that
represents the joint probability distribution P over those variables. In our
case, all the variables in V are categorical. This model is based on expert
knowledge and/or sample observations that are assimilated through training
(also known as learning ). The graphical representation of the BN consists of
a directed acyclic graph (DAG), whose n nodes represent the random variables
and whose directed arcs among the nodes represent conditional dependencies.

It is said that node X is a parent of node Y if there is an arc in the
DAG from X to Y . We denote by PA(Y ) the set of parents of Y . If there
is a path from node Z to node T (that is, a set of directed arcs connecting
them), then we say that T is a descendant of Z. What characterizes the BN
is Markov condition, which can be expressed as follows: each variable in V
is conditionally independent of any of its non-descendants known the state
of all its parents. Moreover, P is equal to the product of the conditional
distributions of all nodes given the values of their parents, whenever these
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Table 1: Variables in the model with outcomes.

Variables Outcomes

C1 = season spring/winter/summer/autum
C2 = risk level high/medium/low
C3 = wildfire start time morning/afternoon/evening
C4 = starting point pathway/road/houses/crops/interior/forest track/others
C5 = main use of surface agricultural/forestry/ livestock /interface/recreational
C6 = number of seats one/more
C7 = related offense yes/no
C8 = pattern yes/no
C9 = traces yes/no
C10 = who denounces guard/particular/vigilance
A1 = age up to 34 / 35 to 45 / 46 to 60 / more than 60
A2 = way of living with parents/in couple/single/others
A3 = kind of job handwork/qualified
A4 = employment status employee/unemployed/sporadic/retired
A5 = educational level illiterate/elementary/middle/upper
A6 = income level high/medium/low/without incomes
A7 = sociability yes/no
A8 = prior criminal record yes/no
A9 = substance abuse yes/no
A10 = psychological problems yes/no
A11 = stays in the scene no/remains there/remains and gives aid
A12 = distance home-scene short/medium/long/very long
A13 = displacement means on foot/ by car/ all terrain / others
A14 = residence type village/isolated house/city/town
A15 = wildfire motivation profit/gross negligence/slight negligence/pulsional/revenge

conditional distributions exist (chain rule):

P (X1 = x1, . . . , Xn = xn) =
n∏

i=1

P (Xi = xi /PA(Xi))

for all the possible values (instantiations) xi of Xi, i = 1, . . . , n. The pro-
bability values of these conditional distributions, when unknown, are the
parameters to be estimated of the BN.
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Using a BN to compute a posteriori probability is called (Bayesian)
inference, propagation or belief updating: from an evidence of the form
E = {Xi1 = xi1 , . . . , Xit = xit}, where {Xi1 , . . . , Xit} ⊂ V are the evi-
dence variables, an inference consists in the computation of probabilities of
the form

P (Xj1 = xj1 , . . . , Xjs = xjs /E)

with {Xj1 , . . . , Xjs} ⊂ V \{Xi1 , . . . , Xit} the query variables. Variables of
the BN that do not appear either as query or evidence are treated as un-
observed. The prediction of a query variable X given the evidence E =
{Xi1 = xi1 , . . . , Xit = xit} is the instantiation of X with the largest pos-
terior probability. That is, if x1, . . . , xr are the possible instantiations of
X, then x∗ = arg maxk=1,...,rP (X = xk /E) is the prediction for X, and
P (X = x∗ /E) is said to be the confidence level (CL) of the prediction.

2.3. Constructing the BN

The structure of the BN is learned from the training data set. We adopt
the score-based structure learning method (Search-and-score), which is an
algorithm that attempts to find the structure that maximizes the score func-
tion, in our case the Bayesian Information Criterion (BIC). This score func-
tion is intuitively appealing because it contains a term that shows how well
the model predicts the observed data when the parameter set is equal to its
Maximum Likelihood (ML) estimation, which is the log-likelihood function,
and a term that punishes for model complexity.

Minimum Description Length (MDL) scoring metric is equivalent to the
BIC score for Bayesian networks, while the Akaike’s Information Criterion
(AIC) differs from BIC but only on the penalty term, which is less than
that of BIC, implying that AIC tends to favor more connected (complex)
networks. Some works suggest that BIC consistently outperforms AIC (see
[28]), reason by which we have chosen the first as score function, besides that
we prefer a network not very connected that allows to interpret the relations
expressed by the oriented arcs. The greedy search-and-score algorithm with
the BIC score function has local scoring updating, that it, this algorithm
only needs locally recompute a few scores in each step to determine the score
of the model in the next step, and performs a search through the space of
possible network structures by adding, removing or reversing an arc, given
a current candidate, subject to the constraint that the resultant graph does
not contain a cycle, and greedily chooses the one that maximizes the score
function, stopping when no operation increases this score.
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A problem with this algorithm is that it could halt at a candidate solution
that locally maximizes the score function rather than globally maximizes it.
One way for dealing with this problem is a variant of the algorithm named
iterated hill-climbing, in which local search is done until a local maximum
is obtained. Then, the current structure is randomly perturbed, and the
process is repeated. Finally, the maximum over local maxima is used.

