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LINEAR COMBINATIONS OF HYPERSURFACES IN

HYPERBOLIC SPACE

E. GALLEGO, G. SOLANES, AND E. TEUFEL

Abstract. In this article we introduce and investigate linear com-
binations of hypersurfaces in hyperbolic space. For this purpose
we use some linear structure in the space of horospheres.

1. Introduction

In Euclidean space, when we fix a point as an origin we obtain a
linear structure. This enables to build linear combinations of geomet-
ric objects. Changing the origin translates the results, therefore this
construction is invariant up to translations. For the particular case of
convex bodies this gives the classical Minkowski linear combinations.
They play a fundamental role in Convex Geometry leading for example
to the notion of mixed volumes.

The analogue procedure does not work in hyperbolic space H
n be-

cause there is no such underlying linear structure. Previous attempts
to define a Minkowski addition in hyperbolic space were based on the
choice of an origin, but changing the origin did not lead to isometric
results (cf. [Lei03]).

The aim of this work is to investigate invariant operations with geo-
metric objects in H

n. For this purpose we use horospheres, i.e. spheres
centered at infinity, because the space of horospheres H is a half-cone
with an invariant linear structure on each generator. We deal with
geometric objects in H

n which are envelopes of horospheres. These en-
veloping horospheres define a subset of the half-cone H which we call
the associated support images (cf. Definition 3.1). In this way we use
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2 E. GALLEGO, G. SOLANES, AND E. TEUFEL

the linear structure in H in order to build linear combinations in the
hyperbolic space H

n.

We define a scalar multiplication, the h-dilation, and two additions,
the sum and the harmonic sum. These new constructions are invariant
with respect to the group of hyperbolic motions. They only depend
on the geometric objects involved and their relative position to one
another.

The h-dilation is just scalar multiplication by positive factors of the
support image along the rays of the half-cone H. Its geometrical mean-
ing is related to the classical parallel sets.

The sum is given by the addition of the support images in the rays
of the half-cone H.

The harmonic sum is given essentially by the harmonic mean of the
support images in the rays of H.

Next we outline some of the results. In the two dimensional situation,
we get for instance the length L of the sum c1 + c2 of two curves:

L(c1 + c2) =
1

2
(−W (c1, c1 + c2) + L(c1) − TC(c1) + L(c2) − TC(c2))

where TC is the total curvature and W is a mixed term depending on
the relative position of the two curves (cf. Proposition 4.2).

Similar formulas hold for the harmonic sum. Furthermore we obtain
the following property: the harmonic sum of two spheres is a sphere
(cf. Proposition 4.3). Moreover the harmonic sum of two h-convex
bodies is again h-convex (cf. Proposition 4.4).

So far we deal with invariant constructions. These operations be-
have rather differently from the euclidean case. To compare the new
operations with the classical euclidean case, we fix a point and use as-
sociated support functions. Adding support functions then defines an
operation which is in some sense closer to the classical Minkowski sum
but not invariant (cf. Section 4.4).

Acknowledgements: The authors thank Agust́ı Reventós for many
fruitful conversations during the preparation of this work. We also
thank Kurt Leichtweiß for useful remarks on the subject.

2. Preliminaries

We use the Lorentz space model for the Hyperbolic Geometry. The
model lives in the Lorentz space R

n+1
1 with its Lorentz product

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn − xn+1yn+1 .
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Therein the n-dimensional hyperbolic space H
n is realized as

H
n = {x ∈ R

n+1
1 : 〈x, x〉 = −1 ∧ xn+1 > 0} ,

which is the upper half of a two-sheeted hyperboloid with the light
cone Cn = {x ∈ R

n+1
1 : 〈x, x〉 = 0} as asymptotic cone. The group G

of hyperbolic motions of H
n is given by the subgroup of the Lorentz

group leaving invariant H
n.

The infinite or ideal boundary H
n
∞ of H

n is realized as the boundary
of the projective closure of H

n, or equivalently the boundary of the
projective closure of Cn in the projective enlargement of R

n+1
1 . It is a

(n−1)-dimensional sphere and it inherits a conformal structure invari-
ant with respect to G.

Horospheres in H
n may be seen as limits of distance spheres through

some given point which centers run on a geodesic towards infinity. In
the model distance spheres are realized by intersections of H

n with
space-like affine hyperplanes. Therefore horospheres are realized by
intersections of H

n with affine hyperplanes parallel to tangent hyper-
planes of Cn.
The space H of horospheres of H

n is represented by the upper half of
the light cone, i.e.

H = Cn+ = {x ∈ R
n+1
1 : 〈x, x〉 = 0 ∧ xn+1 > 0 .}

Indeed, given θ ∈ Cn+, the affine hyperplane Θ = {x ∈ R
n+1
1 : 〈x, θ〉 =

−1} is parallel to the tangent hyperplane TθC
n
+ = {x ∈ R

n+1
1 : 〈x, θ〉 =

0} of Cn+ at θ. Therefore Θ intersects H
n in a horosphere which we also

denote by Θ. Vice versa, given a horosphere Θ as the intersection of
H
n with an affine hyperplane Θ parallel to a hyperplane tangent to Cn+

along a half light-ray, there exists exactly one θ in this half light-ray
such that Θ = {x ∈ R

n+1
1 : 〈x, θ〉 = −1}. (In the following we shall

always denote horospheres in H
n, or the underlying affine hyperplanes

respectively, by capital Greek letters and the vectors in Cn+ representing
them by the corresponding small Greek letters.) The correspondence
between θ and the hyperplane Θ comes exactly from the polarity re-
lation with respect to the quadric ±H

n ⊂ R
n+1
1 . The Lorentz product

induces a degenerated product (isotropic metric) on Cn+.
The light-rays in the cone Cn+ represent the pencils of “parallel” horo-
spheres. Two parallel horospheres Θ1 and Θ2 touch one another at a
point at infinity, and they lie in constant hyperbolic distance to each
other. A little computation in the model shows that this distance is
equal to | lnλ|, where λ ∈ R

+ is given by θ2 = λθ1. Here we shall use
the signed distance from Θ1 to Θ2 given by

d(Θ1,Θ2) = − lnλ . (2.1)



4 E. GALLEGO, G. SOLANES, AND E. TEUFEL

For fixed Θ1, as λ→ +∞ the horospheres Θ2 “shrink” to the common
point at infinity whereas the signed distance d(Θ1,Θ2) → −∞. On
the other side, if λ → 0, then Θ2 expands over the whole H

n and
d(Θ1,Θ2) → +∞.

