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COMPLETIONS OF MONOIDS WITH APPLICATIONS TO THE CUNTZ
SEMIGROUP

RAMON ANTOINE, JOAN BOSA, AND FRANCESC PERERA

ABSTRACT. We provide an abstract categorical framework that relates the Cuntz semigroups
of the C∗-algebras A and A ⊗ K. This is done through a certain completion of ordered
monoids by adding suprema of countable ascending sequences. Our construction is rather
explicit and we show it is functorial and unique up to isomorphism. This approach is used
in some applications to compute the stabilized Cuntz semigroup of certain C∗-algebras.

INTRODUCTION

Given a C∗-algebra A, the structure of the Cuntz semigroup W(A), introduced by J.
Cuntz in 1978 ([7]), has been intensively studied in recent years notably in relation to
the classification program of nuclear C∗-algebras. On the one hand because it provides a
serious obstruction to the original Elliott Conjecture (see Toms [20]) but also, on the other
hand, because its structure contains large amounts of information coming from the Elliott
Invariant, and can, in many cases, be recovered from it (see for example [4], [5] and [8]).
For more details concerning the Cuntz semigroup we refer the reader to [2, 11, 16].

Coward, Elliott and Ivanescu propose in [6] a modified version of the Cuntz semigroup,
Cu(A). They use suitable equivalence classes of countably generated Hilbert modules
(which, in the case of stable rank one, amount to isomorphism) to obtain a semigroup
strongly related to the classical Cuntz semigroup; it is in fact isomorphic to W(A⊗K). The
advantage of their approach is that they further provide a category Cu for this new semi-
group, consisting of positively ordered abelian semigroups with some additional prop-
erties of a topological nature. Mainly, Cu(A) is closed under suprema of increasing se-
quences.

In this paper we enlarge this abstract setting to embrace both W(A) and Cu(A). In
Section 2 we build a category of ordered abelian monoids, PreCu, to which the original
Cuntz semigroup belongs for a large class of C∗-algebras. This category contains Cu as a
full subcategory, and differs from it in that monoids need not be closed under suprema of
ascending sequences. We subsequently define, in Section 3, the completion of a monoid
in PreCu, in terms of universal properties. Such an object is proved to exist in Section 4
by providing an explicit construction. The completion obtained is thus unique and gives
us a functor from the category PreCu to Cu which is a left adjoint of the identity. This, in
the particular case of the Cuntz semigroup, allows us to describe Cu(A) as a completion of
W(A). This approach is proved to be useful in computing certain Cuntz semigroups as we
see in Section 5 where we recover results by Brown and Toms [4] in which the stabilized
Cuntz semigroup of certain classes of simple, unital, exact and separable C∗-algebras is
described in terms of K-theory and traces. Another categorical property proved in [6]
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for Cu is that it admits countable inductive limits in such a way that the functor Cu(−)
from the category of C∗-algebras (where arbitrary inductive limits always exist) to the
category Cu is (countably) continuous. This is not true for the Cuntz semigroup in its
classical form. The most basic counterexample is the inductive sequence of C∗-algebras
defining the compact operators K = lim→Mn(C). At the level of semigroups, this induces
the sequence N id→ N id→ N → · · · , whose limit is not W(K) = N ∪ {∞}. It is natural,
however, to expect continuity of the functor W(−) after completion, in the case PreCu
admits inductive limits. As we will see in Section 6, those do not always exist in PreCu,
but this situation can be remedied by defining a smaller category C sitting between Cu
and PreCu, to which W(A) still belongs for a large class of C∗-algebras. For this category,
we prove that inductive limits always exist and also that we do have continuity of W(−)
after completion. This, together with the preceding results, can be applied to compute the
stabilized Cuntz semigroup of some direct limits of C∗-algebras.

1. NOTATION AND PRELIMINARIES

Throughout, M will denote a commutative monoid, written additively, with neutral
element 0. We shall also assume that M is equipped with a partial order ≤ (compatible
with addition) such that x ≥ 0 for any x in M . In particular ≤ will extend the algebraic
order, that is, if x+ z = y, then x ≤ y.

All maps between monoids will be additive ordered maps that preserve 0. Recall that a
monoid map ϕ : M → N is an order-embedding if a ≤ b whenever ϕ(a) ≤ ϕ(b).

Given an increasing sequence (yn) in M , an element y is a supremum of (yn) provided
it is a least upper bound. If they exist, suprema of increasing sequences are unique. We
shall denote, as is customary, sup yn the supremum of the increasing sequence (yn). Since
our considerations might involve different monoids, we will when necessary use supM to
mean that the supremum is computed in the monoid M .

Definition 1.1. Let x, y be elements in M . We write x � y if, whenever (yn) is an increasing
sequence in M whose supremum exists in M and y ≤ sup(yn), then x ≤ yk for some k. If x� y,
we shall say that x is way below y. A sequence (xn) in M such that xn � xn+1 for all n will be
called rapidly increasing, and an element x ∈M such that x� x will be called compact.

Observe that if x ≤ y and y � z, then x� z. Likewise, if x� y and y ≤ z, then x� z.
The previous definition was given by D. Scott in [18] for general posets and was first

used in connection with the Cuntz subequivalence of positive elements in C∗-algebras in
[6]. We briefly recall the definitions.

Definition 1.2. cf. [7] Let A be a C∗-algebra, and let a, b ∈ A+. We say that a is Cuntz subequiv-
alent to b, in symbols a - b, if there is a sequence (vn) in A such that a = limn vnbv

∗
n. We say that

a is Cuntz equivalent to b if both a - b and b - a occur. Upon extending this relation to M∞(A)+,
one obtains an abelian semigroup W(A) = M∞(A)+/∼. Denoting classes by 〈a〉, the operation
and order are given by

〈a〉+ 〈b〉 = 〈( a 0
0 b )〉 = 〈a⊕ b〉 , 〈a〉 ≤ 〈b〉 if a - b .

The semigroup W(A) is referred to as the Cuntz semigroup.
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For a compact convex set K, we shall use LAff(K)++ to refer to those affine, lower semi-
continuous functions defined on K, with values on R++ ∪ {∞}. (Here, R++ stands for the
strictly positive real numbers.) Note that this is a partially ordered semigroup with the
usual pointwise addition and order. We shall denote by LAffb(K)++ the subsemigroup of
LAff(K)++ consisting of those functions that are bounded. We shall also use Aff(K)++ to
refer to the subsemigroup of LAffb(K)++, whose elements are those affine, continuous and
strictly positive functions defined on K.

2. THE CATEGORY PRECU

We start by definining a category of monoids that will center our attention. It is mod-
elled after the category Cu, introduced by Coward, Elliott and Ivanescu in [6], as an ab-
stract setting where the Cuntz semigroup of a stable C∗-algebra naturally belongs to. The
difference between our definition and theirs is that we do not require all increasing se-
quences in our monoids to have suprema.

Definition 2.1. Let PreCu be the category defined as follows. Objects of PreCu will be partially
ordered abelian monoids M satisfying the properties below:

(i) Every element in M is a supremum of a rapidly increasing sequence.
(ii) The relation � and suprema are compatible with addition.

Maps of PreCu are monoid maps preserving
(i) suprema of increasing sequences (when they exist), and

(ii) the relation �.

In view of Definition 2.1, we may define the category Cu as follows:

Definition 2.2. (see [6]) Let Cu be the full subcategory of PreCu whose objects are those partially
ordered abelian monoids (in PreCu) for which every increasing sequence has a supremum.

As proved in [6], for any C∗-algebra A, the Cuntz semigroup W(A ⊗ K) is an object of
Cu. It is a natural question to ask whether the Cuntz semigroup W(A) of a C∗-algebra A
always belongs to the category PreCu.

