Unitary embeddings of finite loop spaces

José Cantarero and Natalia Castellana

ABSTRACT

In this paper we construct faithful representations of saturated fusion systems over
discrete p-toral groups and use them to find conditions that guarantee the existence
of unitary embeddings of p-local compact groups. These conditions hold for the Clark-
Ewing and Aguadé-Zabrodsky p-compact groups as well as some exotic 3-local compact
groups. We also show the existence of unitary embeddings of finite loop spaces.

Introduction

In the theory of compact Lie groups, the existence of a faithful unitary representation for every
compact Lie group is a consequence of the Peter-Weyl theorem. This paper is concerned with
the analogue of these representations for several objects in the literature which are considered
to be homotopical counterparts of compact Lie groups.

W.G. Dwyer and C.W. Wilkerson introduced p-compact groups in [DW94]. They are loop
spaces which satisfy some finiteness properties at a particular prime p. For example, if G is a
compact Lie group such that its group of connected components is a finite p-group, then its
p-completion G;\ in the sense of [BK72| is a p-compact group. But there are examples of p-
compact groups which are not the p-completion of any compact Lie group, which are called
exotic. Connected p-compact groups were classified in [AG09] and [AGMV08], where a bijective
correspondence between connected p-compact groups and reflection data over the p-adic integers
was established.

Many ideas from the theory of compact Lie groups have a homotopical analogue for p-compact
groups. Faithful unitary representations correspond to homotopy monomorphisms at the prime
p from the classifying space of the p-compact group into the p-completion of the classifying
space of a unitary group. By homotopy monomorphism at p we mean a map whose homotopy
fiber F' satisfies that the pointed mapping space Map, (BZ/p, F') is contractible for all choices of
basepoint in F'. For simplicity, we will call such maps unitary embeddings. The existence of such
maps follows from the Peter-Weyl theorem, the classification of connected p-compact groups and
the works [C00], [C06] for p > 2 and [Z05], [Z09] for p = 2.

In this article we deal with the same question for the combinatorial structures called p-
local compact groups, which encode the p-local information of some spaces at a prime p. They
were introduced in [BLOO07] to model p-completed classifying spaces of compact Lie groups, p-
compact groups, as well as linear torsion groups, and they have been shown recently to model
p-completions of classifying spaces of finite loop spaces [BLO13] and other exotic examples [G10].

These structures generalize p-local finite groups [BLOO03]. In fact, they are given by a fusion
system JF over a discrete p-toral group S and an associated centric linking system L. More details
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can be found in Section 1 of this article. In Section 2, we construct complex representations of
S which are faithful and F-invariant. A representation p is fusion-preserving or F-invariant if
for any P < S and any morphism f in Homz(P,S), the representations pjp and pjspy o f are
isomorphic. The following is Theorem 2.9, the main theorem in this section.

THEOREM. Let F be a saturated fusion system over a discrete p-toral group S. There exists a
faithful unitary representation of S which is F-invariant.

The importance of such representations comes from the maps ¥, introduced in Section 3
which take homotopy classes maps |L|;, — BU(n); to its restriction to BS. This restriction map
gives n-dimensional complex representations of S which must be F-invariant. We show that if
a faithful fusion-preserving representation of S is the image of a map f under ¥, then f is a
unitary embedding. We also say that f is a unitary embedding of the p-local compact group
(S, F,L).

The problem is then reduced to studying the obstructions for a faithful representation p to
be in the image of ¥,,. These obstructions lie in the cohomology of the orbit category of centric
radical subgroups with certain functors as coefficients. For our purpose it is enough to know
whether M p is in the image of Wy, for some M > 0. By stabilizing, we find that the obstructions
in even dimensions vanish and in odd dimensions we can replace our original functors by the
functor which takes a group P to R(P,p) ®z Z,, where R(P,p) is the Grothendieck ring of
subrepresentations of pyp.

The orbit category of centric radical subgroups has finite length and the obstructions vanish
above the length. Thus when the length of this category is smaller than three there are no
obstructions, from where we obtain the following theorem, which corresponds to Corollary 3.17
in the text.

THEOREM. Let (S,F, L) be a p-local compact group such that [(O(F")) < 3. Then there exists
a unitary embedding of (S, F,L).

This is the case for the Clark-Ewing and the Aguadé-Zabrodsky p-compact groups, as we
show in Section 4. The existence of unitary embeddings for these p-compact groups was already
shown in [CO00] in a different way, but these results were never published. We would also like
to add the comment here that the existence of unitary embeddings for p-local finite groups was
already shown in [CMOS].

In Section 5 we show that if f : X — Y is a finite regular covering of a p-good space Y and X
has a unitary embedding, then so does Y;,/\. This applies to a finite loop space (X, BX,e), since
the p-completion of the universal cover of BX is the classifying space of a p-compact group.
Therefore the existence of unitary embeddings of p-compact groups implies the existence for
BX]/)\. In this section we also show the existence of unitary embeddings for the exotic 3-local
compact groups constructed in [G10] using the results of Section 3.

The following corollary is a consequence of the classification of p-compact groups, the Peter-

Weyl theorem, the existence of unitary embeddings of generalized Grassmannians [C06] and of
DI(4) [Z05], [209], and the results mentioned above.

COROLLARY. Let (S,F,L) be a p-local compact group which models a finite loop space or a
p-compact group. Then there exists a unitary embedding of (S, F, L).

Section 4 also contains a result of independent interest concerning the relationship between
the fusion systems of mapping spaces and centralizer fusion systems. In general, if @ is a
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fully centralized subgroup of .S, it is not known whether the centralizer p-local compact group
(5,Cr(Q),Cr(Q)) has the homotopy type of Map(BQ,|L|})p;- We have the following partial
result, which corresponds to Proposition 4.2.

PROPOSITION. Let X be a p-compact group, S a maximal discrete p-toral subgroup and F the
associated fusion system over S. Let E be a fully centralized subgroup of Z(S). Then the fusion
system Cr(FE) coincides with the fusion system of the p-compact group Cx(E) over Cs(E).

Finally, in Section 6 we consider some of the consequences of the existence of a unitary
embedding of a p-local compact group. We obtain finiteness results for the p-local cohomology of
|£];) and a stable elements formula for the Grothendieck ring K(|£|;)) of vector bundles over | L]}
when the length of the orbit category of centric radical subgroups is small. The stable elements
formula comes from the map

W K(L]) — lim R(P)
O(F°)
induced by the maps ¥,, introduced in Section 3. We show that if [(O(F")) < 3, then ¥ is sur-
jective and if [(O(F¢")) < 2, then W is an isomorphism. In particular, this map is an isomorphism
for the Clark-Ewing, the Aguadé-Zabrodsky p-compact groups and the exotic 3-local compact
groups of [G10].

The organization of the paper is as follows. Section 1 contains an introduction to fusion
systems over discrete p-toral groups and p-local compact groups. The existence of faithful repre-
sentations that are fusion-invariant is shown in Section 2. Unitary embeddings of p-local compact
groups are studied in Section 3. In Section 4 we apply the previous results to the Clark-Ewing
and the Aguadé-Zabrodsky p-compact groups. Section 5 is concerned with unitary embeddings
of finite loop spaces and exotic 3-local compact groups. Finally, in Section 6 we study some of the
consequences of the existence of unitary embeddings in p-local cohomology and vector bundles.
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1. Background on p-local compact groups

In this section we recall the definition of a p-local compact group in the form given in [BLOO07].

Let Z/p>® 2 Z [%] /Z denote the union of the cyclic p-groups Z/p™ under the standard inclusions.

DEFINITION 1.1. A discrete p-toral group is a group P, with normal subgroup Py < P, such that
Py is isomorphic to a finite product of copies of Z/p>, and P/ P is a finite p-group. The subgroup
Py will be called the identity component of P, and P will be called connected if P = Py. Set
mo(P) = P/ Py, the group of components of P.

The identity component Py of a discrete p-toral group can be characterized as the charac-
teristic subgroup of all infinitely p-divisible elements in P, and also as the minimal subgroup of
finite index in P.
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Define rk(P) = k if Py = (Z/p™>)¥, and set |P| = (tk(P), |mo(P)|). We regard the order of a
discrete p-toral group as an element of N2 with the lexicographical ordering. That is, |P| < | P/|
if and only if rk(P) < rk(P’), or rk(P) = rk(P’) and mo(P) < mo(P’). In particular, P’ < P
implies |P| < |P’|, with equality only if P’ = P.

Given two discrete p-toral groups P, @, let Hom(P, ) denote the set of group homomorphisms
from P to @, and let Inj(P, Q) denote the set of monomorphisms. If P and @ are subgroups of a
larger group S, then Homg (P, Q) C Inj(P, Q) denotes the subset of homomorphisms induced by
conjugation by elements of S, and Autg(P) the group of automorphisms induced by conjugation
in S
DEFINITION 1.2. A fusion system F over a discrete p-toral group S is a subcategory of the
category of groups whose objects are the subgroups subcategory of the category of groups whose
objects are the subgroups of S, and whose morphism sets Homz(P, Q) satisfy the following
conditions:

(a) Homg(P, Q) € Homz(P,Q) C Inj(P, Q) for all P,Q < §

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

If F is a fusion system over S and P, Q < S, then we write Homz(P, Q) instead of Morz(P, Q)
to emphasize that morphisms in the category F are all homomorphisms, and Isor (P, Q) for the
subset of isomorphisms in F. Note that Isor(P, Q) = Homz (P, Q) if |P| = |Q|, and Isor(P, Q) =
() otherwise. We also use the notation Autxz(P) = Isox(P, P) and Outz(P) = Autz(P)/Inn(P).
Two subgroups P, P’ < S are called F-conjugate if Isox(P, P') # ().

