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Beltrami equations with coefficient

in the fractional Sobolev space W θ,2θ

Antonio L. Baisón, Albert Clop and Joan Orobitg.

Abstract

In this paper, we look at quasiconformal solutions φ : C→ C of Beltrami equations

∂zφ(z) = µ(z) ∂zφ(z).

where µ ∈ L∞(C) is compactly supported on D, ‖µ‖∞ < 1 and belongs to the fractional

Sobolev space Wα, 2α (C). Our main result states that

log ∂zφ ∈Wα, 2α (C)

whenever α > 1
2 . Our method relies on an n-dimensional result, which asserts the com-

pactness of the commutator

[b, (−∆)
β
2 ] : L

np
n−βp (Rn)→ Lp(Rn)

between the fractional laplacian (−∆)
β
2 and any symbol b ∈ W β,nβ (Rn), provided that

1 < p < n
β .

1 Introduction

A Beltrami coefficient is a function µ ∈ L∞(C) with ‖µ‖∞ < 1. By the well-known Measurable

Riemann Mapping Theorem, to every compactly supported Beltrami coefficient µ one can

associate a unique homeomorphism φ : C → C in the local Sobolev class W 1,2
loc such that the

Beltrami equation

∂zφ(z) = µ(z) ∂zφ(z)

holds for almost every z ∈ C, and at the same time, |φ(z)− z| → 0 as |z| → ∞. One usually

calls φ the principal solution, and it is known to be a K-quasiconformal map with K = 1+‖µ‖∞
1−‖µ‖∞ ,

since

|∂zφ(z)| ≤ K − 1

K + 1
|∂zφ(z)| at almost every z ∈ C.
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Recent works have shown an interest in describing the Sobolev smoothness of φ in terms of that

of µ. As noticed already at [5], remarkable differences are appreciated under the assumption

µ ∈Wα,p, depending on if αp < 2, αp = 2 or αp > 2. In this paper, we focus our attention on

the case αp = 2.

It was proven at [5] that if µ ∈ W 1,2 then φ belongs to the local Sobolev space W 2,2−ε
loc

for each ε > 0 (and further one cannot take ε = 0 in general). The proof was based on the

elementary fact that

µ ∈W 1,2 ⇒ log(∂zφ) ∈W 1,2. (1)

In particular, log ∂zφ enjoys a slightly better degree of smoothness than ∂zφ itself. It is

a remarkable fact that this better regularity cannot be deduced only from the fact that

∂zφ ∈ W 1,2−ε
loc for every ε > 0. Somehow, this means that log ∂zφ contains more informa-

tion than ∂zφ.

Similar phenomenon had been observed much earlier in the work of Hamilton [6], where it

is shown that

µ ∈ VMO ⇒ log(∂zφ) ∈ VMO. (2)

Again, the VMO smoothness of log(∂zφ) cannot be completely transferred to ∂zφ itself. In-

deed, the example φ(z) = z (log |z| − 1), in a neighbourhood of the origin, has VMO Beltrami

coefficient (at least locally) but clearly Dφ /∈ VMO.

The VMO setting is interesting in our context since it can be seen as the limiting space of

Wα, 2
α . Certainly, the complex method of interpolation shows that

[VMO,W 1,2]α = Wα, 2
α , 0 < α < 1

(see for instance [12]). Thus, it is natural to ask if a counterpart to implication (1) holds in

Wα, 2
α . In the present paper, we prove the following theorem.

Theorem 1. Let α ∈ (12 , 1). Let µ be a Beltrami coefficient with compact support and such

that µ ∈Wα, 2
α (C). Let φ be the principal solution to the C-linear Beltrami equation

∂zφ = µ∂zφ .

Then, log (∂φ) ∈Wα, 2
α (C).

The proof of Theorem 1 is based on two facts. The first one is the following a priori estimate

for linear Beltrami equations with coefficients belonging to Wα, 2
α (C).
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Theorem 2. Let α ∈ (0, 1) and 1 < p < 2
α . Let µ, ν be a pair of Beltrami coefficients with

compact support, such that ‖|µ|+ |ν|‖∞ ≤ k < 1 and µ, ν ∈Wα, 2
α (C). For every g ∈Wα,p(C)

the equation

∂zf − µ∂zf − ν ∂zf = g

admits a solution f with Df ∈Wαp(C), unique modulo constants, and such that the estimate

‖Df‖Wα,p(C) ≤ C ‖g‖Wα,p(C)

holds for a constant C depending only on k, ‖µ‖
Wα, 2α (C)

and ‖ν‖
Wα, 2α (C)

.

