MASS TRANSPORT AND UNIFORM RECTIFIABILITY
XAVIER TOLSA

ABSTRACT. In this paper we characterize the so called uniformly rectifiable sets
of David and Semmes in terms of the Wasserstein distance Wa from optimal mass
transport. To obtain this result, we first prove a localization theorem for the
distance W5 which asserts that if gy and v are probability measures in R", ¢ is
a radial bump function smooth enough so that [ ¢du 2 1, and p has a density
bounded from above and from below on supp(y), then Wa(pp, apr) < cWa(u,v),

where a = [ pdu/ [ pdv.

1. INTRODUCTION

In this paper we characterize the so called uniformly rectifiable sets of David
and Semmes [DS2] in terms of the Wasserstein distance W, from optimal mass
transport. To obtain this result, a fundamental tool is a new localization theorem
for the distance W5, which we think that has its own interest.

To state our results in detail we need to introduce some notation and terminol-
ogy. Recall that, for 1 < p < oo, the Wasserstein distance W, between two (Borel)
probability measures j, v on R? is defined by

1/p
Wy =int( [ le-yran(ay)
™ R xR™

where the infimum is taken over all probability measures m on R" x R® whose
marginals are g and v. That is, 7(A x R") = pu(A) and 7(R” x A) = v(A) for
all measurable sets A ¢ R®. The same definition makes sense if instead of proba-
bility measures one considers measures p,v, 7 of the same mass. In the particular
case p = 1, by the Kantorovich duality, the distance W, can also be characterized as
follows:

(1.1) Wi (s, v) = sup{|[ fdu~ [ fdv|: Lip(f) <1}.

The Wasserstein distances play a key role in many problems of optimal mass
transport. Further, quite recently they have also been shown to be useful in ques-
tions in connection with PDE’s (such as the Boltzmann equation) and Riemannian
geometry. See [Vil] and [AGS] for two basic and modern references on Wasserstein
distances and mass transport.

Let us turn our attention to uniform rectifiability now. Given 0 < n < d, we say
that a Borel measure u on R? is n-dimensional Ahlfors-David regular, or simply
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AD-regular, if there exists some constant ¢ such that ¢;'r® < p(B(x,7)) < cor®
for all = € supp(p), 0 < r < diam(supp(p)). It is not difficult to see that such a
measure g must be of the form = pH"|supp(p), where p is some positive function
bounded from above and from below and H" stands for the n-dimensional Hausdorff
measure. A Borel set £ c R? is called AD-regular if the measure H? is AD-regular,
where we used the notation H% = H"|E.

The notion of uniform n-rectifiability (or simply, uniform rectifiability) was in-
troduced by David and Semmes in [DS2]. For n =1, an AD-regular 1-dimensional
measure is uniformly rectifiable if and only if its support is contained in an AD-
regular curve. For an arbitrary integer n > 1, the notion is more complicated. One
of the many equivalent definitions (see Chapter 1.1 of [DS2]) is the following: u is
uniformly rectifiable if there exist constants 6, M > 0 so that, for each x € supp(u)
and R > 0, there is a Lipschitz mapping g from the n-dimensional ball B, (0,r) c R®
into R4 such that ¢ has Lipschitz norm < M and

M(B(x, r)n g(Bn(O,T))) >0r".

In the language of [DS2], this means that supp(i) has big pieces of Lipschitz images
of R*. A Borel set E c R? is called uniformly rectifiable if H?, is uniformly rectifiable.

The reason why uniform rectifiability has attracted much attention in the last
years is because this is the natural notion in many problems where rectifiability
is involved in a quantitative way, such as in problems in connection with singular
integral operators. Indeed, as shown in [DS2], it turns out that an n-dimensional
AD-regular measure p is uniformly rectifiable if and only if a sufficiently big class of
singular integral operators with an n-dimensional odd Calderén-Zygmund kernel is
bounded in L?(u). In the case n =1, it was shown in [MMYV] that uniform rectifia-
bility is equivalent the L?(x) boundedness of only one operator, namely the Cauchy
transform. The analogous result in higher dimensions involving the n-dimensional
Riesz transforms instead of the Cauchy transform is still open and is subject of
active investigation. See [MPr] or [MT], for instance.

In this paper we will characterize uniform rectifiability in terms of some scale
invariant coefficients a,. They are defined as follows. Let ¢ : R4 — [0,1] be a radial
Lipschitz function such that xp2) < ¢ < XB(0,3) Which also satisfies
(1.2)
eyt dist(x,0B(0,3))? < () < e dist(z,0B(0,3))?,  |Vo(x)| < codist(z, 0B(0,3)),

for all 2 € B(0,3). Given a ball B = B(z,r) c R¢, we denote
-z
vu(y) = sO(y ).
T

Given an n-dimensional AD-regular measure ;1 on R? and a ball B with radius r(B)
that intersects supp(u), for 1 < p < oo, we define

1 :
(1.3) a,(B) = BT inf W, (e, cp.ppH),
r P

(B
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where the infimum is taken over all n-dimensional affine planes that intersect B
and the constant cp 1, is chosen so that the measures ppp and cp ppH} have the
same mass. That is, cg = [ opdp/ [ ppdHy. If B = B(x,r), we will also use the
notation o, (z,7) = o, (B).

Observe that the coeflicient o, (B) measures in an scale invariant way how close
is p to a flat n-dimensional measure in 3B. Recall that a flat n-dimensional measure
is a measure of the form ¢H}, where ¢ >0 and L is an affine n-plane. In particular,
notice that if y is flat and B nsupp(u) # &, then a,(B) = 0. Notice also that

a,(B) S ay(B) if p<yq.

Let us remark that, in the case p = 1, some coefficients quite similar to the a;q’s
were already introduced in [To2], and they were denoted by « there. The precise
relationship between the «a4’s and the a’s is explained in Lemma 5.1.

The coefficients «, should also be compared with the coefficients 3,, well known
in the area of quantitative rectifiability. Given 1 < p < co and a ball B c R?, one sets

Bo(B) = iyf {r(}B)" fw(diitég)m)pd“ (y)}w’

where the infimum is taken over all n-planes in R?. For p = oo one has to replace
the L? norm by a supremum:

5o (B) =ilgf{ p M}

yesupp(u)n2B r(B)

where the infimum is taken over all n-planes L in R? again. The coefficients 3, first
appeared in [Jol] and [Jo2], in the case n = 1, p = co. In [Jol] P. Jones showed,
among other results, how the (.’s can be used to prove the L? boundedness of
the Cauchy transform on Lipschitz graphs. In [Jo2], he characterized 1-dimensional
uniformly rectifiable sets in terms of the 8.’s. He also obtained other quantitative
results on rectifiability without the AD regularity assumption. For other p’s and
n > 1, the 3,’s were introduced by David and Semmes in their pioneering study of
uniform rectifiability in [DS1].

Notice that the 3,’s only give information on how close supp(x) N 2B is to some
n-plane (more precisely, how close is supp(p) 2B to be contained in some n-plane).
On the other hand, the coefficients «,, contain more precise information. Indeed,
we will see in Lemma 5.2 below that 5,(B) < a,(B) for 1 <p < co. It is immediate
to check that the converse inequality fails, as 5,(B) = 0 does not force u to be flat
in 2B.

If B, B’ are two balls with comparable radii and B c B’, then it is straightforward
to check that §,(B) S B,(B’). However, this property is very far from being clear
for the coefficients «,. So given an AD-regular measure p, suppose that 3B c B’
and that u(B) » u(B') » r(B)" ~ r(B’)". Is it true that

(1.4) ay(B) S ap(B')?
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This question leads naturally to the following. Let u, v be probability measures
on R? and ¢ a non negative bump function smooth enough. Consider the measures
pp and pr. We wish to estimate how different they are in terms of the distance
W, (i, ). More precisely, let a = [ pdu/ [ ¢ dv and assume that the mass of the pu
is quite big, that is, [ ¢du>c; ~ 1. Is it true that

W (pn, apr) < cWy(p,v)?,

with ¢ depending on ¢;. Using Kantorovich’s duality, it is easy to check that this
holds for p = 1, assuming only ¢ to be Lipschitz (see Subsection 3.1). We will show
in this paper that this is also true for the quadratic Wasserstein distance, assuming
additional conditions on ¢ and p. The precise result, which we will use to prove
that (1.4) holds for p = 2, is the following.

Theorem 1.1. Let p,v be probability measures on R*. Let B c R™ be a closed ball

with radius r(B) > ¢3', and suppose that u(é), V(é) > 0. Assume that p is absolutely
continuous with respect to the Lebesque measure on B, so that p| B = f(x)dx, where
the density [ satisfies c;'xp < f(2) < ¢y, for a.e. x € B and for some constant ¢4 > 0.
Let ¢ : R" - [0,1] be a radial Lipschitz function supported on B such that

(1.5) ¢t dist(z,0B)? < p(x) < cpdist(x,0B)*  and V()| < codist(x, OB),
for all x € B. Then

Walep, apr) < cWa(p,v),
where a = [ @du/ [ @dv and ¢ depends only on cy,c3 and cy.

Notice that the assumptions on p and ¢ imply that r(B) ~ 1 and [ ¢du 2 1, with
constants depending on ¢y, c3, and c4.
The result also holds if, instead of (1.5), one asks

o(x) ~ dist(x,0B)™ and |V (x)| S dist(x,0B)™ !,

for x € B and m > 2. However, for simplicity we have only considered the case m = 2.

The preceding theorem follows from an analogous result where the ball B is re-
placed by a cube R. We carry out this reduction by a suitable change of coordinates
in Subsection 3.2. Roughly speaking, the proof of the corresponding theorem for
the cube R consists in estimating Wa(pu,a T#(¢v)) in terms of Wy(p,v), where
T is a map such that T#v = p which realizes the optimal quadratic transport (the
notation T#v stands for the image measure of v by T, i.e. T#v(A) =v(T1A) for
A c R"). This estimate is obtained by a multi-scale analysis, using Haar wavelets.
Some of the ideas are partially inspired by [To2].

Roughly speaking, the quadratic decay of ¢ as one approaches the boundary is
used to bound the interchanges of mass between ¢u and (1 - ¢)v, and between v
and (1-¢)p.

With the preceding localization result for W, at hand, we will prove the following.
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Theorem 1.2. Let p be an AD-reqular measure on R% and 1 < p < 2. Then p is
uniformly rectifiable if and only if a,(z,t)? du(z) < is a Carleson measure, that is,
if for any ball B centered on supp(p) with radius R,

(1.6) [oRfB ap(z, 1) du(z) % <cR™

Some remarks are in order. First, let us mention that the same result is already
known to hold with f3, instead of a,, (even with in a somewhat wider range of p’s).
This was shown by David and Semmes in [DS1]. Also, the case «; is (essentially)
proved in [To2].

Notice that if, for some p € [1,2], o, (z,7)? du(z) £ is a Carleson measure, then
s0 is By(x,r)? du(z) L, since B,(z,r) < ay,(z,7), and thus by the results of David
and Semmes in [DS1] p is uniformly rectifiable. So the difficult implication in the
theorem consists in showing that if 4 is uniformly rectifiable, then o, (z, r)? du(z)
is a Carleson measure. As a,(x,7) S ag(x,r) for p < 2, it suffices to consider the
case p = 2 for this implication. To this end, the localization Theorem 1.1 will play
a key role. First we will prove that as(z,r)?dp(z) £ is a Carleson measure in the
particular case where y is comparable to H™ on an n-dimensional Lipschitz graph,
and finally we will prove the result in full generality by means of a geometric corona
type decomposition. This technique, which takes its name from the corona theorem
of Carleson, has been adapted by David and Semmes to the analysis of uniformly
rectifiable sets [DS1, DS2] and has already been shown to be useful in a variety of
situations (see also, for example, [Lé], [Tol], or [MT]).

The plan of the paper is the following. In Section 2 we introduce some additional
notation and terminology. The localization Theorem 1.1 is proved in Sections 3 and
4. In Section 5 we explain the relationship among the coefficients «, o, 3, and we
show that a,(B) $ a,(B'), under the assumptions just above (1.4). In Section 6 we
prove Theorem 1.2 for the particular case of Lipschitz graphs, while the full result
is proved in the final Section 7.

2. PRELIMINARIES

As usual, in the paper the letter ‘¢’ stands for an absolute constant which may
change its value at different occurrences. On the other hand, constants with sub-
scripts, such as cq, retain their value at different occurrences. The notation A $ B
means that there is a positive absolute constant ¢ such that A < c¢B. So A ~ B is
equivalent to A $ B S A.

Given z € R", |z| stands for its Euclidean norm and |x|e for its o, norm.

By a cube in R” we mean a cube with edges parallel to the axes. Most of the
cubes in our paper will be dyadic cubes, which are assumed to be half open-closed.
The collection of all dyadic cubes is denoted by D. The side length of a cube @ is
written as (@), and its center as zg. The lattice of dyadic cubes of side length 277
is denoted by D;. On the other hand, if R is a cube, D(R) stands for the collection
of cubes contained in R that are obtained by splitting it dyadically, and D;(R) is
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the subfamily of those cubes from D(R) with side length 2-7¢(R). On the other
hand, if Q € D or Q € D(R), then Ch(Q) is the family of dyadic children of Q). One
says that () is the parent of its children. T'wo cubes Q,Q’ € D are called brothers if
they have the same parent. Also, given a > 0 and any cube @), we denote by a @ the
cube concentric with @ with side length a ¢(Q).

