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Abstract

In this paper, we look at quasiconformal solutions ¢ : C — C of Beltrami equations

9z¢(2) = p(2) 9:¢(2).

where p € L*°(C) is compactly supported on D, |||l < 1 and belongs to the fractional
Sobolev space W& (C). Our main result states that

log 9.6 € W& (C)

whenever a > % Our method relies on an n-dimensional result, which asserts the com-
pactness of the commutator

B
2

b, (—A)2] : L7 5 (R™) — LP(R™)

between the fractional laplacian (fA)g and any symbol b € W7 ’Lf;‘/(]R")7 provided that
1<p< %

1 Introduction

A Beltrami coefficient is a function y € L*°(C) with ||u||cc < 1. By the well-known Measurable
Riemann Mapping Theorem, to every compactly supported Beltrami coefficient 1 one can
associate a unique homeomorphism ¢ : C — C in the local Sobolev class I/Vllof such that the
Beltrami equation

9z¢(2) = u(2) 9:9(2)

holds for almost every z € C, and at the same time, |¢(z) — z| — 0 as |z| = co. One usually

L[| ] oo
1—[lplloo?

calls ¢ the principal solution, and it is known to be a K-quasiconformal map with K =

since
K-1

K+1
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|0z0(2)] < |0:0(2)] at almost every z € C.

operators.



Recent works have shown an interest in describing the Sobolev smoothness of ¢ in terms of that
of . As noticed already at [5], remarkable differences are appreciated under the assumption
w € WP depending on if ap < 2, ap = 2 or ap > 2. In this paper, we focus our attention on

the case ap = 2.

It was proven at [5] that if u € W2 then ¢ belongs to the local Sobolev space I/Vlif*€
for each € > 0 (and further one cannot take ¢ = 0 in general). The proof was based on the
elementary fact that

e wh? = log(d,¢) € W2, (1)

In particular, logd.¢ enjoys a slightly better degree of smoothness than 0,¢ itself. It is
a remarkable fact that this better regularity cannot be deduced only from the fact that
0.9 € I/Vli)ffe for every € > 0. Somehow, this means that logd.¢ contains more informa-

tion than 0,¢.

Similar phenomenon had been observed much earlier in the work of Hamilton [6], where it
is shown that
weVMO = log(d,¢) € VMO. (2)

Again, the VMO smoothness of log(d,¢) cannot be completely transferred to 0,¢ itself. In-
deed, the example ¢(z) = z (log |z| — 1), in a neighbourhood of the origin, has VMO Beltrami
coefficient (at least locally) but clearly D¢ ¢ VMO.

The VMO setting is interesting in our context since it can be seen as the limiting space of

W, Certainly, the complex method of interpolation shows that
VMO, W2, = Wa, O<a<l

(see for instance [12]). Thus, it is natural to ask if a counterpart to implication (1) holds in

W2, In the present paper, we prove the following theorem.

Theorem 1. Let o € (%, 1). Let p be a Beltrami coefficient with compact support and such
that u € W"’%((C). Let ¢ be the principal solution to the C-linear Beltrami equation

0z¢ = po.¢.
Then, log (0¢) € wea (©).

The proof of Theorem 1 is based on two facts. The first one is the following a priori estimate

for linear Beltrami equations with coefficients belonging to W”"%((C).



Theorem 2. Let o € (0,1) and 1 < p < % Let p,v be a pair of Beltrami coefficients with
compact support, such that |||p| + |v|]|ec <k <1 and p,v € Wa’%((C). For every g € W*P(C)

the equation
Of —pd.f—vo.f=g

admits a solution f with Df € WP(C), unique modulo constants, and such that the estimate

1D f lwes(ey < Cllgllwerce)

holds for a constant C depending only on k, H“HW‘*% and ||v||

© weg ()’
Theorem 2 is sharp, in the sense that one cannot take p = % Thus, Theorem 1 shows that

log 9, ¢ enjoys better regularity than 0,¢ itself.

The study of logarithms of derivatives of quasiconformal maps goes back to the work of
Reimann [11], where it was shown that the real-valued logarithm log|d,¢| € BMO when-
ever ||ulloo < 1. References involving the complex logarithm logd,¢ also lead to [1]. More
recently, in [3] the authors obtained sharp bounds for the BMO norm of log 9,¢ also with the

only assumption ||pl|e < 1.