Theorem 2 is sharp, in the sense that one cannot take p = 2
α . Thus, Theorem 1 shows that

log ∂zφ enjoys better regularity than ∂zφ itself.

The study of logarithms of derivatives of quasiconformal maps goes back to the work of

Reimann [11], where it was shown that the real-valued logarithm log |∂zφ| ∈ BMO when-

ever ‖µ‖∞ < 1. References involving the complex logarithm log ∂zφ also lead to [1]. More

recently, in [3] the authors obtained sharp bounds for the BMO norm of log ∂zφ also with the

only assumption ‖µ‖∞ < 1.

The second main ingredient in the proof of Theorem 1 is a compactness result for commutators

of pointwise multipliers and the fractional laplacian, which holds in higher dimensions and has

independent interest. In order to state it, given a measurable function u : Rn → R we denote

Dβu(x) := lim
ε→0

Cn,β

ˆ

|x−y|>ε

u(x)− u(y)

|x− y|n+β dy. (3)

This is a principal value representation of the fractional laplacian (−∆)
β
2 , whose symbol at

the Fourier side is

D̂βu(ξ) =
̂

(−∆)
β
2 u(ξ) = |ξ|β û(ξ).

The operator Dβ can also be seen as the formal inverse of Iβ, the classical Riesz potential of

order β, which can be represented as

Îβu(ξ) = |ξ|−β û(ξ).

With this notation, a function u belongs to W β,p, 1 < p < ∞, if and only if u and Dβu

belong to Lp, with the corresponding equivalent norm. Analogously, u ∈ Ẇ β,p if and only if

Dβu ∈ Lp.
Let us remind that if T and S are two operators, one usually calls [T, S] = T ◦ S − S ◦ T the

commutator of T and S.
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Theorem 3. Let β ∈ (0, 1) and b ∈W β,n
β (Rn). Then, the commutator

[b,Dβ] : L
np

n−βp (Rn)→ Lp(Rn)

is bounded and compact whenever 1 < p < n
β .

The boundedness of the commutator can be seen as a consequence of fractional versions of the

Leibnitz rule. For the compactness, the Fréchet-Kolmogorov characterization of compact sub-

sets of Lp is combined with the cancellation properties of the kernel of the commutator. Also,

in the proof of Theorem 1 one uses Theorem 3 with β = 1 − α. This explains the restriction

α > 1
2 in Theorem 1, as what one really uses is that µ ∈ W 1−α, 2

1−α (C). Note that this space

contains Wα, 2
α (C) if and only if α > 1

2 .

A detailed proof of Theorem 3 is provided at Section 2. In Section 3, we find a priori es-

timates for generalized Beltrami equations with coefficients in W θ, 2
θ , and prove Theorem 1

and Theorem 2.

Acknowledgements. The three authors are partially supported by the projects 2014SGR75

(Generalitat de Catalunya), MTM2013-44699 (Ministerio de Economı́a y Competitividad) and

Marie Curie Initial Training Network MAnET (FP7-607647). A. Clop is also supported by

the Programa Ramón y Cajal.

2 Proof of Theorem 3

The proof of Theorem 3 we present here is based on classical ideas, see for instance [10]. We

will need the following auxilliary result about the Leibnitz rule for fractional derivatives.

Proposition 4. (Kenig-Ponce-Vega’s Inequality [8])

Let β ∈ (0, 1) and 1 < p < n
β . Then the inequality

‖Dβ(f g)− f Dβg‖p ≤ C ‖Dβf‖n
β
‖g‖ np

n−βp
.

holds whenever f, g ∈ C∞c (Rn).