To complete the geometric picture, let us look at horospheres tan-
gent to a given distance sphere or a given equidistant respectively.
First, the horospheres through a given point p ∈ H

n are represented by
the intersection of TpH

n with Cn+. Or equivalently, through polarity p
and θ are linked by 〈p, θ〉 = −1. Now a distance sphere Σ in H

n with
center p is the intersection of H

n with an affine space-like hyperplane
(also denoted by Σ) parallel to TpH

n. Then the bundle of horospheres
tangent to Σ is represented by the intersection of Cn+ with two suitable
hyperplanes Θ1,Θ2 parallel to Σ. More precisely, one of these hyper-
planes does not intersect H

n, and the associated horospheres envelope
Σ in such a way that Σ lies in their convex sides. The other hyperplane
intersects H

n, and the associated horospheres envelope Σ in such a way
that Σ lies in their concave sides. Equivalently through polarity, Θ1

and Θ2 are determined by the intersection of Cn+ with the cone tangent
to H

n along Σ (the vertex of this tangent cone is the pole of the hy-
perplane Σ with respect to H

n). To see this, one may look at Σ in the
special position with center (0, ..., 0, 1) using symmetry arguments; the
general case then follows by the transitivity of the group of hyperbolic
motions. Vice versa, given a space-like hyperplane intersecting Cn+, the
corresponding horospheres envelope a distance sphere in H

n. Moreover
by the limit procedure, horospheres tangent to a given horosphere Θ
are represented by the intersection of Cn+ with a suitable hyperplane
parallel to Θ. Vice versa, given a hyperplane of degenerated type in-
tersecting Cn+, the associated horospheres envelope a horosphere.
Second, an equidistant hypersurface E to some totally geodesic H

n−1 in
H
n is given by the intersection of H

n with an affine time-like hyperplane
(also denoted by E). Here, H

n−1 is determined by the intersection of
H
n with the hyperplane parallel to E and through (0, ..., 0). Then,

the two bundles of horospheres enveloping E are represented by the
intersection of Cn+ with two suitable hyperplanes Θ1,Θ2 parallel to E.
Or equivalently through polarity, Θ1 and Θ2 are determined by the
intersection of Cn+ with the cone tangent to H

n along E. Vice versa,
given a time-like hyperplane, the associated horospheres envelope an
equidistant to a totally geodesic H

n−1 in H
n.
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3. Support maps and envelopes

3.1. Support maps. Our bridge between the point space H
n and the

space of horospheres Cn+ is the following.

Definition 3.1. Let M be a smooth (i.e. C∞-differentiable) regular hy-
persurface in H

n and ν(x), x ∈M , a unit normal vector field along M .
Then θ(x) = x + ν(x) ∈ Cn+ represents the horosphere Θ(x) which is
tangent to M at x such that ν(x) points into its convex side. We call

θ : M −→ Cn+ , x 7→ x+ ν(x) (3.1)

the support map of M with respect to ν.

Remark 3.1. Our definition of support maps corresponds to the notions
in [Sch02] and in [IPS03] (“hyperbolic Gauss indicatrix”).

If e1, . . . , en−1 denotes an orthonormal principal basis at x ∈M , then
we have dθ(ei) = (1 − ki)ei where ki is the corresponding principal
curvature with respect to ν. And the area element of θ(M) is

dAθ = (1 − k1) · · · (1 − kn−1)dAx (3.2)

(dAx = area element of M at x). This shows that the support map is
an immersion if and only if M has no principal curvature with respect
to ν which is equal to one. We see also that the principal curvatures
of horospheres with respect to the inner normal are all equal to one

3.2. Envelopes. Let θ(v1, . . . , vn−1) be a smooth immersion into the
cone Cn+, such that it is transverse to the generators of Cn+. We look for
an envelope x of Θ in H

n, i.e. a smooth x(v1, . . . , vn−1) with

〈x, x〉 = −1,

〈x, θ〉 = −1, (3.3)

〈dx, θ〉 = 0 (envelope condition).

From the second equation we get by differentiation 〈dx, θ〉+〈x, dθ〉 =
0. Hence (3.3) can be rewritten

〈x, x〉 = −1,

〈x, θ〉 = −1, (3.4)

〈x, dθ〉 = 0.

Because θ is an immersion into the cone Cn+ transverse to the generators
of Cn+, the span of θ and dθ is TθC

n
+. Hence (3.4), and therefore (3.3)

have a unique smooth solution x, the envelope of Θ. At points where
x is regular, (3.3) implies that ν := θ − x is a unit normal vector of x.
It defines the orientation along x which asociated support map is θ.
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Let θ̂ be the unique solution of

〈θ̂, θ〉 = −2,

〈θ̂, dθ〉 = 0, (3.5)

〈θ̂, θ̂〉 = 0.

Then the envelope x of Θ is given by

x =
1

2

(

θ + θ̂
)

. (3.6)

The associated geometric picture is the following: the horospheres Θ
and Θ̂ are tangent to one another at the envelope point x, each lying
in the concave side of the other. The mixed plane span(θ, θ̂) intersects

H
n in the geodesic through x orthogonal to Θ and Θ̂.

3.2.1. The 2-dimensional situation. Let θ(σ) be smooth and parame-
terized by arc length σ. The envelope c of θ is given by

c =
1

2

(

1 + 〈θ̈, θ̈〉
)

θ + θ̈ . (3.7)

In fact (3.7) fulfills (3.4) by noting 〈θ, θ〉 = 0 and 〈θ̇, θ̇〉 = 1, hence by

differentiation 〈θ̇, θ〉 = 0, 〈θ̈, θ〉 = −1 and 〈θ̇, θ̈〉 = 0.
Now (3.7) implies

ċ =
1 − 〈θ̈, θ̈〉

2
θ̇ . (3.8)

To see this, we note that θ, θ̇, θ̈ are linear independent because of the
assumptions on θ and the geometry of the light cone. Hence we can try
ċ = αθ + βθ̇ + γθ̈, and we use (3.7). Taking into account 〈c, c〉 = −1

hence by differentiation 〈ċ, c〉 = 0, we get α+ 1
2
γ(1−〈θ̈, θ̈〉) = 0. Taking

into account 〈c, θ〉 = −1 hence by differentiation 〈ċ, θ〉 + 〈c, θ̇〉 = 0, we

get γ = 0. Therefore α = 0 and ċ = βθ̇ with β = 〈ċ, θ̇〉. Taking into

account 〈c, θ̇〉 = 0 hence by differentiation 〈ċ, θ̇〉 + 〈c, θ̈〉 = 0, we get

β − 1
2
(1 − 〈θ̈, θ̈〉) = 0, hence (3.8).

The envelope c is regular if and only if 〈θ̈, θ̈〉 6= 1.

Remark 3.2. The condition 〈θ̈, θ̈〉 6= 1 means, that the osculating plane
of the curve θ in R

3
1 is not tangent to the model H

2. This property
characterizes curves θ in C2

+ which envelopes are regular curves in H
2.