Taking into account that in this section we are interested in constructing
a Bayesian profiler, we decided to construct a BN of type diagnosis, that is,
inhibiting arcs from any crime variable to any author variable. We performed
a comparison of the two models, one with this restriction on the process of
learning structure, and the other without any restriction, obtaining very close
BIC values (respectively, -30111.66 and -30200.33), ensuring a similar degree
of adjustment of the two models to the data set, fact that justifies the election
of the first one, whose DAG is drawn in Figure 1).

With regard to inference, we use an exact procedure that relies on trans-
forming the BN into a junction tree. Once the junction tree has been built
and its conditional probability distributions have been computed, we can in-
put the evidence into it. The local distributions of the nodes to which the
evidence refers (evidence variables) are then updated, and the changes are
propagated through the junction tree.

Sufficiency of the training database to learn a BN model has been ad-
dressed in [10]. For that, the existence of a saturation point which is reached
before attaining the total number of available cases (approximately at 900
cases), from which the BIC score does not improve even if we increase the
number of training cases, shows that the training database is sufficient for
learning.

2.4. Internal consistency

Before proceeding to the validation of the learned BN, the internal con-
sistency of the training data set has been studied in [10]. To this end, some
metrics of concordance/discordance between the learned DAG from train-
ing subsamples of increasing size (partial DAG) with respect to that learned
from the whole training database (final DAG), are considered. The measures
of concordance are the sensitivity, which is the proportion of arcs of the fi-
nal DAG that are already in the partial DAG, and the accuracy, which is
he proportion of arcs in partial DAG that are also in the final DAG. Both
measures increase to 1 as the size of the subsamples increase, showing the
internal consistency of our model.

9



Figure 1: Learned structure (DAG) of the BN.

The first measure of discordance we considered is the Structural Hamming
Distance (SHD) [23] that describes the number of changes that have to be
made to the partial DAG for it to turn into the final DAG, and indeed,
SHD tends to zero as the size of the subsamples increase. Other measures
are the Jaccard dissimilarity [22], which is a measure of discrepancy between
binary matrices, and the dissimilarity index of Sokal-Michener [20]. Note
that both Jaccard and Sokal-Michener dissimilarity measures take values in
[0, 1], the first one taking into account the concordances only in the sense
of presence of arcs in both networks, and the second one also considering
matches in absences, whilst SHD index takes values in Z+ and does not take
concordances into account, only discrepancies. The evolution of these two
dissimilarity measures also shows consistency, as for the SHD index, since
they converge to zero as the size of the subsamples increase.
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Figure 2: Discrepancies on the BIC score. Increment ∆m = 5.

2.5. Robustness

A BN defined over a fixed universe of variables is said to be structurally
robust if its arcs structure is insensitive to small changes in the training set.
To evaluate if our BN model is robust in this sense, we randomly choose
5 % of the cases and remove them, from each of the subsamples of the train-
ing database, and learn the BN again. In this way we obtain a perturbed
network from the 95 % of the cases for each subsample. Then, we compute
the dissimilarity measures introduced in the previous subsection but now to
compare the structure of the networks obtained from the 95 % and the 100 %
of cases. We observe that discrepancies decrease to zero as subsample size
increase. This it because the spurious dependencies that are introduced by
the structure algorithm when the data is insufficient, disappear when the
subsample size increases, and the structure of the network becomes more
reliable and robust.

One last look at the robustness of the BN: we compute the discrepancy
between the BIC score function for the network learned from each subsample
with the 95 % and with the 100 % of cases. In Figure 2 we observe that,
indeed, discrepancies converge to zero when the subsample size increases as
expected.
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2.6. Validation and assessment of predictive performance
Both split validation and k−fold cross validation were carried out in [10]

to study the performance of our BN model as predictor for author variables
from evidences on crime variables (profiling). With split validation, once
learned the BN model from the training data set, we counted the matches
between predicted and observed values of the arsonist variables for the cases
of the validation data set, using as evidences the corresponding values of the
crime variables. The success rate on predicting each arsonist variable from
the evidence given by the crime variables, for the cases of the validating set,
was called IPA (Individual Predictive Accuracy), and is obtained by dividing
the number of matches by the total number of predictions (cases in the
validation data set). See Table 2, where the average percentage of matches
for all the arsonist variables, named OPA (Overall Predictive Accuracy), is
also given. k−fold cross validation with k = 10 was also used in [10]. This
procedure consists in reusing the whole data set to generate k splits into
non-overlapping training and validate sets with approximately proportions
(k− 1)/k and 1/k, respectively. For each one of the k splits we obtained the
IPA and OPA values just as we had done with split validation. From these
k = 10 values we computed the mean and the coefficient of variation, also
known as relative standard deviation RSD, which is a standardized measure
of dispersion obtained by dividing the standard deviation by the absolute
value of the mean (see corresponding columns in Table 2).