The fusion systems we consider in this article will all satisfy the following additional condition.
Here, and throughout the paper, we write Syl,(G) for the set of Sylow p-subgroups of G'. Also,
for any P < G and any g € Ng(P), ¢y € Aut(P) denotes the automorphism c,4(z) = grg—*.

DEFINITION 1.3. Let F be a fusion system over a discrete p-toral group S.
— A subgroup P < S is fully centralized in F if |Cg(P)| = |Cs(P")| for all P’ < S that are
F-conjugate to P.

— A subgroup P < S is fully normalized in F if |[Ng(P)| > |Ng(P')| for all P" < S that are
F-conjugate to P.

— F is a saturated fusion system if the following three conditions hold:
(I) For each P < S which is fully normalized in F, P is fully centralized in F, Outz(P) is
finite and Outg(P) € Syl,(Outz(P)).
(II) If P < S and ¢ € Homz (P, S) are such that ¢P is fully centralized, and if we set
Ny ={g € Ns(P) | ¢>Cg¢>_1 € Autg(oP)}
then there is ¢ € Homz(Ng, S) such that ¢|p =
(II1) If P, < < P35 < ... is an increasing sequence of subgroups of S, with Py, = U Pn,

and if qS € Hom(Poo, S) is any homomorphism such that ¢|p, € Homz(F,, S) for all n,
then ¢ € Homz(Px, S).

The motivating example for this definition is the fusion system of a compact Lie group G.
For any maximal discrete p-toral subgroup S of G, we let Fg(G) be the fusion system over S
defined by setting Homz () (P, Q) = Homg (P, Q) for all P,@ < S. One can also define fusion
systems associated to p-compact groups [BLOO7].
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LEMMA 1.4 (Lemma 2.4 in [BLOOT]). Let F be a saturated fusion system over a discrete p-toral
group S with connected component T = Sy. Then the following hold for all P < T.

— For every P’ < S which is F-conjugate to P and fully centralized in F, P’ < T and there
exists some w € Autz(T') such that w)p € Isox(P, P').

— Every ¢ € Homz(P,T) is the restriction of some w € Autxz(T).

DEFINITION 1.5. Let F be any fusion system over a discrete p-toral group S. A subgroup P < S
is called F-centric if P and all of its F-conjugates contain their S-centralizers. A subgroup @ < S
is called F-radical if Outz(@Q) contains no nontrivial normal p-subgroup.

We will denote by F¢ the full subcategory of F whose objects are the F-centric subgroups of
S and by F the full subcategory whose objects are the F-centric radical subgroups of S.

THEOREM 1.6 (Alperin’s fusion theorem). Let F be a saturated fusion system over a discrete
p-toral group S. Then for each ¢ € Isox(P, P'), there exist sequences of subgroups of S

P=Py,P,...,P,=P and Q1,Q2,...Qx
and elements ¢; € Autz(Q;), such that
(a) Q; is fully normalized in F, F-radical, and F-centric for each i ;
(b) Pi_1, P; < Q; and ¢;(P;_1) = P; for each i ; and
(c) p=drodr_10...06¢1.
Proof. See [BLOO07], Theorem 3.6. O

DEFINITION 1.7. Let F be a fusion system over the p-group S. A centric linking system associated
to F is a category £ whose objects are the F-centric subgroups of S, together with a functor

L — F¢

and ”distinguished” monomorphisms P 9p, Aut,(P) for each F-centric subgroup P < S, which
satisfy the following conditions:

(A) 7 is the identity on objects and surjective on morphisms. More precisely, for each pair of
objects P,Q € L, Z(P) acts freely on Morz(P, Q) by composition (upon identifying Z(P)
with dp(Z(P)) < Autz(P)), and 7 induces a bijection

Mor(P,Q)/Z(P) —+ Homz(P,Q)

(B) For each F-centric subgroup P < S and each g € P, 7 sends the element dp(g) €Aut,(P)
to ¢y € Auty(P).

(C) For each f € Morg(P, Q) and each g € P, the following square commutes in £:

P—f>Q

6P(9)l l‘SQ(W(f)(Q))
P-1-q
DEFINITION 1.8. A p-local compact group is a triple (S, F, L), where F is a saturated fusion

system over the discrete p-toral group S and L is a centric linking system associated to F. The
classifying space of the p-local finite group (S, F, £) is the space |L])).
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The orbit category O(F) is the category whose objects are the subgroups of S and whose
morphisms are given by

Homo 7 (P, Q) = Rep(P, Q) = Hom(P, @)/ Inn(Q).

For any full subcategory Fy of F we also consider O(Fy), the full subcategory of O(F) whose
objects are those of Fy.

PROPOSITION 1.9 (Proposition 4.6 in [BLOOT]). Fix a saturated fusion system F over a discrete
p-toral group S, and let Fy C F°¢ be any full subcategory. For any linking system L associated to
Fo, the left homotopy Kan extension B: O(Fp) — Top of the constant functor L —5 Top along
the projection 7o : Lo — O(Fy) is a rigidification of B, and there is a homotopy equivalence:

|Lo| ~ hocolim B
O(Fo

It is possible to construct p-local compact groups associated to compact Lie groups, p-compact
groups and some locally finite discrete groups in such a way that their classifying spaces are
homotopy equivalent to the p-completion of the classifying spaces of the given groups [BLOO07].

2. Fusion-preserving representations

The main result in this section is Theorem 2.9, which shows the existence of a faithful unitary
representation of any saturated fusion system F. All representations in this section are complex
representations.

DEFINITION 2.1. Let F be a saturated fusion system over a discrete p-toral group S. A rep-
resentation p : S — GL(V) is fusion-preserving or F-invariant if for any P < S and any
f € Homz(P,S), we have an isomorphism pjp = psp) o f. We will also refer to p or V' as a
representation of (S, F).

DEFINITION 2.2. We say that a class-invariant map x : S — C is fusion-preserving or F-invariant

if for any P < S and any f € Homg(P,S), we have Xpip = Xp|(Pyos-

LEMMA 2.3. Let V' be a unitary representation of S. Then V is fusion-preserving if and only if
its character xy is fusion-preserving.

Proof. This follows from Corollary 2.3.21 of [Z05], which shows that two unitary representations
of a locally finite group are isomorphic if and only if their characters are equal. O

Let us consider a discrete p-toral group S of rank n with 7' = Sy and G = m(.S). Given a
representation p : T — GL(V), let ind(V) be the finite-dimensional vector space CG ® V. This
vector space can be identified with CS ®7 V, where [s,v] = [st~%, p(t)(v)] for t € T. Then S
acts on ind3 (V) by s'[s,v] = [s’s,v]. This action is well defined and linear, so it determines a
finite-dimensional representation ind3(p) : S — GL(CG ® V).

PROPOSITION 2.4. Let F be a saturated fusion system over S and p : T — U(m) a representation
that is invariant under Autz(T) and such that x,(x) =0 if x € PNT — Py for some P € F.
Then ind3(p) : S — U(m|S/T|) is a fusion-preserving representation of S. Moreover, if p is
injective, so is indg(p).
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Proof. Let p = indasl(p). We will show that p is F-invariant. Let P be a subgroup of S in F¢
and ¢ : P — S in F. Let X be a set of coset representatives for S/T.

. |Glxp(p) ifpeTnP
X5(p) = Z Xp(s™ ps) = { 0 g otherwise
seX ’

since ¢g belongs to Autg(T) C Autxz(T) for all s € S and we are assuming that p is Autxz(T)-
invariant. By the hypotheses, we actually have:

N |Glx,(p) ifpe P
Xp(p) = { 0 otherwise.

Since ¢(P) also belongs to F', we have similarly:

X0s(P) :{ 1Glxo(¢(p)) if d(p) € G(P)o

0 otherwise.

Note that P is the characteristic subgroup of infinitely p-divisible elements of P. Thus, p € P
if and only if ¢(p) € ¢(P)o. In fact, ¢ restricts to a homomorphism ¢ : Py — ¢(P) in F. By
Lemma 1.4, ¢ extends to a map 1 € Autxz(T"). Therefore, for p € Py:

Xp(0(P)) = Xp(@(P)) = X, (¥(P)) = Xp(P)

Thus Xpip = Xpio(p)od-

Now, let ¥ : Q — S in F. By Alperin’s fusion theorem 1.6, ¥ can be factored into automor-
phisms of F-centric radical subgroups of S via certain inclusions. That is, ¥ = ¢ 0¢pm—_10...0¢;
where ¢; € Autz(P;) and the groups P; are F-centric radical. And so the previous paragraph
shows that Xpig = Xpjp@)ow> that is, p is fusion-invariant. The last statement is a general property
of induced representations. ]

The rest of this section shows the existence of representations of T" with the characteristics
needed to apply Proposition 2.4. For this purpose, it will be convenient to recall Pontryagin du-
ality for second countable locally compact abelian groups. For more details on this construction,
see chapter V of [P39], particularly Sections 30 through 35.

