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ió

N
ú
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Beltrami equation with coefficient in
Sobolev and Besov spaces
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Abstract

Our goal in this work is to present some function spaces on the complex
plane C, X(C), for which the quasiregular solutions of the Beltrami equation,
∂f(z) = µ(z)∂f(z), have first derivatives locally in X(C), provided that the
Beltrami coefficient µ belongs to X(C).
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1 Introduction

A function f : C −→ C is called µ-quasiregular if it belongs to the Sobolev space
W 1,2

loc (C) (functions with distributional first order derivatives locally in L2) and sat-
isfies the Beltrami equation

∂f(z) = µ(z)∂f(z), a.e. z ∈ C , (1)

where µ, called the Beltrami coefficient of f , is a Lebesgue measurable function on
the complex plane C satisfying ‖µ‖∞ < 1 . If, in addition, f is a homeomorphism,
then we say that f is µ-quasiconformal. Quasiconformal and quasiregular mappings
are a central tool in modern geometric function theory and have had strong impact
in other areas.

It is well-known that quasiregular functions are locally in some Hölder class
(Mori’s Theorem), and moreover they actually belong to W 1,p

loc for some p > 2. In
this paper we are interested in studying how the regularity of the Beltrami coefficient
affects the regularity of the solutions of (1). Thus, if the Beltrami coefficient µ
belongs to the Hölder class C l,s, 0 < s < 1, using Schauder estimates (see for
instance [AIM, chapter 15]), then µ-quasiregular functions belong to C l+1,s

loc . For the
borderline cases s = 0 and s = 1, the C l+1,s regularity fails (e.g. [AIM, p. 390]). If
µ ∈ W 1,p, 2 < p <∞, then one can read in Ahlfors’ book [Ah, p. 56] the result that
quasiregular functions are locally in W 2,p. The cases µ ∈ W 1,p, p ≤ 2, were studied

1



in [CFMOZ]; for instance, when p = 2 one gets that the solutions are locally in W 2,q

for every q < 2.
Our goal in this work is to present some function spaces X for which all quasireg-

ular solutions of (1) have first derivatives locally in X, provided that the Beltrami
coefficient belongs to X. These function spaces will enjoy the additional property of
being an algebra (that is, the product of two functions in X is again in X) and this
feature will play an important role in our arguments. We deal with Triebel-Lizorkin
spaces F s

p,q(C) and Besov spaces Bs
p,q(C) with s > 0, 1 < p < ∞, 1 < q < ∞ and

sp > 2. Let Asp,q(C) denote any of these function spaces with the indices as we
have determined. In any case, the condition sp > 2 ensures that we have bounded
continuous functions and multiplication algebras (e.g. [RS, 4.6.4]). In Section 2 we
will give the precise definitions of these function spaces involved in the statement of
the our first theorem.

Theorem 1. Suppose that µ ∈ Asp,q(C) is compactly supported with ‖µ‖∞ = k < 1.

Then any f ∈ W 1,2
loc (C) satisfying the Beltrami equation (1) has first derivatives

locally in Asp,q(C).

When the Beltrami coefficient is compactly supported there is a unique W 1,2
loc (C)

solution of (1) normalized by the condition z + O(1/z) near ∞. Moreover, it is
a homeomorphism of the complex plane. It is called the principal solution of (1).
By Stoilow’s Factorization Theorem (e.g. [AIM, section 5.5]), for any quasiregular
function f there exists a holomorphic function h such that f = h ◦ φ, where φ is
the associated principal solution. Therefore, we will only concentrate on principal
solutions. As is well known, φ is given explicitly by the formula [AIM, p. 165]

φ(z) = z + C(h)(z) ,

where the operator

Ch(z) =
1

π

∫

C
h(z − w)

1

w
dw (2)

is the Cauchy transform of h. When h ∈ Lp, 1 < p < ∞, one has the identity
∂̄C(h) = h. Consequently, our theorem immediately follows from next proposition.

Proposition 1. Suppose that µ is compactly supported with ‖µ‖∞ = k < 1 and
φ(z) = z+C(h)(z) is the principal solution of the Beltrami equation (1). Let s > 0,
1 < p <∞, 1 < q <∞ and sp > 2. If µ ∈ Asp,q(C), then h ∈ Asp,q(C).

Sketch of the proof. The Beurling transform is the principal value convo-
lution operator

Bf(z) = − 1

π
p.v.

∫

C
f(z − w)

1

w2
dw .
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The Fourier multiplier of B is ξ
ξ

, or, in other words,

B̂f(ξ) =
ξ

ξ
f̂(ξ) .

Thus B is an isometry on L2(C) and is well-known that B, as any Calderón-
Zygmund convolution operator, is bounded on Asp,q(C).

Recall the relation between the Cauchy and the Beurling transforms: ∂C = B.
Thus, ∂φ = 1 + B(h) and ∂ φ = h, and consequently the function h is determined
by the equation

(I − µB)(h) = µ .

So, we only need to invert the Beltrami operator I − µB on the corresponding
function space. This task is completed in Section 3.

For the critical case sp = 2, we consider a Riesz potential space I1(L2,1(C)),
the set of functions with first order derivatives in the Lorentz space L2,1(C). Even
though close to L2 , the Lorentz space L2,1(C) is strictly contained in L2. This small
improvement on the derivatives allows us to have continuous functions vanishing at
infinity (by the way, remind that functions with first order derivatives in L2 may
not be continuous).

Proposition 2. Suppose that µ ∈ I1(L2,1(C)) is compactly supported with ‖µ‖∞ =
k < 1 and φ(z) = z + C(h)(z) is the principal solution of the Beltrami equation (1).
Then h ∈ I1(L2,1(C)).

As we mentioned ago, Proposition 2 does not hold when the Beltrami coefficient
only has first derivatives in L2 . However, the analogous result would remain valid
if we replace I1(L2,1(C)) by Is(L

2
s
,1(C)), 0 < s < 2.