Next, we compute the curvature of the envelope curve c at regular
points. There ν := θ − c is the unit normal vector of c, and θ is
the associated support map. Hence ν is the inner unit normal of the
enveloping horocycle Θ. We take the Lipschitz-Killing curvature kc of
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c with respect to ν. (For a suitable chosen parameter orientation on c,
the curvature kc coincides with the geodesic curvature of c within the
Frenet theory for curves on surfaces.) Then we calculate

kc = −〈ν ′, c′〉 = −

(

dσ

ds

)2

〈ν̇, ċ〉 =

(

dσ

ds

)2

〈ν, c̈〉

where “ ′ ” denotes the derivative with respect to the arc length pa-
rameter s on c. Taking into account ν = θ − c, (3.7), (3.8) and

ds = |1
2
(1 − 〈θ̈, θ̈〉)| dσ, we get

kc = −
1 + 〈θ̈, θ̈〉

1 − 〈θ̈, θ̈〉
. (3.9)

Remark 3.3. The intersection of C2
+ with the osculating plane of θ at a

fixed point θ(σ) represents a family oscθ of horocycles with the follow-
ing geometric meaning:
If the osculating plane is space-like, then the envelope curve c of θ owns
an osculating circle oscc at c(σ), and oscc is enveloped by the horocy-
cles of the family oscθ. In case the osculating plane intersects H

2, the
osculating circle oscc lies in the concave sides of the horocycles of oscθ,
and we have kc < −1 and 0 < 〈θ̈, θ̈〉 < 1. In case the osculating plane
does not intersect H

2, the osculating circle oscc lies in the convex sides
of the horocycles of oscθ, and we have 1 < kc and 1 < 〈θ̈, θ̈〉.
If the osculating plane is time-like, then c owns an osculating equidis-
tant oscc at c(σ), and oscc is enveloped by the horocycles of the family

oscθ. In case 〈θ̈, θ̈〉 ≤ −1, the horocycles of oscθ lie in the convex side of

the equidistant oscc, and we have 0 ≤ kc < 1. In case −1 ≤ 〈θ̈, θ̈〉 < 0,
the horocycles of oscθ lie in the concave side of oscc, and we have
−1 < kc ≤ 0.

Now by (3.8) and (3.9), the length L(c) and the total curvature
TC(c) of c write in terms of θ as

L(c) =
1

2

∫

θ

|1 − k2
θ | dσ (3.10)

and

TC(c) =

∫

c

kc ds =
1

2

∫

θ

(1 + k2
θ) sign(k2

θ − 1) dσ . (3.11)

Here we write k2
θ = 〈θ̈, θ̈〉, like in euclidean spaces the 1st Frenet cur-

vature kθ of the curve θ in R
3
1, although 〈θ̈, θ̈〉 may be negative.
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Finally, for closed curves c bounding a simply connected domain and
oriented by its inner unit normal in H

2, we put into game the Gauss-
Bonnet formula

A(c) =

∫

c

kc ds− 2π , (3.12)

where A(c) denotes the area enclosed by c.
For example, if c is oriented by its inner unit normal ν and if 1 < kc,
hence 1 < k2

θ and c lies in the convex sides of the support horocycles
Θ. In this situation c bounds an h-convex body (cf. definition 4.5). By
(3.11) and (3.12) we get the area A(c) enclosed by c in terms of θ

A(c) =
1

2

∫

θ

(1 + k2
θ) dσ − 2π . (3.13)

3.2.2. Curves and canals. We consider here the envelope of a 1-param-
eter family of horospheres. This is special case of the classically called
canal surfaces.

Proposition 3.1. Let θ(t) ∈ C3
+ be a smooth regular curve transverse

to the generators, t ∈ (t0, t1). The corresponding horospheres admit an
smooth envelope given by a smooth mapping f : (t0, t1)×R → H

3 such
that each f({t}×R) is a horocycle, along which the envelope f and the
horosphere Θ(t) are tangent. This mapping f is an immersion if and

only if 〈θ̈(t), θ̈(t)〉 < 1, assuming θ(t) is arc-length parametrized.

Proof. It is convenient to consider the hyperbolic space H
3 as a ball

in the sphere S
3. To this end, let us choose a unit space-like vector

σ in R
5
1, and let us identify V = σ + (σ)⊥ with R

4
1. Then V ∩ C4

+ is
isometric to hyperbolic space H

3. In the projective completion of R
5
1,

we consider the projection from the origin towards the hyperplane at
infinity. This projection defines a diffeomorphism p from H

3 into an
open ball of ∂∞H

4 = S
3.

Consider now the unit space-like vectors τ(t) = σ + θ(t) ∈ R
5
1. The

orthogonal space (τ(t))⊥ intersects the cone C4
+ transversely, and defines

a 2-sphere in S
3. Since τ ′(t) is space-like, one can apply Lemma 1.8.3

in [HJ03] which constructs a certain mapping F : (t0, t1) × S
1 → S

3.
Restricting F to p(H3), and composing with p−1 gives the mapping
f . �

Proposition 3.2. Let θ(t) ∈ C3
+ be a space-like curve, arc-length para-

metrized, and such that 〈θ̈(t), θ̈(t)〉 ≡ 1. Then, the curve c(t) = θ(t) +

θ̈(t) ∈ H
3 has second order contact with the horocycle H(t) = (c(t) +

θ(t)⊥) ∩ θ(t)⊥ ∩ H
3, and third order contact with Θ(t).
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Proof. Note that (c(t) + θ(t)⊥) ∩ H
3 = {x ∈ H

3|〈x, θ(t) = −1} is a

horosphere, and that θ̇(t) ∩ H
3 is a geodesic plane. Hence H(t) is

indeed a horocycle. Clearly c(t) ∈ H(t) for every t. By elementary

considerations one shows that ċ, c̈ are orthogonal to θ and θ̇ (the dots
denoting derivation with respect to t). This easily gives that

...
c is

orthogonal to θ. Hence, 〈c(t), θ(t0)〉+1 (resp. 〈c(t), θ̇(t0)〉) vanishes up
to third (resp. second) order at t = t0. �

In some sense, H(t) and Θ(t) are respectively the osculating cir-
cle, and the osculating sphere of c(t). The family Θ(t) is a particular
instance of a special class of canals which were called drills in [LS06].

Note that c(t) has geodesic curvature kc(t) ≡ 1. Reciprocally, one
can show that any curve c(t) in H

3 with constant geodesic curvature
kc(t) ≡ 1 has third order contact with some horosphere at every point.

4. Linear combinations of support maps

Here we use the linear structure in the half-cone Cn+ in order to define
a scalar multiplication, the h-dilation, and two additions, the sum and
the harmonic sum.

4.1. The h-dilation.

Definition 4.1. Let M be a smooth regular hypersurface in H
n and θ

its support map with respect to a unit normal vector field ν along M .
For δ ∈ R+, we call the envelope of δ θ in H

n the h-dilation δ M of M .

Directly, the definition shows that δM is the parallel hypersurface,
irrespective the occurrence of singularities, of M at distance t in direc-
tion ν, where t = d(Θ,Θ∗) = − ln δ (cf. (2.1)) and θ∗ = δ θ.