The second main ingredient in the proof of Theorem 1 is a compactness result for commutators
of pointwise multipliers and the fractional laplacian, which holds in higher dimensions and has

independent interest. In order to state it, given a measurable function u : R™ — R we denote

: u(z) — u(y)
DPu(zx) := 1lim C, —————"dy. (3)
=0 P |z—y|>e ‘x - y|n+8
This is a principal value representation of the fractional laplacian (fA)g, whose symbol at

the Fourier side is

o —

DAu(€) = (-A)2u(€) = |¢° a(¢).

The operator D? can also be seen as the formal inverse of I 3, the classical Riesz potential of

order 3, which can be represented as
Tgu(&) = [¢]77 a(¢).

With this notation, a function u belongs to WAP 1 < p < oo, if and only if v and DPu
belong to LP, with the corresponding equivalent norm. Analogously, u € W5 if and only if
DPuy € LP.

Let us remind that if 7" and S are two operators, one usually calls [T, S] =T oS — SoT the

commutator of T and S.



Theorem 3. Let 8 € (0,1) and b € W”5(R"). Then, the commutator
[b, DP] : L7 5 (R") — LP(R™)
is bounded and compact whenever 1 < p < %

The boundedness of the commutator can be seen as a consequence of fractional versions of the
Leibnitz rule. For the compactness, the Fréchet-Kolmogorov characterization of compact sub-
sets of LP is combined with the cancellation properties of the kernel of the commutator. Also,
in the proof of Theorem 1 one uses Theorem 3 with 8 = 1 — . This explains the restriction
a > 3 in Theorem 1, as what one really uses is that y € Wlfa’ﬁ(C). Note that this space
contains W& (C) if and only if a > 3.

A detailed proof of Theorem 3 is provided at Section 2. In Section 3, we find a priori es-
timates for generalized Beltrami equations with coefficients in Wg’%, and prove Theorem 1

and Theorem 2.
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2 Proof of Theorem 3

The proof of Theorem 3 we present here is based on classical ideas, see for instance [10]. We

will need the following auxilliary result about the Leibnitz rule for fractional derivatives.

Proposition 4. (Kenig-Ponce-Vega’s Inequality [8])

Let € (0,1) and 1 <p < % Then the inequality

IDP(f ) — £ DPglly < CID 12 llgl =z_.

n—pBp

holds whenever f,g € C°(R™).

With this result at hand, we immediately get that the commutator
[b, DP] : L7 (R™) — LP(R™)

admits a unique bounded extension. Remarkably,

e, D] < bl

np - B n .
Ln=Bp (R*)—LP(R™) — W™ B (R™)
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As a consequence, if b, € CZ°(R™) is such that

then
lim ||[b,, D?] — [b, DP]|| _np_ =0
n—00 Ln=Pp (R™)— LP(R™)

Thus, we are reduced to prove Theorem 3 with the extra assumption b € C°(R™). To this

end, we observe that the commutator Cj, = [b, Dﬁ] can be represented as an integral operator
Cuf(z) = b(@) PY. [ K(w.9) (1(2) = £@)dy ~ PV. [ K(.9) (7(2) (o) = b(0) £(0) dy
= PV. [ K(w) (o) - b)) 1) dy

where

and the principal value has been removed from the last integral because the smoothness of b

ensures that x — KC(z,y) is integrable. For C} to be compact, we need to prove that the image
under Cj, of the unit ball of L7 5 (R™) is compact in LP(R™). To this end, we denote

F={Cf : | <1}

Ln— Bp (Rn

The classical Fréchet-Kolmogorov’s Theorem asserts that F is relatively compact if and only

if the following conditions hold:
(i) F is uniformly bounded, i.e. supy,ez |9 r@n) < 00
(i) F vanishes uniformly at oo, i.e. supyer |¥ X|z> Rl p(rr) — 0 as R — oo,
(iii) F is uniformly equicontinuous, i.e. supyer [|[9(- +h) — ()| Lprny — 0 as [h| — 0.