From Table 2, we see that arsonist characteristics A3, A7, A8, A9, A10

and A15 have IPA≥ 60 %, what makes them useful for narrowing the list of
suspects of a provoked wildfire. Especially important are A8, A9 and A10,
since they are operative variables that greatly help the researcher to identify
the offender, which is precisely the aim of profiling. Also of major importance
is A15, whose central role in our model will be evidenced in the next section.
It should also be borne in mind that for any variable we choose as prediction
the outcome that maximizes the probability, causing failures in prediction
when the second most likely outcome has a close probability.

Finally, we computed the DIPA (Disincorporate Individual Predictive Ac-
curacy), which is the percentage of matches between predictions and observed
values, for each arsonist variable according to the prediction that was made
for it from the evidence given by the crime variables. Particularly of interest
is the DIPA for variable A15: if prediction for A15 were gross negligence, the
accuracy rate would be 79 %, as can be seen in Table 3, while if instead it
were revenge, for example, this rate plummets to 16.67 %.
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Table 2: IPA and OPA (split validation), and the corresponding mean and
relative standard deviation (RSD) when using k-fold cross validation.

Arsonist variable IPA (%) split k-fold k-fold
validation Mean RSD

A1 = age 27.57 30.30 0.10
A2 = way of living 53.21 53.46 0.06
A3 = kind of job 76.44 74.62 0.04
A4 = employment status 34.68 37.74 0.09
A5 = educational level 46.63 52.24 0.10
A6 = income level 44.27 44.05 0.11
A7 = sociability 69.19 66.70 0.07
A8 = prior criminal record 80.07 79.41 0.06
A9 = substance abuse 78.50 82.07 0.03
A10 = psychological problems 79.70 82.71 0.06
A11 = stays in the scene 49.10 49.35 0.09
A12 = distance home-scene 41.91 42.46 0.07
A13 = displacement means 44.53 42.79 0.11
A14 = residence type 40.52 45.12 0.12
A15 = wildfire motivation 61.05 62.94 0.07

Total OPA (%) 54.04 55.19 9.06× 10−4

Table 3: Disincorporate Individual Predictive Accuracy (DIPA) for A15.

If prediction were DIPA (%)

profit 46.67
gross negligence 79.00
slight negligence 51.65
pulsional 54.79
revenge 16.67

Since the predictive performance improves as the confidence level of the
prediction does, better performance must be observed when only those pre-
dictions with a high confidence level are considered. Indeed, we computed
the OPA but only considering those predictions for which the confidence level
is greater than a fixed threshold. If our predictive procedure is reasonable in

13



the sense that if we only consider “good” predictions (with high confidence
level), performance is good, then OPA should grow towards 100 % as the
threshold increases to 100 %, as well as the number of matches and the num-
ber of predictions should tend to coincide. Actually, this is what happens,
as shown in Figure 3.

Figure 3: Evolution of the OPA, and evolution of the number of total pre-
dictions and the number of matches, with respect to the threshold for the
CL.

3. Why classify provoked wildfires by motivation?

Variable A15: wildfire motivation, which answers the question “Why did
the author perpetrate the wildfire?”, reveals itself as the natural choice when
looking for a criterion by which to classify provoked wildfires, given that:

1. As argued in [33], from a psychological point of view it seems reasonable
to classify provoked wildfires by motivation although other variables,
such as the main use of surface or the starting point, could also be
considered. It is remarkable the fact that motivation, as a classification
criterion, is directly related to the author and not to the blaze itself.

2. All crime variables except C3 are descendants of A15 in the DAG of the
BN (see Figure 1). Informally speaking, we can say that A15 acts as a
“bridge” connecting author and crime variables.

3. If we rank the nodes corresponding to author variables by means of a
centrality metric, the key role of A15 is evidenced.
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Indeed, in graph theory and network analysis, indicators of centrality
identify the most important nodes within a graph. In this work two measures
of centrality are considered:

a) Geisberger’s betweenness ([6]) considers the number of times a node
acts as a bridge in a graph along the shortest path between two other
nodes. It is a variant of a centrality measure introduced for quantifying
the control of a human on the communication between other humans
in a social network by Freeman [15]. In his conception, nodes that
have a high probability to occur on a randomly chosen shortest path
between two randomly chosen nodes have a high betweenness. With
this measure, the farther away from the source, and hence the closer
to the target, the more influential a node is. Given a node Xv, this
measure is defined by:

∑

i,j∈{1,...,n},i 6=j 6=v

div
dij

givj
gij

(with the convention
0

0
= 0)

where gij denotes the number of paths from Xi to Xj, givj denotes the
number of them that pass through Xv, div is the length of the shortest
path between Xi and Xv and similarly for dij. Conceptually, high-
betweenness nodes lie on a large number of non-redundant shortest
paths between other nodes; they can thus be thought of as “bridges”.

b) Freeman’s degree of centrality ([16]) for each node is defined as the
number of directed arcs starting or finishing at it.