With this result at hand, we immediately get that the commutator

[b,Dβ] : L
np

n−βp (Rn)→ Lp(Rn)

admits a unique bounded extension. Remarkably,

‖[b,Dβ]‖
L

np
n−βp (Rn)→Lp(Rn)

≤ C ‖b‖
Ẇ
β, n
β (Rn)

.
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As a consequence, if bn ∈ C∞c (Rn) is such that

lim
n→∞

‖bn − b‖
Ẇ
β, n
β (Rn)

= 0

then

lim
n→∞

‖[bn, Dβ]− [b,Dβ]‖
L

np
n−βp (Rn)→Lp(Rn)

= 0

Thus, we are reduced to prove Theorem 3 with the extra assumption b ∈ C∞c (Rn). To this

end, we observe that the commutator Cb = [b,Dβ] can be represented as an integral operator

Cbf(x) = b(x)P.V.

ˆ

K(x, y) (f(x)− f(y)) dy − P.V.
ˆ

K(x, y) (f(x) b(x)− b(y) f(y)) dy

= P.V.

ˆ

K(x, y) (b(y)− b(x)) f(y) dy

=

ˆ

K(x, y) f(y) dy

where

K(x, y) = Cn,β
(b(y)− b(x))

|y − x|n+β
and the principal value has been removed from the last integral because the smoothness of b

ensures that x 7→ K(x, y) is integrable. For Cb to be compact, we need to prove that the image

under Cb of the unit ball of L
np

n−βp (Rn) is compact in Lp(Rn). To this end, we denote

F = {Cbf : ‖f‖
L

np
n−βp (Rn)

≤ 1}.

The classical Fréchet-Kolmogorov’s Theorem asserts that F is relatively compact if and only

if the following conditions hold:

(i) F is uniformly bounded, i.e. supψ∈F ‖ψ‖Lp(Rn) <∞.

(ii) F vanishes uniformly at ∞, i.e. supψ∈F ‖ψ χ|x|>R‖Lp(Rn) → 0 as R→∞.

(iii) F is uniformly equicontinuous, i.e. supψ∈F ‖ψ(·+ h)− ψ(·)‖Lp(Rn) → 0 as |h| → 0.

In our particular case, every element ψ ∈ F has the form ψ = Cbf with ‖f‖
L

np
n−βp (Rn)

≤ 1.

Thus (i) follows automatically from the boundedness of [b,Dβ] : L
np

n−βp (Rn)→ Lp(Rn).

To prove (ii), let R0 > 0 be such that supp(b) ⊂ B(0, R0). At points x with |x| > 3R0

we have

|Cbf(x)| ≤
ˆ |f(y) b(y)|
|x− y|n+β dy ≤ C

‖b‖∞
|x|n+β

ˆ

B(0,R0)
|f(y)| dy ≤ C ‖b‖∞|x|n+β ‖f‖qR

n q−1
q

0 . (4)
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Thus, if R > 3R0 then

ˆ

|x|>R
|Cbf(x)|p dx ≤ CR‖b‖p∞‖f‖p np

n−βp

ˆ

|x|>R
|x|−p(n+β) dx→ 0 as R→∞

as needed.

For the proof of (iii), we could proceed as usually, which means to regularize the kernel K in

the diagonal {x = y}. Then we would prove the compactness of this regularization and finally

the limit of compact operators would give us the result. However, a more direct approach is

available, since ‖K(x, ·)‖L1(Rn) is uniformly bounded.

Lemma 5. One has

lim
h→0

sup
f 6=0

‖Cbf(·+ h)− Cbf(·)‖Lq(Rn)
‖f‖Lq(Rn)

= 0 (5)

whenever 1 ≤ q ≤ ∞.

Proof. We start by observing that

‖K(x, ·)‖L1(Rn) =

ˆ

|x−y|≤1
|K(x, y)| dy +

ˆ

|x−y|>1
|K(x, y)| dy

≤ C‖∇b‖∞
ˆ

|x−y|≤1
|x− y|−n−β+1 dy + C‖b‖∞

ˆ

|x−y|>1
|x− y|−n−β dy

≤ C
{‖∇b‖∞

1− β +
‖b‖∞
β

}
:= A

As a consequence, the behavior of Cbf is like the convolution of the function f with a L1-kernel.