By a measure on R"*, we mean a Radon measure. Its total variation is denoted by
|| Given a set A c R™, we write | A = x4 pu. That is u| A is the restriction of u to
A. The Lebesgue measure is denoted by m or by dz. Given a measure p and a cube
Q, we set mop = p(Q)/m(Q). That is, mopu is the mean of p on @, with respect
to Lebesgue measure. LP is the usual LP space with respect to Lebesgue measure,
while LP(u1) is the one with respect to the measure p. As usual, we consider the
pairing between two functions (f, g) = [ f g dx, or between a function and a measure
(f, )= fdp.

Given A c R, we say that a measure  on R” is doubling on A if there exists a
constant ¢4 such that

w(B(x,2r)) < cqu(B(x,1)) for all x € Ansupp(p), 0<r < diam(A).

In the case A =R", we just simply say that u is doubling.

The Hausdorff s-dimensional measure in R” is denoted by H*. Given a set F c R”,
we write H3, = H¥| E.

Concerning mass transport, recall that, by Brenier’s theorem (see [Vil, Chapter
2], for example), if p and v are probability measures which are absolutely continuous
with respect to Lebesgue measure in R?, then there exists a unique optimal trans-
ference plan (i.e. an optimal measure) 7 for W5, and there are maps S, 7 : R* - R»
such that = (Id x S)#u = (T x Id)#v. So S#u =v and T#v = u, and

W,2=/ —%l,:f _SzPd =fT-2d.
2pv)” = | le—yldn(ey) = | o= Safdu(z) = | Ty -yl dv(y)

Moreover, T o S = Id p-a.e. and SoT = Id v-a.e.

Let us remark that the ambient space for the proof of Theorem 1.1 below will be
R”, while the ambient space for the proof of Theorem 1.2 will be R¢, and in this
case we will reserve the letter n for the dimension of the measure p.

3. THE LOCALIZATION THEOREM FOR WASSERSTEIN DISTANCES

3.1. The case of W;. In this subsection we prove a localization result for W; under
much weaker assumptions on p and ¢ than the ones in Theorem 1.1.

Proposition 3.1. Let o and v be probability measures on R™ and let B be a ball of
radius c3* <r(B) < e3. Let o : R™ - [0,00) be a Lipschitz function supported on B
with | V|le < cs. Suppose that [ pdu>cr and [ odv >0. Then,

(3.1) Wi(pu, apv) < cWi(p,v),
where a = [ @du/ [ pdv, and ¢ depends on cs, cq, 7.



MASS TRANSPORT AND UNIFORM RECTIFIABILITY 7

Proof. We may assume that Wj(u,v) is small enough. Otherwise, the inequality
(3.1) is trivial (for ¢ big enough) because ¢y and ¢ v are both supported on B and
r(B) < c3. Now, notice that by the Kantorovich duality,

(3.2) |f<pdu—f<pdu|g”mprWl(uw).
Since a = [ @du/ [ @ dv, we have
|a_1| _ ‘[ SOd,U_/‘QOdV| . ||VQOHOOW1(M7V)
[dv - [ odv '

To estimate [ ¢ dv from below, we use (3.2) again, and then we obtain

fsodvz fsodu— [Vl Wilp,v).
Since [ @du > ¢z, it Wi(p,v) is small enough, we get [ ¢ dv > ¢7/2. Therefore,
(3.3) la =1 <eWi(u,v),

with ¢ depending also on |V¢|e. Let b be an arbitrary 1-Lipchitz function such
that ¥ (0) = 0. By Kantorovich’s duality again,

\fwsodu—fwasodV|S‘fwsodu—fwcpdV‘Hl—aI/wcpdv
< V@) e Wipv) + [ 10l dv Wi, ).

By the mean value theorem, it is easy to check that ¢ and || are bounded uni-
formly above on B by some constant depending on c3 and cg. Then it follows that
IV(¥) | + [ [ @ldr $ 1, and we deduce (3.1). O

Remark 3.2. Notice that (3.3) tells us that
|CZ - 1| < CWl(:U“a V) < CW?(“? V)a

assuming Wi (u,v) small enough. Clearly, this also holds under the assumptions of
Theorem 1.1, which are more restrictive than the ones in the preceding proposiion.

3.2. From a ball B to a cube R in Theorem 1.1.

Definition 3.3. Given a cube R and a function ¢ : R - [0,1], we write ¢ € Go(R)

if ¢ is Lipschitz, ¢(z) ~ 1 on 1R, and there exists a constant ¢, such that

dist(z,0R)? o(x)
<eg—————— d <cp———=— forall R.

o(z) <o (R and  |Ve(x)] Czdist(x,aR) or all x €

On the other hand, we write ¢ € G(R) if ¢ : R - [0,1] is Lipschitz and, for all
x € R, satisfies

_, dist(z,0R)?

. dist(x,0R)?
* o U(R)

<p(x)<e TR
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and
dist(z,0R) dist(z,0R)?

(R ((R)?
Here, |Vro(2)| = sup, [v- Vo(x)|, where the supremum is taken over all unit vectors
v which are parallel to the face of R which is closest to x. If the face is not unique,
then we set Vyp(z) =0.

V()| <o IVro(z)] € e

For example, if ¢ is a function supported on R such that ¢(z) ~ 1 and is smooth
in a neighborhood of £ R, and
dist(x,0R)?
o(x) = W
then ¢ € G(R). To check that |[Vrp(x)| < codist(z, OR)?/((R)?, take x € R\ 1R such
that there exists a unique face closest to x, and let ¢ be a vector parallel to this face.
Then, dist(z +et, OR) = dist(z, OR) for |¢| small enough, and thus Vy(z) = 0.
In the next subsections we will prove the following result.

foerR\%R,

Theorem 3.4. Let pu,v be probability measures on R"™. Let R c R™ be the closed cube

with side length > c5, and suppose that u(]o%),y(}o%) > 0. Assume that p absolutely
continuous with respect to the Lebesgue measure on R, so that p R = f(x)dx, where
the density f satisfies c;*xr < f(x) < caxr for a.e. x € R and for some constant
cs>0. If pe G(R), then

Walpp, apr) < cWa(p,v),
where a >0 is chosen so that [ ¢du=a [ odv and ¢ depends only on cs, ¢4 and cs.

Let see how Theorem 1.1 follows from the preceding result.

Proof of Theorem 1.1 using Theorem 3.4. Suppose first that R = [-1,1]" and
B is the unit ball, both centered at the origin. Consider the map F : R* - R”
defined by

F(x)=—u.

This maps balls centered at the origin of radius r to concentric cubes with side length
2r. In particular, F(B) = R. It is easy to check that F' is bilipschitz. Moreover, it
can be checked that its Jacobian equals J(F')(x) = 2|x|"/|x|2 ~ 1.

Now we consider the measures F'#u and F'#v. Notice that

dF#p(z) = J(F)(x) f(F (2)) dz.

Thus the density of F'#u is bounded above and below. On the other hand, in can
be checked that ¢ o F~! € G(R). Indeed, notice that since ¢ is radial, then @ o F'-!
is constant on the boundaries of the cubes centered at the origin.

Then, from Theorem 3.4 we deduce that

(3.4) Wa((p 0 F)F#u, a( o F)Fv) § Wo( P, F4v),
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Since F' if bilipschitz, Wo(F#u, F#v) ~ Wa(p,v). Also, since F#(pu) = (¢ o
F-Y)F#/ and analogously for v, we have

Wa((po FY)Fé#p,a(p o FY) F#v) » Wa(pp, apr),

and so the theorem follows from (3.4).

In case B is not the unit ball or R is not the unit cube, we just compose F' with
an affine map to obtain another F such that F(R) = B and does the job. Then, we
argue with F instead of F. O

3.3. Preliminary lemmas for the proof of Theorem 3.4. In next lemma we
recall the properties of the so called Whitney decomposition of a proper open set.

Lemma 3.5. An open subset Q2 ¢ R* can be decomposed as follows:
Q=1JQx,
k=1

where Q. are disjoint dyadic cubes (the so called ”Whitney cubes”) such that for
some constants r > 20 and Dy > 1 the following holds,
(11) rQE N+ .
(ili) For each cube Qy, there are at most Dy squares Q; such that 5Q,N5Q); # .
Moreover, for such squares Qy,, Q;, we have $0(Qy) < (Q;) < 20(Qy).

This is a well known result. See for example [St, pp. 167-169] for the proof.
Roughly speaking, next lemma deals with the existence of a good big subset G c R
such that the mass on G is transported not too far.

Lemma 3.6. Let p, v be probability measures on R™ which are absolutely continuous
with respect to the Lebesque measure. Take T such that T#v = p and

WQ(M,V)2:[|TZ'—$|2dV($).

Let R c R™ be a cube and let {Q;}ier be a Whitney decomposition of](j% as in Lemma
3.5. For x € R, let QQ, be the Whitney cube Q; that contains x. Denote

(3.5) G={zeR:|z-Tz[<l(Q,)}n{xe T (R): |z -Tz| < (Qr.)}-
Let v € Go(R) and suppose that
(3.6) Wa(p,v)? < cs (o) (R") L(R)?,

where cg is some positive constant small enough. Then ngpdu > 0.
Consider the measure V=0 x¢ ¢ v, with@ = (¢v)(R")/(¢pv)(G) (so that (ev)(R") =
7(R")). Then we have

(3.7) lov -7 < W Wa(p,v)?,
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and consequently,
(38) WQ(@”? T]) S WQ(Mv V)‘

Below, to simplify notation we will write v (E) := (¢v)(F) for any E c R?, and
analogously for p.

Proof. The last estimate follows from (3.7), taking into account that supp(ev) u
supp(?7) ¢ R. To prove (3.7), we write

(39) lev-7l< [ [1-aedv+a [ o= pxaldv

:|1—Zi|<py(]R")+2if pdv.
Ge

To estimate [,. ¢ dv, denote by Gy and G, the two sets appearing on the right side
of (3.5), respectively. Then we set

d:[ d+f dv =1, + L.
o P = Jedve [ pdv=Litly

We will use the fact that for every x € R,

0(Q.)?
p(r) § R

Since [Tz — x| > £(Q,) for z € R~ Gy, we deduce

|Tx - z|?

QD(Z')SW fOI'[EER\Gl.
Therefore,

1 1
3.10 LS —— Tx -zl dv< W %,
( ) 1 Z(R)Q supp(gp) | T x| v Z(R)Q 2(#7 V)

Let us turn our attention to the integral

Ir = [ wdv.
RnG1nG§

Observe that if z € Rn Gy nGS, then |z — Tz < ¢(Q,) and so Tx € 3Q, ¢ R. Thus
3Q. N Qry + @. Thus,
Q) = Q) < |z = Ta,
using that T'r € R and z ¢ G5 for the last inequality. Therefore,
Q) _ |Ta-ap
((R)2 © U(R)?
and then (3.10) also holds with Iy instead of I; (multiplying by a constant if neces-
sary). Thus,

(3.11) /Gcapdus @WQ(%W.

p(x) S
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Now we deal with the term |1 -@]. Observe that @ = [ pdv/ [, ¢ dv, and so

o1 Jor
fG pdv
From the assumption (3.6) and (3.11) we infer that
1 1
3.12 / dv > = / dv == R"™
(3.12) LPdv2 g | pdv=gor(RY)
if cg is chosen small enough, and thus @ < 2 and
2 1
3.13 1-a € —— (G § ———————— Walp, )2
( ) | (I| (py(Rn)(’pV( ) @V(Rn)g(R)Q 2(1u I/)
Plugging this estimate and (3.10) into (3.9), the lemma follows. O

Remark 3.7. If Wy(p,v) is small enough, then from the arguments in Subsection
3.1 it turns out that pr(R") > 1/2, say, and then from (3.13) we deduce

L= § Wa(js, )2,

Lemma 3.8. Suppose the same notation and assumptions of Lemma 3.6. In par-
ticular, assume that

(3.14) Wa(p,v)? < cs (pp) (R™) L(R)?,

where cg is some positive constant small enough. Then QD(T#(XG y))(R") > 0.
Consider the measure

fi=be(T#(xav))
with b chosen so that (pp)(R") = T(R™). Then we have

_ c
(3.15) lop — 7l < WWz(M,V)Q,

and consequently,
(3.16) Wa(pu, 1) S Wa(p,v).
Proof. The arguments are quite similar to the ones of the preceding lemma. However,
for completeness, we show the details. The last estimate follows from (3.15), taking
into account that supp(pp) usupp(r) c R.

To prove (3.15), we write

B17) deu-pl < [ 1-Tledu+b| [ (edT#v-pdTH(xv))

“1-Ten®)+T [ p(T(@)) dv(a).

To estimate the last integral on the right side, denote by Gy and G5 the two sets
appearing on the right side of (3.5) respectively. Then we have

Joo o @@ ) = [ o@@)du)+ [ o(T@)dva) =+ I
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First we deal with I;. Notice that we may assume that for z in the domain of
integration of I; (and I), we have x € T-'(R). Since x ¢ G, this implies that
|z —Tz| > 0(Qr,), and thus

(Qr.)? _ |o=Tap

P S <Ry < ime
Therefore,
1 2 _ 1 2
(3.18) Ilsmfﬁx—ad (@) = Gy Wl

Let us turn our attention to the integral I = waGi o(Tx)dv(x). Observe that

if x € T-Y(R) nGyn GY, then |x — Txz| < ¢(Qr.), and so x € 3Q7r, ¢ R. Thus,
Qz N3Qr, + @, and thus ((Q,) ~» (Qr,). So we deduce

(Qr) UQ) _fo-Taf
(R R SRR

using that x € R\ Gy in the last inequality. Then (3.18) also holds with /5 instead
of I1. Thus,

(3.19) /G o(Tz)dv(z) S @ Wa(p, v)?2.

o(Tz) <

Now we deal with the term |1 —b|. Observe that b = [@oTdv] [,¢oTdv, and so

3 1_fG6900Td1/
- ngoonV'

From the assumption (3.14) and (3.19) we infer that
L poTdv s cspu(R™).

