Beltrami equations with coefficient in the fractional Sobolev space $W^{\theta,\frac{2}{\theta}}$

Antonio L. Baisón, Albert Clop and Joan Orobitg.

Abstract

In this paper, we look at quasiconformal solutions $\phi : \mathbb{C} \to \mathbb{C}$ of Beltrami equations

 $\partial_{\overline{z}}\phi(z) = \mu(z)\,\partial_z\phi(z).$

where $\mu \in L^{\infty}(\mathbb{C})$ is compactly supported on \mathbb{D} , $\|\mu\|_{\infty} < 1$ and belongs to the fractional Sobolev space $W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$. Our main result states that

$$\log \partial_z \phi \in W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$$

whenever $\alpha > \frac{1}{2}$. Our method relies on an *n*-dimensional result, which asserts the compactness of the commutator

$$[b, (-\Delta)^{\frac{\beta}{2}}]: L^{\frac{np}{n-\beta p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$$

between the fractional laplacian $(-\Delta)^{\frac{\beta}{2}}$ and any symbol $b \in W^{\beta,\frac{n}{\beta}}(\mathbb{R}^n)$, provided that 1 .

1 Introduction

A Beltrami coefficient is a function $\mu \in L^{\infty}(\mathbb{C})$ with $\|\mu\|_{\infty} < 1$. By the well-known Measurable Riemann Mapping Theorem, to every compactly supported Beltrami coefficient μ one can associate a unique homeomorphism $\phi : \mathbb{C} \to \mathbb{C}$ in the local Sobolev class $W_{loc}^{1,2}$ such that the Beltrami equation

$$\partial_{\overline{z}}\phi(z) = \mu(z)\,\partial_z\phi(z)$$

holds for almost every $z \in \mathbb{C}$, and at the same time, $|\phi(z) - z| \to 0$ as $|z| \to \infty$. One usually calls ϕ the principal solution, and it is known to be a K-quasiconformal map with $K = \frac{1+\|\mu\|_{\infty}}{1-\|\mu\|_{\infty}}$, since

$$|\partial_{\overline{z}}\phi(z)| \le \frac{K-1}{K+1} |\partial_z\phi(z)|$$
 at almost every $z \in \mathbb{C}$.

²⁰¹⁰ Mathematics Subject Classification. 30C62 (33J46)

Key words and phrases. Quasiconformal mapping, Beltrami equation, Fractional Sobolev spaces, Beltrami operators.

Recent works have shown an interest in describing the Sobolev smoothness of ϕ in terms of that of μ . As noticed already at [5], remarkable differences are appreciated under the assumption $\mu \in W^{\alpha,p}$, depending on if $\alpha p < 2$, $\alpha p = 2$ or $\alpha p > 2$. In this paper, we focus our attention on the case $\alpha p = 2$.

It was proven at [5] that if $\mu \in W^{1,2}$ then ϕ belongs to the local Sobolev space $W^{2,2-\epsilon}_{loc}$ for each $\epsilon > 0$ (and further one cannot take $\epsilon = 0$ in general). The proof was based on the elementary fact that

$$\mu \in W^{1,2} \qquad \Rightarrow \qquad \log(\partial_z \phi) \in W^{1,2}. \tag{1}$$

In particular, $\log \partial_z \phi$ enjoys a slightly better degree of smoothness than $\partial_z \phi$ itself. It is a remarkable fact that this better regularity cannot be deduced only from the fact that $\partial_z \phi \in W_{loc}^{1,2-\epsilon}$ for every $\epsilon > 0$. Somehow, this means that $\log \partial_z \phi$ contains more information than $\partial_z \phi$.

Similar phenomenon had been observed much earlier in the work of Hamilton [6], where it is shown that

$$\mu \in VMO \quad \Rightarrow \quad \log(\partial_z \phi) \in VMO.$$
 (2)

Again, the VMO smoothness of $\log(\partial_z \phi)$ cannot be completely transferred to $\partial_z \phi$ itself. Indeed, the example $\phi(z) = z (\log |z| - 1)$, in a neighbourhood of the origin, has VMO Beltrami coefficient (at least locally) but clearly $D\phi \notin VMO$.

The VMO setting is interesting in our context since it can be seen as the limiting space of $W^{\alpha,\frac{2}{\alpha}}$. Certainly, the complex method of interpolation shows that

$$[VMO, W^{1,2}]_{\alpha} = W^{\alpha, \frac{2}{\alpha}}, \qquad 0 < \alpha < 1$$

(see for instance [12]). Thus, it is natural to ask if a counterpart to implication (1) holds in $W^{\alpha,\frac{2}{\alpha}}$. In the present paper, we prove the following theorem.

Theorem 1. Let $\alpha \in (\frac{1}{2}, 1)$. Let μ be a Beltrami coefficient with compact support and such that $\mu \in W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$. Let ϕ be the principal solution to the \mathbb{C} -linear Beltrami equation

$$\partial_{\overline{z}}\phi = \mu \,\partial_z\phi.$$

Then, $\log(\partial \phi) \in W^{\alpha, \frac{2}{\alpha}}(\mathbb{C}).$

The proof of Theorem 1 is based on two facts. The first one is the following a priori estimate for linear Beltrami equations with coefficients belonging to $W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$.