The main result of [MOV] identifies a class of non-smooth Beltrami coefficients
which determine bilipschitz quasiconformal mappings. In particular, one proved the
following result.

Theorem ([MOV]). Let Ω be a bounded domain of C with boundary of class C1,ε,
0 < ε < 1, and let µ ∈ C0,ε(Ω) with ‖µ‖∞ < 1. Let φ(z) = z + C(h)(z) be the
principal solution of the Beltrami equation (1). Then h ∈ C0,ε′(Ω) for any ε′ < ε
and moreover φ is billipschitz .

Now, we replace the Hölder smoothness of the Beltrami coefficient by a Sobolev
(or Besov) condition restricted on a domain. (See definitions in the next section).

Theorem 2. Let 0 < s < ε < 1 and 1 < p < ∞ such that sp > 2 and let Ω be a
bounded domain of C with boundary of class C1,ε. Suppose that µ is supported in Ω
with ‖µ‖∞ = k < 1 and φ(z) = z + C(h)(z) is the principal solution of the Beltrami
equation (1).
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1. If µ ∈ W s,p(Ω), then h ∈ W s,p(Ω).

2. If µ ∈ Bs
p,p(Ω), then h ∈ Bs

p,p(Ω).

The proof runs in parallel to that of the above propositions, but now a new ob-
stacle appears: the boundedness of the Beurling transform on W s,p(Ω) (or Bs

p,p(Ω)).
In general, it is not clear if Calderón-Zygmund convolution operators are bounded
on W s,p(Ω) (or Bs

p,p(Ω)). Of course, the answer depends on the operator and on the
boundary of the domain. We will study this question in domains Ω of Rn, n ≥ 2.

In Rn we consider the kernel K(x) = ω(x)
|x|n , x 6= 0, where ω is a homogeneous

function of degree 0, with zero integral on the unit sphere and ω ∈ C1(Sn−1). Then,
the singular integral

Tf(x) = p.v.

∫
f(y)K(x− y) dy

is bounded on Lp(Rn), 1 < p < ∞. (Really, the condition ω ∈ C1(Sn−1) could be
weakened but it is enough for our purpose). On the other hand, Sobolev spaces
W s,p(Rn) (= F s

p,2(Rn)) are described as spaces of Bessel potentials, that is, f ∈ W s,p

if and only if f = Gs ∗ g, where Gs denotes the Bessel kernel of order s and g ∈ Lp
(e.g. [St, chapter 5]). Remember that the Bessel kernel of order s, Gs , is the
L1 function with Fourier transform (1 + |ξ|2)−

s
2 . Then, because T is a convolution

operator, one has the identity

T (f) = T (Gs ∗ g) = Gs ∗ (Tg)

and one gets the boundedness of T on W s,p, 1 < p < ∞. But if one takes f ∈
W s,p(Ω), Ω a domain of Rn, then

TΩf(x) := p.v.

∫

Ω

f(y)K(x− y) dy

clearly belongs to Lp(Ω). However, perhaps TΩf /∈ W s,p(Ω). For instance, let Q
denote a rectangle in C and χQ denote its characteristic function. A computation
shows that the Beurling transform of χQ, BχQ, has logarithmic singularities at the
vertices of the rectangle and, therefore, its first derivatives belong to Lp(Q) only
if p < 2 (e.g. [AIM, p. 147]). For positive results, we restrict our attention to
operators with even kernel, that is, K(−x) = K(x). In Section 4 we will deal with
Theorem 3.

Theorem 3. Let Ω be a bounded domain of Rn with boundary of class C1,β, β > 0,
and let T be an even smooth homogeneous Calderón-Zygmund operator.

1. If TχΩ ∈ Bs
p,p(Ω), 0 < s < 1, n < sp <∞, then TΩ : Bs

p,p(Ω) −→ Bs
p,p(Ω).

2. If TχΩ ∈ W s,p(Ω), 0 < s < 1, n < sp <∞, then TΩ : W s,p(Ω) −→ W s,p(Ω).

3. If TχΩ ∈ W 1,p(Ω), n < p <∞, then TΩ : W 1,p(Ω) −→ W 1,p(Ω).
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In any case the norm operator depends on the domain Ω and the Calderón-
Zygmund constant of the kernel of T (see (7) for the definition).

The result reduces the study of the boundedness of the operator TΩ to the be-
haviour of TΩ on the function χΩ. Thus, we have a necessary and sufficient condition
of type T (1). In the proof of Theorem 3, we follow the same method of Y. Meyer in
[Me], where he studied the continuity of generalised Calderón-Zygmund operators
on Sobolev spaces W s,p(Rn).

Since T is bounded on Lp, using complex and real interpolation, one could
think that items 1 and 2 of the above theorem are a consequence of the third one.
But this it not the case because the conditions on items 1 and 2 are weaker than
TχΩ ∈ W 1,p(Ω). When Ω is a bounded domain of Rn with boundary of class C1,ε,
0 < s < ε < 1, and n < sp <∞ then TΩ is bounded on W s,p(Ω) and Bs

p,p(Ω) (see de-
tails in Section 4). In particular, the assumptions on the domain Ω, in the statement
of Theorem 2, are to ensure that the Beurling transform is bounded on the corre-
sponding function space. Recently, V. Cruz and X. Tolsa( [CT], [To]) have showed

that if the outward unit normal N on ∂Ω belongs to the Besov space B
s−1/p
p,p (∂Ω),

then BχΩ ∈ W s,p(Ω).

In Section 2 we shall introduce some basic notation and set up some necessary
preliminaries. The proof of Proposition 1 and Proposition 2 are in Section 3. In
Section 4 we study even smooth homogeneous Calderón-Zygmund operators on do-
mains. The proof of the Theorem 2 is explained in Section 5.

As usual, the letter C will denote a constant, which may be different at each
occurrence and which is independent of the relevant variables under consideration.