In particular, by Jensen’s inequality one gets

‖Cbf‖q ≤ A‖f‖q, 1 ≤ q ≤ ∞, (6)

so that Cb : Lq(Rn)→ Lq(Rn), 1 ≤ q ≤ ∞.

Towards (5), we need to estimate the translates of Cb. Clearly,

‖Cbf(·+ h)− Cbf(·)‖qq =

ˆ

∣∣∣∣
ˆ

f(y)(K(x+ h, y)−K(x, y)) dy

∣∣∣∣
q

dx

≤
ˆ

(
ˆ

|f(y)|q |K(x+ h, y)−K(x, y)| dy
) (
ˆ

|K(x+ h, y)−K(x, y)| dy
) q
q′
dx

≤ (2A)q−1
ˆ

(
ˆ

|K(x+ h, y)−K(x, y)| dx
)
|f(y)|q dy

= (2A)q−1B(h)

ˆ

|f(y)|qdy

6



where B(h) = supy ‖K(·+h, y)−K(·, y)‖L1(Rn). In order to find estimates for B(h), we choose

an arbitrary ρ > 0 and write
ˆ

|K(x+ h, y)−K(x, y)| dx =

ˆ

|x−y|≤ρ
· · ·+

ˆ

|x−y|>ρ
· · · := I + II.

The integrability of K gives that I is small if ρ is small enough. Indeed,
ˆ

|x−y|≤ρ
|K(x, y)| dx ≤ ‖∇b‖∞

ˆ

|x−y|≤ρ
|x− y|−n−β+1 dx = C

‖∇b‖∞
1− β ρ1−β.

Moreover, if x ∈ B(y, ρ) then x+ h ∈ B(y, ρ+ |h|) so that
ˆ

|x−y|≤ρ
|K(x+ h, y)| dx ≤

ˆ

|x−(y−h)|≤2ρ
|K(x+ h, y)| dx ≤ C ‖∇b‖∞

1− β (ρ+ |h|)1−β.

Therefore, there exists ρ0 > 0 such that if ρ < ρ0 and |h| < ρ0/2 then I ≤ ε/((2A)q−1). Let

us then fix ρ = ρ0/2, and take care of II. Note that, since |h| < ρ0/2 and |x− y| > ρ, we have

|K(x,+hy)−K(x, y)| =
∣∣∣∣(b(y)− b(x+ h))

(
1

|x+ h− y|n+β −
1

|x− y|n+β
)

+
1

|x− y|n+β (b(x)− b(x+ h))

∣∣∣∣

≤ 2‖b‖∞
C|h|

|x− y|n+β+1
+ ‖∇b‖∞

|h|
|x− y|n+β

Then, since we fixed ρ = ρ0/2,

II ≤ C‖b‖∞|h|
ˆ

|x−y|>ρ

dx

|x− y|n+β+1
+ C‖∇b‖∞|h|

ˆ

|x−y|>ρ

dx

|x− y|n+β

≤ C |h|
β

(
‖b‖∞
ρ1+β0

+
‖∇b‖∞
ρβ0

)
.

Thus, by taking |h| sufficiently small, we see that II ≤ ε/((2A)q−1). Hence B(h) → 0 as

|h| → 0, and thus (5) follows.

With the above Lemma, the proof of (iii) is almost immediate. Indeed, by (4) we see that

‖Cbf(·+ h)− Cbf(·)‖pp =

ˆ

|x|≤R
|Cbf(x+ h)− Cbf(x)|p dx

+

ˆ

|x|>R
|Cbf(x+ h)− Cbf(x)|p dx

≤ ‖Cbf(·+ h)− Cbf(·)‖p np
n−βp

Rβp

+ CR‖b‖p∞‖f‖p np
n−βp

ˆ

|x|>R
|x|−p(n+β) dx.

at least for R > 3R0. In particular, the last term is small if R is large enough. But for this

particular R, and using (5), the penultimate term is also small if |h| is small. Therefore (iii)

follows. Theorem 3 is proved.
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3 Beltrami operators in fractional Sobolev spaces

The regularity theory for Beltrami equations relies on the behavior of the Beurling operator,

which is formally defined as a principal value operator,

Bf(z) = − 1

π
p.v.

ˆ

C
f(z − w)

1

w2
dA(w).

