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ALGORITHM FOR DETERMINING THE GLOBAL GEOMETRIC CONFIGURATIONS

OF SINGULARITIES OF TOTAL FINITE MULTIPLICITY 2

FOR QUADRATIC DIFFERENTIAL SYSTEMS

JOAN C. ARTÉS1, JAUME LLIBRE1, DANA SCHLOMIUK2 AND NICOLAE VULPE3

Abstract. In this work we consider the problem of classifying all configurations of singularities, both finite

and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [3].

This relation is finer than the topological equivalence relation which does not distinguish between a focus and

a node or between a strong and a weak focus or between foci of different orders. Such distinctions are however

important in the production of limit cycles close to the foci in perturbations of the systems. The notion

of geometric equivalence relation of configurations of singularities allows to incorporates all these important

geometric features which can be expressed in purely algebraic terms. This equivalence relation is also finer

than the qualitative equivalence relation introduced in [17]. The geometric classification of all configurations

of singularities, finite and infinite, of quadratic systems was initiated in [4] where the classification was done

for systems with total multiplicity mf of finite singularities less than or equal to one. In this article we

continue the work initiated in [4] and obtain the geometric classification of singularities, finite and infinite,

for the subclass of quadratic differential systems possessing finite singularities of total multiplicity mf = 2.

We obtain 197 geometrically distinct configurations of singularities for this family. We also give here the

global bifurcation diagram of configurations of singularities, both finite and infinite, with respect to the

geometric equivalence relation, for this class of systems. The bifurcation set of this diagram is algebraic.

The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of

polynomial invariants. The bifurcation set of this diagram is algebraic. The bifurcation diagram is done in

the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants, fact which gives

us an algorithm for determining the geometric configuration of singularities for any quadratic system.

1. Introduction and statement of main results

We consider here differential systems of the form

(1)
dx

dt
= p(x, y),

dy

dt
= q(x, y),

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of a system (1) the integer

m = max(deg p, deg q). In particular we call quadratic a differential system (1) with m = 2. We denote here

by QS the whole class of real quadratic differential systems.

The study of the class QS has proved to be quite a challenge since hard problems formulated more than

a century ago, are still open for this class. It is expected that we have a finite number of phase portraits in

QS. Although we have phase portraits for several subclasses of QS, the complete list of phase portraits of

this class is not known and attempting to topologically classify these systems, which occur rather often in

applications, is a very complex task. This is partly due to the elusive nature of limit cycles and partly to the

rather large number of parameters involved. This family of systems depends on twelve parameters but due
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to the group action of real affine transformations and time homotheties, the class ultimately depends on five

parameters which is still a rather large number of parameters. For the moment only subclasses depending on

at most three parameters were studied globally, including global bifurcation diagrams (for example [2]). On

the other hand we can restrict the study of the whole quadratic class by focusing on specific global features

of the systems in this family. We may thus focus on the global study of singularities and their bifurcation

diagram. The singularities are of two kinds: finite and infinite. The infinite singularities are obtained by

compactifying the differential systems on the sphere or on the Poincaré disk as defined in Section 2 (see also

[14]).

The global study of quadratic vector fields in the neighborhood of infinity was initiated by Coll in [13] where

he characterized all the possible phase portraits in a neighborhood of infinity. Later on Nikolaev and Vulpe

in [20] classified topologically the singularities at infinity in terms of invariant polynomials. Schlomiuk and

Vulpe used geometrical concepts defined in [25], and also introduced some new geometrical concepts in [26] in

order to simplify the invariant polynomials and the classification. To reduce the number of phase portraits in

half, in both cases the topological equivalence relation was taken to mean the existence of a homeomorphism

of the plane carrying orbits to orbits and preserving or reversing the orientation. In [5] the authors classified

topologically (adding also the distinction between nodes and foci) the whole quadratic class, according to

configurations of their finite singularities.

In the topological classification no distinction was made among the various types of foci or saddles, strong

or weak of various orders. However these distinctions of an algebraic nature are very important in the study

of perturbations of systems possessing such singularities. Indeed, the maximum number of limit cycles which

can be produced close to the weak foci in perturbations depends on the orders of the foci.

The distinction among weak saddles is also important since for example when a loop is formed using two

separatrices of one weak saddle, the maximum number of limit cycles that can be obtained close to the loop

in perturbations is the order of the weak saddle.

There are also three kinds of simple nodes as we can see in Figure 1 below where the local phase portraits

around the singularities are given.

Figure 1. Different types of nodes.

In the three phase portraits of Figure 1 the corresponding three singularities are stable nodes. These

portraits are topologically equivalent but the solution curves do not arrive at the nodes in the same way. In

the first case, any two distinct non-trivial phase curves arrive at the node with distinct slopes. Such a node

is called a star node. In the second picture all non-trivial solution curves excepting two of them arrive at the

node with the same slope but the two exception curves arrive at the node with a different slope. This is the

generic node with two directions. In the third phase portrait all phase curves arrive at the node with the same

slope. Here algebraic distinction means that the linearization matrices at these nodes and their eigenvalues,

distinguish the nodes in Figure 1, see [27].

We recall that the first and the third types of nodes could produce foci in perturbations and the first type

of nodes is also involved in the existence of invariant straight lines of differential systems. For example it can

easily be shown that if a quadratic differential system has two finite star nodes then necessarily the system

possesses invariant straight lines of total multiplicity 6.
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Furthermore, a generic node at infinity may or may not have the two exceptional curves lying on the line

at infinity. This leads to two different situations for the phase portraits. For this reason we split the generic

nodes at infinity in two types.

The distinctions among the nilpotent and linearly zero singularities finite or infinite can also be refined, as

done in [4, Section 4].

The geometric equivalence relation for finite or infinite singularities, introduced in [3] and used in [4], takes

into account such distinctions.

This equivalence relation is finer than the qualitative equivalence relation introduced by Jiang and Llibre

in [17] because it distinguishes among the foci (or saddles) of different orders and among the various types

of nodes. This equivalence relation also induces a finer distinction among the more complicated degenerate

singularities.

To distinguish among the foci (or saddles) of various orders we use the algebraic concept of Poincaré-

Lyapunov constants. We call strong focus (or strong saddle) a focus (or a saddle) with non–zero trace of the

linearization matrix at this point. Such a focus (or saddle) will be considered to have the order zero. A focus

(or saddle) with trace zero is called a weak focus (weak saddle). For details on Poincaré-Lyapunov constants

and weak foci we refer to [24], [18].

Algebraic information may not be significant for the local (topological) phase portrait around a singularity.

For example, topologically there is no distinction between a focus and a node or between a weak and a

strong focus. However, as indicated before, algebraic information plays a fundamental role in the study of

perturbations of systems possessing such singularities.

The following is a legitimate question:

How far can we go in the global theory of quadratic (or more generally polynomial) vector fields by using

mainly algebraic means?

For certain subclasses of quadratic vector fields the full description of the phase portraits as well as of the

bifurcation diagrams can be obtained using only algebraic tools. Examples of such classes are:

• the quadratic vector fields possessing a center [34, 23, 37, 21];

• the quadratic Hamiltonian vector fields [1, 6];

• the quadratic vector fields with invariant straight lines of total multiplicity at least four [27, 28];

• the planar quadratic differential systems possessing a line of singularities at infinity [29];

• the quadratic vector fields possessing an integrable saddle [7].

• the family of Lotka-Volterra systems [30, 31], once we assume Bautin’s analytic result saying that

such systems have no limit cycles;

In the case of other subclasses of the quadratic class QS, such as the subclass of systems with a weak focus

of order 3 or 2 (see [18, 2]) the bifurcation diagrams were obtained by using an interplay of algebraic, analytic

and numerical methods. These subclasses were of dimensions 2 and 3 modulo the action of the affine group

and time rescaling. So far no 4-dimensional subclasses of QS were studied globally so as to also produce

bifurcation diagrams and such problems are very difficult due to the number of parameters as well as the

increased complexities of these classes.

Although we now know that in trying to understand these systems, there is a limit to the power of algebraic

methods, these methods have not been used far enough. For example the global classification of singularities,

finite and infinite, using the geometric equivalence relation, can be done by using only algebraic methods.

The first step in this direction was done in [3] where the study of the whole class QS, according to the

configurations of the singularities at infinity was obtained by using only algebraic methods. This classification

was done with respect to the geometric equivalence relation of configurations of singularities. Our work in

[3] can be extended so as to also include the finite singularities for the whole class QS. To obtain the global
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geometric classification of all possible configurations of singularities, finite and infinite, of the class QS, by

purely algebraic means is a long term goal since we expect to finally obtain over 800 distinct configurations

of singularities. In [4] we initiated the work on this project by studying the configurations of singularities for

the subclass of QS for which the total multiplicity mf of finite singularities is less than or equal to one.

Our goal here is to continue this work by geometrically classifying the configurations of all singularities with

total finite multiplicity mf = 2 for systems in QS.

We recall here below the notion of geometric configuration of singularities defined in [4] for both finite and

infinite singularities. We distinguish two cases:

1) If we have a finite number of infinite singular points and a finite number of finite singularities we call

geometric configuration of singularities, finite and infinite, the set of all these singularities each endowed with

its own multiplicity together with their local phase portraits endowed with additional geometric structure

involving the concepts of tangent, order and blow–up equivalences defined in Section 4 of [4] and using the

notations described here in Section 4.

2) If the line at infinity Z = 0 is filled up with singularities, in each one of the charts at infinity X 6= 0

and Y 6= 0, the corresponding system in the Poincaré compactification (see Section 2) is degenerate and

we need to do a rescaling of an appropriate degree of the system, so that the degeneracy be removed. The

resulting systems have only a finite number of singularities on the line Z = 0. In this case we call geometric

configuration of singularities, finite and infinite, the union of the set of all points at infinity (they are all

singularities) with the set of finite singularities - taking care to single out the singularities at infinity of the

“reduced” system, taken together with the local phase portraits of finite singularities endowed with additional

geometric structure as above and the local phase portraits of the infinite singularities of the reduced system.

We define the following affine invariants: Let ΣC be the sum of the finite orders of weak singularities (foci

or weak saddles) in a configuration C of a quadratic system and let MC be the maximum finite order of a

weak singularity in a configuration C of a quadratic system. Clearly ΣC and MC are affine invariants. Let

Σ2 (respectively M2) be the maximum of all ΣC (respectively MC) for the subclass of QS with mf = 2.

In stating our theorem we take care to include the results about the configurations containing centers

and integrable saddles or containing weak singularities which are foci or saddles, since these singularities are

especially important having the potential of producing limit cycles in perturbations. We use the notation

introduced in [4] denoting by f (i), s(i), the weak foci and the weak saddles of order i and by c and $ the

centers and integrable saddles.

Our results are stated in the following theorem.

Main Theorem. (A) We consider here all configurations of singularities, finite and infinite, of quadratic

vector fields with finite singularities of total multiplicity mf = 2. These configurations are classified in Di-

agrams 1–3 according to the geometric equivalence relation. We have 197 geometric distinct configurations

of singularities, finite and infinite. More precisely 16 configurations with two distinct complex finite singu-

larities; 151 configurations with two distinct real finite singularities and 30 with one real finite singularity of

multiplicity 2.

(B) For the subclass of QS with mf = 2 we have Σ2 = 2 = M2.

There are only 6 configurations of singularities with finite weak singular points with ΣC = 2. These have

the following combinations of finite singularities: f (1), f (1); s(1), s(1); s(2), n; s(2), nd; s(2), f ; f (2), s.

There are 7 configurations of singularities with finite weak singular points with ΣC = 1. These have the

following combinations of finite singularities: f (1), n; f (1), nd; f (1), s; f (1), f ; s(1), n; s(1), nd; s(1), f .

There are 19 configurations containing a center or an integrable saddle, only 6 of them with a center. There

are 8 distinct couples of finite singularities occurring in these configurations. They are: c,$; c, s; $, $; $,s; $,n;

$,n∗; $,nd; $,f .
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(C) Necessary and sufficient conditions for each one of the 197 different equivalence classes can be assembled

from these diagrams in terms of 31 invariant polynomials with respect to the action of the affine group and

time rescaling, given in Section 5.

(D) The Diagrams 1–3 actually contain the global bifurcation diagram in the 12-dimensional space of pa-

rameters, of the global configurations of singularities, finite and infinite, of this family of quadratic differential

systems.

(E) Of all the phase portraits in the neighborhood of the line at infinity, which are here given in Figure

2, six are not realized in the family of systems with mf = 2. They are Configs 17; 19; 30; 32; 43; 44. (see

Figure 2).

Diagram 1. Global configurations: the case µ0 = µ1 = 0, µ2 6= 0, U < 0.

The invariants and comitants of differential equations used for proving our main results are obtained fol-

lowing the theory of algebraic invariants of polynomial differential systems, developed by Sibirsky and his

disciples (see for instance [32, 35, 22, 8, 12]).

Remark 1. We note that the geometric equivalence relation for configurations is much finer than the topo-

logical equivalence. Indeed, for example the topological equivalence does not distinguish between the following

three configurations which are geometrically non-equivalent: n, f , SN , c©, c©; n, f (1), SN , c©, c© and
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Diagram 2. Global configurations: the case µ0 = µ1 = 0, µ2 6= 0, U > 0.
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Diagram 2 (continued). Global configurations: the case µ0 = µ1 = 0, µ2 6= 0, U > 0.

nd, f (1), SN , c©, c© where n means a singularity which is a node, capital letters indicate points at infinity,

c© in case of a complex point and SN a saddle–node at infinity.
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Diagram 2 (continued). Global configurations: the case µ0 = µ1 = 0, µ2 6= 0, U > 0.

2. Compactifications associated to planar polynomial differential systems

2.1. Compactification on the sphere and on the Poincaré disk. Planar polynomial differential systems

(1) can be compactified on the sphere. For this we consider the affine plane of coordinates (x, y) as being

the plane Z = 1 in R3 with the origin located at (0, 0, 1), the x–axis parallel with the X–axis in R3, and the

y–axis parallel to the Y –axis. We use a central projection to project this plane on the sphere as follows: for
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Diagram 2 (continued). Global configurations: the case µ0 = µ1 = 0, µ2 6= 0, U > 0.

each point (x, y, 1) we consider the line joining the origin with (x, y, 1). This line intersects the sphere in two

points P1 = (X,Y, Z) and P2 = (−X,−Y,−Z) where (X,Y, Z) = (1/
√
x2 + y2 + 1)(x, y, 1). The applications

(x, y) 7→ P1 and (x, y) 7→ P2 are bianalytic and associate to a vector field on the plane (x, y) an analytic vector
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Diagram 2 (continued). Global configurations: the case µ0 = µ1 = 0, µ2 6= 0, U > 0.

field Ψ on the upper hemisphere and also an analytic vector field Ψ′on the lower hemisphere. A theorem stated

by Poincaré and proved in [15] says that there exists an analytic vector field Θ on the whole sphere which

simultaneously extends the vector fields on the two hemispheres. By the Poincaré compactification on the

sphere of a planar polynomial vector field we mean the restriction Ψ̄ of the vector field Θ to the union of the

upper hemisphere with the equator. For more details we refer to [14]. The vertical projection of Ψ̄ on the

plane Z = 0 gives rise to an analytic vector field Φ on the unit disk of this plane. By the compactification on

the Poincaré disk of a planar polynomial vector field we understand the vector field Φ. By a singular point at

infinity of a planar polynomial vector field we mean a singular point of the vector field Ψ̄ which is located on

the equator of the sphere, respectively a singular point of the vector field Φ located on the boundary circle of

the Poincaré disk.
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Diagram 2 (continued). Global configurations: the case µ0 = µ1 = 0, µ2 6= 0, U > 0.

2.2. Compactification on the projective plane. To a polynomial system (1) we can associate a differential

equation ω1 = q(x, y)dx − p(x, y)dy = 0. Since the differential system (1) is with real coefficients, we may

associate to it a foliation with singularities on the real, respectively complex, projective plane as indicated

below. The equation ω1 = 0 defines a foliation with singularities on the real or complex plane depending if we

consider the equation as being defined over the real or complex affine plane. It is known that we can compactify

these foliations with singularities on the real respectively complex projective plane. In the study of real planar

polynomial vector fields, their associated complex vector fields and their singularities play an important role.

In particular such a vector field could have complex, non-real singularities, by this meaning singularities of

the associated complex vector field. We briefly recall below how these foliations with singularities are defined.

The application Υ : K2 −→ P2(K) defined by (x, y) 7→ [x : y : 1] is an injection of the plane K2 over the

field K into the projective plane P2(K) whose image is the set of [X : Y : Z] with Z 6= 0. If K is R or C this

application is an analytic injection. If Z 6= 0 then (Υ)−1([X : Y : Z]) = (x, y) where (x, y) = (X/Z, Y/Z). We

obtain a map i : K3 \ {Z = 0} −→ K2 defined by [X : Y : Z] 7→ (X/Z, Y/Z).

Considering that dx = d(X/Z) = (ZdX −XdZ)/Z2 and dy = (ZdY − Y dZ)/Z2, the pull-back of the form

ω1 via the map i yields the form i∗(ω1) = q(X/Z, Y/Z)(ZdX − XdZ)/Z2 − p(X/Z, Y/Z)(ZdY − Y dZ)/Z2

which has poles on Z = 0. Then the form ω = Zm+2i∗(ω1) on K3 \ {Z = 0}, K being R or C and m being

the degree of systems (1) yields the equation ω = 0:

A(X,Y, Z)dX +B(X,Y, Z)dY + C(X,Y, Z)dZ = 0

on K3 \ {Z = 0} where A, B, C are homogeneous polynomials over K with A(X,Y, Z) = ZQ(X,Y, Z),

Q(X,Y, Z) = Zmq(X/Z, Y/Z), B(X,Y, Z) = ZP (X,Y, Z), P (X,Y, Z) = Zmp(X/Z, Y/Z) and C(X,Y, Z) =

Y P (X,Y, Z)−XQ(X,Y, Z).

The equation AdX + BdY + CdZ = 0 defines a foliation F with singularities on the projective plane over

K with K either R or C. The points at infinity of the foliation defined by ω1 = 0 on the affine plane are the

points [X : Y : 0] and the line Z = 0 is called the line at infinity of the foliation with singularities generated

by ω1 = 0.

The singular points of the foliation F are the solutions of the three equations A = 0, B = 0, C = 0. In

view of the definitions of A,B,C it is clear that the singular points at infinity are the points of intersection

of Z = 0 with C = 0.

2.3. Assembling data on infinite singularities in divisors of the line at infinity. In the previous

sections we have seen that there are two types of multiplicities for a singular point p at infinity: one expresses

the maximum number m of infinite singularities which can split from p, in small perturbations of the system

and the other expresses the maximum number m′ of finite singularities which can split from p, in small

perturbations of the system. We shall use a column (m′,m)t to indicate this situation.
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Diagram 3. Global configurations: the case µ0 = µ1 = 0, µ2 6= 0, U = 0.

We are interested in the global picture which includes all singularities at infinity. Therefore we need to

assemble the data for individual singularities in a convenient, precise way. To do this we use for this situation

the notion of cycle on an algebraic variety as indicated in [21] and which was used in [18] as well as in [26].

We briefly recall here the definition of cycle. Let V be an irreducible algebraic variety over a field K. A

cycle of dimension r or r− cycle on V is a formal sum
∑

W nWW , where W is a subvariety of V of dimension
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Figure 2. Topologically distinct local configurations of ISPs ([26],[29]).

r which is not contained in the singular locus of V , nW ∈ Z, and only a finite number of the coefficients nW

are non-zero. The degree deg(J) of a cycle J is defined by
∑

W nW . An (n− 1)-cycle is called a divisor on V .

These notions were used for classification purposes of planar quadratic differential systems in [21, 18, 26].

To a system (1) we can associate two divisors on the line at infinity Z = 0 of the complex projective plane:

DS(P,Q;Z) =
∑

w Iw(P,Q)w and DS(C,Z) =
∑

w Iw(C,Z)w where w ∈ {Z = 0} and where by Iw(F,G)
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we mean the intersection multiplicity at w of the curves F (X,Y, Z) = 0 and G(X,Y, Z) = 0, with F and G

homogeneous polynomials in X,Y, Z over C. For more details see [18].

Following [26] we assemble the above two divisors on the line at infinity into just one but with values in the

ring Z2:

DS =
∑

ω∈{Z=0}

(
Iw(P,Q)

Iw(C,Z)

)
w.

This divisor encodes the total number of singularities at infinity of a system (1) as well as the two kinds of

multiplicities which each singularity has. The meaning of these two kinds of multiplicities are described in

the definition of the two divisors DS(P,Q;Z) and DS(C,Z) on the line at infinity.

3. Some geometrical concepts

Firstly we recall some terminology.

We call elemental a singular point with its both eigenvalues not zero.

We call semi–elemental a singular point with exactly one of its eigenvalues equal to zero.

We call nilpotent a singular point with both its eigenvalues zero but with its Jacobian matrix at this

point not identically zero.

We call intricate a singular point with its Jacobian matrix identically zero.

The intricate singularities are usually called in the literature linearly zero. We use here the term intricate

to indicate the rather complicated behavior of phase curves around such a singularity.

In this section we use the same concepts we considered in [3] and [4] such as orbit γ tangent to a semi–line L

at p, well defined angle at p, characteristic orbit at a singular point p, characteristic angle at a singular point,

characteristic direction at p. Since these are basic concepts for the notion of geometric equivalence relation

we recall here these notions as well as a few others.