Therefore,
1
(3.20) f¢ony=¢M(R”)—f poTdy> 2 pu(R"),
G Ge
choosing cg small enough. Thus b<2and

1-D|< Wa(p,v)?.

1
poTdyg ——
op(R") Jae ou(R™) L(R)?

Plugging this estimate and (3.19) into (3.17), the lemma follows. O

Remark 3.9. For the record, observe that the inequality (3.19) says that

~ 1
lop -1 < WWQ(Mu v)?.
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3.4. The key lemma. We need the following auxiliary result.

Lemma 3.10. Let R and ¢ € G(R) be as in Theorem 3.4. Consider the measure
dg = odm and let Q € D(R). Consider a bounded function h supported on @Q such
that |h|ew < 1 and [ hdd = 0. Then there exists a map U : Q — Q such that

U#(7|Q) = (1+ h)T|Q which satisfies
Uz — 2| $0(Q) ||h] oo for all x € Q.
We will prove this lemma by means of the Knothe-Rosenblatt coupling. The

arguments involve some calculations that are quite lengthy and rather tedious, and
so we will defer the proof to Section 4.

Lemma 3.11. Let p, R, and ¢ € G(R) be as in Theorem 3.4. Denote o = pu and
let Q € D(R). Consider a bounded function h supported on @Q such that |h|e <1
and [ hdo =0. Then

Wa(olQ, (1+h)olQ) $UQ) Mo (Q)2.

Proof. Recall that the density of u satisfies ¢;' < f(x) < ¢4 for z € R. So if we
consider the measure do = %c;lcp dm, then we have 25 < 0 < 2¢27. Notice also that
we may assume that |h[e is small enough, because otherwise the lemma is trivial.
So we suppose that [h]e < c¢;%/4. We write o0 = (0 - 7) +7, and
d
(1+h)o= (0—5)+E+hd—z'6= (0-7)+ (1+2c4fh)5
Notice that the function % = 2¢4 f h satisfies |h]o < 1/2 and [Q hd = 0. By Lemma

3.10 applied to & and h, we deduce that there exists a map U: @ = @ such that
U#(5|Q) = (1 +h)F|Q which satisfies

Uz -2 S 6Q) [how % €(Q) [Pl forall z Q.
Since o — 7 is a positive measure, we can consider the transference plan

dr(z,y) = d(0 - F)|Q(x) oy + (Id x U)#5|Q(2,y).

The marginal measures of 7 are o|Q and

olQ-5|lQ+U#5|Q =0|Q +15|Q = (1 +h)o|Q

Then,
Wa(olQ. (14 W) olQ) < [ o -yfdn(a.y) = [ |- U(2) 47 5 (Q)* ]2 7(Q).
Since 7(Q) ~ 0(Q), the lemma follows. O

The idea of subtracting a smaller nicer measure & to o is inspired by some tech-
niques from Peyre [Pe].

Notice, by the way, that the measures @ and ¢ in the previous lemmas are dou-
bling, because of the assumptions on p and . This property is used strongly in
many of the arguments below.
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The following is an easy consequence of Lemma 3.11.

Lemma 3.12. Let u, R, and ¢ € G(R) be as in Theorem 3.4. Denote o = ou and
let cg ~ 1 and Q € D(R). Consider a function h supported on @ that is constant on
the children of QQ and vanishes out of QQ, that is,

h= Z CpXp-
PeCh(Q)

Assume moreover that [ hdo =0 and |h]e < 1. Then,
Wa(olQ, (1+ 1) olQ) s UQ) Ihwa (@) » UQ) | 1] 12(s)-
The constant depend on cy.

Given measures o,7 and a dyadic cube (), we consider the function defined by

T(P) 7(Q) frepPe
Agr(x) = o(P) o(Q) foePeCh(Q)
0 if v ¢Q,

assuming that o(P),o(Q) > 0 for the cubes P,Q above. If o coincides with the
Lebesgue measure on R, then we set Aq7 := Aj7. If 7 = g(x)dz, then we write
Aqg = A(gdr) = Agr. Recall that if g € L2, then
(3.21) 9= 72, Aqg.

QeD
with the sum converging in L?. Moreover, the functions Agr, @ € D, are mutu-
ally orthogonal, and thus [g[3 = Ygep [Agg|3. In fact, (3.21) coincides with the
decomposition of g into Haar wavelets: recall that g can be written as

g= Z Z(ga h8Q>h8Q>

QeD ee€

where € = {0,1}"~(0,...,0) and each hg is a Haar n-dimensional wavelet supported
on (), associated to the index € € £. Then it is easy to check that for every ) € D,
Aqg =2 (9, hiy) s
ee€

which we will also write as AT = Yo7, hg)) hgy. See [Da, Part 1] for more details,
for example.

Now we are going to introduce the definition of a tree of dyadic cubes. For R €D,
consider a family S (possibly empty) of disjoint cubes from D(R) which satisfies the
following property:

if Q €S, then every brother of () also belongs to S.

Denote

T = {Q € D(R) : @ is not contained in any cube from S}.
Then we say that T is a tree with root R, and the cubes from the family & are called
the stopping cubes of T. Notice that in our the definition, the stopping cubes do
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not belong to 7. Observe also that 7 has the property that if Q € T and P € D(R)
is such that ) c P c R, then P €T too. This is why T is called tree.
Using Lemma 3.12 as a kind of building block, we will prove the following.

Lemma 3.13 (Key lemma). Let u, R, and ¢ € G(R) be as in Theorem 3.4. Denote
o =, let T be a tree with root R and S ¢ R be its family of stopping cubes. Consider
a measure T supported on R such that T(R) = o(R) and 7(Q) ~ pu(Q) = 0(Q) for
all Q € T. Then, for any a >0, we have

(322) Witor)'s ¥ # | Aq(o - ) 3 Q) ((R)"

5 'mQ" QT | A o 2 6Q)UR) + T HQ)7(Q),

QeT (m a)? QeS
with constants depending on a.
Proof. For simplicity suppose first that Uges@ = R and that 7 contains a finite

number of cubes (and thus all stopping cubes have side length uniformly bounded
from below). For @ € D(R), consider functions Ag7 defined above. Then, 7 can be

written as
=0+ ST |o+ T(Q)
e (F o) glre-5G e

QeT QeS
Observe that the measures (A%T) o, for Q € T, have zero mean, as well as all the

measure inside the last parenthesis above.
By Lemma 3.12, for () € T, there exists a map Ug : () = ) be a map such that

vt yeio) - (2o )1

with h = AZ7 and ¢y = 7(Q)/0(Q) there (notice that cg ~ 1 by the assumptions on
the cubes @ € T), so that

(3.23) f Uqa - a? do(x) $ | AGT |22 H(Q)*

For j > 0, define U;(z) = Ug(z) f v € Q € Dj(R)nT, and Uj(z) =z if x € Q €
D;(R) N~ T. Notice that, by definition, we have

U]—( >y H9 lQ)— > (Aa (Q)) o- v v @

QeD;(R)NT o(Q) QeD;(R)NT Q) QeD; (R)NT PeCh(Q) a(P)

Set also Up(x) = x and consider the map
T:Umo m—lo"'oUla
for m big enough so that T c U}, D;(R). Observe that

7(Q)
T#O’ QEE;S (Q) lQ - 70-
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The measure 7y should be considered as an approximation of 7 at the scale of the
stopping cubes. Let V; =Ujo...oUp, for 0 < j <m. We set

321 fe=ToP < (1) - V@) s 22000 -G,

J=1

with a constant depending on «. As a consequence, using that V; = U, o V;_q,
Wa(o,m)? < f > 299V = ViaP do(z) = ). 2% f |z — Ujz|* dV;_ o ().
j=1 j=1
Recalling the definition of U;, we get

f|x—ij|2de_1#cr(x)— f|x Ugzl? dV;_1#o(z).

QeD;(R)NT
For the cubes Q) in the last sum it turns out that

vj_l#atQ—%t and  7(Q) ~o(Q),

we obtain

X(R)
O K(Q)a

Wa(o,70)? S f |z — Ugz|? do(x).

From (3.23), we infer that

ey R
Walom)®s 2. 7y

Now we wish to write A7 in terms of Ag(o—7). Given z € P € Ch(Q), from the
definition of AT, we get

T(P)-o(P) 7(Q)-0(Q)

[AGT7:2(,) €Q)* = ;_”Aa7—||%2(g) (@) L(R).

o7(z) =

o(P) o(Q)
_ 1 (T(P)—U(P)_T(Q)—U(Q))+( 1 )T(Q)—U(Q)
mpo m(P) m(Q) mpo Mmoo m(Q)
o Aglo =)+ e g () D

Taking into account that, for ) € D(R) and P € Ch(()), we have mpo » mgo and
also |AGT(2: ) # Mmoo [AGT( 7., we get

Wa(o,70)* Z—HAQ(U T)I7: Q) U(R)"
QeT

moo —mgoT
5> % |Agoli (@Y (R
Ger



MASS TRANSPORT AND UNIFORM RECTIFIABILITY 17

To complete the proof of the lemma, it is enough to show that

(3.25) Wa(r,10)? $ Y. UQ)*7(Q).

QeS
To check this, just take

1
™= &5 T(Q) (TlQ ® TD[Q)‘

Using that 7(Q) = 7(Q) for all Q € S, it is easy to check that 7 has marginals 7
and 7y. Therefore,

Wa(r,70)" < f o=y dr(.y) = QZ;? T(lQ) QxQ |z~ y[* dr (=) dro(y)
< 2@% (fQ |z - 2| dr () + fQ ly - 20 dTo(y)) S Q;Se(cg)%(@,

which gives (3.25). This ends the proof of the lemma under the assumption that 7
contains finitely many cubes.

If 7 has infinitely many cubes, then we apply the lemma to the tree 7,, = 7 n
D,n(R) for any fixed m >0, and we let m — oo. O

Remark 3.14. It is very easy to check that the Lemmas 3.10, 3.11, 3.12, and 3.13
also hold if ¢ ~ xr and ¢ is Lipschitz on R. In fact, the calculations much easier in
this situation (specially the ones in Lemma 3.10). In the particular case where o =
cxr L™, where L™ stands for the Lebesgue measure and the constant ¢ is comparable
to 1, Lemma 3.13 becomes

(3.26) Wa(0,7)? 5 3 [Agrl72 Q) U(R)™ + Y U(Q)*7(Q),
QeT QeS

still assuming that 7(Q) ~ o(Q) for all Q € T.

3.5. Proof of Theorem 3.4. We have to prove that Wy(pu, apr) S Wa(p,v). To
this end, we may assume that

(3.27) Wa(p,v)? < es ((R)? ppu-
Otherwise, the theorem follows easily, because
Wa(pp, apr)? S L(R)? |op]  Wa(p,v)?.

Moreover, it also easy to check that v can be assumed to be absolutely continuous
with respect to Lebesgue measure, by a limitting argument.
Let G,T and i, 7 be as in Lemmas 3.6 and 3.8. We write

Wa(pp, apv) < Wa(pp, aT#0) + Wa(aT#7, av) + Wa(aV, apr).
Notice that, by Lemma 3.6, using also that a ~ 1, we have

WQ(QQO% a’lj) S WQ(M? V)'
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Also,
Wa(aT#7,a7)? < a/ |Tx — x> dv < cf |Tx - 2> dv = c Wa(u,v)?,

where the second inequality follows from the fact that 7 =@ x¢ wv, with @ < 1. Thus,
to prove the theorem it is enough to show that

(3.28) Wo(op,aTH#0) S Wa(p,v).

To this end, we will apply Lemma 3.13 to 0 = pu and 7 = aT#V (observe that
o(R) =apv(R) =av(R) = 7(R)). We construct a tree 7 whose family S of stopping
cubes is defined as follows:

(3.29) QeS8 if Q is a maximal cube from D(R) such that 7(Q) < do(Q)

for some small constant 0 < § < 1 to be chosen below. That ) is maximal means that
there does not exist another cube @)’ € D(R) which contains ) satisfying the same
estimate. Hence, from the previous definition, we infer that every () € T satisfies
7(Q) > 00(Q). To apply Lemma 3.13 to o, 7 and to the tree 7 we need to show
that there exists some constant ¢ such that 7(Q) < co(Q). This follows quite easily:

7(Q) = aT#7(Q) = aTTH#(xe 9V)(Q) = T [ xa(Tw) xo () p(w) ().

From Remarks 3.2 and 3.7, taking into account the assumption (3.27) we deduce
that a@ ~ 1. On the other hand, for z € G, we have | - T'z| < £(Q.), where Q, is
the Whitney cube that contains x. This implies that dist(z,0R) ~ dist(7T'z,0R) and
thus p(x) » ¢(Tx). Therefore,

(330) (@~ [ xo(T2) xo() ¢(Tw) dv(x)
< [ xa(T2)o(Ta)du(a) = [ xa(@) p(@) dT#1(@) = 0(Q).

which proves our claim.
Now the key Lemma 3.13 tells us that

1 moo —moT| | Aoo| 72 2
(3.31) Walo,7)2 s z—(nAQ(o—ﬂnm' @7 ~maTl|q0]s ) (Q)U(R)
Qe MQO mqoo

+ 2, UQ)*7(Q),

QeS

with constants depending on . We will estimate each of the terms on the right side
of this inequality in separate lemmas. The first one deals with Y5 £(Q)*7(Q).

Lemma 3.15. If § is chosen small enough, then

> UQ)T(Q) S Walp,v)*.

