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Abstract

To describe the collective behavior of large ensembles of neurons in neuronal network,
a kinetic theory description was developed in [13, 12], where a macroscopic representation
of the network dynamics was directly derived from the microscopic dynamics of individual
neurons, which are modeled by conductance-based, linear, integrate-and-fire point neu-
rons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the
probability density function of neuronal membrane potentials and synaptic conductances.
In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of
an excitatory-only network. Our numerical solver allows us to obtain the time evolution
of probability distribution functions, and thus, the evolution of all possible macroscopic
quantities that are given by suitable moments of the probability density function. We show
that this deterministic scheme is capable of capturing the bistability of stationary states
observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates
computed from the Fokker-Planck equation is analyzed in this bistable situation, where
a bifurcation scenario, of asynchronous convergence towards stationary states, periodic
synchronous solutions or damped oscillatory convergence towards stationary states, can
be uncovered by increasing the strength of the excitatory coupling. Finally, the computa-
tion of moments of the probability distribution allows us to validate the applicability of a
moment closure assumption used in [13] to further simplify the kinetic theory.

1 Introduction

As large-scale neuronal networks models in computational neuroscience become more common
[49, 53, 51, 29, 41, 24], the need to develop efficient methods and effective representations for
simulating and analyzing the dynamics of large-scale networks becomes urgent. The multitude
of spatial and temporal scales of brain phenomena presents a challenge for model simulation and
reduction. While the modularity of brain regions motivates simplification via spatial coarse-
graining, irregular temporal fluctuations in the neuronal membrane potentials and the synaptic
inputs [50, 46, 3, 45] suggest time-scales for temporal coarse-graining. Various theoretical
approaches, based on spatial and temporal coarse-graining assumptions, have led to the de-
velopment of dimensional-reduced descriptions of the network dynamics through examining a
probabilistic representation of the network dynamics and deriving an evolution equation gov-
erning a probability density function (pdf) [26, 55, 1, 52, 18, 5, 39, 7, 20, 38, 37, 35, 36, 22, 19].
In this work, we propose an efficient numerical scheme for the simulation of a nonlinear Fokker-
Planck equation representation for neuronal network dynamics.
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The starting point for our description of neuronal network dynamics is a system of ordi-
nary differential equations (ODEs) for a network of recurrently coupled, single compartment,
conductance-based, linear integrate-and-fire (LIF) point neurons. In this work, we restrict the
discussion to all-to-all coupled, excitatory neuronal networks. We consider the following dynam-
ical system governing the temporal evolution of the membrane potential Vi and the excitatory
conductance Gi ≥ 0 of the ith neuron in a pool PE of N excitatory neurons,

τ
dVi

dt
= −(Vi − VR)−Gi(Vi − VE) (1)

σE
dGi

dt
= −Gi +

∑
µ

fE δ(t− tiµ) +
SEE

NE

∑
j∈PE

∑
µ

pE
jµδ(t− tjµ) (2)

where VE is the (excitatory) reversal potential, τ is a typical leak (i.e., relaxation) time for
the membrane potential, and σE is the decay time constant of the excitatory conductance. To
complete the LIF dynamical system, whenever a membrane potential, Vi, reaches the spiking
threshold (VT ), the spike time is recorded and Vi is immediately set to the reset potential VR.

The first sum in Equation (2) is due to incoming spikes (i.e., spikes from neurons external
to the network): tiµ is the time of the µ-th incoming spike received by the ith neuron. We model
each incoming spike train with independent realizations of a Poisson process with rate ν0E(t).
The second sum in Equation (2) describes the recurrent interaction with the other neurons in
the pool via neuronal action potentials, i.e., tjµ is the time of the µth spike of the jth neuron.
The parameter SEE describes the strength of network excitatory couplings. The factor of NE

provides the overall normalization of the coupling strength. pE
jµ is the probability of synaptic

release after the arrival of each spike. We model each synaptic release as a Bernoulli process,
with probability equal to p = NE/N , that is, pE

jµ = 1 with probability p; and 0, otherwise.
Following [13, 12], by assuming that the spike trains contributing to the second sum in