For a C∗-algebra A, we shall denote by ι : A → A ⊗ K the natural inclusion defined by
ι(a) = a ⊗ e11. This map induces a map at the level of Cuntz semigroups, that we shall
also denote by ι, which is an order-embedding. To see this, we identify A with its image
inside A ⊗ K and suppose that ι(〈a〉) ≤ ι(〈b〉). Then a - b in (A ⊗ K)+, and so a - b3,
i.e. a = lim vnb

3v∗n for a sequence (vn) in A ⊗ K. Right and left multiplication by a implies
that a3 = lim(avnb)b(bv

∗
na) where now avnb belongs to A since the latter is a hereditary

C∗-subalgebra of A⊗K. Therefore 〈a3〉 ≤ 〈b〉 in W(A), and so 〈a〉 ≤ 〈b〉 in W(A).
We have that any a ∈M∞(A)+ is the limit, in norm, of the increasing sequence (a−1/n)+,

so that indeed 〈a〉 = sup〈(a − 1/n)+〉. But, while 〈(a − ε)+〉 � 〈a〉 in W(A ⊗ K), it is not
obvious this is the case anymore in W(A). We have the following

Lemma 2.3. Let A be a C∗-algebra. The following conditions are equivalent:
(i) 〈(a− ε)+〉 � 〈a〉 for any ε > 0 and any a ∈M∞(A)+.

(ii) supW(A) xn = supW(A⊗K) xn whenever (xn) is an increasing sequence in W(A) with supre-
mum in W(A).
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Proof. (i) ⇒ (ii): Let (xn) be an increasing sequence in W(A) with x = supW(A) xn and
y = supW(A⊗K) xn. Clearly y ≤ x. If we write now x = 〈a〉 for some a ∈ M∞(A)+, our
assumption implies that, for any n, there exists m with 〈(a − 1/n)+〉 ≤ xm. Thus 〈(a −
1/n)+〉 ≤ y for every n, whence x = 〈a〉 ≤ y.

(ii) ⇒ (i): Let a ∈ M∞(A)+, and suppose that xn is an increasing sequence in W(A)
with supremum in W(A). The assumption implies that this agrees with the supremum in
W(A⊗K). If 〈a〉 ≤ sup xn, then as 〈(a− ε)+〉 � 〈a〉 in W(A⊗K) (by the results in [6]), we
have 〈(a− ε)+〉 ≤ xn for some n in W(A⊗K), hence also in W(A). �

Definition 2.4. Let M and N be partially ordered monoids. An order-embedding f : M → N will
be called hereditary if, whenever x ∈ N and y ∈ f(M) satisfy x ≤ y, it follows that x ∈ f(M).

Lemma 2.5. Let N be an object of Cu and M be a partially ordered monoid. Let f : M → N be
a hereditary map. Then, for any increasing sequence (xn) in M with supremum x in M , we have
f(x) = sup(f(xn))

Proof. Since xn ≤ x for all n, it follows that f(xn) ≤ f(x) for all n. Therefore sup(f(xn)) ≤
f(x). Our assumption on f now implies that sup(f(xn)) = f(y) for some y ∈ M . Using
that f is an order-embedding we obtain that xn ≤ y ≤ x for all n, so y = x. �

Definition 2.6. LetA be a C∗-algebra. We will say that W(A) is hereditary if the map ι : W(A) →
W(A⊗K) is hereditary.

Lemma 2.7. Let A be a C∗-algebra such that W(A) is hereditary. Then, given a ∈ M∞(A)+ and
ε > 0, we have 〈(a− ε)+〉 � 〈a〉 in W(A).

Proof. Since W(A ⊗ K) is an object of Cu, and W(A) is hereditary, we may apply Lemma
2.5 to conclude that suprema of increasing sequences in W(A) agree, when they exist, with
suprema in W(A⊗K). The conclusion now follows from Lemma 2.3. �

Proposition 2.8. Let A be a C∗-algebra such that W(A) is hereditary. Then W(A) is an object of
PreCu and the map ι : W(A) → W(A⊗K) is an order-embedding in PreCu.

Proof. By Lemma 2.5, coupled with Lemma 2.3, we have that every element 〈a〉 in W(A) is
the supremum of the rapidly increasing sequence 〈(a− 1/n)+〉.

Assume now that x � y and z � t in W(A), and write y = 〈a〉 and t = 〈b〉. It follows
that there is n with x ≤ 〈(a− 1/n)+〉 and z ≤ 〈(b− 1/n)+〉. Therefore, since

(a− 1/n)+ ⊕ (b− 1/n)+ ∼ (a⊕ b− 1/n)+ ,

we get
x+ z ≤ 〈(a⊕ b− 1/n)+〉 � 〈a〉+ 〈b〉 .

Finally, suppose that (xn) and (yn) are increasing sequences in W(A) with suprema x
and y respectively. We are to show that x + y is the supremum of (xn + yn). Using that
W(A) is hereditary, one sees that (xn + yn) also has a supremum in W(A). And using that
suprema and addition are compatible in W(A⊗K), we see, using Lemma 2.3, that

sup
W(A)

xn + sup
W(A)

yn = sup
W(A⊗K)

xn + sup
W(A⊗K)

yn = sup
W(A⊗K)

(xn + yn) = sup
W(A)

(xn + yn) .

We have already observed that ι is an order-embedding. Combining again Lemma 2.5 and
Lemma 2.3, we see that it preserves suprema of increasing sequences.
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Suppose now that 〈a〉 � 〈b〉. Since 〈b〉 = sup(〈(b− ε)+〉) in W(A), there exists ε > 0 such
that 〈a〉 ≤ 〈(b− ε)+〉. Applying ι,

ι(〈a〉) ≤ ι(〈(b− ε)+〉) = 〈(b− ε)+)〉 � 〈b〉 = ι(〈b〉) whence ι(〈a〉) � ι(〈b〉) ,
so that ι is a map in PreCu. �

Remark 2.9. There are examples of C∗-algebras A for which W(A) is not hereditary ([3]). The
Cuntz semigroup of these algebras contains bounded ascending sequences with no least upper
bound. This is needed for W(A) to be hereditary (see Proposition 6.5), but not for W(A) to be
in PreCu.

Lemma 2.10. Let A be a C∗-algebra with sr(A) = 1. Then W(A) is hereditary.

Proof. Let a ∈ A⊗K+ and b ∈ M∞(A)+, and assume that a . b. We are to show that there
exists c ∈M∞(A)+ such that c ∼ a.

Using that A ⊗ K is the completion of M∞(A), we obtain that if a ∈ (A ⊗ K)+, there
exists a sequence (an) belonging to M∞(A)+ such that a = lim(an), and we may assume
that ‖a − an‖ ≤ 1/n. By Lemma 2.2 in [12], there are contractions dn in A ⊗ K such that
(a− 1/n)+ = dnand

∗
n. Thus

(a− 1/n)+ = dnand
∗
n ∼ a1/2

n d∗ndna
1/2
n ,

and bn := a
1/2
n d∗ndna

1/2
n ∈ M∞(A)+. This implies that 〈a〉 = sup〈bn〉 in W(A ⊗ K) and that

the sequence (〈bn〉) is rapidly increasing in W (A⊗K).
Notice that the sequence (〈bn〉) is bounded above in W(A) by 〈b〉. Therefore, it also has

a supremum 〈c〉 in W(A), by [5, Lemma 4.3]. The arguments in [5] show that for each n
there exists m and δn > 0 with δn → 0 such that (c− 1/n)+ - (bm − δn)+. This implies then
that

(c− 1/n)+ - (bm − δn)+ - bm - a

in A⊗K, whence c - a.
On the other hand, since clearly bn - c for all n, and 〈a〉 is the supremum in W(A ⊗ K)

of 〈bn〉, we see that a - c. Thus c ∼ a. �

For a unital C∗-algebra A, we denote as usual by T(A) the simplex of normalized traces.
Given a trace τ ∈ T(A) and a ∈ M∞(A)+, we may construct dτ (a) = limn τ(a

1/n). It turns
out that

dτ : M∞(A)+ → R+ , a 7→ dτ (a)

is lower semicontinuous and does not depend on the Cuntz class of a. Thus, it defines a
state on W(A), termed a lower semicontinuous dimension function. Let us denote by LDF (A)
the set of all lower semicontinuous dimension functions on A. Observe also that the func-
tion â : T(A) → R+ defined by â = (τ) = dτ (a) is an element of LAff(T(A))+.