4.1.1. The 2-dimensional situation. For an oriented curve c in H
2 with

associated support map θ, we denote c∗ = δ c the envelope of θ∗ = δ θ,
δ ∈ R+. We compute

〈

d2θ∗

(dσ∗)2
,
d2θ∗

(dσ∗)2

〉

=
1

δ2

〈

d2θ

(dσ)2
,
d2θ

(dσ)2

〉

,

where σ, σ∗ are the arc length parameters on θ, θ∗ respectively. There-
fore, at regular points of c∗, (3.9) implies

kc∗ =
kc + tanh(t)

1 + kc tanh(t)
. (4.1)

Moreover, taking into account
(

1

δ
− δ

)

(

〈θ̈, θ̈〉 + 1
)

+

(

1

δ
+ δ

)

(

〈θ̈, θ̈〉 − 1
)

= 2

(

〈θ̈, θ̈〉

δ
− δ

)

,
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(3.10) yields

L(c∗) =
1

2

(

1

δ
− δ

)

1

2

∫

θ

ǫ(θ, δ) ǫ(θ, 1) (1 + k2
θ) sign(k2

θ − 1) dσ +

+
1

2

(

1

δ
+ δ

)

1

2

∫

θ

ǫ(θ, δ) ǫ(θ, 1) |1 − k2
θ | dσ =

= sinh(t)
1

2

∫

θ

ǫ(θ, δ) ǫ(θ, 1) (1 + k2
θ) sign(k2

θ − 1) dσ +

+ cosh(t)
1

2

∫

θ

ǫ(θ, δ) ǫ(θ, 1) |1 − k2
θ | dσ , (4.2)

with ǫ(θ, δ) = sign(〈θ̈, θ̈〉 − δ2) and ǫ(θ, 1) = sign(〈θ̈, θ̈〉 − 1).
For example, if ǫ(θ, 1) = +1 and δ < 1, then ǫ(θ, δ) = +1. In this
case c is h-convex (cf. Definition 4.5), i.e. kc > 1, and c∗ is the outer
parallel curve to c at distance t = − ln δ. By using (3.10) and (3.11)
we obtain

L(c∗) = sinh(t)TC(c) + cosh(t)L(c) . (4.3)

Formulas (4.1) and (4.3) are well-known in the setting of Steiner formu-
las for parallel curves in the hyperbolic plane, see for instance [VA47],
[All48].

4.2. The sum.

Definition 4.2. Let M1, M2 be smooth regular hypersurfaces in H
n,

oriented by unit normal fields ν1, ν2 and with associated support maps
θ1, θ2. Suppose that M1 and M2 are related to one another by parallel
support horospheres, i.e. M1 and M2 can be parameterized by the
same parameters such that Θ1(u) and Θ2(u) are parallel horospheres
for each parameter u. Then we call the envelope of θ1 + θ2 in H

n the
sum M1 +M2 of M1 and M2.

For example convex M1 and M2 are always related to one another
by parallel support horospheres.

Below we will need the position of M2 relative to M1. This is detailed
as follows.

Definition 4.3. Let M1, M2 be given as above. Then θ2 = λθ1, and the
signed distance d(Θ1,Θ2) from Θ1 to Θ2 is given by d(Θ1,Θ2) = − lnλ,
cf. (2.1). We call

w12 : M1 → R , u 7→ − lnλ(u) (4.4)

the relative support function of M2 with respect to M1.
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c1

c2

c1 + c2

Figure 1: The sum c1 + c2 of two circles c1, c2 in the Poincaré disk, oriented by their

outer unit normals, with radii r1 = 1, r2 = 0.5 and distance 2 between their centers

c1 c2

c1 + c2

Figure 2: The sum c1 + c2 of two circles c1, c2 in the Poincaré disk, oriented by their

outer unit normals, with radii r1 = 0.16, r2 = 2 and distance 5 between their centers

Remark 4.1. If M1 = M2 is the boundary of an h-convex body (cf.
Definition4.5), and if M1,M2 are oppositely oriented, then the relative
support function coincides with the width function with respect to
horocycles considered in [GRST08].
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4.2.1. The 2-dimensional situation. Now c1, c2 are smooth regular ori-
ented curves in H

2, related to one another by parallel support horocy-
cles.

Lemma 4.1. For the lengths of the support images involved in the sum
the following relation holds

L(θ1 + θ2) = L(θ1) + L(θ2) . (4.5)

Proof. Suppose θ2(σ1) = λ(σ1)θ1(σ1), parameterized by the arc length
parameter σ1 on θ1. Then we have

dθ2
dσ1

=
dλ

dσ1

θ1 + λ
dθ1
dσ1

,

〈

dθ2
dσ1

,
dθ2
dσ1

〉

= λ2

〈

dθ1
dσ1

,
dθ1
dσ1

〉

= λ2 ,

hence
dσ2 = λ dσ1 .

For θ∗ := θ1 + θ2 = (1 + λ) θ1, we get

dθ∗

dσ1

=
dλ

dσ1

θ1 + (1 + λ)
dθ1
dσ1

and
〈

dθ∗

dσ1
,
dθ∗

dσ1

〉

= (1 + λ)2〈
dθ1
dσ1

,
dθ1
dσ1

〉 = (1 + λ)2 .

Hence
dσ∗ = (1 + λ) dσ1 = dσ1 + dσ2 .

�

Proposition 4.1. Let c1, c2 be smooth regular curves in H
2, oriented by

unit normal fields ν1, ν2 and related to one another by parallel support
horocycles. If kc1, kc2 < 1, then the sum θ∗ = θ1+θ2 envelopes a regular
curve c∗ = c1 +c2 in H

2 with kc∗ < 1 , i.e. c∗ lies locally on the concave
sides of its respective support horocycles.

Proof. By assumption, the curves c1, c2 lie locally on the concave sides
of their respective support horocycles, therefore the osculating planes
of θ1, θ2 intersect H

2 without being tangent (cf. Remark 3.2).
Now, we keep fixed an arbitrary parameter σ1.
The osculating plane of θ1 at σ1 is given by

θ1(σ1) + span(θ̇1(σ1), θ̈1(σ1)).

Let P1 denote the parallel plane through θ∗(σ1), i.e.

P1 = θ∗(σ1) + span(θ̇1(σ1), θ̈1(σ1)).
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The osculating plane of θ1 at σ1 intersects H
2 without being tangent,

and θ∗ = θ1 +θ2, therefore P1 also intersects H
2 without being tangent.

Now θ2 = λθ1, hence

θ̇2 = λ̇θ1 + λθ̇1 and θ̈2 = λ̈θ1 + 2λ̇θ̇1 + λθ̈1 (4.6)

(where the dots denote derivatives with respect to σ1). And the oscu-
lating plane of θ2 at σ1 is given by

θ2(σ1) + span(θ̇2(σ1), θ̈2(σ1)).

Let P2 denote the parallel plane through θ∗(σ1), i.e.

P2 = θ∗(σ1) + span(θ̇2(σ1), θ̈2(σ1)).