QeS
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Proof. We will show that
WQ(M? V)2
(3.32) (U Q)s R

QeS

Clearly, the lemma follows from this estimate.
For a given @) € S, notice that the first estimate in (3.30) says that

(@)~ [ xo(T2) xo(w) p(T2) dv(a) = 1(Q).

while the last equality in (3.30) states that

7(Q) = [ xa(Tx) p(Tz) du(a)
Therefore, if 0 is chosen small enough, then I(Q) < ¢(Q)/2, and thus

(@) = 1(Q) <0(Q) - 1(Q) = [ xa(T2) &(T2) (1 - xa(@)) dv(a),

Summing over all ) € S, we obtain
()5 [ xn(T o) (1= xele)) dvto)
) fR o(x) d(T#v - T#xav) ().

Recall now that T#v = p and 1 :Z¢(T#(XG V)) (see Lemma 3.8). So the preceding
inequality says that
~-1 _
(U Q)5 len-2"71.
QeS
Hence, the claim (3.32) follows from this inequality and Remark 3.9. O

To deal with the first sum on the right of (3.31), first we will estimate the L?
norm of Ap(o—7). In the rest of this subsection, we denote by S the map such that
S#p = v which minimizes Ws(p,v). Recall that SoT = Id v-a.e. and T o S = Id
p-a.e.

Lemma 3.16. Assume that (3.27) holds and denote n = ¢ T#(xgev). For PeT,
we have

n(P) Wa(p,v) /
. Ap(o=7)|12 § E(P
(3:33) MAr(o -7l SUPYE T TPV R Jposre P00 WF (P);

where E(P) is as follows. If P is contained in some Whitney cube Qp from the
family {Q;}ier, then

14
E(P) = g((%;) |Sx = | Lr(u Py
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On the other hand, if P is not contained in any Whitney cube from the family
{Qi}ier, then

5 (Qi)?

1/2
E(P):( Ry 1 “’”%W?’Qi)) |

1:3Q;NP+g

Proof. Let h3, be the Haar wavelet associated to P and € € £. Then we have

|Ap(o - 7')HL2<Z‘O' 7, h%) Sd(o-1)|.

Recall that o = pu=@TH#v and 7 = aTH#V = aT#(axG ). So, for each € € £, the
last integral equals

3.34
| [ héd[soT#u—aT#(axGw)h [ hip(Ta) [(Tw) - a@p(r)xe(r)] dv(x)
- [ () o(Ta) du()
v [ 0(T0) [o(T2) - ()] dv(a)
+ (1 a@) [G 1o (T) p(z) dv(x) = I, + I + I

Concerning I, using again that |h e S ¢(P)™2 and n = o T#(xqe V), we get

(3.35) L] s e(P)™? fG xp(Tx) p(Tx) dv(x) = gz)](f;n)/y

To deal with I, recall that, for z € Q; n G, we have |z — Tx| < £(Q;), and thus
Tx e 3Q); and

p(Tx) = ()| < |Velo 30, [Tx - 2].
Using that |V¢|les0; $(Qi)/0(R)?, we get

(3.36) Bl Y ) [ ()| T o] (),
iel (R)2

Now we distinguish the two cases in the statement of the lemma, according to
whether P is contained in some square ();, ¢ € I, or not. In the first case we
write P € 7,, and in the second P € 7,. Suppose first that P € 7T,, and denote by
Qp the square @);, ¢ € I, that contains P. Thus, if for x € Q; n G, h5%(Tx) # 0,
then Tx € P c Qp and thus = € 3Qp (since |x — Tx| < £(Qp)). As a consequence,
Q; N 3Qp # @, and there is bounded number of such cubes @Q);. Moreover, for them
we have £(Q;) ~ £(Qp). Thus we obtain

K(QP) e
(3.37) Lls ) ((R)? |75 0 Tl r2) (T2 = 2)x7-1(Pync | L2 v)-
1€l:Q;n3Q p*J
We have
|75 0 T 12wy = AP L2 $ 1,
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since |hS| 2 =1 and g = f(x)dr on R, with f(z) < ¢s. Therefore, using also that
v = S#u, we get

14 l
15 S 1(Ta - hxrscmlizen = G 1= So)xel s

Suppose now that there does not exist any cube );, ¢ € I, which contains P.
Notice that if, for some i € I, the integral on the right side of (3.36) does not vanish,
then there exists some x € (; N G such that Tx € P. From the fact that x € G, we
deduce that |x — T'z| < £(Q;), and thus Tx € 3Q;. As a consequence, P n3Q; # &.
Therefore,

(3.38) L] < tg@;ﬁ@ WR)2 Jone |heo(Tx)| | T - 2| dv(x)

- (@)
< V(P n/2 T
<) z':BQiZm:P¢Q ((R)? QmG‘ - x| dv(x),

since [h% |0 S 0(P)™/2. Using that v = S#u and that TSz =z p-a.e., we have
va . |Tx - z|dv(x) = f Xoinc(Sz) |z = Sx|dp(z).
Observe that for p-a.e x such that Sx e Gn @,
|Sz — x| = |Sx - TSx| < l(Qsz) = £(Q;).

Thus, z € 3Q);, and so we infer that

/Q-mc [Tz - z|dv(z) < /SQi |z = Szl dp(x).

i

From (3.38) and the preceding estimate, by Cauchy-Schwartz, we obtain

Ll s (P)y™? % U(Qi) n(3Q:)'"*

Sx—xl ;2 ,
:3Q;NP+ K(R)Q ” HL (k1399
/2 1/2
N 0(Q,)? '
<U(P) /2(‘ D g((R))4 ||Sx—x||%g(m3@i)) ( > u(SQi)) .
:3Q;NP+& :3Q;NP+g

Taking into account Y;30.npsg 1(3Q:) S L(P)", we deduce

/2
UQ.)? 1
ms( > {0 s ala)

1:3Q;NP+g

Finally we consider the term I3 in (3.34). Recall that in Remark 3.2 we saw that
11— al § Wa(p,v) » Wo(p,v)/E(R)*2. On the other hand, from (3.13) we get

2 1 1
l-al<— %  w 2w 2c W
| a| S (IOI/(R”)E(R)Q 2(”7”) ~ E(R)nJrQ 2(M7V) S E(R)1+n/2 2(“7”)7



22 XAVIER TOLSA

where the last inequality follows from the estimate (3.27). Therefore,

1
|1 - a’d| < |1 - CL| + a|1 —E’ S WWQ(M, V).

Then, using that v = S#u,

WQ(M? V) €
1115 Gt | [, 1T @) o)

Wz(MaV) [ WQ(M;”) /

==/ hé d < dp.
LR | S oy " PV < Grpyare (CRYTTE sy %

O
In next lemma we estimate the term |mpo — mp7|.

Lemma 3.17. Assume that (3.27) holds and let n = o T#(xgev). For P €T, we
have
impo —mp7||Apo|rz . n(P) Wa(p,v) /
< Sdu+ E(P
mpo T (P2 * ((P)M20(R)2 Jpas-1(q) poSdp+E(P),
with E(P) defined as in Lemma 3.16.

Proof. From the doubling properties of o, it follows that |Apo|e. $ mpo, and thus

- A
Impo —mpt||Apo| S mpo —mpr| L(P)V? = ‘(U -7, wP)"

mpo

with Wp = X]D/E(P)n/2

Now the arguments to finish the proof are very similar to the ones in the preceding
lemma. Instead of (o — 7, h%,), we have to estimate the term (o — 7, wp). So, all we
have to do is to replace h3, by wp in the preceding proof. Indeed, notice that the
cancellation property of h% was not necessary in the Lemma 3.16. We only used
that supph$, c P, that [h%|e S €(P)™?%, and that |h% |2 = 1. These estimates
also hold for wp, and so we deduce that (3.33) also holds replacing its left side by
|mpo —mpt||Apc|2/mpo. O

Our next objective consists in estimating the first sum on the right side of (3.31).
By Lemmas 3.16 and 3.17, we have

1 impo - mpr| | Apo| 2\
. — | |Ap(o =7)| 2 ((P)¢
(3.39) ,;Tmpa(“ p(o=7)|r2 + oo (P)U(R)
2
> ((P)I(R) E(P)+ Y E(R)nl(P)
per PO per ((P) "t mpo
1 2
2 o d
*Walwv) pzs:ﬂnpaf(P)"‘lK(R)”+1 (/Pmswcngo 5 M)
=: Sl + SQ + Sg,

where = @ TH#(xge V).
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In the next lemma we consider the sum Sy:

Lemma 3.18. We have
((P)I(R
si- ¥ OB ppyz <y
per  MpO
Proof. We separate the sum S; into two sums, according to whether P is contained
in some square Q);, 7 € I, or not. As above, in the first case we write P € 7,, and in
the second P € 7. So we have

PeT, Mpo PeT,;, o
We consider first the case P € 7T,. Then recall that
(Qe)

E(P) = Z(R)Q H(x_sx)XP||L2(u)

Therefore,

e 3 (D@

2
2 mpol(R) [(z = Sz)xpl7z,-

Since ¢ # (Qp)%/¢(R)? on P c Qp, we have mpo ~ £(Qp)?/¢(R)?. Thus,
o UP) 2 2
518 P; /(R I(z - Sx)XPHp(H) S f |Sz - z)* du < Wa(p, v)>.

Let us turn our attention to S?. Recall that if P € Ty, then

N2 1/2
E(P) = ( Z i((%))‘l “Sx - xQLZ(#BQi)) ’

:3Q:NP+&

and thus (PYUR) (O

sp-y DA 5 A9,

pPeT, MPO  3Q,nP+z (R)
Using that mpo 2 ((P)?/((R)?, we get
0(Qi)?
3.40 Sh s : Sx —x|7,
( ) 1 p;z 7;;3QZZQ:P¢® E(P) E(R) H HL (13Q:)"
It is easy to check that for each fixed @Q;,
Z 1 < 1

PeTy:3Q:NnP+3 K(P) ” E(QZ)

Therefore, changing the order of summation in (3.40) we obtain

0(Q;
STs), E((R)) | Sz - l’Hﬁ(Ms@M/IS%‘ z* dp < Wy(p,v)?.
iel

=]z (up0.)-

Next, we deal with the sum S from (3.39).
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Lemma 3.19. We have
L(R)n(P)?
Sy = _—
2 ,;TK(P)”*l mpo

Proof. Since n(P) = oTH#(xg-v)(P) < oTH#v(P) =0c(P), we have
Sa < Y UR)UP)n(P) s (R)*n(R).

PeT

< WZ(IJ’J V)Q'

By (3.19), we know that

Wa(p, v)?
((R)?

which proves the lemma. O

n(R) = |pp—TH#H(xav| S

Now we consider the last term S; from (3.39).

Lemma 3.20. We have
1 2
Sy = Wl pn, )2 (/ Sd)sW,Z.
3 2(1u V) st;rmpo_g(P)n_l E(R)n_,_l PmS*l(G)SDO I 2(:u V)

Proof. Notice that if x € Pn S71(G), then Sz € G, and from the definition of G, it
turns out that |T'(Sx) — S| < €(Qsz), where Qg, stands for the Whitney cube that
contains Sz. Since T'(Sx) = x for p-a.e. x, then

|z — Sx| < U(Qsz) p-ae. € PnSHG).

Then, for these points z, ¢(Sz) » ¢(x), and thus

Sd 5/ du < o(P).
meS_I(G)soo S Josesien £ o(P)

Consequently,

, o(P)? B ) ((P)o(P)
S sWalmr) o Py gy U 2 et

Using that o(P) < ¢(P)", we derive

£ P n+1
Sy $ Wa(p,v)? ZTEER;”“ S Wa(p,v)*.
Pe

g

In the preceding lemmas we have shown that Sy + Sy + 53 $ Wa(u,v)%. So we have
shown that the left side of (3.39), which equals the first sum of (3.31), is bounded
above by ¢ W (u,v)?. This completes the proof of Theorem 3.4. ]
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4. PROOF OF LEMMA 3.10

Recall that, to conclude the proof of Theorem 1.1, it still remains to prove Lemma
3.10, which we rewrite here for the reader’s convenience.

Lemma. Let R and ¢ € G(R) be as in Theorem 3.4. Consider the measure do =
wdm and let Q € D(R). Consider a bounded function h supported on Q such that
|h|ew <1 and [ hdG =0. Then there exists a map U : Q — Q such that U#(5|Q) =
(1+h)T|Q which satisfies

(4.1) Uz — 2| $4(Q) ||h]|eo for all x € Q.

Proof. Denote oy = 3|Q and py = 0¢ + hog. We may assume that |h]e is small
enough. Otherwise (4.1) holds trivially for the optimal map for quadratic cost,
taking into account that oy and py are both supported on Q.

We will prove the lemma using the Knothe-Rosenblatt coupling between o and py,
as explained in [Vi2, p.8]. Let us recall briefly in what consists this coupling. First,
one considers the marginals of o and pg on the first variable, obtaining oy = o1 (dz1)
and p; = p1(dzy). Define y; = Uy (x1) by the formula of the increasing rearrangement
such that Uy#0, = p1. That is, given

Fl(t)zo-l(_oo’t]v Gl(t):pl(_oovt]y
set Uy = Gl o Fy.
Take now the marginals with respect to the first two variables, and obtain doy (1, x3)

and dpy(z1,x9). Disintegrate them so that for each x; there exist measures dos.,, (22)
and dps., (x2) such that

(4.2) doay(21,22) = doy (1) dog, (22), dpa(w1,22) = dp1 (1) dpge, (72).

Let us remark that in our precise situation we do not need to apply any delicate dis-
integration theorem since the densities of doy.,, (72) and dps,,, (x2) can be explicitly
calculated by the identities in (4.2). Consider the map y, = Uy(x1,x5) such that for
each x1, Us(21,)#02.4, = P2.trar, Where Uy is given by the corresponding increasing
rearrangement.