The results are shown in Table 4. The numerical values have been ob-
tained by scaling both Geisberger’s betweenness and Freeman’s degree of
centrality, such that the sum of the set of the 25 variables in the model (in-
cluding both author and crime variables) is 100. We see that, indeed, the
most central node is A15, whether one centrality measure is considered or the
other, followed by A7, A6 and C8.

At criminological level, it is a known fact that for drawing up profiles it
is essential to address criminal motivation, which is evidenced in the crime
scene by the signature elements ([13], [38]). However, a critical view from
the scientific community is that many studies are not exhaustive in describ-
ing indicators corresponding to each motivation, or in building motivational
typologies ([34]), so since late last century empirical studies from the psy-
chological point of view have been carried out, which include both objective
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Table 4: Centrality measures (in %) of the variables with the three higher
values, which play a more prominent role. Ranks are indicated in brackets.

Geisberger’s betweenness Freeman’s degree of centrality

A15 : 19.76 (1st) A15 : 11.54 (1st)
A7: 18.76 (2nd) A7: 09.62 (2nd)
A6: 17.77 (3rd) A6, C8: 07.69 (3rd)

variables of crimes and also the characteristics of offenders in order to estab-
lish profiles using multivariate statistical analysis. On arsonists, in particular,
see [2], [7], [18], [21] and [32]. In this paper we follow the same vein, in the
sense of including only the objective variables of the crime, but with the par-
ticular feature that the statistical relationships between these variables and
motivation (A15) will be considered, since the criminal behaviour is different
depending on the motivation. The key role of motivation in the criminal act
is indeed clearly caught by our Bayesian network, supporting its suitability
as model for the analysis of wildfire arsonists. Thus, from information about
“what” and “why” of an arson-caused wildfire, the network is able to provide
information about “who”, and therefore this model can be used to bear out
previous studies on archetypes for wildfire arsonists.

4. Sensitivity Analysis

In the previous section we showed that variable A15 plays a central role in
our model. Criminal motivation is essential for drawing up profiles and our
BN captures this fact showing the centrality of A15 by means of two different
centrality metrics.

The graphical display of the DAG (Figure 1) shows the relationships
among variables learned from training data. We rank in Table 5 the re-
lationships between A15 and the criminal variables which are its children,
measured through the arc strength of the arcs from A15 to them.

Arc strength is a measure of force for each arc, while keeping fixed the
rest of the network structure. The strength is measured by the BIC score
gain/loss which would be caused by the arc’s removal. In other words, it
is the difference between the score of the network including the arc and
without it. Negative values correspond to a decrease in the network score,
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Table 5: Ranking by arc strength of crime variables who are children of A15.

Crime variable Arc strength

(stronger) ↑ C10 = who denounces -193.710772
C4 = starting point -107.755970
C8 = pattern -92.681936

(weaker) ↓ C1 = season -5.313557

while positive values correspond to an increase (the stronger the relationship,
the more negative the difference).

In this section we carry on a sensitivity analysis for more deeply analyze
to what extent variable A15 is affected by the different crime variables in the
model, not only by its children. Formalization of sensitivity analysis is as
follows. For each crime variable Ci, we would like to compute a measure of
the effect of changes in it on the probability distribution of variable A15. For
that, we obtain from the BN the Conditional Probability Table (CPT) of A15

conditioned separately to each one of the crime variables (see tables 12-21 in
the Appendix, where the CL of the prediction for A15 for each of the values of
the crime variable is highlighted in boldface), and then consider two different
(but related) metrics to measure discrepancies in the probability distribution
of A15 depending on the instantiation of the crime variable (represented by
columns in each CPT).

4.1. The Maximum Sensitivity Range (MSR)

We introduce the Maximum Sensitivity Range (MSR) associated to crime
variable Ci as a measure (in %) of the extent to which this variable affects
variable A15, defined in the following way:

MSR(Ci) = max
y∈A15

(
max
x∈Ci

P (A15 = y /Ci = x)−min
x∈Ci

P (A15 = y /Ci = x)
)

where A15 denotes the set of outcomes of A15 and Ci that of Ci, i = 1, . . . , 10.
That is, for each fixed y ∈ A15 we compute the range (= max−min) of the
set of probabilities {P (A15 = y /Ci = x)}x∈Ci , and then take the maximum
when varying y in A15.

In Table 6 the standardized values of MSR to sum 100 % are collected.
Comparing with Table 5, we see that the most influencing crime variables
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match: C4 = starting point , C10 = who denounces , and C8 = pattern .
Variable C1 = season has slightly lower influence. These crime variables are
the children of A15 in the DAG (Figure 1). Unlike what happens with analysis
carried on in Table 5, sensitivity analysis allows to quantify the influence of
any of the crime variables on A15, not only children.