The osculating plane of θ2 at σ1 intersects H
2 without being tangent,

we have θ∗ = θ1 + θ2, therefore P2 also intersects H
2 without being

tangent.
The osculating plane of θ∗ at σ1 is given by

P ∗ = θ∗(σ1) + span(θ̇∗(σ1), θ̈
∗(σ1))

with
θ̇∗ = θ̇2 + θ̇1 and θ̈∗ = θ̈2 + θ̈1. (4.7)

Let T be the tangent plane of C2
+ along the generator R+ · θ1(σ1), i.e.

T = θ∗(σ1) + span(θ1(σ1), θ̇1(σ1)). For a ≥ 0 let Ta denote the plane

parallel to T given by Ta = T + a θ̈1(σ1).
Then Ta intersects P1 in the line

ℓ1a = θ∗(σ1) + a θ̈1(σ1) + R · θ̇1(σ1) .

And by (4.6), Ta intersects P2 in the line

ℓ2a = θ∗(σ1) +
a

λ(σ1)
θ̈2(σ1) + R · θ̇2(σ1) .

And by (4.7), Ta intersects P ∗ in the line

ℓ∗a = θ∗(σ1) +
a

1 + λ(σ1)

(

θ̈2(σ1) + θ̈1(σ1)
)

+ R ·
(

θ̇2(σ1) + θ̇1(σ1)
)

.

Let ga denote the line in Ta given by

ga = θ∗(σ1) + a θ̈1(σ1) + R · θ1(σ1) .

Then ga intersects ℓ1a in the point

Q1a = θ∗(σ1) + a θ̈1(σ1) .

And ga intersects ℓ2a in the point

Q2a = θ∗(σ1) + a θ̈1(σ1) +
a(λλ̈− 2λ̇2)

λ2
|σ1
θ1(σ1) .
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And ga intersects ℓ∗a in the point

Q∗

a = θ∗(σ1) + a θ̈1(σ1) +
a((1 + λ)λ̈− 2λ̇2)

(1 + λ)2
|σ1
θ1(σ1) .

The proof now splits into two cases.
• The first case, ((1 + λ)λ̈− 2λ̇2)|σ1

≥ 0:
Recall that P1 intersects H

2 without being tangent. Therefore there ex-
ists an a > 0 such that ℓ1a intersects the parabola Ta∩H

2 without being
tangent. The axis of the parabola is ga = θ∗(σ1)+ a θ̈1(σ1)+ R · θ1(σ1).
Hence the half-ray Q1a + R+ · θ1(σ1) ⊂ Ta lies in the convex region
bounded by the parabola Ta ∩ H

2. In the first case Q∗
a lies on this

half-ray. Hence Q∗
a lies in the convex region bounded by the parabola

Ta ∩ H
2. Hence ℓ∗a intersects the parabola Ta ∩ H

2 without being tan-
gent. Hence the osculating plane P ∗ of θ∗ at σ1 intersects H

2 without
being tangent.
• The second case, ((1 + λ)λ̈− 2λ̇2)|σ1

< 0:
Recall that P2 intersects H

2 without being tangent. Therefore there
exists an a > 0 such that ℓ2a intersects the parabola Ta ∩ H

2 without
being tangent. Hence the half-ray Q2a+R+ ·θ1(σ1) ⊂ Ta lies in the con-
vex region bounded by the parabola Ta ∩H

2. Through the assumption
in the second case we have

λλ̈− 2λ̇2

λ2
|σ1

≤
(1 + λ)λ̈− 2λ̇2

(1 + λ)2
|σ1
.

Hence Q∗
a lies on this half-ray. Hence ℓ∗a intersects the parabola Ta∩H

2

without being tangent. Hence the osculating plane P ∗ of θ∗ at σ1

intersects H
2 without being tangent.

Altogether, this shows that the osculating planes of θ∗ intersect H
2

without being tangent. Therefore c∗ is regular at σ1, Θ∗ supports c∗

concave-sided, i.e. kc∗ < 1. �

Proposition 4.2. Let c1, c2 be smooth regular curves in H
2, oriented by

unit normal fields ν1, ν2 and related to one another by parallel support
horocycles. If kc1, kc2 < 1, then the length and the total curvature of
c∗ = c1 + c2 write in terms of c1, c2 and their relative position to each
other in H

2 as follows:

L(c∗) =
1

2
(−W (c1, c1 + c2) + L(c1) − TC(c1) + L(c2) − TC(c2))

(4.8)

TC(c∗) =
1

2
(−W (c1, c1 + c2) − L(c1) + TC(c1) − L(c2) + TC(c2)) ,

(4.9)
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with

W(c1, c1 + c2) := −TC(c∗) − L(c∗) =

=

∫

θ1

ew1∗

(

(ẇ1∗)
2 + 2ẅ1∗ + k2

θ1

)

dσ1 (4.10)

and the relative support function w1∗(σ1) = − ln(1 + λ(σ1)) of c∗ with
respect to c1.

Proof. By the assumptions on c1, c2 and by Proposition 4.1 we have for
all three curves involved kc1, kc2, kc∗ < 1. Therefore by (3.2) for each
of these curves we have dσ = (1 − kc) ds and

L(θ) =

∫

θ

dσ =

∫

c

(1 − kc) ds = L(c) − TC(c) . (4.11)

This and Lemma 4.1 (4.5) give

L(c∗) − TC(c∗) = L(c1) − TC(c1) + L(c2) − TC(c2) . (4.12)

For all three curves c1, c2, c
∗ we have k2

θ = 〈θ̈, θ̈〉 < 1 (cf. Remark 3.3),
hence by (3.8)

ds =
1

2
(1 − k2

θ) dσ .

This applied to c∗ yields

L(c∗) =
1

2
L(θ∗) −

1

2

∫

θ∗
k2
θ∗ dσ

∗ . (4.13)

Now a straightforward but lengthy computation, not acted out here,
starts at θ∗ = (1 + λ) θ1, minds dσ∗ = (1 + λ) dσ1 , and reaches

k2
θ∗ = 〈

d2θ∗

dσ∗2
,
d2θ∗

dσ∗2
〉 =

1

(1 + λ)2

[

(

d

dσ1
(ln(1 + λ))

)2

−

− 2
d2

dσ2
1

(ln(1 + λ)) + 〈θ̈1, θ̈1〉

]

. (4.14)

Using the relative support function of c∗ with respect to c1, i.e. w1∗ =
− ln(1 + λ), formula (4.14) gives

∫

θ∗
k2
θ∗ dσ

∗ =

∫

θ1

ew1∗

(

(ẇ1∗)
2 + 2ẅ1∗ + k2

θ1

)

dσ1 . (4.15)