Repeat the construction adding variables one after the other, and obtain also
Us(x1,29,23),. .., Uy(x1,...,2,). Finally, set

U(SL') = (Ul(fﬁl), UQ(Z’l,{L'Q), Ce ,Un(xl, Ce 7$n))

It is easy to check that U#ag = p.

By translating R, we may assume that R = [0,1]" (or (0,1]", to be more precise),
and that @ n[0,1/2]" # @, so that either @ is contained in (0,1/2]" or @Q = R. Let
a;,b; be such that

Q= (al)bl] Ko X (an)bn]'
By interchanging the coordinates if necessary, we will also suppose that a; < as <
-+ < a,. We will show below that for every x € @, and 1 <j <n,

(4.3) \Uj(@1,...,25) — x5 S | Ao min(:rj - aj;,b; —:L’j).
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Clearly, (4.1) follows from this estimate.
To prove (4.3), recall that

_ dist(z,0R)?

o(x) ~ (R for all z € R.

If QnOR =@, then dist(Q,0R) > ¢(Q), and from the preceding estimate, it turns
out that ¢(z) » mgep for every x € Q. This fails if @ N OR # @. Indeed, one can
easily check that mge ~ £(Q)?/¢(R)?, while ¢ vanishes on 0Q nOR.

We will derive (4.3) by induction on j, first assuming that @ # R and thus
@ c (0,1/2]". In this case, dist(z,dR) = min(xy,...,x,) for every x € @, and so

min(zy,...,x,)?
((R)?

The case j =1. Recall that U; = Gy o Fy, with Fi(t) = 01(-00,t] and G1(t) =
p1(=o00,t]. To estimate oy, notice that, using the assumption a; < ay < -+ < ay,, it
turns out that

(4.4) o(r) ~

for x € Q.

xy>min(xy, ..., T,) > —

for xo,...,x, in a subset of [ag,by] x -+ x [an,b,] of (n —1)-dimensional Lebesgue
measure comparable to £(Q)" ! (possibly depending on n). From this fact, one
infers that

b2 bn 1 . 2 g n—1 2
doi(z1) » / f min(z, Q’x”) dzs ...dx, | dx; ~ Md:ﬁ.
as an E(R)

Now we distinguish two cases, according to whether a; = 0 or not.
Suppose first that a; = 0. Then,

t n-1 .2 n—
(15) Fi(t)=o1(-o0,1] ~ [ %dmlﬁég);ﬁ:%ﬁ for ¢ € [ar, by,

where, to simplify notation, we set Ay = z(e%n;. Assuming ||« < 1/2, the density

functions of g9 and py are comparable, and thus we also have

dpl(asl) ] X[al,bl](xl)AO LL'? d[L'l, Gl(t) = pl(—OO,t] N Ao ts for t € [al, bl],

and therefore
Gyl (s) » A" 513,

and the derivative of G7! satisfies

1 ! n AT 5723,

(GO G merer ™
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Then we deduce

Fi(x1)
Ur(x1) = 21| = |G (Fi(21)) - GTH(G1(21))] = ‘]C-h(xl) (G11)'(s)ds

Fi(z1)
[ 723 ds
G1(z1)

Since |c!/3 = 1| ~ |c - 1| for ¢ close to 1, assuming | ] small enough we get
(4.7)

(4.6) v AP v Ay Py (1) 3 = Gy (a0) ).

Gl([I,'l) _
Fl(.’El)

Using that |Fy(z1) - G1(21)| € Fi(z1) |h]leo and Fi(z1) » Ag 23, we obtain
U1 (1) = 1| § A" Fy (@) 22 Fy(20) [Bloo % 21 | B o,

which proves (4.3) in this case.
Suppose now that a; # 0. Then we have x; ~ a; for all z € (), and we obtain

Uy (21) = 1| & A2 Fy ()13 1] = A2 Fy (1) 2B |Fy(21) - Gy (31))].

ty n—1 (12 V4 n-1 CL2
(48) Fl(t)ZO'l(—OO,t] NL %dmz(t—al)% fOI'tG[CLl,bl].
To simplify notation, we set A; = %, so that

Fl(t)NAl (t—al) forte[ahbl].
By the comparability of the measures oy and pgy, we also get

dp1($1) NX[al,bl](xl)Al d.%’l, Gl(t) =p1(—00,t] NAl (t—al) for te [al,bl],

and thus we derive 5
Gil(s) —a; v —
1 (8) ai A]_

and
1 1

GO G

Arguing as in (4.6), we deduce
F1(1'1) 1\
Vi) =il =| [ (G (s) ds
Gi(z1)

Using that |Fy(z1) - G1(z1)| < Fi(x1) |h|e and Fi(z1) ~ Ay (21 — a1), we obtain

1
“A—1|F1($1)—G1(901)\-

1
Ui (1) — 21| S A—1F1($1) 17 ]oo ~ |21 = ar] [ A oo

Thus (4.3) also holds in this case.

27

The case j > 1. Suppose that Uy (x1),...,Uj_1(21,...,xj-1) satisty (4.3). Recall

that

Uj(xlv s Lj-1, ')#Uﬁmw@j—l = Pjsyn,eayj-19
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where 04,2, is defined by

-----

dO’j(.ﬁL‘l, Ce ,l'j) = dO’j_l(IL‘l, e ,Ij_l) CiO’j;gEhm’gEji1 (l’j),

and analogously for pg. Recall also that y; = Uy (1), y2 = Us(x1,x2), ... and, further,
0j-1 and o; stand for the marginals of oy with respect to the first -1 and j variables,
respectively. Thus,

b; bn min(x Ty )?
1y-+-sdn
dO'j_l(il,...,l’j_l) N ([ dl’jd.’ﬁn diI)l...dl'j_l,
a; a

n ((R)?

and similarly for o;.

To estimate the integral inside the parentheses we argue as in the case j = 1: since
ai <...<ay, there exists a subset of [a;,b;] x - x [ay, b,] of measure comparable to
(Q)™ 7+ such that

1
min(xy,...,xj-1) > min(zy,...,z,) > 3 min(zq,...,%-1).
Consequently,
¢ n—j+1 .
(4.9) doj1(x1,...,xj1)~ (?()T)Q min(z1, ... ,xj_1)2 dxy...dz; .
Analogously, we have
o)
(4.10) doj(x1,...,xj) = 28%)2 min(zy,...,2;)*dvy ... dz;,
and thus . ,
0oy o (1) min(zq,...,x;) da;.

((Q) min(zy,...,xj-1)2

Since the densities of pg and oy are comparable, a similar estimate holds for
Pyt yj-1+ ( )2

o omin(yy,- LYo,
dpj?yl;---:yj—l (xj) ~ E(Q) min(yl, - ,yj—l)Q dxj'

Moreover, since |yx — 2| $ |h|ooxx for 1 < k < j -1, by (4.3) and the induction
hypothesis, we deduce that y ~ x), for these k’s, assuming |/h]le small enough, and
then we get

doja,,., wj—l(xj) ~ dpj§y17-~7yj—l(xj)'

For fixed points x1,...,2;-1, 1, ...,y;j-1, denote
Fj(t) = O0jixq,..., mj—l(_oo7t]a Gj(t) = pj;y1,...,yj_1(_°07t]7
so that U;(z1,...,2j.1,2;) = G;l o Fj(z;). Then, as in the case j = 1, we have
(4.11)

Fj(z;)

o (G51)'(s)ds

Uj (21, w0, m5) = a5 = |Gl o Fy(ay) = Gl o Gy(ay)] = ‘/G
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We need now to estimate G;(x;), Fj(x;), and (G;')(s). To this end, notice that

2
L5

0(Q) min(zy,...,z1)?

dﬂfj if Z;j < Hlil’l(.’l]l, e ,J}j_l),
(412) do’j;-le-ij—l (‘r]) N

if z; > min(zq,...,75.1).

1
0Q) "’
Below we will show that
(413) |d0—j§ér17~~,zj71 (t) - dpj;il/l,-wyjfl (t)| S ”h“OO do—]’ﬂ'l,myl'j—l (t)

(this notation means that the difference of the densities of 0.4, 2, ., and pjy, .4,
is bounded above by some constant times |h[o times the density ¢, . ,,). We
defer the proof of this estimate to Lemma 4.1. Integrating on ¢, we derive

(4.14) [F(t) = G| s F(t) [ 2] o
Suppose first that a; = 0. For ¢t <min(zy,...,2,_1), we have
xQ, t3

BO* || farmmt 5 G mt T

while for ¢ > min(zy,...,2;-1),

=: BO t3a

Fy(t) f ey o du; + f t L gpy et
J 0 K(Q) mln(xl, e ,.’L’j_l)2 J min(1,...,2;-1) K(Q) J g(Q)

For G;(t) we have analogous estimates, because G,(t) ~ F}(t).
Observe that, for ¢ < min(wzy,...,x;_1), this is the same estimate as the one in
(4.5), replacing Ay by By. Thus, for 0 < s <min(xy,...,x,;-1)/¢(Q) we deduce
1
G—_I(S) ~ 361/3 81/3, (G—_l)/(s) = — —~ ~ 361/3 5—2/3-
’ ! Gj(Gj (s))
On the other hand, for s > min(z,...,z;-1)/0(Q),

G5 Qs (E5Y(5) = gy (@)

For z; <min(zy,...,2j-1), by (4.11) and arguing as in (4.7), we will obtain
U@, osayony) = ) By Fy(ay) P Fy(ay) - Gy(ay).
Hence, from (4.14) and the fact that Fj(x;) ~ Byx?, we get
Ui (@1, wjrsa) = ) By Fy(ay) B Fy() [Roo 5 2 B oo-

For z; > min(xy,...,x;-1), Fi(x;) »~ G;(x;) 2 min(zy,...,2;1)/¢(Q), and then,
for values of s between Fj(x;) and Gj(z;), we have (G;')'(s) ~ £(Q), and so, by
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(4.11),

~ E(Q) |Fj(ZL‘j) - G]($])|

Ui (@, wjon ) gl = | |

ACY

Fy(x;)
oo (@5 (s ds

By (4.14) and the fact that Fj(z;) ~ z;/{(Q),
Uj(1, s wjoa,5) = 5] S UQ) Fy(5) [Blloo » 25 [ 2] oo

Therefore, (4.3) holds if a; = 0.

Consider now the case a; # 0, and so @ c [0,1/2]*. In this case, for all z € Q
we have x; ~ a;. Then, since a; > aj_1 > -+ > a4, it easily follows that z; 2 x;, for
1<k<j-1. So from (4.12), we infer that

1

In this case, we get
1

Q)

This estimate is analogous to the one in (4.8), replacing A; by By = 1/(Q) and a,
by a;. By similar arguments, we get again

Fi(t) = 0jian,... mj_l(—oo,t] ~ (t-a;) fortela;,b;].

Uj (1, 251,75) = 25] S 2 [ 2| oo

This finishes the proof of the lemma for @) # R.

For Q = R, the proof of (4.3) for x € [0,1/2]" is analogous to the one above
for @ # R in the case a; = 0 (for every j). The details are left for the reader.
The estimate (4.3) for x € R~ [0,1/2]™ also holds, because of the symmetry of the

assumptions on R, gy, and pg. Indeed, notice that we also have U; = 611 o Fy, with
Fi(t) = o1[t,+00), G1(t) = p1[t, +o0), and analogously for the other indices j >1. O

To complete the proof of the preceding lemma, it remains to prove the estimate
(4.13). This is what we do below.

Lemma 4.1. Under the notation and assumptions of Lemma 3.10, if (4.3) holds
for1<k<j-1, then

|40 ji01,cci0,1 (%) = Apjsg oy (@) S |0 A0y sy (25)-
Proof. We assume that @) #+ R and @) c [0,1/2]". Let s;, r; be such that
doj(zy,...,x5) =sj(z1,...,x;)dzy ... dxj,
and
dpj(x1,...,2j) =rj(z1,...,2;)dz; ... dx;.
So we have

sij(xy,. .., 15) Y1y Yjo1,25)
dosp, . (T:) = dp. - (z;) = J EAR J 22 da;
R LR R o e i et iy Lo
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We split the term inside the parentheses on the right side as follows:

(4.15)
( Sj(xlr e 7xj) Sj(yly'“ 7yj—17$j))+(sj(y17'~' 7yj—17$j)_rj(y1a cee 7yj—17xj))

sic(@, -5 xi1) sy, Y1) sjaa(y1s-- Y1) iy, Y1)
=A+B.

Denote by s and r the densities of oy and py on Q. Recall that s(z) = ¢(z), where
 satisfies the assumptions of Theorem 3.4. In particular, recall that

dist(z,OR) dist(z,0R)?

(4.16) |Vs(z)| S Ry and  |Vps(z)| S I(R)
We write A as follows:
(417) A= si(x1,...,z5) = si(Y1, .- Yjo1,25)
sji—1(x1, ... zo0)
+sj(y1,...,yj_1,yc]—)( 1 - 1 ):A1+A2.
sici(z1, . wi) sy, - Ye1)

First we consider the term A,. To this end, notice that
(418) ijl(ajlw--;xjfl)_sjfl(yly-”yyjfl)

b; b
:f f (5(3;1,...,xj,l,zj,...,zn)—s(yl,...,yj,l,zj,...,zn))dzj...dzn.
a,j Qan,

To estimate the difference inside the integral, we distinguish two cases. Assume first
that

min(zj,...,2,) <2 min(zy,...,x;_1).
Recall that, for u € @), we have dist(u,OR) = min(us,...,u,) and denote

Qzjpoen = {u€Q: uy =z, for k> j}.