Equation (2) to be Poisson, the collective behavior of this network can be described in terms of
a partial differential equation (PDE) for the time evolution of the probability density function
(pdf), ρ(t, v, g), of finding a neuron with a potential v ∈ [VR, VT ] and conductance g ≥ 0 at
time t ≥ 0. A diffusive approximation, by assuming that fE and SEE/NE to be small, then
leads to the following Fokker-Planck equation [12]:

∂tρ = ∂v

{[(
v − VR

τ

)
+ g

(
v − VE

τ

)]
ρ

}
+ ∂g

{
1

σE
(g − ḡE(t)) ρ +

σ2
g(t)
σE

∂gρ

}
(3)

which can be rewritten as a continuity equation

∂tρ(t, v, g) + ∂vJV (t, v, g) + ∂gJG(t, v, g) = 0,

where the fluxes are

JV (t, v, g) =
[(

VR − v

τ

)
+ g

(
VE − v

τ

)]
ρ(t, v, g)

and

JG(t, v, g) =
1

σE
(ḡE(t)− g) ρ(t, v, g)−

σ2
g(t)
σE

∂gρ(t, v, g) .

The effective drift and effective diffusivity in the conductance variable are given by:

ḡE(t) = fEν0E(t) + SEE mE(t) and σ2
g(t) =

1
2σE

(
f2

Eν0E(t) +
S2

EE

NE
mE(t)

)
and are dependent on the average firing rate of the network mE(t). The network firing rate can
be computed as the probability that a neuron at time t achieves the voltage threshold value
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VT . Thus, the firing rate is given by the probability flux at VT , regardless of the value of the
conductance, g, i.e.,

mE(t) =
∫ ∞

0

JV (t, VT , g) dg . (4)

All neurons arriving at the threshold voltage VT emit a spike and we assume that they instan-
taneously relax to their rest value VR. Therefore, we need to supply boundary conditions for
the PDE consistent with the evolution of a pdf for the trajectories of the ODE system (1)-(2)
with a reset boundary condition in the membrane potential variable:

JV (t, VT , g) = JV (t, VR, g) for all g ∈ [0,∞) (5)

JG(t, v, 0) = JG(t, v,∞) = 0 for all v ∈ [VR, VT ) (6)

That is, the flux of spiking neurons at the threshold voltage re-enters instantaneously through
the reset voltage (5) and that no neuron can have negative conductances or a non-decaying
conductance distribution at large conductance values (6). We point out that the g-boundary
condition (6) can be rewritten as ρ(t, v, 0) = 0 and ρ(t, v, g) → 0 for all v ∈ [VR, VT ) as g →∞.
Let us also remark that the v-boundary condition (5) on the threshold voltage implies that
ρ(t, VT , g) = ρ(t, VR, g) = 0 for 0 ≤ g ≤ gT with the critical conductance determined by
VT − VR = gT (VE − VT ) since for excitatory neurons we have VR < VT < VE . For g ≥ gT ,
the boundary condition (5) imposes a relation between ρ(t, VT , g) and ρ(t, VR, g). Let us finally
mention that this kinetic model (3) generalizes other Fokker-Planck equations derived from some
current-based LIF neuronal networks where one considers only the evolution of the voltage (see,
for instance, [7, 6, 30]).

Most studies of the behavior of neuronal networks as described by (1)-(2) through a kinetic
theory [12, 44, 13, 11, 42, 33, 34] have approached the computational simulation of this neuronal
ensemble through direct Monte-Carlo simulations of the stochastic differential system (see also
[47, 40], for details of the numerical schemes). Based on this Fokker-Planck equation, further
dimensional reduction was obtained by a moment closure method [12] and then analyzed both
numerically and theoretically [43, 28].

The direct simulation of the (2+1)-dimensional nonlinear Fokker-Planck equation (3) for a
neuronal network has not been tackled thus far. Furthermore, a deterministic simulation has
several advantages over direct Monte-Carlo simulations due to the results being noise-free, the
accurate resolution of transients, and the possibility of obtaining all macroscopic quantities of
interest directly from suitable moments of the pdf, ρ(t, v, g). A similar strategy was adopted for
obtaining highly accurate resolution of the charged particle transport in semiconductors (see [14,
15, 10] and references therein). One of the possible drawbacks of the deterministic simulation
of the Fokker-Planck equation (3) is its computational cost. However, if one wants to resolve
(1)-(2) by direct Monte-Carlo simulation and obtain good statistics for distribution functions
and for both dynamical transients and stationary states, the number of different realizations
needed can be large, thus making the direct deterministic simulation of (3) competitive with
the Monte-Carlo approach. We will comment on computational costs at the end of Section 2.