2 Preliminaries

We start reviewing some basic facts concerning Triebel-Lizorkin spaces and Besov
spaces. Let S(Rn) be the usual Schwartz class of rapidly decreasing C∞-functions

and ĝ stands for the Fourier transform of g. Let ψ ∈ S(Rn) with ψ̂(ξ) = 1 if |ξ| ≤ 1

and ψ̂(ξ) = 0 if |ξ| ≥ 3/2. We set ψ0 = ψ and ψ̂j(ξ) = ψ̂(2−jξ)− ψ̂(2−j+1ξ), j ∈ N.

Since
∑∞

j=0 ψ̂j(ξ) = 1 for all ξ ∈ Rn, the ψ̂j form a dyadic resolution of unity. Then,

for f ∈ L1
loc(Rn), 1 ≤ p, q <∞, and s > 0, one defines the norms

‖f‖Bsp,q =

( ∞∑

j=0

‖2jsψj ∗ f‖qp

) 1
q

and

‖f‖F sp,q =

∥∥∥∥∥∥

( ∞∑

j=0

|2jsψj ∗ f |q
) 1

q

∥∥∥∥∥∥
p
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The Besov space Bs
p,q(Rn) consists of the functions such that ‖f‖Bsp,q <∞, while the

functions in the Triebel-Lizorkin space F s
p,q(Rn) are those such that ‖f‖F sp,q <∞.

The spaces F s
p,2 , 1 < p <∞, are known as Sobolev spaces of fractional order or

Bessel-potential spaces and we prefer denote them by W s,p. Since p ≥ 1 and q ≥ 1,
both Bs

p,q and F s
p,q are Banach spaces. A systematic treatment of these spaces may

be found in [Tri1], [RS] and [Gr, Chapter 6]. A remarkable fact when sp > n is that
Bs
p,q and F s

p,q form an algebra with respect to pointwise multiplication, that is,

‖f · g‖Asp,q ≤ C‖f‖Asp,q‖g‖Asp,q , (3)

where Asp,q denotes the corresponding Besov space or Triebel-Lizorkin space (e.g.
[RS, 4.6.4]). Moreover, functions in these spaces satisfy some Hölder condition and
so they are continuous functions with

‖f‖∞ ≤ C‖f‖Asp,q .

We say that a bounded domain Ω ⊂ Rn has a boundary of class C1,ε if ∂ Ω is a
C1 hyper-surface whose unit normal vector satisfies a Lipschitz (Hölder) condition
of order ε as a function on the surface. To state an alternative condition, for x =
(x1, . . . , xn) ∈ Rn we use the notation x = (x′, xn) , where x′ = (x1, . . . , xn−1) . Then
Ω has a boundary of class C1,ε if for each point a ∈ ∂ Ω one may find a ball B(a, r)
and a function xn = ϕ(x′), of class C1,ε, such that, after a rotation if necessary,
Ω ∩B(a, r) is the part of B(a, r) lying below the graph of ϕ . Thus we get

Ω ∩B(a, r) = {x ∈ B(a, r) : xn < ϕ(x1, . . . , xn−1)} . (4)

We say that Ω is a bounded Lipschitz domain if the function ϕ in (4) is of class C0,1.
In general, if one has a function space X defined on Rn and a domain Ω ⊂ Rn,

one defines the space X(Ω) as the restrictions of functions of X from Rn to Ω. In
addition, the restriction space is endowed with the quasi-norm quotient. In the cases
that we are considering we have an intrinsic characterization of elements of X(Ω).
We will use these characterizations in the proofs of Theorems 2 and 3. Let Ω be a
bounded Lipschitz domain in Rn, 1 < p <∞ and 0 < s < 1. Then:

1. f ∈ Bs
p,p(Ω) if and only if f ∈ Lp(Ω) and

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|n+sp

dxdy <∞.

(e.g. [Tar, p. 169])

2. f ∈ W s,p(Ω) if and only if f ∈ Lp(Ω) and

∫

Ω

(∫

Ω

|f(x)− f(y)|2
|x− y|n+2s

dx

) p
2

dy <∞. (5)

(e.g [Str, p. 1051])
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3. f ∈ W 1,p(Ω) if and only if f ∈ Lp(Ω) and

lim
α→0

α

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|n+p−α dxdy <∞. (6)

(e.g. [Br2, p. 703])

A smooth (of class C1) homogeneous Calderón-Zygmund operator is a principal
value convolution operator of type

T (f)(x) = p.v.

∫
f(y)K(x− y) dy ,

where

K(x) =
ω(x)

|x|n , x 6= 0 ,

ω(x) being a homogeneous function of degree 0, continuously differentiable on Rn \
{0} and with zero integral on the unit sphere. Note that one trivially has

|K(x− y)| ≤ C

|x− y|n

and

|K(x− y)−K(x− y′)| ≤ C
|y − y′|
|x− y|n+1

whenever |x− y| ≥ 2|y − y′|.

The Calderón-Zygmund constant of the kernel of T is defined as

‖T‖CZ = ‖K(x) |x|n‖∞ + ‖∇K(x) |x|n+1‖∞ . (7)

The operator T is said to be even if the kernel is even, namely, if ω(−x) = ω(x) , for
all x 6= 0 . The even character of T gives the cancellation T (χB)χB = 0 for each ball
B, which should be understood as a local version of the global cancellation property
T (1) = 0 common to all smooth homogeneous Calderón-Zygmund operators. This
extra cancellation property is essential for proving Lemma 5 and so Theorem 3.

It is well known that Calderón-Zygmund convolution operators are bounded on
Lp(Rn) and also on W s,p(Rn) (because W s.p = Gs ∗ Lp). Using the method of real
interpolation, one easily gets that these operators are also bounded on Bs

p,q(Rn)
(see also [Gr, 6.7.2] for a direct proof). The boundedness of Calderón-Zygmund
convolution operators on F s

p,q(Rn) was proved in [FTW, Theorem 3.7] (see [JHL,
Theorem 1.2] for a nice proof). Summarizing, if s > 0 and 1 < p, q <∞ we have

‖Tf‖Asp,q ≤ C‖f‖Asp,q , (8)

where C is a constant which depends on s, p, q, n and ‖T‖CZ .