In our particular case, every element ¢ € F has the form ¢ = Cyf with || f || 255 (g <

Thus (i) follows automatically from the boundedness of [b, D?] : L7 h (R™) — LP(R™).

To prove (ii), let Ry > 0 be such that supp(b) C B(0,Rp). At points = with |z| > 3Ry

we have

() b(y) . Il w1
Gl < [ L ay < ol | o Tl <0 Sl T W




Thus, if R > 3Ry then

np
n—pBp

/ Cof @) dx < CrlBIE|I P / 2] P dr 50 as R oo
[z|>R |z|>R

as needed.

For the proof of (iii), we could proceed as usually, which means to regularize the kernel K in
the diagonal {x = y}. Then we would prove the compactness of this regularization and finally
the limit of compact operators would give us the result. However, a more direct approach is

available, since ||K(x, -)||f1(rn) is uniformly bounded.

Lemma 5. One has

1Cof (- + 1) = Cof ()l aen)

lim sup =0 5
h—0 ¢4 £l a(rny (5)
whenever 1 < g < 0.
Proof. We start by observing that
KMo = [ Wl [ Ky
lz—y|<1 lz—y|>1
e N P N (N T
l[z—y|<1 lz—y[>1
V0|0 ||b|oo}
<C—-—+——5:=A
S

As a consequence, the behavior of C f is like the convolution of the function f with a L'-kernel.

In particular, by Jensen’s inequality one gets
ICoflle < Alfllyy 1< q<oc, ©)
so that Cp : LI(R™) — LI(R"), 1 < ¢ < o0.

Towards (5), we need to estimate the translates of Cj. Clearly,

q

ICof (- +h) — Cof ()2 = / \ / F@)(K (@ + hyy) — K(z,y) dy| de

a
q

</ ( [ |/<:<x+h,y>/c<x,y>dy) ( / |fc<x+h,y>/c<x,y>|dy) dx
<@y [ ([ 1K+t - K@ lac) ay
— A B [ 1)y



where B(h) = sup,, [|K(-+h,y) = K(-,y)||L1(rn). In order to find estimates for B(h), we choose

an arbitrary p > 0 and write

/IIC(w+h,y)f/C(:v,y)\da:=/ +/ coo=T+ 1.
|z—y|<p lz—y|>p

The integrability of IC gives that I is small if p is small enough. Indeed,

blos |
J A N B A
lz—y|<p lz—yl<p 1-p
Moreover, if x € B(y, p) then z + h € B(y, p + |h|) so that
b|so _
[ Kesnplars [ K+ ko)) dz < LY (s,
lo—yl<p e~ (y—h)|<2p 1-5

Therefore, there exists pg > 0 such that if p < pog and |h| < po/2 then I < ¢/((24)971). Let
us then fix p = po/2, and take care of I1. Note that, since |h| < po/2 and |z —y| > p, we have

R )

o+ h—y["+P o —y|ntP

K (z, +hy) = K(z,y)| =

1
Clh| |h
<2|blloo———— + [|V]|loo——F—5
< Wbl gy + IVl s
Then, since we fixed p = py/2,
dx dx

IT < C[[blloc| A a1 T ClIVollelh] TS
|z—y|>p |z — y|n+ﬁ+1 lz—y|>p |z — y|n+6

h blloo b|| oo
<C',J(”1”+5 ML )
Po Po

Thus, by taking |h| sufficiently small, we see that I1 < ¢/((2A)97!). Hence B(h) — 0 as
|h| — 0, and thus (5) follows. O

With the above Lemma, the proof of (ii7) is almost immediate. Indeed, by (4) we see that

ICh I+ ) — Cof (I = / _[Cuf(o 1) = Cuf @) da

|z]<
+/ |Cof(z+ h) — Cpf (x)|P dz
|z|>R
S NCof(-+h) = Cof (I R

np
n—pBp

+ CRIBIZ / 2| P+
|z|>R

at least for R > 3Ry. In particular, the last term is small if R is large enough. But for this
particular R, and using (5), the penultimate term is also small if |A| is small. Therefore (7i7)

follows. Theorem 3 is proved.