Theorem 2. Let $\alpha \in (0,1)$ and $1 . Let <math>\mu, \nu$ be a pair of Beltrami coefficients with compact support, such that $\||\mu| + |\nu|\|_{\infty} \le k < 1$ and $\mu, \nu \in W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$. For every $g \in W^{\alpha, p}(\mathbb{C})$ the equation

$$\partial_{\overline{z}}f - \mu \,\partial_z f - \nu \,\overline{\partial_z f} = g$$

admits a solution f with $Df \in W^{\alpha p}(\mathbb{C})$, unique modulo constants, and such that the estimate

$$\|Df\|_{W^{\alpha,p}(\mathbb{C})} \le C \, \|g\|_{W^{\alpha,p}(\mathbb{C})}$$

holds for a constant C depending only on k, $\|\mu\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}$ and $\|\nu\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}$.

Theorem 2 is sharp, in the sense that one cannot take $p = \frac{2}{\alpha}$. Thus, Theorem 1 shows that $\log \partial_z \phi$ enjoys better regularity than $\partial_z \phi$ itself.

The study of logarithms of derivatives of quasiconformal maps goes back to the work of Reimann [11], where it was shown that the real-valued logarithm $\log |\partial_z \phi| \in BMO$ whenever $\|\mu\|_{\infty} < 1$. References involving the complex logarithm $\log \partial_z \phi$ also lead to [1]. More recently, in [3] the authors obtained sharp bounds for the BMO norm of $\log \partial_z \phi$ also with the only assumption $\|\mu\|_{\infty} < 1$.

The second main ingredient in the proof of Theorem 1 is a compactness result for commutators of pointwise multipliers and the fractional laplacian, which holds in higher dimensions and has independent interest. In order to state it, given a measurable function $u : \mathbb{R}^n \to \mathbb{R}$ we denote

$$D^{\beta}u(x) := \lim_{\epsilon \to 0} C_{n,\beta} \int_{|x-y| > \epsilon} \frac{u(x) - u(y)}{|x-y|^{n+\beta}} \, dy.$$

$$\tag{3}$$

This is a principal value representation of the fractional laplacian $(-\Delta)^{\frac{\beta}{2}}$, whose symbol at the Fourier side is

$$\widehat{D^{\beta}u}(\xi) = \widehat{(-\Delta)^{\frac{\beta}{2}}u}(\xi) = |\xi|^{\beta}\,\hat{u}(\xi).$$

The operator D^{β} can also be seen as the formal inverse of I_{β} , the classical Riesz potential of order β , which can be represented as

$$\widehat{I_{\beta}u}(\xi) = |\xi|^{-\beta} \,\hat{u}(\xi).$$

With this notation, a function u belongs to $W^{\beta,p}$, 1 , if and only if <math>u and $D^{\beta}u$ belong to L^p , with the corresponding equivalent norm. Analogously, $u \in \dot{W}^{\beta,p}$ if and only if $D^{\beta}u \in L^p$.

Let us remind that if T and S are two operators, one usually calls $[T, S] = T \circ S - S \circ T$ the *commutator* of T and S.

Theorem 3. Let $\beta \in (0,1)$ and $b \in W^{\beta,\frac{n}{\beta}}(\mathbb{R}^n)$. Then, the commutator

$$[b, D^{\beta}]: L^{\frac{np}{n-\beta p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$$

is bounded and compact whenever 1 .

The boundedness of the commutator can be seen as a consequence of fractional versions of the Leibnitz rule. For the compactness, the Fréchet-Kolmogorov characterization of compact subsets of L^p is combined with the cancellation properties of the kernel of the commutator. Also, in the proof of Theorem 1 one uses Theorem 3 with $\beta = 1 - \alpha$. This explains the restriction $\alpha > \frac{1}{2}$ in Theorem 1, as what one really uses is that $\mu \in W^{1-\alpha,\frac{2}{1-\alpha}}(\mathbb{C})$. Note that this space contains $W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$ if and only if $\alpha > \frac{1}{2}$.

A detailed proof of Theorem 3 is provided at Section 2. In Section 3, we find a priori estimates for generalized Beltrami equations with coefficients in $W^{\theta,\frac{2}{\theta}}$, and prove Theorem 1 and Theorem 2.

Acknowledgements. The three authors are partially supported by the projects 2014SGR75 (Generalitat de Catalunya), MTM2013-44699 (Ministerio de Economía y Competitividad) and Marie Curie Initial Training Network MAnET (FP7-607647). A. Clop is also supported by the Programa Ramón y Cajal.

2 Proof of Theorem 3

The proof of Theorem 3 we present here is based on classical ideas, see for instance [10]. We will need the following auxilliary result about the Leibnitz rule for fractional derivatives.

Proposition 4. (Kenig-Ponce-Vega's Inequality [8]) Let $\beta \in (0,1)$ and 1 . Then the inequality

$$\|D^{\beta}(fg) - fD^{\beta}g\|_{p} \le C \|D^{\beta}f\|_{\frac{n}{\beta}} \|g\|_{\frac{np}{n-\betap}}.$$

holds whenever $f, g \in \mathcal{C}^{\infty}_{c}(\mathbb{R}^{n})$.