The main objectives of this work are then: to propose a highly accurate finite differences
scheme for the solutions of the Fokker-Planck equation (3), to cross-validate it against direct
Monte-Carlo simulations, to analyze its performance, and to study numerically the transients
of the ensemble dynamics showing the appearance of synchronous and asynchronous solutions.
Concerning deterministic methods for related kinetic models, we are only aware of the results in
[4]. There the authors proposed a deterministic scheme to directly solve an integro-differential
equation for a model system that included refractory effect, that is, the spiking neurons went into
a refractory state which could also described by another kinetic integro-differential equation.
The authors also proposed two deterministic methods: One based on a direct upwind first-order
discretization of the advection derivatives together with an implicit time-stepping; the other
based on splitting methods to decrease the computational time, though some time-steps are
done implicitly.
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In our deterministic scheme for the Fokker-Planck equation (3), we approximate the ad-
vection derivatives in voltage by finite-differences WENO (weighted essentially non-oscillatory)
methods developed in [48, 25] for nonlinear systems of conservation laws. Since the voltage
variable does not have diffusion terms (second derivatives in the voltage), a high-order method
is important for the accuracy and stability for the cases where sharp fronts in the voltage de-
velop. Both the advection and the diffusion term in the conductance variable are approximated
together, as is usually done in drift-diffusion equations for semiconductors or in granular media
models [9]; keeping good stability properties of the g-discretization leads to an approximation
scheme known as the Chang-Cooper method. Both approximations are assembled in an ODE
system which is solved by explicit 3rd-order Runge-Kutta methods as in [48]. The accurate
approximation of the v and g derivatives allows us to use explicit time integrators with a fairly
moderate CFL condition. The derivation of this scheme follows similar ideas as in work done
in Boltzmann-Poisson kinetic systems for semiconductors [14, 15, 10]. Also, splitting schemes
were developed for plasmas and semiconductor modelling [17, 16], which may be applied to the
present situation for further computational savings.

After cross-validating our numerical results by direct comparisons to Monte-Carlo simula-
tions, we focus on simulating two behaviors commonly observed in neuronal network models.
We first examine the appearance of bistability. Bi- and multi-stable networks have been used in
models of short term working memory [54], of oculomotor integrators [27], of visual perception
[32] and of neuronal populations involved in decision making [2]. We then examine a model that
exhibits synchronous periodic solutions. Synchronous or oscillatory solutions have been used to
model oscillations observed during cortical processing (for instance, [21, 23]). Various studies
have examined how oscillatory solutions may arise in networks (see, for instance, [1, 7, 6, 8] and
references therein). With our Fokker-Planck solver, we examine the transients as we increased
the connectivity strength. We observe a bifurcation from asynchronous behavior or convergence
towards stationary states to synchronous periodic solutions and back to convergence towards
stationary solution. Finally, one advantage of the full deterministic simulation of the equation
(3) is that we can compute accurately the evolution of the macroscopic moments of the pdf
and their form in stationary states. Using these solutions, we validate the moment closure
assumptions as proposed in [12].

The paper is structured as follows. In Section 2, we present a derivation of the deterministic
scheme and compare its results to direct Monte-Carlo simulations. Section 3 details the simu-
lation results obtained for the bistability issue, the transients synchronous versus asynchronous
behavior and the validation of moment closures. We offer concluding remarks in Section 4.

2 Numerical scheme for the kinetic equation

Our deterministic scheme for the Fokker-Planck equation (3) is based on a fifth order WENO-
finite differences approximation for the advection part in the voltage variable and an “upwind”
scheme mixed with a “θ-scheme”, known as the Chang-Cooper method, for the advection and
the diffusion term in the conductance variable. The evolution in time is done by means of a
TVD third-order Runge-Kutta method. Both finite differences schemes (WENO and Chang-
Cooper methods) produce very accuracy and stable approximations of derivatives on v and g
and allow us to use explicit TVD third-order Runge-Kutta method with a fairly moderate CFL
condition.