In the case that A is moreover simple, we say that A has strict comparison if the order
in W(A) is determined by lower semicontinuous dimension functions. Namely, if dτ (a) <
dτ (b) for all τ ∈ T(A), it follows that a - b.

Definition 2.11. ([19, 21]) A unital C∗-algebra A has r-comparison if whenever a, b ∈M∞(A)+

satisfy
s(〈a〉) + r < s(〈b〉) , for every s ∈ LDF(A) ,
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then 〈a〉 ≤ 〈b〉. The radius of comparison of A is

rc(A) = inf{r ≥ 0 | A has r-comparison} ,
which is understood to be ∞ if the infimum does not exist.

Theorem 2.12. ([3]) Let A be a unital C∗-algebra with finite radius of comparison. Then W(A) is
hereditary.

3. ABSTRACT COMPLETIONS

The purpose of this section is to define the notion of completion for an object of PreCu
and establish the universal property it satisfies, from which uniqueness of this object will
follow. Existence will be proved by constructing a concrete completion and will be carried
out in the next section. We also show that the completion process induces a left adjoint
functor of the identity.

Definition 3.1. Let M be an object of PreCu. We say that a pair (N, ι) is a completion of M if
(i) N is an object of Cu,

(ii) ι : M → N is an order-embedding in PreCu, and
(iii) for any x ∈ N , there is a rapidly increasing sequence (xn) in M such that x = sup ι(xn).

Lemma 3.2. Let M , N be objects of PreCu and let α : M → N be a map in PreCu. The following
conditions are equivalent:

(i) α is an order-embedding.
(ii) α(x) � α(y) if and only if x� y.

Proof. (i) ⇒ (ii): If x � y, then as α is a map in PreCu, it follows that α(x) � α(y).
Conversely, suppose that α(x) � α(y). If y ≤ sup(zn), then α(y) ≤ α(sup(zn)) = supα(zn),
so that there is n with α(x) ≤ α(zn). Since α is order-embedding, this implies x ≤ zn .

(ii) ⇒ (i): Suppose now that α(x) ≤ α(y). Write x = sup(xn), where xn � xn+1. Since α
is a map in PreCu, α(x) = sup(α(xn)) and α(xn) � α(xn+1). Therefore, α(xn) � α(xn+1) ≤
α(y). Using the hyphotesis we obtain that xn � y for all n, and then x ≤ y. �

Theorem 3.3. Let M be an object of PreCu, P an object of Cu and α : M → P a map in PreCu.
Then, if (N, ι) is a completion ofM , there exists a unique map β : N → P in Cu such that β◦ι = α.
Moreover, if α is an order-embedding then so is β.

Proof. Since we can write any x ∈ N as x = sup ι(xn), where (xn) is a rapidly increasing
sequence in M , define β : N → P by β(x) = sup(α(xn)). We need to check that β is well
defined.

Suppose that x = sup ι(xn) = sup ι(ym) where (xn) and (ym) are both rapidly increasing
sequences in M . Then, for every n, there exist m and k such that

xn � ym � xk

Since α is a map in PreCu, we obtain that

α(xn) � α(ym) � α(xk) .

Therefore supα(xn) = supα(yn), whence β is well-defined.
That β is additive and preserves the identity element follows easily from the fact that α

belongs to PreCu.
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Next, let x ≤ y in N . Write x = sup(ι(xn)) and y = sup(ι(yn)), where (xn) and (yn) are
rapidly increasing. As before we obtain that for every n, there is m with xn � ym, so then

α(xn) � α(ym) ≤ supα(yk) = β(y) .

Therefore β(x) = sup(α(xn)) ≤ β(y), hence β is order-preserving.
If now x = sup(xn) ∈M , with (xn) rapidly increasing, apply ι followed by β so that

β(ι(x)) = β(ι(sup(xn))) = β(sup(ι(xn))) = sup(α(xn)) = α(x) ,

which shows β ◦ ι = α.
Suppose that x � y, for elements x, y in N . Write y = sup ι(yn), where (yn) is a rapidly

increasing sequence in M . There exists then n such that x ≤ ι(yn), and since yn � yn+1, we
may apply α to obtain α(yn) � α(yn+1). Now

β(x) ≤ β(ι(yn)) = α(yn) � α(yn+1) = β(ι(yn+1)) ≤ β(y) ,

hence β(x) � β(y).
It remains to be shown that β preserves suprema. Let {xn} be an increasing sequence

in N and let x = sup(xn). As β is order-preserving we readily get β(xn) ≤ β(x) for all
n. Therefore sup(β(xn)) ≤ β(x). Since we can also write x = sup ι(yn) (for a rapidly
increasing sequence (yn)) it follows that, given n, there is m with ι(yn) ≤ xm. Apply β to
get α(yn) = (β ◦ ι)(yn) ≤ β(xm) ≤ sup(β(xk)), whence

β(x) = sup(α(yn)) ≤ β(xm) ≤ sup(β(xk)) .

We now prove that β is unique. To this end, assume β′ : N → P is another map in Cu
such that β′ ◦ ι = α = β ◦ ι. Let x = sup(ι(xn)) be an element in N . Then

β′(x) = β′(sup ι(xn)) = sup((β′ ◦ ι)(xn)) = sup((β ◦ ι)(xn)) = β(sup ι(xn)) = β(x) .

Assume finally that α is an order-embedding and suppose that β(x) ≤ β(y). With x =
sup ι(xn), and y = sup ι(yn) for rapidly increasing sequences (xn) and (yn), this implies
that, for any n,

α(xn) � α(xn+1) ≤ supα(xn) ≤ supα(yn) .

There is then m depending on n with α(xn) ≤ α(ym), that is, xn ≤ ym (as α is an order-
embedding). Thus ι(xn) ≤ ι(ym) ≤ y, and so x ≤ y. This shows that β is an order-
embedding. �

A standard argument yields the following.

Corollary 3.4. Let M be an object in PreCu. If there is a completion of M , then it is unique (up to
order-isomorphism).

In view of the corollary above, given an object M of PreCu, we shall write (M, ι) to refer
to its (unique) completion, in case it exists.

Proposition 3.5. If every object of PreCu has a completion (M, ι), then the map ι : M → M
induces a covariant functorC : PreCu→ Cu, which is a left adjoint of the identity, i.e., if i : Cu→
PreCu is the inclusion functor, then C ◦ i ∼ idCu (where ∼ denotes natural equivalence).
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Proof. Put
C : PreCu −→ Cu

M 7→ M
.

Let σ : M → N be a map in PreCu, and let (M, ι) and (N, ι1) be the completions of M and
N respectively.

Now use that the map ι1 ◦ σ : M → N belongs to PreCu and Theorem 3.3, so that there
is a unique morphism σ : M → N in Cu such that σ ◦ ι = ι1 ◦ σ. In fact, if x = sup(ι(xn)) is
an element in M (with (xn) rapidly increasing in M ), then

σ(x) = sup((ι1 ◦ σ)(xn)) .

It is a simple matter to check that σ satisfies idM = idM and that σ ◦ τ = σ ◦ τ .
Finally, notice that if M is already an object of Cu, then (M, id) is a completion, hence

unique, whence C ◦ i(M) ∼= M . �

Remark 3.6. It follows from the result above that, if every object in PreCu admits a completion
and M is in PreCu, then M ∼= M .

4. EXISTENCE OF COMPLETIONS IN PRECU

In order to construct the completion of an object of PreCu, we basically need to add
suprema of every ascending sequence of the given object. This is best captured by using
intervals – we recall the definitions below.

Let M be a partially ordered abelian monoid. An interval in M is a nonempty subset
I ⊆M which is upward directed and order-hereditary (i.e. if x ≤ y and y ∈ I , then x ∈ I).
Denote Λ(M) the set of all intervals in M . Note that Λ(M) is equipped with a natural
abelian monoid structure, namely if I, J ∈ Λ(M), then

I + J = {z ∈M | z ≤ x+ y for some x ∈ I, y ∈ J} .