7



Lorentz spaces are defined on measure spaces (Y,m), but we only need the case
Y = C and m is the Lebesgue planar measure. The classical definition of Lorentz
spaces use the rearrangement function. For any measurable function f we define its
nonincreasing rearrangement by

f ∗(t) := inf{s : m{z ∈ C : |f(z)| > s} ≤ t}.

For 1 ≤ p, q < ∞, the Lorentz space Lp,q(C) is the set of functions f such that
‖f‖Lp,q <∞, with

‖f‖Lp,q(C) :=

{
(
∫∞

0
[t1/pf ∗(t)]qt−1dt)1/q, for 1 ≤ q <∞

supt>0 t
1/pf ∗(t), for q =∞

A second definition of Lorentz spaces, which is equivalent to the first one, is given
by real interpolation between Lebesgue spaces:

(Lp0 , Lp1)θ,q = Lp,q,

where 1 ≤ p0 < p < p1 ≤ ∞, 1 ≤ q ≤ ∞, 0 < θ < 1 and 1
p

= 1−θ
p0

+ θ
p1

. Lorentz
spaces inherited from Lebesgue spaces the stability property of the multiplication
by bounded function, that is, if f ∈ L∞ and g ∈ Lp,q then fg ∈ Lp,q and we have

‖fg‖Lp,q ≤ ‖f‖∞‖g‖Lp,q . (9)

Let 1 ≤ p, q <∞ and consider 0 < α < 2. The Lorentz potential space, Iα(Lp,q(C)),
is the set of functions f such that f = Iα∗g, where g ∈ Lp,q(C) and Iα(x) = cα|x|α−2

is the Riesz potential of order α. The norm in this space is given by

‖f‖Iα(Lp,q(C)) = ‖g‖Lp,q .

Note that when α = 1, one has ‖f‖I1(Lp,q(C)) ≈ ‖∇f‖Lp,q .
It is well known [St2] that functions f of I1(L2,1(C)) are continuous and there

exists a constant C such that

‖f‖∞ ≤ C‖f‖I1(L2,1(C)). (10)

In general Iα(L
2
α
,1(C)) are embedded in C0, the space of continuous functions van-

ishing at the infinity (see [Ba]). Again, a remarkable property of these spaces

Iα(L
2
α
,1(C)) is that they are multiplication algebras, that is,

‖fg‖
Iα(L

2
α ,1)
≤ C‖f‖

Iα(L
2
α ,1)
‖g‖

Iα(L
2
α ,1)

. (11)

Finally, note that Calderón-Zygmund convolution operators are bounded on
Lp,q(Rn) and so also on Lorentz potential space, Iα(Lp,q(C)), with constant de-
pending on (7).
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3 Invertibility of the Beltrami operator

As we mentioned in the Introduction, to prove Proposition 1 (and then Theorem 1)
and Proposition 2 we only have to consider the invertibility of the Beltrami operator
I − µB on Asp,q(C) and on I1(L2,1)(C). Following the idea of Iwaniec [Iw, p. 42–43]
we define

Pm = I + µB + · · ·+ (µB)m ,

so that we have

(I − µB)Pn−1 = Pn−1(I − µB) = I − (µB)n = I − µnBn +K,

where K = µnBn − (µB)n can be easily seen to be a finite sum of operators that
contain as a factor the commutator [µ,B] = µB−Bµ. In Lemma 2 (and in Lemma
3) we will prove that [µ,B] is compact on Asp,q(C) (and on I1(L2,1)(C)) , so that K is
also compact. In Lemma 1 we will check that the operator norm of µnBn on Asp,q(C)
(and on I1(L2,1)(C)) is small if n is large. Therefore, I −µB is a Fredholm operator
on Asp,q(C) (and on I1(L2,1)(C)). Clearly I − tµB, 0 ≤ t ≤ 1, is a continuous path
from the identity to I−µB . By the index theory of Fredholm operators on Banach
spaces (e.g. [Sch]), the index is a continuous function of the operator. Hence I−µB
has index 0. On the other hand, I −µB is injective on Asp,q(C) (and on I1(L2,1)(C))
because by [Iw, p. 43] it is injective on Lp(C) for all 1 < p < ∞. That concludes
that I − µB is invertible.

Lemma 1. (a) The operator norm of µnBn on Asp,q(C) is small if n is large.

(b) The operator norm of µnBn on I1(L2,1(C)) is small if n is large.

Proof. Let bn =
(−1)nn

π

z̄n−1

zn+1
the kernel of iterated Beurling transform Bn. Then,

the Calderón-Zygmund constant of Bn is

‖bn(z)|z|2‖∞ + ‖∇bn(z)|z|3‖∞ ≤ Cn2.

(a) It is an easy consequence of well-known results. Since ‖gm‖Asp,q ≤ C‖g‖m−1
∞ ‖g‖Asp,q

(see [RS, Teorem 5.3.2/4]), using (3) and (8), we have

‖µnBn(f)‖Asp,q ≤ C ‖µn‖Asp,q‖Bn(f)‖Asp,q
≤ C ‖µn‖Asp,qn2‖f‖Asp,q
≤ C n2‖µ‖n−1

∞ ‖µ‖Asp,q‖f‖Asp,q
and the norm becomes small if n is big enough because ‖µ‖∞ = k < 1.

(b) Using ‖f‖I1(L2,1) ≈ ‖∇f‖L2,1 , (11), (9) and the boundedness of Calderón-
Zygmund convolution operators, we have

‖µnBn(f)‖I1(L2,1) ≤ C ‖µn‖I1(L2,1)‖Bn(f)‖I1(L2,1)

≤ C ‖µn‖I1(L2,1)n
2‖f‖I1(L2,1)

≤ C n3‖µ‖n−1
∞ ‖µ‖I1(L2,1)‖f‖I1(L2,1)

9



and the norm becomes small if n is big enough because ‖µ‖∞ = k < 1.