This operator intertwines the ∂z and ∂z derivatives. More precisely, its Fourier representation

B̂f(ξ) =
ξ

ξ
f̂(ξ).

makes it clear that B(∂zf) = ∂zf , at least when f is smooth and compactly supported.

Furthermore, B is an isometry on L2(C), and as a Calderón-Zygmund operator, it can be

boundedly extended to Lp(C) whenever 1 < p <∞.

Before proving Theorem 1, we first state and prove the following fact about generalized

Beltrami equations. Let us recall that B denotes the composition of B with the complex

conjugation operator, that is, B(f) = B(f).

Proposition 6. Let α ∈ (0, 1). Let µ, ν ∈ Wα, 2
α (C) be compactly supported Beltrami coeffi-

cients, with ‖|µ|+ |ν|‖∞ ≤ k < 1. Then the generalized Beltrami operators

Id− µB − νB : Ẇα,p(C)→ Ẇα,p(C)

are bounded and boundedly invertible if 1 < p < 2
α .

Proof. The operators Id−µB−ν B are clearly bounded in Ẇα,p(C), since B preserves Ẇα,p(C)

(recall that we are assuming 1 < p < 2
α) and also because if µ ∈ L∞(C) ∩Wα, 2

α (C) then µ is

a pointwise multiplier of Ẇα,p(C) (similarly for ν). This fact follows directly working on the

expression (3) for Dα or see [13, p. 250]. Also, the operator Id− µB − ν B is clearly injective

in Ẇα,p(C), as its kernel is a subset of L
2p

2−αp (C) were we already know it is injective (see [7]

for a proof in the C-linear setting, and [9] or also [4] for a proof in the general case). Thus,

in order to get the surjectivity (and finish the proof by the Open Mapping Theorem) we will

prove that Id − µB − ν B is a Fredholm operator on Ẇα,p(C) with index 0. To do this, it is

sufficient if we prove that

Dα(Id− µB − ν B)Iα : Lp(C)→ Lp(C)

is a Fredholm operator of index 0, since both properties stay invariant under the topological

isomorphisms

Dα : Ẇα,p(C)→ Lp(C),

Iα : Lp(C)→ Ẇα,p(C).
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But this follows easily. Indeed,

Dα(Id− µB − ν B)Iα = Id−Dα(µB + ν B)Iα

= Id− µB − ν B − [Dα, µ]B Iα − [Dα, ν]B Iα

Above, Id−µB− ν B is invertible in Lp(C) by [7]. Also, [Dα, µ]B Iα is the composition of the

bounded operators Iα : Lp(C) → L
2p

2−αp (C) and B : L
2p

2−αp (C) → L
2p

2−αp (C) with the operator

[Dα, µ] : L
2p

2−αp (C) → Lp(C), which is compact by Theorem 3. Hence [Dα, µ]B Iα : Lp(C) →
Lp(C) is compact, and the same happens to [Dα, ν]B Iα. Thus the term on the right hand

side is the sum of an invertible operator with two compact operators. Hence it is a Fredholm

operator. The claim follows.

Corollary 7. Let α ∈ (0, 1) and 1 < p < 2
α , and let µ, ν ∈ Wα, 2

α (C) be compactly supported

Beltrami coefficients with ‖|µ|+ |ν|‖∞ ≤ k < 1. Then the equation

∂zf − µ∂zf − ν∂zf = g (7)

has, for each g ∈ Ẇα,p(C), a unique solution f such that Df ∈ Ẇα,p(C) and

‖Df‖Wα,p(C) ≤ C ‖g‖Wα,p(C)

where C depends only on k, ‖µ‖
Wα, 2α (C)

and ‖ν‖
Wα, 2α (C)

.

Proof. By simplicity, we assume that ν = 0. Otherwise, the proof follows similarly. First of

all, let us observe that if g ∈ Ẇα,p(C) and αp < 2 then automatically g ∈ L
2p

2−αp (C) by the

Sobolev embedding. On the other hand, and since Wα, 2
α (C) ⊂ VMO, we know from [7] that

a solution f ∈ Ẇ 1, 2p
2−αp (C) exists, and moreover

‖Df‖
L

2p
2−αp (C)

≤ C ‖g‖
L

2p
2−αp (C)

≤ C ‖g‖Ẇα,p(C).