We shall be exclusively concerned with countably generated intervals. Those are elements
I in Λ(M) that have a countable cofinal subset, that is, a countable subset X – that may
always be assumed to be upwards directed – such that I = {x ∈ M | x ≤ y for some y ∈
X}. In that case, there is an increasing sequence (xn) in M with I = {x ∈ M | x ≤
xn for some n}. We will denote by Λσ(M) the monoid of countably generated intervals
over M. We shall sometimes refer to a rapidly increasing cofinal subset X for an interval
I , meaning that for any x, y ∈ X , there is z ∈ X with x, y � z. Note that an interval I
with rapidly increasing countable cofinal subset may be then written as I = {x ∈ M | x ≤
xn for some n} where now (xn) is a rapidly increasing sequence.

For intervals I and J in Λσ(M), write I - J if given x in I and z � x, there exists y ∈ J
such that z � y. It is clear that this is equivalent to taking x and y above in countable
cofinal subsetsX and Y for I and J respectively. The relation - is easily seen to be reflexive
and transitive, and induces a congruence on Λσ(M) by defining I ∼ J if I - J and J - I .

Put M = Λσ(M)/ ∼, and denote the elements of M by [I].

Proposition 4.1. Let M be an object in PreCu. Then M is a partially ordered monoid.
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Proof. Define [I] ≤ [J ] if I - J in Λσ(M), which is clearly well-defined, so that M becomes
a partially ordered set.

Now, let I , J , K, L ∈ Λσ(M) and assume that [I] ≤ [J ] and [K] ≤ [L] in M . Choose
increasing countable cofinal sets {xn}, {yn}, {zn} and {tn} for I , J , K and L respectively.
Write each term in the above sequences as a supremum of rapidly increasing sequences,
namely: xn = supm x

m
n , yn = supm y

m
n , zn = supm z

m
n and tn = supm t

m
n .

If x � xn + zn, then there exists m such that x ≤ xmn + zmn � xm+1
n + zm+1

n . Since
xm+1
n � xn and zm+1

n � zn, we see that xm+1
n � yp and zm+1

n � tq for some p, q. As addition
and� are compatible, it follows that x ≤ xmn +zmn � yt+tk where k = max{p, q}. Therefore
[I+K] ≤ [J+L], and we may define [I]+[J ] = [I+J ]. This operation is clearly compatible
with the order. �

Let M be an object of PreCu. For any x ∈M , put I(x) = [0, x] = {y ∈M | y ≤ x}, which
is clearly a countably generated interval. Next, define a map ι as follows:

ι : M −→ M
x 7→ [I(x)] .

Observe that ι is an order-embedding. Indeed, ι is additive and preserves the order. If
now [I(x)] ≤ [I(y)] in M , then I(x) - I(y) in Λσ(M). Write x = sup(xn), where (xn) is
rapidly increasing. Since xn � x for all n we have xn ≤ y for all n, whence x ≤ y

Lemma 4.2. Let M be an object of PreCu. Then every element in Λσ(M) is equivalent to an
interval with a rapidly increasing countable cofinal subset.

Proof. Let (xn) be an increasing countable cofinal subset for I ∈ Λσ(M). For each n choose
a rapidly increasing sequence (xmn ) with xn = sup(xmn ), and then consider the rapidly in-
creasing cofinal subset (xmn ) now varying n and m. Let J be the interval generated by (xmn ).
It is clear that J ⊆ I and therefore J - I . Consider x ∈ M such that x � xn. Since
xn = supxmn , there exists k such that x� xkn. Therefore I - J . �

Proposition 4.3. Let M be an object in PreCu. Then, every increasing sequence in M has a
supremum in M . More concretely, if ([In]) is an increasing sequence in M , and Xn is a rapidly
increasing countable cofinal subset for each In, then X = ∪nXn is a countable cofinal subset for
sup([In]).

Proof. Let ([In]) be an increasing sequence inM , and letXn be rapidly increasing countable
cofinal subsets for each In (this is no loss of generality, in view of Lemma 4.2, to assume
that Xn is rapidly increasing for every n). Let X = ∪nXn and put I = {x ∈ M | x ≤
y for some y ∈ X}. We are to show that I ∈ Λσ(M) and that [I] = sup([In]).

Let x1, x2 ∈ I . Then there are n and m and y1 ∈ Xn and y2 ∈ Xm with xi ≤ yi. We may
assume that n ≤ m. Find y in Xn such that y1 � y, and since In - Im, there is z in Xm with
y1 � z. Since y2 ∈ Xm, there exists w in Xm with z, y2 � w. Then xi ≤ yi � w and w ∈ X .
This shows that I is upwards directed. As I is clearly hereditary and X is countable (and
nonempty), we conclude that I ∈ Λσ(M).

That In - I for all n is clear. Suppose that J ∈ Λσ(M) satisfies In - J . Choose a
countable cofinal subset Y for J , and let x ∈ X and z � x. There is n with x ∈ Xn, so there
is y ∈ Y with z � y, and this implies I - J . Therefore [I] = sup[In].

�
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Lemma 4.4. Let M be an object of PreCu. If x� y in M , then [I(x)] � [I(y)] in M .

Proof. Let [In] be increasing in M . Choose a rapidly increasing countable cofinal set Xn for
In and put X = ∪nXn. If we let I = {x ∈ M | x ≤ y for some y ∈ X}, we know that
[I] = sup[In].

Suppose that [I(y)] ≤ [I]. Since x� y, there is z inX with x� z, and z ∈ Xn for some n.
Therefore, there is n such that w � z whenever w � x, which shows that [I(x)] ≤ [In]. �

Proposition 4.5. Let M be an object in PreCu. Then, every element in M is the supremum of a
rapidly increasing sequence coming from M .

Proof. Let [I] ∈ M . We may assume that there is a rapidly increasing sequence (xn) such
that I = {x ∈M | x ≤ xn for some n}. Consider the sequence ([In]) in M , where

In = {y ∈M | y ≤ xn} .
It follows from Lemma 4.4 that [In] � [In+1]. Thus, to prove the desired result, it suffices
to show that [I] = sup([In]). It is clear from the definition that [In] ≤ [I] for all n. Suppose
that J ∈ Λσ(M) has an increasing countable cofinal subset (ym) and that [In] ≤ [J ] for all
n. Given n and x � xn, we can find m such that x � ym. Therefore [I] ≤ [J ], obtaining
that [I] is the smallest upper bound of the sequence. �

Remark 4.6. The proof in Proposition 4.5 shows that, given I and J ∈ Λσ(M) with respec-
tive rapidly increasing countable cofinal subsets (xn) and (yn), then, letting In = [0, xn]
and Jn = [0, yn], we have [In + Jn] is rapidly increasing and sup([In] + [Jn]) = I + J .

Proposition 4.7. Let M be an object of PreCu. Then suprema and � are compatible with addition
in M .

Proof. Let ([In]), ([Jn]) be two increasing sequences in M , and let

[I] = sup([In]) and [J ] = sup([Jn]) .

Choose rapidly increasing sequences ([In]) and ([Jn]) such that [I + J ] = sup([In + Jn]),
and [I] = sup[In], [J ] = sup[Jn] (see Remark 4.6). We can then find m with [In] ≤ [Im] and
[Jn] ≤ [Jm]. Thus:

[In + Jn] = [In] + [Jn] ≤ [Im] + [Jm] ≤ [I] + [J ] ,

whence
[I] + [J ] = sup([In] + [Jn]) ≤ sup([In + Jn]) ≤ [I] + [J ] .

To prove that � and addition are compatible we have to check that if [I] � [J ] and
[K] � [L] then [I + K] � [J + L]. If we write [J ] = sup([Jn]) and [L] = sup([Ln]),
where Jn and Ln are constructed as in Proposition 4.5 (see also Remark 4.6), so that the
corresponding rapidly increasing sequence for [J+L] will be [Jn+Ln]. Using that [I] � [J ]
and [K] � [L], we find m with [I] ≤ [Jm] and [K] ≤ [Lm]. Therefore

[I] + [K] ≤ [Jm + Lm] � [Jm+1 + Lm+1] ≤ [J ] + [L] ,

as desired. �

Collecting the results above we, we obtain:
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Theorem 4.8. Let M be an object of PreCu. Then M is an object of Cu,

ι : M −→ M
x 7→ [I(x)],

(where I(x) = [0, x]) is an order-embedding in PreCu and (M, ι) is the completion of M .