To discretize the Fokker-Planck equation, we rewrite (3) as follows:

∂tρ(t, v, g) = −∂vJV (t, v, g) +
σ2

g(t)
σE

∂g

{
M(g) ∂g

(
ρ(t, v, g)
M(g)

)}
(7)

where

M(g) = exp
{
−|g − ḡE(t)|2

2σ2
g(t)

}
.
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and consider uniform meshes in v and g:

vi = VR + i∆v i = 0, . . . , Nv

gj = j ∆g j = 0, . . . , Ng

where ∆v = VT−VR

Nv
and ∆g = gmax

Ng
. The maximum value of the conductance gmax is adjusted

in the numerical experiments in such a way that for all t, v, ρ(t, v, g) ≈ 0 for g ≥ gmax. The
approximations to the point values of the solution ρ(tn, vi, gj) (denoted by ρn

i,j) are obtained
with a dimension by dimension approximation to the derivatives on v and g.

2.1 WENO-scheme

The advection term of the Equation (7) in the voltage variable is approximated using a fifth
order conservative finite difference WENO scheme [48, 25]. The weighted essentially non-
oscillatory scheme was originally developed for hyperbolic conservation laws. These finite dif-
ference methods combine the high accuracy for the smooth parts of the evolution together with
a nice treatment of possible steep fronts by locally weighting the best stencils. We remark
that here, the flux in the voltage is completely linear and thus, this choice of finite differences
approximation is just a simple high-order choice which adapts itself just in case of need due
to the nonlinear effect in the g variable and its possible transmission to the voltage variable
through the drift JV (t, v, g). We give a summary of the WENO method below for the sake of
completeness. The variable g is fixed and we consider the approximation in the v variable:

∂v (a(vi, gj)ρ(tn, vi, gj))︸ ︷︷ ︸
JV (tn,vi,gj)

≈ 1
∆v

(
ĥi+1/2 − ĥi−1/2

)

where a(vi, gj) =
(

VR−vi

τ

)
+ gj

(
VE−vi

τ

)
. To explain the WENO scheme, here we assume that

a(vi, gj) > 0, without loss of generality (otherwise the procedure would just be mirror symmetric
with respect to i + 1/2 when computing ĥi+1/2). We denote by

hi = a(vi, gj)ρ(tn, vi, gj), i = −2,−1, ..., Nv + 2 (8)

where j and n are all fixed. We obtain the numerical flux by

ĥi+1/2 = ω1ĥ
(1)
i+1/2 + ω2ĥ

(2)
i+1/2 + ω3ĥ

(3)
i+1/2

where ĥ
(m)
i+1/2 are the three third order fluxes on three different stencils given by

ĥ
(1)
i+1/2 =

1
3
hi−2 −

7
6
hi−1 +

11
6

hi,

ĥ
(2)
i+1/2 = −1

6
hi−1 +

5
6
hi +

1
3
hi+1,

ĥ
(3)
i+1/2 =

1
3
hi +

5
6
hi+1 −

1
6
hi+2,

The nonlinear weights ωm are given by

ωm =
ω̃m∑3
l=1 ω̃l

, ω̃l =
γl

(ε + βl)2
,

with ε = 10−6, the linear weights γl given by

γ1 =
1
10

, γ2 =
3
5
, γ3 =

3
10

,
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and the smoothness indicators βl given by

β1 =
13
12

(hi−2 − 2hi−1 + hi)
2 +

1
4

(hi−2 − 4hi−1 + 3hi)
2

β2 =
13
12

(hi−1 − 2hi + hi+1)
2 +

1
4

(hi−1 − hi+1)
2

β3 =
13
12

(hi − 2hi+1 + hi+2)
2 +

1
4

(3hi − 4hi+1 + hi+2)
2
.

As usual with this kind of schemes, some ghost points are necessary in the mesh, which
are chosen to impose numerically the boundary conditions (5). This condition for the flux in v
means that for every g if a(t, VT , g) < 0 then JV (t, VT , g) = 0 and consequently JV (t, VR, g) = 0,
otherwise JV (t, VR, g) = JV (t, VT , g). Therefore, for n, j fixed, the values at the ghost points
are defined as: if a(tn, VT , gj) < 0 then h−i = 0 and hNv+i = 0 for i = 1, 2, 3, otherwise if
a(tn, VT , gj) ≥ 0 thus h−i = hNv+1 and hNv+i = hNv+1 for i = 1, 2, 3, using the notation (8).