We assume that we have an isolated singularity p. Suppose that in a neighborhood U of p there is no other

singularity. Consider an orbit γ in U defined by a solution Γ(t) = (x(t), y(t)) such that limt→+∞ Γ(t) = p (or

limt→−∞ Γ(t) = p). For a fixed t consider the unit vector C(t) = (
−−−−−→
Γ(t)− p)/‖−−−−−→Γ(t)− p‖. Let L be a semi–line

ending at p. We shall say that the orbit γ is tangent to a semi–line L at p if limt→+∞ C(t) (or limt→−∞ C(t))

exists and L contains this limit point on the unit circle centered at p. In this case we call well defined angle

of Γ at p the angle between the positive x–axis and the semi–line L measured in the counterclockwise sense.

We may also say that the solution curve Γ(t) tends to p with a well defined angle. A characteristic orbit at

a singular point p is the orbit of a solution curve Γ(t) which tends to p with a well defined angle. We call

characteristic angle at the singular point p a well defined angle of a solution curve Γ(t). The line through p

extending the semi-line L is called a characteristic direction.

If a singular point has an infinite number of characteristic directions, we will call it a star–like point.

It is known that the neighborhood of any isolated singular point of a polynomial vector field, which is not

a focus or a center, is formed by a finite number of sectors which could only be of three types: parabolic,

hyperbolic and elliptic (see [14]). It is also known that any degenerate singular point (nilpotent or intricate)

can be desingularized by means of a finite number of changes of variables, called blow–up’s, into elementary

singular points (for more details see the Section on blow–up in [3] or [14]).

Consider the three singular points given in Figure 3. All three are topologically equivalent and their

neighborhoods can be described as having two elliptic sectors and two parabolic ones. But we can easily

detect some geometric features which distinguish them. For example (a) and (b) have three characteristic

directions and (c) has only two. Moreover in (a) the solution curves of the parabolic sectors are tangent

to only one characteristic direction and in (b) they are tangent to two characteristic directions. All these

properties can be determined algebraically.



ALGORITHM FOR DETERMINING THE GEOMETRIC CONFIGURATIONS FOR QUADRATIC SYSTEMS 15

(a) (b) (c)

Figure 3. Some topologically equivalent singular points.

The usual definition of a sector is of topological nature and it is local with respect to a neighborhood

around the singular point. We work with a new notion, namely of geometric local sector, introduced in [3]

which distinguishes the phase portraits of Figure 3. As we shall later see this notion is characterized in

algebraic terms.

We begin with the elemental singular points having characteristic directions. These are either two-directions

nodes, one-direction nodes, star nodes or saddles. The first three cases are distinguished algebraically using

their eigenvalues (see Figure 1). In the case of saddles the notion or geometric local sector coincides with

usual notion of topological sector.

We consider now the semi–elemental singular points. These could be saddles, nodes or saddle–nodes. Each

saddle has four separatrices and four hyperbolic sectors. Here again we call geometric local sector any one of

these hyperbolic sectors and we call borsec (contraction of border with sector) any one of the four separatrices.

A semi–elemental node has two characteristic directions generating four half lines. For each one of these

half lines there exists at least one orbit tangent to that half line and we pick an orbit tangent to that half

line. Removing these four orbits together with the singular point, we are left with four sectors which we call

geometric local sectors and we call borsecs these four orbits.

Consider now a semi–elemental saddle–node. Such a singular point has three separatrices and three topo-

logical sectors, two hyperbolic ones and one parabolic sector. Such a singular point has four characteristic

half lines and one of them separates the parabolic sector in two. By removing an orbit tangent to a half line

for each half lines as well as the singular point we obtain four sectors which we call geometric local sectors.

We call borsecs these four orbits.

We now proceed to extend the notion of geometric local sector and of borsec for nilpotent and intricate

singular points.

The introduction of the concept of borsec in the general case will play a role in distinguishing a semi–

elemental saddle–node from an intricate saddle–node such as the one indicate in Figure 4. In the elemental

saddle–node all orbits inside the parabolic sector are tangent to the same half–line but in the saddle–node

of Figure 4 the orbits in the parabolic sector are not all tangent to the same half–line. The orbits in this

parabolic sector are of three kinds: the ones tangent to separatrix (a), the ones tangent to separatrix (c) and

a single orbit which is tangent to other half–line of the characteristic direction defined by separatrix (b). In

this case this last orbit is called the borsec. The other three borsecs are separatrices as in the case of the

semi–elemental node.

To extend the notion of geometric local sector and of borsec for nilpotent and intricate singular points we

start by introducing some terminology.

Let δ be the border of a sufficiently small open disc D centered at point p so that δ intersects all the elliptic,

parabolic and hyperbolic sectors of a nilpotent or intricate singular point p.

Consider a solution Γ : (a, b) → R2 where (a, b) is its maximal interval of definition and let γ be the orbit of

Γ, i.e. γ = {Γ(t) | t ∈ (a, b)}. We call half orbit of γ at a singular point p a subset γ′ ⊆ γ such that there exists
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(a)

(b)

(c)

Figure 4. Local phase portrait of a non semi–elemental saddle–node.

t1 ∈ (a, b) for which we have either γ′ = {Γ(t) | t ∈ (a, t1)} in which case we have a = −∞, lim
t→−∞

Γ(t) = p,

Γ(t1) ∈ δ and Γ(t) ∈ D for t ∈ (−∞, t1), or γ′ = {Γ(t) | t ∈ (t1, b)}, b = +∞, lim
t→+∞

Γ(t) = p, Γ(t1) ∈ δ and

Γ(t) ∈ D for t ∈ (t1,∞).

We note that in the case of elliptic sectors there may exist orbits which are divided exactly in two half

orbits.

Let Ωp = {γ′ | γ′ is a half orbit at p } .
We shall define a relation of equivalence on Ωp by using the complete desingularization of the singular point

p in case this point is nilpotent or intricate. There are two ways to desingularize such a singular point: by

passing to polar coordinates or by using rational changes of coordinates. The first has the inconvenience of

using trigonometrical functions, and this becomes a serious problem when a chain of blow–ups are needed

in order to complete the desingularization of the degenerate point. The second uses rational changes of

coordinates, convenient for our polynomial systems. In such a case two blow–ups in different directions are

needed and information from both must be glued together to obtain the desired portrait.

Here for desingularization we use the second possibility, namely with rational changes of coordinates at

each stage of the process. Two rational changes are needed, one for each direction of the blow–up. If at a

stage the coordinates are (x, y) and we do a blow–up in y-direction, the change (x, y) → (x, zx). This change

is a diffeomorphism when x 6= 0. This diffeomorphism transfers our vector field on a subset of the algebraic

surface y = zx. The point p = (0, 0) is then replaced by the straight line x = 0 and y = 0 in the 3-dimensional

space of coordinates x, y, z and which is also located on the ruled algebraic surface y = xz which is the z-axis.

This line is called blow–up line for this blow–up and it is also present as the line x = 0 in the (x, z) plane.

Analogously we can do a blow-up in the x-direction using the change (x, y) → (zy, y) which is a diffeomor-

phism for y 6= 0.

The two directional blow–ups can be simplified in just one 1–direction blow–up if we make sure that the

direction in which we do a blow–up is not a characteristic direction, so as to be sure that we are not going

to lose information doing the blow–up in the chosen direction. This can be easily solved by a simple linear

change of coordinates of the type (x, y) → (x + ky, y) where k is a constant (usually 1). It seems natural

to call this linear change a k–twist as the y–axis gets twisted with some angle depending on k. It is obvious

that the phase portrait of the degenerate point which is studied cannot depend on the set of k’s used in the

desingularization process.

Since the complete desingularization of a nilpotent or an intricate singular point in general needs more than

one blow–up, we have as many blow–up lines as we have blow–ups. As indicated above a blow–up line may

be transformed by means of linear changes and through other blow–up’s in other straight lines. We will call

such straight lines blow–up lines of higher order .
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We now introduce an equivalent relation on Ωp. We say that two half orbits γ′
1, γ

′
2 ∈ Ωp are equivalent if

and only if i) for both γ′
1 and γ′

2 we have lim
t→−∞

Γ1(t) = p = lim
t→−∞

Γ2(t) or lim
t→+∞

Γ1(t) = p = lim
t→+∞

Γ2(t), and

ii) after the complete desingularization, these orbits lifted to the final stage are tangent to the same half–line

at the same singular point, or end as orbits of a star node on the same half–plane defined by the blown–up

line, and iii) both orbits must remain in the same half–plane in all the successive blow–up’s.

We recall that after a complete desingularization all singular points are elemental or semi–elemental. We

now single out two types of equivalence classes:

(a) Suppose that an equivalence class C ∈ Ωp/∼ is such that its half orbits lifted to the last stage in the

desingularization process lead to orbits which possess the following properties: i) they belong to an elemental

two–directions node or to a semi–elemental saddle–node, and ii) they are all tangent to the same half–line

which lies on the blow–up line.

(b) Suppose that an equivalence class C ∈ Ωp/∼ is such that i) its half orbits lifted to the final stage of the

desingularization process, are tangent to a blow–up line of higher order, and ii) its lifted orbits blown–down

to the previous stage of the desingularization, form a part of an elliptic sector.

Let Ω′
p/ ∼ be the set of all equivalence classes which are of type (a) or (b). Then consider the comple-

ment Bp = (Ωp/ ∼) − (Ω′
p/ ∼) and consider a set of representatives of Bp. We call borsec anyone of these

representatives.

Note that the definition of borsec is independent of the choice of the disc D with boundary δ if D is

sufficiently small.

We call geometric local sector of a singular point p with respect to a neighborhood V , a region in V delimited

by two consecutive borsecs.

In order to illustrate the definitions of borsec and geometrical local sector we will discuss the following

example given in Figures 5, 6A and 6B.

We have portrayed an intricate singular point p whose desingularization needs a chain of two blow–ups

and where all different kinds of elemental singular points and semi–elemental saddle–nodes appear in every

possible position with respect of the blow–up line.

We have taken a small enough neighborhood of the point p of boundary δ. We split the boundary δ

in different arcs and points which will correspond to the different equivalence classes of orbits. We have

enumerated them from 1 to 24. The arcs of δ denoted with ∅1 and ∅2 correspond to hyperbolic sectors which

are not considered in the equivalence classes since the orbits do not tend to p. Some of these equivalence classes

have a unique orbit which is then a borsec (like 14∗ or 4∗). We add an asterisk superscript to denote these

equivalence classes. Other equivalence classes are arcs, like 16− or 12−, and one representative of each one

of them is taken as a borsec. We add a dash superscript to denote these equivalence classes. The remaining

equivalence classes, just denoted by their number, are those which do not produce a borsec by the exceptions

given in the definition. We have drawn the separatrices (which are always borsecs) with a bold continuous

line. We have drawn the borsecs which are not separatrices with bold dashed lines. Other orbits are drawn as

thin continuous lines. Finally, the vertical dashed line is the y-direction in which the first blow-up was done.

We describe a little the blow–ups of the phase portrait of the intricate point p given in Figure 5. Its

first blow–up is given in Figure 6A. In it we see from the upper part of the figure to its lower part: q1)

an elemental two–directions node with all but two orbits tangent to the blow–up line; q2) a semi–elemental

saddle–node with direction associated to the non–zero eigenvalue being the blow–up line; q3) another intricate

singular point which needs another blow–up portrayed in Figure 6B; q4) an elemental saddle; and q5) an

elemental one–direction node which necessarily has its characteristic direction coinciding with the blow–up

line.

In order to make the vertical blow–up of the intricate point q3 we must first do an ε–twist since the vertical

direction which corresponds to the previous blow–up line is a characteristic direction of q3.
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Figure 5. Local phase portrait of an intricate singular point.

In this second blow–up given in Figure 6B we see going down from its upper part, the following elemental

or semi–elemental singular points: r1) a two–directions node with only two orbits tangent to the blow–up

line (this singular point corresponds to the characteristic direction given by the previous blow–up line); r2) a

saddle; r3) a saddle–node with the direction associated to the zero eigenvalue being the blow–up line; r4) a

star node.

Now we describe all the classes of equivalence that we obtain in order to clarify the definitions of borsec

and geometric local sector.
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7−

8

8
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Figure 6. The two needed blow–ups for point of Figure 5.

We must move from the second blow–up to the first and after that to the original phase portrait. We

enumerate the arcs in the boundary of Figure 6B (following the clockwise sense) which will correspond to

the classes of equivalence of orbits in Figure 5 as follows.

1−) The arc 1− goes from the point a on the vertical axis to the point b without including any of them.

2) The arc 2 goes from the point b to the point 3∗ without including any of them.
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The orbit that ends at point b corresponds to the blow–up line in the Figure 6A, and so does not survive

in the original phase portrait. Thus the orbits associated to arc 1− cannot belong to the same equivalence

class as the orbits associated to arc 2 since in Figure 6A they are in different half–planes defined by the

blow–up line.

3∗) The point 3∗ belongs to the orbit which is a separatrix of the saddle r2.

∅1) The open arc ∅1 goes between the points 3∗ and 4∗ is associated to a hyperbolic sector and plays no

role.

4∗) The point 4∗ belongs to the orbit which is a separatrix of the saddle–node r3.

5) The arc 5 goes from the point 4∗ to the point c including only the second.

6−) The arc 6− goes from the point c to the point d on the vertical axis, including the point c.

The point c belongs to both arcs 5 and 6−. In fact it is just a point of partition of the boundary, splitting

the orbits that come from r3 from the orbits that go to r4. Since the equivalence classes are defined regarding

the half orbits there is no contradiction.

7−) The arc 7− goes from the point d on the vertical axis to the point e including the point e (i.e.

7− = (d, e] ).

8) The arc 8 goes from the point e to the point 9∗ including the point e.

The same comment made for the point c applies to point e.

9∗) The point 9∗ belongs to the orbit which is a separatrix of the saddle–node r3.

∅2) The open arc ∅2 between the points 9∗ and 10∗ is associated to a hyperbolic sector and plays no role.

10∗) The point 10∗ belongs to the orbit which is a separatrix of the saddle r2.

11) The arc 11 goes from the point 10∗ to the point f without including any of them.

12−) The arc 12− goes from From the point f to the point a in the vertical axis without including any of

them (i.e. 12− = (d, e) ).

The same comment done for the point b applies to point f .

Now we translate these notations to Figure 6A and complete the notation of the arcs on the boundary of

this figure again following the clockwise sense.

13) The arc 13 goes from the point g on the vertical axis to the point 14∗ without including any of them.

14∗) The point 14∗ belongs to the orbit which is tangent to the eigenvector associated to the greatest

eigenvalue of the node q1.

15) The arc 15 goes from the point 14∗ to the point h including only the second.

16−) The arc 16− goes from the point h to the point i including both (i.e. 16− = [d, e] ).

The following arcs and points from the point i to the point 17∗ have already received their names when we

did the blow–down from Figure 6B to Figure 6A.

The arcs 6− and 12− of Figure 6B become adjacent in Figure 6A and the points a and d are glued

together and correspond to the point which after the −ε–twist goes to the vertical axis. The region defined

by these arcs forms now an elliptic sector.

17∗) The point 17∗ belongs to the orbit which is a separatrix of the saddle q4.

18−) The arc 18− goes from the point 17∗ to the point j without including any of them (i.e. 18− = (d, e) ).

19−) The arc 19− goes from the point j to the point 20∗ without including any of them (i.e. 19− = (j, 12∗) ).

20∗) The point 20∗ belongs to the orbit which is a separatrix of the saddle q4.

The following arcs and points from the point 20∗ to the point 21∗ have already received their names when

we have done the blow–down from Figure 6B to Figure 6A.
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21∗) The point 21∗ belongs to the orbit which is a separatrix of the saddle–node q2.

22) The arc 22 goes from the point 21∗ to the point 23∗ without including any of them.

23∗) The point 23∗ belongs to the orbit which is tangent to the eigenvector associated to the greatest

eigenvalue of the node q1.

24) The arc 24 goes from the point 23∗ to the point g in the vertical axis without including any of them.

Now we move to the original phase portrait in Figure 5. For clarity it is convenient to start the description

with a hyperbolic sector.

The orbit associated to the point 4∗ defines an equivalent class with a single element and then, this element

is a borsec. Moreover it is a global separatrix.

The orbits associated to the points of the arc 5 form a class of equivalence but define no borsec since in the

final desingularization (Figure 6B) these orbits end at a saddle–node tangent to the blow–up line and thus

these orbits are in a class of equivalence of type (a) which does not produce borsec.

The orbits associated to the points of the arc 6− form a class of equivalence defining a borsec which splits

the two local geometric elliptic sectors that we see in Figure 5. This borsec is not a separatrix.

The orbits associated to the points of the arc 12− form a class of equivalence defining a borsec which splits

a local elliptic sector from a parabolic local sector that we can see in Figure 5. Even though the class 12−

has been split from class 11 by the blow–up line of higher order (the straight line passing through point r1

and going from point b to point f in Figure 6B), we see that class 12− corresponds to the part of an elliptic

sector with its characteristic direction tangent to the blow–up line. So, this class of equivalence is not of type

(b) and we must define a borsec there. The point (b) however will occur later on in our discussion, more

precisely when we consider the arc 11.

The orbit associated to the point 17∗ defines an equivalent class with a single element and then, this element

is a borsec. This borsec is not a separatrix. It is just part of a global parabolic sector but locally distinguishes

the three different characteristic directions of the orbits in the arc of δ going from d to l.

The orbits associated to the points of the arc 18− form a class of equivalence defining a borsec which splits

a local elliptic sector from a parabolic one that we can see in Figure 5.

The orbits associated to the points of the arc 24 form a class of equivalence but this does not define a borsec

because in the final desingularization, the corresponding orbits end at a two–directions node tangent to the

blow–up line (this class of equivalence is of type (a)).

The orbit associated to the point 23∗ defines an equivalent class with a single element and then this element

is a borsec which splits a local elliptic sector from a parabolic one that we can see in Figure 5.

The orbits associated to the points of the arc 22− form a class of equivalence but this does not define a

borsec because in the final desingularization, the corresponding orbits end at a two–directions node tangent

to the blow–up line (this class of equivalence is of type (a)).

The orbit associated to the point 21∗ defines an equivalent class with a single element and then, this element

is a borsec.

The orbits associated to the points of the arc 1− form a class of equivalence defining a borsec which splits

a local elliptic sector from a parabolic one that we can see in Figure 5. Even though the class 1− has been

split from class 2 by the blow–up line of higher order, in Figure 6B, we see that class 1− corresponds to a

part of an elliptic sector with its characteristic direction tangent to the blow–up line. So, this is not a class of

equivalence of type (b) and we must define a borsec here.

The orbits associated to the points of the arc 7− form a class of equivalence defining a borsec which splits

the two local elliptic sectors that we see in Figure 5. As in the case of arc 6− this borsec is not a separatrix.
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The orbits associated to the points of the arc 8 form a class of equivalence but define no borsec since in

the final desingularization (Figure 6B) these orbits end at a saddle–node tangent to the blow–up line (this

equivalence class is of type (a)).

The orbit associated to the point 9∗ defines an equivalent class with a single element and then, this element

is a borsec. Moreover it is a global separatrix.

The orbits associated to the open arc ∅2 form a hyperbolic sector and are not associated to any equivalence

class since they do not end at the singular point.

The orbit associated to the point 10∗ defines an equivalent class with a single element and then, this element

is a borsec. Moreover it is a global separatrix.

The orbits associated to the points of the arc 11 form a class of equivalence but define no borsec since class

11 is of type (b). In this case we are in a similar situation as with the arc 12− but now, since the point r2 is a

saddle, the arc 11 in Figure 6A defines a parabolic sector and so there is no need of a borsec, which would

otherwise be needed if the sector were elliptic.

The orbit associated to the point 20∗ defines an equivalent class with a single element and then, this element

is a borsec. This is similar to the case 17∗.

The orbits associated to the points of the arc 19− form a class of equivalence defining a borsec which splits

a local elliptic sector from a parabolic one that we can see in Figure 5. This is similar to the case 18−.

The orbits associated to the points of the arc 13 form a class of equivalence but this does not define a borsec

analogously with the case 24.

The orbit associated to the point 14∗ defines an equivalent class with a single element and then, this element

is a borsec.

The orbits associated to the points of the arc 15 form a class of equivalence which does not define a borsec

analogously to the case 13.

The orbits associated to the points of the arc 16− form a class of equivalence defining a borsec which splits

two local elliptic sectors. This is similar to the case 7−.

The orbits associated to the points of arc 2 form a class of equivalence but define no borsec by the same

arguments used for the arc 11.

The orbit associated to the point 3∗ defines an equivalent class with a single element and then, this element

is a borsec. Moreover it is a separatrix.

Generically a geometric local sector is defined by two borsecs arriving at the singular point with two different

well defined angles and which are consecutive. If this sector is parabolic, then the solutions can arrive at the

singular point with one of the two characteristic angles, and this is a geometrical information than can be

revealed with the blow–up.

There is also the possibility that two borsecs defining a geometric local sector tend to the singular point

with the same well defined angle. Such a sector will be called a cusp–like sector which can either be hyperbolic,

elliptic or parabolic denoted by Hf, Ef and Pf respectively.

In the case of parabolic sectors we want to include the information as the orbits arrive tangent to one or

to the other borsec. We distinguish the two cases writing by
x
P if they arrive tangent to the borsec limiting

the previous sector in clockwise sense or
y
P if they arrive tangent to the borsec limiting the next sector. In

the case of a cusp–like parabolic sector, all orbits must arrive with only one well determined angle, but the

distinction between
x
P and

y
P is still valid because it occurs at some stage of the desingularization and this

can be algebraically determined. Thus complicated intricate singular points like the two we see in Figure 7

may be described as
y
PE

x
P HHH (case (a)) and E

x
PfHH

y
PfE (case (b)), respectively.
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Figure 7. Two phase portraits of degenerate singular points.

The phase portrait of the intricate point of Figure 5 could be described as

HfEfEf
x
P

y
PE

x
P

y
PEfEfHf

x
P

y
PEEE

starting with the hyperbolic sector ∅1 and going in the clockwise direction.