Lemma 2. The commutator [µ,B] is compact on Asp,q(C).

Proof. First we have

‖[µ,B]f‖Asp,q = ‖µBf −B(µf)‖Asp,q
≤ ‖µ‖Asp,q‖Bf‖Asp,q + C‖µf‖Asp,q
≤ C‖µ‖Asp,q‖f‖Asp,q

and so the commutator is bounded in Asp,q.
Using that the limit of compact operators is a compact operator, we can assume

that µ ∈ C∞c (C), with its support contained in the disk D(0, R). Now we use a
trick from [AIM, p. 145]. Consider an arbitrary function g = C f with f ∈ Asp,q,
where C f denotes the Cauchy transform of f (see (2)). As ∂g = B(f), ∂̄g = f and
B(∂̄(µg)) = ∂(µg),

µB(f)−B(µf) = µ∂g −B(µ∂̄g) = µ∂g −B(∂̄(µg)) +B(∂̄µ g)

= µ∂g − ∂(µg) +B(∂̄µ g) = B(∂̄µ g)− ∂µ g
= B(∂̄µC f)− ∂µC f

From this representation one can see that [µ,B] is compact. Given ϕ ∈ C∞c (D(0, R))
the operator ϕC f is a compact operator on Asp,q(C), because by the lifting property
(see [RS, 2.1.4]) ϕC f ∈ As+1

p,q (C), obviously ϕC f(z) = 0 if |z| ≥ R and the inclusion
of As+1

p,q (D(0, R)) into Asp,q(D(0, R)) is compact (e.g. [RS, 2.4.4]).

Lemma 3. The commutator [µ,B] is compact on I1(L2,1(C).

Proof. As above we have

‖[µ,B]f‖I1(L2,1) = ‖µBf −B(µf)‖I1(L2,1)

≤ ‖µ‖I1(L2,1)‖Bf‖I1(L2,1) + C‖µf‖I1(L2,1)

≤ C‖µ‖I1(L2,1)‖f‖I1(L2,1)

(12)

and so the commutator is bounded in I1(L2,1). So, by density, we only need to prove
the compactness of the commutator when µ ∈ C∞c .

On the other hand,

‖[µ,B]f‖I1(L2,1) =
2∑

j=1

‖∂j(µB(f)−B(µf))‖L2,1

=
2∑

j=1

‖[∂jµ,B]f + [µ,B](∂jf)‖L2,1

≤
2∑

j=1

‖[∂jµ,B]f‖L2,1 + ‖[µ,B](∂jf)‖L2,1 .
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Since the commutator is a compact operator in Lp when µ is smooth [U] and using
real interpolation of compact operators [CoP] we have that [µ,B] : L2,1(C)→ L2,1(C)
is compact.

Therefore we only have to prove that [a,B] : I1(L2,1(C)) → L2,1(C) is a com-
pact operator when a ∈ C∞c (B(0, R)) for some R > 0. Given η > 0 we consider a
regularization of the Beurling transform

Bηf(z) = − 1

π
p.v.

∫
f(z − w)Kη(w)dw ,

where Kη(z) =
ϕη(z)

z2
and 0 ≤ ϕη(z) ≤ 1 is a radial C∞ function satisfying ϕη(|z|) =

0 if |z| < η
2

and ϕη(|z|) = 1 if |z| > η. It is easy to check that Bη is a convolution
Calderón-Zygmund operator with constants depending on η.

In the rest of this proof we will use the estimate (10) without any mention. For
any f ∈ I1(L2,1), the function [a,B − Bη](f) has compact support. On the other
hand,

|[a,B −Bη](f)(z)| =
∣∣∣∣
−1

π

∫
(a(z)− a(y))

(
1

(z − y)2
− ϕη(z − y)

(z − y)2

)
f(y)dy

∣∣∣∣

≤ C‖f‖∞‖∇a‖∞
∫

|z−y|<η

1

|z − y| dy ≤ Cη‖f‖I1(L2,1)‖∇a‖∞.

Consequently the operator [a,Bη] tends to [a,B] when η → 0. To prove that
[a,Bη] : I1(L2,1) → L2,1 is compact we will use Fréchet-Kolgomorov Theorem for
Lorentz spaces (e.g. [Br1, p. 111] for Lp spaces).

By (12), the image by [a,Bη] of the unit ball of I1(L2,1(C)) is uniformly bounded
in L2,1(C). To get the equicontinuity, take f ∈ I1(L2,1) and |z − w| < η

8
. Then,

[a,Bη]f(z)− [a,Bη]f(w) =
−1

π
((a(z)− a(w))

∫

C

ϕη(z − ξ)
(z − ξ)2

f(ξ)dξ

+
−1

π

∫

C

(
ϕη(z − ξ)
(z − ξ)2

− ϕη(w − ξ)
(w − ξ)2

)
(a(w)− a(ξ)) f(ξ)dξ

= θ1(z, w) + θ2(z, w).

Since Bη is a convolution Calderón-Zygmund operator

|θ1(z, w)| = 1

π
| (a(z)− a(w))Bηf(z)| ≤ Cη|z − w|‖∇a‖∞‖f‖I1(L2,1)
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and

|θ2(z, w)| =
1

π

∣∣∣∣∣

∫

C\B(z, η
4

)

(
ϕη(z − ξ)
(z − ξ)2

− ϕη(w − ξ)
(w − ξ)2

)
(a(w)− a(ξ)) f(ξ)dξ

∣∣∣∣∣

≤ C|z − w|‖f‖∞‖a‖∞
{∫

|z−ξ|> η
8

1

|z − ξ|3 dξ +

∫

2η>|z−ξ|> η
8

‖∇ϕη‖∞
|z − ξ|2 dξ

}

≤ C

η
|z − w|‖f‖I1(L2,1).