With this result at hand, we immediately get that the commutator

$$[b, D^{\beta}]: L^{\frac{np}{n-\beta p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$$

admits a unique bounded extension. Remarkably,

$$\left\| [b, D^{\beta}] \right\|_{L^{\frac{np}{n-\beta p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)} \le C \left\| b \right\|_{\dot{W}^{\beta, \frac{n}{\beta}}(\mathbb{R}^n)}.$$

As a consequence, if $b_n \in \mathcal{C}^{\infty}_c(\mathbb{R}^n)$ is such that

$$\lim_{n \to \infty} \|b_n - b\|_{\dot{W}^{\beta, \frac{n}{\beta}}(\mathbb{R}^n)} = 0$$

then

$$\lim_{n \to \infty} \|[b_n, D^{\beta}] - [b, D^{\beta}]\|_{L^{\frac{np}{n-\beta p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)} = 0$$

Thus, we are reduced to prove Theorem 3 with the extra assumption $b \in C_c^{\infty}(\mathbb{R}^n)$. To this end, we observe that the commutator $C_b = [b, D^{\beta}]$ can be represented as an integral operator

$$\begin{split} C_b f(x) &= b(x) \, P.V. \int K(x,y) \, (f(x) - f(y)) \, dy - P.V. \int K(x,y) \, (f(x) \, b(x) - b(y) \, f(y)) \, dy \\ &= P.V. \int K(x,y) \, (b(y) - b(x)) \, f(y) \, dy \\ &= \int \mathcal{K}(x,y) \, f(y) \, dy \end{split}$$

where

$$\mathcal{K}(x,y) = C_{n,\beta} \, \frac{(b(y) - b(x))}{|y - x|^{n+\beta}}$$

and the principal value has been removed from the last integral because the smoothness of b ensures that $x \mapsto \mathcal{K}(x, y)$ is integrable. For C_b to be compact, we need to prove that the image under C_b of the unit ball of $L^{\frac{np}{n-\beta p}}(\mathbb{R}^n)$ is compact in $L^p(\mathbb{R}^n)$. To this end, we denote

$$\mathcal{F} = \{ C_b f : \|f\|_{L^{\frac{np}{n-\beta p}}(\mathbb{R}^n)} \le 1 \}.$$

The classical Fréchet-Kolmogorov's Theorem asserts that \mathcal{F} is relatively compact if and only if the following conditions hold:

- (i) \mathcal{F} is uniformly bounded, i.e. $\sup_{\psi \in \mathcal{F}} \|\psi\|_{L^p(\mathbb{R}^n)} < \infty$.
- (*ii*) \mathcal{F} vanishes uniformly at ∞ , i.e. $\sup_{\psi \in \mathcal{F}} \|\psi \chi_{|x|>R}\|_{L^p(\mathbb{R}^n)} \to 0$ as $R \to \infty$.
- (*iii*) \mathcal{F} is uniformly equicontinuous, i.e. $\sup_{\psi \in \mathcal{F}} \|\psi(\cdot + h) \psi(\cdot)\|_{L^p(\mathbb{R}^n)} \to 0$ as $|h| \to 0$.

In our particular case, every element $\psi \in \mathcal{F}$ has the form $\psi = C_b f$ with $\|f\|_{L^{\frac{np}{n-\beta p}}(\mathbb{R}^n)} \leq 1$. Thus (i) follows automatically from the boundedness of $[b, D^{\beta}] : L^{\frac{np}{n-\beta p}}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$.

To prove (*ii*), let $R_0 > 0$ be such that $\operatorname{supp}(b) \subset B(0, R_0)$. At points x with $|x| > 3R_0$ we have

$$|C_b f(x)| \le \int \frac{|f(y) \, b(y)|}{|x-y|^{n+\beta}} \, dy \le C \frac{\|b\|_{\infty}}{|x|^{n+\beta}} \int_{B(0,R_0)} |f(y)| \, dy \le C \frac{\|b\|_{\infty}}{|x|^{n+\beta}} \|f\|_q R_0^{n\frac{q-1}{q}}.$$
 (4)

Thus, if $R > 3R_0$ then

$$\int_{|x|>R} |C_b f(x)|^p \, dx \le C_R ||b||_{\infty}^p ||f||_{\frac{np}{n-\beta p}}^p \int_{|x|>R} |x|^{-p(n+\beta)} \, dx \to 0 \qquad \text{as } R \to \infty$$

as needed.

For the proof of (iii), we could proceed as usually, which means to regularize the kernel \mathcal{K} in the diagonal $\{x = y\}$. Then we would prove the compactness of this regularization and finally the limit of compact operators would give us the result. However, a more direct approach is available, since $\|\mathcal{K}(x,\cdot)\|_{L^1(\mathbb{R}^n)}$ is uniformly bounded.

Lemma 5. One has

$$\lim_{h \to 0} \sup_{f \neq 0} \frac{\|C_b f(\cdot + h) - C_b f(\cdot)\|_{L^q(\mathbb{R}^n)}}{\|f\|_{L^q(\mathbb{R}^n)}} = 0$$
(5)

whenever $1 \leq q \leq \infty$.

Proof. We start by observing that

$$\begin{split} \|\mathcal{K}(x,\cdot)\|_{L^{1}(\mathbb{R}^{n})} &= \int_{|x-y|\leq 1} |\mathcal{K}(x,y)| \, dy + \int_{|x-y|>1} |\mathcal{K}(x,y)| \, dy \\ &\leq C \|\nabla b\|_{\infty} \int_{|x-y|\leq 1} |x-y|^{-n-\beta+1} \, dy + C \|b\|_{\infty} \int_{|x-y|>1} |x-y|^{-n-\beta} \, dy \\ &\leq C \left\{ \frac{\|\nabla b\|_{\infty}}{1-\beta} + \frac{\|b\|_{\infty}}{\beta} \right\} := A \end{split}$$

As a consequence, the behavior of $C_b f$ is like the convolution of the function f with a L^1 -kernel. In particular, by Jensen's inequality one gets

$$\|C_b f\|_q \le A \|f\|_q, \qquad 1 \le q \le \infty,\tag{6}$$

so that $C_b: L^q(\mathbb{R}^n) \to L^q(\mathbb{R}^n), 1 \le q \le \infty$.