3 Beltrami operators in fractional Sobolev spaces

The regularity theory for Beltrami equations relies on the behavior of the Beurling operator,
which is formally defined as a principal value operator,
1 1
Bf(z) = ——p.v. z —w)— dA(w).
£6) = =z o [ = w) 5 daw)
This operator intertwines the 0, and 0z derivatives. More precisely, its Fourier representation
Be)= j
f(&) =2 1¢).
3
makes it clear that B(dzf) = 0.f, at least when f is smooth and compactly supported.
Furthermore, B is an isometry on L?(C), and as a Calderén-Zygmund operator, it can be

boundedly extended to LP(C) whenever 1 < p < 0.

Before proving Theorem 1, we first state and prove the following fact about generalized
Beltrami equations. Let us recall that B denotes the composition of B with the complex

conjugation operator, that is, B(f) = B(f).

Proposition 6. Let o € (0,1). Let p,v € WO‘%((C) be compactly supported Beltrami coeffi-
cients, with |||u] + |v||lcc <k < 1. Then the generalized Beltrami operators

Id - uB—-vB: W”"p((C) — Wo"p((C)
are bounded and boundedly invertible if 1 < p < %

Proof. The operators Id— i B—v B are clearly bounded in W®?(C), since B preserves W®?(C)
(recall that we are assuming 1 < p < %) and also because if p € L>®(C) N Wa%((C) then p is
a pointwise multiplier of W®P(C) (similarly for v). This fact follows directly working on the
expression (3) for D® or see [13, p. 250]. Also, the operator Id — u B — v B is clearly injective
in WeP(C), as its kernel is a subset, of = (C) were we already know it is injective (see [7]
for a proof in the C-linear setting, and [9] or also [4] for a proof in the general case). Thus,
in order to get the surjectivity (and finish the proof by the Open Mapping Theorem) we will
prove that Id — B — v B is a Fredholm operator on Wo"p((C) with index 0. To do this, it is

sufficient if we prove that
D*(Id — pB—vB)I,: L’(C) — LP(C)

is a Fredholm operator of index 0, since both properties stay invariant under the topological

isomorphisms
D : WP(C) — LP(C),

I, : LP(C) — W*P(C).



But this follows easily. Indeed,

D*(Id —pB—-vB)l,=1d - D*(uB+vB)I,
=Id—-uB-vB—[D"uBI,—[D*v]BI,

Above, Id — u B — v B is invertible in LP(C) by [7]. Also, [D?, u] B, is the composition of the
2 2 2
bounded operators I, : LP(C) — L7 or (C) and B : L7o (C) — L7 (C) with the operator

2p

[DY, ] : L2=ar(C) — LP(C), which is compact by Theorem 3. Hence [D%, u] B I, : LP(C) —
LP(C) is compact, and the same happens to [D® v] BI,. Thus the term on the right hand

side is the sum of an invertible operator with two compact operators. Hence it is a Fredholm

operator. The claim follows. O

Corollary 7. Let « € (0,1) and 1 < p < %, and let p,v € W‘X’%((C) be compactly supported
Beltrami coefficients with |||p| + |v|||cc < k < 1. Then the equation

%f—uazf—l/ffzg (7)

has, for each g € W®P(C), a unique solution f such that Df € W®P(C) and

IDfllwerc) < Cllglwerc)

where C' depends only on k, ||| and [|v|| . 2

Wed (C) ©)

Proof. By simplicity, we assume that v = 0. Otherwise, the proof follows similarly. First of
all, let us observe that if g € Wo"p((C) and ap < 2 then automatically g € L%(C) by the
Sobolev embedding. On the other hand, and since Wa%((C) C VMO, we know from [7] that

. . 1,2713 .
a solution f € W 2= (C) exists, and moreover

IDSI 2 <Clll 2 < Clglhponc:

767 (C)

2p
2—ap ((C)

Our goal consists of replacing the term on the left hand side by || D f HWQ,,,(C).