Hence (4.13), (4.15) and (4.11) yield

L(c∗) = −
1

2

∫

θ1

ew1∗

(

(ẇ1∗)
2 + 2ẅ1∗ + k2

θ1

)

dσ1 +
1

2
L(c∗) −

1

2
TC(c∗) .

(4.16)
Finally (4.12) and (4.16) give the result. �
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Remark 4.2. If c is closed, then through integration by parts (4.10) can
be written as follows

W(c1, c1 + c2) =

∫

θ1

ew1∗

(

ẅ1∗ + k2
θ1

)

dσ1 =

=

∫

θ1

ew1∗

(

−(ẇ1∗)
2 + k2

θ1

)

dσ1 . (4.17)

Remark 4.3. Under the conditions of Proposition 4.2, if c1, c2 and c∗

are simple and closed, then applying the Gauss-Bonnet formula (3.12)
in (4.9) we obtain for the area enclosed by c∗

A(c∗) =
1

2
(W (c1, c1 + c2) + L(c1) + L(c2) + A(c1) + A(c2)) . (4.18)

4.3. The harmonic sum.

Definition 4.4. Let M1,M2 be smooth regular hypersurfaces in H
n,

oriented by unit normal fields ν1, ν2 and with associated support maps
θ1, θ2. Suppose that M1 and M2 are related to one another by parallel
support horospheres. Then we call

M1#M2 = M∗, given by θ∗ = θ1#θ2 =
λ

1 + λ
θ1 (4.19)

the harmonic sum M1#M2 of M1 and M2, i.e. M∗ is the envelope of
Θ∗.

Remark 4.4. Geometrically, this definition is induced by the vector sum
of the two parallel hyperplanes Θ1 and Θ2 in the vector space R

n+1
1 .

Analytically, 2λ
1+λ

is the harmonic mean of 1 and λ, corresponding to
θ1 and θ2.

Lemma 4.2. Let θ1, θ2 be support maps as above. Then θ∗ = θ1#θ2
lies below θ1 and θ2 with respect to each of the generators of C2

+.

Proof. We have θ2 = λ θ1 with λ > 0. Hence

θ∗ =
λ

1 + λ
θ1 < θ1 , and

θ∗ =
λ

1 + λ
θ1 =

1

1 + λ
θ2 < θ2 .

�

Now we specify distance spheres S in H
n. S is determined by its

center m ∈ H
n and its hyperbolic radius |r|. For both orientations, the

associated support maps θ are given by the intersections of Cn+ with
the space-like hyperplanes 〈n, x〉 = −1, where n is time-like inside the
half-cone Cn+, m = n/|n| and |r| = | ln |n||. If S is oriented by its inner
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unit normals, then |n| > 1 and we take the signed radius r = ln |n| > 0.
If S is oriented by its outer unit normals, then |n| < 1 and we take the
signed radius r = ln |n| < 0. In particular for circles in the hyperbolic
plane, the orientation by inner unit normals is signified by counter-
clockwise direction along the circle, whereas orientation by outer unit
normals is signified by clockwise direction along the circle.

c1

c2

c1#c2

c1

c2

c1#c2

c1

c2
c1#c2

Figure 3: The harmonic sum c1#c2 of two circles c1, c2 in the Poincaré disk, with signed

radii r1 = 1, +1,−1, r2 = −0.25, +0.25,−0.25 and distance 0.5 between their centers

c1
c2

c1#c2

c1

c2

c1#c2

c1
c2

c1#c2

Figure 4: The harmonic sum c1#c2 of two circles c1, c2 in the Poincaré disk, with signed

radii r1 = +1, +1,−1, r2 = −1, +1,−1 and distance 3 between their centers

Proposition 4.3. (1) Let S1, S2 be spheres or points in H
n. Then

the harmonic sum S1#S2 of S1 and S2 is a sphere or a point.
(2) Let S1, S2 be spheres or points in H

n with centers m1, m2 and
signed radii r1, r2. Then the harmonic sum S∗ = S1#S2 has
center m∗ and signed radius r∗ as follows:

r∗ =
1

2
ln
(

e2r1 + e2r2 + 2er1+r2 cosh(d(m1, m2))
)

(4.20)

where d(m1, m2) is the hyperbolic distance between m1 and m2,
and

m∗ =
1

|n1 + n2|
(n1 + n2) (4.21)

with n1 = er1 m1 and n2 = er2 m2. Moreover

cosh(d(m1,m
∗))

cosh(d(m2,m∗))
=
er1 + er2 cosh(d(m1,m2))

er1 cosh(d(m1,m2)) + er2
. (4.22)
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(3) Let S1, S2 be spheres oriented by their inner unit normals, or
points in H

n. Then the harmonic sum S1#S2 of S1 and S2 is a
sphere containing both S1 and S2.

Proof. ad (1): The support maps of spheres or points are given by
the intersection of Cn+ with space-like hyperplanes. Therefore θ1, θ2 are
uniquely given by hyperplanes 〈n1, x〉 = −1 and 〈n2, x〉 = −1 with
time-like vectors n1, n2 6= 0 lying inside Cn+ ⊂ R

n+1
1 . Then θ2 = λ θ1

with λ = −1/〈n2, θ1〉. Putting n∗ = n1 + n2, we compute

〈n∗, θ∗〉 = 〈n1 + n2,
λ

1 + λ
θ1〉 =

=
λ

1 + λ
〈n1, θ1〉 +

λ

1 + λ
〈n2, θ1〉 = −1 .

Therefore θ∗ lies in the hyperplane 〈n∗, x〉 = −1, and hence it envelopes
a sphere or a point.
ad (2): The support maps θ1, θ2 of S1, S2 are uniquely determined by
their hyperplanes 〈n1, x〉 = −1, 〈n2, x〉 = −1 as described above. Then
their centers and signed radii are given by m1 = n1/|n1|, m2 = n2/|n1|
and r1 = ln |n1| , r2 = ln |n2|. The support map θ∗ is given by the
hyperplane 〈n1 + n2, x〉 = −1. Then straightforward computations
give the results.
ad (3): S1, S2 are oriented by their inner unit normals. Hence their
support maps θ1, θ2 support such that S1, S2 lie in the convex sides of
Θ1,Θ2, i.e. their respective hyperplanes do not intersect H

n. Then
by Lemma 4.2, θ∗ lies below θ1 and θ2 with respect to each generator
of C2

+. Therefore the hyperplane of θ∗ does not intersect H
2. Hence

S1#S2 lies in the convex sides of Θ∗. Moreover Θ∗ contains Θ1 and Θ2,
hence S1#S2 contains S1 and S2. �

Now we treat h-convex bodies in H
n.

Definition 4.5. A compact subset K ⊂ H
n is called h-convex (horo-

convex ) if for each x ∈ ∂K there exists at least one horosphere Θ
which supports K at x such that x ∈ Θ and K ⊆ BΘ, BΘ = closed
convex horoball bounded by Θ.