2.2 Chang-Cooper Method

For the derivatives of the conductance variable in the Equation (7) we follow the Chang-Cooper
method as considered in [9]. Originally, the Chang-Cooper method was designed to preserve
the equilibrium state of the Fokker-Plank equation. Moreover, this scheme is also an entropy
decay preserving method. This feature is important to get accurate behavior for large times
of the discretization scheme in g. In fact, it ensures that the maxwellian equilibria M(g) are
preserved for the discretized scheme in the absence of the external time dependent inputs and
for homogeneous data in v. In the jargon of the numerical conservation law community, this
property is known as well-balanced. Moreover, it keeps the associated Liapunov functional
(called entropy in statistical mechanics) decreasing in time for the scheme. As in the voltage
variable we approximate the term of conductance using finite differences:

∂g

σ2
g(tn)
σE

{
M(gj) ∂g

(
ρ(tn, vi, gj)

M(gj)

)}
≈

Fj+1/2 − Fj−1/2

∆g

where, for n and i fixed, the numerical flux is

Fj+1/2 =
σ2

g(tn)
σE∆g

M̃j+1/2

(
ρj+1

Mj+1
− ρj

Mj

)
and

M̃j+1/2 =
MjMj+1

Mj+1 −Mj
(ln (Mj+1)− ln (Mj))

is a value between Mj and Mj+1. We have used the following notations: Mj = M(gj) and
ρj = ρ(tn, vi, gj). After some computations, see [9] for details, Fj+1/2 can be rewritten as:

Fj+1/2 =
σ2

g(t)
σE∆g

(ρj+1 − ρj) +
σ2

g(t)ω
σE∆g

(θρj + (1− θ)ρj+1) (9)

where ω = ln(Mj/Mj+1) and θ = 1
ω −

1
eω−1 . Now we observe, as we announced above, that

(9) is an “upwind” scheme, mixed with a “θ-scheme”. To conclude with the description of the
numerical approximation in g, we remark that the ghost flux for j = −1 and j = Ng + 1 are
considered null, taking into account the boundary condition for g flux in (6).
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2.3 TVD 3rd-order RK

The evolution in time is implemented by means of the third order TVD Runge-Kutta method
as in [48]:

ρ(1) = ρn + ∆tL(ρn, tn)

ρ(2) =
3
4
ρn +

1
4
ρ(1) +

1
4
∆tL(ρ(1), tn + ∆t)

ρn+1 =
1
3
ρn +

2
3
ρ(2) +

2
3
∆tL(ρ(2), tn +

1
2
∆t),

where L is the approximation to the advection and diffusion terms:

L(ρ(t, g, v), t) ≈ −∂vJV (t, v, g) +
σ2

g(t)
σE

∂g

{
M(g) ∂g

(
ρ(t, v, g)
M(g)

)}
and ∆t is the time step, which is conditioned on the following CFL restriction since an explicit
scheme is considered:

∆t ≤ CFLmin

{
∆v

max |a(vi, gj)|
,

(∆g)2
σ2

g(tn)

σ + ∆g max |Fj+1/2|

}

where we recall that a(v, g) =
(

VR−v
τ

)
+ g

(
VE−v

τ

)
. Due to the accurate approximations of the

WENO-scheme and the Chang-Cooper method of the fluxes, the CFL condition does not yield
restrictive time-stepping.

Finally, since the system is nonlinear due to the firing rate:

mE(t) =
∫ ∞

0

JV (t, VT , g) dg,

which need to be incorporated in a self-consistent fashion, at each time step, we approximate
mE by the composite mid-point rule and re-inject it in the next step. In our simulations we
consider as initial data the product of two different Maxwellian functions in g and v both
normalized to be probability densities, i.e., unit numerical mass. For the bistable systems we
proceed in a different way, as we explain below in Section 3.