A star–like point can either be a node or something much more complicated with elliptic and hyperbolic

sectors included. In case there are hyperbolic sectors, they must be cusp–like. Elliptic sectors can either be

cusp–like or star–like. We call special characteristic angle any well defined angle of a star-like point, in which

either none or more than one solution curve tends to p within this well defined angle. We will call special

characteristic direction any line such that at least one of the two angles defining it, is a special characteristic

angle.

4. Notations for singularities of polynomial differential systems

In [3] we introduced convenient notations which we also used in [4] and which we are also using here. These

notations can easily be extended to general polynomial systems.

We describe the finite and infinite singularities, denoting the first ones with lower case letters and the second

with capital letters. When describing in a sequence both finite and infinite singular points, we will always

place first the finite ones and only later the infinite ones, separating them by a semicolon‘;’.

Elemental points: We use the letters ‘s’,‘S’ for “saddles”; ‘n’, ‘N ’ for “nodes”; ‘f ’ for “foci”; ‘c’ for

“centers” and c© (respectively c©) for complex finite (respectively infinite) singularities. In order to augment

the level of precision we distinguish the finite nodes as follows:

• ‘n’ for a node with two distinct eigenvalues (generic node);

• ‘nd’ (a one–direction node) for a node with two identical eigenvalues whose Jacobian matrix is not

diagonal;

• ‘n∗’ (a star node) for a node with two identical eigenvalues whose Jacobian matrix is diagonal.

In the case of an elemental infinite generic node, we want to distinguish whether the eigenvalue associated

to the eigenvector directed towards the affine plane is, in absolute value, greater or lower than the eigenvalue

associated to the eigenvector tangent to the line at infinity. This is relevant because this determines if all the

orbits except one on the Poincaré disk arrive at infinity tangent to the line at infinity or transversal to this

line. We will denote them as ‘N∞’ and ‘Nf ’ respectively.

Finite elemental foci and saddles are classified as strong or weak foci, respectively strong or weak saddles.

When the trace of the Jacobian matrix evaluated at those singular points is not zero, we call them strong

saddles and strong foci and we maintain the standard notations ‘s’ and ‘f ’. But when the trace is zero, except

for centers and saddles of infinite order (i.e. with all their Poincaré-Lyapounov constants equal to zero), it is

known that the foci and saddles, in the quadratic case, may have up to 3 orders. We denote them by ‘s(i)’

and ‘f (i)’ where i = 1, 2, 3 is the order. In addition we have the centers which we denote by ‘c’ and saddles of

infinite order (integrable saddles) which we denote by ‘$’.
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Foci and centers cannot appear as singular points at infinity and hence there is no need to introduce their

order in this case. In case of saddles, we can have weak saddles at infinity but the maximum order of weak

singularities in cubic systems is not yet known. For this reason, a complete study of weak saddles at infinity

cannot be done at this stage. Due to this, in [3] and in [4] and here we chose not even to distinguish between

a saddle and a weak saddle at infinity.

All non–elemental singular points are multiple points, in the sense that there are perturbations which have

at least two elemental singular points as close as we wish to the multiple point. For finite singular points we

denote with a subindex their multiplicity as in ‘s(5)’ or in ‘ês(3)’ (the notation ‘ ’ indicates that the saddle

is semi–elemental and ‘ês(3)’ indicates that the singular point is nilpotent). In order to describe the various

kinds of multiplicity for infinite singular points we use the concepts and notations introduced in [26]. Thus we

denote by ‘
(
a
b

)
...’ the maximum number a (respectively b) of finite (respectively infinite) singularities which

can be obtained by perturbation of the multiple point. For example ‘
(
1
1

)
SN ’ means a saddle–node at infinity

produced by the collision of one finite singularity with an infinite one; ‘
(
0
3

)
S’ means a saddle produced by the

collision of 3 infinite singularities.

Semi–elemental points: They can either be nodes, saddles or saddle–nodes, finite or infinite. We will

denote the semi–elemental ones always with an overline, for example ‘sn’, ‘s’ and ‘n’ with the corresponding

multiplicity. In the case of infinite points we will put ‘ ’ on top of the parenthesis with multiplicities.

Moreover, in cases that will be explained later (see the paragraph dedicated to intricate points), an infinite

saddle–node may be denoted by ‘
(
1
1

)
NS’ instead of ‘

(
1
1

)
SN ’. Semi–elemental nodes could never be ‘nd’ or ‘n∗’

since their eigenvalues are always different. In case of an infinite semi–elemental node, the type of collision

determines whether the point is denoted by ‘Nf ’ or by ‘N∞’ where ‘
(
2
1

)
N ’ is an ‘Nf ’ and ‘

(
0
3

)
N ’ is an ‘N∞’.

Nilpotent points: They can either be saddles, nodes, saddle–nodes, elliptic–saddles, cusps, foci or centers.

The first four of these could be at infinity. We denote the nilpotent singular points with a hat ‘̂’ as in ês(3)

for a finite nilpotent elliptic–saddle of multiplicity 3 and ĉp(2) for a finite nilpotent cusp point of multiplicity

2. In the case of nilpotent infinite points, we will put the ‘̂’ on top of the parenthesis with multiplicity, for

example
(̂
1
2

)
PEP −H (the meaning of PEP −H will be explained in next paragraph). The relative position

of the sectors of an infinite nilpotent point, with respect to the line at infinity, can produce topologically

different phase portraits. This forces to use a notation for these points similar to the notation which we will

use for the intricate points.

Intricate points: It is known that the neighborhood of any singular point of a polynomial vector field

(except for foci and centers) is formed by a finite number of sectors which could only be of three types:

parabolic, hyperbolic and elliptic (see [14]). Then, a reasonable way to describe intricate and nilpotent points

is to use a sequence formed by the types of their sectors. The description we give is the one which appears

in the clockwise direction (starting anywhere) once the blow–down of the desingularization is done. Thus

in non-degenerate quadratic systems (that is, both components of the system are coprime), we have just

seven possibilities for finite intricate singular points of multiplicity four (see [5]) which are the following ones:

phpphp(4); phph(4); hh(4); hhhhhh(4); peppep(4); pepe(4); ee(4).

The lower case letters used here indicate that we have finite singularities and subindex (4) indicates the

multiplicity 4 of the singularities.

For infinite intricate and nilpotent singular points, we insert a dash (hyphen) between the sectors to split

those which appear on one side or the other of the equator of the sphere. In this way we will distinguish

between
(
2
2

)
PHP − PHP and

(
2
2

)
PPH − PPH .

Whenever we have an infinite nilpotent or intricate singular point, we will always start with a sector

bordering the infinity (to avoid using two dashes). When one needs to describe a configuration of singular

points at infinity, then in some cases the relative positions of the points, is relevant. In [3] this situation only

occurs once for systems having two semi–elemental saddle–nodes at infinity and a third singular point which
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is elemental. In this case we need to write NS instead of SN for one of the semi–elemental points in order

to have coherence of the positions of the parabolic (nodal) sector of one point with respect to the hyperbolic

(saddle) of the other semi–elemental point. More concretely, the Config. 3 in Figure 2) must be described as(
1
1

)
SN,

(
1
1

)
SN, N since the elemental node lies always between the hyperbolic sectors of one saddle–node and

the parabolic ones of the other. However, the Config. 4 in Figure 2) must be described as
(
1
1

)
SN,

(
1
1

)
NS, N

since the hyperbolic sectors of each saddle–node lie between the elemental node and the parabolic sectors of

the other saddle–node. These two configurations have exactly the same description of singular points but

their relative position produces topologically (and geometrically) different portraits.

For the description of the topological phase portraits around the isolated singular points the information

described above is sufficient. However we are interested in additional geometrical features such as the number

of characteristic directions which figure in the final global picture of the desingularization. In order to add

this information we need to introduce more notation. If two borsecs (the limiting orbits of a sector) arrive

at the singular point with the same direction, then the sector will be denoted by Hf, Ef or Pf. The index

in this notation refers to the cusp–like form of limiting trajectories of the sectors. Moreover, in the case of

parabolic sectors we want to make precise whether the orbits arrive tangent to one borsec or to the other. We

distinguish the two cases by
x
P if they arrive tangent to the borsec limiting the previous sector in clockwise

sense or
y
P if they arrive tangent to the borsec limiting the next sector. A parabolic sector will be P ∗ when

all orbits orbits arrive with all possible slopes between the two consecutive borsecs. In the case of a cusp–like

parabolic sector, all orbits must arrive with only one direction, but the distinction between
x
P and

y
P is still

valid if we consider the different desingularizations we obtain from them. Thus, complicated intricate singular

points like the two we see in Figure 7 may be described as
(
4
2

) y
PE

x
P−HHH (case (a)) and

(
4
3

)
E

x
PfH−H

y
PfE

(case (b)), respectively.

Finally there is also the possibility that we have an infinite number of infinite singular points.

Line at infinity filled up with singularities: It is known that any such system has in a sufficiently small

neighborhood of infinity one of 6 topological distinct phase portraits (see [29]). The way to determine these

portraits is by studying the reduced systems on the infinite local charts after removing the degeneracy of the

systems within these charts. In case a singular point still remains on the line at infinity we study such a point.

In [29] the tangential behavior of the solution curves was not considered in the case of a node. If after the

removal of the degeneracy in the local charts at infinity a node remains, this could either be of the type Nd,

N and N⋆ (this last case does not occur in quadratic systems as it was shown in [3]). Since no eigenvector

of such a node N (for quadratic systems) will have the direction of the line at infinity we do not need to

distinguish Nf and N∞. Other types of singular points at infinity of quadratic systems, after removal of the

degeneracy, can be saddles, centers, semi–elemental saddle–nodes or nilpotent elliptic–saddles. We also have

the possibility of no singularities after the removal of the degeneracy. To convey the way these singularities

were obtained as well as their nature, we use the notation [∞; ∅], [∞; N ], [∞; Nd], [∞; S], [∞; C], [∞;
(
1
0

)
SN ]

or [∞;
(̂
3
0

)
ES].

5. Invariant polynomials and preliminary results

Consider real quadratic systems of the form

(2)

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y written as

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.
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Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the coefficients of systems (2)

and denote R[ã, x, y] = R[a00, . . . , b02, x, y].

5.1. Affine invariant polynomials associated to infinite singularities. It is known that on the set

QS of all quadratic differential systems (2) acts the group Aff (2,R) of affine transformations on the plane

(cf. [26]). For every subgroup G ⊆ Aff (2,R) we have an induced action of G on QS. We can identify the

set QS of systems (2) with a subset of R12 via the map QS−→ R12 which associates to each system (2) the

12–tuple (a00, . . . , b02) of its coefficients.

For the definitions of a GL–comitant and invariant as well as for the definitions of a T –comitant and a

CT –comitant we refer the reader to the paper [26] (see also [32]). Here we shall only construct the necessary

T –comitants and CT –comitants associated to configurations of infinite singularities (including multiplicities)

of quadratic systems (2). All polynomials constructed here are GL–comitants. But some are also affine

invariants or even affine comitants.

Consider the polynomial Φα,β = αP ∗ + βQ∗ ∈ R[ã, X, Y, Z, α, β] where P ∗ = Z2P (X/Z, Y/Z),

Q∗ = Z2Q(X/Z, Y/Z), P, Q ∈ R[ã, x, y] and max(deg(x,y)P, deg(x,y)Q) = 2. Then

Φα,β = s11(ã, α, β)X
2+2s12(ã, α, β)XY + s22(ã, α, β)Y

2+2s13(ã, α, β)XZ+2s23(ã, α, β)Y Z+ s33(ã, α, β)Z
2

and we denote

D̃(ã, x, y) =4 det ||sij(ã, y,−x)||i,j∈{1,2,3} ,

H̃(ã, x, y) =4 det ||sij(ã, y,−x)||i,j∈{1,2} .

We consider the polynomials

(3)

Ci(ã, x, y) = ypi(ã, x, y)− xqi(ã, x, y),

Di(ã, x, y) =
∂

∂x
pi(ã, x, y) +

∂

∂y
qi(ã, x, y),

in R[ã, x, y] for i = 0, 1, 2 and i = 1, 2 respectively. The polynomials C2 and D2 are trivial T -comitants (trivial

because they only depend on the coefficients of the quadratic terms). Using the so–called transvectant of order

k (see [16], [19]) of two polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
,

we construct the following GL—comitants of the second degree with respect to the coefficients of the initial

system

(4)

T1(ã, x, y) = (C0, C1)
(1)

, T2(ã, x, y) = (C0, C2)
(1)

, T3(ã) = (C0, D2)
(1)

,

T4(ã) = (C1, C1)
(2)

, T5(ã, x, y) = (C1, C2)
(1)

, T6(ã, x, y) = (C1, C2)
(2)

,

T7(ã, x, y) = (C1, D2)
(1)

, T8(ã, x, y) = (C2, C2)
(2)

, T9(ã, x, y) = (C2, D2)
(1)

.
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Using these GL—comitants as well as the polynomials (3) we construct the additional invariant polynomials

(see also [26])

M̃(ã, x, y) =(C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
;

η(ã) =(M̃, M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
;

K̃(ã, x, y) =Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
;

K1(ã, x, y) =p1(ã, x, y)q2(ã, x, y)− p2(ã, x, y)q1(ã, x, y);

K2(ã, x, y) =4(T2, M̃ − 2K̃)(1)+ 3D1(C1, M̃ − 2K̃)(1) − (M̃ − 2K̃)
(
16T3 − 3T4/2 + 3D2

1

)
;

K3(ã, x, y) =C2
2 (4T3 + 3T4) + C2(3C0K̃ − 2C1T7) + 2K1(3K1 − C1D2);

L̃(ã, x, y) =4K̃ + 8H̃ − M̃ ;

L1(ã, x, y) =(C2, D̃)(2);

R̃(ã, x, y) =L̃+ 8K̃;

κ(ã) =(M̃, K̃)(2)/4;

κ1(ã) =(M̃, C1)
(2);

Ñ(ã, x, y) =K̃(ã, x, y) + H̃(ã, x, y);

θ6(ã, x, y) =C1T8 − 2C2T6.

The geometrical meaning of the invariant polynomials C2, M̃ and η is revealed in the next lemma (see [26]).

Lemma 1. The form of the divisor DS(C,Z) for systems (2) is determined by the corresponding conditions

indicated in Table 1, where we write wc
1 + wc

2 + w3 if two of the points, i.e. wc
1, w

c
2, are complex but not real.

Moreover, for each form of the divisor DS(C,Z) given in Table 1 the quadratic systems (2) can be brought via

a linear transformation to one of the following canonical systems (SI)− (SV ) corresponding to their behavior

at infinity.

Table 1

Case Form of DS(C,Z)
Necessary and

sufficient conditions

on the comitants

1 w1 + w2 + w3 η > 0

2 wc
1 + wc

2 + w3 η < 0

3 2w1 + w2 η = 0, M̃ 6= 0

4 3w M̃ = 0, C2 6= 0

5 DS(C,Z) undefined C2 = 0
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ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII )

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2,
(SIV )

ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

5.2. Affine invariant polynomials associated to finite singularities. Consider the differential operator

L = x · L2 − y · L1 acting on R[ã, x, y] constructed in [10], where

L1 = 2a00
∂

∂a10
+ a10

∂
∂a20

+ 1
2a01

∂
∂a11

+ 2b00
∂

∂b10
+ b10

∂
∂b20

+ 1
2b01

∂
∂b11

,

L2 = 2a00
∂

∂a01
+ a01

∂
∂a02

+ 1
2a10

∂
∂a11

+ 2b00
∂

∂b01
+ b01

∂
∂b02

+ 1
2b10

∂
∂b11

.

Using this operator and the affine invariant µ0 = Res x

(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct the following

polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4,

where L(i)(µ0) = L(L(i−1)(µ0)) and L(0)(µ0) = µ0.

These polynomials are in fact comitants of systems (2) with respect to the group GL(2,R) (see [10]). Their
geometrical meaning is revealed in Lemmas 2 and 3 below.

Lemma 2. ([9]) The total multiplicity of all finite singularities of a quadratic system (2) equals k if and only

if for every i ∈ {0, 1, . . . , k − 1} we have µi(ã, x, y) = 0 in R[x, y] and µk(ã, x, y) 6= 0. Moreover a system (2)

is degenerate (i.e. gcd(P,Q) 6= constant) if and only if µi(ã, x, y) = 0 in R[x, y] for every i = 0, 1, 2, 3, 4.

Lemma 3. ([10]) The point M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤ 4) for a quadratic system

(2) if and only if for every i ∈ {0, 1, . . . , k − 1} we have µ4−i(ã, x, y) = 0 in R[x, y] and µ4−k(ã, x, y) 6= 0.

We denote

σ(ã, x, y) =
∂P

∂x
+

∂Q

∂y
= σ0(ã) + σ1(ã, x, y) (≡ D1(ã) +D2(ã, x, y)),

and observe that the polynomial σ(ã, x, y) is an affine comitant of systems (2). It is known, that if (xi, yi) is

a singular point of a system (2) then for the trace of its respective linear matrix we have ρi = σ(xi, yi).

Applying the differential operators L and (∗, ∗)(k) (i.e. transvectant of index k) we define the following

polynomial function which governs the values of the traces for finite singularities of systems (2).

Definition 1 ([33]). We call trace polynomial T(w) over the ring R[ã] the polynomial defined as follows

(5) T(w) =

4∑

i=0

1

(i!)2

(
σi
1,

1

i!
L(i)(µ0)

)(i)

w4−i =

4∑

i=0

Gi(ã)w
4−i,

where the coefficients Gi(ã) =
1

(i!)2
(σi

1, µi)
(i) ∈ R[ã], i = 0, 1, 2, 3, 4

(
G0(ã) ≡ µ0(ã)

)
are GL–invariants.
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Using the polynomial T(w) we could construct the following four affine invariants T4, T3, T2, T1, which are

responsible for the weak singularities:

T4−i(ã)=
1

i!

diT

dwi

∣∣∣
w=σ0

∈ R[ã], i = 0, 1, 2, 3
(
T4 ≡ T(σ0)

)
.

The geometric meaning of these invariants is revealed by the next lemma (see [33]).

Lemma 4. Consider a non-degenerate system (2) and let a ∈ R12 be its 12-tuple of coefficients. Denote by

ρs the trace of the linear part of this system at a finite singular point Ms, 1 ≤ s ≤ 4 (real or complex, simple

or multiple). Then the following relations hold.

(i) For µ0(a) 6= 0 (total multiplicity 4)

(6)

T4(a) = G0(a)ρ1ρ2ρ3ρ4,

T3(a) = G0(a)(ρ1ρ2ρ3 + ρ1ρ2ρ4 + ρ1ρ3ρ4 + ρ2ρ3ρ4),

T2(a) = G0(a)(ρ1ρ2 + ρ1ρ3 + ρ1ρ4 + ρ2ρ3 + ρ2ρ4 + ρ3ρ4),

T1(a) = G0(a)(ρ1 + ρ2 + ρ3 + ρ4).

(ii) For µ0(a) = 0, µ1(a, x, y) 6= 0 (total multiplicity 3)

(7)
T4(a) = G1(a)ρ1ρ2ρ3, T3(a) = G1(a)(ρ1ρ2 + ρ1ρ3 + ρ2ρ3),

T2(a) = G1(a)(ρ1 + ρ2 + ρ3), T1(a) = G1(a).

(iii) For µ0(a) = µ1(a, x, y) = 0, µ2(a, x, y) 6= 0 (total multiplicity 2)

(8)
T4(a) = G2(a)ρ1ρ2, T3(a) = G2(a)(ρ1 + ρ2),

T2(a) = G2(a), T1(a) = 0.

(iv) For µ0(a) = µ1(a, x, y) = µ2(a, x, y) = 0, µ3(a, x, y) 6= 0 (one elemental singularity)

(9) T4(a) = G3(a)ρ1, T3(a) = G3(a), T2(a) = T1(a) = 0.

In order to be able to calculate the values of invariant polynomials, we define here a family of T –comitants

(see [26] for detailed definitions) expressed through Ci (i = 0, 1, 2) and Dj (j = 1, 2):

Â =
(
C1, T8 − 2T9 +D2

2

)(2)
/144,

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1) + 6D1(C1D2 − T5)− 9D2

1C2

]
/36,

Ê =
[
D1(2T9 − T8)− 3 (C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̂ =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ê

− 24
(
C2, D̂

)(2)
+120

(
D2, D̂

)(1)
−36C1 (D2, T7)

(1)+8D1 (D2, T5)
(1)
]
/144,

K̂ =(T8 + 4T9 + 4D2
2)/72 ≡ K̃/4,

Ĥ =(8T9 − T8 + 2D2
2)/72 ≡ −H̃/4,

M̂ =T8,
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B̂ =
{
16D1 (D2, T8)

(1)
(3C1D1 − 2C0D2 + 4T2) + 32C0 (D2, T9)

(1)
(3D1D2 − 5T6 + 9T7)

+ 2 (D2, T9)
(1) (27C1T4 − 18C1D

2
1 −32D1T2 + 32 (C0, T5)

(1) )

+ 6 (D2, T7)
(1)

[8C0(T8 − 12T9) − 12C1(D1D2 + T7) +D1(26C2D1 + 32T5) +C2(9T4 + 96T3)]

+ 6 (D2, T6)
(1) [32C0T9 − C1(12T7 + 52D1D2) −32C2D

2
1

]
+ 48D2 (D2, T1)

(1) (2D2
2 − T8

)

− 32D1T8 (D2, T2)
(1)

+ 9D2
2T4 (T6 − 2T7)− 16D1 (C2, T8)

(1) (
D2

1 + 4T3

)

+ 12D1 (C1, T8)
(2) (C1D2 − 2C2D1) + 6D1D2T4

(
T8 − 7D2

2 − 42T9

)

+ 12D1 (C1, T8)
(1)

(T7 + 2D1D2) + 96D2
2

[
D1 (C1, T6)

(1)
+D2 (C0, T6)

(1)
]

− 16D1D2T3

(
2D2

2 + 3T8

)
− 4D3

1D2

(
D2

2 + 3T8 + 6T9

)
+ 6D2

1D
2
2 (7T6 + 2T7)

−252D1D2T4T9} /(2833).