This definition is equivalent to the following condition onK: for each
pair of points in K, all the entire horocycle segments joining them are
also contained in K. In the smooth case, Definition 4.5 is equivalent to
the fact that all normal curvatures of ∂K with respect to inner normals
are bigger or equal to 1 (cf. [GR99])

Now, each pencil of parallel horospheres has exactly one member
which supports K this way. Therefore there is an associated support
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map θK = θ which assigns to each pencil of parallel horospheres, deter-
mined by its point u at infinity, just this supporting horosphere Θ(u),
i.e. we have the support map

θ : H
n
∞ → Cn+ , u 7→ θ(u) . (4.23)

It is easy to see that θ is continuous. Alternatively, the support map
may be considered as a continuous map from the outer unit normal
bundle N1∂K of ∂K (for sets of positive reach in the sense of H. Fed-
erer) into Cn+, i.e.

θ : N1 → Cn+ , (x, ν) 7→ x− ν (4.24)

(x ∈ ∂K , ν ∈ N1
x). (Note: In the smooth regular case, one can use the

inner unit normal bundle and the support map as in (3.1).) This way,
for each h-convex K in H

n there is an associated support image via θ
in Cn+.
Vice versa, given a continuous graph θ(u) , u ∈ H

n
∞, in Cn+, we define

Kθ :=
⋂

u∈Hn
∞

BΘ(u) , (4.25)

where BΘ(u) is the closed horoball with boundary Θ(u), i.e. the closed
convex region bounded by Θ(u).
Kθ is h-convex, because it is the intersection of horoballs. This can be
shown like the analogous fact in euclidean convexity.
Kθ is compact, because it is closed and bounded. To this: It is closed,
because it is the intersection of closed subsets. And it is bounded,
because the graph of θ is bounded away from the vertex of Cn+, hence
there is a space-like hyperplane in R

n+1
1 separating graph and vertex,

and the intersection of this hyperplane with Cn+ envelopes a hyperbolic
distance sphere containing Kθ.

In order to characterize the support images of h-convex bodies, we
need θx := TxH

n ∩ Cn+ , the pencils of horospheres through the points
x in H

n.

Definition 4.6. A graph ψ : H
n
∞ → Cn+ is called h-supported, if for every

u ∈ H
n
∞ there exists x(u) ∈ Ψ(u) such that the graph ψ lies below θx(u),

i.e. ψ lies in the apex-side of θx(u) in the cone Cn+.

Remark 4.5. If a graph in Cn+ is h-supported, then it is continuous.

Then the 1-1-correspondence between compact h-convex bodies in
H
n and h-supported graphs in Cn+ is as follows.

Lemma 4.3. (1) Let K ⊂ H
n be compact and h-convex, then its

support image θK is a continuous and h-supported graph in Cn+.
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(2) Let θ be a continuous and h-supported graph in Cn+, then the
associated compact h-convex body Kθ (cf. (4.25)) has θ as its
support image.

Proof. ad (1). By the definition of support maps (cf. (4.23)), given
u ∈ H

n
∞, there exists x(u) ∈ ∂ K with x(u) ∈ ΘK(u). Furthermore, for

each u′ ∈ H
n
∞ the associated support horosphere ΘK(u′) contains in its

convex side a parallel horosphere through x(u). Therefore θK(u′) lies
below θx(u)(u

′) in the generator of Cn+ through u′. Hence θK lies below
θx(u).

ad (2). By the definition of Kθ (cf. (4.25)) and the definition of
support maps (cf. (4.23)), we see that the support image ψ of Kθ lies
above θ in Cn+. On the other hand, pick an u ∈ H

n
∞. Because θ is

h-supported, there exists x(u) ∈ Θ(u) such that θ lies below θx(u) in
Cn+. Therefore x(u) ∈ BΘ(u′) for all u′ ∈ H

n
∞, hence x(u) ∈ Kθ. This

implies that ψ(u) lies below θ(u). Therefore we get ψ(u) = θ(u), hence
ψ = θ. �

Given h-convex compact bodiesK1, K2 with associated support maps
θ1, θ2, we call Kθ1#θ2 (cf. (4.25)) the harmonic sum K1#K2 of K1 and
K2.

Lemma 4.4. Let K1, K2, L1, L2 be compact h-convex bodies in H
n with

associated support maps θ1, θ2, ψ1, ψ2. If K2 ⊆ K1 and L2 ⊆ L1, then
K2#L2 ⊆ K1#L1.

Proof. K2 ⊆ K1 and L2 ⊆ L1 imply θ1 ≤ θ2 and ψ1 ≤ ψ2. Here the
ordering is fulfilled on each generator, i.e. e.g. θ1(u) ≤ θ2(u) , u ∈ H

n
∞,

with respect to the canonical ordering on the generators of Cn+.
Hence θ2 = λ θ1 , λ ≥ 1, and ψ2 = µψ1 , µ ≥ 1. If we write ψ1 =
ρ θ1 , ρ > 0, then according to the definition of the harmonic sum,

θ1#ψ1 =
ρ

1 + ρ
θ1 , and

θ2#ψ2 =
µρ

λ

1 + µρ

λ

θ2 =
µρ

1 + µρ

λ

θ1

(note: ψ2 = µψ1 = µρθ1 = (µρ/λ)θ2).
Now we compute

ρ

1 + ρ
≤

µρ

1 + µρ

λ

⇔
ρ

1 + ρ
≤

λµρ

λ+ µρ

⇔ λρ+ µρ2 ≤ λµρ+ λµρ2

⇔ 0 ≤ λρ(µ− 1) + µρ2(λ− 1) .
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The latter inequality is fulfilled, because of µ ≥ 1, λ ≥ 1 and ρ > 0.
Hence

θ1#ψ1 ≤ θ2#ψ2 .

By (4.25), this implies

Kθ2#ψ2
⊆ Kθ1#ψ1

, i.e. K2#L2 ⊆ K1#L1 . �

Proposition 4.4. Let K1, K2 be compact h-convex bodies in H
n with

associated support maps θ1, θ2. Then the harmonic sum θ1#θ2 of θ1
and θ2 is the support map of a compact h-convex body K1#K2, the
harmonic sum of K1 and K2. Moreover K1, K2 ⊂ K1#K2.

Proof. By Lemma 4.3 θ1, θ2 are h-supported continuous graphs in Cn+.
So, given u ∈ H

n
∞, there exist x1(u), x2(u) ∈ H

n such that θ1 ≤ θx1(u) ,
θ2 ≤ θx2(u) in Cn+, and θ1(u) = θx1(u)(u), θ2(u) = θx2(u)(u). Accord-
ing to the proof of Lemma 4.4, this implies θ1#θ2 ≤ θx1(u)#θx2(u)

and (θ1#θ2)(u) = (θx1(u)#θx2(u))(u). According to Proposition 4.3
and Lemma 4.2, θx1(u)#θx2(u) represents a sphere in H

n, θx1(u)#θx2(u)

is the intersection of an affine hyperplane E with Cn+ ⊂ R
n+1
1 , and

E∩H
n = ∅. Therefore, a suitable rotation of E around E∩T(θ1#θ2)(u)C

n
+

gives a tangent hyperplane Ty(u)H
n at some y(u) ∈ H

n, such that
Ty(u)H

n ∩ Cn+ = θy(u) and (θx1(u)#θx2(u))(u) ∈ θy(u). According to this
construction we have

θ1#θ2 ≤ θx1(u)#θx2(u) ≤ θy(u) .