. 2,
To do this, we first note that 9,f = B(dzf), since f € WhTer. Thus (7) is equivalent

to
(Id - uB)(0:f) =g
Now, from Proposition 6 and our assumption g € Wep (C), we also know that there is a unique
F € W*P(C) such that
(Id —uB)F =g (8)
for which we know the estimate ||F||Wa,p((c) <C ||9||Ww(<c) holds. Of course, by the Sobolev
embedding, F' € LT (C). From the invertibility of Id — B on LT (C), we immediately get



that F = d-f almost everywhere, and therefore dzf € W®P(C). Proving that d,f € W*P(C)
. 2

is very easy, as we already knew that f € W' Top (C) and so we can be sure that 9, f = B(9zf).

Thus, Df € W®P(C) and certainly

1D o) < € I1F lney < C llallesiey
as desired. ]

Towards the proof of Theorem 1, we denote by C(h) the solid Cauchy transform,
1 1
Ch(z)=— [ h(z—w)—dA(w). 9
()= 1 [ he=w) daw) 9
This operator appears naturally as a formal inverse to the 9z derivative, that is, the formula
0zC(h) = h holds if h € LP(C) and 1 < p < co. Another important feature about the Cauchy
transform is that 9C = B. The Cauchy and Beurling transforms allow for a nice representation

of the principal solution ¢ of the Beltrami equation 0z¢ = 1 0,9,

¢(2) = z+ C(h)(2),

see for instance [2, p. 165]. In this representation, h is a solution to the integral equation

(1d — pB)(h) = .

As a consequence, the invertibility of the Beltrami operators Id — u B also plays a central role in
determining the smoothness of ¢. In particular, by applying Proposition 6 with u € WO"%, we
see that Dh € WP provided that p < 2, whence D¢ € WP, As a consequence, by Stoilow’s
Factorization Theorem (e.g., [2, section 5.5]), the same conclusion holds for any quasiregular
solution f of dzf — n0,f = 0. However, this is not enough for Theorem 1, which we prove

now.

Proof of Theorem 1. We will first prove that if u € WO‘%(C) is a compactly supported Bel-

trami coefficient and a > % (this is the point where we use that restriction) the operator
T, :=1I_o(Id — pB) D'~ : La (C) —> La (C)

is continuously invertible, with lower bounds depending only on |||l oo (cy and ||| . To

W32 (C)
do this, we proceed as usually,

T, =h-o(Id — uB)D'"* =1d — [} _ouBD*™®
=Id—puB+1I_o[D'7 ulB.

Here, the term Id — p B is bounded and continuously invertible in La (C) by [7]. Concerning
the second term on the right hand side, from p € W“’%(C) NL>®(C) and £ < a we easily get

10



2
«

that p € Wl_o"ﬁ(@). Thus we are legitimate to use Theorem 3 with 8 =1 — « and p =
and get that [, D'~?] is a compact operator from L%((C) into L?(C). As a consequence, we
obtain that T}, is a Fredholm operator from La (C) into itself, which clearly has index 0. So

the desired lower bounds will be automatic if we see that it is injective.

Let F € La such that T,.(F) = 0. We want to show that F' = 0. First, if F € W!~%2(C) then
the result follows easily. Indeed, we can then write F := I,_, f for some f € L? and write the
equation in terms of f. We get I1_(Id — uB)f = 0. From the classical L? theory, we have
that f = 0 and hence F' = 0. For a general F' € La satisfying T),(F') = 0 we will prove that
necessarily F' € Wl_o‘ﬂ((C), and therefore F' = 0. To do this, again we decompose 7}, in terms

of the commutator,
(Id — uB)F = I _4[u, D'*™|BF.

Then by Theorem 3 the term on the right hand side above belongs to W'~=®2(C), because
F € L%(C). Using again that o > 1 one has p € Wl_o"ﬁ(C)7 and therefore we can use
Proposition 6 to get that Id —pu B : W'=®2(C) — W'~*2(C) is continuously invertible. Hence

F = (1d— yB)™ I o[y, D'~*|BF

belongs to W'=*2(C). The claim follows.

We now finish the proof. Given u € Wa%((C), we approximate it by p, € C°(C) in the
W“’%((C) topology, in such a way that [pallzec) < I|plle(c)- Then every pu, admits a
principal quasiconformal map ¢,, for which the function g, = logd,¢, is well defined and
solves

Oz9n — tin O20n = Oz lin.

Therefore

(Id — pnB)Ozgn = O pin.