These polynomials in addition to (3) and (4) will serve as bricks in constructing affine invariant polynomials

for systems (2).

The following 42 affine invariants A1, . . . , A42 form the minimal polynomial basis of affine invariants up to

degree 12. This fact was proved in [11] by constructing A1, . . . , A42 using the above bricks.

A1 = Â, A22 = 1
1152

[
C2, D̂)(1), D2

)(1)
, D2

)(1)
, D2

)(1)
D2

)(1)
,

A2 = (C2, D̂)(3)/12, A23 =
[
F̂ , Ĥ)(1), K̂

)(2)
/8,

A3 =
[
C2, D2)

(1), D2

)(1)
, D2

)(1)
/48, A24 =

[
C2, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/32,

A4 = (Ĥ, Ĥ)(2), A25 =
[
D̂, D̂)(2), Ê

)(2)
/16,

A5 = (Ĥ, K̂)(2)/2, A26 = (B̂, D̂)(3)/36,

A6 = (Ê, Ĥ)(2)/2, A27 =
[
B̂,D2)

(1), Ĥ
)(2)

/24,

A7 =
[
C2, Ê)(2), D2

)(1)
/8, A28 =

[
C2, K̂)(2), D̂

)(1)
, Ê
)(2)

/16,

A8 =
[
D̂, Ĥ)(2), D2

)(1)
/8, A29 =

[
D̂, F̂ )(1), D̂

)(3)
/96,

A9 =
[
D̂,D2)

(1), D2

)(1)
, D2

)(1)
/48, A30 =

[
C2, D̂)(2), D̂

)(1)
, D̂
)(3)

/288,

A10 =
[
D̂, K̂)(2), D2

)(1)
/8, A31 =

[
D̂, D̂)(2), K̂

)(1)
, Ĥ
)(2)

/64,

A11 = (F̂ , K̂)(2)/4, A32 =
[
D̂, D̂)(2), D2

)(1)
, Ĥ
)(1)

, D2

)(1)
/64,

A12 = (F̂ , Ĥ)(2)/4, A33 =
[
D̂,D2)

(1), F̂
)(1)

, D2

)(1)
, D2

)(1)
/128,

A13 =
[
C2, Ĥ)(1), Ĥ

)(2)
, D2

)(1)
/24, A34 =

[
D̂, D̂)(2), D2

)(1)
, K̂
)(1)

, D2

)(1)
/64,

A14 = (B̂, C2)
(3)/36, A35 =

[
D̂, D̂)(2), Ê

)(1)
, D2

)(1)
, D2

)(1)
/128,

A15 = (Ê, F̂ )(2)/4, A36 =
[
D̂, Ê)(2), D̂

)(1)
, Ĥ
)(2)

/16,

A16 =
[
Ê,D2)

(1), C2

)(1)
, K̂
)(2)

/16, A37 =
[
D̂, D̂)(2), D̂

)(1)
, D̂
)(3)

/576,

A17 =
[
D̂, D̂)(2), D2

)(1)
, D2

)(1)
/64, A38 =

[
C2, D̂)(2), D̂

)(2)
, D̂
)(1)

, Ĥ
)(2)

/64,

A18 =
[
D̂, F̂ )(2), D2

)(1)
/16, A39 =

[
D̂, D̂)(2), F̂

)(1)
, Ĥ
)(2)

/64,

A19 =
[
D̂, D̂)(2), Ĥ

)(2)
/16, A40 =

[
D̂, D̂)(2), F̂

)(1)
, K̂
)(2)

/64,

A20 =
[
C2, D̂)(2), F̂

)(2)
/16, A41 =

[
C2, D̂)(2), D̂

)(2)
, F̂
)(1)

, D2

)(1)
/64,

A21 =
[
D̂, D̂)(2), K̂

)(2)
/16, A42 =

[
D̂, F̂ )(2), F̂

)(1)
, D2

)(1)
/16.

In the above list, the bracket “[” is used in order to avoid placing the otherwise necessary up to five

parenthesizes “(”.

Using the elements of the minimal polynomial basis given above we construct the affine invariants

F1(ã) =A2,

F2(ã) =− 2A2
1A3 + 2A5(5A8 + 3A9) +A3(A8 − 3A10 + 3A11 +A12)−

−A4(10A8 − 3A9 + 5A10 + 5A11 + 5A12),
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F3(ã) =− 10A2
1A3 + 2A5(A8 −A9)−A4(2A8 +A9 +A10 +A11 +A12)+

+A3(5A8 +A10 −A11 + 5A12),

F4(ã) = 20A2
1A2 −A2(7A8 − 4A9 +A10 +A11 + 7A12) +A1(6A14 − 22A15)− 4A33 + 4A34,

F(ã) =A7,

B(ã) =− (3A8 + 2A9 +A10 +A11 +A12),

H(ã) =− (A4 + 2A5),

as well as the GL-comitants

B1(ã) =
{(

T7, D2

)(1)[
12D1T3 + 2D3

1 + 9D1T4 + 36
(
T1, D2

)(1)]

− 2D1

(
T6, D2

)(1)[
D2

1+12T3]+D2
1

[
D1

(
T8, C1

)(2)
+ 6
((
T6, C1

)(1)
,D2

)(1)]}
/144,

B2(ã) =
{(

T7, D2

)(1)[
8T3

(
T6, D2

)(1) −D2
1

(
T8, C1

)(2) − 4D1

((
T6, C1

)(1)
, D2

)(1)]
+

+
[(
T7, D2

)(1)]2
(8T3 − 3T4 + 2D2

1)
}
/384,

B3(ã, x, y) =−D2
1(4D

2
2 + T8 + 4T9) + 3D1D2(T6 + 4T7)− 24T3(D

2
2 − T9),

B4(ã, x, y) = D1(T5 + 2D2C1)− 3C2(D
2
1 + 2T3).

We note that the invariant polynomials Ti, Fi, Bi (i=1,2,3,4), and B, F , H and σ are responsible for weak

singularities of the family of quadratic systems (see [33, Main Theorem]).

Now we need also the invariant polynomials which are responsible for the types of the finite singularities.

These were constructed in [5]. Here we need only the following ones (we keep the notations from [5]):

W3(ã) =
[
9A2

1(36A18 − 19A2
2 + 134A17 + 165A19) + 3A11(42A18 − 102A17 + 195A19)

+ 2A2
2(A10 + 3A11) + 102A3(3A30 − 14A29)− 63A6(17A25 + 30A26) + 3A10(14A18

− 118A17 + 153A19 + 120A21) + 6A7(329A25 − 108A26) + 3A8(164A18 + 153A19 − 442A17)

+ 9A12(2A20 − 160A17 − 2A18 − 59A19) + 3A1(77A2A14 + 235A2A15 − 54A36)

+ 18A21(21A9 − 5A11) + 302A2A34 − 366A2
14 − 12A15(71A14 + 80A15)

]
/9,

W4(ã) =
[
1512A2

1(A30 − 2A29)− 648A15A26 + 72A1A2(49A25 + 39A26)

+ 6A2
2(23A21 − 1093A19)− 87A4

2 + 4A2
2(61A17 + 52A18 + 11A20)

− 6A37(352A3 + 939A4 − 1578A5)− 36A8(396A29 + 265A30)

+ 72A29(17A12 − 38A9 − 109A11) + 12A30(76A9 − 189A10 − 273A11 − 651A12)

− 648A14(23A25 + 5A26)− 24A18(3A20 + 31A17) + 36A19(63A20 + 478A21)

+ 18A21(2A20 + 137A21)− 4A17(158A17 + 30A20 + 87A21)

− 18A19(238A17 + 669A19)
]
/81,

W7(ã) =12A26(A26 − 2A25) + (2A29 −A30)(A
2
2 − 20A17 − 12A18 + 6A19 + 6A21)

+ 48A37(A
2
1 −A8 −A12),
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W8(ã) =64D1

[((
T6, C1

)(1)
, D2

)(1)]2[
16
(
C0, T6

)(1) − 37
(
D2, T1

)(1)
+ 12D1T3

]
+ 4(108D4

1 − 3T 2
4

− 128T3T4 + 42D2
1T4)

[((
T6, C1

)(1)
, D2

)(1)]2
+ 36D1

((
T6, C1

)(1)
, D2

)(1)[
4D1

(
C0, T6

)(1)

−D2
1(4T3 + T4) + +24T 2

3

](
C1, T8

)(2)
+ 64

[((
T6, C1

)(1)
, D2

)(1)]2[
27T 2

3+

+ 16
((
T6, C1

)(1)
, C0

)(1)]− 54
[
8D4

1 +D2
1T4 − 8D1

(
C0, T6

)(1)
+ 8D2

1T3 + 8T 2
3

]

×
((
T6, C1

)(1)
, T6

)(1)(
C1, T8

)(2)
+ 108D1T3

[(
C1, T8

)(2)]2[
D1T3 − 2

(
C0, T6

)(1)]

+ 576
((
T6, C1

)(1)
, D2

)(1)((
T6, C1

)(1)
, T6

)(1)[
2
(
D2, T1

)(1) − 5D1T3

]

− 27
[(
C1, T8

)(2)]2[
T 4
4 /8 +

(
C0, T1

)(1)]
,

W9(ã) =− 3T4(T4 + 4D2
1)− 32D1 (C0, T6)

(1) − 32
(
(T6, C1)

(1)
, C0

)(1)
,

W11(ã, x, y) =2K̃(C2, D̃)(2) + 12F̃ (2H̃ + K̃)−D2(D̃, K̃)(1),

F4(ã, x, y) = µ3(ã, x, y),

F5(ã, x, y) = T5 + 2C1D2 − 3C2D1,

G3(ã) = A2.

Finally we need the invariant polynomials which are responsible for the existence of one (or two) star node(s)

arbitrarily located on the phase plane of a system (2). We have the following lemma (see [36]).

Lemma 5. A quadratic system (2) possesses one star node if and only if one of the following set of conditions

holds:

(i) U1 6= 0, U2 6= 0, U3 = Y1 = 0;

(ii) U1 = U4 = U5 = U6 = 0, Y2 6= 0;

and it possesses two star nodes if and only if

(iii) U1 = U4 = U5 = 0, U6 6= 0, Y2 > 0,

where

U1(ã, x, y) = Ñ , U2(ã, x, y) = (C1, H̃ − K̃)(1) − 2D1Ñ,

U3(ã, x, y) = 3D̃(D2
2 − 16K̃) + C2

[
(C2, D̃)(2) − 5(D2, D̃)(1) + 6 F̃

]
,

U4(ã, x, y) = 2T5 + C1D2, U5(ã, x, y) = 3C1D1 + 4T2 − 2C0D1,

U6(ã, x, y) = H̃, Y1(ã) = A1, Y2(ã, x, y) = 2D2
1 + 8T3 − T4.

We base our work here on results obtained in [3] and [5].

6. The proof of the Main Theorem

According to [33] for the quadratic systems having the finite singularities of total multiplicity 2 the conditions

µ0 = µ1 = 0 and µ2 6= 0 must be satisfied. So by [3] the following lemma is valid.

Lemma 6. The configurations of singularities at infinity of the family of quadratic systems possessing finite

singularities (real or complex) of total multiplicity 2 (i.e. µ0 = µ1 = 0 and µ2 6= 0) are classified in Diagram 4

according to the geometric equivalence relation. Necessary and sufficient conditions for each one of the 22

different equivalence classes can be assembled from these diagrams in terms of 14 invariant polynomials with

respect to the action of the affine group and time rescaling, given in Section 5.
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Diagram 4. The case µ0 = µ1 = 0, µ2 6= 0.

6.1. The family of quadratic differential systems with only two distinct complex finite singular-

ities. Assuming that quadratic systems (2) possess two finite complex singular points, according to [33] (see

Table 2) we have to consider two cases: K̃ 6= 0 and K̃ = 0.

6.1.1. Systems with K̃ 6= 0. In this case according to [33] we shall consider the following family of systems

(10) ẋ = a+ hux+ 2hxy + ay2, ẏ = b+mux+ 2mxy + by2,
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Diagram 4 (continued). The case µ0 = µ1 = 0, µ2 6= 0.

possessing the singular points M1,2(0,±i). For these systems calculations yield

(11)
µ0 = µ1 = 0, µ2 = (bh− am)2(4 + u2)y2, K̃ = 4(bh− am)y2, κ = −128m2(bh− am),

η = 4m2
[
(b+ 2h)2 − 8(bh− am)

]
, M̃ = −32m2x2 − 16(b− 2h)mxy − 8

[
(b− 2h)2 + 6am

]
y2.

Remark 2. We observe that µ2 > 0 and if κ 6= 0 then M̃ 6= 0. Moreover the condition κ > 0 implies η > 0.

Remark 3. The family of systems (10) depends on five parameters. However due to a rescaling we can reduce

the number of the parameters to three. More precisely since by the condition K̃ 6= 0 (i.e. bh − am 6= 0) we

have m2 + h2 6= 0, then we may assume (m,h) ∈ {(1, 1), (1, 0), (0, 1)} due to the rescaling: (i) (x, y, t) 7→
(hx/m, y, t/h) if mh 6= 0; (ii) (x, y, t) 7→ (x/m, y, t) if h = 0, and (iii) (x, y, t) 7→ (x, y, t/h) if m = 0.

Considering (11) and K̃ 6= 0 we deduce that the condition m 6= 0 is equivalent to κ 6= 0.

6.1.1.1. The case κ 6= 0. Then considering Remark 3 we shall examine the subfamilies of systems (10) with

(m,h) = (1, 1) and (m,h) = (1, 0).

A. Systems with m = h = 1. We consider the 3-parameter family of systems

(12) ẋ = a+ ux+ 2xy + ay2, ẏ = b+ ux+ 2xy + by2,
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for which calculations yield

(13)
µ0 = µ1 = 0, µ2 = (a− b)2(4 + u2)y2, K̃ = 4(b− a)y2,

κ = 128(a− b), η = 4
[
(b− 2)2 + 8a

]
, θ = 64(b− a).

6.1.1.1.1. The subcase κ < 0. Since µ2 > 0 and M̃ 6= 0 (see Remark 2) according to Lemma 6 we get the

following three global configurations of singularities:

c©, c©;
(
2
1

)
N, c©, c© : Example ⇒ (a = −1, b = 0, u = 0) (if η < 0);

c©, c©;
(
2
1

)
N,S,N∞ : Example ⇒ (a = 0, b = 1, u = 0) (if η > 0);

c©, c©;
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (a = 0, b = 2, u = 0) (if η = 0).

6.1.1.1.2. The subcase κ > 0. By Remark 2 we have η > 0 and considering Lemma 6 we arrive at the global

configuration of singularities

c©, c©;
(
2
1

)
S,Nf , Nf : Example ⇒ (a = 1, b = 0, u = 0).

B. Systems with m = 1, h = 0. We consider the 3-parameter family of systems

(14) ẋ = a+ ay2, ẏ = b+ ux+ 2xy + by2,

where we may assume b ∈ {0, 1} due to the rescaling (x, y, t) 7→ (bx, y, t/b) (if b 6= 0). For these systems

calculations yield

(15) µ0 = µ1 = 0, µ2 = a2(4 + u2)y2, K̃ = −4ay2, κ = 128a, η = 4(8a+ b2).

Considering Remark 2 we conclude that the above systems could not possess new configurations different from

the configurations of systems (12).

6.1.1.2. The case κ = 0. Considering (11), due to K̃ 6= 0 we obtain m = 0 and then by Remark 3 we may

assume h = 1. Thus we arrive at the following systems

(16) ẋ = a+ ux+ 2xy + ay2, ẏ = b+ by2,

where due to the rescaling (x, y, t) 7→ (ax, y, t) (if a 6= 0) we can assume a ∈ {0, 1}.
For these systems we calculate

(17)

µ0 = µ1 = κ = κ1 = 0, µ2 = b2(4 + u2)y2, K̃ = 4by2,

L̃ = 8b(b− 2)y2, K2 = −384b2(4− 3b+ b2)y2,

η = 0, M̃ = −8(b− 2)2y2, C2 = (2 − b)xy2 + ay3.

6.1.1.2.1. The subcase K̃ < 0. Then b < 0 and this implies M̃ 6= 0. We observe that K2 < 0, µ2 > 0 and

considering Lemma 6 we obtain the configuration

c©, c©;
(
2
2

)
H−H, Nf : Example ⇒ (a = 0, b = −2, u = 0).

6.1.1.2.2. The subcase K̃ > 0. We consider two possibilities: L̃ 6= 0 and L̃ = 0.

1) The possibility L̃ 6= 0. In this case M̃ 6= 0 and taking into account the conditions K2 < 0 and µ2 > 0 by

Lemma 6 we arrive at the following two global configurations of singularities

c©, c©;
(
2
2

)
E− E, S : Example ⇒ (a = 0, b = 1, u = 0) (if L̃ < 0);

c©, c©;
(
2
2

)
H−H, N∞ : Example ⇒ (a = 0, b = 3, u = 0) (if L̃ > 0).

2) The possibility L̃ = 0. Since b 6= 0 (due to µ2 6= 0) we have b = 2 and then M̃ = 0 and C2 = ay3. So

considering Lemma 6 we obtain the following two configurations

c©, c©;
(
2
3

) y
P −

x
P : Example ⇒ (a = 1, b = 2, u = 0) (if C2 6= 0);

c©, c©; [∞; C] : Example ⇒ (a = 0, b = 2, u = 0) (if C2 = 0).
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6.1.2. Systems with K̃ = 0. In this case according to [33] we consider the following family of systems

(18) ẋ = a+ cx+ gx2 + 2hxy + ay2, ẏ = x, (a 6= 0)

for which we calculate

(19)

µ0 = µ1 = κ = 0, µ2 = a(gx2 + 2hxy + ay2)x2, K̃ = 0,

L̃ = 8g(gx2 + 2hxy + ay2), η = 4g2(h2 − ag),

θ2 = h2 − ag, M̃ = −8g2x2 − 16ghxy + 8(3ag − 4h2)y2.

As µ2 6= 0 we have sign (µ2L̃) = sign (ag).

6.1.2.1. The case η < 0. Then θ2 6= 0 and considering Lemma 6 we arrive at the configuration

c©, c©; Nd,
(
1
1

)
c©,
(
1
1

)
c© : Example ⇒ (a = 2, c = 0, g = 1, h = 1).

6.1.2.2. The case η > 0. As θ2 6= 0 considering Lemma 6 we obtain the following two global configurations of

singularities

c©, c©;
(
1
1

)
SN,

(
1
1

)
SN, Nd : Example ⇒ (a = 1, c = 0, g = −1, h = 1) (if µ2L̃ < 0);

c©, c©;
(
1
1

)
SN,

(
1
1

)
NS, Nd : Example ⇒ (a = 1, c = 0, g = 1/2, h = 1) (if µ2L̃ > 0).

6.1.2.3. The case η = 0.

6.1.2.3.1. The subcase L̃ 6= 0. Then g 6= 0 and we obtain h2 − ag = 0 and as a 6= 0 we get g = h2/a.

Calculations yield

L̃ = 8h2(hx+ ay)2/a2, M̃ = −8h2(hx+ ay)2/a2,

κ1 = 32h2(a+ ch)/a, θ5 = −96h(a+ ch)(hx+ ay)3/a2.

As we observe the condition L̃ 6= 0 implies M̃ 6= 0, i.e. at infinity we have two distinct singularities.

1) The possibility κ1 6= 0. Then θ5 6= 0 and considering Lemma 6 we obtain the configuration

c©, c©;
(̂
2
2

) y
Pf

x
P Hf−H, Nd : Example ⇒ (a = 1, c = 0, g = 1, h = 1).

2) The possibility κ1 = 0. As L̃ 6= 0 we get a = −ch 6= 0 and then we have

K2 = −384h4(x− cy)2/c2, θ6 = 8h2(x − cy)4/c2, µ2 = h2x2(x − cy)2 6= 0.

So we obtain K2 < 0, θ6 6= 0 and considering Lemma 6 we obtain the configuration of singularities

c©, c©;
(
2
2

)
H−H, Nd : Example ⇒ (a = −1, c = 1, g = −1, h = 1).

6.1.2.3.2. The subcase L̃ = 0. In this case considering (19) we get g = 0 and then we calculate

η = L̃ = 0, M̃ = −32h2y2, C2 = y2(2hx+ ay), κ1 = 128h2, µ2 = ay(2hx+ ay) 6= 0.

We observe that the condition µ2 6= 0 implies C2 6= 0. Therefore since L̃ = 0 according to Lemma 6 we obtain

the following two configurations

c©, c©;
(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN : Example ⇒ (a = 1, c = 0, g = 0, h = 1) (if M̃ 6= 0);

c©, c©;
(̂
2
3

) y
Pf

x
P −

y
Pf

x
P : Example ⇒ (a = 1, c = 0, g = 0, h = 0) (if M̃ = 0).

As all possible cases are examined, we have proved that the family of systems with two complex distinct

finite singularities possesses exactly 16 geometrically distinct global configurations of singularities.