From (4.16), taking into account that |z —yi| S zx [h]e < 0(Q) ||] e for 1 <k < j-1,
we deduce that

(4.19)

-1

‘S(xlﬂ oy Lj=1yZgs - 7Zn) - S(yla s Yj-1, %55 - >Zn)‘ S ”VSHOO,sz ..... zn Z ’zk - yk‘
k=1

min(zj,...,2,) min(zq,...,2;-1)
S——=5—/4 I S l h|oo-
Q)1 s @)
Suppose now that
min(zj,...,2,) > 2 min(zy,...,2;_1).

Since |yx — x| S i |h)o for 0 <k < j—1, for [h]e small enough we have y; < 2z,
and thus

min(z;,...,2,) >min(ys,...,y;-1).
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Assume that min(zy,...,2;.1) < min(yy,...,yj-1), and let ¢ be such that z; =
min(zy,...,2;-1). Then we have

dis1;((:z;17 s L1 2y s Zn),s 8R) = dist((yl, Ty s Uil 2y s Zn),s 8R) = ;.

where (y1, .., %;, .., Yj-1, 2j, .., 2n) is Obtained by replacing y; by x; in (y1, .., ¥j-1, 2j, -, Zn)-
By (4.16), denoting

Qxi,z]-,...,zn = {U € Q U =T, Uk = 2 for k > ]}
and
L= Ly1,..,yi,l,yi,..,yj,l,z]-,‘.,zn = {(ylv sy Uiy oy Yja1y 25y +ey Zn) tx; Ly < yi}v
we get
‘S(I17"7ijlazj7--7zn)_S(ylr'ayj*lazjv“vzn)‘
< |S(x17"7$j—1vzj7"7zn)_S(yh"7xi7-'7yj—172j7"7zn)‘
+‘S(yh-'7$i7"7yj—172j7"7zn)_S(yh"?yj—lazja"vzn)‘

SIVEsloouyeyen 2o Nk = ikl + [ VSoo i = il

1<k<j-1
k+i
T S o= el + s i - il
~ K3 AN
((R)? 1cizia ((R)?
k+i

Since |z — yi| S Tk [Pl oo < U(Q) | R 00, We get

(4.20)
|5(Jc1, X1y 2y ey Zn) = S(Y1y s Yints 25, ..,zn)‘ < i Q) ||h]e + in 7] 0o
e 2 iRy iRy
z? min(zy,...,x1)?
S 5oz 1hlee = e U] P9
((R) ((R)
If min(zy,...,2;21) > min(yy,...,y;-1) = ¥;, we get the same estimate just inter-

changing the roles of z, and y;, 1<k <j—-1.
If we plug the estimates (4.19) and (4.20) into the identity (4.18), we obtain

min(zy,...,x;_1)

‘Sj—1($17--~7-Tj—1)_5j—1(y17~--7yj—1)‘SK(Q) (s 5 /(R)? dzj ... dzy,

min(;cl,...,:cj_l)Qd
((R)?
where E denotes the subset of those points (zj,..,2,) € [a;,b;] x -+ x [ay,b,] such

that min(z;,...,2,) <2 min(zy,...,2,1), and F = [a;,b;] x - x [a,, b, ] N E. It is
easy to check that the (n—j+1)-dimensional Lebesgue measure of F is smaller than

+[[7fleo

Zj. .. dzy,
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cmin(zq,...,x;-1){(Q)" . Then we deduce
min(zy,...,2;1)> s
(4.21) [sja(mrooa0) =55y § =T (Q) T e
U(R)
Recalling the definition of Ay in (4.17), we derive
Q) 7+ min(ay,...,x-1)?
Ao S si(yr, .. yio1, @, IRRER A hle.
| 2| ](yl y] 1 j)E(R)Zsj—l(xla---7xj—1)$j—1(y17---7yj—1) H ”
By (4.9) we know that
g n—j+1 )
Sic1(z1, .. Tjm) % min(zy,...,z;1)%
Using also that
$i(y1, -5 yjo1,75) ® 8(21, -, T, T5), 5j—1(y17 oY) ® s, i),
by (4.10) and (4.9), we deduce that
si(x1y. .. i1, 25)
(4.22) |Aal 5 e vl 11
5]71(3?17-~~75L’]71)

To deal with the term A, in (4.17), first we have to estimate the difference
(4.23) i@, x;) =8 (Yo Yjo1, ).
The calculations are analogous to the ones above for
sj-1(T1, . m50) = 850 (Y1, - Yo1)-
Indeed, recall that for the latter difference we used the estimate |25 —yx| $ 2|7 o, for
1<k <j—1. The same inequalities are the ones required to estimate (4.23), taking
into account the j-th coordinate is the same in the two terms involving s;(...).
Then, as in (4.21), we get
min(zy,. ..

’I‘)Q n—1q
sy m) =y e my)| § P (@)

By the definition of A; in (4.17), we deduce
(Q)™ min(zy,...,x;)?

Ayl € hoo-

| 1| K(R)ZSj_l(Jfl,...,SUj_l) ” “
Recalling that, by (4.9),

Q)i
si(x1,...,xj) ~ 2(1;)2 min(zy,...,z;)?%
we obtain
s$i(T1, ..., 051,

(4.21) A g 2 T gy

Sj—1(1’17 . 735]'—1)
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Now it remains to estimate the term B in (4.15):

si(y1,...,yj-1,%5) ~ (Y1, Yj1,T5)
ij1(y17~~-ayjf1) 7”]'71(?Jl7~--7yj71)
_siyn -y m) -y, T5)
8j-1(Y1s -+ Yj-1)

B:

1 1
$j-1(Yy -y Yi-1)  Tia(Yns e Yo1)
Taking into account that |s(z) —r(x)| < s(z) |h]|e for all z € @, one easily gets

+rj(y17"'7yj—1axj)( )zBl‘l'Bg.

i (Y15 s Y-1,05) = 15(1, - Y1, ) S 85 (1, - Y-1,75) [l
and
lsj-1(y1s - yi-1) = rimi (s Ym0 S Sjo (Y yo1) [
The first estimate readily implies that

B <S]‘(y1,...,yj_1,l’j) h N Sj(fEl,...,.I'j) h
|1B1] < [Alloo ~ |7 loo-
8j-1(Y1, -5 Yj-1) $j-1(T1, ..., j-1)
The calculations for By are also straightforward:
$j-1(y1, -, yj-1) |A]e sj(21, ..., 2;)
|Ba| S 75 (Y1s e Yjo1,75) ’ < 17 oo
! ! ! Sj—l(yla--'uyj—l)rj—l(ylw--ayj—l) Sj—1($1,~~,$j—1)
where we used that r;(y1,...,yj-1,%;) » sj(z1,...,2;) and the analogous estimate

fOI' Tj—l(ylv e ;yj—l)'
The lemma follows by gathering the inequalities obtained for Ay, Ay, By, and Bs.
O

Notice that the preceding lemma is the only place of the paper where we used the
smallness of the tangential derivatives of ¢ near the boundary of R.

5. RELATIONSHIP BETWEEN THE COEFFICIENTS «, «j, (i, AND [35

Let us recall the definition of the coefficients o from [To2]. Given a closed ball
B c R? and two finite Borel measures o, v on R? | we set

distg(o,v) := sup{|f fda—ffdl/| : Lip(f) <1, supp(f) c B},

where Lip(f) stands for the Lipschitz constant of f. Notice the similarities between
the distances W, and dp. Given an AD regular measure p on R? and a ball B that
intersects supp (i), we set

1
a(B) = i%fL distsp(p, aH]y),

T(B)"+1 a>

where the infimum is taken over all the constants @ > 0 and all the n-planes L.
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Lemma 5.1. Let p be n-dimensional AD reqular and let B be a closed ball that
intersects supp(u). Then,

a(B) <a1(2B)
and

ai1(B) <ca(B),

where ¢ = c1o(|V@| e + 1), with c1o being an absolute constant.

Proof. To prove the first inequality, take an n-plane L that intersects 2B and let
cop,r be as in (1.3), with 2B instead of B. Consider a Lipschitz function f supported
in 3B with |V f]e < 1. Since pop equals 1 in the 4B > suppf, we have

ffdﬂ_/fCQB,Lde:/fSOQBdM_/fSOQBCQB,LdHZ

Taking supremums over such functions f, we get

distsg (i, cop, LM} ) < Wi(pen 1, cap,rp28 1Y ).

Taking the infimum over all n planes L intersecting 2B and dividing by r(2B)"*+!,
we deduce a(B) < a1(2B).

Let us turn our attention to the second inequality in the lemma. let a and L be the
constant and the n-plane that minimize o(B). To estimate Wl((,DBM, cB,LLpB’HZ) we
may assume that the Lipschitz functions f in the supremum that defines the distance
W, vanish in the center of B, since the difference of integrals in (1.1) vanishes on
constant functions. So consider an arbitrary Lipschitz function with Lipf < 1 which
vanishes in the center of B. Then

(5.1) Ufsofzdu—ffsoBcB,Ld%Z

<

ffdeu—fstBadHE

+ |CL - CB,L|

/ JepdH]

Concerning the first sum on the right side, since fppg is supported on 3B,

‘/fchdu—ffsoBadHZ

<|V(feB) e distsp(p, at])

= V(fer)|lwa(B)r(B)*".

To estimate |V(f¢5)|e, notice that, by the mean value theorem, ||f|. < 7(B),
since f vanishes in the center of B and |V f]« < 1, and thus,

1
r(B)

[V(FeB)loe <[V flelesle + VeIl fleo <1+ [Veleor(B) =1+ [Ve]eo-

Therefore,

[ Fendn= [ Topaani]< (14 1901.) aB)r(B)
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Finally we deal with the last summand on the right side of (5.1):

[ resans

At last, we estimate |a — ¢p 1|. To this end, we set

‘fchadH’i—fsoBdu

If we divide this inequality by [ o dH}, we get
o(B) [Vl r(B)"
[ opdH}

Notice that [ @pdH? > H"(2Bn L) > ¢c"'r(B)", since LN B # @. Thus, |a-cp 1| <
ca(B) | V¢, and so the last summand on the right side of (5.1) is bounded above by
ca(B) | Ve|e r(B)*". Together with the estimate obtained for the first summand,
this yields

‘[fgoBdu—[fsoBcB,Lde

Taking the supremum over all functions f as above, we deduce that
Wi(wpp, crpsHi) <c(1+|Vele)a(B)r(B),
and thus a;(B) < c(1+ ||V o) a(B). O

la—cp 1 <la—cprl|fleH"(3BnL)<cla-cpr|r(B)"*".

<a(B) |Veplwr(B)" = a(B) [Ve|wr(B)".

|CL - CB,L| <

<ca(B) (1+[|Vele) r(B)".

Recall that, for a ball B that intersects supp(u), we have

. 2 1/2
)=t e L S5r) o)

where the infimum is taken over all n-planes in R,

Lemma 5.2. Let B be a ball that intersects supp(p) and fix an n-plane L that
minimizes ao(B). Denote by Il the orthogonal projection onto L. Then we have

Wa(ep i, M#(op 1) < Wa(on 1, e o M)
Moreover, p3(B) < as(B).

Proof. Notice that, by the definition of W,
(5.2)

Walpm i Wt (onm)’ < [ () =af pa(a)du(x) = [ dist(e,2)? o) du(e).

Consider now an optimal transference plan 7 between pp p and cp o H7}, that is,
7 is a measure on R? x R? with two marginals given by the preceding measures such
that

2 _ n\2
<5~3) f(z,y)eRded |$ - y| dw(a:,y) = Wz(‘PB K, CB.L ¥B HL) .
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It turns out that such a measure 7 must be supported on

supp(pp p) x supp(¢p H}) c R x L.
Therefore,

_ a2 _ i
f(x,y)eR‘ide [z =y dn(z,y) _»/(xyy)eRde o~y dr (2, y).

For (z,y) in the domain of integration of the last integral we have |z—y| > dist(z, L),
and thus

2 : 2
(5.4) /(.x,y)eRded |z —y| dw(x,y)zf( dist(z, L) dr(x,y)

z,y)eRIxR
- [ dist(@, 1) (@) dyu(a),

which proves the first claim in the lemma, by (5.2) and (5.3).
To prove the second assertion, just notice that

f dist(z, L)? op(x) du(z) > f dist(z, L)? du(z) > Bo(B)? r(B)"*2.
2B
Together with (5.3) and (5.4), this implies that f5(B) < as(B). O

Of course, by analogous arguments, we get 5,(B) < oy, (B) for all 1 < p < oo.

Our next objective consists in showing that if u is AD-regular and B, B’ are two
balls in R?, centered in supp(u), such that 3B ¢ B’, which have comparable radii,
then ay(B) $ as(B’). First we will prove a slightly more general result, where y is
not assumed to be AD-regular.

Lemma 5.3. Let i be a measure supported on a ball B' ¢ RY. Let B ¢ R? be
another ball such that 3B ¢ B’, with r(B) ~ r(B'") and (B) ~ u(B') ~ r(B)".
Let L be an n-plane which intersects B and let f: L — [0,1] be a function which
equals 1 identically on 3B and vanishes in L~ B', so that [ fdH?} = w(B'). Then,
Wo(esp, copMy) S Walp, fHY), for the appropriate constant c.

Proof. Denote B = B(zpg,r), and let P the orthogonal projection onto L. Also, for
x € B' such that |z - zp| > dist(zp, L) and P*(z) # P*(zp) we define the angular
projection P¢(z) onto L with center in zp as follows:

VT = zp[2 - dist(zp, L)?
|P+(x) - P+(zp)]

P%(xz) = P*(zp) +

(P*(z) - P*(25)).

Notice P*(x) € L and
(5.5) |P*(x) — zp| = |z — 25|
If |z —zp| < dist(zp, L) but P*(x) = P*(zp), we let P%(x) be an arbitrary point from
L satistying (5.5). Now we consider a new map P : B’ — L defined as follows:
Pi(z) ifzelB,
P(x) =
Po(z) ifxeB'\3B.