The rest of crime variables have a weaker influence in motivation, espe-
cially C3, the only one which is not descendant of A15. It is quite natural:
the longer the chain of uncertainty reasoning through paths in the DAG, the
more tenuous influences, since each step adds additional uncertainty, and
the resulting degree of belief will not be very sensitive to changes in the link
probabilities.

4.2. The Corrected Maximum Sensitivity Range (CMSR)

Because MSR (introduced in Section 4.1) does not consider if different in-
stantiations of a crime variable produce different predictions for variable A15,
it seems appropriate to introduce a correction in it that does take account of
this fact.

Let a = #A15(= 5) and ci = #Ci, where # denotes the cardinal of a finite
set, and let di denote the number of different predictions obtained from the
BN for A15 given the evidence E = {Ci = x}, x varying in Ci. Then, define

γ(Ci) =
di

min(a, ci)
∈ (0, 1] ,

which is the proportion of different predictions actually obtained from the
BN for A15 among the possible we could obtain from an evidence on Ci.
Therefore, γ(Ci) is a measure of influence of variable Ci on A15, and we can
use it to make the correction of MSR by introducing the Corrected Maximum
Sensitivity Range (CMSR), which is a percentage, as:

CMSR(Ci) = MSR(Ci)× γ(Ci)

In Table 6 we also collect the values of γ, and CMSR, ordering crime
variables in descendent order with respect to CMSR. Note that CMSR has
been standardized to sum 100 %.

Glancing at Table 6, we realize that crime variables are ordered in a
slightly different way, according to the used criterion, either MSR or CMSR,
although stand out C4, C8, C10 and C1 as the most influential crime variables
in motivation for both.
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Table 6: Crime variables ordered by decreasing Corrected Maximum Sensi-
tivity Range (CMSR)

Crime variable MSR γ CMSR ↓
C4 27.39 3/5 28.85
C8 14.61 2/2 25.65
C10 21.76 2/3 25.46
C1 12.47 1/4 5.47
C7 4.32 1/2 3.70
C2 6.18 1/3 3.62
C5 7.78 1/5 2.73
C9 2.19 1/2 1.92
C6 2.05 1/2 1.80
C3 1.34 1/3 0.78

100 % 100 %

5. Classifying provoked wildfires by motivation

Classification is a task of great importance in machine learning and data
mining. In classification, the goal is to construct a model (classifier) that
given evidence regarding features (crime variables in our case), assigns it a
class (motivation) label. Naive Bayes (NB) is the simplest form of classifier.
A NB is a Bayesian Network characterized by the fact that all the features are
conditionally independent given the class known. The DAG of the NB, which
is named BC1, is fixed (see Figure 4a) and the parameters are estimated
from the training data set. Its simplicity makes it easy to apply, requiring
less data to get a good result and being a very efficient model. Indeed,
it is surprisingly good in classification, considering that the hypothesis of
conditional independencies is hardly fulfilled in practice. This is so to the
extent that sometimes it is difficult in practice to find more complex classifiers
that improve its performance considerably. Papers [40, 41] and [17] on this
subject can be consulted by the interested reader.

5.1. Constructing different classifiers

In Section 5.2 we will compare the behaviour of BC1 with three other
classifiers: one is that obtained from the full BN in previous sections by
cutting the bridge linking A15 with its ancestors; we name this model BC2
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and its DAG has been drawn in Figure 4b. Regarding classification, model
BC2 behaves exactly as the full BN whose DAG is in Figure 1. The second
one is named BC3 and is like BC2 but obtained by optimizing the score
function AIC instead of BIC; its DAG is in Figure 4c. The final classifier
is an Augmented Naive Bayes (ANB) in which in addition to the directed
arcs from class node A15 to the features (crime variables) in BC1, there also
exist directed arcs among them. We name this classifier BC4 and its DAG
is shown in Figure 4d. This classifier has been learned from the data by
imposing all the directed arcs from A15 to the crime variables, and using
the greedy search-and-score algorithm with the AIC score function. We use
this score function here instead of BIC since it penalizes less for complexity,
allowing to obtain an optimal classifier different from BC1. We will see that
although the NB performs quite well, the ANB outperforms it. So, we solved
the question of finding a classifier that improves the NB.

Figure 4: DAGs of the different classifiers: a) Naive Bayes BC1, b) BN
learned with BIC score BC2, c) BN learned with AIC score BC3, d) ANB
classifier learned with AIC score BC4.

Table 7 shows the values of the log-likelihood, BIC and AIC score func-
tions for the four models. We can observe that when no penalization for
complexity is considered, the best model (the most likely) is BC4, while in
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the other cases, the best is BC2 when considering BIC score, and BC3 when
AIC has been used instead, which seems reasonable. In no case the best
is BC1. Nevertheless, from the point of view of performance as classifiers,
things are different. This disagreement could seem a contradiction but it is
not, as shown in [17], where this question has been well studied. Indeed,
it is possible to learn a network form data with a relatively good score that
performs poorly as classifier, especially when there are many attributes. This
happens in our case, in effect, with BC2, as we will see in the sequel.