Our goal consists of replacing the term on the left hand side by ‖Df‖Ẇα,p(C).

To do this, we first note that ∂zf = B(∂zf), since f ∈ Ẇ
1, 2p

2−αp . Thus (7) is equivalent

to

(Id− µB)(∂zf) = g

Now, from Proposition 6 and our assumption g ∈ Ẇα,p(C), we also know that there is a unique

F ∈ Ẇα,p(C) such that

(Id− µB)F = g (8)

for which we know the estimate ‖F‖Ẇα,p(C) ≤ C ‖g‖Ẇα,p(C) holds. Of course, by the Sobolev

embedding, F ∈ L
2p

2−αp (C). From the invertibility of Id−µB on L
2p

2−αp (C), we immediately get

9



that F = ∂zf almost everywhere, and therefore ∂zf ∈ Ẇα,p(C). Proving that ∂zf ∈ Ẇα,p(C)

is very easy, as we already knew that f ∈ Ẇ 1, 2p
2−αp (C) and so we can be sure that ∂zf = B(∂zf).

Thus, Df ∈ Ẇα,p(C) and certainly

‖Df‖Ẇα,p(C) ≤ C ‖F‖Ẇα,p(C) ≤ C ‖g‖Ẇα,p(C)

as desired.

Towards the proof of Theorem 1, we denote by C(h) the solid Cauchy transform,

Ch(z) =
1

π

ˆ

C
h(z − w)

1

w
dA(w). (9)

This operator appears naturally as a formal inverse to the ∂z derivative, that is, the formula

∂zC(h) = h holds if h ∈ Lp(C) and 1 < p <∞. Another important feature about the Cauchy

transform is that ∂C = B. The Cauchy and Beurling transforms allow for a nice representation

of the principal solution φ of the Beltrami equation ∂zφ = µ∂zφ,

φ(z) = z + C(h)(z),

see for instance [2, p. 165]. In this representation, h is a solution to the integral equation

(Id− µB)(h) = µ.

As a consequence, the invertibility of the Beltrami operators Id−µB also plays a central role in

determining the smoothness of φ. In particular, by applying Proposition 6 with µ ∈Wα, 2
α , we

see that Dh ∈Wα,p provided that p < 2
α , whence Dφ ∈Wα,p

loc . As a consequence, by Stoilow’s

Factorization Theorem (e.g., [2, section 5.5]), the same conclusion holds for any quasiregular

solution f of ∂zf − µ∂zf = 0. However, this is not enough for Theorem 1, which we prove

now.

Proof of Theorem 1. We will first prove that if µ ∈ Wα, 2
α (C) is a compactly supported Bel-

trami coefficient and α > 1
2 (this is the point where we use that restriction) the operator

Tµ := I1−α (Id− µB)D1−α : L
2
α (C) 7−→ L

2
α (C)

is continuously invertible, with lower bounds depending only on ‖µ‖L∞(C) and ‖µ‖
Wα, 2α (C)

. To

do this, we proceed as usually,

Tµ = I1−α(Id− µB)D1−α = Id− I1−αµBD1−α

= Id− µB + I1−α [D1−α, µ]B.

Here, the term Id− µB is bounded and continuously invertible in L
2
α (C) by [7]. Concerning

the second term on the right hand side, from µ ∈ Wα, 2
α (C) ∩ L∞(C) and 1

2 < α we easily get
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that µ ∈ W 1−α, 2
1−α (C). Thus we are legitimate to use Theorem 3 with β = 1 − α and p = 2

α

and get that [µ,D1−α] is a compact operator from L
2
α (C) into L2(C). As a consequence, we

obtain that Tµ is a Fredholm operator from L
2
α (C) into itself, which clearly has index 0. So

the desired lower bounds will be automatic if we see that it is injective.

Let F ∈ L 2
α such that Tµ(F ) = 0. We want to show that F = 0. First, if F ∈ Ẇ 1−α,2(C) then

the result follows easily. Indeed, we can then write F := I1−αf for some f ∈ L2 and write the

equation in terms of f . We get I1−α(Id − µB)f = 0. From the classical L2 theory, we have

that f = 0 and hence F = 0. For a general F ∈ L 2
α satisfying Tµ(F ) = 0 we will prove that

necessarily F ∈ Ẇ 1−α,2(C), and therefore F = 0. To do this, again we decompose Tµ in terms

of the commutator,

(Id− µB)F = I1−α[µ,D1−α]BF.