Therefore

|[a,Bη]f(z)− [a,Bη]f(w)| ≤ C|z − w|‖f‖I1(L2,1), (13)

where the constant C depends on a and η.
On the other hand, if |z| > M > 2R

|[a,Bη]f(z)| =

∣∣∣∣
∫

C
(a(z)− a(w))

ϕη(z − w)

(z − w)2
f(w)dw

∣∣∣∣

≤ ‖f‖∞‖a‖∞
∫

|w|<R

1

|z − w|2 dw

≤ C‖f‖|I1(L2,1)‖a‖∞
1

|z|2 ,

and then

‖[a,Bη](f)χC\B(0,M)‖L2,1 ≤ C‖f‖I1L2,1‖a‖∞‖
1

|z|2χC\B(0,M)‖L2,1 , (14)

which tends to 0 as M → 0. Combining (13) and (14), by Fréchet-Kolgomorov The-
orem for Lorentz spaces, one gets that [a,Bη] is a compact operator from I1(L2,1(C))
to L2,1(C) as we desired.

4 Calderón-Zygmund operators on domains

In this section we will prove Theorem 3. Let X(Ω) denote any of function spaces
in the statement of Theorem 3 and let f ∈ X(Ω). It is clear from the Calderón-
Zygmund theory that TΩf ∈ Lp(Ω). So, in order to study the behaviour of TΩ on
X(Ω), we must deal with TΩf(x) − TΩf(y) because we have a characterization of
X(Ω) using first differences. Following [Me] we consider the next decomposition.

Lemma 4. Let ψ ∈ C∞c such that ψ(u) = 1 on |u| ≤ 2 and ψ(u) = 0 if |u| ≥ 4.
Define η(u) = 1− ψ(u). Then:

TΩf(y)− TΩf(x) :=
4∑

i=1

gi(x, y) + f(x)(TχΩ(y)− TχΩ(x)),
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where

g1(x, y) =

∫

Ω

(K(y − u)−K(x− u))(f(u)− f(x)) η

(
u− x
|y − x|

)
du,

g2(x, y) = −
∫

Ω

K(x− u)(f(u)− f(x)) ψ

(
u− x
|y − x|

)
du,

g3(x, y) =

∫

Ω

K(y − u)(f(u)− f(y)) ψ

(
u− x
|y − x|

)
du,

g4(x, y) = (f(y)− f(x))

∫

Ω

K(y − u) ψ

(
u− x
|y − x|

)
du.

Proof. Note that if ψ̃(w) + η̃(w) = 1 we can write

TΩf(x) = f(x)TΩψ̃(x) +

∫

Ω

K(x− w)(f(w)− f(x)) ψ̃(w)dw

+

∫

Ω

K(x− w)f(w)η̃(w)dw,

and then

TΩf(y)− TΩf(x) =

∫

Ω

(K(y − u)−K(x− u))(f(u)− f(x)) η̃(u)du

−
∫

Ω

K(x− u)(f(u)− f(x)) ψ̃(u)du

+

∫

Ω

K(y − u)(f(u)− f(y)) ψ̃(u)du

+ (f(y)− f(x))

∫

Ω

K(y − u) ψ̃(u)du

+ f(x)(TχΩ(y)− TχΩ(x)).

Given x 6= y, take ψ̃(u) = ψ
(
u−x
|y−x|

)
and η̃(u) = η

(
u−x
|y−x|

)
and that is what we

wished to prove.

Let B = B(x0, r) be the ball in Rn of center x0 and radius r and ϕB denotes a
smooth function supported in B such that ‖ϕB‖∞ ≤ 1 and ‖∇ϕB‖∞ ≤ r−1. To deal
with the term g4 we will use the next lemma, which is an application of the Main
Lemma of [MOV].

Lemma 5. Let Ω be a bounded domain of Rn with boundary of class C1,β, β > 0,
and let T be an even smooth homogeneous Calderón-Zygmund operator. Then, there
exists a constant C = C(Ω) such that ‖TΩϕB‖∞ ≤ C.

Proof. Since the C0,β norm of ϕB is bounded by 1 + r−β, by the Main Lemma of
[MOV] we have

|TΩϕB(x)| ≤ C(1 + r−β) , for all x ∈ C and

|TΩϕB(x)− TΩϕB(y)| ≤ Cr−β|x− y|β, ∀x, y ∈ Ω.

13



Associated to the domain Ω there is a r0 > 0 satisfying (4). Then, if 3r ≥ r0 one
has |TΩϕB(x)| ≤ C(1 + ( 3

r0
)β) for all x ∈ C. If 3r < r0 we write

TΩϕB(x) =

∫

Ω

K(x− y)ϕB(y)dy =

∫

Ω∩3B

K(x− y)ϕB(y)dy

=

∫

Ω∩3B

K(x− y)(ϕB(y)− ϕB(x))dy + ϕB(x)

∫

Ω∩3B

K(x− y)dy

= p(x) + q(x)

For p(x) we have

|p(x)| ≤ C

∫

Ω∩3B

|ϕB(x)− ϕB(y)|
|x− y|n dy ≤ C‖∇ϕB‖∞

∫

3B

dy

|x− y|n−1
≤ C.

If x /∈ B, q(x) = 0, and for x ∈ B one can prove

∣∣∣∣
∫

Ω∩3B

K(x− y)dy

∣∣∣∣ ≤ C(Ω),

proceeding as in the proof of the Main Lemma of [MOV, p. 408-410]. Observe that
for x ∈ B the function TΩ(χ3B) has the same behaviour that TΩ(1) = T (χΩ)

Let’s continuous with the proof of Theorem 3. In the case that f ∈ Bs
p,p(Ω),

0 < s < 1, n < sp <∞, we have to prove that

∫

Ω

∫

Ω

|TΩf(x)− TΩf(y)|p
|x− y|n+sp

dxdy <∞. (15)

By Lemma 4,

TΩf(y)− TΩf(x) =
4∑

i=1

gi(x, y) + f(x)(TχΩ(y)− TχΩ(x))

and we will study each term separately. Since f is bounded (because n < sp <∞)
and TχΩ ∈ Bs

p,p(Ω)

∫

Ω

∫

Ω

|f(x)(TχΩ(y)− TχΩ(x))|p
|x− y|n+sp

dxdy ≤ ‖f‖∞
∫

Ω

∫

Ω

|TχΩ(y)− TχΩ(x)|p
|x− y|n+sp

dxdy <∞.