Table 7: Comparing the four models by score functions.

Score function → Log-likelihood BIC AIC

BC1 -12,670.60 -13,363.75 -12,867.60
BC2 -12,474.34 -13,065.45 -12,642.34
BC3 -12,286.36 -13,289.14 -12,571.36
BC4 -12,105.02 -14,022.61 -12,650.02

We use the four models to predict the value of variable A15 (that is, to
classify the provoked wildfire by motivation), given the evidence of some of
the crime variables C1, . . . , C10. This is done via Bayes inference. Actu-
ally, variables C4, C8, C10 and C1, which are the ones that most affect A15,
especially the first three (see Table 6), give all information needed from a pro-
voked wildfire to classify its motivation. In this sense, Table 8 shows some
particular values of one (or a combination) of these variables from which we
can get the full range of possible classifications. Far from being an exhaustive
list of evidences based on variables C4, C8, C10 and C1 that allow to obtain
each one of the possible classifications, the purpose of Table 8 is merely to
show that, in fact, only taking into account these crime variables, without
intervention of the rest, the full range of classes could be obtained.

In the same vein, we could ignore other crime variables except C1, C4, C8

and C10 (feature subset selection) and construct a selective naive Bayes clas-
sifier (see [26] and [17]). We have really done it, resulting in a classifier with
the same performance as the full model BC2. This finding has a double read-
ing. On the one hand, it tells us that although they only introduce noise to
the classifier, removing irrelevant attributes does not improves classification.
On the other hand, neither does it make it worse, that is, we can reach the
same performance with a simpler model, which results in a saving in calcula-
tions and time. In addition, this validates sensitivity analysis methods used
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Table 8: Examples of classifications for wildfire motivation from some specific
evidences on crime variables C1, C4, C8 and C10.

Evidence Classification by motivation A15

C4 =road or forest track Pulsional
C4 =crops or C10 =guard Gross Negligence
C4 =houses or C10 =particular Slight Negligence
C1 =winter and
C8 =yes Profit
C1 =summer,
C4 =road,
C8 =no and Revenge
C10 =particular

to discriminate which are the most significant crime variables from the point
of view of the classification according to motivation.

5.2. Comparing classifiers by performance

In addition to IPA and DIPA measures associated to A15 introduced in
Section 2.6, we can compute some other performance measures used in ma-
chine learning classification for comparing classifiers. As mentioned in [24],
this is one of the most critical questions in machine learning and can be car-
ried out by means of different performance measures. Our setting is that of
multi-class classification and then we must be careful since extensions of per-
formance measures in binary classification to this more general setting is not
always straightforward. We distinguish between performance classification
measures that are global, in the sense they summarize in a single number he
confusion matrix obtained by split-validation (see Table 9 for model BC2),
where for the cases of the validation database set, observed values of A15

are given in columns while predicted values (classification) are given in rows,
and the averaged performance classification measures that are obtained as
the average over all the classes. In the sequel, we denote the latter group by
the corresponding name with an asterisk. Actually, IPA belongs to the first
group of measures and will be renamed as accuracy, as usual in this context,
while DIPA is computed for each class and its average is, indeed, one of the
measures of the second group (precision∗).
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Table 9: Confusion matrix by split-validation using the BC2 model.

Pred.↓ Obs.→ Profit G. Negligence S. Negligence Pulsional Revenge
Profit 7 2 0 6 0
G. Negligence 10 79 1 9 1
S. Negligence 4 22 47 10 8
Pulsional 10 7 6 40 10
Revenge 0 0 2 3 1

From Table 9 we can compute the following global performance measures
denoting the elements of the confusion matrix by ai,j with i, j = 1, . . . , r, r =
5, and

∑r
i=1

∑r
j=1 aij = N :

i) Accuracy=

∑r
i=1 aii
N

is the fraction of correctly classified cases, and it

is naturally extended to multi-class from binary classification.

ii) Cohen’s Kappa statistic (or simply kappa)=
P0 − Pe

1− Pe

is intended to mea-

sure agreement between observed and predicted values in a contingency

table as the confusion matrix. P0 =
∑r

i=1 aii
N

is the relative observed
agreement among observed and predicted classes (that is, accuracy),
and Pe is the hypothetical probability of chance agreement, using the
observed data to calculate the probabilities of randomly choose each
category, that is, Pe =

∑r
i=1

ai·×a·i
N2 , where ai· =

∑r
j=1 aij is the sum of

row i, and a·i =
∑r

`=1 a`i is the sum of column i.
iii) Matthews Correlation Coefficient MCC ([19], [24]), which is the exten-

sion to multi-class setting of the binary φ-coefficient (i.e., the square
root of the averaged χ2 statistic on the number of observed cases, for
the 2 × 2 contingency table of the binary classification). Definition is
as follows:

MCC =

r∑
k,`,m=1

(akk a`m − amk ak`)

√
r∑

k=1

(( r∑
`=1

ak`
)( r∑

u,v=1, u 6=k

auv
))
√

r∑
k=1

(( r∑
`=1

a`k
)( r∑

u,v=1, u 6=k

avu
))

Moreover, from Table 9 we also can obtain the binary collapsed confusion
matrix for each one of the five classes separately. We introduce the following
commonly used notation for binary classification, say class= +, no-class= −.
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tp =true positive (number of correctly recognized cases as +),
fp =false positive (number of cases with an incorrect assignation of +),
fn =false negative (number of cases that are not recognized as +), and
tn =true negative (number of correctly recognized cases as −).