Towards (5), we need to estimate the translates of C_b . Clearly,

$$\begin{split} \|C_b f(\cdot+h) - C_b f(\cdot)\|_q^q &= \int \left| \int f(y) (\mathcal{K}(x+h,y) - \mathcal{K}(x,y)) \, dy \right|^q \, dx \\ &\leq \int \left(\int |f(y)|^q \, |\mathcal{K}(x+h,y) - \mathcal{K}(x,y)| \, dy \right) \left(\int |\mathcal{K}(x+h,y) - \mathcal{K}(x,y)| \, dy \right)^{\frac{q}{q'}} \, dx \\ &\leq (2A)^{q-1} \, \int \left(\int |\mathcal{K}(x+h,y) - \mathcal{K}(x,y)| \, dx \right) \, |f(y)|^q \, dy \\ &= (2A)^{q-1} \, B(h) \, \int |f(y)|^q \, dy \end{split}$$

where $B(h) = \sup_{y} \|\mathcal{K}(\cdot + h, y) - \mathcal{K}(\cdot, y)\|_{L^{1}(\mathbb{R}^{n})}$. In order to find estimates for B(h), we choose an arbitrary $\rho > 0$ and write

$$\int |\mathcal{K}(x+h,y) - \mathcal{K}(x,y)| \, dx = \int_{|x-y| \le \rho} \dots + \int_{|x-y| > \rho} \dots := I + II.$$

The integrability of \mathcal{K} gives that I is small if ρ is small enough. Indeed,

$$\int_{|x-y| \le \rho} |\mathcal{K}(x,y)| \, dx \le \|\nabla b\|_{\infty} \int_{|x-y| \le \rho} |x-y|^{-n-\beta+1} \, dx = C \frac{\|\nabla b\|_{\infty}}{1-\beta} \rho^{1-\beta}.$$

Moreover, if $x \in B(y, \rho)$ then $x + h \in B(y, \rho + |h|)$ so that

$$\int_{|x-y| \le \rho} |\mathcal{K}(x+h,y)| \, dx \le \int_{|x-(y-h)| \le 2\rho} |\mathcal{K}(x+h,y)| \, dx \le C \frac{\|\nabla b\|_{\infty}}{1-\beta} (\rho+|h|)^{1-\beta}.$$

Therefore, there exists $\rho_0 > 0$ such that if $\rho < \rho_0$ and $|h| < \rho_0/2$ then $I \le \varepsilon/((2A)^{q-1})$. Let us then fix $\rho = \rho_0/2$, and take care of *II*. Note that, since $|h| < \rho_0/2$ and $|x - y| > \rho$, we have

$$\begin{aligned} |\mathcal{K}(x,+hy) - \mathcal{K}(x,y)| &= \left| (b(y) - b(x+h)) \left(\frac{1}{|x+h-y|^{n+\beta}} - \frac{1}{|x-y|^{n+\beta}} \right) \\ &+ \frac{1}{|x-y|^{n+\beta}} (b(x) - b(x+h)) \right| \\ &\leq 2 \|b\|_{\infty} \frac{C|h|}{|x-y|^{n+\beta+1}} + \|\nabla b\|_{\infty} \frac{|h|}{|x-y|^{n+\beta}} \end{aligned}$$

Then, since we fixed $\rho = \rho_0/2$,

$$\begin{split} II &\leq C \|b\|_{\infty} |h| \int_{|x-y| > \rho} \frac{dx}{|x-y|^{n+\beta+1}} + C \|\nabla b\|_{\infty} |h| \int_{|x-y| > \rho} \frac{dx}{|x-y|^{n+\beta}} \\ &\leq C \frac{|h|}{\beta} \left(\frac{\|b\|_{\infty}}{\rho_0^{1+\beta}} + \frac{\|\nabla b\|_{\infty}}{\rho_0^{\beta}} \right). \end{split}$$

Thus, by taking |h| sufficiently small, we see that $II \leq \varepsilon/((2A)^{q-1})$. Hence $B(h) \to 0$ as $|h| \to 0$, and thus (5) follows.

With the above Lemma, the proof of (iii) is almost immediate. Indeed, by (4) we see that

$$\begin{aligned} \|C_b f(\cdot+h) - C_b f(\cdot)\|_p^p &= \int_{|x| \le R} |C_b f(x+h) - C_b f(x)|^p \, dx \\ &+ \int_{|x| > R} |C_b f(x+h) - C_b f(x)|^p \, dx \\ &\le \|C_b f(\cdot+h) - C_b f(\cdot)\|_{\frac{np}{n-\beta p}}^p R^{\beta p} \\ &+ C_R \|b\|_{\infty}^p \|f\|_{\frac{np}{n-\beta p}}^p \int_{|x| > R} |x|^{-p(n+\beta)} \, dx. \end{aligned}$$

at least for $R > 3R_0$. In particular, the last term is small if R is large enough. But for this particular R, and using (5), the penultimate term is also small if |h| is small. Therefore (*iii*) follows. Theorem 3 is proved.

3 Beltrami operators in fractional Sobolev spaces

The regularity theory for Beltrami equations relies on the behavior of the Beurling operator, which is formally defined as a principal value operator,

$$\mathcal{B}f(z) = -\frac{1}{\pi} \text{ p.v.} \int_{\mathbb{C}} f(z-w) \frac{1}{w^2} dA(w).$$

This operator intertwines the ∂_z and $\partial_{\overline{z}}$ derivatives. More precisely, its Fourier representation

$$\widehat{\mathcal{B}f}(\xi) = \frac{\overline{\xi}}{\xi} \ \widehat{f}(\xi).$$

makes it clear that $\mathcal{B}(\partial_{\overline{z}}f) = \partial_z f$, at least when f is smooth and compactly supported. Furthermore, \mathcal{B} is an isometry on $L^2(\mathbb{C})$, and as a Calderón-Zygmund operator, it can be boundedly extended to $L^p(\mathbb{C})$ whenever 1 .