DEFINITION 2.5. Let G be a locally compact abelian group. Its Pontryagin dual G* is the group
of continuous group homomorphisms from G to S!.

THEOREM 2.6. The assignment G — G* is an exact contravariant endofunctor in the category
of second countable locally compact abelian groups and (G*)* is naturally isomorphic to G.

Proof. Theorem 31 in Chapter V of [P39] shows that this is an endofunctor. Theorem 32 in
Chapter V of [P39] shows that (G*)* is isomorphic to G. This isomorphism is clearly natural.
The exactness follows from this duality. O

Every continuous homomorphism Z/p> — S factors through Z/p*>, and it is well known
that the endomorphism group of Z/p> is Z;,. Therefore the dual of Z/p> is Z;. By Theorem
36 in Chapter V of [P39], the dual of (Z/p>)™ is (Z)™. Equip (Z/p>)™ and (Z,)™ with the
coordinate-wise actions of ZQ. Group homomorphisms between discrete p-tori are equivariant
with respect to this Zﬁ—action. It is easy to check that if f is a group homomorphism between
discrete p-tori, then f* is Z;\—equivariant, that is, f* is a map of Zlg\-modules.

We use additive notation for Z/p> and multiplicative notation for the action of Z1/9\ on
(Z/p>)™. So if a € Zj) and = € (Z/p™)™, we denote by ax the result of the coordinate-wise
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action of a on z. Given b = (b1, ba,...,by,) in (Zg)m, we denote by pp the homomorphism from
(Z/p>)" to Z/p> that takes an element (x1,...,z,) to bix1 +bexa + ...+ byz,. And we denote
by ¢, the composition of p, with the standard inclusion Z/p> — S*.

LEMMA 2.7. Let T be a discrete p-torus of rank n and K a discrete p-subtorus of T of rank
m < n. Then there exist b, ..., b"~™ in (Z;))™ such that an element x in T belongs to K if and
only if pyi(x) =0 for alli =1,...,n —m.

Proof. Consider the Pontryagin dual j* of the inclusion j : K — T'. Since the duality functor is
exact, j* is onto and as Zj’o\ is a principal ideal domain, the kernel of j* is also a free Zg—module.
Therefore we get a short exact sequence of ZZ/;-modules.

0> (2" s ()" = (2)" ——0

The map g is represented by an n x (n — m)-matrix B with entries in Z;,. Applying the duality
functor again we obtain a short exact sequence

0 —— (Z/p>)" = (Z/p)" — L (Z /=) — 0

where ¢* is represented by the transpose of B. It is now clear that the rows b!,..., 0" ™ of BT
satisfy the conditions of the statement. O

LEMMA 2.8. Let P < S. There is a representation pp : T — U(m,) such that x,,(z) = 0 if
zePNT-F

Proof. Note that this immediate if T'N P = Py, in which case we can take any representation of
T'. Since T satisfies this condition, we can assume that Py is a strict subgroup of T" and therefore
rank(P) = rank(FPy) = m < n = rank(T).

Consider the inclusion j : Py — T. By Lemma 2.7, there exist b',...,b" ™ in (Z;)\)" such
that an element x in T belongs to j(P) if and only if pyi(z) =0 for all ¢ = 1,...,n — m. Note
that PNT = Py x Z for some finite abelian p-group Z. We define now

n—m

pp= QD y Dy &...0 05 "),

i=1
where r is the exponent of Z and € is the trivial 1-dimensional representation of T'. Now let
y € PNT — Py, which can be written as y = xz with z € Py and z € Z — {1}. Since the order
of z divides r, so does the order of ¢(z) for any 1-dimensional representation ¢ of Z, and so
©(z)" = 1. But note that ¢ (2) # 1 for some i because z does not belong to Py, that is, ¢ (z) is
an rth root of unity different from 1 and so it is a solution of the equation 1 +z+... 42"~ = 0.
Then we have:

k
Xop () = H(l +op(y) + en(y) + .+ on ()

I

s
I
—

(14 (2) + @p(2) + -+ 6 (2) =0
where the second equality follows because ¢y (x) = 1 for all <. And so pp(y) = 0 if y belongs to
POT - P, 0

THEOREM 2.9. Let F be a saturated fusion system over a discrete p-toral group S. There exists
a faithful unitary representation of S which is fusion-preserving.
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Proof. By Lemma 2.8, for each P in F there is a representation pp : T — U(m,;) such that
Xpp(x) =0if x € PNT — Py. Recall that Autz(7") is a finite group and consider

op= & wop,

weAutx(T)

where w*pp = pp o w. This representation is invariant under the action of Autz(7") and if
x € PNT — Py, then:

X¢>P($) = H Xw*pP(x) = pr(x) ) H Xw*pp (x) =0

weAut (T 1r£weAut #(T)

If P and @ are conjugate by an element s € S, the conjugation c; takes PNT to @ NT and Py
to Qo. f y € QNT — Qo, then y = ¢s(x) for some z € PNT — Py and

Xop(Y) = Xop (€s(2)) = Xgpoc. () = Xop(x) =0
since ¢, € Auty(T) and ¢p is Auty(T)-invariant. Therefore ¢p is such that xg4,(y) = 0 if
y € QNT — Qo for any Q that is S-isomorphic to P.
Since there are a finite number of S-conjugacy classes of subgroups in F¢ (Corollary 3.5 in
[BLOOT]), we can construct
v= ) o¢r

[PleFer
where [P] denotes the S-conjugacy class of P in F. It is clear that x,(z) =0ifz € QNT — Qo
for any @ in F° . By Proposition 2.4, the existence of a fusion-preserving representation of S
follows.
If ¢ is faithful, Proposition 2.4 shows the existence of a faithful fusion-preserving represen-
tation. Otherwise, given a faithful representation a of T', such as the standard representation of

T, we consider
ayp = @ w*a
weAutx(T)
Note that p = 1) ® ay is invariant under the action of Autz(T) and if y € PNT — Py for some
P in F° then

Xp(Y) = Xu(¥)Xa, (y) =0
Each pp contains the trivial 1-dimensional representation as a subrepresentation, and therefore

so does . The representation p is then faithful because it has a as a subrepresentation, which
is faithful. The result follows from Proposition 2.4. O

PROPOSITION 2.10. Given a representation p of S, there exists a fusion-invariant representation
« of S such that p is a direct summand of «.

Proof. Let 1 be the representation of T' constructed in the proof of Theorem 2.9. This represen-
tation is invariant under the action of Autz(7") and such that y,(z) =0if v € QNT — Qg for
any @ in F". Now consider the following representation of T

B=yvQ| P wresi(p)

weAutx(T)

This representation still satisfies the same two conditions as ¢ and moreover, it contains res%(p)
as a direct summand because 1 contains the trivial 1-dimensional representation of 1" as a direct
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summand. By Proposition 2.4, the representation a = indg(ﬂ) is fusion-invariant and it contains
p as a direct summand. O

3. Embeddings of classifying spaces

The aim of this section is to find criteria for the existence of unitary embeddings of p-local
compact groups. To be more precise, we make the following definitions:

DEFINITION 3.1. A space X is called quasi-finite at the prime p if the pointed mapping space
Map, (BZ/p, X) is contractible for all choices of basepoint in X. A map f : X — Y is called a
homotopy monomorphism at p if its homotopy fiber F' over any connected component of Y is
quasi-finite at p.

It is easy to check that the composition of homotopy monomorphisms at p is again a homotopy
monomorphism at p. The p-completion map X — Xzé\ is always a homotopy monomorphism for
any connected space X of finite type whose fundamental group is a finite p-group (see proof of
Proposition 3.1 in [DZ87]).

DEFINITION 3.2. Let X be a topological space. A unitary embedding at p of X is a homotopy
monomorphism X — BU(N); for some N > 0. If (S, F, £) is a p-local compact group, a unitary
embedding of (S, F, L) is a unitary embedding at p of [L|}.
PROPOSITION 3.3. Given a map f : |£|$ — X, f is a homotopy monomorphism at p if and only
if f|pg 1s so.
Proof. Consider the diagram:

H F

|

G
G ——BS 2 |ph
L

lﬁBs if
X X

From Theorem 6.3 in [BLO07], one can deduce that Bi: BS — |L£]}) is a homotopy monomor-
phism and the composition of two homotopy monomorphisms is a homotopy monomorphism.
Thus if f is a homotopy monomorphism, so is f|gg.