2.4 Comparison to Monte-Carlo Simulations

We solve the set of Equations (1)-(2) with a modified second-order Runge-Kutta scheme [47]
with a numerical time-step of 0.01 ms. In a few cases, runs with a numerical time-step of
0.001 ms were performed and no significant quantitative differences were observed. We note
that Equations (1)-(2) are already written in reduced-dimensional units, in which only time
has dimensions, in ms; see, for instance, [31]. We set the network pool size to be N = 100, 000
neurons, each one connected to NE = 100 neurons in the direct Monte-Carlo simulations. The
parameters of the system are as follows: τ = 20 ms, σE = 3 ms, VE = 14/3, VT = 1, VR = 0
and we set equal the rest and reset potentials. We set fE = 10 ms and SEE = 0.05 for our
comparison between the Monte-Carlo and Fokker-Planck solvers.

We compare our numerical Fokker-Planck solver to direct Monte Carlo simulations via the
following examples, going from stationary to non-stationary cases.

Stationary case. Case (A) We consider a network in which the rate of input Poisson process
ν0E(t) = A with constant A ∈ [1000, 1500].

Figure 1 compares the network firing rate versus mean ginp = fEν0E between the Monte-
Carlo and the Fokker-Planck simulations. We observe very good agreement between the simu-
lations. In Figure 5 we compare the pdfs between the two simulations. We fix A = 1400 and
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we display marginal probability distribution functions ρv and ρg for the stationary solutions.
Again we observe that the numerical results from the two solvers are in excellent agreement. We
would like to point out that for the results from the deterministic Fokker-Planck simulations, the
distribution functions ρv and ρg were obtained by numerical integrations of ρ, therefore there
was not need for us to consider derived Fokker-Planck systems (say, by assuming a closure
hypothesis) for ρv or for ρg. Consequently, we obtain the time evolution of these distribution
functions as we observe in Figure 6, ρg at times 0.05, 0.1 and 0.15 is the same (steady state),
however, at time 0.05 ρv has not still achieved the stationary state.

Non stationary case. We also analyze cases where the rate of Poisson process is not constant
in time. We consider the two following cases:

• Case B: The input Poisson process has a rate that depends on time continuously

ν0E(t) = A (1 + ε sin(ωt))

B1: A = 1500, ε = 300, ω = 8π

B2: A = 1000, ε = 200, ω = 8π

• Case C: The input Poisson process has a rate that has a discrete jump in time

ν0E(t) = Aθ(t− t0) + B , θ being the Heaviside function

A = 500, B = 1000, t0 = 1

Figures 2 and 3 compares the time evolution of the firing rate for the Case B (B1 and B2),
whereas Figure 4 shows the firing rate in the Case C. Comparing these figures we observe how
the shape of the external input is reflected in the evolution of the firing rate.

We note that simulating accurately ensembles of 100, 000 LIF neurons to get good statistics
took 20-50 times longer than the corresponding Fokker-Planck equation in all cases. The
difference is more pronounced in the cases where we are interested in the dynamical transients
(for instance, in Case C), when a larger number of ensembles (and/or realizations) are needed
for a accurate resolution of the pdfs.

3 Simulation Results

Here we illustrate the use of our numerical Fokker-Planck solver by examining the solutions
to the following problems, produced by different choices of input forcing, ν0E : stationary case
with a unique steady state, non-stationary solutions and a case exhibiting bistability. Finally,
using our numerical solver we check the closure condition (10) in a variety of circumstances.

3.1 Bistability

Bistability is typical of systems with strong excitatory feedback. Even in situations as in
Case A above, there are circumstances, when the recurrent excitatory coupling is sufficiently
strong, that exhibit two distinct steady state solutions (with different firing rates) for the
same input forcing. For instance, let us consider an example with the following parameters:
fE = 1/200 s, SEE = 0.2, NE = 200 and σE = 2ms. Figure 7 shows bistability in the firing rate
vs. input strength diagram. Here the two different branches have different firing rates and can
be distinguished by the choice of initial data. To obtain this firing rate diagram we fit for an
input of fEν0E = 11 as initial data the product of two different Maxwellian functions: one for
the variable g and other one for the variable v, each normalized to have unit numerical integral
(since ρ(v, g) is a probability distribution). Then the stationary solution of this problem is
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considered as initial data for the system with fEν0E = 10.9, whose stationary state is taken as
initial data for the case fEν0E = 10.8 and and so on, to obtain the firing rates of the top branch.
However, to obtain the lower branch, it is not necessary to produce in a similiar fashion, since
this branch appears considering the same initial data for all the input fEν0E .