Proof. It is clear by the preceding results that M is an object of Cu, and we already know
that ι is an order-embedding that preserves � (see Lemma 4.4).

Let (xn) be an increasing sequence in M with x = sup(xn) in M , and let I = {x ∈ M |
x ≤ xn for some n}. We first show that ι(x) = [I]. It is clear that I - I(x). Write x = sup zn,
where (zn) is rapidly increasing in M . Thus, if y � x, then there is n such that y � zn, so
that y ≤ xm for some m. This shows that I(x) - I .

Now, let J ∈ Λσ(M) and choose an increasing countable cofinal subset (yn) for J . If
[0, xn] - J for all n, we get that for any n and x � xn, there is m with x � ym, so that
I - J . It follows that ι(x) = sup ι(xn).

This, together with Proposition 4.5, shows that (M, ι) is the completion of M . �

Corollary 4.9. Let M be an object of PreCu such that every element is compact. Then M ∼=
Λσ(M).

Proof. This follows directly from Theorem 4.8 and the fact that, if every element in M is
compact, the relation - defined in Λσ(M) reduces to inclusion. �

5. SOME APPLICATIONS

Our first application of Theorem 4.8 relates the Cuntz semigroup of A with that of A⊗K
in the case that W(A) is hereditary.

Theorem 5.1. Let A be a C∗-algebra with W(A) hereditary. Then the pair W(A) is in PreCu and
(W(A⊗K), ι) is the completion of W(A).

Proof. We need to verify that W(A) and (W(A ⊗ K), ι) satisfy the conditions of Definition
3.1, and then invoke Theorem 4.8.

We have already proved in Proposition 2.8 that, under our assumptions, W(A) is an
object of PreCu and that ι is an order-embedding in PreCu.

Also, as in the proof of Lemma 2.10, if a ∈ (A⊗K)+, we obtain a sequence 〈bn〉with bn ∈
M∞(A) which is rapidly increasing (both in W(A) and W(A⊗K) since W(A) is hereditary)
and such that 〈a〉 = sup〈bn〉 in W(A⊗K). �

It is well known that if a simple unital C∗-algebra A has strict comparison if and only if
W(A) is almost unperforated, that is, whenever (n + 1)x ≤ ny (x, y ∈ W(A), n ∈ N), one has
x ≤ y (see [16]). A related property that a partially ordered monoid M might satisfy is that
of being almost divisible. This means that, for any x in M and any n ∈ N, there is y in M
such that ny ≤ x ≤ (n+ 1)y.

Recall that a C∗-algebraA isZ-stable if it absorbsZ tensorially, that is,A⊗Z ∼= A, where
Z is the Jiang-Su algebra ([10]). Any Z-stable algebra A has the properties that W(A) is
almost unperforated and almost divisible (see [17], [5], [13]). This is also the case for every
simple, unital AH-algebra with slow dimension growth ([5], [21]).
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For the class of simple, separable, finite, exact, unital C∗-algebras with strict comparison
and such that W(A) is almost divisible, a precise description of W(A) was given in [5]
(see also [1]), by means of data already contained in the Elliott invariat (i.e. K-Theory and
traces). Moreover, the recovery of one from the other has a functorial nature (see [15]).

More specifically, consider the set V(A)tLAff(T(A))++. Equip it with an abelian monoid
structure and a partial order, as follows. Addition extends the natural operations in both
V(A) and LAff(T(A))++, and is defined on mixed terms as [p]+f = p̂+f where p̂(τ) = τ(p).
The order is given by:

(i) ≤ is compatible with the natural order defined in V(A);
(ii) if f, g ∈ LAff(T(A))++ we will say that f ≤ g if f(τ) ≤ g(τ) for all τ ∈ T(A);

(iii) If f ∈ LAff(T(A))++ and [p] ∈ V(A) we will say that f ≤ [p] if f(τ) ≤ τ(p) for all
τ ∈ T(A);

(iv) If f ∈ LAff(T(A))++ and [p] ∈ V(A) we will say [p] ≤ f if τ(p) < f(τ) for all τ ∈ T(A).
The set V(A) t LAffb(T(A))++ naturally inherits the structure and order just defined, so

that the natural inclusion ι : V(A) t LAffb(T(A))++ → V(A) t LAff(T(A))++ is an order-
embedding.

Theorem 5.2. (cf. [5], [1]) Let A be a simple, unital, separable, exact C∗-algebra. Assume that
A is finite, has strict comparison and W(A) is almost divisible. Then, there is an ordered monoid
isomorphism

W(A) ∼= V(A) t LAffb(T(A))++ ,

such that 〈p〉 7→ [p], for a projection p, and 〈a〉 7→ â, for a not equivalent to a projection.

The following lemma is known. Its proof uses Edwards’ separation Theorem (see, e.g.
[9, Theorem 11.12]).

Lemma 5.3. Let K be a metrizable Choquet simplex and g ∈ LAff(K)++. Then g is the pointwise
supremum of a strictly increasing sequence (fn), where fn ∈ Aff(K)++ for all n.

Let f and g be affine functions on a convex set K. We write f < g to mean f(x) < g(x)
for every x in K.

Lemma 5.4. Let K be a compact convex set, and let f , g ∈ LAff(K)++.
(i) If f � g, then f < g.

(ii) If f < g and f is continuous, then f � g.

Proof. (i). Since g ∈ LAff(K)++ and K is compact, we know that g is bounded away from
zero. Therefore, there exists n0 such that g − 1/n ∈ LAff(K)++ for all n ≥ n0, and we may
take n0 = 1. Since supn(g − 1/n) = g, there exists n such that f ≤ g − 1/n, whence f < g.

(ii). Suppose that g ≤ sup(gn) where (gn) is an increasing sequence in LAff(K)++. For
each n, put Un := {x ∈ K | f(x) < gn(x)}, which is open as f is continuous and gn is lower
semicontinuous (and so is gn − f ). Since f < g, we see that

⋃
n≥1 Un = K. Using now that

K is compact and that (gn) is increasing, we find m ≥ 1 with K = Um. This implies that
f < gm. �

Lemma 5.5. Let A be a simple, separable and unital C∗-algebra. Then, the monoid V(A) t
LAff(T(A))++ is an object of Cu.
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Proof. LetM = V(A)tLAff(T(A))++. Let us first prove that every increasing sequence (xn)
in M has a supremum. If infinitely many terms of the sequence belong to LAff(T(A))++,
then the supremum equals the (pointwise) supremum g of the functions that appear in
(xn). For, if [p] ∈ V(A) is such that xn ≤ [p] for all n, then by definition xn ≤ p̂ for every n
such that xn ∈ LAff(T(A))++, whence g ≤ p̂, that is, g ≤ [p].

Otherwise, all but finitely many terms in (xn) belong to V(A). For those, write xn = [pn],
where pn are projections in matrices. Then, either the sequence is eventually constant, in
which case the supremum belongs to V(A), or else [pk] < [pk+1] for infinitely many ks. In
that case supn xn = supn p̂n. We only need to verify that [pk] ≤ supn p̂n. Indeed, given k,
there is l > k with [pk] < [pl]. Simplicity of A ensures that p̂k < p̂l, whence p̂k < supn p̂n.
Thus [pk] ≤ supn p̂n.

From our observations above, it follows that the (only) compact elements in M are the
ones in V(A). Indeed, if [p] ≤ sup fn for functions fn ∈ LAff(T(A))++, then p̂ < sup fn,
and by compactness we may choose ε > 0 such that p̂ + ε < sup fn. Since p̂ is continuous,
Lemma 5.4 implies p̂ < fk for some k, that is, [p] ≤ fk.

As A is separable, we know that T(A) is metrizable, and it follows from Lemma 5.3 that
each element in LAff(T(A))++ is the pointwise supremum of a strictly increasing sequence
of elements from Aff(T(A))++, which again, in view of Lemma 5.4, is a rapidly increasing
sequence.