Before proving Theorem 1, we first state and prove the following fact about generalized Beltrami equations. Let us recall that $\overline{\mathcal{B}}$ denotes the composition of \mathcal{B} with the complex conjugation operator, that is, $\overline{\mathcal{B}}(f) = \overline{\mathcal{B}(f)}$.

Proposition 6. Let $\alpha \in (0,1)$. Let $\mu, \nu \in W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$ be compactly supported Beltrami coefficients, with $\||\mu| + |\nu|\|_{\infty} \leq k < 1$. Then the generalized Beltrami operators

$$\mathbf{Id} - \mu \,\mathcal{B} - \nu \overline{\mathcal{B}} : \dot{W}^{\alpha, p}(\mathbb{C}) \to \dot{W}^{\alpha, p}(\mathbb{C})$$

are bounded and boundedly invertible if 1 .

Proof. The operators $\operatorname{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}$ are clearly bounded in $\dot{W}^{\alpha,p}(\mathbb{C})$, since \mathcal{B} preserves $\dot{W}^{\alpha,p}(\mathbb{C})$ (recall that we are assuming $1) and also because if <math>\mu \in L^{\infty}(\mathbb{C}) \cap W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$ then μ is a pointwise multiplier of $\dot{W}^{\alpha,p}(\mathbb{C})$ (similarly for ν). This fact follows directly working on the expression (3) for D^{α} or see [13, p. 250]. Also, the operator $\operatorname{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}$ is clearly injective in $\dot{W}^{\alpha,p}(\mathbb{C})$, as its kernel is a subset of $L^{\frac{2p}{2-\alpha p}}(\mathbb{C})$ were we already know it is injective (see [7] for a proof in the \mathbb{C} -linear setting, and [9] or also [4] for a proof in the general case). Thus, in order to get the surjectivity (and finish the proof by the Open Mapping Theorem) we will prove that $\operatorname{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}$ is a Fredholm operator on $\dot{W}^{\alpha,p}(\mathbb{C})$ with index 0. To do this, it is sufficient if we prove that

$$D^{\alpha}(\mathbf{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}})I_{\alpha} : L^{p}(\mathbb{C}) \to L^{p}(\mathbb{C})$$

is a Fredholm operator of index 0, since both properties stay invariant under the topological isomorphisms

$$D^{\alpha}: \dot{W}^{\alpha,p}(\mathbb{C}) \to L^{p}(\mathbb{C}),$$
$$I_{\alpha}: L^{p}(\mathbb{C}) \to \dot{W}^{\alpha,p}(\mathbb{C}).$$

But this follows easily. Indeed,

$$D^{\alpha}(\mathbf{Id} - \mu \,\mathcal{B} - \nu \,\overline{\mathcal{B}})I_{\alpha} = \mathbf{Id} - D^{\alpha}(\mu \,\mathcal{B} + \nu \,\overline{\mathcal{B}})I_{\alpha}$$
$$= \mathbf{Id} - \mu \,\mathcal{B} - \nu \,\overline{\mathcal{B}} - [D^{\alpha}, \mu] \,\mathcal{B} \,I_{\alpha} - [D^{\alpha}, \nu] \,\overline{\mathcal{B}} \,I_{\alpha}$$

Above, $\operatorname{Id} - \mu \mathcal{B} - \nu \overline{\mathcal{B}}$ is invertible in $L^p(\mathbb{C})$ by [7]. Also, $[D^{\alpha}, \mu] \mathcal{B} I_{\alpha}$ is the composition of the bounded operators $I_{\alpha} : L^p(\mathbb{C}) \to L^{\frac{2p}{2-\alpha p}}(\mathbb{C})$ and $\mathcal{B} : L^{\frac{2p}{2-\alpha p}}(\mathbb{C}) \to L^{\frac{2p}{2-\alpha p}}(\mathbb{C})$ with the operator $[D^{\alpha}, \mu] : L^{\frac{2p}{2-\alpha p}}(\mathbb{C}) \to L^p(\mathbb{C})$, which is compact by Theorem 3. Hence $[D^{\alpha}, \mu] \mathcal{B} I_{\alpha} : L^p(\mathbb{C}) \to L^p(\mathbb{C})$ is compact, and the same happens to $[D^{\alpha}, \nu] \overline{\mathcal{B}} I_{\alpha}$. Thus the term on the right hand side is the sum of an invertible operator with two compact operators. Hence it is a Fredholm operator. The claim follows.

Corollary 7. Let $\alpha \in (0,1)$ and $1 , and let <math>\mu, \nu \in W^{\alpha, \frac{2}{\alpha}}(\mathbb{C})$ be compactly supported Beltrami coefficients with $||\mu| + |\nu||_{\infty} \le k < 1$. Then the equation

$$\partial_{\overline{z}}f - \mu \,\partial_z f - \nu \overline{\partial_z f} = g \tag{7}$$

has, for each $g \in \dot{W}^{\alpha,p}(\mathbb{C})$, a unique solution f such that $Df \in \dot{W}^{\alpha,p}(\mathbb{C})$ and

$$\|Df\|_{W^{\alpha,p}(\mathbb{C})} \le C \|g\|_{W^{\alpha,p}(\mathbb{C})}$$

where C depends only on k, $\|\mu\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}$ and $\|\nu\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}$.