Conversely, if we assume that f|pg is a homotopy monomorphism, let us show that if we have
o : BZ/p — |L]) such that foa =~ *, then o ~ x. In this case Theorem 6.3 of [BLOO07] shows
that there exists p : Z/p — S such that a ~ Bi o Bp. Then fjggo Bp =~ fo BioBp ~ fa =~ x.
Since fgg is a homotopy monomorphism, Bp ~ * and o >~ Bi o Bp ~ x. O

Because of the homotopy decomposition of the classifying space of (S, F,L) in terms of
the classifying spaces of its F-centric subgroups given in Proposition 1.9, the restriction map
[1£];), BU(n),] — [BS, BU(n),] factors through an inverse limit:

N L R T T
[1£])), BU (n)}] = [hocolim BP, BU (n),] == lim [BP, BU(n);]
O(F° O(F°)
And

lim [BP, BU(n))] = lim Rep(P,U(n)) = Rep” (S,U(n))
O(F*) O(F°)

10
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where the first isomorphism holds by the argument in the proof of Theorem 1.1 (i) in [JMO95],
which does not need the discrete p-toral group to be an approximation of a p-toral group. We are
interested in finding elements in the image of W,, for some n which are faithful representations,
based on the following result:

PROPOSITION 3.4. If there exists a faithful fusion-invariant representation in the image of ¥,
for some n, then there exists a unitary embedding of (S, F,L).

Proof. Let f € Rep” (S,U(n)) be a faithful F-invariant representation of S such that f = ¥, (g)
for some g : |£|; — BU(n),. We claim that g is a homotopy monomorphism at p. By Proposition
3.3, it is enough to show that g|pg is a homotopy monomorphism at p. But this follows from the

fact that g pg is the composition of Bf with the p-completion map BU(n) — BU(n);\, which

are both homotopy monomorphisms at p. O

The behaviour of the maps V¥,, was considered in [W87] in more generality, where obstruc-
tions to the surjectivity and injectivity were found. In this case, given p in Rep” (S, U(n)), the
obstructions for p to be in the image or to have a unique preimage lie in higher limits of the
functors:

Fip : O(]:C)Op — Z(p)—MOd

Py (Map(BP, BU(n)}) Emp) .
We offer next a precise and modified version of the results in [W87] which are suitable for our
purpose.
THEOREM 3.5. Let p € Rep” (S,U(n)) be a representation which respects fusion and for each
i >0, let F’ be the functor defined above restricted to the category O(F¢"). Then
— p belongs to the image of V,, if an obstruction
[Ef] € lim "*'F?
O(Fen)
is zero for all 1 > 1.
— p has a unique preimage under V,, if an obstruction class in
[Uf] € lim "Ff
O(Fer)
is zero for all 1 > 1.

Proof. Higher limits over O(F“") and O(F¢) coincide by Proposition 5.4 in [BLOO07] and Propo-
sition 6.1 (ii) in [JMO92]. The theorem follows from Propositions 3 and 4 of [W87]. O

In this paper we are concerned with the surjectivity of the maps ¥,, up to stabilization. For
this weaker property, we found that we can actually refine our obstructions. For that purpose,
we start by recalling some definitions from [L89].

DEFINITION 3.6. An El-category O is finite if the set of isomorphism classes of objects is finite
and the set of morphisms between any two given objects is finite.

Note that O(F") is a finite El-category by Lemma 2.5 and Corollary 3.5 in [BLOO7].

DEFINITION 3.7. Let O be a finite El-category. The length [(O) of O is the maximum integer n
such that there exist n + 1 different objects xg, x1,...,x, with xo < x1 < ... < xy.

11
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PROPOSITION 3.8. Let ® : O(F") — Z,)-Mod be a functor. Then

lim “(®) =0
(_
O(]_‘CT‘)

for all i > I[(O(F)).

Proof. Corollary 5.5 in [BLOO7] is equivalent to saying that the constant functor Z, has finite
homological dimension as a Z,) O(F")-module. By Proposition 17.31 in [L89], this homological
dimension is bounded by I(O(F¢")). O

Let p: S — U(n) be an F-invariant representation. For any P < S, let Irr(P, p) be the set of
isomorphism classes of irreducible subrepresentations of pp and let R(P, p) be the subgroup of
R(P) generated by Irr(P, p). Note that for any map f: P — @ in F, the representationsp|g o f
and pyp are isomorphic, and so the induced homomorphism R(Q) — R(P) restricts to a group
homomorphism R(Q, p) — R(P, p). We will consider the following contravariant functor

R(—,p);\ : O(.FCT) — Z(p) — Mod

P R(Pp) ez Zy) = P Z).
Irr(P,p)

Proposition 3.10 will show that this functor is naturally isomorphic to Fij if the representation
p is faithful and the centralizers of the subrepresentations of p satisfy a stability condition.

First we need an auxiliary lemma that extends Proposition 4.4 of [DZ87] to discrete p-toral
groups (see also Theorem 1.1 (ii) of [JMO95] and Theorem 5.1 of [N91] for analogous results).
We introduce some notation inspired by this article. For a compact Lie group G, let BG be the
topological category with one object and G as the space of automorphism of this object. Given
two categories C' and D and a functor F : C' — D, let Hom(C, D) be the category whose only
object is F' and whose morphisms are natural transformation from F' to F. Note that if G and
H are topological groups and f : H — G is a group homomorphism there is an equivalence of
topological categories

BCq(f(H)) — Hom(BH, BG)sf

that takes the object of BCq(f(H)) to the functor Bf, and the morphism g € Co(f(H)) to the
natural transformation given by g € G.

LEMMA 3.9. If P is a discrete p-toral group, G is a compact Lie group such that my(G) is a finite
p-group, and p : P — G is a homomorphism, then the map induced by taking classifying spaces

[BHom(BP, BG)p,), — [Map(BP, BG)g,)
is a homotopy equivalence.
Proof. Let P be the union of an increasing sequence P; < P < ... of finite subgroups, as in

Lemma 1.9 of [BLOOT]. Since G is artinian with respect to closed subgroups, there is an integer
k such that if n > k, then Cq(p(P)) = Ca(p(Py)).

Since mp(G) is a finite p-group, by Proposition 6.22 of [DW94], there is an integer m such
that if n > m, then the restriction map Map(BP, BG}))p, — Map(BP,, BG}))p, is a homotopy
equivalence.

12
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Let N be the maximum of £ and m and consider the following commutative diagram

[BHom(BP, BG)p,)) Map(BP, BG)p, Map(BP, BG}) B,

| | |

[BHom(BPy, BG)g,);; — [Map(BPy, BG)p,|, — Map(BPx, BG})g,

where the vertical maps are induced by the inclusion ¢ : Py — P and the horizontal maps
by taking classifying spaces. We have already shown that the first and last vertical maps are
homotopy equivalences and composite of the lower horizontal maps is a homotopy equivalence
by [JMO92, Theorem 3.2]. This proves the lemma. O

PrOPOSITION 3.10. Let p : S — U(V) be a faithful F-invariant representation. Assume the
decomposition p = @n;u; in irreducible representations is such that the standard inclusion
U(n;) — U(M) induces an isomorphism in w,_y for all M > n; for each i. Then if k > 0 is even,
then the functors F} and R(—, ,0)2 are naturally isomorphic, and if k is odd, then F{ is the zero
functor.

Proof. There is an equivalence of topological categories BCy vy (p(P)) — Hom(BP,BU(V))s,
for each P < S, as we mentioned above. Taking a functor to its geometric realization induces a
homotopy equivalence

[B Hom(BP, BU(V))BP]Q — [Map(BP, BU(V)))B,]

by Lemma 3.9. The composition BCy v (p(P)),, — [Map(BP, BU(V),))B,] is a homotopy equiv-
alence, which we claim it is natural as functors O(F") — HoTop. It is clear that this composition
is a natural transformation of functors <" — HoTop, so we only need to check both functors
descend to O(F"). Let a be an element of Rep z(Q, P) represented by f : Q — P. This map is
determined by a up to conjugation by an element of P so the map Bf : BQ) — BP is determined
up to homotopy. By precomposition we get a map
[Map(BP, BU(V);)5,] = [Map(BQ, BU(V);)5(s,)] = [Map(BQ, BU(V);) ]

determined up to homotopy by a. On the other hand, pfp~! : p(Q) — p(P) is given by conjuga-
tion by an element of U(V) and determined by a up to conjugation by an element of p(P). The
induced map Cy vy (p(P)) = Cyv)(p(Q)) is uniquely determined, since conjugation by an ele-
ment of p(P) is the identity. Therefore the map BCy vy (p(P));, = BCy)(p(Q)), is determined
by a.

By definition, the rigidification B : O(F¢") — Top is such that there is a natural homotopy
equivalence of functors from B to hoo B : O(F) — HoTop. Therefore there is a homotopy
equivalence, natural as functors O(F<") — HoTop

Map(BP, BU(V);) 3, = Map(BP, BU(V)) B,
In particular, for any k£ > 1, there is a natural isomorphism of functors O(F") — Zpy — Mod

i (BCuqw (p(P)p) = m (Map(BP, BU(V);) 5,

For each P < S, we decompose

pp= P b

Irr(P,p)

13
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into irreducible representations, and if n is the minimum of the n;’s, then clearly b; > n. If
a; : P — U(W;), then the decomposition can be expressed by Proposition 2.3.15 of [Z05] as the
isomorphism induced by the evaluation map:

@ W; @ Homp(W;, V) = V,
W;elrr(P)

and so Cy vy (p(P)) = ﬂC’U(biWi)(biai(P)) = ﬂAut(HomP(Wi, V)) = r[U(bi), where ﬂ denotes
the restricted product. Hence we have a natural equivalence

BCyvy(p(P))) ~ ler(Pp)BCU(biWi)(biai(P))z/a\‘

We will now understand how maps between centralizers translate into maps of these unitary
groups. We have an analogous decomposition

po= P &b
Irr(Q,p)
with 8; : @ — U(Z;) and d; > n. Given a map f : Q — P, since p is F-invariant, we have

pip © [ = pg- Via f, the representations W; decompose as a sum of Zj and so again have an
isomorphism

&b B 2 @ Homg(Z, W) | @ Homp(W;, V) -V
W €lrr(P) \ Zkelrr(Q)
Note that the map f induces a homomorphism Cy,w,)(bici(P)) — Cyy(p o f(Q)) which
takes Aut(Homp(W;, V)) to Aut(ED 7, cpre(q) Homeq(Zk, Wi) @ Homp (W5, V). It is clear that the
component Aut(Homp(W;, V) — Aut(Homg(Zy, W;) @ Homp(W;, V) is given by the diagonal
inclusion in blocks.