As an example we show in Table 10 the binary collapsed confusion matrix
corresponding to class Profit for the BC2 classifier.

Table 10: Binary collapsed confusion matrix by split-validation for class
Profit using the BC2 model.

Pred.↓ Obs.→ Profit (+) No Profit (−)

Profit (+) tp = 7 fp = 8
No Profit (−) fn = 24 tn = 246

We compute the usual averaged performance classification measures ∗,
first obtaining them for each class from the corresponding binary collapsed
confusion matrix by using the following definitions, and then averaging them
over the five classes (see, for example, [35]):

iv) Precision =
tp

tp + fp
measures the proportion of class agreement among

all the cases with a given predicted classification.

v) Recall (also known as Sensitivity) =
tp

tp + fn
measures the proportion

of class agreement among all the cases that actually belong to a given
class.

vi) F-Score is a measure that combines precision and recall into a single
number, being their harmonic mean. Harmonic mean is used rather
than the common arithmetic mean since both precision and recall are
expressed as proportions between zero and one, and then can be in-
terpreted as rates. This measure has the advantage of describing two
aspects of the model performance into a single number, and provides a
convenient way to compare several models side by side. Its definition
is:

F-Score =
2

1

Precision∗ + 1

Recall∗
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Figure 5: Ranking of the four classifiers.

Results for the four models are shown in Table 11, where the best (highest)
values correspond to the Augmented Naive Bayes BC4, according to all the
considered performance measures. Then, BC4 is the best classifier of the
four we compare, but BC1 has also a quite good performance, being simpler,
while BC2 has the worst performance (see Figure 5).

Table 11: Comparing classifiers: performance measures.

Accuracy kappa MCC Precision∗ Recall∗ F-Score
BC1 0.65263 0.53204 0.53677 0.55165 0.55080 0.55123
BC2 0.61053 0.46903 0.47636 0.49755 0.48430 0.49084
BC3 0.64912 0.52743 0.53520 0.57281 0.55552 0.56403
BC4 0.65965 0.53789 0.54151 0.57803 0.56210 0.56995

Unlike what is done in other works, such as for example [35], we do not
consider nor specificity nor accuracy as an averaged performance measure.
The corresponding definitions for each class would be (tp+tn)/(tp+tn+fp+fn)
and tn/(fp + tn), respectively, and then the average would be calculated for
the five classes. Observe that in both formulas the number of true negatives
tn appears as a quantity that computes positively at the performance clas-
sification level. Although this is obviously true in the binary case, in which
non-classification in (or non belonging to) one class necessarily implies clas-
sification in (or belonging to) the other, it is not in the multi-class setting,
where tn includes both well and misclassified cases. For this reason, we de-
cided to introduce accuracy as a global measure, not as an average, and do
not consider specificity as performance measure in the multi-class context.
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Figure 6: Accuracy curves comparing the four classifiers. The horizontal axis
lists the subsets.

We could extend the previous comparative study based on different per-
formance measures and split-validation, to k-fold cross-validation (with k =
10, for example). That is, we could carry out the comparison of the models
from ten different realizations of the six performance measures already con-
sidered. To not extend too much, we will only show some of the results in
figures 6 and 7.

6. Conclusion

All fires are destructive, especially wildfires. Once the blaze begins,
there’s no telling how far it can spread. Fire’s consequences can be deadly,
and are almost always devastating. This is why we must tenaciously investi-
gate the cause of every single wildfire. It is therefore crucial the development
of tools that help the investigators in the task of gather evidence, analyze
data and determine whether it is an arson-caused wildfire and, if it is the
case, who set the blaze and why.

Bayesian Networks can be a useful addition to the toolkit of arson-caused
wildfire investigators, especially if their work is related to profiling or classifi-
cation. Explicit accounting for uncertainty can add substantial insight to the
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Figure 7: Scatter plots for paired comparisons between the best (BC4) and
the worst (BC2) of the models. Each one corresponds to a different perfor-
mance measure. Each point represents a data set, where the x coordinate
of a point is the performance measure for model BC2 and the y coordinate
is the same performance measure for model BC4. Thus, points above the
diagonal line correspond to data set on which BC4 performs better with re-
spect to the performance measure than BC2, while points below the diagonal
correspond to the opposite case. For the four performance measures we can
see that BC4 outperforms BC2.
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question of identifying the perpetrator of a criminal act, and to classify it, and
the graphical representation of model structures and probability distributions
is very useful to understand the relationship between variables, allowing to
contribute to the development of knowledge about the phenomenon under
study, and to communicate this knowledge in a visual friendly way.