Then by Theorem 3 the term on the right hand side above belongs to Ẇ 1−α,2(C), because

F ∈ L
2
α (C). Using again that α > 1

2 one has µ ∈ W 1−α, 2
1−α (C), and therefore we can use

Proposition 6 to get that Id−µB : Ẇ 1−α,2(C)→ Ẇ 1−α,2(C) is continuously invertible. Hence

F = (Id− µB)−1I1−α[µ,D1−α]BF

belongs to Ẇ 1−α,2(C). The claim follows.

We now finish the proof. Given µ ∈ Wα, 2
α (C), we approximate it by µn ∈ C∞c (C) in the

Wα, 2
α (C) topology, in such a way that ‖µn‖L∞(C) ≤ ‖µ‖L∞(C). Then every µn admits a

principal quasiconformal map φn, for which the function gn = log ∂zφn is well defined and

solves

∂zgn − µn ∂zgn = ∂zµn.

Therefore

(Id− µnB)∂zgn = ∂zµn.

We use the Fourier representation of the classical Riesz transforms in R2,

R̂ju (ξ) = −i ξj|ξ| û (ξ) j = 1, 2

to represent

∂zg = −πD1−α(R1 + iR2)(D
αg)

∂zg = −πD1−α(R1 − iR2)(D
αg).

As a consequence, we obtain

(Id− µn B)D1−α(R1 + iR2)(D
αgn) = D1−α(R1 − iR2)(D

αµn),

11



and therefore

Tµn(R1 + iR2)(D
αgn) = (R1 − iR2)(D

αµn).

We recall that both R1 + iR2 and R1− iR2 are bounded and continuously invertible operators

in Lp(C), 1 < p <∞. Moreover, we have just seen that Tµn is boundedly invertible in L
2
α (C)

with bounds depending only on ‖µn‖L∞(C) and ‖µn‖
Wα, 2α (C)

. However, each ‖µn‖∞ (and re-

spectively ‖µn‖
Wα, 2α (C)

) is bounded by a constant multiple of ‖µ‖∞ (respectively ‖µ‖
Wα, 2α (C)

).

Hence

‖gn‖
Ẇα, 2α (C)

= ‖Dαgn‖
L

2
α (C)

≤ C(α) ‖(R1 + iR2)D
αgn‖

L
2
α (C)

≤ C
(
α, ‖µ‖L∞(C), ‖µ‖Wα, 2α (C)

)
‖Tµn(R1 + iR2)(D

αgn)‖
L

2
α (C)

≤ C
(
α, ‖µ‖L∞(C), ‖µ‖Wα, 2α (C)

)
‖(R1 − iR2)D

αµn‖
L

2
α (C)

≤ C
(
α, ‖µ‖L∞(C), ‖µ‖Wα, 2α (C)

)
.

It then follows that gn is a bounded sequence in Ẇα, 2
α (C). By the Banach-Alaoglu theorem

there exists h ∈ Ẇα, 2
α (C) such that

lim
n→∞

〈gn, ϕ〉 = 〈h, ϕ〉

for each ϕ ∈W−α, 2
2−α (C). Remarkably, by the weak lower semicontinuity of the norm,

‖h‖
Ẇα, 2α (C)

= ‖Dαh‖
L

2
α (C)

≤ lim inf
n→∞

‖Dαgn‖
L

2
α (C)

≤ C
(
α, ‖µ‖L∞(C), ‖µ‖Wα, 2α (C)

)
.

Incidentally, we already knew from the classical theory that φn converges in W 1,p
loc (C) to the

principal quasiconformal map φ associated to µ. In particular, modulo subsequences, ∂zφn

converges to ∂zφ almost everywhere. But then gn converges almost everywhere to log(∂zφ).

It then follows that log(∂zφ) = h and so we deduce that log(∂zφ) belongs to Ẇα, 2
α (C), with

the same bound than h. The theorem follows.
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