Let k = 2j and fix a generator ¢ of m;_1(U). Let r be the smallest integer such that the
standard inclusions U(r) — U(s) induce an isomorphism on my;_; for all s > r. For each
s > r, we let ¢; be the generator of m;_1(U(s)) which maps to ¢ under the standard inclusion
m2j—1(U(s)) — m2j—1(U), which is an isomorphism . Consider the isomorphisms:

Ff, = o, (Map(ép, BU(V)}) Emp) > 195 (BCyvy (p(P))0)

T2 (ler(P’p)BCU(biWi)(biai(P))g/a\>
" (lermpBU(b")g )

= o1 <ler(P,p)U(bi)$>

~ P z,

Irr(P,p)
= R(P,p) ®z Z;D\

I

12

where the fifth isomorphism follows since b; > n and m;—_1(U) = Z. We claim that this com-
position of isomorphisms is a natural isomorphism. We have already shown that the first two
are natural isomorphisms, so we only need to show naturality for the composition of the last
four isomorphisms. Indeed, a morphism f : ) — P induces the diagonal inclusion of blocks

14
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U(b;) — U(mygb;) for each decomposition of W; into Zi. And this inclusion induces multipli-
cation by mj on the homotopy groups. If we let p; be the image of ¢, in R(P,p) under the
composition of the last two isomorphisms, then this is mapped to its decomposition into irre-
ducible representations of () via f : Q — P. If k is odd, the same chain of isomorphisms gives
the zero functor since then 71 (U) = 0. O

LEMMA 3.11. Let p : S — U(n) be a faithful F-invariant representation. Then there exists a
positive integer My such that for each M > My, the obstructions [Eé‘;[ fl] are zero. The rep-
resentation Mp belongs to the image of Wy, if the obstructions [Eé\:[ ?] vanish for all i with
3 <2+ 1< I(O(F)). Moreover, these obstructions lie in the Z,y-modules:
<(_91(1]1:_161?)214»1]%(_’p);\
Proof. By Proposition 3.8, given any JF-invariant representation 7 of S, we only need to deal with
a finite number of obstructions [E] ], namely, when i+1 < [(O(F")). Let pjg = n1p1 ®. .. O nspis
be a decomposition as a direct sum of irreducible representations. Since the homotopy groups of
unitary groups stabilize, we can choose a positive integer My such that the standard inclusions
induce isomorphisms 7;(BU (Moyn;)) = 7j(BU(N)) for all 1 < j < I(O(F")), for all i and for all
N 2 Monz'.
If M > My, then the representation M p satisfies the hypothesis of Proposition 3.10 and so
Fé\/l P = 0if k is odd, and F ,jw ?is naturally isomorphic to R(—, p);, if k is even. Recall that by
Theorem 3.5, we have obstructions classes

[EZMP} € lim iT1EMP
OF™)

to the existence of a map f : |L|) — BU(Mn), such that fo Bi = B(Mp). Hence all the

obstructions [Eé\z/[ fl] vanish and the only obstructions remaining are the classes

El*] € dim PR 2 lim 2HR(-, p))
O(Fe) O(F)

for 2 < 2i < I(O(F)). O

LEMMA 3.12. Let p : S — U(n) be an F-invariant representation such that [E’] is torsion for

1 < i < k. Then there is N € N such that Np : S — U(Nn) satisfies [EZ-NP] =0 fori < k.

Proof. Following [CL09], we use the notation X ! ¥y = XV xx EXy for the wreath product
of a space X with Xy.

For each P < S, the space Map(BP, [BU(n), 2 EN:IZ/;)BP‘FX...XBP“)
tion 4.3 in [CL09] shows that the corresponding diagonal maps induce maps which fit into a
commutative diagram:

is p-complete. Proposi-

A

[Map(BP, BU(n)}) 5, 15 N]

7

— Map(BP, [BU('I’L);\ ! EN];{?\)B;)‘PX...XB,D“D

p

Map(BP, BU(n)}) Boyp

for a certain vertical map. Note that BU(n)! Xy is the classifying space of the group U(n)!Xy.
There is a homomorphism U(n) ! Sy — U(Nn) that takes the element ((41,...,4,),0) to the

15
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matrix that has the matrices A; as its diagonal blocks in such a way that the jth block is A, ;).
The composition of the homomorphism U(n) — U(n) ! Xy induced by the diagonal map with
the latter U(n)Xx — U(Nn) corresponds to the map that takes a matrix A to the matrix with
N diagonal blocks equal to A, which we will denote by N A. Consider the induced map:
@;Mm@RBUmmbW,+Mm@RBwNmpmmP

By the previous commutative diagram, we see that the map ¢p factors through the space
Map(BP, BU(n)}) )

BP\P LN ]p'
Let K be the least common multiple of the orders of the elements [E?] for 1 <4 < k and

N_J K K>3
“ 3K ifK<3.

Since N > 3, we can use Lemma 4.2 in [CL09] and so maps induced by ¢p on the homotopy
groups have all the elements of exponent N in their kernel. By Proposition 3.8, the category
O(F¢") has bounded limits at p. Now we note that the conclusion (a) of Theorem 6.2 in [CL09]
still holds if we replace the assumption (i) by the weaker assumption that the induced map
between the higher limits takes the obstructions [Ef | for 1 < i < k to zero. This is the case

because the obstructions are natural and so the induced maps take [E] to [EZN ?]. Therefore we

conclude that [ENP ]=0for1<i<k. ]

(2

THEOREM 3.13. Let p: S — U(n) be a faithful F-invariant representation such that the groups
Ol(i]rrg)QZHR(—, p),, are torsion for 3 < 2i+1 < I(O(F")). Then there is an integer Kq such that
Mp € Im(VUy,) if M > K.

Mop

Proof. By Lemma 3.11, there exists a positive integer My such that the obstructions [FE; ] are

zero and Mjyp is in the image of Wy, if the obstructions
[Eé\fop} c Jﬂ2i+lR(—,p)g
oF")
vanish for all ¢ with 3 < 2i+ 1 < [(O(F°")). By assumption, the classes [Eé‘f °P] are torsion for
3<2i4+1<IO(F)). We can use now Lemma 3.12, from where there is an integer M; such
that [EleMop] =0 for all 1 < i <I(O(F)). Since all limits vanish for any p-local functor when

i > I(O(F°")) by Proposition 3.8, we have [EZ-MlM(’p] = 0 for all ¢ > 0. By Theorem 3.5 and the
naturality of obstructions, if M > Mj; My, then Mp is in the image of W;,,. O

Remark 3.14. The obstructions [UJ.] to uniqueness of a preimage of 7 under the maps v, can be

treated analogously. Therefore given two maps f, g : |[,|$ — BU (n)z/)\ such that ¢, (f) = ¥n(g) =
Bp, if the groups

lim ZR(— o)

aﬁsm,mp

are torsion for 3 < 2i + 1 < I(O(F)), then there is an integer M such that Mf ~ Mg.

For a map k : |L|) — BU(n),, we are denoting by Mk the composition of k& with the map

P Y
BU(n), — BU(Mmn); induced by the diagonal inclusion in blocks.

Remark 3.15. Observe that Theorem 3.13 only depends on the vanishing of obstructions coming
from higher limits of the algebraic functor R(—,p),. As a corollary, we can conclude that if
p:S — U(m) is an F-invariant representation such that Irr(S, p) is a subset of Irr(S, p), where
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p is a faithful representation such that all [Ejp ] vanish, then there is an integer M such that

M M .
[EZICP} — {E%p@u} e lim %#HR(—, p))
O(F<r)
and [E%ff“ ] = 0. And therefore u & Mp extends to a unitary embedding of (S, F, L).

The same observation holds for Remark 3.14. That is, if 4 and p are as in the previous
paragraph and moreover p is such that all [U ]’7 | vanish, then there is an integer N such that Np
and Np & p extend to a unitary embedding and such that

N M .
[Umﬂ = {Uzkp@u} € <h_m2kR<—7P)$
O(F<T)

and [Ué‘g fﬁa“ | = 0. Hence p @ Np has a unique extension to a unitary embedding of (S, F, L).