Proof. By simplicity, we assume that $\nu = 0$. Otherwise, the proof follows similarly. First of all, let us observe that if $g \in \dot{W}^{\alpha,p}(\mathbb{C})$ and $\alpha p < 2$ then automatically $g \in L^{\frac{2p}{2-\alpha p}}(\mathbb{C})$ by the Sobolev embedding. On the other hand, and since $W^{\alpha,\frac{2}{\alpha}}(\mathbb{C}) \subset VMO$, we know from [7] that a solution $f \in \dot{W}^{1,\frac{2p}{2-\alpha p}}(\mathbb{C})$ exists, and moreover

$$\|Df\|_{L^{\frac{2p}{2-\alpha p}}(\mathbb{C})} \le C \|g\|_{L^{\frac{2p}{2-\alpha p}}(\mathbb{C})} \le C \|g\|_{\dot{W}^{\alpha,p}(\mathbb{C})}.$$

Our goal consists of replacing the term on the left hand side by $\|Df\|_{\dot{W}^{\alpha,p}(\mathbb{C})}$.

To do this, we first note that $\partial_z f = \mathcal{B}(\partial_{\overline{z}} f)$, since $f \in \dot{W}^{1,\frac{2p}{2-\alpha p}}$. Thus (7) is equivalent to

$$(\mathbf{Id} - \mu \,\mathcal{B})(\partial_{\overline{z}}f) = g$$

Now, from Proposition 6 and our assumption $g \in \dot{W}^{\alpha,p}(\mathbb{C})$, we also know that there is a unique $F \in \dot{W}^{\alpha,p}(\mathbb{C})$ such that

$$(\mathbf{Id} - \mu \,\mathcal{B})F = g \tag{8}$$

for which we know the estimate $||F||_{\dot{W}^{\alpha,p}(\mathbb{C})} \leq C ||g||_{\dot{W}^{\alpha,p}(\mathbb{C})}$ holds. Of course, by the Sobolev embedding, $F \in L^{\frac{2p}{2-\alpha p}}(\mathbb{C})$. From the invertibility of $\mathbf{Id} - \mu \mathcal{B}$ on $L^{\frac{2p}{2-\alpha p}}(\mathbb{C})$, we immediately get

that $F = \partial_{\overline{z}} f$ almost everywhere, and therefore $\partial_{\overline{z}} f \in \dot{W}^{\alpha,p}(\mathbb{C})$. Proving that $\partial_z f \in \dot{W}^{\alpha,p}(\mathbb{C})$ is very easy, as we already knew that $f \in \dot{W}^{1,\frac{2p}{2-\alpha p}}(\mathbb{C})$ and so we can be sure that $\partial_z f = \mathcal{B}(\partial_{\overline{z}} f)$. Thus, $Df \in \dot{W}^{\alpha,p}(\mathbb{C})$ and certainly

$$\|Df\|_{\dot{W}^{\alpha,p}(\mathbb{C})} \le C \, \|F\|_{\dot{W}^{\alpha,p}(\mathbb{C})} \le C \, \|g\|_{\dot{W}^{\alpha,p}(\mathbb{C})}$$

as desired.

Towards the proof of Theorem 1, we denote by C(h) the solid Cauchy transform,

$$\mathsf{C}\,h(z) = \frac{1}{\pi}\,\int_{\mathbb{C}}h(z-w)\frac{1}{w}\,dA(w).\tag{9}$$

This operator appears naturally as a formal inverse to the $\partial_{\overline{z}}$ derivative, that is, the formula $\partial_{\overline{z}} C(h) = h$ holds if $h \in L^p(\mathbb{C})$ and $1 . Another important feature about the Cauchy transform is that <math>\partial C = \mathcal{B}$. The Cauchy and Beurling transforms allow for a nice representation of the principal solution ϕ of the Beltrami equation $\partial_{\overline{z}}\phi = \mu \partial_z \phi$,

$$\phi(z) = z + \mathsf{C}(h)(z),$$

see for instance [2, p. 165]. In this representation, h is a solution to the integral equation

$$(\mathbf{Id} - \mu \,\mathcal{B})(h) = \mu.$$

As a consequence, the invertibility of the Beltrami operators $\operatorname{Id} - \mu \mathcal{B}$ also plays a central role in determining the smoothness of ϕ . In particular, by applying Proposition 6 with $\mu \in W^{\alpha, \frac{2}{\alpha}}$, we see that $Dh \in W^{\alpha, p}$ provided that $p < \frac{2}{\alpha}$, whence $D\phi \in W_{loc}^{\alpha, p}$. As a consequence, by Stoilow's Factorization Theorem (e.g., [2, section 5.5]), the same conclusion holds for any quasiregular solution f of $\partial_{\overline{z}}f - \mu \partial_{z}f = 0$. However, this is not enough for Theorem 1, which we prove now.