Fix t such that s < t < 1. Using the properties of the kernel K and the Hölder’s
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inequality (1
p

+ 1
q

= 1), we have

|g1(x, y)| ≤ C

∫

Ω∩{|u−x|>2|x−y|}
|K(x− u)−K(y − u)||f(u)− f(x)|du

≤ C

∫

Ω∩{|u−x|>2|x−y|}

|x− y|
|x− u|n+1

|f(u)− f(x)|du

= C|x− y|
∫

Ω∩{|u−x|>2|x−y|}

|f(u)− f(x)|
|x− u|np+t

1

|x− u|nq−t+1
du

≤ C|x− y|
(∫

Ω∩{|u−x|>2|x−y|}

|f(u)− f(x)|p
|x− u|n+tp

du

) 1
p

·
(∫

{|u−x|>2|x−y|}

du

|x− u|n−tq+q
) 1

q

≤ C|x− y|t
(∫

Ω∩{|u−x|>2|x−y|}

|f(u)− f(x)|p
|x− u|n+tp

du

) 1
p

.

Thus
|g1(x, y)|p
|x− y|n+sp

≤ C

|x− y|n+sp−tp

∫

Ω∩{|u−x|>2|x−y|}

|f(u)− f(x)|p
|x− u|n+tp

du,

and then, by the Fubini’s theorem,

∫

Ω

∫

Ω

|g1(x, y)|p
|x− y|n+sp

dxdy ≤

≤C
∫

Ω

∫

Ω

1

|x− y|n+sp−tp

∫

Ω∩{|u−x|>2|x−y|}

|f(u)− f(x)|p
|x− u|n+tp

dudxdy

=C

∫

Ω

∫

Ω

∫

Ω∩{|u−x|>2|x−y|}

|f(u)− f(x)|p
|x− u|n+p−sp

1

|x− y|n+sp−tpdydudx

≤C
∫

Ω

∫

Ω

|f(u)− f(x)|p
|x− u|n+tp

1

|x− u|sp−tpdudx

=C

∫

Ω

∫

Ω

|f(u)− f(x)|p
|x− u|n+sp

dudx <∞.

Since the terms g2 and g3 are symmetric, we only consider one of them. Take
t such that 0 < t < s. As before, using the properties of the kernel K and the
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Hölder’s inequality (1
p

+ 1
q

= 1),

|g2(x, y)| ≤ C

∫

Ω∩{|x−u|<4|x−y|}

|f(u)− f(x)|
|x− u|n du

= C

∫

Ω∩{|x−u|<4|x−y|}

|f(u)− f(x)|
|x− u|np+t

1

|x− u|nq−t
du

≤ C

(∫

Ω∩{|x−u|<4|x−y|}

|f(u)− f(x)|p
|x− u|n+tp

du

) 1
p

·
(∫

{|x−u|<4|x−y|}

du

|x− u|n−tq
) 1

q

≤ C|x− y|t
(∫

Ω∩{|x−u|<4|x−y|}

|f(u)− f(x)|p
|x− u|n+tp

du

) 1
p

.

Then

|g2(x, y)|p
|x− y|n+sp

≤ C

|x− y|n+sp−tp

∫

Ω∩{|x−u|<4|x−y|}

|f(u)− f(x)|p
|x− u|n+tp

du

and therefore∫

Ω

∫

Ω

|g2(x, y)|p
|x− y|n+sp

dxdy ≤

≤C
∫

Ω

∫

Ω

∫

Ω∩{|x−u|<4|x−y|}

|f(u)− f(x)|p
|x− y|n+sp−tp|x− u|n+tp

dydudx

≤C
∫

Ω

∫

Ω

|f(u)− f(x)|p
|x− u|n+sp

dudx <∞.

Finally, by Lemma 5 we have∣∣∣∣
∫

Ω

K(y − u) ψ

(
u− x
|y − x|

)
du

∣∣∣∣ ≤ C

and consequently∫

Ω

∫

Ω

|g4(x, y)|p
|x− y|n+sp

dudx ≤ C

∫

Ω

∫

Ω

|f(x)− f(y)|p
|x− y|n+sp

dxdy <∞.

Combining all these inequalities we get (15).

Using the characterizations (5) and (6) one can see that the proofs for f ∈
W s,p(Ω) or f ∈ W 1,p(Ω) are very similar to that we just explained for f ∈ Bs

p,p(Ω).

Remark: If Ω is a bounded domain of Rn with boundary of class C1,ε, ε > 0,
and T is an even smooth homogeneous Calderón-Zygmund operator we have (see
[MOV, Main Lemma])

|T (χΩ)(x)− T (χΩ)(y)| ≤ C|x− y|ε, ∀x, y ∈ Ω.

Therefore T (χΩ) belongs to W s,p(Ω) and Bs
p,p(Ω) for any s ∈ (0, ε).
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5 Proof of the Theorem 2

Consider the Beurling transform restricted on the domain Ω of class C1,ε

BΩg(z) = − 1

π

∫

Ω

g(w)

(z − w)2
dw.

By [MOV, Main Lemma], |B(χΩ)(z) − B(χΩ)(w)| ≤ C|z − w|ε for all z, w ∈ Ω.
Now, applying Theorem 3 we have that BΩ is bounded on the spaces Bs

p,p(Ω) and
W s,p(Ω). Let’s denote by X(Ω) any of these two spaces. We will show that the
Beltrami operator I −µBΩ is invertible on X(Ω). Then, taking h = (I −µBΩ)−1(µ)
we get the conclusions.