Now Theorem 3.13 and Proposition 3.4 imply:

THEOREM 3.16. A p-local compact group (S, F,L) with a faithful F-invariant representation
that satisfies the hypothesis of Theorem 3.13 has a unitary embedding.

Every p-local compact group (S, F, L) has a faithful F-invariant unitary representation by
Theorem 2.9 and so the following corollary follows:

COROLLARY 3.17. Let (S, F, L) be a p-local compact group with [(O(F")) < 3. Then it has a
unitary embedding.

4. Unitary embeddings of p-compact groups

In this section we apply the results of Section 3 to show the existence of unitary embeddings of
p-compact groups whose orbit categories of centric radical subgroups have small length, namely
for the Clark-Ewing and the Aguadé-Zabrodsky spaces. The existence of unitary embeddings of
connected p-compact groups, also known as the Peter-Weyl theorem for connected p-compact
groups ([AGMVO08], Theorem 1.6) was proved by using the classification of p-compact groups
[AGMVO08], [AG09], and showing the existence of such embeddings for the irreducible sporadic
p-compact groups. This was done for the generalized Grassmanians in [C06], for the Aguadé-
Zabrodsky and Clark-Ewing spaces in [C00] and for DI(4) in [Z05], [Z09]. The existence for the
Aguadé-Zabrodsky and Clark-Ewing spaces spaces has not been published and we fill this void
in the literature here.

Recall that a p-compact group is a triple (X, BX,e) where X is a space, BX is a p-complete
connected pointed space, H*(X;[F) is finite, and e : X — QBX is a homotopy equivalence from
X. When there is no danger of confusion we will use X to denote (X, BX,e).

The p-completion 7' = Q(BT)) of T = (S")" is called a p-compact torus of rank r. A
homomorphism f : X — Y of p-compact groups is a pointed map Bf : BX — BY. A maximal
torus of a p-compact group X is a monomorphism 7' — X from a p-compact torus of maximal
dimension into X. The Weyl group of X is the group of homotopy classes of maps BT — BT
that commute up to homotopy with the inclusion BT — BX.

All the irreducible p-compact groups are of the form BG;)\, where G is an irreducible compact
connected Lie group, or an irreducible sporadic p-compact groups. Sporadic p-compact groups
belong to one of the following four families: Clark-Ewing spaces, Aguadé-Zabrodsky spaces,
generalized Grassmanians and DI(4).
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For more information on the foundations of p-compact groups from the point of view of
homotopy theory, see [DW94]. We now give some of the details from Section 10 of [BLOO7],
where it is shown that every p-compact group is modeled by a p-local compact group.

Given a discrete p-toral group P, consider the p-compact toral group P = Q(BPPA). Let X
be a p-compact group. A discrete p-toral subgroup of X is a pair (P,u), where P is a discrete
p-toral group and w : P> Xisa homotopy monomorphism. Then X has a maximal discrete
p-toral subgroup (S, f) and given any discrete p-toral subgroup (P, ), it is maximal if and only
if p does not divide x(X/u(P)). The Euler characteristic is taken with respect to homology with
coefficientes in IF,,.

Given such a maximal subgroup (S, f), the fusion system Fg (X)) is the category with discrete
p-toral subgroups of X as objects and morphisms

Homfsyf(X)(P, Q) ={¢ € Hom(P,Q) | Bfipgo B¢~ Bf|BP}~

This is a saturated fusion system over S and the centric subgroups correspond to the centric
subgroups as defined in [CLNO7]. There is a unique centric linking £ ;(X) associated to Fig r(X)
such that |£§ (X )|, =~ BX. The maximal torus of X corresponds to the maximal torus or
connected component T of S and so the Weyl group of X is isomorphic to Autz(7"). Since the
torus of a connected p-compact group is self-centralizing, we have Cg(7T) = T and in particular
S/T is the p-Sylow subgroup of Autz(T).

We now focus on the families of Clark-Ewing and Aguadé-Zabrodsky spaces.

4.1 Clark-Ewing spaces

A Clark-Ewing space is a p-compact group X such that the order of the Weyl group is prime to
p. Let T' be a maximal torus of X and W < GL(m;(T)) the Weyl group endowed with a faithful
p-adic representation. W acts on BT via the above representation. The Clark-Ewing spaces are
homotopy equivalent to the Borel construction X = (BT X W EW);)\

Since the Weyl group has order prime to p, a discrete approximation 7' to T is a maximal
discrete p-toral subgroup of X. Since T is abelian, the fusion system is determined by Autz(T),
which equals the Weyl group W of X. It follows that the only F-centric radical subgroup of T’
is itself and so the depth of O(F“") is zero. By Corollary 3.17, there is a unitary embedding of
BX.

4.2 Aguadé-Zabrodsky spaces

Let G; be one of the groups G2, Gag, G31, G34 from [A89]. In this article it is shown that these
groups have a subgroup isomorphic to XJ,,, where p1o = 3, pag = p31 = 5 and p34 = 7. Let [; be
the category with two objects 0 and 1 and morphisms Homg, (0,0) = G;, Homy,(1,0) = G;/%,,,
Homy,(1,1) = Z(G;) and Homy,(0,1) = (. Consider the functors F! : I; — HoTop defined
by F!/(0) = BSU(p;), F/(1) = BTP~! and Z(G;) acts via unstable Adams’ operations. These
functors lift to a functor F; : I; — Top and the Aguadé-Zabrodsky p-compact groups Xis, Xog,
X31 and X34 are given by:

BX; = (hocﬂ_o?lim F)p.

Note that X2 and X3; were first described in [Z84] using other techniques.

The Weyl group of X; is G;, which has Z/p; as its p;-Sylow subgroup. Therefore a maximal
discrete p-toral subgroup of X; is the semidirect product S; of T; = (Z/p°)Pi~! and Z/p;, where
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Z/p; acts on (Z/p3°)Pi~1 via the inclusion Z/p; — ¥,, that sends 1 to the p;-cycle (1...p;). Let o
be a generator of Z/p;. Let us denote by F; and L; the fusion system and centric linking systems
corresponding to X;.

The subgroup S5; is F;-centric radical and since T; is self-centralized, it is JFj-centric. Now
Outg,(T;) = Autr,(T;) = G; has a p;-Sylow subgroup of rank 1 which is not normal in G; and
so T; is F;-centric radical. The center of \S; is the subgroup generated by (&;,...,&;) € T where
& is a p;th root of unity.

In order to apply the results of Section 3, we need to find the centric radical subgroups of
the Aguadé-Zabrodsky spaces. We will do so by showing that they coincide with the centric
radical subgroups of the centralizer fusion system of Z(S;) and identifying this centralizer with
the fusion system of SU(p;), for which they are known.

LEMMA 4.1. Let F be a saturated fusion system over a discrete p-toral group S, and Q a fully
centralized subgroup of S. Then a subgroup P < Cg(Q) is Cr(Q)-centric if and only if P > Z(Q)
and P(Q is F-centric.

Proof. The proof of the analogous result for fusion systems over finite p-groups, that is, Propo-
sition 2.5 (a) in [BLOO03], is still valid in this context. O

Recall that if X is a p-compact group and (FE,7) is a discrete p-toral subgroup of X, then
Map(BE, BX); is the classifying space of a p-compact group Cx (FE) (see Proposition 5.1, Theo-
rem 6.1 and Proposition 6.8 in [DW94)). If E is a fully centralized subgroup of a p-local compact
group (S, F,L), it is not known in general whether |C(E)|) ~ Map(BE, |L]}))p:, but next
proposition shows a particular case when this holds at least at the level of fusion systems.

PROPOSITION 4.2. Let X be a p-compact group, S a maximal discrete p-toral subgroup and F
the associated fusion system over S. Let E be a fully centralized subgroup of Z(S). Then the
fusion system Cr(E) coincides with the fusion system G of the p-compact group Cx(FE) over
Cs(E).

Proof. Note that both fusion systems are defined over the same Sylow Cg(E). We first show
that they have the same centric subgroups. Let P be centric in C'x(E), then by Lemma 4.1 we

have that P > E and P is F-centric. Since P is JF-centric, there is a homotopy equivalence
Map(BP, BX); ~ BZ(P), where j : BP — BX is the standard inclusion. And then

Map(BP, Map(BE, BX););, ~ Map(BE, Map(BP, BX);); ~ Map(BE, BZ(P)),, ~ BZ(P)

where ¢, k, [ and m are the standard inclusions. Therefore P is centric in G. Conversely, if P is
centric in G, then it contains Z(Cgs(FE)) and so it contains E. There is a homotopy equivalence
Map(BP,Map(BE, BX);)r ~ BZ(P). Now note that

Map(BP,Map(BE, BX);), ~ BCc, (g)(P)

and E < P gives us a map BCx (P)— BCx (E), which in turn induces BCx (P) ~ BC¢, (py(P) —
BCey (g)(P). The inclusion BCx (E) — BX gives rise to a map BCp, (g)(P) — BCx(P), which
is the homotopy inverse. Therefore

BZ(P) ~ Map(BP,Map(BE, BX);) ~ BC¢ (g)(P) ~ BCx(P)

and so P is centric in X.