It is easy to verify that suprema and addition in M are compatible. Assume now that
x � y, and z � t. The only case of interest arises when one of y, t belongs to V(A) and
the other does not. Assume then that, for example, y ∈ V(A), and write t = supn fn for
a strictly increasing sequence of affine, continuous functions. Then, z ≤ fn for some n,
whence

x+ z ≤ y + tn = ŷ + fn � ŷ + fn+1 = y + fn+1 ≤ y + t ,

showing that � and addition are compatible. �

Assembling the results above, we obtain the following result that recovers Theorem 2.6
in [4].

Theorem 5.6. Let A be a unital, simple, separable, exact C∗-algebra. Assume that A is finite, has
strict comparison, and W(A) is almost divisible. Then, there is an ordered monoid isomorphism

W(A⊗K) ∼= V(A) t LAff(T(A))++ .

Proof. Let ι : V(A) t LAffb(T(A))++ → V(A) t LAff(T(A))++ be the natural inclusion.
We only need show that the pair (V(A) t LAff(T(A))++, ι) is the completion of V(A) t
LAffb(T(A))++ and then invoke Theorem 5.2 and Theorem 5.1.

We know that V(A) t LAffb(T(A))++ is an object of PreCu (by Theorem 5.2, Proposition
2.8 and Lemma 2.10), and that V(A) t LAff(T(A))++ is an object of Cu (by Lemma 5.5).
Clearly, the map ι is an order-embedding in PreCu. Now, any f ∈ LAff(T (A))++ may be
written as f = sup(ι(fn)) where fn ∈ Aff(T (A))++. Thus (V(A) t LAff(T(A))++, ι) satisfies
the requirements of Definition 3.1. �

We now turn to the real rank zero situation, and show that, for this class, the Cuntz
semigroup (of the stabilisation) is order isomorphic to the monoid of intervals in the pro-
jection monoid. This was shown to be the case if moreover the algebra has stable rank one
by the third author in [14], but this turns out not to be necessary.
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Theorem 5.7. Let A be a σ-unital C∗-algebra with real rank zero. Then

W(A⊗K) ∼= Λσ(V(A))

as ordered monoids.

Proof. We may identify V(A⊗K) with V(A). For each a ∈ A⊗K+ put I(a) = {[p] ∈ V(A) |
p - a} = {[p] ∈ V(A) | p ∈ aM∞(A)a}, which is an element in Λσ(V(A)).

Define ϕ : W(A ⊗ K) → Λσ(V(A)) by ϕ(〈a〉) = I(a). The proof of Theorem 2.8 in [14]
shows that ϕ is a well defined order embedding.

Now, let I ∈ Λσ(V(A)) and let {[pn]} be an increasing countable cofinal subset. We of
course have that (〈pn〉) is an increasing sequence in W(A⊗K). Let 〈a〉 = sup(〈pn〉), and let
us show that I(a) = I .

Let p - a be a projection. Then 〈p〉 ≤ 〈a〉. Since 〈p〉 � 〈p〉 ≤ 〈a〉 = sup(〈pn〉), we get
〈p〉 ≤ 〈pn〉 for some n, that is, [p] ≤ [pn] in V(A). Conversely, if [q] ∈ I , then [q] ≤ [pn] for
some n, and therefore 〈q〉 ≤ 〈pn〉 ≤ 〈a〉. Thus [q] ∈ I(a). �

6. COUNTABLE INDUCTIVE LIMITS OF MONOIDS

In this section we answer, in the negative, the question of whether the category PreCu is
closed under coutable inductive limits. We subsequently repair this defect by constructing
a smaller category that sits between Cu and PreCu, and to which the Cuntz semigroup
belongs in interesting cases.

Theorem 6.1. The category PreCu does not have inductive limits.

Proof. We consider for all i ≥ 0 the following monoids

Si =
1

2i
N =

{ n
2i

| n ∈ N
}
,

with the natural order and addition. It is clear that these discrete monoids are in PreCu
(in fact in Cu if we add an infinite element) and are all isomorphic to N. Consider now the
following inductive sequence, where fi are the natural inclusions:

S1
f1→ S2

f2→ S3
f3→ . . .

Let S =
⋃
i≥1 Si ⊆ Q+ be the standard algebraic inductive limit of the sequence (i.e. the

inductive limit in the category of ordered abelian monoids), with the inclusions ϕi :Si → S
as compatible maps (ϕi+1fi = ϕi). Observe that this monoid is no longer discrete, and, as
we will see, it can not be the limit in PreCu (neither in Cu by just adding infinity), since
properties as 1 � 1 in any of the Si are not preserved in S.

Arguing by contradiction, suppose that the sequence (Si, fi) has an inductive limit in
PreCu,

T = lim
→PreCu

(Si, fi) with ψi :Si → T such that ψi+1fi = ψi.

We will construct two monoids T1, T2 in PreCu with compatible maps Si → Tj (j = 1, 2),
and use the universal property from T to derive a contradiction.
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First, let S ′ = S \ {0}. Denote its elements by s′. Define T1 := S t S ′ with addition
extending the addition in S and S ′ by (a + b′) = (a + b)′ (primes denoting elements in S ′),
and the order also extending the order in S and S ′ with

a′ ≤ b if a ≤ b, and a ≤ b′ if a < b.

This last condition is in fact a consequence of extending algebraically the order in S and
S ′. We also define T2 := S t S ′, the same as T1 as sets and even as monoids, but with a
different order, again extending the order from S and S ′ but now

a′ ≤ b if a < b, and a ≤ b′ if a < b.

Observe that, by doing this, we are just preventing a and a′ to be comparable for any
a ∈ S \ {0}.

Claim 1: T1 and T2 are objects of PreCu.

It is easy to see, in both situations, that the addition is order preserving and hence that
T1, T2 are ordered abelian monoids. The other properties in PreCu are also easily derived
once we know how suprema are constructed, and, with that, when we have x� y.

Suprema of stationary sequences always exist, so let us consider x1 ≤ x2 ≤ · · · ∈ Tj a
non stationary sequence with a supremum in Tj . Let γj : Tj → S be the order preserving
monoid map identifying both copies of S, and consider the sequence (γj(xi))i which is also
non stationary since we only have two copies of each element. Observe that if γj(xi) < r
in S, then xi < r, r′ both in T1 and T2. Hence, if a supremum exists in Tj , it must exist in S,
say r = supS(γj(xi))i, and the supremum in Tj must be either r or r′. In T1 we have r′ < r
therefore supT1

(xn)n = r′. However, r and r′ are not comparable in T2, and hence we can
not have a supremum.

Hence, in T1, non stationary sequences with suprema are the ones which have a supre-
mum by identifying both copies of S, and in this case, the supremum is the copy coming
from S ′. In T2 the only sequences with supremum are the stationary ones.

Using this one sees that T1 is a linearly ordered monoid, with two copies of each element
in S \ {0}, ordered as a′ < a, and with x� y if x < y or if x = y ∈ S.

Suprema in T2 come only from stationary sequences, whence this is like the discrete
situation, so we have x� y if x ≤ y.

With this in mind it is now easy to prove that T1 and T2 are objects in PreCu. Further-
more, considering the natural inclusions in the first copy of S, ij : S → Tj for j = 1, 2, we
also obtain compatible maps in PreCu, ijϕi : Si → Tj (that is, ijϕi = ijϕi+1fi).

Claim 2: T contains a copy of S as an ordered abelian submonoid.



16 RAMON ANTOINE, JOAN BOSA, AND FRANCESC PERERA

Consider the following diagram of ordered monoid maps, observing that the only maps
that belong to PreCu are the fis and the i1ϕjs:

S

∃!ψ

��
�
�
�
�
�

∃!i1

��

S1

f1
//

ϕ1

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i1ϕ1

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU S2

f2
//

ϕ2

77nnnnnnnnnnnnnnnnnnnnnnn

i1ϕ2

''PPPPPPPPPPPPPPPPPPPPPP S3

ψi
//

ϕ3

>>~~~~~~~~~~~~

i1ϕ3

  
@@

@@
@@

@@
@@

@@
T

∃!ϕ

��
�
�
�
�
�

T1

Since T has compatible maps ψi with the fi, by the universal property of S we obtain a
unique ordered monoid homomorphism ψ : S → T such that ψϕi = ψi. Again, since T1

also has compatible maps i1ϕi, now in the category PreCu, by the universal property of
T we obtain a unique map ϕ : T → T1 such that ϕψi = i1ϕi, and, at the level of monoids,
we obtain a unique ordered map ϕ̃ : S → T1 such that ϕ̃ϕi = i1ϕi. By uniqueness this
last map should be the inclusion, i1 = ϕ̃, and since ϕψϕi = ϕψi = i1ϕi we have, again by
uniqueness, i1 = ϕψ.