6.2. The family of quadratic differential systems with two real distinct finite singularities which

in additional are elemental. Assume that quadratic systems (2) possess two real finite singular points and

both are elemental, i.e. by [33] the conditions µ0 = µ1 = 0, µ2 6= 0 and U > 0 hold. According to [33] (see

Table 2) we have to consider two cases: K̃ 6= 0 and K̃ = 0.
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6.2.1. Systems with K̃ 6= 0. In this case according to [33] we consider the family of systems

(20) ẋ = cx+ dy − cx2 + 2duxy, ẏ = ex+ fy − ex2 + 2fuxy,

which possess the singular points M1(0, 0) and M2(1, 0).

Remark 4. Assume that we have a family of quadratic systems possessing a real elemental singular point

for all values of the parameters. Then by a translation of axes we may suppose this point to be placed at the

origin. In case we have one other real elemental singularity (or even two such singularities), then we can

always use an affine transformation to place the second singularity or even two such singularities) in specific

positions (for example at (1, 0) and in case a second such singular point exists to place it at (0, 1) ). We arrive

thus at a certain normal form for the family, dictated by the position of these singularities. Suppose that in

the course of the study of this family, under certain conditions on parameters expressed in invariant form

i.e. in terms of invariant polynomials, we find that an elemental real singularity of the systems has a certain

geometric property, for example it is a node. Then we may always suppose this singularity to be placed at the

origin. This is clear if we have just one real elemental singularity. If we have other real elemental singular

points then by the argument above we can exchange its position with one of the other elemental singular points

via an affine transformation without changing the aspect of the normal form.

For systems (20) calculations yield

(21) µ0 = µ1 = 0, µ2 = (cf − de)2(1 + 2u)x2, K̃ = 4(de− cf)ux2, κ = 128d2(cf − de)u3.

We remark that for the above systems the condition µ̃2K 6= 0 hold. So in what follows we assume that the

following condition is satisfied

(22) (cf − de)(1 + 2u)u 6= 0.

Remark 5. We observe that the family of systems (20) depends on five parameters. However due to a rescaling

we can reduce the number of the parameters to three. More precisely since according to condition (22) we have

d2+f2 6= 0, then we may assume (d, f) ∈ {(1, 1), (1, 0), (0, 1)} due to the rescaling: (i) (x, y, t) 7→ (x, fy/d, t/f)

if df 6= 0; (ii) (x, y, t) 7→ (x, y/d, t) if f = 0, and (iii) (x, y, t) 7→ (x, y, t/f) if d = 0.

Considering (21) and (22) the condition d 6= 0 is equivalent to κ 6= 0.

6.2.1.1. The case κ 6= 0. Then considering Remark 5 we examine the subfamilies of systems (20) with

(d, f) = (1, 1) and (d, f) = (1, 0).

A. Systems with d = f = 1. We consider the 3-parameter family of systems:

(23)
ẋ = cx+ y − cx2 + 2uxy, (c− e)(1 + 2u)u 6= 0,

ẏ = ex+ y − ex2 + 2uxy,

for which calculations yield

(24)

µ0 = µ1 = 0, µ2 = (c− e)2(1 + 2u)x2, K̃ = 4(e− c)ux2, κ = 128(c− e)u3,

η = 4u2
[
(c− 2u)2 + 8(c− e)u

]
, F2 = (c− e)2(1 + 2u)x2, G8 = 2(c− e)2u2(1 + 2u),

W4 = 16(c− e)4u4(1 + 2u)2
[
(c− 1)2 + 4e

][
(1 − c+ 2u)2 + 4(c− e)(1 + 2u)

]
,

W3 = 32(c− e)4u4(1 + 2u)2(1 + c2 + 2u+ 2cu− 4eu+ 2u2),

M̃ = −8
[
(c+ 2u)2 − 6eu

]
)x2 + 16u(c+ 2u)xy − 32u2y2,

T4 = 4(1 + c)(c− e)2(1− c+ 2u)u2(1 + 2u).

Remark 6. We observe that the condition µ2κ 6= 0 gives M̃F2G8 6= 0 and the condition κ > 0 implies η > 0.

Moreover we have

sign (K̃) = −sign (κ), sign (G8) = sign (µ2) = sign (F2).
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6.2.1.1.1. The subcase κ < 0. Then by Remark 6 we obtain K̃ > 0.

1) The possibility µ2 < 0. Then 1+ 2u < 0, i.e. u < −1/2 and considering (24) we obtain G8 < 0. So since

K̃ > 0, according to [5] (see Table 1, lines 165-170) both finite singularities are anti-saddles.

a) Assume first W4 < 0. Then we have a node and a focus and whether the focus is a weak one or not

depends on the invariant polynomial T4. On the other hand due to W4 6= 0 we have a generic node.

a.1) The case T4 6= 0. Then by [33] the focus is strong.

α) The subcase η < 0. Then at infinity we have one real and two complex singularities and as µ2 < 0 and

κ 6= 0 considering Lemma 6 we get the global configuration of singularities

n, f ;
(
2
1

)
S, c©, c© : Example ⇒ (c = 5, e = −1, u = −2).

β) The subcase η > 0. In this case at infinity we have three real singularities. As κ < 0 and µ2 < 0, by

Lemma 6 we get the configuration

n, f ;
(
2
1

)
S, S,N∞: Example ⇒ (c = 1/2, e = −1/5, u = −2).

γ) The subcase η = 0. In this case considering Remark 6 we have M̃ 6= 0. As κ 6= 0 and µ2 < 0, considering

Lemma 6 we get the global configuration of singularities

n, f ;
(
0
2

)
SN,

(
2
1

)
S: Example ⇒ (c = 3, e = −1/16, u = −2).

a.2) The case T4 = 0. Then by [33] the focus is weak. Considering (24) and the condition (22), the

condition T4 = 0 gives (c+1)(2u+1− c) = ρ1ρ2 = 0. By Remark 4 we may assume without loss of generality

that ρ1 = 0, i.e. c = −1. Then for systems (23) we calculate:

(25)

T3 = 8(1 + e)2u2(1 + u)(1 + 2u), F1 = 2(1 + e)(u− 1)(1 + 2u),

µ2 = (1 + e)2(1 + 2u)x2, κ = −128(1 + e)u3,

W4 = −256(1 + e)5u4(1 + 2u)2(e+ 2eu− u2).

We observe that the condition µ2 < 0 implies F1 6= 0. Moreover as W4 < 0 we have T3 6= 0, otherwise we

get u = −1 and this gives W4 = 256(1 + e)6 ≥ 0. Therefore by [33] the weak focus has order one. Therefore

according to Lemma 6 we get the following three global configurations of singularities:

n, f (1);
(
2
1

)
S, c©, c© : Example ⇒ (c = −1, e = −3/2, u = −6/10) (if η < 0);

n, f (1);
(
2
1

)
S, S,N∞: Example ⇒ (c = −1, e = −51/50, u = −7/10) (if η > 0);

n, f (1);
(
0
2

)
SN,

(
2
1

)
S: Example ⇒ (c = −1, e = −36/35, u = −7/10) (if η = 0).

b) Suppose now W4 > 0. In this case as K̃ > 0 and G8 < 0, according to [5] systems (23) possess two nodes

if W3 > 0 and two foci or/and centers if W3 < 0.

b.1) The case W3 < 0.

α) The subcase T4 6= 0. Then by [33] both foci are strong. Thus considering the conditions µ0 = µ1 = 0,

µ2 < 0, κ 6= 0 and Lemma 6 we arrive at the following three global configurations of singularities:

f, f ;
(
2
1

)
S, c©, c© : Example ⇒ (c = 1, e = −1, u = −2) (if η < 0);

f, f ;
(
2
1

)
S, S,N∞: Example ⇒ (c = 1, e = −1/2, u = −2) (if η > 0);

f, f ;
(
0
2

)
SN,

(
2
1

)
S: Example ⇒ (c = 1, e = −9/16, u = −2) (if η = 0).

β) The subcase T4 = 0. As it was mention earlier we may assume c = −1. Then at least one focus is a

weak one.

β.1) The possibility T3 6= 0. In this case only one focus is weak. Moreover considering (25) we observe that

the condition µ2 < 0 implies F1 6= 0 and the weak focus could only be of the first order. So in view of the

arguments above and Lemma 6 we get three global configurations of singularities:



ALGORITHM FOR DETERMINING THE GEOMETRIC CONFIGURATIONS FOR QUADRATIC SYSTEMS 39

f, f (1);
(
2
1

)
S, c©, c© : Example ⇒ (c = −1, e = −2, u = −3/2) (if η < 0);

f, f (1);
(
2
1

)
S, S,N∞: Example ⇒ (c = −1, e = −5/4, u = −3/2) (if η > 0);

f, f (1);
(
0
2

)
SN,

(
2
1

)
S: Example ⇒ (c = −1, e = −4/3, u = −3/2) (if η = 0).

β.2) The possibility T3 = 0. Considering (25) we get u = −1 and then we calculate:

T4 = T3 = F = 0, T2 = −4(1 + e)2, F1 = 4(1 + e),

µ2 = −(1 + e)2x2, κ = 128(1 + e), η = 4(9 + 8e).

So the condition µ2 6= 0 gives F1 6= 0 and according to [33] we have two first order weak singularities, which

in this case are foci.

Thus considering Lemma 6 we obtain the following three global configurations of singularities

f (1), f (1);
(
2
1

)
S, c©, c© : Example ⇒ (c = −1, e = −2, u = −1) (if η < 0);

f (1), f (1);
(
2
1

)
S, S,N∞: Example ⇒ (c = −1, e = −17/16, u = −1) (if η > 0);

f (1), f (1);
(
0
2

)
SN,

(
2
1

)
S: Example ⇒ (c = −1, e = −9/8, u = −1) (if η = 0).

b.2) The case W3 > 0. According to [5] (see Table 1, line 165) we have two nodes and both are generic (due

to W4 6= 0). According to Lemma 6 we arrive at the following three global configurations of singularities:

n, n;
(
2
1

)
S, c©, c© : Example ⇒ (c = 6, e = −1/3, u = −2) (if η < 0);

n, n;
(
2
1

)
S, S,N∞: Example ⇒ (c = 6, e = −1/5, u = −2) (if η > 0);

n, n;
(
0
2

)
SN,

(
2
1

)
S: Example ⇒ (c = 6, e = −1/4, u = −2) (if η = 0).

c) Admit finally W4 = 0. Then we have a node with coinciding eigenvalues and by Remark 4 without

loss of generality we may assume that M1(0, 0) is such a point. So δ1 = (c − 1)2 + 4e = 0 and we obtain

e = −(c− 1)2/4 and in this case calculations yield:

(26)

µ2 = (1 + c)4(1 + 2u)x2/16, κ = 32(1 + c)2u3, η = 4u2(1 + 2u)(c2 + 2u),

W4 = 0, W3 = (1 + c)8u4(1 + u)(1 + 2u)2(1 + c2 + 2u)/8,

T4 = −(1 + c)5(c− 1− 2u)u2(1 + 2u)/4.

c.1) The case W3 < 0. According to [5] (see Table 1, line 168) we have one focus and one node which is nd

(as the Jacobian matrix is not diagonal).

α) The subcase T4 6= 0. Then the focus is strong and we get the following three global configurations of

singularities

nd, f ;
(
2
1

)
S, c©, c© : Example ⇒ (c = 2, e = −1/4, u = −3/2) (if η < 0);

nd, f ;
(
2
1

)
S, S,N∞: Example ⇒ (c = 2, e = −1/4, u = −9/4) (if η > 0);

nd, f ;
(
0
2

)
SN,

(
2
1

)
S: Example ⇒ (c = 2, e = −1/4, u = −2) (if η = 0).

β) The subcase T4 = 0. Considering (26) and the condition µ2κ 6= 0 we obtain (c − 1 − 2u) = 0, i.e.

c = 2u+ 1. Then we calculate

(27)

T3 = 8u2(1 + u)5(1 + 2u), F1 = −2(1 + u)2(1 + 2u)(1 + 3u),

η = 4u2(1 + 2u)(1 + 6u+ 4u2), µ2 = (1 + u)4(1 + 2u)x2,

κ = 128u3(1 + u)2, W4 = 0, W3 = 64u4(1 + u)10(1 + 2u)3.

So the conditions W3 6= 0 and µ2 < 0 implies T3F1 6= 0 and according to [33] the focus M2(1, 0) is a weak

focus of the first order. Therefore considering Lemma 6 we arrive at the following three global configurations

of singularities

nd, f (1);
(
2
1

)
S, c©, c© : Example ⇒ (c = −2, e = −9/4, u = −3/2) (if η < 0);
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nd, f (1);
(
2
1

)
S, S,N∞: Example ⇒ (c = −7/5, e = −36/25, u = −6/5) (if η > 0);

nd, f (1);
(
0
2

)
SN,

(
2
1

)
S: Example ⇒ (c = 2u+ 1, e = −(c− 1)2/4, u = −(3 +

√
5)/4) (if η = 0).

c.2) The case W3 > 0. According to [5] (see Table 1, line 166) we have two nodes (one of them being nd).

Therefore considering Lemma 6 we get the following three global configurations of singularities:

n, nd;
(
2
1

)
S, c©, c© : Example ⇒ (c = 4/3, e = −1/36, u = −8/10) (if η < 0);

n, nd;
(
2
1

)
S, S,N∞: Example ⇒ (c = 4/3, e = −1/36, u = −17/18) (if η > 0);

n, nd;
(
0
2

)
SN,

(
2
1

)
S: Example ⇒ (c = 4/3, e = −1/36, u = −8/9) (if η = 0).

c.3) The case W3 = 0. Considering (26) and the condition µ2 < 0 we obtain (1 + u)(1 + c2 + 2u) = 0 and

in this case we have two nodes nd (as no one of the Jacobian matrices is diagonal).

α) The subcase u = −1. We have

η = 4(2− c2), µ2 = −(1 + c)4x2/16 < 0, κ = −32(1 + c)2 < 0.

So considering Lemma 6 we obtain the following three global configurations of singularities:

nd, nd;
(
2
1

)
S, c©, c© : Example ⇒ (c = 2, e = −1/4, u = −1) (if η < 0);

nd, nd;
(
2
1

)
S, S,N∞: Example ⇒ (c = 1/2, e = −1/16, u = −1) (if η > 0);

nd, nd;
(
0
2

)
SN,

(
2
1

)
S: Example ⇒ (c =

√
2, e = −(c− 1)2/4, u = −1) (if η = 0).

β) The subcase u = −(c2 + 1)/2. We calculate

η = c2(1 + c2)2, µ2 = −c2(1 + c)4x2/16 < 0, κ = −4(1 + c)2(1 + c2)3 < 0

and in this case we could only have η > 0 and such a configuration was detected above.

2) The possibility µ2 > 0. Then by (24) we have 1+2u > 0 and this implies G8 > 0. Since K̃ > 0 according

to [5] systems (23) possess a saddle and a focus (or a center) if W4 < 0 and a saddle and a node if W4 ≥ 0.

a) Assume first W4 < 0, i.e. we have a saddle and a focus.

a.1) The subcase T4 6= 0. Then by [33] we could not have weak singularities. So considering Remark 6 and

Lemma 6 we get the following three global configurations of singularities

s, f ;
(
2
1

)
N, c©, c© : Example ⇒ (c = −8, e = 2, u = 2) (if η < 0);

s, f ;
(
2
1

)
N,S,N∞: Example ⇒ (c = −8, e = 1/2, u = 2) (if η > 0);

s, f ;
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (c = −8, e = 1, u = 2) (if η = 0).

a.2) The subcase T4 = 0. As it was shown earlier we can assume c = −1 and we calculate

T3F = 8(1 + e)3u4(1 + u)2(1 + 2u)2.

Therefore considering (25) we conclude that the condition κ < 0 and µ2 > 0 imply T3F 6= 0. Moreover, as

(1 + e)u > 0 (due to κ < 0) from (25) we have

(28) sign (T3F) = sign (u), sign (W4) = sign (u(e+ 2eu− u2)).

α) The possibility T3F < 0. Then u < 0 and according to [33] systems (23) with c = −1 possess a weak

focus. As −1/2 < u < 0 then F1 6= 0 and we have a weak first order focus. So considering Lemma 6 we get

the following three global configurations of singularities

s, f (1);
(
2
1

)
N, c©, c© : Example ⇒ (c = −1, e = −2, u = −1/4) (if η < 0);

s, f (1);
(
2
1

)
N,S,N∞: Example ⇒ (c = −1, e = −17/16, u = −1/4) (if η > 0);

s, f (1);
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (c = −1, e = −9/8, u = −1/4) (if η = 0).
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β) The possibility T3F > 0. In this case u > 0 and according to [33] systems (23) with c = −1 possess a

weak saddle.

β.1) Assume first F1 6= 0. The weak saddle has order one and considering Lemma 6 we obtain the following

three global configurations of singularities:

s(1), f ;
(
2
1

)
N, c©, c© : Example ⇒ (c = −1, e = 1, u = 1/5) (if η < 0);

s(1), f ;
(
2
1

)
N,S,N∞: Example ⇒ (c = −1, e = 1/5, u = 1/5) (if η > 0);

s(1), f ;
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (c = −1, e = 9/40, u = 1/5) (if η = 0).

β.2) Suppose now that F1 = 0. Then u = 1 and we calculate

(29)
T3F = 288(1 + e)3, F1 = 0, F2 = −432(1 + e)2,

κ = −128(1 + e), η = 4(1− 8e), W4 = 2304(1 + e)5(1− 3e),

and as κ < 0 we get e+1 > 0 and hence F2 6= 0 . Therefore as T3F > 0 and F1 = 0 by [33] we obtain a weak

saddle of order two.

On the other hand the condition W4 < 0 due to e+ 1 > 0 gives e > 1/3 and this implies η < 0.

Thus considering Lemma 6 we obtain the configuration

s(2), f ;
(
2
1

)
N, c©, c© : Example ⇒ (c = −1, e = 1, u = 1).

b) Suppose now that W4 > 0, i.e. by [5] we have a saddle and a node.

b.1) The subcase T4 6= 0. Then by [33] we could not have weak singularities, i.e. the saddle is strong.

So considering Lemma 6 we obtain the following three global configurations of singularities:

s, n;
(
2
1

)
N, c©, c© : Example ⇒ (c = −2, e = 2/5, u = 2) (if η < 0);

s, n;
(
2
1

)
N,S,N∞: Example ⇒ (c = −2, e = 1/5, u = 2) (if η > 0);

s, n;
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (c = −2, e = 1/4, u = 2) (if η = 0).

b.2) The subcase T4 = 0. As it was shown earlier we can assume c = −1 and considering (25) we conclude

that the conditions κ < 0 and µ2 > 0 imply T3 6= 0.

α) Assume first F1 6= 0. Then the weak saddle has order one and considering Lemma 6 we obtain the

following three global configurations of singularities:

s(1), n;
(
2
1

)
N, c©, c© : Example ⇒ (c = −1, e = 5/8, u = 2) (if η < 0);

s(1), n;
(
2
1

)
N,S,N∞: Example ⇒ (c = −1, e = 1/2, u = 2) (if η > 0);

s(1), n;
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (c = −1, e = 9/16, u = 2) (if η = 0).

β) Suppose now F1 = 0. In this case we get u = 1 and considering (29) we deduce that the condition κ < 0

implies F2 6= 0. Therefore according to [33] we have a second order weak saddle and we arrive at the following

three global configurations of singularities:

s(2), n;
(
2
1

)
N, c©, c© : Example ⇒ (c = −1, e = 1/4, u = 1) (if η < 0);

s(2), n;
(
2
1

)
N,S,N∞: Example ⇒ (c = −1, e = 1/9, u = 1) (if η > 0);

s(2), n;
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (c = −1, e = 1/8, u = 1) (if η = 0).

c) Admit finally W4 = 0. As it was mentioned above in this case we may assume e = −(c− 1)2/4. On the

other hand as G8 > 0 and K̃ > 0, according to [5] systems (23) possess a saddle and a node, which is nd (due

to W4 = 0 and the fact that the jacobian is not diagonal). According to (26) the conditions κ < 0 and µ2 > 0

yield −1/2 < u < 0.

c.1) The subcase T4 6= 0. Then by [33] we could not have weak singularities, i.e. the saddle is strong.

So considering Lemma 6 we obtain the following three global configurations of singularities:
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s, nd;
(
2
1

)
N, c©, c© : Example ⇒ (c = 1/2, e = −1/16, u = −1/5) (if η < 0);

s, nd;
(
2
1

)
N,S,N∞: Example ⇒ (c = 1/2, e = −1/16, u = −1/9) (if η > 0);

s, nd;
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (c = 1/2, e = −1/16, u = −1/8) (if η = 0).

c.2) The subcase T4 = 0. Considering (26) and the condition µ2κ 6= 0 we obtain c − 1 − 2u = 0, i.e.

c = 2u+ 1. Then we obtain (27) and we can observe that T3 6= 0 (due to µ2κ 6= 0).

α) The possibility F1 6= 0. Then by [33] the weak saddle has order one and considering Lemma 6 we obtain

the following three global configurations of singularities:

s(1), nd;
(
2
1

)
N, c©, c© : Example ⇒ (c = 1/2, e = −1/16, u = −1/4) (if η < 0);

s(1), nd;
(
2
1

)
N,S,N∞: Example ⇒ (c = 2/3, e = −1/36, u = −1/6) (if η > 0);

s(1), nd;
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (c = 2u+ 1, e = −(c− 1)2/4, u = (

√
5− 3)/4) (if η = 0).

β) The possibility F1 = 0. Considering (27) we obtain u = −1/3 and then we have

T4 = F1 = 0, T3 = 256/6561, F2 = −256/19683, η = −20/243.

Hence by [33] the saddle is of the second order. As η < 0 considering Lemma 6 we obtain the configuration

s(2), nd;
(
2
1

)
N, c©, c© : Example ⇒ (c = 1/3, e = −1/9, u = −1/3).