Now we will show that the centric subgroups in C'x(FE) and G have the same automorphism
groups. Let f be a Cr(FE)-automorphism of a centric subgroup P. Since P contains E, this is
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an F-automorphism of P which restricts to the identity on E. And since F is central in P, we
have a diagram which is commutative up to homotopy:

BP x BE—— BX

]

BP x BE

Taking adjoints, we get another diagram, commutative up to homotopy:

BP —— Map(BE, BX);

by _

BP

which means that f is a G-automorphism of P. Conversely, a G-automorphism ¢ of P defines a
homotopy commutative diagram as above whose adjoint shows that g is a C'r(E)-automorphism
of P. By Alperin’s fusion theorem, morphisms in saturated fusion systems are generated by
automorphisms of centric subgroups, thus G = Cr(FE). O

The following lemma is a more general version of Lemma 3.8 in [CLNO07] for p-local compact
groups.

LEMMA 4.3. Let F be a saturated fusion system over a discrete p-toral group S, and P < Cg(FE),
where E be a fully centralized abelian subgroup of S. Then P is centric in Cx(FE) if and only if
it is centric in F.

Proof. 1t is clear that centric subgroups in F are centric in Cr(E). Let P be centric in Cr(E).
By Lemma 4.1, we have P > F and PE = P is F-centric. O

LEMMA 4.4. Let F; be the fusion system over S; associated to the Aguadé-Zabrodsky space X;.
Let Q # T; be an F;-centric subgroup of S;. Then @ is radical in Cr,(Z(S;)) if and only if it is
radical in F;.

Proof. If Q) is centric, () can not be contained in T;. Therefore, () must be a semidirect product
of QN T; < T; and Z/p;. Since @ is centric, we must have Z(S;) < @ and so Z(S;) < QN T;.
Recall that Z(S;) = Z/p;. If we had Z(S;) = Q@ NT;, then Q = Z/p; x Z/p;, but in this
case ) is F-subconjugate to T; and it can not be centric. Therefore Z(S;) < @ N T; and so
Z(Q) = (QNT;)P = Z(S)).

Restriction induces a map Autr,(Q) — Aut(Z(Q)) = Aut(Z(S;)) = Out(Z(S;)), whose
kernel is Autcﬁ( 7(5,))(Q). Since Inn(Q) is in the kernel of this map, there is an induced map
Outz, (Q) — Out(Z(S;)) with kernel Outcﬂ(z(si))(Q). By Lemma 3.12 in [CLNO7], if ) is radical
in F;, then it is radical in Cz,(Z(S;)). On the other hand, if @ is not radical in F;, let B be a
nontrivial normal p-subgroup of Outr, (Q). Its restriction to Out(Z(S;)) must be trivial because
Out(Z(S:)) = Z/(pi — 1), therefore B is a nontrivial normal p-subgroup of Outc,. (7(s,) (@) O

Now we use Lemma 4.3 with £ = Z(S;) and Lemma 4.4, and so the only other centric radical
subgroups of F; must be centric radical in the fusion system Cx (Z(S;)). This fusion system
coincides with the fusion system of the p-compact group Cx,(Z(S;)) by Proposition 4.2.

By Example 4.14.(1) in [M99], Cn(1,)(Z(S;)) is the normalizer of the maximal torus of
Cx,(Z(Si)). Since p; is odd, N(T;) is a semi-direct product and so Cpr,)(Z(S;)) must be
T; x W(SU(pi)) = N(SU(p;)). Corollary 7.21 in [M02] says that polynomial p-compact groups
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are determined by their maximal torus normalizers and so the p-compact group Cx,(Z(S;)) is
SU(pi)-

From [094], we know that the only other stubborn subgroup of SU (p;) is the subgroup I'; < S;
generated by Z(S;), (1,&,&2,... ,{fi_l) and o. Therefore, the only centric radical subgroups for
any of the Aguadé-Zabrodsky p-compact groups are T, S; and I';. Hence the length of O(F¢")
is one. By Corollary 3.17, there is a unitary embedding of BX;.

5. Unitary embeddings of p-local compact groups

A recent preprint [BLO13] shows that the p-completion of finite loop spaces are also modeled by
p-local compact groups. More generally, if f : X — Y is a finite regular covering space, where X
is the classifying space of a p-local compact group, then Y;,/\ is the classifying space of a p-local
compact group.

ProposITION 5.1. Let f : X — Y be a finite regular covering space of a p-good space Y, and
assume that X has a unitary embedding at p. Then Y;DA has a unitary embedding at p.

Proof. Let m be the group of deck transformations of the covering f and let n be the order
of m. Let h : X — BU(N );\ be a homotopy monomorphism at p. Consider the pretransfer
Y = X" xx, EY, (see Section 1 in [KP72]). We claim that the composition

Y X" xy, ES,

h™xid
(BU(N))™ x5, ES, = (BU(N)M) x5, E,
[(BUN)™)p xx

p

BU(N)1En)p

BU(Nn),

is a homotopy monomorphism at p. This holds because all of the maps in the diagram are
homotopy monomorphisms at p. To see that the horizontal map is a homotopy monomorphism
at p let us consider the following diagram which is commutative up to homotopy and where the
rows are homotopy fibrations

P X AL xn
P Y X" xy, EY,
DINE s B BY,

The map A is a homotopy monomorphism at p because the homotopy fiber is (2X)"~! and QX
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is quasi-finite at p, which follows from the fibration sequence
QX - U(N)) - F - X — BU(N);

Therefore F} is quasi-finite at p and since ¥,/ is finite, F» is also quasi-finite at p. Since h is a
homotopy monomorphism at p, so is the map h"™ x id. The next two vertical maps are homotopy
monomorphism because they are the p-completion of a simply-connected space of finite type and
a homotopy equivalence, respectively. Finally the last map is a homotopy monomorphism at p
because it is induced by the monomorphism of groups U(N)1¥,, — U(Nn).

The map Y — BU(N n);)\ factors through Yp/\ and since Y is p-good, this map is a homotopy
monomorphism at p. ]

Note that the following theorem depends on the existence of unitary embeddings for any
p-compact group.

THEOREM 5.2. Let BX be any path connected space such that QQBX is IF-finite. Then BXI/,\
has a unitary embedding at p. In particular, if (X, BX,e) is a finite loop space, then BX has a
unitary embedding at p.

Proof. Let X = QBX. Since X is Fp-finite, Hyo(X;Z) is finite and therefore the group = =
m1(BX) = mo(X) is finite. So BX is p-good by [BKT72][VIL.5]. Consider the universal cover BZ
of BX which fits into a homotopy fibration sequence

BZ —- BX — Br

Note that Z = QBZ is a connected component of X and thus it is F,-finite. Applying fiberwise
p-completion, we obtain a map of fibrations

Bz 1~ B2z)

Br—— Brn
But now BZ) is p-complete and QBZ,) is Fy-finite. So BZ,) is the classifying space of a p-

compact group. Since BX has a unitary embedding at p, so does BX ;\ = BXI/)\ by Proposition
5.1. O

Now we study the two exotic 3-local compact groups constructed in [G10] from the exotic
3-local finite groups of [DRVO07]. We will use the results in Section 3 to show the existence of
unitary embeddings.

Consider the finite groups

3k 3k 3

S =< s,51,82 | 8> =57 =53 =1,[s1,89] = 1,[s,51] = 59, [, 52] = (5152) % >

for each £ > 1 and form the union S = Uj>1S5 with respect to the inclusions S; — Sk that
take s to t and s; to t3, where ¢ and t; are the generators for the analogous presentation of Sj.
The group S is a discrete 3-toral group, and it is an extension of T = (Z/3°°)? by Z/3. Let z
and zo be the elements of order 3 in 1" corresponding to s; and so via the inclusion S; — S. For
what follows it will be convenient to consider the following two subgroups of S

Ey =< z9,58>
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Vo =< z1,22,8 >

Section 5.4 of [G10] shows the existence of two saturated fusion systems F(2) and F(3)
over S, and respective centric linking systems £(2) and £(3). These fusion systems have three
isomorphism classes of centric radical subgroups, two of which are given by T" and S. The third
is given by the subgroup Ej in the case of F(2) and V; in the case of F(3). Note that neither Ey
nor Vj are subgroups of 7', therefore the length of O(F(7)°") is one.

COROLLARY 5.3. There exist unitary embeddings of (S, F(2),£(2)) and (S, F(3),L(3)).

There is work in progress of A. Gonzalez and A. Ruiz to construct generalizations of these
3-local compact groups for any other prime p, which by construction also satisfy that the length
of the corresponding orbit categories is one.

6. Homological consequences

The existence of unitary embeddings of a p-local compact group (S, F, L) has consequences on
the p-local cohomology and the Grothendieck ring of vector bundles of \E\Q, which we discuss in
this short section.

PRrROPOSITION 6.1. If f: X — BU(n)]/D\ is a unitary embedding at p such that the homotopy fiber
F' is Fp-finite, then H*(X;Z;) is Noetherian.

Proof. H*(X;TF,) becomes a finitely generated H*(BU(M);)\; F,)-module via f by a Serre spec-
tral sequence argument. By the Nakayama lemma, since H7(F}; Zy) ®zy Fp is zero for j large

enough, the same happens for H/ (F; Z;,\). Using again the same Serre spectral sequence argument,
H*(X;Zy,) becomes a finitely generated H*(BU (M);); Z;,)-module via f. Since H*(BU (M ),; Z;,)
is Noetherian, so is H*(X;Z,). O

COROLLARY 6.2. Let (S, F, L) be a p-local compact group with a faithful F-invariant represen-
tation that satisfies the hypothesis of Theorem 3.13. Then H*(|L|);Z;)) is Noetherian.