Therefore, since the inclusion factors through T , ψ is injective and we have an isomor-
phic copy of S in T . We will thus write T = ψ(S) t T ′.

Claim 3: T ′ 6= ∅.

Observe that since the monoids Si are discrete and all bounded sequences are eventually
stationary, all elements are compact (that is, a � a for all a ∈ Si). Now for any i ≥ 1,
ψ(1) = ψ(ϕi(1)) = ψi(1), and since 1 � 1 in Si, and ψi are PreCu morphisms, we have that
ψ(1) � ψ(1) also in T . Clearly this can be extended to prove that all elements in ψ(S) are
compact.

In T we have that ψ(1) ≥ ψ(2n−1
2n ) = ψ(1 − 1

2n ) for all n ≥ 1. Since ψ is injective and
compact elements can not be written as suprema of non stationary sequences, we have
that ψ(1) 6= supT (ψ(1− 1

2n ))n (this last element might not even exist). But ψ(1) is an upper
bound for the sequence and therefore there exists t′ ∈ T such that ψ(1 − 1

2n ) ≤ t′, for all
n ≥ 1, and either t′ < ψ(1) or else t′ is not comparable with ψ(1). Since ψ is an ordered
morphism, and ψ(S) is completely ordered, it is clear that t′ 6∈ ψ(S), and hence t′ ∈ T ′ 6= ∅.

Claim 4: T cannot be the inductive limit in PreCu of (Si, fi).

Recall that in T2 the only sequences with suprema are the stationary sequences. With
this in mind, and with ψ as in Claim 2, it is not difficult to see that the following is a
morphism in PreCu :

γ : T2 −→ T
a 7−→ ψ(a) if a ∈ S
a′ 7−→ ψ(a) if a′ ∈ S ′
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Now consider the following diagram of maps in PreCu,

T

∃!ϕ

��
�
�
�
�
�
�
�
�
�
�

Si
fi

//

ψi

66mmmmmmmmmmmmmmmmmmmmmmmm

i2ϕi

((QQQQQQQQQQQQQQQQQQQQQQQQ Si+1

ψi+1

=={{{{{{{{{{{{{

i2ϕi+1

!!B
BB

BB
BB

BB
BB

B

T2

γ

XX

By the universal property of T there exists a unique map ϕ :T → T2 such that ϕψi = i2ϕi.
Now observe that ψi(s) = ψ(ϕi(s)) = γ(i2ϕi(s)) and therefore, γϕψi = γi2ϕi = ψi. But
γϕ 6= IdT since t′ 6∈ γ(T2). This contradicts the universal property for T leading to two
different compatible maps from T to T . �

Remark 6.2. Observe that the example of inductive chain used in the proof of the previ-
ous Theorem, can be obtained as an inductive chain induced by the Cuntz functor W(−)
applied to an inductive chain of C∗-algebras.

Consider the 2∞ UHF-Algebra, A = lim→(M2i(C), gi) with gi(x) = ( x 0
0 x ). The Cuntz

semigroup of each matrix algebra W(Mn(C)) is isomorphic to a cyclic free semigroup with
0, given by the rank function, 〈a〉 7→ rank(a) for all a ∈ A+. Hence, if we make identifi-
cations W(M2i(C)) = 1

2i N = Si – by using the weighted rank funtions 〈a〉 7→ 1
2i rank(a) –

the induced maps W(gi) are the natural inclusions fi : Si → Si+1. Therefore, we obtain the
previous sequence of monoids in PreCu.

Let us thus define a new category, which will be suitable for the Cuntz semigroup for a
large class of C∗-algebras, and in which inductive limits can be constructed.

Definition 6.3. Let C be the full subcategory of PreCu whose objects are monoids M closed by
suprema of bounded increasing sequences.

Examples 6.4. As illustrating examples, observe that Q+ is an object of PreCu but not of C,
R+ is an object of C but not of Cu, and finally R+ ∪ {∞} is an object of Cu.

We have seen in Lemma 2.10 that for stable rank one C∗-algebras A, W(A) is hereditary
and therefore in PreCu. Also, by [5, Lemma 4.3] we see that W(A) has suprema of bounded
sequences (this was in fact used to prove Lemma 2.10) and therefore W(A) is an object of
C.

Furthermore, we will see that the category C coincides with the category of monoids M
for which the inclusion ι : M →M is hereditary..

Proposition 6.5. Let M be in PreCu. Then the inclusion ι : M → M is hereditary if and only if
M is an object of C, that is, all bounded increasing sequences in M have a supremum.

Proof. Suppose the inclusion ι : M → M is hereditary and consider (xn) a bounded as-
cending sequence in M , say xn ≤ y ∈ M for all n ≥ 1. Then, since ι is a map in PreCu, we
obtain ι(xn) ≤ ι(y) for all n ≥ 1. Now, since M is in Cu, we have z = supM(ι(xn)) ≤ ι(y).
Using that ι is hereditary there exists an element x ∈ M such that ι(x) = z. Suppose there
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exists x′ ∈ M such that xn ≤ x′ for all n. Then ι(xn) ≤ ι(x′) which implies ι(x) = z ≤ ι(x′).
But since ι is an order-embedding we have x ≤ x′ and therefore x = supM(xn).

Now suppose M is a monoid in C and consider the map ι : M → M . Since (M, ι) is a
completion of M , any x ∈ M can be written as x = supM(ι(xn)). Suppose further that
x ≤ ι(y) for some y ∈ M . Therefore ι(xn) ≤ ι(y) for all n ≥ 1, and since ι is an order
embedding, we obtain xn ≤ y for all n ≥ 1. Now since M is in C and the sequence is
bounded by y, there exists z = supM(xn) and since ι preserves suprema we obtain ι(z) =
ι(supM(xn)) = supM(ι(xn)) = x, obtaining the desired result. �

Remark 6.6. Note that for a C∗-algebra A, if the embedding W(A) → W(A⊗K) is hereditary, by
Theorem 5.1 W(A) is an object of PreCu and W(A ⊗ K) is order-isomorphic to W (A). Therefore
the embedding W(A) → W(A) is also hereditary. On the other hand, it is not clear that if W(A) is
an object of PreCu and the embedding W(A) → W(A) is hereditary then W(A) → W(A ⊗ K) is
also hereditary

By Proposition 6.5 and the preceding remark, we obtain:

Corollary 6.7. If A is a C∗-algebra such that W(A) is hereditary, then W(A) is an object of C.

Theorem 6.8. The category C has countable inductive limits.

Proof. Let (Si, fi)i≥0 be an inductive sequence of monoids in C and let Salg be the algebraic
inductive limit with compatible maps ϕi : Si → Salg. Also, we define for any m > i ≥ 0 the
maps fm,i = fm−1 . . . fi.

To construct the inductive limit in Cu, Coward, Elliott and Ivanescu considered the set
of ascending sequences (through the morphisms fi : Si → Si+1) with an intertwining re-
lation between the compactly contained elements of the sequence. We will use the same
construction but, since we are only interested in obtaining suprema in S for bounded se-
quences, we should only be interested in sequences which are bounded in some of the
Si, and its successive homomorphic images, that is, in Salg. But, in order to maintain the
rapidly increasing structure, we will consider ascending sequences with a bound in Salg

for its compactly contained elements.
Let us call a sequence s = (s1, s2, . . . ) with si ∈ Si a bounded ascending sequence in (Si, fi)

if fi(si) ≤ si+1 and there exists Ms ∈ Salg such that, for all i ≥ 0 and x � si, ϕi(x) ≤ Ms.
We will say that Ms is the bound in Salg for s, or that x is bounded in Salg. We now define

S(0) := {s = (s1, s2, . . . ) | s is bounded}.