6.2.1.1.2. The subcase κ > 0. According to (24) and Remark 6 the condition κ > 0 implies η > 0 and

K̃ < 0, and we consider two possibilities: µ2 < 0 and µ2 > 0.

1) The possibility µ2 < 0. Then u < −1/2 and considering (24) we obtain F2 < 0 and G8 < 0. As K̃ < 0

according to [5] (see Table 1, line 148) both finite singularities are saddles.

On the other hand according to Lemma 6 due to η > 0, κ > 0 and µ2 < 0 at infinity we have the

configuration
(
2
1

)
N,Nf , Nf .

a) Assume first T4 6= 0, i.e. both saddles are strong and this leads to the global configuration of singularities

s, s;
(
2
1

)
N,Nf , Nf : Example ⇒ (c = −2, e = 0, u = −2).

b) Suppose now T4 = 0. As it was shown earlier we can assume c = −1 and we consider (25).

b.1) The case T3 6= 0. In this situation only one saddle is weak and as F1 6= 0 (due to µ2 < 0), according

to [33] the order of the weak saddle is one and we get the configuration

s, s(1);
(
2
1

)
N,Nf , Nf : Example ⇒ (c = −1, e = 1, u = −2).

b.2) The case T3 = 0. Then u = −1 and we have

T4 = T3 = F = 0, T2 = −4(1 + e)2, F1 = 4(1 + e), µ2 = −(1 + e)2x2 6= 0.

Hence T2 < 0 and as F1 6= 0 according to [33] we have two weak saddles each one of the first order

s(1), s(1);
(
2
1

)
N,Nf , Nf : Example ⇒ (c = −1, e = 1, u = −1).

2) The possibility µ2 > 0. In this case we have u > −1/2 and considering (24) we obtain F2 > 0 and

G8 > 0. As K̃ < 0 according to [5] (see Table 1, lines 149,156,161) we have a saddle and an anti-saddle. The

type of the anti-saddle is governed by invariant polynomial W4.

On the other hand due to the condition η > 0, κ > 0 , µ2 > 0 and considering Remark 6, according to

Lemma 6 at infinity we have the configuration
(
2
1

)
S,Nf , Nf .

a) Assume first W4 < 0, i.e. we have a saddle and a focus or a center.

a.1) The case T4 6= 0. Then by [33] we could not have weak singularities i.e. the saddle and the focus are

both strong ones. Thus we get the global configuration of singularities

s, f ;
(
2
1

)
S,Nf , Nf : Example ⇒ (c = 1, e = −1, u = 2).
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a.2) The subcase T4 = 0. As it was shown earlier we can assume c = −1 and considering (25) we conclude

that the condition κ > 0 and µ2 > 0 imply T3 6= 0. Moreover as (1 + e)u < 0 (due to κ > 0) we have

sign (T3F) = −sign (u).

α) The possibility T3F < 0. Then u > 0 and in this case according to [33] systems (23) with c = −1 possess

a weak focus.

α.1) Assume first F1 6= 0. In this case by [33] the weak saddle is of order one and this leads to the

configuration s, f (1);
(
2
1

)
S,Nf , Nf : Example ⇒ (c = −1, e = −2, u = 2).

α.2) Admit now that F1 = 0. Then u = 1, e < −1 and this implies F2 = −432(1 + e)2 6= 0. So by [33] we

could have a weak focus of the order at most two and this leads to the configuration

s, f (2);
(
2
1

)
S,Nf , Nf : Example ⇒ (c = −1, e = −2, u = 1).

β) The possibility T3F > 0. Then u < 0 and in this case according to [33] systems (23) with c = −1 possess

a weak saddle. As −1/2 < u < 0 then F1 6= 0 and we have a weak saddle of order one. Thus we get the

configuration s(1), f ;
(
2
1

)
S,Nf , Nf : Example ⇒ (c = −1, e = 1/2, u = −1/4).

b) Suppose now W4 > 0. By [5] besides the saddle we have a node (which is generic due to W4 6= 0).

b.1) The subcase T4 6= 0. Then by [33] we could not have weak singularities and this leads to the configuration

of singularities s, n;
(
2
1

)
S,Nf , Nf : Example ⇒ (c = 2, e = 1, u = 2).

b.2) The subcase T4 = 0. As it was shown earlier we can assume c = −1 and considering (25) we conclude

that the condition κ > 0 and µ2 > 0 imply T3 6= 0. Moreover we claim that in this case the condition F1 6= 0

holds. Indeed assuming F1 = 0 by (25) we obtain u = 1 and then the conditions

κ = −128(1 + e) > 0, W4 = 2304(1 + e)5(1− 3e) > 0

are incompatible. Thus F1 6= 0 and we have a weak saddle of order one, i.e. we get the configuration

s(1), n;
(
2
1

)
S,Nf , Nf : Example ⇒ (c = −1, e = −1/2, u = −1/3).

c) Admit finally that W4 = 0. As it was mentioned above in this case we may assume e = −(c− 1)2/4 (i.e.

τ1 = 0). On the other hand as G8 > 0, F2 > 0 and K̃ < 0 according to [5] (see Table 1, line 151) systems (23)

possess a saddle and a node, which is nd (due to W4 = 0 and the non-diagonal corresponding matrix of the

linearization). According to (26) the condition κ > 0 yields u > 0.

c.1) The subcase T4 6= 0. Then by [33] we could not have weak singularities, i.e. the saddle is strong. So

we get the configuration s, nd;
(
2
1

)
S,Nf , Nf : Example ⇒ (c = 1, e = 0, u = 1).

c.2) The subcase T4 = 0. Considering (26) and the condition µ2κ 6= 0 we get c− 1− 2u = 0, i.e. c = 2u+1.

Then we obtain (27) and we observe that T3 6= 0 (due to µ2κ 6= 0). Moreover in this case we obtain

F1 = −2(1 + u)2(1 + 2u)(1 + 3u) 6= 0 due to u > 0. Therefore we have a weak saddle of order one and this

leads to the configuration s(1), nd;
(
2
1

)
S,Nf , Nf : Example ⇒ (c = 3, e = −1, u = 1).

As all the cases have been examined the investigation of systems (23) is completed.

B. Systems with d = 1, f = 0. In this case for systems (20) with d = 1 and f = 0 we calculate

κ = −128eu3, µ2 = e2(1 + 2u)x2, T4 = −4c2e2u2(1 + 2u).

We observe that due to µ2κ 6= 0 the condition c 6= 0 is equivalent to T4 6= 0.



44 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

6.2.1.1.3. The subcase T4 6= 0. Then c 6= 0 and we may assume c = 1 due to the rescaling (x, y, t) 7→
(x, cy, t/c). So we get the 2-parameter family of systems

(30) ẋ = x+ y − x2 + 2uxy, ẏ = ex− ex2, eu(1 + 2u) 6= 0,

for which we calculate

(31)

µ0 = µ1 = 0, µ2 = e2(1 + 2u)x2, K̃ = 4eux2, κ = −128eu3,

η = 4u2(1− 8eu), F2 = e2(1 + 2u)x2, G8 = 2e2u2(1 + 2u),

W4 = 16e4(1 + 4e)u4(1 + 2u)2(1− 4e− 8eu),

W3 = 32e4u4(1 + 2u)2(1− 4eu), M̃ = 8(6eu− 1)x2 + 16uxy − 32u2y2.

Remark 7. We observe that the condition µ2κ 6= 0 gives M̃F2G8 6= 0. Moreover we have

sign (K̃) = −sign (κ), sign (G8) = sign (µ2) = sign (F2).

We observe that for systems (30) the same relations between the signs of invariant polynomials as in the

case of systems (23) hold. Moreover as we shall use the same Table 1 of [5] and the same conditions for infinite

singularities (i.e. Lemma 6), we only need to detect if for systems (30) we could obtain some configurations,

which we have not obtained for systems (23).

For this goal we only need to detect if some logically possible configurations of singularities in the case

T4 6= 0 could not be realized for systems (23). And then to examine the respective case for systems (30) and

to find out if such detected configuration could be realized for systems (30).

1) The possibility κ < 0. We observe that all the logically possible configurations for systems (20) in the

case κ < 0 and T4 6= 0 are realized. More precisely we have the following number of configurations in the

mentioned case
µ2 < 0, W4 < 0 ⇒ 3; µ2 < 0, W4 > 0 ⇒ 6;

µ2 < 0, W4 = 0 ⇒ 9; µ2 > 0, W4 < 0 ⇒ 3;

µ2 > 0, W4 > 0 ⇒ 3; µ2 > 0, W4 = 0 ⇒ 3.

2) The possibility κ > 0. In this case by (24) the condition κ > 0 implies η > 0 for systems (23), i.e. the

configurations with η ≤ 0 do not exists for these systems.

The question is: Could we obtain such configurations for systems (30)?

The answer is no, as from (31) we observe that the condition κ > 0 gives eu < 0 and then clearly η > 0.

Considering Remark 7 and [5] we conclude that all logical possibilities for configurations in the case κ > 0

and T4 6= 0 are realized for systems (23). More precisely we have the following number of configurations in

the mentioned case
µ2 < 0 ⇒ 1; µ2 > 0, W4 < 0 ⇒ 1;

µ2 > 0, W4 > 0 ⇒ 1; µ2 > 0, W4 = 0 ⇒ 1.

Thus we consider now the next possibility.

6.2.1.1.4. The subcase T4 = 0. Then c = 0 and we get the systems

(32) ẋ = (1 + 2ux)y, ẏ = ex− ex2, eu(1 + 2u) 6= 0.

Moreover due to the rescaling (x, y, t) 7→ (x, |e|1/2y, |e|−1/2t) we can assume e ∈ {−1, 1}.
For these systems we calculate

(33)

µ0 = µ1 = 0, µ2 = e2(1 + 2u)x2, K̃ = 4eux2, κ = −128eu3, η = −32eu3,

M̃ = 16u(3ex2 − 2uy2), F2 = e2(1 + 2u)x2, G8 = 2e2u2(1 + 2u),

W4 = −256e6u4(1 + 2u)3, W3 = −128e5u5(1 + 2u)2,

T4 = T3 = F1 = F = 0, T2 = 4e2u2(1 + 2u), B = −2e2u4, H = −4eu3.
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As T4 = T3 = F = 0 according to [33] systems (32) possess two weak singularities. Moreover, since F1 = 0

these singularities could be only centers and/or integrable saddles. We observe that due to µ2K̃ 6= 0 we have

(34) sign (η) = sign (H) = sign (κ) = −sign (K̃), sign (G8) = sign (µ2) = sign (T2) = sign (F2).

1) The possibility κ < 0. In this case we get η < 0 and H < 0.

a) The case µ2 < 0. This implies T2 < 0 and as H < 0 and B < 0, according to [33] we have two centers.

Therefore considering Lemma 6 we get the global configuration of singularities

c, c;
(
2
1

)
S, c©, c© : Example ⇒ (e = −1, u = −1).

b) The case µ2 > 0. Then T2 > 0 and as B < 0, according to [33] we have one saddle and one center. At

infinity we have the same configuration and we get $, c;
(
2
1

)
N, c©, c© : Example ⇒ (e = 1, u = 1).

2) The possibility κ > 0. In this case by (34) we have η > 0 and H > 0.

a) The case µ2 < 0. Then T2 < 0 and since H > 0 and B < 0, according to [33] we have two integrable

saddles. On the other hand considering the signs of the invariant polynomials µ2, κ and η according to Lemma

6 we get the global configuration of singularities $, $;
(
2
1

)
N,Nf , Nf : Example ⇒ (e = 1, u = −1).

a) The case µ2 > 0. Then we obtain T2 > 0 and as B < 0, according to [33] we have one saddle and one

center. So considering Lemma 6 we get the configuration $, c;
(
2
1

)
S,Nf , Nf : Example ⇒ (e = −1, u = 1).

Thus in the case κ 6= 0 all the possibilities are examined for systems (20).

We observe that the four configurations detected for systems (32) are not realizable for systems (23). In

order to insert these configurations in the global diagram we use the next remark.

Remark 8. For the four configurations above the following conditions are satisfied, respectively:

c, c;
(
2
1

)
S, c©, c© ⇒ κ < 0, µ2 < 0,W4 > 0,W3 < 0, T4 = T3 = F1 = 0;

$, c;
(
2
1

)
N, c©, c© ⇒ κ < 0, µ2 > 0,W4 < 0, T4 = T3 = F1 = 0;

$, $;
(
2
1

)
N,Nf , Nf ⇒ κ > 0, µ2 < 0,W4 > 0,W3 > 0, T4 = T3 = F1 = 0;

$, c;
(
2
1

)
S,Nf , Nf ⇒ κ > 0, µ2 > 0,W4 < 0, T4 = T3 = F1 = 0;

6.2.1.2. The case κ = 0. Considering (21) due to K̃ 6= 0 we obtain d = 0 and then by Remark 5 we may

assume f = 1. Thus we arrive at the following systems

(35)
ẋ = cx(1− x), cu(1 + 2u) 6= 0,

ẏ = ex+ y − ex2 + 2uxy,

for which due to the rescaling (x, y, t) 7→ (x, ey, t) (if e 6= 0) we can assume e ∈ {0, 1}.
For these systems we calculate

(36)

µ0 = µ1 = κ = κ1 = 0, µ2 = c2(1 + 2u)x2, K̃ = −4cux2,

L̃ = 8c(c+ 2u)x2, K2 = 96c2(c2 + 3cu+ 4u2)x2,

η = 0, M̃ = −8(c+ 2u)2x2, C2 = ex3 − (c+ 2u)x2y, G8 = 0,

F2 = c2(1 + 2u)x2, Ti = 0, (i = 1, 2, 3, 4), σ = 1 + c− 2(c− u)x,

F1 = H = B = B1 = B2 = 0, B3 = 72c2(1 + c)(1− c+ 2u)x2 ≡ 72c2ρ1ρ2x
2.

Considering the values of the above invariant polynomials according to [33] (see the Main Theorem) we arrive

at the following remark.

Remark 9. Systems (35) possess at least one weak singularity if and only if B3 = 0. More exactly as K̃ 6= 0,

by [33] we have one integrable saddle in the case σ 6= 0 (the statement (e3)[γ]), and we have two integrable

saddles in the case σ = 0 (the statement (f4)[γ]).
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6.2.1.2.1. The subcase K̃ < 0. As G8 = 0 according to [5] (see Table 1, lines 148, 150) we have two saddles

if F2 < 0 and a saddle and a node if F2 > 0. On the other hand from (36) it follows sign (F2) = sign (µ2).

1) The possibility µ2 < 0. Then F2 < 0 and systems (36) possess two saddles.

On the other hand by (36) the condition K̃ < 0 gives cu > 0 and then M̃ 6= 0. Therefore as K̃ < 0

and µ2 < 0 according to Lemma 6 and Remark 9 we arrive at the following three global configurations of

singularities:

s, s;
(
2
2

) y
P E

x
P −

y
P E

x
P , Nf : Example ⇒ (c = −2, e = 0, u = −1) (if σB3 6= 0);

$, s;
(
2
2

) y
P E

x
P −

y
P E

x
P , Nf : Example ⇒ (c = −1, e = 0, u = −2) (if σ 6= 0, B3 = 0);

$, $;
(
2
2

) y
P E

x
P −

y
P E

x
P , Nf : Example ⇒ (c = −1, e = 0, u = −1) (if σ = 0).

2) The possibility µ2 > 0. Then F2 > 0 and systems (36) possess one saddle and one node. We observe

that the Jacobian matrices for the singularities M1(0, 0) and M2(1, 0) are:

M1 ⇒
(

c 0

e 1

)
; M2 ⇒

(
−c 0

−e 1 + 2u

)
.

Therefore systems (35) possess a node with coinciding eigenvalues if and only if (c− 1)(c+ 2u+ 1) = 0, and

this node is a star node if and only if (c− 1)(c+ 2u+ 1) = e = 0.

On the other hand for these systems we have W11 = 96cu3(1− c)(1 + c+ 2u)x4 and

U3

∣∣
c=1

= −24eu(1 + u)2x5, U3

∣∣
c=−1−2u

= 24eu(1 + u)2(1 + 2u)x5.

Since the conditions K̃ 6= 0 and µ2 > 0 imply cu(1 + u)(1 + 2u) 6= 0 we have the next remark.

Remark 10. Systems (35) with µ2 > 0 possess a node with coinciding eigenvalues if and only if W11 = 0.

Moreover this node is nd if U3 6= 0 and it is a star node if U3 = 0.

a) The case W11 6= 0. Then the node is generic. We observe that in this case σ 6= 0, otherwise we get

c = u = −1 and this contradicts µ2 > 0.

a.1) The subcase B3 6= 0. Then by Remark 9 the saddle is strong and we shall examine the infinite

singularities. We have again M̃ 6= 0 (due to cu > 0) and considering (36) we obtain K2 > 0. So according to

Lemma 6 we get the configuration s, n;
(
2
2

) y
P

x
P H−

y
P

x
P H, Nf : Example ⇒ (c = 2, e = 0, u = 1).

a.2) The subcase B3 = 0. Since σ 6= 0, by Remark 9 we have an integrable saddle and we arrive at the

global configuration $, n;
(
2
2

) y
P

x
P H−

y
P

x
P H, Nf : Example ⇒ (c = −1, e = 0, u = −1/3).

b) The case W11 = 0. Then one of the finite singularities is a node with coinciding eigenvalues. Due to the

Remark 4 without loss of generality we may assume that such a node is M1(0, 0), i.e. the condition c = 1

holds.

b.1) The subcase U3 6= 0. Then e 6= 0 and by Remark 10 besides the saddle we have a node nd. On the

other hand if c = 1 then u > 0 (due to K̃ < 0) and we obtain B3 6= 0, i.e. the saddle is strong. Thus we

obtain the configuration s, nd;
(
2
2

) y
P

x
P H−

y
P

x
P H, Nf : Example ⇒ (c = 1, e = 1, u = 1).

b.2) The subcase U3 = 0. In this case we have a star node and a strong saddle and this leads to the global

configuration of singularities s, n∗;
(
2
2

) y
P

x
P H−

y
P

x
P H, Nf : Example ⇒ (c = 1, e = 0, u = 1).

6.2.1.2.2. The subcase K̃ > 0. Since G8 = 0 according to [5] the types of the finite singularities of systems

(35) are governed by the polynomial F2.

1) The possibility µ2 < 0. Then F2 < 0 and as G8 = 0 according to [5] (see Table 1, line 164) systems (35)

possess two nodes.

a) The case M̃ 6= 0. Then at infinity we have two real distinct singularities.
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a.1) The subcase W11 6= 0. Then by Remark 10 both nodes are generic. On the other hand according to

Lemma 6 the configuration of the infinite singularities depends on the sign of the invariant polynomial L̃ (we

note that L̃ 6= 0 due to M̃ 6= 0). So we get the following two global configurations of singularities

n, n;
(
2
2

) x
P H

y
P −

x
P H

y
P , S: Example ⇒ (c = 2, e = 0, u = −2) (if L̃ < 0);

n, n;
(
2
2

)
HHH−HHH, N∞: Example ⇒ (c = 2, e = 0, u = −2/3) (if L̃ > 0).

a.2) The subcase W11 = 0. Then we may assume c = 1 and hence the singular point M1 of systems (35) is

a node with coinciding eigenvalues, whereas for the second singularity M2 we have λ1 = −1 and λ2 = 2u+ 1.

Therefore the second node will be a node with coinciding eigenvalues if and only if u = −1. For c = −1 for

systems (35) we calculate

(37)
U1 = −4u(1 + u)x2, U3 = −24eu(1 + u)2x5, µ2 = (1 + 2u)x2,

K̃ = −4ux2, U5

∣∣
u=−1

= −6ex2, L̃ = 8(2u+ 1)

and due to K̃ 6= 0 the condition u = −1 is equivalent to U1 = 0. Moreover if U1 6= 0 the condition e = 0 (to

have a star node) is equivalent to U3 = 0. In the case U1 = 0 (i.e. u = −1 the condition e = 0 is equivalent

to U5 = 0 and in this case we have two star nodes.

On the other hand due to µ2K̃ 6= 0 we get L̃ < 0. Thus considering Lemma 6 we arrive at the following

four global configurations of singularities

n, nd;
(
2
2

) x
P H

y
P −

x
P H

y
P , S: Example ⇒ (c = 1, e = 1, u = −2) (if U1 6= 0, U3 6= 0);

n, n∗;
(
2
2

) x
P H

y
P −

x
P H

y
P , S: Example ⇒ (c = 1, e = 0, u = −2) (if U1 6= 0, U3 = 0);

nd, nd;
(
2
2

) x
P H

y
P −

x
P H

y
P , S: Example ⇒ (c = 1, e = 1, u = −1) (if U1 = 0, U5 6= 0);

n∗, n∗;
(
2
2

) x
P H

y
P −

x
P H

y
P , S: Example ⇒ (c = 1, e = 0, u = −1) (if U1 = 0, U5 = 0).

b) The case M̃ = 0. Then we have c = −2u and this gives C2 = ex3 and W11 = −192u4(1+2u)x4 6= 0 (due

to µ2 6= 0). Therefore at infinity we have one real singularity of multiplicity five if C2 6= 0 and the infinite line

is filled up with singularities if C2 = 0. At the same time due to Remark 10 systems (35) possess two generic

nodes.

b.1) The subcase C2 6= 0. As K̃ 6= 0 and µ2 < 0 according to Lemma 6 we arrive at the global configuration

of singularities n, n;
(
2
3

)
HH

y
P −

x
PHH : Example ⇒ (c = 2, e = 1, u = −1).

b.2) The subcase C2 = 0. Then we have c+ 2u = e = 0 and as the nodes are generic, considering Lemma 6

we obtain the configuration n, n; [∞; S]: Example ⇒ (c = 2, e = 0, u = −1).