38 XAVIER TOLSA

Observe that P = Id|.

We claim that for any z € B’, (P (z)) = pp(z). For z € B\ 3B this follows
from (5.5) and the fact that ¢p is radial (with respect to the center zg). For € 3B,
we have |P(z) = P(zp)| = |P*(z) - P*(2)| < |z - 25| < r and since |P*(z5) - 25| =
dist(zp, L) <r, we deduce

13
|P(2) = 25" = [P*(2) = P*(zp) + [P (25) = 28" < - r? < (2r)%,

and thus P(z) € 2B and pp(x) = pp(P(x)) = 1.
On the other hand, it is also easy to check that |x — P(x)| < dist(z, L) for z € B’,
and thus

(5.6) Wa(P#(pnn), o) < [ Pz = du()

< f d(z, L)? du(z) s Walp, fH})?,
where the last inequality is proved arguing as in Lemma 5.2. The same arguments
yield
(5.7) Wa(P#p, 1) $ Walp, fHE).

Notice now that P#(vpp) = ¢p(P#u). Indeed, using that pp(P(z)) = pp(x)
for all « € supp(u), for any subset A c L we have

[ xadP# s = [ xa(P@)) en(@) du(a)

- [ xa(P@)en(P@) du(@) = [ xapsdPip.

Using that fyp = ¢p, by Theorem 1.1 and (5.7), for an appropriate constant ¢
we get

(5.8) Wo(P#(opp), copMy) = W:)(SOB(P#N)a CYB fHZ) S Wo(P#p, fHT)
< WQ(P#ILL, ,u) +W2(:u’ f,HE) S WQ(/’H f,H?,)
Then, from (5.6) and (5.8),

Waolep, copMy) < Wolepp, P#(psp)) + Wo(P#(opp), copHi) § Walp, fHE).
O

Lemma 5.4. Let i be an n-dimensional AD-reqular measure on R, Let B, B’ c R?
be balls such that 3B ¢ B', u(B) ~r(B)", and r(B) ~r(B'). Then,

as(B) $ as(B').

Proof. We apply the preceding lemma with @g/u instead of i there, L equal to an
n-plane that minimizes as(B’), and f = ¢p. To prove the lemma we may assume
that ap(B’) <9, with 6 > 0 small enough. This implies that 55(B’) < 4. Then, using
that u(B) ~ r(B)", it is easy to check that if ¢ is small enough, L intersects B, and
thus the assumptions in the preceding lemma are satisfied. O
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6. THE COEFFICIENTS «y ON LIPSCHITZ GRAPHS

In this section we will prove the particular case of Theorem 1.2 for Lipschitz
graphs. Given a Lipschitz function A : R® - R4 we set I' = {(z, A(z)) : z € R"}.
Then we take p = gH}, where g : I' - (0,+00) satisfies g(x) ~ 1 for all z € I.
It is clear that p is n-dimensional AD-regular. We consider the following special
“v-cubes” associated to pu: we say that Q c¢ R? is a v-cube if it is of the form
Q = Qo x R where Qy c R" is an n-dimensional cube. We denote £(Q) := £(Qo).
We say that Q is a dyadic v-cube if @)y is a dyadic cube. The collection of dyadic
v-cubes @ with £(Q) = 277 is denoted by D, ;. Also, we set D, = Ujez Dy and
Dk = Ujsr Dy j, Given a v-cube Q, we let a,(Q) = a,,(Bg), where By is a smallest
closed ball centered at some point from () nIT" that contains Q@ nT.

Now, for technical reasons, we need to introduce other scale invariant coefficient
of “a and 8 type”. Given I' and u as above and a v-cube ) c R4, we denote

@(Q) = inf Wa(xq 1 coLxQM]),

b
Q)

where the infimum is taken over all n-dimensional planes that intersect Q) and cq 1, =
w(Q)/H"(Ln Q). We also set

P P dist(z, L)\’ i 2
2@ = (i 75 o i) auto)

where the infimum is taken over all n-planes in R¢. Notice that the integral is over
@ instead of 2Q).

Lemma 6.1. As above, letT' c R? be an n-dimensional Lipschitz graph and p = pHp,
with p(x) ~ 1 for allx € T. Let B,Q c R be a ball and a v-cube such that 3B c @
and 3B nsupp(p) # @. Suppose also that r(B) ~ ((Q). Then,

az(B) $ @2(Q).

Proof. The arguments are the same as in Lemma 5.4. Indeed, notice that in its
proof the smoothness of ¢ was not used. It was only necessary that ppg (x) =1 for
x e supp(pp), which also holds with x¢ instead of pp. O

We identify R™ with the subspace of R? formed by those points whose last d—n co-
ordinates are zero. Let Pgn and Pr projections from R¢ onto R™ and I, respectively,
both orthogonal to R™. Observe that Pg«p: ' > R™ is a bilipschitz mapping. We
denote op = Pr#LE,., where L, stands for the Lebesgue measure on R™. Clearly,
Hp and op are comparable. However, for the arguments below or will be more
convenient that H.

Lemma 6.2. As above, let I' ¢ R? be an n-dimensional Lipschitz graph and . = gor,
with g(x) $ 1 for all x € T'. Consider a v-cube Q ¢ R and a tree T with root Q.
Denote by S(T) c Q its family of stopping v-cubes and suppose that p(P) ~ £(P)"
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for every P eT. Then we have
((P)

~ 2.7 2 ar o2 ury
a2(Q)* £ Ba(Q) + P;HAP gHLQ(UF)f(Q)”+1 ’ Pg(:ﬂ Q)

Proof. Let L be the n plane that minimizes &»(Q), and assume that it is not or-
thogonal to R™ (otherwise, just rotate it slightly). Let Pp, be the projection from R¢
onto L which is orthogonal to R", and Pg., Pr as above. Consider the flat measure
or, = PL#O'F = PL#,CTLR We have,

(6.1) Wa(xaws axoor) < Walxom, xg Pr#tn) + Wa(xo Pr#tu, axgor),
where
Q) Q)

- - n =mq4o,
o0(Q)  Lp.(Q) P
The first summand on the right side of (6.1) is easily estimated in terms of 5,(Q):

Wa(xot, Xo Pr#n)* < fQ |z - Praldu(z) s B2(Q)? Q)™

Concerning the last term in (6.1), using that Pgnjznq : LNQ — R™"NQ is bilipschitz,
we have

n(P).

a go=go Fr.

Wa(xq Pr#tp, axqor) » Walxq Pan#(PL#p), axq Prr#for)
= WQ(XQ goﬁﬁn, CLXQ ﬁﬁn)
Now recall that, by (3.26) in Remark 3.14, we have

Wa(xq 9oL axq LE)* S D 1APGolF2ny L(PYUQ) + Y. U(P)? u(P),
Pémn PGS(T)

where Tg» ¢ D(R") is the tree formed by the cubes Pgn(P), P e T. From (6.1) and
the preceding estimates, we infer that

Wa(xom, axqoL)?
S B(Q)2 Q)™+ Y [Apgol 22y ((PYUQ) + 3 L(P)?u(P).

PeTgn PeS(T)

To conclude the proof of the lemma, just notice that, from the definition of g, gy and
or, it follows that for each cube P ¢ R™ and the corresponding v-cube P = P x R4,
|Apgolr2ny = AT 9l 22(or)-

O
Lemma 6.3. As above, let I' ¢ R¢ be an n-dimensional Lipschitz graph and u = gor,

with g(x) $ 1 for all x € T'. Consider a tree T of v-cubes such that every @ € T
satisfies the following property:

(6.2) If P is a v-cube (non necessarily dyadic) such that PN Q + &
and ((P) = 4(Q), then u(P) ~ ((P)".
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Then we have

(6.3) Y a2(Q)’u(Q) S u(R) for all ReT.

QeT:QcR
Proof. We will use a well known trick which goes back to Okikiolu [Ok], as far as
we know. Given a fixed k € Z and j > k, for e € {0,1}" consider the translated grid

—k
2— ¢+ Dgn; and denote

_ 9k _ _
DR”,j = U (?e +DR",]’); Dﬂgn = UD]R”,]"

ee{0,1}m j>k

It turns out that for every j > k and x e R®,
~ 2
(6.4) 3Q €Dgn; such that ze §Q

See [Lr] for a further generalization and a very transparent proof.

To prove (6.3), we may assume that the root of 7 is R. Let k € Z be such that
R € Dy, that is, £(R) = 27%. Consider the “extended lattice” D associated to
5]’1% If ng is chosen big enough (depending on d, n, |[VA|, and various absolute
constants), from (6.4) we infer that for any @ € D,(R) with ¢(Q) < 27¢(R) there
exists another v-cube Q € D¥ such that 3B ¢ Q and £(Q) = 270£(Q) (recall that
By is the smallest closed ball that contains @ nT").

For e € {0,1}", denote by 7. the collection of v-cubes P ¢ ?e + DF for which
there exists some @ € T such that @ n P # @ and ¢(Q) = ¢(P). It is immediate to
check that although, in general, 7, is not a tree, it is made of a finite collection of

trees whose roots are the v-cubes from % e+ D, that intersect R.
Observe that every @ € 7, satisfies pu(Q) ~ ¢(Q)", by the condition (6.2). Then,
by Lemma 6.2, we obtain

(6.5) > @(QPQ) s Y R+ Y > IIA}?gIIi%r)%
O<T. QeT. QeTe PeTe:PeQ
by oy AP

QeTe PeS(T.):PcQ 0(Q)?

The first sum on the right side is bounded by cu(R), since 52(Q) < B2(Q) and
the (5(Q) coefficients satisfy a Carleson packing condition on Lipschitz graphs (see
[DS1]). Concerning the second one, interchanging the sums, it equals

((P)
IAT g]72, L5 Y AT 917200 S 1(R),
& 18l 2 i) * g 187 e

since ¢ is a bounded function. Finally, interchanging the order of summation again,
the last term in (6.5) equals

> oup) ¥ Loy upysum).

PeS(Te) QeTe:QoP K(Q)Q " PeS(Te)
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Thetefore, gur, 12(Q)?(Q) % u(R)

By the discussion just below (6.4), for every @ € T with ¢(Q) < 27/(R), there
exists some e € {0, 1} and some Q' € T, such that 3Bg c " and thus a»(Q) $ a2(Q"),
by Lemma 6.1. Then we get

2(Q)(Q) S Y, @(Q)°u(Q) £ u(R).
QeT:4(Q)<27™0¢(R) QeTe

On the other hand, since there is a bounded number of v-cubes @ € T such that
0(Q) > 2 l(R), also

> a2(Q)*1(Q) s u(R).

QeT:£(Q)>2""0L(R)

A direct consequence of the preceding lemma is the following.
Theorem 6.4. Let I' c R? be an n-dimensional Lipschitz graph in R® and u = gor, if
g:T = (0,+00) satisfies g(x) ~ 1 for all x € T, then as(x,t)? du(x) D is a Carleson
r

measure, that is, if for any ball B with radius R,

R
//ag(xj)Qd,u(x)@ScR".
o JB r

Proof. It follows by standard methods from the previous lemma, taking into account
Lemma 5.4. U

Notice that the assumptions in the Lemma 6.3 were somewhat more general than
the ones needed for the last theorem. The broader generality of Lemma 6.3 will be
needed below, to deal with the case of uniformly rectifiable sets.

7. THE COEFFICIENTS & ON UNIFORMLY RECTIFIABLE SETS

Throughout all this section we will assume that p is an n-dimensional AD-regular
measure on RY. As in the preceding section, the coefficients «,, and 3, are defined
with respect to u. If they are taken with respect to a different measure o, they are
denoted by a,, , or 5, .

7.1. p~cubes and the corona decomposition. For the study of the uniformly
rectifiable sets we will use the “dyadic cubes” built by David in [Da, Appendix 1]
(see also [Ch] for an alternative construction). These dyadic cubes are not true
cubes, but they play this role with respect to u, in a sense. To distinguish them
from the usual cubes, we will call them “u-cubes”.

Let us explain which are the precise results and properties about the lattice of
dyadic p-cubes. For each j € Z, there exists a family D} of Borel subsets of supp(u)
(the dyadic u-cubes of the j-th generation) such that:

(i) each DJ is a partition of supp(p), i.e. supp(u) = UQw;Q and QN Q' =g
whenever Q, Q" € D} and Q # Q';
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(i) if Q@ € D} and Q' € D}’ with k < j, then either Q c Q' or Qn Q' = @;
(iii) for all j € Z and @ € D}, we have 277 § diam(Q) <277 and p(Q) » 277"
(iv) if Q € DY, there is a point zg € @ (the center of @) such that dist(zq, supp(u)~
Q) 227,
We denote D* = U;ez Djf. Given @ € DY, the unique p-cube Q' € D}, which contains
@ is called the parent of (). We say that () is a sibling or son of Q).

For ) € DJ, we define the side length of @ as ¢(Q) = 277. Notice that ((Q)
diam(Q) < £(Q). Actually it may happen that a cube @ belongs to D4 n D)’ with
j # k, because there may exist cubes with only one sibling. In this case, £(Q) is not
well defined. However this problem can be solved in many ways. For example, the
reader may think that a cube is not only a subset of supp(u), but a couple (Q,7),
where @ is a subset of supp(p) and j € Z is such that @ € D;.‘.

Given A > 1, we set

AQ = {z e supp(p) : dist(z, Q) < (A-1)((Q)}.

Observe that diam(AQ) < diam(Q) +2(A - 1)4(Q) < (2A - 1){(Q). For R € D*, we
denote D*(R) ={Q e D":Q c R}.