Proof of Theorem 1. We will first prove that if $\mu \in W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$ is a compactly supported Beltrami coefficient and $\alpha > \frac{1}{2}$ (this is the point where we use that restriction) the operator

 $T_{\mu} := I_{1-\alpha} \left(\mathbf{Id} - \mu \, \mathcal{B} \right) D^{1-\alpha} : L^{\frac{2}{\alpha}} \left(\mathbb{C} \right) \longmapsto L^{\frac{2}{\alpha}} \left(\mathbb{C} \right)$

is continuously invertible, with lower bounds depending only on $\|\mu\|_{L^{\infty}(\mathbb{C})}$ and $\|\mu\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}$. To do this, we proceed as usually,

$$T_{\mu} = I_{1-\alpha} (\mathbf{Id} - \mu \mathcal{B}) D^{1-\alpha} = \mathbf{Id} - I_{1-\alpha} \mu \mathcal{B} D^{1-\alpha}$$
$$= \mathbf{Id} - \mu \mathcal{B} + I_{1-\alpha} [D^{1-\alpha}, \mu] \mathcal{B}$$

Here, the term $\mathbf{Id} - \mu \mathcal{B}$ is bounded and continuously invertible in $L^{\frac{2}{\alpha}}(\mathbb{C})$ by [7]. Concerning the second term on the right hand side, from $\mu \in W^{\alpha,\frac{2}{\alpha}}(\mathbb{C}) \cap L^{\infty}(\mathbb{C})$ and $\frac{1}{2} < \alpha$ we easily get

that $\mu \in W^{1-\alpha,\frac{2}{1-\alpha}}(\mathbb{C})$. Thus we are legitimate to use Theorem 3 with $\beta = 1 - \alpha$ and $p = \frac{2}{\alpha}$ and get that $[\mu, D^{1-\alpha}]$ is a compact operator from $L^{\frac{2}{\alpha}}(\mathbb{C})$ into $L^{2}(\mathbb{C})$. As a consequence, we obtain that T_{μ} is a Fredholm operator from $L^{\frac{2}{\alpha}}(\mathbb{C})$ into itself, which clearly has index 0. So the desired lower bounds will be automatic if we see that it is injective.

Let $F \in L^{\frac{2}{\alpha}}$ such that $T_{\mu}(F) = 0$. We want to show that F = 0. First, if $F \in \dot{W}^{1-\alpha,2}(\mathbb{C})$ then the result follows easily. Indeed, we can then write $F := I_{1-\alpha}f$ for some $f \in L^2$ and write the equation in terms of f. We get $I_{1-\alpha}(\mathbf{Id} - \mu \mathcal{B})f = 0$. From the classical L^2 theory, we have that f = 0 and hence F = 0. For a general $F \in L^{\frac{2}{\alpha}}$ satisfying $T_{\mu}(F) = 0$ we will prove that necessarily $F \in \dot{W}^{1-\alpha,2}(\mathbb{C})$, and therefore F = 0. To do this, again we decompose T_{μ} in terms of the commutator,

$$(\mathbf{Id} - \mu \mathcal{B})F = I_{1-\alpha}[\mu, D^{1-\alpha}]\mathcal{B}F.$$

Then by Theorem 3 the term on the right hand side above belongs to $\dot{W}^{1-\alpha,2}(\mathbb{C})$, because $F \in L^{\frac{2}{\alpha}}(\mathbb{C})$. Using again that $\alpha > \frac{1}{2}$ one has $\mu \in W^{1-\alpha,\frac{2}{1-\alpha}}(\mathbb{C})$, and therefore we can use Proposition 6 to get that $\mathbf{Id} - \mu \mathcal{B} : \dot{W}^{1-\alpha,2}(\mathbb{C}) \to \dot{W}^{1-\alpha,2}(\mathbb{C})$ is continuously invertible. Hence

$$F = (\mathbf{Id} - \mu \mathcal{B})^{-1} I_{1-\alpha}[\mu, D^{1-\alpha}] \mathcal{B} F$$

belongs to $\dot{W}^{1-\alpha,2}(\mathbb{C})$. The claim follows.

We now finish the proof. Given $\mu \in W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$, we approximate it by $\mu_n \in \mathcal{C}^{\infty}_c(\mathbb{C})$ in the $W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$ topology, in such a way that $\|\mu_n\|_{L^{\infty}(\mathbb{C})} \leq \|\mu\|_{L^{\infty}(\mathbb{C})}$. Then every μ_n admits a principal quasiconformal map ϕ_n , for which the function $g_n = \log \partial_z \phi_n$ is well defined and solves

$$\partial_{\overline{z}}g_n - \mu_n \,\partial_z g_n = \partial_z \mu_n.$$

Therefore

$$(\mathbf{Id} - \mu_n \mathcal{B})\partial_{\overline{z}}g_n = \partial_z \mu_n$$

We use the Fourier representation of the classical Riesz transforms in \mathbb{R}^2 ,

$$\widehat{\mathcal{R}_{j}u}\left(\xi\right) = -i\frac{\xi_{j}}{|\xi|}\widehat{u}\left(\xi\right) \qquad j = 1, 2$$

to represent

$$\partial_{\overline{z}}g = -\pi D^{1-\alpha} (\mathcal{R}_1 + i\mathcal{R}_2)(D^{\alpha}g)$$
$$\partial_{\overline{z}}g = -\pi D^{1-\alpha} (\mathcal{R}_1 - i\mathcal{R}_2)(D^{\alpha}g).$$

As a consequence, we obtain

$$(\mathbf{Id} - \mu_n \,\mathcal{B})D^{1-\alpha}(\mathcal{R}_1 + i\mathcal{R}_2)(D^{\alpha}g_n) = D^{1-\alpha}(\mathcal{R}_1 - i\mathcal{R}_2)(D^{\alpha}\mu_n),$$

and therefore

$$T_{\mu_n}(\mathcal{R}_1 + i\mathcal{R}_2)(D^{\alpha}g_n) = (\mathcal{R}_1 - i\mathcal{R}_2)(D^{\alpha}\mu_n).$$