2) The possibility µ2 > 0. Then F2 > 0 and as G8 = 0 according to [5] (see Table 1, line 150) systems (36)

possess a saddle and a node. We observe that due to K̃ > 0 and µ2 > 0 in this case the conditions 2u+1 > 0

and cu < 0 hold.

a) The case M̃ 6= 0. Then at infinity we have two real distinct singularities.

a.1) The subcase B3 6= 0. Then by Remark 9 the saddle is strong.

α) The possibility W11 6= 0. In this case the node is generic and as K̃ 6= 0, K2 > 0 and µ2 > 0 considering

Lemma 6 we arrive at the following two global configurations of singularities

s, n;
(
2
2

) x
P

y
P E−

x
P

y
P E, S: Example ⇒ (c = −2, e = 0, u = 2) (if L̃ < 0);

s, n;
(
2
2

) y
P

x
P H−

y
P

x
P H, N∞: Example ⇒ (c = −2, e = 0, u = 1/4) (if L̃ > 0).

β) The possibility W11 = 0. Then we may assume c = 1 and considering (37) the condition µ2 > 0 implies

L̃ = 8(1 + 2u)x2 > 0. Moreover in this case the condition e = 0 is equivalent to U3 = 0. As a result we get

the following two global configurations of singularities:

s, nd;
(
2
2

) y
P

x
P H−

y
P

x
P H, N∞: Example ⇒ (c = 1, e = 1, u = −1/4) (if U3 6= 0);
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s, n∗;
(
2
2

) y
P

x
P H−

y
P

x
P H, N∞: Example ⇒ (c = 1, e = 0, u = −1/4) (if U3 = 0).

a.2) The subcase B3 = 0. By Remark 9 we have an integrable saddle and we may assume that it is located at

M1(0, 0), i.e. c = −1. Then we have W11 = −384u4x4 6= 0 and by Remark 10 the node is generic. Considering

Lemma 6 we arrive at the following two global configurations of singularities:

s(1), n;
(
2
2

) x
P

y
P E−

x
P

y
P E, S: Example ⇒ (c = −1, e = 0, u = 2) (if L̃ < 0);

s(1), n;
(
2
2

) y
P

x
P H−

y
P

x
P H, N∞: Example ⇒ (c = −1, e = 0, u = 1/4) (if L̃ > 0).

b) The case M̃ = 0. Then we have c = −2u and we obtain

C2 = ex3, B3 = −288u2(−1 + 2u)(1 + 4u)x2, W11 = −192u4(1 + 2u)x4.

b.1) The subcase C2 6= 0. Due to µ2 > 0 we have u > −1/2 and this implies W11 6= 0, i.e. the node is

generic. So since K̃ 6= 0, µ2 > 0 and K2 > 0 according to Lemma 6 we arrive at the following two global

configurations of singularities:

s, n;
(
2
3

)
H

y
P E−

x
P

y
P

x
P : Example ⇒ (c = −2, e = 1, u = 1) (if B3 6= 0);

$, n;
(
2
3

)
H

y
P E−

x
P

y
P

x
P : Example ⇒ (c = −1, e = 1, u = 1/2) (if B3 = 0).

b.2) The subcase C2 = 0. Then we have c + 2u = e = 0 and as the node is generic, considering Lemma 6

we obtain the configurations

s, n; [∞; N ]: Example ⇒ (c = −2, e = 0, u = 1) (if B3 6= 0);

$, n; [∞; N ]: Example ⇒ (c = −1, e = 0, u = 1/2) (if B3 = 0).

6.2.2. Systems with K̃ = 0. Since K̃(ã, x, y) = Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
(see Section 5) the condition

K̃ = 0 means that the homogeneous quadratic parts of generic quadratic systems are proportional, say

q2 = λp2. Therefore clearly the transformation x1 = x, y1 = −λx + y leads to quadratic systems, of which

the second equation is linear. Applying a translation (as these systems must have two finite real distinct

singularities) we get the systems

ẋ = cx+ dy + gx2 + 2hxy + ky2, ẏ = ex+ fy,

for which we calculate

U = α2(ex+ fy)2(gx2 + 2hxy + ky2)2, µ2 = β(gx2 + 2hxy + ky2),

where α = cf − de and β = f2g − 2efh + e2k. These systems possess the singularities M1(0, 0) and

M2 (−fα/β, eα/β) which are distinct due to U > 0 and µ2 6= 0. We observe that the condition e = 0

implies the existence of the invariant lines y = 0 for these systems. So we consider two cases: e 6= 0 and e = 0.

In the first case we apply the transformation x1 = ex + fy, y1 = βy/(eα) and t1 = βt/(eα) which places

the point M2 at the point (0, 1). This leads to the family of systems (we keep the old variables)

(38) ẋ = cx+ dy + gx2 + 2hxy − dy2, ẏ = x.

If e = 0 then cfg 6= 0 (as αβ 6= 0 and after the rescaling (x, y, t) 7→ (−cx/g, y, t/f) (which replaces

M2(−c/g, 0) to the point (1, 0)) we arrive at the family of systems

(39) ẋ = cx+ dy − cx2 + 2hxy + ky2, ẏ = y.

In what follows we consider each one of the families of systems we obtained.
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A. Systems (38). We observe that the Jacobian matrices for the singularities M1(0, 0) and M2(0, 1) of these

systems are respectively
( c d

1 0

)
and

( c+ 2h −d

1 0

)
. So the next remark becomes obvious.

Remark 11. The family of systems (38) could not have a finite star node.

For systems (38) we calculate

(40)

µ0 = µ1 = κ = K̃ = 0, η = 4g2(dg + h2), µ2 = −d(gx2 + 2hxy − dy2),

θ2 = dg + h2, U = d2x2(gx2 + 2hxy − dy2)2, G8 = 2dg(dg + h2),

W4 = 16d2g2(dg + h2)2(c2 + 4d)(c2 − 4d+ 4ch+ 4h2) = 16d2g2(dg + h2)2τ1τ2,

D = −192d4(dg + h2), L̃ = 8g(gx2 + 2hxy − dy2),

F1 = 2d(cg + h+ gh), T4 = 4cdg(c+ 2h)(dg + h2).

Remark 12. The condition W4 6= 0 implies G8Dθ2η 6= 0 for systems (38).

6.2.2.1. The case W4 < 0. Then by the above remark we have G8D 6= 0 and due to K̃ = 0, according to [5]

(see Table 1, lines 157,162) we have a saddle and either a focus or a center.

6.2.2.1.1. The subcase T4 6= 0. By [33] we have a strong saddle and a strong focus. On the other hand

as by Remark 12 the condition ηθ2 6= 0 holds, considering Lemma 6 we obtain the following three global

configurations of singularities

s, f ; Nd,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 1, d = −2, g = 1, h = 1) (if η < 0);

s, f ;
(
1
1

)
SN,

(
1
1

)
SN, Nd: Example ⇒ (c = 1, d = −2, g = −1, h = 1) (if η > 0, µ2L̃ < 0);

s, f ;
(
1
1

)
SN,

(
1
1

)
NS, Nd: Example ⇒ (c = 1, d = 3, g = −1/4, h = 1) (if η > 0 µ2L̃ > 0).

6.2.2.1.2. The subcase T4 = 0. Then one of the finite singularities is weak and by Remark 4 without loss of

generality we may assume ρ1 = c = 0, i.e. this weak singularity is M1(0, 0). In this case for systems (38) we

calculate:

(41)
T3 = 8dgh(dg + h2), F = gh(dg + h2), F1 = 2dh(1 + g),

F2 = F3 = 0, W4 = −256d3g2(d− h2)(dg + h2)2.

a) The possibility T3F < 0. According to [33] the systems possess a weak focus, the order of which is

determined by the invariant polynomial F1.

a.1) The case F1 6= 0. Then we have a first order weak focus and considering Lemma 6 and the conditions

ηθ2 6= 0 and κ = 0 we obtain the following three global configurations of singularities:

s, f (1); Nd,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 0, d = −1, g = 2, h = 1) (if η < 0);

s, f (1);
(
1
1

)
SN,

(
1
1

)
SN, Nd: Example ⇒ (c = 0, d = −1, g = −1, h = 1) (if η > 0, µ2L̃ < 0);

s, f (1);
(
1
1

)
SN,

(
1
1

)
NS, Nd: Example ⇒ (c = 0, d = −1, g = 1/2, h = 1) (if η > 0 µ2L̃ > 0).

a.2) The case F1 = 0. Then by (41) due to T3 6= 0 we get g = −1 and then we have

µ2L̃ = 8d(x2 − 2hxy + dy2)2, T3F = 8dh2(d− h2)2,

η = 4(h2 − d), W4 = 256d3(h2 − d)3.

So we arrive at the remark

Remark 13. If T4 = 0 and T3 6= 0 then the condition F1 = 0 implies sign (T3F) = sign (µ2L̃)=sign (ηW4).

Since by (41) we have F2 = F3 = 0, according to [33] systems (38) possess a center. By the above remark

the conditions T3F < 0 and W4 < 0 imply µ2L̃ < 0 and η > 0. So considering Lemma 6 we obtain the

configuration s, c;
(
1
1

)
SN,

(
1
1

)
SN, Nd: Example ⇒ (c = 0, d = −2, g = −1, h = 1).
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b) The possibility T3F > 0. In this case by [33] the systems possess a weak saddle.

b.1) The case F1 6= 0. Then we have a first order weak focus and considering Lemma 6 and the conditions

ηθ2 6= 0 and κ = 0 we obtain the following three global configurations of singularities:

s(1), f ; Nd,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 0, d = 2, g = −2, h = 1) (if η < 0);

s(1), f ;
(
1
1

)
SN,

(
1
1

)
SN, Nd: Example ⇒ (c = 0, d = 2, g = 1, h = 1) (if η > 0, µ2L̃ < 0);

s(1), f ;
(
1
1

)
SN,

(
1
1

)
NS, Nd: Example ⇒ (c = 0, d = 2, g = −1/3, h = 1) (if η > 0 µ2L̃ > 0).

b.2) The case F1 = 0. Then the saddle is integrable. On the other hand by Remark 13 the condition

W4 < 0 implies η < 0 and this leads to the configuration

$, f ; Nd,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 0, d = 2, g = −1, h = 1).

c) The possibility T3 = 0. By (41) due to W4 6= 0 the condition T3 = 0 implies h = 0 and then we obtain

T4 = T3 = F1 = 0, T2 = 4d2g2, B = −2d2g4,

W4 = −256d6g4, η = 4dg3, µ2L̃ = −8dg(gx2 − dy2)2.

Remark 14. If W4 6= 0 then the condition T4 = T3 = 0 implies W4 < 0.

The condition W4 6= 0 implies B < 0 and T2 > 0. Therefore by [33] we have a center and an integrable

saddle. As the condition η > 0 implies µ2L̃ < 0, taking into consideration Lemma 6 we get following two

configurations:

$, c; Nd,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 0, d = 1, g = −1, h = −1) (if η < 0);

$, c;
(
1
1

)
SN,

(
1
1

)
SN, Nd: Example ⇒ (c = 0, d = 1, g = 1, h = −1) (if η > 0).

6.2.2.2. The case W4 > 0. Since K̃ = 0 and G8D 6= 0 (see Remark 12), according to [5] (see Table 1, line

151) systems (38) possess a saddle and a node.

6.2.2.2.1. The subcase T4 6= 0. Then by [33] the saddle is strong and as W4 6= 0 the node is generic and

θ2 6= 0. Therefore considering Lemma 6 we obtain the following three global configurations of singularities

s, n; Nd,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 1, d = 1/2, g = −3, h = 1) (if η < 0);

s, n;
(
1
1

)
SN,

(
1
1

)
SN, Nd: Example ⇒ (c = 1, d = 1/2, g = 1, h = 1) (if η > 0, µ2L̃ < 0);

s, n;
(
1
1

)
SN,

(
1
1

)
NS, Nd: Example ⇒ (c = 1, d = 1/2, g = −1, h = 1) (if η > 0, µ2L̃ > 0).

6.2.2.2.2. The subcase T4 = 0. Then the saddle is weak and by Remark 4 without loss of generality we may

assume that this saddle is located at M1(0, 0), i.e. c = 0 and we consider the relations (41).

We observe that by Remark 14 the condition W4 > 0 implies T3 6= 0.

a) The possibility F1 6= 0. In this case by [33] the weak saddle is of order one and considering Lemma 6 we

arrive at the following three global configurations of singularities:

s(1), n; Nd,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 0, d = 1/2, g = −3, h = 1);

s(1), n;
(
1
1

)
SN,

(
1
1

)
SN, Nd: Example ⇒ (c = 0, d = 1/2, g = 1, h = 1) (if µ2L̃ < 0);

s(1), n;
(
1
1

)
SN,

(
1
1

)
NS, Nd: Example ⇒ (c = 0, d = 1/2, g = −1/2, h = 1) (if µ2L̃ > 0).

b) The possibility F1 = 0. As F2 = F3 = 0 according to [33] systems (38) possess an integrable saddle. On

the other hand by Remark 13 the condition W4 > 0 implies η > 0 and this leads to the configuration

$, n;
(
1
1

)
SN,

(
1
1

)
NS, Nd: Example ⇒ (c = 0, d = 1/2, g = −1, h = 1).

6.2.2.3. The case W4 = 0. Taking into account (40) we consider two possibilities: η 6= 0 and η = 0.
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6.2.2.3.1. The subcase η 6= 0. Then due to µ2 6= 0 the condition W4 = 0 implies τ1τ2 = (c2 + 4d)(c2 − 4d+

4ch + 4h2) = 0, i.e. one of singularities is a node with coinciding eigenvalues. Moreover by Remark 11 we

have a node with one direction. According to Remark 4 we may assume that the singularity M1(0, 0) is such

a node and this implies τ1 = c2 + 4d = 0, i.e. d = −c2/4 6= 0. So we may assume c = 1 due to the rescaling

(x, y, t) 7→ (cx, yt/c) and this leads to the family of systems

(42) ẋ = x− y/4 + gx2 + 2hxy + y2/4, ẏ = x.

for which we calculate

µ2L̃ = 2g(4gx2 + 8hxy + y2)2/8, T4 = g(1 + 2h)(g − 4h2)/4, θ2 = (4h2 − g)/4, η = g2(4h2 − g).

1) The possibility T4 6= 0. Then by [33] we have a strong saddle. We observe that the condition η 6= 0

implies θ2 6= 0 and considering Lemma 6 we obtain the following three global configurations of singularities:

s, nd; Nd,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 1, d = −1/4, g = 1, h = 0) (if η < 0);

s, nd;
(
1
1

)
SN,

(
1
1

)
SN, Nd: Example ⇒ (c = 1, d = −1/4, g = −1, h = 0) (if η > 0, µ2L̃ < 0);

s, nd;
(
1
1

)
SN,

(
1
1

)
NS, Nd: Example ⇒ (c = 1, d = −1/4, g = 1, h = 1) (if η > 0, µ2L̃ > 0).

2) The possibility T4 = 0. Then the saddle M2 is weak. As η 6= 0 we get h = −1/2 and then

η = g2(1− g), F1 = (1− g)/4, θ2 = (1 − g)/4.

So due to η 6= 0 we have θ2F1 6= 0, i.e. the weak saddle is of order one. Therefore we get the following three

configurations of singularities:

s(1), nd; Nd,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 1, d = −1/4, g = 2, h = −1/2) (if η < 0);

s(1), nd;
(
1
1

)
SN,

(
1
1

)
SN, Nd: Example ⇒ (c = 1, d = −1/4, g = −1, h = −1/2) (if η > 0, µ2L̃ < 0);

s(1), nd;
(
1
1

)
SN,

(
1
1

)
NS, Nd: Example ⇒ (c = 1, d = −1/4, g = 1/2, h = −1/2) (if η > 0, µ2L̃ > 0).

6.2.2.3.2. The subcase η = 0. Considering (40) we have g(dg + h2) = 0 and we consider two possibilities:

L̃ 6= 0 (then g 6= 0) and L̃ = 0 (then g = 0).

1) The possibility L̃ 6= 0. In this case g 6= 0 and as d 6= 0 we obtain g = −h2/d 6= 0. Hence we may assume

h = 1 due to the rescaling (x, y, t) 7→ (hx, yt/h) (and by introducing new parameters c̃ = c/h, d̃ = d/h2). So

we arrive at the family of systems (we keep the old parameters)

(43) ẋ = cx+ dy − x2/d+ 2xy − dy2, ẏ = x.

for which we calculate

(44)

κ = η = K̃ = D = 0, κ1 = −32(1 + c− d)/d, θ5 = 96(1 + c− d)(x − dy)3)/d2,

M̃ = −8(x− dy)2/d2 = −L̃, µ2 = (x− dy)2, G3 = −2(1 + c− d),

W8 = 21233(1 + c− d)2(c2 + 4d)
[
(c+ 2)2 − 4d

]
= 21233(1 + c− d)2τ1τ2,

Ti = 0, i = 1, 2, 3, 4, σ = c− 2x/d+ 2y, F1 = −2(1 + c− d), H = 0,

B1 = −2c(2 + c)(1 + c− d) = −2(1 + c− d)ρ1ρ2, B2 = 4(1 + c)(1 + c− d)2/d.

Remark 15. The condition W8 6= 0 implies G3κ1θ5F1 6= 0 for systems (43). Moreover in this case the

condition B1 = 0 is equivalent to ρ1ρ2 = 0.

Since K̃ = D = 0 according to [5] the types of the finite singularities are governed by the invariant

polynomials W8,W9, G3 and D2.

a) The case W8 < 0. Then by Remark 15 we have G3 6= 0 and by [5] (see Table 1, line 159) systems (43)

possess a saddle and a focus.
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a.1) The subcase B1 6= 0. Then ρ1ρ2 6= 0 and we do not have weak singularities. On the other hand as

M̃L̃κ1θ5 6= 0, considering Lemma 6, we obtain the global configuration of singularities

s, f ;
(̂
2
2

) y
Pf

x
P Hf−H, Nd: Example ⇒ (c = 1, d = −1, g = 1, h = 1).

a.2) The subcase B1 = 0. Then one of the finite singularities is weak and by Remark 4 without loss of

generality we may assume such a point to be M1(0, 0), i.e. for systems (43) the condition ρ1 = c = 0 holds.

So we have

(45) B1 = 0, B2 = 4(1− d)2/d, W8 = 21633d(1− d)3.

Therefore the condition W8 < 0 implies B2 6= 0 and by [33] the type of weak singularity (which is of order

one due to F1 6= 0) depends of the sign of B2. Thus considering Lemma 6 we get the following two global

configurations of singularities:

s, f (1);
(̂
2
2

) y
Pf

x
P Hf−H, Nd: Example ⇒ (c = 0, d = −1, g = 1, h = 1) (if B2 < 0);

s(1), f ;
(̂
2
2

) y
Pf

x
P Hf−H, Nd: Example ⇒ (c = 0, d = 2, g = −1/2, h = 1) (if B2 > 0).

b) The case W8 > 0. Then by [5] (see Table 1, lines 153) systems (43) possess a saddle and a node which

is generic (due to W8 6= 0).

b.1) The subcase B1 6= 0. Then the saddle is strong and considering Remark 15 and Lemma 6 we arrive at

the configuration s, n;
(̂
2
2

) y
Pf

x
P Hf−H, Nd: Example ⇒ (c = 1, d = 1, g = −1, h = 1).

b.2) The subcase B1 = 0. It was mentioned earlier that in this case we may assume c = 0, i.e. the weak

saddle of the first order (as F1 6= 0) is located at the origin of coordinates. Considering Remark 15 and Lemma

6 we obtain the configuration s(1), n;
(̂
2
2

) y
Pf

x
P Hf−H, Nd: Example ⇒ (c = 0, d = 1/2, g = −2, h = 1).

c) The case W8 = 0. Then (1 + c − d)τ1τ2 = 0 and considering (44) we have to distinguish two subcases

given by the invariant polynomial κ1.

c.1) The subcase κ1 6= 0. Then (1 + c − d) 6= 0 and the condition W8 = 0 gives τ1τ2 = 0. Therefore we

have a node with coinciding eigenvalues and by Remark 4 we may assume that this node is located at the the

origin of coordinates, i.e. the condition τ1 = c2 + 4d = 0 holds. We note that by Remark 11 this node could

not be a star node. So we have d = −c2/4 6= 0 (since σ1 = c 6= 0) and we calculate

B1 = −c(2 + c)3/2 =, κ1 = 32(2 + c)2/c2, θ5 = −6(2 + c)2(4x+ c2y)3/c4.

The condition κ1 6= 0 implies B1 6= and by [33], the saddle is strong. On the other other hand the condition

κ1 6= 0 implies θ5 6= 0 and considering Lemma 6 we arrive at the configuration

s, nd;
(̂
2
2

) y
Pf

x
P Hf−H, Nd: Example ⇒ (c = 1, d = −1/4, g = 4, h = 1).

c.2) The subcase κ1 = 0. Then by (44) we have c = d− 1 and for systems (43) we calculate

(46)

µ0 = µ1 = K̃ = η = D = κ = κ1 = 0, M̃ = −8(x− dy)2/d2 = G,
µ2 = (x− dy)2, K2 = 96(x− dy)2/d2, θ6 = 8(x− dy)4/d2,

G3 = 0, D2 = 2(x− dy)/d, U = x2(x− dy)4,

Ti = 0, i = 1, 2, 3, 4, σ = d− 1− 2x/d+ 2y, F1 = H = 0,

B = B1 = B2 = 0, B3 = 72(d− 1)(1 + d)(x − dy)/d2.

Since D = K̃ = G3 = 0 and D2 6= 0, according to [5] (see Table 1, line 154) we have a saddle and a node.