As in the proof of the Proposition 1, we claim that I − µBΩ is a Fredholm
operator on X(Ω). Define Pm = I + µBΩ + · · ·+ (µBΩ)m so that

(I − µBΩ)Pm−1 = Pm−1(I − µBΩ) = I − µm(BΩ)m +R,

where R = µm(BΩ)m−(µBΩ)m can be easily seen to be a finite sum of operators that
contain the commutator [µ,BΩ] as a factor. We will prove that [µ,BΩ] : X(Ω) →
X(Ω) is a compact operator. On the other hand, for z ∈ Ω

(I − µm(BΩ)m)f(z) = (I − µm(Bm)Ω)f(z) + µm(z)((Bm)Ωf(z)− (BΩ)mf(z))

= (I − µm(Bm)Ω)f(z) + µm(z)Kmf(z),

where Bm is the m-iterated Beurling transform and Kmf := (Bm)Ωf − (BΩ)mf . As
in the proof of Lemma 1, if F ∈ X(Ω) we get

‖µmF‖X(Ω) ≤ C m‖µ‖m−1
∞ ‖µ‖X(Ω)‖F‖X(Ω). (16)

Remind that the kernel of Bm is
(−1)mmz̄m−1

πzm+1
and then, by Theorem 3, if f ∈ X(Ω)

we have
‖(Bm)Ωf‖X(Ω) ≤ C m2‖f‖X(Ω). (17)

Consequently, combining (16) and (17),

‖µm(Bm)Ωf‖X(Ω) ≤ C m3‖µ‖m−1
∞ ‖µ‖X(Ω)‖f‖X(Ω),

which implies that I − µm(Bm)Ω is invertible if m is large. Assume for a moment
that the operators Km are compacts on X(Ω). Thus, I−µBΩ is a Fredholm operator
and in addition has index zero. Since X(Ω) ⊂ Lp(Ω) we also have that I − µBΩ is
injective (see [Iw]) and therefore invertible on X(Ω).

The compactness of the operators [µ,BΩ] and Km on X(Ω) follows arguments
parallels. Since X(Ω) is an algebra and the Beurling transform BΩ is bounded on
X(Ω) we have

‖[µ,BΩ]f‖X = ‖µBΩf −BΩ(µf)‖X ≤ C‖µ‖X‖f‖X .
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Moreover, because the domain Ω is Lipschitz, there exists a sequence of functions
µj ∈ C∞(Ω) such that µj converges to µ in X(Ω). So, we have reduced to prove the
compactness when µ ∈ C∞(Ω). In this case, the kernel of the commutator

[µ,BΩ]f(z) = − 1

π

∫

Ω

µ(z)− µ(w)

(z − w)2
f(w)dw :=

∫

Ω

k(z, w)f(w)dw

clearly satisfies

|k(z, w)| ≤ C

|z − w| for all z, w ∈ Ω,

|k(z′, w)− k(z, w)| ≤ C
|z − z′|
|z − w|2 if |z − w| > 2|z − z′|.

Then, a simple computation gives (see [MOV, p. 419]), for z1 , z2 ∈ Ω,

|[µ,BΩ]f(z1)− [µ,BΩ]f(z2)| ≤ C |z1 − z2| (1 + log
d

|z1 − z2|
) ‖f‖∞ , (18)

where d denotes the diameter of Ω. From (18) one immediately gets that [µ,BΩ]f
belongs to Bβ

p,p(Ω) and to W β,p(Ω) for any β < 1. The compact embedding
W β,p(Ω) ↪→ W s,p(Ω), s < β, (and Bβ

p,p(Ω) ↪→ Bs
p,p(Ω)) gives the compactness for the

commutator (e.g. [Tri2, Proposition 7]).

We have Kmf = (Bm)Ωf − (BΩ)mf . To prove that Km is compact on X(Ω) we
will proceed by induction. For m ≥ 2,

(BΩ)mf = BΩ((BΩ)m−1f) = B([(BΩ)m−1f ]χΩ)

= B([Bm−1(fχΩ)−Km−1f ]χΩ)

= B(Bm−1(fχΩ)− (Bm−1(fχΩ))χΩc − (Km−1f)χΩ)

= Bm(fχΩ)−B(χΩcB
m−1(fχΩ))−BΩ(Km−1f)

It is then enough to prove that, for m ≥ 1, the operator

Qmf := B((Bm(fχΩ))χΩc))

is compact in X(Ω). For z ∈ Ω, we write

Qmf(z) = B((Bm(fχΩ))χΩc)(z)

= − 1

π

∫

Ωc

Bm(fχΩ)(w)

(z − w)2
dw

= − 1

π

∫

Ωc

1

(z − w)2

(−1)mm

π

∫

Ω

(w − ξ)m−1

(w − ξ)m+1
f(ξ) dξ dw

=

∫

Ω

Km(z, ξ)f(ξ)dξ,
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where

Km(z, ξ) :=
(−1)m+1

π2

∫

Ωc

1

(z − w)2

m(w − ξ)m−1

(w − ξ)m+1
dw.

In [MOV, p. 418–419], it is proved that if Ω is a bounded domain of class C1,ε and
f ∈ L∞(Ω) then

|Qmf(z)| ≤ Cdε‖f‖∞ , z ∈ Ω ,

|Qmf(z1)−Qmf(z2)| ≤ C |z1 − z2|ε (1 + log
d

|z1 − z2|
) ‖f‖∞ , z1, z2 ∈ Ω ,

where d denotes the diameter of Ω and C depends on m and Ω.
Consequently, if f ∈ X(Ω) then Qmf belongs to Bβ

p,p(Ω) and to W β,p(Ω) for
any β < ε. Choose β such that s < β < ε. Again, the compact embeddings
W β,p(Ω) ↪→ W s,p(Ω) and Bβ

p,p(Ω) ↪→ Bs
p,p(Ω) give the compactness of Qm.
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