Proof. By previous proposition, we only need to check that the fiber of a unitary embedding
f +|Ll) — BU(n)) is Fp-finite. Note that the restriction of f to BP for each P < S is a
monomorphism of p-compact groups and so the homotopy fiber Fp is F)-finite. By Puppe’s
theorem [Pu74], the homotopy fiber F' of f is the homotopy colimit of the spaces Fp over the
orbit category. This category has bounded limits at p by Proposition 3.8, and so the Bousfield-
Kan spectral sequence shows that F' is F,-finite. ]

COROLLARY 6.3. Let (S, F,L) be a p-local compact group such that at least one the following
conditions hold:

(i) I(O(FM)) < 3.

(ii) (S, F, L) models a finite loop space or a p-compact group.
(iii) (S,F, L) is one of the exotic 3-local compact groups of [G10)].
Then H*(|L|}); Zy) is Noetherian.

For a p-compact group, this is the main result in [DW94] (combined with [AC13]).
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Let K(X) be the Grothendieck ring of vector bundles over X. We make now the observation
that the maps

W, : [|£]7), BU(n);] = lim Rep(P,U(n)) = Rep” (S,U(n))
O(F¢)
from Section 3 assemble to form a map ¥ : K(|£]) — lim R(P). We denote this limit by R” ()
O(F¢)
because it coincides with the Grothendieck ring of F-invariant representations, as we show now.
Given Y = o — a in RF(S), by Proposition 2.10, there is a faithful F-invariant representation
p such that p = a1 ® 8. But then

x=ai—az= (a1 +8)— (e + ) =p— (a2 + )

Since p and x are F-invariant, so is as + 8, and this proves our claim.

THEOREM 6.4. Let (S, F, L) be a p-local compact group. If (O(F")) < 3, then WV is surjective.
IfI(O(F)) < 2, then ¥ is an isomorphism.

Proof. Let us assume [(O(F°)) < 3 and let y € RF(S). Then x = aj — az, where o; is an
F-invariant. By Proposition 2.10, there exist faithful F-invariant representations p; such that «;
is a subrepresentation of p;. Let p = p1 ® p2. By Theorem 3.13 and Remark 3.15, there is an
integer My such that a; ® Mp and M p belong to the image of W if M > My. Then

ar —ag = (ar + Mop) — (a2 + 2Mop) + Mop

belongs to the image of .

Now let [(O(F")) < 2 and consider f, g : |£]) — BU(n); such that figs ~ g/ps ~ B, where
« is some F-invariant representation of S. By Proposition 2.10, there is a faithful F-invariant
representation p such that « is a subrepresentation of p. By Remark 3.15, there is an integer N
such a @ Np and Np belong to the image of ¥ and have a unique preimage. Let Np = U(h).
Then ¥(f +h) = ¥(g+h) = a® Np, from where f +h ~g+handso f =g in K(I£[}). O

Remark 6.5. This theorem applies to the p-local compact groups which model the Clark-Ewing
or the Aguadé-Zabrodsky p-compact groups and to the exotic 3-local compact groups of [G10].

REFERENCES

A89 J. Aguadé, Constructing modular classifying spaces, Israel J. Math. 66 (1989), no. 1-3, 23-40.

AC13 K.K.S. Andersen, N. Castellana, V. Franjou, A. Jeanneret and J. Scherer, Spaces with Noethe-
rian cohomology, Proc. Edinb. Math. Soc. (2) 56 (2013), no. 1, 13-25.

AGO09 K.K.S. Andersen and J. Grodal, The classification of 2-compact groups, J. Amer. Math. Soc.
22 (2009), no. 2, 387-436.

AGMV08 K.K.S. Andersen, J. Grodal, J.M. Mgller and A. Viruel, The classification of p-compact groups
for p odd, Ann. of Math. (2) 167 (2008), no. 1, 95-210, 2008.

BKT72 A K. Bousfield and D.M. Kan, Homotopy limits, completions and localizations, Lecture Notes
in Mathematics, Vol. 304 (Springer—Verlag, Berlin—New York, 1972).

BLOO03 C. Broto, R. Levi and B. Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc.
16 (2003), no. 4, 779-856.

BLOO07 C. Broto, R. Levi and B. Oliver, Discrete models for the p-local homotopy theory of compact
Lie groups and p-compact groups, Geom. Topol. 11 (2007), 315-427.

24



BLO13

C00

C06

CLO09

CLNO7

CMO08

DRVO7

DW94

D787

G10

JMO92

JMO95

JO96

KP72

L89

M99
MO02
NI1
094

P39

Pu74
W87

784

205

Z09

UNITARY EMBEDDINGS OF FINITE LOOP SPACES

C. Broto, R. Levi and B. Oliver, An algebraic model for finite loop spaces, Preprint at
arXiv:1212.2033v2 (2013).

N. Castellana, Representacions homotopiques de grups p-compactes, Ph.D. Thesis, Universitat
Autonoma de Barcelona (2000).

N. Castellana, On the p-compact groups corresponding to complex reflection groups G(g,r,n),
Trans. Amer. Math. Soc. 358 (2006), no. 7, 2799-2819 (electronic).

N. Castellana and A. Libman, Wreath products and representations of p-local finite groups,
Adv. Math. 221 (2009), no. 4, 1302-1344.

N. Castellana, R. Levi and D. Notbohm, Homology decompositions for p-compact groups, Adv.
Math. 216 (2007), no. 2, 491-534.

N. Castellana and L. Morales, Vector bundles over classifying spaces of p-local finite groups,
Preprint (2008).

A. Diaz, A. Ruiz and A. Viruel, All p-local finite groups of rank two for odd prime p, Trans.
Amer. Math. Soc. 359 (2007), no. 4, 1725-1764 (electronic).

W.G. Dwyer and C.W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite
loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395-442.

W.G. Dwyer and A. Zabrodsky, Maps between classifying spaces, Algebraic topology,
Barcelona, 1986, 106-119, Lecture Notes in Math., 1298 (Springer, Berlin, 1987).

A. Gonzélez, The structure of p-local compact groups, Ph.D. Thesis, Universitat Autonoma de
Barcelona (2010).

S. Jackowski, J. McClure and B. Oliver, Homotopy classification of self-maps of BG via G-
actions. II, Ann. of Math. (2) 135 (1992), no. 2, 227-270.

S. Jackowski, J. McClure and B. Oliver, Self homotopy equivalences of classifying spaces of
compact connected Lie groups, Fund. Math. 147 (1995), no. 2, 99-126.

S. Jackowski and B. Oliver, Vector bundles over classifying spaces of compact Lie groups, Acta
Math. 176 (1996), no. 1, 109-143.

D.S. Kahn and S.B. Priddy, Applications of the transfer to stable homotopy theory, Bull. Amer.
Math. Soc. 78 (1972), 981-987.

W. Liick, Transformation groups and algebraic K -theory, Lecture Notes in Mathematics, 1408.
Mathematica Gottingensis. (Springer—Verlag, Berlin, 1989).

J.M. Mgller, Normalizers of mazimal tori, Math. Z. 231 (1999), no. 1, 51-74.
J.M. Mogller, N-determined p-compact groups, Fund. Math. 173 (2002), no. 3, 201-300.
D. Notbohm, Maps between classifying spaces, Math. Z. 207 (1991), no. 1, 153-168.

B. Oliver, p-stubborn subgroups of classical compact Lie groups, J. Pure Appl. Algebra 92
(1994), no. 1, 55-78.

L. Pontrjagin, Topological Groups, Translated from the Russian by Emma Lehmer. Princeton
Mathematical Series, v. 2. (Princeton University Press, Princeton, 1939).

V. Puppe, A remark on “homotopy fibrations”, Manuscripta Math. 12 (1974), 113-120.

Z. Wojtkowiak, On maps from holim F' to Z, Algebraic topology, Barcelona, 1986, 227236,
Lecture Notes in Math., 1298 (Springer, Berlin, 1987).

A. Zabrodsky, On the realization of invariant subgroups of m.(z), Trans. Amer. Math. Soc.
285 (1984), no. 2, 467-496.

K. Ziemiariski, A faithful complex representation of the 2-compact group DI(4), Ph.D. Thesis,
Uniwersytet Warszawski (2005).

K. Ziemianiski, A faithful unitary representation of the 2-compact group DI(4), J. Pure Appl.
Algebra 213 (2009), no. 7, 1239-1253.

25



UNITARY EMBEDDINGS OF FINITE LOOP SPACES

José Cantarero cantarero@cimat.mx
Centro de Investigacion en Matematicas, A.C. (CIMAT), Jalisco s/n, Mineral de Valenciana,
Guanajuato, GTO 36240, Mexico.

Natalia Castellana natalia@mat.uab.cat

Departament de Matematiques, Universitat Autonoma de Barcelona, Edifici Cec, E-08193
Bellaterra, Spain.

26