We recall that both $\mathcal{R}_1 + i\mathcal{R}_2$ and $\mathcal{R}_1 - i\mathcal{R}_2$ are bounded and continuously invertible operators in $L^p(\mathbb{C})$, $1 . Moreover, we have just seen that <math>T_{\mu_n}$ is boundedly invertible in $L^{\frac{2}{\alpha}}(\mathbb{C})$ with bounds depending only on $\|\mu_n\|_{L^{\infty}(\mathbb{C})}$ and $\|\mu_n\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}$. However, each $\|\mu_n\|_{\infty}$ (and respectively $\|\mu_n\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}$) is bounded by a constant multiple of $\|\mu\|_{\infty}$ (respectively $\|\mu\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}$). Hence

$$\begin{split} \|g_n\|_{\dot{W}^{\alpha,\frac{2}{\alpha}}(\mathbb{C})} &= \|D^{\alpha}g_n\|_{L^{\frac{2}{\alpha}}(\mathbb{C})} \\ &\leq C(\alpha) \left\| (\mathcal{R}_1 + i\mathcal{R}_2)D^{\alpha}g_n \right\|_{L^{\frac{2}{\alpha}}(\mathbb{C})} \\ &\leq C\left(\alpha, \|\mu\|_{L^{\infty}(\mathbb{C})}, \|\mu\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}\right) \left\|T_{\mu_n}(\mathcal{R}_1 + i\mathcal{R}_2)(D^{\alpha}g_n)\right\|_{L^{\frac{2}{\alpha}}(\mathbb{C})} \\ &\leq C\left(\alpha, \|\mu\|_{L^{\infty}(\mathbb{C})}, \|\mu\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}\right) \left\|(\mathcal{R}_1 - i\mathcal{R}_2)D^{\alpha}\mu_n\right\|_{L^{\frac{2}{\alpha}}(\mathbb{C})} \\ &\leq C\left(\alpha, \|\mu\|_{L^{\infty}(\mathbb{C})}, \|\mu\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}\right). \end{split}$$

It then follows that g_n is a bounded sequence in $\dot{W}^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$. By the Banach-Alaoglu theorem there exists $h \in \dot{W}^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$ such that

$$\lim_{n \to \infty} \langle g_n, \varphi \rangle = \langle h, \varphi \rangle$$

for each $\varphi \in W^{-\alpha,\frac{2}{2-\alpha}}(\mathbb{C})$. Remarkably, by the weak lower semicontinuity of the norm,

$$\|h\|_{\dot{W}^{\alpha,\frac{2}{\alpha}}(\mathbb{C})} = \|D^{\alpha}h\|_{L^{\frac{2}{\alpha}}(\mathbb{C})} \leq \liminf_{n \to \infty} \|D^{\alpha}g_n\|_{L^{\frac{2}{\alpha}}(\mathbb{C})} \leq C\left(\alpha, \|\mu\|_{L^{\infty}(\mathbb{C})}, \|\mu\|_{W^{\alpha,\frac{2}{\alpha}}(\mathbb{C})}\right).$$

Incidentally, we already knew from the classical theory that ϕ_n converges in $W_{loc}^{1,p}(\mathbb{C})$ to the principal quasiconformal map ϕ associated to μ . In particular, modulo subsequences, $\partial_z \phi_n$ converges to $\partial_z \phi$ almost everywhere. But then g_n converges almost everywhere to $\log(\partial_z \phi)$. It then follows that $\log(\partial_z \phi) = h$ and so we deduce that $\log(\partial_z \phi)$ belongs to $\dot{W}^{\alpha,\frac{2}{\alpha}}(\mathbb{C})$, with the same bound than h. The theorem follows.

References

- L. Ahlfors, *Lectures on quasiconformal mappings*. Second ed., University Lecture Series, 38, American Mathematical Society, Providence, RI, 2006.
- [2] K. Astala, T. Iwaniec and G. Martin, *Elliptic Equations and Quasiconformal Mappings* in the Plane, Princeton Mathematical Series, vol. 47, Princeton University Press, 2009.

- [3] K. Astala, T. Iwaniec, I. Prause, E. Saksman, *Bilipschitz and quasiconformal rotation*, stretching and multifractal spectra, Publ. Math de l'IHS. September 2014.
- [4] A. Clop, V. Cruz,
- [5] A. Clop, D. Faraco, J. Mateu, J. Orobitg, and X. Zhong, Beltrami equations with coefficient in the Sobolev Space W^{1,p}, Publ. Mat. 53 (2009), 197-230.
- [6] D. H. Hamilton BMO and Teichmüller space, Ann. Acad. Sci. Fenn. Ser. A I Math. 13, no. 2 (1989), 213–224.
- T. Iwaniec, L^p-theory of quasiregular mappings, Quasiconformal space mappings, volume 1508 of Lecture Notes in Math., pp 39–64. Springer, Berlin, 1992.
- [8] C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de-Vries equation via the contraction principle, Comm. Pure App. Math. (1993), 46, no. 4, 527–620.
- [9] A. Koski,
- [10] S.G.Krantz, Song-Ying Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications, II, J. Math. Anal. Appl. 258 (2001), no. 2, 642– 657.
- [11] H. M. Reimann Functions of bounded mean oscillation and quasiconformal mappings, Comment. Math. Helv. 49 (1974), 260-276.
- [12] H.M. Reimann and T. Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Mathematic. 1975.
- [13] T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij op- erators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications, 3. Walter de Gruyter & Co., Berlin, 1996.

A. L. Baisón, A. Clop, J. OrobitgDepartament de MatemàtiquesUniversitat Autònoma de Barcelona08193-Bellaterra (Catalonia)