We use the Fourier representation of the classical Riesz transforms in R?,
— & o
Rju(§) = —ig7u(§)  j=1,2

to represent

As a consequence, we obtain

(Id — pi, B)D'™(Ry + iR2)(D%,) = DRy — iR2) (D% pin),

11



and therefore
Tun (Rl + iRg)(Dagn) = (Rl — iRQ)(Da/Jn).

We recall that both R +iR2 and R{ —iR2 are bounded and continuously invertible operators
in LP(C), 1 < p < co. Moreover, we have just seen that 7}, is boundedly invertible in L%((C)

with bounds depending only on ||pn || pe(c) and ||pn || However, each ||pnllco (and re-

w2 (c)’

spectively ||unl| ) is bounded by a constant multiple of |||/ (respectively ||pu]]

W (C) wWea c))

Hence

190l 02 ey = 10%0nll 2.

< O(a) | (Ra +1R2) Dl 3 o
< O (@ llloo@ys Il 2 o)) 1T (R1 + iR (D)1 2
< O (@ lllo@s I1llyo 2 o)) 11RY = R2)D all 2

< O (@ lllo@ys Ill e 2. ) -

It then follows that g, is a bounded sequence in W“%(C). By the Banach-Alaoglu theorem
there exists h € Wo‘%((C) such that

lim (g, ) = (h, )

n—oo

2
for each p € W~ %2-a(C). Remarkably, by the weak lower semicontinuity of the norm,

Il = DA, 2 o, <liminf [ D%gul 2 o) < € (eIl Il oz ) -

w2 (c)

Incidentally, we already knew from the classical theory that ¢, converges in I/Vlif (C) to the
principal quasiconformal map ¢ associated to p. In particular, modulo subsequences, 0,¢,
converges to d,¢ almost everywhere. But then g, converges almost everywhere to log(9,¢).
It then follows that log(d,¢) = h and so we deduce that log(d.¢) belongs to V.V‘X’%((C)7 with
the same bound than h. The theorem follows. O

References

[1] L. Ahlfors, Lectures on quasiconformal mappings. Second ed., University Lecture Series,
38, American Mathematical Society, Providence, RI, 2006.

[2] K. Astala, T. Iwaniec and G. Martin, Elliptic Equations and Quasiconformal Mappings

in the Plane, Princeton Mathematical Series, vol. 47, Princeton University Press, 2009.

12



[3]

K. Astala, T. Iwaniec, 1. Prause, E. Saksman, Bilipschitz and quasiconformal rotation,
stretching and multifractal spectra, Publ. Math de 'THS. September 2014.

A. Clop, V. Crugz,

A. Clop, D. Faraco, J. Mateu, J. Orobitg, and X. Zhong, Beltrami equations with coeffi-
cient in the Sobolev Space WP, Publ. Mat. 53 (2009), 197-230.

D. H. Hamilton BMO and Teichmiiller space, Ann. Acad. Sci. Fenn. Ser. A T Math. 13,
no. 2 (1989), 213-224.

T. Iwaniec, LP-theory of quasiregular mappings, Quasiconformal space mappings, volume

1508 of Lecture Notes in Math., pp 39-64. Springer, Berlin, 1992.

C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the gener-
alized Korteweg-de-Vries equation via the contraction principle, Comm. Pure App. Math.
(1993), 46, no. 4, 527-620.

A. Koski,

S.G.Krantz, Song-Ying Li, Boundedness and compactness of integral operators on spaces
of homogeneous type and applications, II, J. Math. Anal. Appl. 258 (2001), no. 2, 642—
657.

H. M. Reimann Functions of bounded mean oscillation and quasiconformal mappings,

Comment. Math. Helv. 49 (1974), 260-276.

H.M. Reimann and T. Rychener, Funktionen beschrdnkter mittlerer Oszillation, Lecture

Notes in Mathematic. 1975.

T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij op- erators, and
nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and

Applications, 3. Walter de Gruyter & Co., Berlin, 1996.

A. L. Bais6n, A. Clop, J. Orobitg

Departament de Matematiques

Universitat Autonoma de Barcelona
08193-Bellaterra (Catalonia)

13