Now, u ∈ H
n
∞ was chosen arbitrary, thus we see that θ1#θ2 is a h-

supported graph in Cn+. Moreover by the definition of the harmonic
sum, θ1#θ2 is a continuous graph. Therefore by Lemma 4.3, θ1#θ2
is the support image of a compact h-convex body Kθ1#θ2 =: K1#K2.
Finally, Lemma 4.2 implies K1, K2 ⊆ K1#K2. �

4.3.1. The 2-dimensional situation.

Proposition 4.5. Let c1, c2 be smooth regular curves in H
2, oriented by

unit normal fields ν1, ν2 and related to one another by parallel support
horocycles. If kc1, kc2 > 1, then the length and the total curvature of
c∗ = c1#c2 write in terms of c1, c2 and their relative position to each
other in H

2 as follows:

L(c∗) =
1

2
(W (c1, c1#c2) − V (c1, c1#c2)) (4.26)

and

TC(c∗) =
1

2
(W (c1, c1#c2) + V (c1, c1#c2)) , (4.27)
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where

W (c1, c1#c2) := L(c∗) + TC(c∗) =

∫

θ∗
k2
θ∗ dσ

∗ =

=

∫

θ1

ew1∗

(

(ẇ1∗)
2 + 2ẅ1∗ + k2

θ1

)

dσ1 (4.28)

with the relative suppport function w1∗(σ1) = − ln
(

λ(σ1)
1+λ(σ1)

)

of c∗ with

respect to c1, and

V (c1, c1#c2) :=

∫

θ∗
dσ∗ =

=

∫

θ1

e−w1∗(σ1)dσ1 =

∫

θ1

λ(σ1)

1 + λ(σ1)
dσ1 . (4.29)

Proof. We can write θ2 = λθ1, hence by the definition of the harmonic
sum θ∗ = λ

1+λ
θ1, hence dσ∗ = λ

1+λ
dσ1 (we see here that dσ∗ is essen-

tially the harmonic mean of dσ1 and dσ2, cf. Remark 4.4). By the
proof of Proposition 4.4 the harmonic sum c∗ fulfils kc∗ > 1, hence
dσ∗ = (kc∗ − 1) ds∗ and

L(θ∗) =

∫

θ∗
dσ∗ =

∫

c∗
(kc∗ − 1) ds∗ = TC(c∗) − L(c∗)

and (cf. (3.10))

L(c∗) =
1

2

∫

θ∗

(

k2
θ∗ − 1

)

dσ∗.

These two equations yield (4.26) and (4.27). The last equality in (4.28)
can be proved as (4.15). �

Remark 4.6. If c is closed, then through integration by parts W in
(4.28) can be rewritten like (4.17).

4.4. Support functions and the analogon of the Minkowski

sum. As a base for a support function, we fix a point or a sphere
in H

n, or more general a h-convex body with oriented smooth regular
boundary hypersurface M0. Let θ0 be the associated support map.
Let M be a smooth regular hypersurface oriented by a unit normal
field ν, and let θ(x) = x+ν(x), x ∈M , be the respective support map.
Then we have θ = λ θ0 along M , and we call, according to (2.1),

h = − lnλ (4.30)

the support function of M with respect to M0.
Support functions using horospheres and based at points are considered
in [Fil70], [San67], [San68]. Support functions using equidistants and
based on geodesics through a fixed point are considered in [Lei04].
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4.4.1. The analogon of the Minkowski sum in the 2-dimensional situa-
tion. We use support functions with respect to a point o ∈ H

2. Then
θ0 is given by the intersection of C2

+ with the tangent plane ToH
2,

and k2
θ0

= 1. Given two strongly h-convex bodies with smooth regu-
lar boundary curves ci , i = 1, 2, oriented by their inner unit normal
vectors. Then we have θi = λi θ0 and hi = − lnλi. We consider
θ⋄ = θ1 ⋄ θ2 = λ⋄θ0 = λ1 λ2 θ0, h

⋄ = − lnλ⋄ = h1 + h2. In the light
of the last equations and the classical euclidean situation, we call the
envelope c1 ⋄ c2 of θ1 ⋄ θ2 the Minkowski sum of c1 and c2 with respect
to o.
As in (4.15) we have

∫

θi

k2
θi
dσi =

∫

θ0

ehi

(

(ḣi)
2 + 2ḧi + k2

θ0

)

dσ0 =

=

∫

θ0

ehi

(

ḧi + k2
θ0

)

dσ0 . (4.31)

The ci are strongly convex, hence kci > 1 and k2
θi
> 1 (cf. Remark 3.3).

By (3.10), (3.11) we get

L(ci) =
1

2

∫

θi

(

k2
θi
− 1
)

dσi =

=
1

2

∫

θ0

ehi

(

ḧi + k2
θ0
− e−2hi

)

dσ0 (4.32)

and

TC(ci) =
1

2

∫

θ0

ehi

(

ḧi + k2
θ0

+ e−2hi

)

dσ0 . (4.33)

Remark 4.7. Formula (4.32) rewritten by (4.17) is the work of [Fil70]
(note: k2

θ0
= 1).

As in the proof of Proposition 4.5 we get

L(ci) =
1

2
(W (o, ci) − V (o, ci))

TC(ci) =
1

2
(W (o, ci) + V (o, ci)) (4.34)

with

W (o, ci) :=

∫

θ0

ehi

(

ḧi + k2
θ0

)

dσ0 (4.35)

and

V (o, ci) :=

∫

θ0

e−hi dσ0 . (4.36)
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If c⋄ = c1 ⋄ c2 is strongly h-convex, then similar computations arrive at

L(c⋄) =
1

2
(W (o, c1 ⋄ c2) − V (o, c1 ⋄ c2))

TC(c⋄) =
1

2
(W (o, c1 ⋄ c2) + V (o, c1 ⋄ c2)) , (4.37)

with

W (o, c1 ⋄ c2) :=

∫

θ0

eh1+h2

(

ḧ1 + ḧ2 + k2
θ0

)

dσ0 =

=

∫

θ0

eh1

(

ḧ1 +
1

2
k2
θ0

)

eh2 dσ0 +

+

∫

θ0

eh2

(

ḧ2 +
1

2
k2
θ0

)

eh1 dσ0 (4.38)

and

V (o, c1 ⋄ c2) :=

∫

θ0

e−(h1+h2) dσ0 =

=
1

2

(
∫

θ2

e−h1 dσ2 +

∫

θ1

e−h2 dσ1

)

, (4.39)

where we used dσi = λi dσ0 = e−hidσ0.
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