In Figures 8-9, we display temporal evolution (of network firing rates) and the (eventual)
steady-state pdf for fEν0E = 10.8 which is in the parameter regime exhibiting bistability.
Figure 8 shows the evolution of the firing rate and the stationary solution for the lower branch,
whereas Figure 9 shows the same for the upper branch. Note that we needed to start with initial
data with high firing rates to access the upper branch. We also remark that there are damped,
oscillatory transients in the latter case. Let us next turn to the development of oscillatory
solutions.

3.2 Synchronous versus Asynchronous solutions

In Figure 10 we exhibit the firing rate for fEν0E = 11 where there is no bistability. (Thus any
initial data will eventually approach the unique, high firing rate, steady state solution.) The
damped oscillatory transients may be the signature of oscillatory solutions that are nearby in
parameter space. Therefore, let us now consider the following case, SEE = 0.15, NE = 500,
fE = 0.002 s and fEν0E = 12, where firing rate is periodic in time; see Figure 11. In fact, if we
fix NE = 500, fE = 0.002 s and fEν0E = 12 and vary SEE , we obtain Figure 12, which shows
that there is a range in the excitatory coupling strength, SEE , approximately, between 0.13 and
0.17 where periodic solutions appear (and outside of this interval oscillations do not happen).
For small SEE , solutions go quickly to the steady state but for slightly larger values over this
interval (SEE ≥ 0.17), the solution reaches the steady state in an oscillatory way, starting with
huge oscillations which vanish after some time.

In the case where 0.13 ≤ SEE ≤ 0.17 and periodic solutions appear, we also observe that
maximum firing rate increases when SEE is increased. Figure 12 shows that the maximum value
for SEE = 0.13 is around 250 spikes/sec, while for SEE = 0.14 is around 350 spikes/sec, for
SEE = 0.16 is less than 500 spikes/sec and for SEE = 0.17 is more than 500 spikes/sec. At the
same time, as we increase SEE the frequency of oscillations increases also. However, eventually
the oscillations damp out again and steady state solutions are obtained and asynchronous
behavior is observed again (see last panel of Figure 12).

3.3 Validation of moment closure assumptions

Equation (3) is a nonlinear (2+1) dimensional problem and requires a numerical solver, one of
which has been the subject of this paper. To simplify the mathematical representation further,
one can project out the g variable by defining the conditional moments µn(v) =

∫∞
0

gnρ(g|v)dg,
for n = 1, 2, ... where ρ(g|v) is the (conditional) pdf of g given v and can be computed from
ρ(t, v, g) = ρ(g|v)ρv(t, v). However, this will lead to a hierarchy of moment equations, where
the dynamical equations for lower order moments depend on higher order moments. To close
this hierarchy, in [12] the authors postulated a closure condition

Σ2(t, v) = σ2
g(t), (10)

for the conditional variance, Σ2(t, v) ≡ µ2(t, v) − µ2
1(t, v), and derived a system of two (1+1)

dimensional PDEs for ρv(t, v) =
∫∞
0

ρ(t, v, g)dg and µ1(t, v):

∂tρv(t, v) = ∂v

{[(
v − VR

τ

)
+ µ1(t, v)

(
v − VE

τ

)]
ρv(t, v)

}
(11)

∂tµ1(t, v) = − 1
σE

[µ1(t, v)− ḡ(t)] +
σ2

g(t)
ρv(t, v)

∂v

[(
v − VE

τ

)
ρv(t, v)

]
+

[(
v − VR

τ

)
+ µ1(t, v)

(
v − VE

τ

)]
∂vµ1(t, v). (12)
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With our numerical scheme we can validate the closure assumption Σ2(t, v) = σ2
g(t) (10)

since we can easily compute moments of the distribution function. Figure 13 compares the
conditional variance Σ2(t, v) with the variance σ2

g(t) for different values of A in Case A where
unique, steady state solutions exist. We note that, in the steady state, the closure condition is
satisfied, on average, away from the v-boundaries. More precisely, the maximum L∞ difference
of the two variances occurs at v = 1 (for all but the briefest of initial transients). In Figure 14
we observe similar behavior in the case of where bistable solutions exist. In general, we observe
that the closure assumption is reasonable for most values of v, away from the boundaries.