BNs are not a household name in criminal investigation yet. However,
they are gaining popularity in the field and are likely to establish their posi-
tion as one of the standard methods of analysis in fields with uncertainty. The
learned BN represents a good approach to reality, from which data has been
produced, and can be analyzed numerically to extract hidden knowledge.

We present BN as a novel methodology in provoked wildfires investiga-
tions, both for the author’s profile and for classification by motivation, after
showing the key role of this feature of the author by means of different cen-
trality metrics. We learn the BN from the database and validate it, by
estimating the accuracy of predictions. This work also shows internal consis-
tency, robustness and validity of our model. Therefore, on one side we can
use learned BN to predict the profile of the offender from the information
about a particular arson-caused wildfire, and obtain confidence levels for the
predictions of the arsonist variables. On the other side, we compare the BN
as a Bayesian Classifier to classify wildfires by motivation with other clas-
sifiers we build, including a Naive Bayes and an Augmented Naive Bayes,
the latter showing the best performance although the Naive Bayes also per-
forms quite well. This is in concordance with previous literature, in which
the surprisingly good performance of Naive Bayes classifier with respect to
more complex models is highlighted and analyzed.

We think this approach is really innovative and helpful. The introduction
of MSR and CMSR measures in the sensitivity analysis of motivation to
reveal which crime variables are most important, is novel and displays useful
for our purpose. Prospects for future work are to extend this analysis to
different real situations including, but not limited to, other types of crimes.
Alternative algorithms of structure learning should be tried and compared
with the ones we use in this paper.

Appendix

The Appendix contains the Conditional Probability Tables of A15 condi-
tioned separately to any of the crime variables. Confidence level (CL) of the
prediction for A15 conditioned to each of the possible outcomes of each crime
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variable is highlighted in boldface. In each CPT, MSR indicates the value
of the Maximum Sensitivity Range of A15 with respect to the crime variable,
which is the maximum of the Range column.

Table 12: CPT of A15 conditioned to C1 (in %).

C1 → Spring Summer Autum Winter Range

Pulsional 15.20 31.97 6.61 9.35 25.36
Gross Negligence 48.02 34.24 47.11 45.93 13.78
Slight Negligence 27.66 17.01 26.46 28.05 11.04
Profit 3.95 9.30 14.05 13.82 10.10
Revenge 5.17 7.48 5.79 2.85 4.63

MSR: 25.36

Table 13: CPT of A15 conditioned to C2 (in %).

C2 → High Medium Low Range

Pulsional 25.53 17.18 12.96 12.57
Gross Negligence 38.56 43.86 45.57 7.01
Slight Negligence 20.47 24.86 26.49 6.02
Profit 8.83 8.81 10.42 1.61
Revenge 6.58 5.29 4.56 2.02

MSR: 12.57

Table 14: CPT of A15 conditioned to C3 (in %).

C3 → Morning Afternoon Evening Range

Pulsional 18.93 19.48 21.63 2.70
Gross Negligence 42.66 42.23 39.94 2.72
Slight Negligence 23.68 23.51 22.76 0.92
Profit 9.20 9.20 9.55 0.35
Revenge 5.55 5.59 6.12 0.57

MSR: 2.72
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Table 15: CPT of A15 conditioned to C4 (in %).

C4 → Pathway Road Houses Crops Interior Forest Track Others Range

Pulsional 25.44 35.43 12.16 0.39 11.76 56.08 7.54 55.69
Gross N. 36.69 15.75 40.54 63.78 47.71 14.86 53.77 48.92
Slight N. 16.57 12.60 41.89 29.92 28.76 6.08 30.65 35.81
Profit 10.65 18.11 1.35 5.12 11.11 14.19 6.03 16.76
Revenge 10.65 18.11 4.05 0.79 0.65 8.78 2.01 17.46

MSR: 55.69

Table 16: CPT of A15 conditioned to C5 (in %).

C5 → Agricultural Forestry Livestock Interface Recreational Range

Pulsional 11.24 26.59 22.12 19.44 19.53 15.35
Gross Negligence 51.08 35.27 39.62 39.33 42.13 15.81
Slight Negligence 26.45 20.02 22.00 25.82 23.48 6.43
Profit 7.34 11.32 10.04 8.24 9.23 3.98
Revenge 3.90 6.80 6.20 7.17 5.63 3.27

MSR: 15.81

Table 17: CPT of A15 conditioned to C6 (in %).

C6 → One More Range

Pulsional 18.87 23.04 4.17
Gross Negligence 42.65 39.19 3.46
Slight Negligence 23.94 21.03 2.91
Profit 8.91 11.01 2.10
Revenge 5.64 5.74 0.10

MSR: 4.17
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