Given a p-cube @ (or an arbitrary subset of supp(s2)), we denote by By, a smallest
ball centered at some point from ) which contains ). Then we define a,(Q) :=
a,(Bg) and 5,(Q) = 8,(Bg). If Bg is not unique it does not matter which one we
choose. The “bilateral 8 coefficient” of Q) is:

) dist(z, L) dist(z, supp(p))
bBe(Q) = inf sup ——_— >+ sup
( ) L xzesupp(pn)N2Bg E(Q) zeLn2Bg f(@)

Now we wish to recall the notion of corona decomposition from David and Semmes
[DS1], [DS2] (adapted to our specific situation). It involves the notion of a tree of
dyadic p-cubes, which is analogous to the one of a tree of dyadic cubes that was
introduced just before Lemma 3.13.

Definition 7.1. Fix some constants A > 2 and n,e > 0. A corona decomposition of
p (with parameters A\, n,0) is a partition of D* into a family of trees {7;}:; of dyadic
p-cubes and a collection B of bad p-cubes (that is, D* = BU U Ti, with BnT; = @
for all i e I, and 7; n 7; = @ for all i # j) which satisfies the following properties:

e The family B and the collection R of all roots of the trees {7;};; satisfy a
Carleson packing condition. That is, there exists ¢ > 0 such that for every
R e D~

>, Q) <cu(R).

QeBUR:QcR
e Each @ € U;; T satisfies bf.(A\Q) <e.
e For each tree 7; there exists a (possibly rotated) m-dimensional Lipschitz
graph I'; with Lipschitz constant < n such that dist(z,I';) < € £(Q) whenever
reAQ and Q €T,
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It is shown in [DS1] (see also [DS2]) that if p is uniformly rectifiable then it
admits a corona decomposition for all parameters A > 2 and 7, > 0. Conversely, the
existence of a corona decomposition for a single set of parameters A >2 and 7, >0
implies that p is uniformly rectifiable.

For a given tree T from the corona decomposition of a uniformly rectifiable mea-
sure u, we denote by Ry its root and by I's its associated Lipschitz graph.

Let us remark that, in general, the stopping p-cubes S(7°) may have very different
side lengths. This may cause some troubles in some of the arguments below. As in
[DS1], this problem is easily solved by defining the following function associated to
T. Given x € supp(p), one sets

dr(z) = inf [((Q) + dist(z, Q)]
Observe that dy is Lipschitz with constant 1. We denote
G(T) = {z e ARy : dr(x) = 0}.

It is easy to check that G(7) c 'y n Ry. For each x € supp(p) such that d(x) >0,
let Q. be a dyadic p-cube containing x such that

dr () dr(x)

1 —= <l(Q,) < ——,
(1) w04 <@ <Tg7
where A >> 1 is some constant to be fixed below. Then, Reg(7) is a maximal (and
thus disjoint) subfamily of {Q,}scar, (recall that Ry is the root of 7). If dr(z) =0,

then @, can be identified with the point x.

Lemma 7.2. Let i be uniformly rectifiable and T a tree of its corona decomposition
and denote by Ry its root. If we choose 1 < A? << X big enough, then the family of
p-cubes Reg(T) satisfies:

(a) ARt c G(T) J UQeReg(T) Q.

(b) If Qe T, PeReg(T), and PnQ # @, then {(P) <{(Q)/2, and so P c Q.

(¢) If P,Q € Reg(T) and APn AQ + @, then ((Q)[2 <l(P) < 2((Q).

(d) If Q € D* is contained in ARt and @ contains some p-cube from Reg(T),

then bl (Q) < c(A,X) e and dist(x,T'7) < c(A,N)el(Q) for all x € Q.

Because of (b) and (c), in a sense, the family Reg(7), can be considered as a
regularized version of the p-cubes from S(7). This is why we use the notation

Reg(I'r).
Proof. (a) This is a straightforward consequence of the definition of Reg(T).

(b) By the construction of Reg(7T), there exists some x € P such that ((P) <
d7(x)/10A. Since Q@ n P + @&, we have

dr(z) < 0(Q) +dist(x,Q) <(Q) + L(P).
Thus,
dr(z) (@) +U(P)

P <S04 S~ 104
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and then it follows that ¢(P) < £(Q)/(10A-1) < £(Q)/2.

(c) Consider P, @ € Reg(T) such that AP n AQ # @. By construction, there exists
some z € P such that ¢(P) > dy(x)/20A and some u-cube Py € T such that

dist(x, Py) + £(Py) < 1.1d(x) < 22AL(P).
Thus, for any y € Q,

dlSt(y, Po) + E(Po) dlam(AQ) + dlam(AP) + dlSt(fL’, P()) + E(Po)

(2A-1)0(Q) + (24— 1) (P) + 22A¢(P).

IN N

So dr(y) < (2A-1)4(Q) + (24A - 1) £(P) for all y € Q. Therefore,
1
0(Q) < 104

which yields ¢(Q) < 3¢(P). This implies that £(Q) < 2¢(P) as ¢(P) and ¢(Q) are
dyadic numbers.
The inequality ¢(P) < 2((Q) is proved in an analogous way.

(240(Q) +24AL(P)) = 0.24(Q) +2.4((P),

(d) Take now @ € D* with @) ¢ AR which contains some p-cube from Reg(7). By
(7.1), this implies that there exists some x € @) such that dr(z) < 2044(Q), and
thus there exists some P, € 7 such that

(7.2) dist(x, Po) + 0(Py) < 1.1dr(x) <22A0(Q).

In particular, ¢(Py) < 22A/¢(Q). Suppose for simplicity that A is chosen so that 224
is a dyadic number. Consider now Qg € D* which contains Py with £(Qg) = 22A4(Q).
Observe that, by (7.2),

dist(Q, Qo) < dist(Q, Py) < 2246(Q) = (Qo),

and thus @ c 3Qy.

So we have shown that there exists some p-cube (Qy with 3Q¢ 2> @ and Qg2 Py €
S(T), and moreover £(Qq) = 22A4(Q), with Q c AR. If the parameter X is taken
big enough in the corona decomposition (A > A2, say), then it is easy to check that
3Qo c AR, for some R € T, with {(R) ~ ¢(Qo) (with some constant depending on A
and \). As a consequence, b (Q) $ bBw(Qo) S bBe(R) S €, with all the constants
here depending on A and \. Analogously, we infer that dist(x,'7) < ¢(A, \)el(Q)
for all x € Q. O

Observe that, if Q € T, then Q = (G(T) ﬂQ) UUpeReg(T):Pcg P. Further, the union
is disjoint since, from the property (b) above, it turns out that

(7.3) G(T)nRrn |J P=o
PeReg(T)
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d
7.2. The proof of Theorem 1.2. If a,(z,t)? du(x) ™ is a Carleson measure for
r

some p € [1,2], then a(x,t)? du(z) 9 is also a Carleson measure, by Lemma 5.1. By

the results in [To2], this implies that p is uniformly rectifiable. Therefore, to prove

d
Theorem 1.2, it is enough to show that as(x,t)?du(x) ™ is a Carleson measure,
r

taking into account that o, (B) $ as(B) for p < 2. By standard arguments, using
Lemma 5.4, this is equivalent to showing that
(7.4) Y w(Q)’(@) s u(R) for all R e D~,.
QeDH:QcR

Our main tool to prove this inequality will be the corona decomposition of p de-
scribed above.

We will show that (7.4) holds for uniformly rectifiable sets following arguments
analogous to the ones of [DS1, Chapter 15], where it is shown that the existence of

e dr .
a corona decomposition implies that Sy(z,t)? du(x) — is a Carleson measure. To
T

this end, arguing as in [DS1, Chapter 15], it turns out that it is enough to show that
for every tree 7 from the corona decomposition of p,
(7.5) Y w(Q)’u(@) s u(R) for all ReT.
QeT:QcR
The rest of this subsection is devoted to prove this inequality.

Lemma 7.3. Let i be an AD-regular measure which is uniformly rectifiable, and T
be a tree from its corona decomposition, as described above. For each @ € Reg(T)
there exists a function g% supported on 2Bg nT'r such that

(7.6) f g9dH" = u(Q) and Y o951

I'r QeReg(T)
Proof. Recall that, for @ € Reg(T) and x € @, dist(x,'7) < ¢(A,N\)el(Q). Thus, if €
is chosen small enough in Definition 7.1 (for given A and \), dist(z,'7) <r(Bg)/10
for all x € Q. Therefore, 3Bo nI'y # @ and so H"(2Bo nT'7) ~ £(Q)". We define

Q_ Q) Y

H"(2BonTy) ‘2PeT
Since p(Q) ~» H*(2BgnT'r), we deduce that |g?|p=(r,) S 1. From the property (b)
in Lemma 7.2, it easily follows that ¥ oegeq(7) X2, S 1 if A is big enough, and thus
(7.6) follows. ]

For Q € Reg(T), let g% be the function associated to @, given by the preceding
lemma. Recall that in ARy N\ Ugereg(7) @ € G(T), 1 is absolutely continuous with
respect to H. In fact,

g

ul(ABr~ U Q) =g
QeReg(T)
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with | go[e=(7z) $ 1. Consider the measure
oO=¢go+ Z gQ
QeReg(T)

To prove (7.9), we will use that, roughly speaking, o approximates p on 7, and we
will apply the results obtained in the previous section for Lipschitz graphs to the
measure o.

Lemma 7.4. Let T and o be as above. Then, every Q) € T satisfies 0(2Bg) ~ ((Q)™.
Also, if L is an n-plane that minimizes o ,(10Bg),

Wa(pah, cpoH})? S ass(10Bg)* €(Q)" + >, wP)Pr).
PeReg(T):Pc50Q

Proof. The estimate 0(2Bg) $ ¢(Q)" for Q) € T follows easily from (7.6) in the
preceding lemma and the definition of o. Let us prove the converse inequality. Notice
first that, for @ € Reg(7), we have 0(2Bg) ~ ((Q)", also by the definition of o and
the preceding lemma. Consider now an arbitrary p-cube @ € 7. If ,u(G(T) n Q) >
5 1(Q), then we also have 0(2Bg) ~ £(Q)", because a|Q > go Hing = 1l n @, by

(7.3) and the definition of o. On the other hand, if /L(G(T) N Q) <3 1(Q), then

(7.7) of U  2Bp)ap( U P)Z%M(Q).

PeReg(T):PcQ PeReg(T):PcQ

We may assume that, for all P € Reg(7) contained in Q, ¢(P) < ¢114(Q) with
0 < ¢11 < 1 small enough. Otherwise, if for some P € Reg(7) contained in @ this
fails, we get 0(Q) > o(P) ~ {(P)" ~ £(Q)". The assumption that ¢(P) < ¢114(Q),
with ¢;; small enough for all P € Reg(7) contained in @, ensures that for all these
P’s, 2Bp c 2Bg. Then, from (7.7) we deduce that o(2Bg) 2 ¢(Q)".

Let us turn our attention to the second statement in the lemma. Denote by I
the family of those p-cubes P € Reg(7) such that 2Bp n30Bg # @. It is easy to
check that such p-cubes P are contained in 50Q). Let

0Q = goXsoBo HE+ Y. g HE.
PEIQ

Since 0|30Bg = 0¢|30Bg, we have
(7.8) Wal108,00, ¢ Lr08oM1)* = Wa(p108,0, ¢ 0108, M1)* S @20 (10Bg)*0(Q)",
for the appropriate constant ¢’. Consider now the measure

Hp,@ = Go¥P10Bg Hi + Z ap MLP,
Pelg

where ap = [ ©108, 97 dHP/u(P). Notice that

P108o 00 = Y. Y108, (97 +goxp) HE = Y. Fp,
PEIQ PGIQ
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with [Gp| = p,0(P) for each P € I, by construction. By taking the following

transference plan between p, ¢ and p19p,0:

-y L
Pelg 1, (P)

one easily deduces that Wa(pie,q, 10800)* S Lper, 1(P) £(P)?. Therefore, by (7.8)
and the triangle inequality,

Wa(ltpq, € ProseML)? S 02,0 (10B0)* Q)" + 3, u(P)((P)*.
PEIQ

™ (M<P,QLP®EP)7

Notice also that ju, g|3Bg = f1|3Bg. Thus, by Lemma 5.3, we obtain
Wa(@Bott, o HE)? S Waltipq: ¢ wr08,HE)?,

and then the lemma follows. O
Now we are ready to prove (7.5) and conclude the proof of Theorem 1.2.

Lemma 7.5. Let i be an AD-regular measure which is uniformly rectifiable, and T
be a tree of p-cubes from its corona decomposition. Then,

(7.9) > as(Qu(@) su(R)  for cvery ReT,
QeT:QcR

Proof. Consider the measure o defined above and take @@ € 7. By the preceding
lemma, if L is an n-plane that minimizes as (@), we have

Walpoh, corpeHi)? § aaq(10Bg)*(Q)" + > u(P)L(P)>.
PeReg(T):Pc50Q

Therefore,
T @@ Y | (0B20Q)" Y u(P)uPy|.
QeT:QcR QeT:QcR E(Q) PeReg(T):Pc50Q

We claim now that
Y . (10Bg)*(Q)" S U(R)".
QeT:QcR
This follows easily from Lemma 6.3, taking into account that b3(AQ) < € for every
Q@ €T. Indeed, if ¢ is small enough it is immediate to check that the latter condition
implies that the assumption (6.2) is satisfied (taking also A and A big enough). On
the other hand,

1 (P2
> Aoy upuers Y wpy Y 2
QeT:QcR E(Q) PeReg(T):Pc50Q PeReg(T):Pc50R Q;(EQ;R K(Q)
s Y w(P)su(R),

PeReg(T):Pc50R

and thus the lemma follows. O
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