This set becomes a pre-ordered abelian monoid with componentwise addition and pre-
order relation given by (s1, s2, . . . ) - (t1, t2, . . . ) if, for any i and s ∈ Si with s � si, there
exists an m > i such that fm,i(s) � tm. Antisymmetrizing the relation - ((si) ∼ (ti) if
(si) - (ti) and (ti) - (si)), we obtain an ordered abelian monoid S = S(0)/ ∼ which,
together with the morphisms ϕi : Si → S, ϕi(s) = [(0, . . . , 0, s, fi(s), . . . )], is the inductive
limit of (Si, fi) in C.

This construction is based on the construction in [6] with the difference that we are
considering a wider range of monoids (possibly with unbounded sequences), but a smaller
subset S(0) (subset of the cartesian product

∏
i Si). The proof follows the lines of the one
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in [6] but with a number of non trivial modifications. For the sake of brevity we will point
out where extra care in the construction needs to be taken.

First, we need to check that S(0) is closed under addition.
Let (s1, s2, . . . ), (t1, t2, . . . ) ∈ S(0) with bounds in Salg Ms,Mt respectively. For any i ≥ 0

and x � si + ti, let us write si, ti as suprema of rapidly increasing sequences in Si, si =
supSi

(sni )n, and ti = supSi
(tni )n. Then x � si + ti = supSi

(sni + tni )n. Hence, for some m we
have that x� smi + tmi . But smi � si and tmi � ti implies that ϕi(smi ) ≤Ms and ϕi(tmi ) ≤Mt.
Therefore ϕi(x) ≤ ϕi(s

m
i + tmi ) ≤Ms +Mt ∈ Salg which is a bound in Salg for (si) + (ti) .

One other important fact is that each element [(si)] ∈ S has a representative [(s̃i)] whose
elements are rapidly increasing in the sense that fi(s̃i) � s̃i+1. This can still be done,
since this representative is a Cantor diagonal sequence obtained from rapidly increasing
sequences sni with the original elements si as suprema. Since those elements are always
way below the original ones, the resulting representative is also bounded in Salg.

Also, we should take care in how suprema is constructed.
First we see that if (si) - (ti) andMt ∈ Salg is a bound for (ti), thenMt is also a bound for

(si). If x� si, by the - relation, there exists m such that fm,i(x) � tm. Now, by the bound
for the compactly contained in tm, ϕm(fm,i(x)) ≤Mt. But since the fj are compatible maps,
we obtain ϕi(x) ≤Mt.

Therefore, a bound in S for an ascending sequence si gives us a bound in Salg for all
the elements in the sequence, and thus for the computed supremum: Let [(s1

i )] ≤ [(s2
i )] ≤

· · · ≤ [(ti)] be a bounded ascending sequence in S. By the above argument the compactly
contained elements of all the sji (even for any other representative), are bounded in Salg by
the bound of the (ti), say Mt. But the supremum (as constructed in [6]) is obtained from
the components of the [(sni )] (rapidly increasing representatives), which will be bounded
in Salg by Mt, and therefore will also led to an element in S(0). �

Remark 6.9. Let us recall a property of the inductive limit in Cu, which is still valid in
C and which should be used later. As in the proof of the previous Theorem, given s ∈ S,
choosing a rapidly increasing representative, s = [(si)] ∈ S with fi(si) � si+1, we have that
s = supS(ϕi(si))i, that is, all elements in S can be written as the supremum of a sequence
of elements coming from the Si.

Remark 6.10. Observe that the inductive sequence in Theorem 6.1 is in fact a sequence in
C. To compute the inductive limit lim→C(Si, fi), just observe that T = S t R++ with order
and addition as T1 in the proof of Theorem 6.1, has the desired properties.

If, instead of (Si, fi) we had considered the sequence (Si ∪ {∞}, f̄i) (now objects in Cu),
we would have obtained lim→C(Si, fi) = S tR++∪{∞} which is the inductive limit in Cu.

One could ask whether or not, the limit in C applied to monoids already in Cu leads to
the inductive limit in Cu, that is, if Si are monoids in Cu,

lim
→C

Si
?
= lim

→Cu
Si.

This is not the case as we see in the following example:
For all n ≥ 0 let Tn = {a0, a1, . . . , an} with addition ai + aj = amax{i,j} and the induced

algebraic order. It is not difficult to check that Tn ∈ Cu, and now, if we consider the
inductive sequence (Tn, gn) with the natural inclusions as maps, it can be proven, through
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its defining universal properties, that

lim
→C

Si = {a0, a1, a2, . . . }, and lim
→Cu

Si = {a0, a1, a2, . . . , a∞}.

equipped with the same order and addition as before.

Theorem 6.11. Let (Si, fi) be an inductive sequence of maps in C. Then

lim
→C

Si = lim
→Cu

Si.

Proof. Let (Si, fi) be an inductive sequence of maps in C, and SC the inductive limit in C
with compatible maps ϕi : Si → SC . Similarly let (Si, fi) be the induced sequence in Cu,
and SCu the inductive limit in Cu with compatible maps ψi : Si → SCu. Let γi :Si → Si be
the corresponding inclusions. Now, since γi+1fi = fiγi (by definition as in Theorem 3.3)
consider the following diagram of compatible maps in C:

SC

∃!γ

��
�
�
�
�
�
�
�
�
�
�
�
�

Si
fi
//

ϕi

33

γi

��

Si+1

ϕi+1

<<yyyyyyyy

γi+1

��

Si
fi
//

ψi ++

Si+1

ψi+1

""D
DD

DD
DD

D

SCu

By the universal property of SC there exists a unique map γ :SC → SCu such that γϕi = ψiγi.
If s ∈ SCu, then s can be written as a supremum of a rapidly increasing sequence of

elements coming from the Si (see [6]), s = supSCu
(ψi(si))i. In turn, since Si is the completion

of Si, each of the si can be written as a supremum of a rapidly increasing sequence of
elements coming from Si, si = supSi

(γi(s
j
i )). Therefore, since ψi are morphisms in Cu

preserving suprema,

s = sup
SCu

(ψi(si))i = sup
SCu

(ψi(sup
Si

(γi(s
j
i ))j))i = sup

SCu

(sup
SCu

(ψi(γi(s
j
i )))j)i = sup

SCu

(γ(ϕi(s
j
i )))i,j,

and we see that each element in SCu can be written as the supremum of elements in γ(SC).
Now let us prove that γ is an order embedding.
Suppose γ(s) ≤ γ(t) in SC and let s = [(si)], t = [(ti)] with rapidly increasing representa-

tives as in the construction of SC . Then, recall that in this situation s = supSC(ϕi(si))i and
t = supSC(ϕi(ti))i. Since γ is a C map and γϕi = ψiγi, we obtain

sup
SCu

(ψiγi(si))i ≤ sup
SCu

(ψiγi(ti))i.

Similarly as before, in SCu as constructed in [6], this is [(γi(si))] ≤ [(γi(ti))].
Hence, given x� si ∈ Si we have γi(x) � γi(si). By the order relation in SCu there exists

m ≥ i such that fm,iγi(x) � γm(tm) and therefore γm(fm,i(x)) � γm(tm). But by definition
γm is an order embedding in PreCu, which implies fm,i(x) � tm. But this, by the order
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relation in SC implies [(si)] ≤ [(ti)] or s ≤ t. Hence γ is an order embedding, (SCu, γ) is a
completion of SC , and by Theorem 3.3 we have SCu

∼= SC . �

As a consequence, we can now compute the stabilized Cuntz semigroup for some count-
able inductive limits of C∗-algebras in terms of the Classical Cuntz semigroup.

Corollary 6.12. Let A be a C∗-algebra such that A = lim→(Ai, fi) where W(Ai) are hereditary.
Then

Cu(A) = lim
→C

(W(Ai),W(fi)).

Proof. Using [6, Theorem, 2], Theorem 3.3 and Theorem 6.11 we obtain

Cu(A) = lim
→Cu

(Cu(Ai),Cu(fi)) = lim
→Cu

(
W(Ai),W(fi)

)
= lim

→C
(W(Ai),W(fi)).

�
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