4 Conclusions

Our numerical Fokker-Planck solver is an efficient and accurate way of simulating the effec-
tive dynamics of a large-scale LIF neuronal network. This deterministic representation of the
dynamics at the macroscopic level allows us to efficiently track the temporal evolution of the
pdfs and to obtain any macroscopic quantities of the network dynamics. In this work, we have
validated our numerical scheme by comparing it with stochastic Monte Carlo simulations. We
have also used our numerical solver to analyze a series of numerical examples. In future work,
we will extend our numerical scheme to networks with both excitatory and inhibitory couplings
and to networks with spatial dependencies. This future project is not a direct nor obvious
modification of the scheme developed in this paper: the boundary conditions in voltage are
more complicated when networks with both excitatory and inhibitory couplings are considered,
more variables (and thus more equations) are needed, the spatial dependence has to be clarified
at the level of the Fokker-Plank equation, etc. Therefore, the work included in this paper is an
essential step towards simulating realistic, large-scale neuronal network behavior.
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Figure 1: Evolution on time of the firing rate for Case A. Comparison between Monte Carlo
and deterministic simulations.
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Figure 2: Evolution on time of the firing rate for Case B1. Comparison between Monte Carlo
and deterministic simulations.
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Figure 3: Evolution on time of the firing rate for Case B2. Comparison between Monte Carlo
and deterministic simulations.
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Figure 4: Evolution on time of the firing rate for Case C. Comparison between Monte Carlo
and deterministic simulations.
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Figure 5: Comparison between Monte Carlo and deterministic simulations for the stationary
distribution functions ρv and ρg in the Case A with A=1400.
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16



10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 110

10

20

30

40

50

60

70

80

90

f!

Fi
rin

g 
Ra

te
 (s

pi
ke

s/
se

c)

Figure 7: Stationary firing branches in Case A where fE = 1/200 s, SEE = 0.2, NE = 200 and
σE = 2ms.
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branch in Case A where fE = 1/200 s, SEE = 0.2, NE = 200, σE = 2ms and fEν0E = 10.8 .
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Figure 9: Evolution on time of the firing rate and stationary distribution function for the upper
branch in Case A where fE = 1/200 s, SEE = 0.2, NE = 200, σE = 2ms and fEν0E = 10.8.
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Figure 10: Evolution on time of the firing rate in the Case A where fE = 1/200 s, SEE =
0.2, NE = 200, σE = 2ms and fEν0E = 11.
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on time of the firing rate (top) and the distribution functions ρv (left bottom) and ρg (right
bottom) in two different time: t =0.91474 s and t =1.082 s.
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Figure 12: Evolution on time of the firing rates for different values of SEE for Case A with
constant: NE = 500, fE = 0.002 s and fEν0E = 12.
From top to bottom and left to right: SEE = 0.1,SEE = 0.12, SEE = 0.13, SEE = 0.14,
SEE = 0.16, SEE = 0.17, SEE = 0.18 and SEE = 0.2.20
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Figure 13: For Case A validation of the closure (10).
Left: A = 1200. Right: A = 1400.
Top: Σ2(v), σ2

g and |Σ2(v)−σ2
g | as functions of v for the stationary solution, which was reached

before 0.5 s.
Middle: Evolution on time of the L∞-norm of Σ2(v)− σ2

g .
Bottom: Maximum value of v where |Σ2(v)− σ2

g | reaches the value ||Σ2 − σ2
g ||∞.
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Figure 14: For Case A where fE = 1/200 s, SEE = 0.2, NE = 200, σE = 2ms and fEν0E = 10.8
validation of the closure (10).
Left: Lower branch. Right: Upper branch.
Top: Σ2(v), σ2

g and |Σ2(v)− σ2
g | as functions of v for the stationary solution.

Middle: Evolution on time of the L∞-norm of Σ2(v)− σ2
g .

Bottom: Maximum value of v where |Σ2(v)− σ2
g | reaches the value ||Σ2 − σ2

g ||∞.
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