Considering (59), by [33] (see the Main Theorem, the statement (e3)[δ]) the saddle will be weak (more precisely

it will be an integrable one) if and only if B3 = 0. Moreover for the singular points M1(0, 0) and M2(0, 1) we

have, respectively

ρ1 = d− 1, τ1 = (d+ 1)2, ρ2 = d+ 1, τ1 = (d− 1)2.



ALGORITHM FOR DETERMINING THE GEOMETRIC CONFIGURATIONS FOR QUADRATIC SYSTEMS 53

Therefore we observe that if one of the singular points is a weak saddle, the second one becomes a node with

coinciding eigenvalues, which by Remark 11 is a node nd.

Since K2 > 0 and θ6 6= 0, considering Lemma 6, we obtain the following two global configuration of

singularities:

s, n;
(
2
2

) y
P

x
P H−

y
P

x
P H, Nd: Example ⇒ (c = 1, d = 2, g = −1/2, h = 1) (if B3 6= 0);

$, nd;
(
2
2

) y
P

x
P H−

y
P

x
P H, Nd: Example ⇒ (c = 0, d = 1, g = −1, h = 1) (if B3 = 0).

2) The possibility L̃ = 0. Then g = 0 and we obtain the family of systems

(47) ẋ = cx+ dy + 2hxy − dy2, ẏ = x.

for which we calculate

(48)

µ0 = µ1 = K̃ = κ = η = G8 = 0, µ2 = dy(−2hx+ dy), D = −192d4h2,

U = d2x2y2(2hx− dy)2, W7 = 12d2h6(c2 + 4d)
[
(c+ 2h)2 − 4d

]
= 12d2h6τ1τ2,

Ti = 0, i = 1, 2, 3, 4, σ = c+ 2hy, F1 = 2dh, H = 0,

B1 = 2cdh(c+ 2h) = 2dhρ1ρ2, B2 = 4dh3(c+ h), M̃ = −32h2y2.

For the singular points M1(0, 0) and M2(0, 1) of the above systems we have ∆2 = d = −∆1 and hence these

systems possess a saddle and an anti-saddle.

a) The case W7 < 0. Then we have a saddle and a focus or a center and considering (48) we observe that

the condition B1 = 0 is equivalent to ρ1ρ2 = 0.

a.1) The subcase B1 6= 0. Then both singularities are strong and considering Lemma 6 we arrive at the

configuration s, f ;
(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN : Example ⇒ (c = 1, d = −1, g = 0, h = 1).

a.2) The subcase B1 = 0. Then one of the finite singularities is weak and by Remark 4 without loss of

generality we may assume such a point is M1(0, 0), i.e. for systems (47) the condition ρ1 = c = 0 holds. In

this case we calculate

(49) B1 = 0, B2 = 4dh4, F1 = 2dh, W7 = −192d3h6(d− h2).

Therefore the condition W7 6= 0 implies F1B2 6= 0 and by [33] the type of the weak singularity (which is

of order one due to F1 6= 0) depends on the sign of B2. Thus considering considering Lemma 6 we get the

following two global configurations of singularities:

s, f (1);
(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN : Example ⇒ (c = 0, d = −1, g = 0, h = 1) (if B2 < 0);

s(1), f ;
(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN : Example ⇒ (c = 0, d = 2, g = 0, h = 1) (if B2 > 0).

b) The case W7 > 0. Then by [5] (see Table 1, lines 152) systems (47) possess a saddle and a node which

is generic (due to W7 6= 0).

Taking into account the fact that the saddle is weak if and only if B1 = 0 we get the following two global

configurations of singularities:

s, n;
(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN : Example ⇒ (c = 1, d = 1/2, g = 0, h = 1) (if B1 6= 0);

s(1), n;
(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN : Example ⇒ (c = 0, d = 1/2, g = 0, h = 1) (if B1 = 0).

c) The case W7 = 0. Since µ2 6= 0 by (48) we have hτ1τ2 = 0 and we consider two subcases: M̃ 6= 0 and

M̃ = 0.

c.1) The subcase M̃ 6= 0. Then h 6= 0 and we have a node with coinciding eigenvalues. By Remark 4

we may assume that this node is located at the the origin of coordinates, i.e. we have τ1 = c2 + 4d = 0.
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So we have a node nd (see Remark 11) and setting d = −c2/4 6= 0 we may assume c = 1 due to the

rescaling(x, y, t) 7→ (cx, yt/c). This leads to the family of systems

(50) ẋ = x− y/4 + 2hxy + y2/4, ẏ = x,

and we calculate

σ = 1 + 2hy, B1 = −h(1 + 2h)/2, B2 = −h3(1 + h), F1 = −h/2, M̃ = −32h2y2.

Since M̃ 6= 0 we could have a weak saddle if and only if h = −1/2 and the weak saddle is of order one due

to F1 6= 0 (see [33], Main Theorem, the statement (e1)). So considering Lemma 6 we get the following two

global configurations of singularities

s, nd;
(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN : Example ⇒ (c = 1, d = −1/4, g = 0, h = 1) (if B1 6= 0);

s(1), nd;
(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN : Example ⇒ (c = 1, d = −1/4, g = 0, h = −1) (if B1 = 0).

c.2) The subcase M̃ = 0. Then h = 0 and we get the family of systems

(51) ẋ = cx+ dy − dy2, ẏ = x,

and we calculate

(52)
M̃ = 0, C2 = −dy3, µ2 = d2y2, W9 = 12(c2 + 4d)(c2 − 4d) = 12τ1τ2,

Ti = 0, i = 1, 2, 3, 4, σ = c = ρ1 = ρ2, ∆2 = d = −∆1.

So the above systems possess a saddle and an anti-saddle and clearly the type of the anti-saddle is governed

by the invariant polynomial W9.

α) The possibility W9 < 0. In this case we have a saddle and a focus or a center and considering (52)

we observe that we could have a weak singularity if and only if we have σ = 0. However in this case we get

Hamiltonian systems possessing a center and an integrable saddle. As C2 6= 0 (due to µ2 6= 0) considering

Lemma 6 we obtain the following two global configurations of singularities:

s, f ;
(̂
2
3

) y
Pf

x
P −

y
Pf

x
P : Example ⇒ (c = 1, d = 1, g = 0, h = 0) (if σ 6= 0);

$, c;
(̂
2
3

) y
Pf

x
P −

y
Pf

x
P : Example ⇒ (c = 0, d = 1, g = 0, h = 0) (if σ = 0).

β) The possibility W9 ≥ 0. Then we have a saddle and a node and in this case we have σ 6= 0, otherwise if

c = 0 we get W9 = −192d2 < 0. So the saddle is strong and the node is generic if W9 > 0 and it is a node

with one direction (see Remark 11) if W9 = 0. Therefore considering Lemma 6 we obtain the following two

global configurations of singularities:

s, n;
(̂
2
3

) y
Pf

x
P −

y
Pf

x
P : Example ⇒ (c = 3, d = 1, g = 0, h = 0) (if W9 > 0);

s, nd;
(̂
2
3

) y
Pf

x
P −

y
Pf

x
P : Example ⇒ (c = 2, d = 1, g = 0, h = 0) (if W9 = 0).

As all the possibilities are investigated we have ended the examination of systems (38).

B. Systems (39). We consider systems (39), i.e. the systems of the form

(53) ẋ = cx+ dy − cx2 + 2hxy + ky2, ẏ = y,

which possess the finite the singularities M1(0, 0) and M2(1, 0). We observe that the Jacobian matrices

corresponding to these singular points are respectively
( c d

0 1

)
and

( −c d+ 2h

0 1

)
and therefore we have

(54) ρ1 = c+ 1, ∆1 = c, τ1 = (c− 1)2; ρ2 = 1− c, ∆2 = −c, τ2 = (c+ 1)2.

So obviously we have the next remark.

Remark 16. The family of systems (53) have a finite node and a finite saddle. The node has coinciding

eigenvalues if and only if (c − 1)(c+ 1) = 0 and in this case the systems simultaneously have a weak saddle.

Moreover these systems have a star node if and only if either c− 1 = d = 0, or c+ 1 = d+ h = 0.
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For systems (53) we calculate

(55)

µ0 = µ1 = κ = K̃ = 0, η = 4c2(h2 + ck), µ2 = c(cx2 − 2hxy − ky2),

θ2 = 0, U = c2y2(cx2 − 2hxy − ky2)2, G8 = −2c2(h2 + ck),

W4 = 16c4(c− 1)2(c+ 1)2(h2 + ck)2,

D = −192c4(h2 + ck), L̃ = 8c(cx2 − 2hxy − ky2),

F1 = −2c(cd− h+ ch), T4 = 4c2(c+ 1)(c− 1)(h2 + ck).

We observe that for systems (53) the following conditions hold

(56) W4 ≥ 0, µ2L̃ > 0, θ2 = 0.

6.2.2.4. The case W4 6= 0. In this case by (56) we have W4 > 0 and this implies ηT4 6= 0. Hence obviously

the node is generic and the saddle is strong.

Considering (56) and Lemma 6 we obtain the following two global configurations of singularities

s, n; N∗,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 2, d = 0, h = 1, k = −1) (if η < 0);

s, n;
(
1
1

)
SN,

(
1
1

)
NS, N∗: Example ⇒ (c = 2, d = 0, h = 1, k = 1) (if η > 0).

6.2.2.5. The case W4 = 0. Taking into account (55), we consider two possibilities: η 6= 0 and η = 0.

6.2.2.5.1. The subcase η 6= 0. Then the condition W4 = 0 implies τ1τ2 = (c − 1)2(c + 1)2 = 0, i.e. one of

singularities is a node with coinciding eigenvalues. According to Remark 4 we may assume that the singularity

M1(0, 0) is such a node and this implies τ1 = (c− 1)2 = 0, i.e. c = 1. Then we calculate

T4 = F2 = F3 = 0, T3F = 8(h2 + k)2, F1 = −2d, η = 4(h2 + k).

We observe that the condition η 6= 0 implies T3F > 0 and by [33] we have a weak saddle of order one if F1 6= 0

and an integrable saddle if F1 = 0. On the other hand by Remark 16 we have a node nd if F1 6= 0 and a star

node if F1 = 0.

Thus considering (56) and Lemma 6 we obtain the following four global configurations of singularities:

s(1), nd; N∗,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 1, d = 1, h = 1, k = −2) (if η < 0, F1 6= 0);

$, n∗; N∗,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (c = 1, d = 0, h = 1, k = −2) (if η < 0, F1 = 0);

s(1), nd;
(
1
1

)
SN,

(
1
1

)
NS, N∗: Example ⇒ (c = 1, d = 1, h = 1, k = 0) (if η > 0, F1 6= 0);

$, n∗;
(
1
1

)
SN,

(
1
1

)
NS, N∗: Example ⇒ (c = 1, d = 0, h = 1, k = −2) (if η > 0, F1 = 0).

6.2.2.5.2. The subcase η = 0. Considering (55) due to µ2 6= 0 (i.e. c 6= 0) we obtain k = −h2/c 6= 0 and this

implies W4 = 0. Then we may assume h = 1 due to the rescaling (x, y, t) 7→ (x, y/ht) . So we get the family

of systems

(57) ẋ = cx+ dy − cx2 + 2xy − y2/c, ẏ = y,

for which we calculate

(58)

κ = η = K̃ = D = θ5 = 0, κ1 = −32c(c− 1 + cd) = 16G3,

M̃ = −8(cx− y)2 = −L̃, µ2 = (cx− y)2, σ = 1 + c− 2cx+ 2y,

W8 = 21233c2(c− 1)2(1 + c)2(c− 1 + cd)2, H = 0,

Ti = 0, i = 1, 2, 3, 4, F1 = −2(c− 1 + cd), B2 = 4c2(c− 1 + cd)2,

B1 = 2c(c− 1 + cd)(c+ 1)(c− 1) = 2c(c− 1 + cd)ρ1ρ2.

We note that by Remark 16 the above systems possess a node and a saddle.
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a) The case W8 6= 0. Then by (58) we have W8 > 0 and this implies κ1B1 6= 0. Hence obviously the

node is generic and the saddle is strong. Since κ1M̃L̃ 6= 0 and θ5 = 0 considering Lemma 6 we obtain the

configuration s, n;
(̂
2
2

) y
Pf

x
P Hf−H, N∗: Example ⇒ (c = 2, d = 0, h = 1, k = −1/2).

b) The case W8 = 0. Then (c − 1)(1 + c)(c − 1 + cd) = 0 (as c 6= 0) and considering (58) we have to

distinguish two subcases: κ1 6= 0 and κ1 = 0.

b.1) The subcase κ1 6= 0. Then (c− 1 + cd) 6= 0 and hence we get (c− 1)(1 + c) = 0. So one of singularities

is a node with coinciding eigenvalues and by Remark 4 we may assume that the singularity M1(0, 0) is such

a node, i.e. c = 1. Then we calculate

H = B1 = 0, F1 = −2d, B2 = 4d2, κ1 = −32d.

Therefore the condition κ1 6= 0 implies F1 6= 0 and B2 > 0. By [33] (see the Main Theorem, the statement

(e1)) and by Remark 16, systems (57) possess a weak saddle of order one and a node nd.

Thus considering the condition θ5 = 0 by Lemma 6 we get the global configuration of singularities

s(1), nd;
(̂
2
2

) y
Pf

x
P Hf−H, N∗: Example ⇒ (c = 1, d = 1, h = 1, k = −1).

b.2) The subcase κ1 = 0. Then due to µ2 6= 0 (i.e. c 6= 0) by (58) we have d = (1 − c)/c. So for systems

(57) we calculate

(59)

K̃ = κ1 = θ6 = 0, M̃ = −8(cx− y)2 = G, K2 = 96c2(cx− y)2,

µ2 = (cx− y)2, σ = 1 + c− 2cx+ 2y, F1 = H = B = B1 = B2 = 0,

B3 = −72(c− 1)(1 + c)(cx− y)2 = −72ρ1ρ2(cx− y)2.

Considering (59) by [33] (see the Main Theorem, the statement (e3)[δ]) the saddle will be weak (more precisely

will be an integrable one) if and only if B3 = 0. Moreover by Remark 16 besides the integrable saddle we have

a star node. Since K2 > 0 and θ6 = 0 considering Lemma 6 we obtain the following two global configuration

of singularities:

s, n;
(
2
2

) y
P

x
P H−

y
P

x
P H, N∗: Example ⇒ (c = 2, d = −1/2, h = 1, k = −1/2) (if B3 6= 0);

$, n∗;
(
2
2

) y
P

x
P H−

y
P

x
P H, N∗: Example ⇒ (c = 1, d = 0, h = 1, k = −1) (if B3 = 0).

As all possible cases are examined, we have proved that the family of systems with two distinct real finite

singularities possesses exactly 151 geometrically distinct global configurations of singularities.

6.3. The family of quadratic differential systems with only one finite singularity which in addition

is of multiplicity two. Assuming that quadratic systems (2) possess a double singular point, according to

[33] (see Table 2) we have to consider two cases: K̃ 6= 0 and K̃ = 0.

6.3.1. Systems with K̃ 6= 0. In this case, following [33] (see Table 2), we consider the family of systems

(60) ẋ = dy + gx2 + 2dxy, ẏ = fy + lx2 + 2fxy,

possessing the double singular point M1,2(0, 0). For these systems calculations yield

(61) µ0 = µ1 = 0, µ2 = (dl − fg)2x2, κ = 128d2(dl − fg), T4 = 4d2f2(dl − fg)2.

Remark 17. We observe that the family of systems (60) depends on four parameters. However due to a

rescaling we can reduce the number of the parameters to two. More precisely since by the condition µ2 6= 0

we have d2 + f2 6= 0, then we may assume d, f ∈ {(1, 1), (1, 0), (0, 1)} due to the rescaling: (i) (x, y, t) 7→
(x, fy/d, t/f) if df 6= 0; (ii) (x, y, t) 7→ (x, y/d, t) if f = 0 and (iii) (x, y, t) 7→ (x, y, t/f) if d = 0.

Considering (61) and µ2 6= 0, the condition d = 0 is equivalent to κ = 0 and in the case κ 6= 0 the condition

f = 0 is equivalent to T4 = 0.

6.3.1.1. The case κ 6= 0.
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6.3.1.1.1. The subcase T4 6= 0. Then we have df 6= 0 and considering Remark 17 we may assume d = f = 1.

So we obtain the 2-parameter family of systems

(62) ẋ = y + gx2 + 2xy, ẏ = y + lx2 + 2xy,

for which calculations yield

(63)

µ0 = µ1 = 0, µ2 = (g − l)2x2, K̃ = 4(g − l)x2, G8 = 2(g − l)2,

T4 = 4(g − l)2 = G1, κ = 128(l− g), η = 4
[
(g + 2)2 + 8(l − g)

]
,

M̃ = −8
[
(g − 2)2 + 6l

]
x2 + 16(2− g)xy − 32y2.

Remark 18. We observe that M̃ 6= 0 and µ2 > 0. Moreover the condition κ > 0 implies η > 0.

As G8G1 6= 0 according to [5] (see Table 1, line 171) the double finite singular point is a saddle-node.

1) The possibility κ < 0. As M̃ 6= 0 and µ2 > 0, by Lemma 6 we get the following three global configurations

of singularities:

sn(2);
(
2
1

)
N, c©, c© : Example ⇒ (g = 0, l = −1) (if η < 0);

sn(2);
(
2
1

)
N,S,N∞ : Example ⇒ (g = 0, l = −1/4) (if η > 0);

sn(2);
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (g = 0, l = −1/2) (if η = 0).

2) The possibility κ > 0. By Remark 18 we have η > 0 and according to Lemma 6 we arrive at the

configuration sn(2);
(
2
1

)
S,Nf , Nf : Example ⇒ (g = 0, l = 1).

6.3.1.1.2. The subcase T4 = 0. Then we have d 6= 0, f = 0 and considering Remark 17 we may assume

d = 1. So we obtain the 2-parameter family of systems:

(64) ẋ = y + gx2 + 2xy, ẏ = lx2,

for which calculations yield

(65)
µ0 = µ1 = 0, µ2 = l2x2, K̃ = −4lx2, G8 = 2l2, G1 = 0,

κ = 128l, η = 4(8l+ g2), M̃ = −8(6cl+ g2)x2 − 16gxy − 32y2.

As G8 6= 0 and G1 = 0 according to [5] (see Table 1, line 175) the double finite singular point is a cusp.

1) The possibility κ < 0. As M̃ 6= 0 and µ2 > 0, by Lemma 6 we get the following three global configurations

of singularities:

ĉp(2);
(
2
1

)
N, c©, c© : Example ⇒ (g = 2, l = −1) (if η < 0);

ĉp(2);
(
2
1

)
N,S,N∞ : Example ⇒ (g = 2, l = −1/4) (if η > 0);

ĉp(2);
(
0
2

)
SN,

(
2
1

)
N : Example ⇒ (g = 2, l = −1/2) (if η = 0).

2) The possibility κ > 0. We observe that the condition κ > 0 implies l > 0 and then η = 4(8l + g2) > 0.

So considering Lemma 6 we arrive at the global configuration of singularities

ĉp(2);
(
2
1

)
S,Nf , Nf : Example ⇒ (g = 1, l = 1).

6.3.1.2. The case κ = 0. Then for systems (60) we have d = 0 and by Remark 17 we may assume f = 1. So

we get the family of systems

(66) ẋ = gx2, ẏ = y + lx2 + 2xy,

for which calculations yield

(67)
µ0 = µ1 = 0, µ2 = g2x2, K̃ = 4gx2, η = κ = G8 = 0, K2 = 0,

L̃ = 8g(g − 2)x2, M̃ = −8(g − 2)2x2, C2 = −lx3 + (g − 2)x2y.

As G8 = 0 and K̃ 6= 0 according to [5] (see Table 1, line 172) the double finite singular point is a saddle-node.
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6.3.1.2.1. The subcase K̃ < 0. Then g < 0 and this implies M̃ 6= 0. As µ2 > 0 and K2 = 0 considering

Lemma 6 we obtain the configuration sn(2);
(
2
2

) y
P H−

y
P H, Nf : Example ⇒ (g = −1, l = 0).

6.3.1.2.2. The subcase K̃ > 0. In view of Lemma 6 we consider two possibilities: L̃ 6= 0 and L̃ = 0.

1) The possibility L̃ 6= 0. Then g− 2 6= 0 and we have M̃ 6= 0. So taking into account the conditions µ2 > 0

and K2 = 0, by Lemma 6 we get the following two global configurations of singularities:

sn(2);
(
2
2

) x
P E−

x
P E, S : Example ⇒ (g = 1, l = 0) (if L̃ < 0);

sn(2);
(
2
2

) y
P H−

y
P H, N∞ : Example ⇒ (g = 3, l = 0) (if L̃ > 0).

2) The possibility L̃ = 0. In this case g = 2 and this implies M̃ = 0. As µ2 > 0 and K2 = 0, by Lemma 6

we arrive at the following two global configurations of singularities

sn(2);
(
2
3

)
HE−

x
P

x
P : Example ⇒ (g = 2, l = 1) (if C2 6= 0);

sn(2); [∞; Nd] : Example ⇒ (g = 2, l = 0) (if C2 = 0).

6.3.2. Systems with K̃ = 0. In this case according to [33] (see Table 2) we consider the following family of

systems

(68) ẋ = cx+ dy, ẏ = lx2 + 2mxy + ny2, 0 6= c2n− 2cdm+ d2l ≡ Z,

for which we calculate

(69)

µ0 = µ1 = κ = 0, µ2 = Z(lx2 + 2mxy + ny2), K̃ = 0,

L̃ = 8n(lx2 + 2mxy + ny2), η = 4n2(m2 − ln),

θ2 = −d(m2 − ln), M̃ = −8(4m2 − 3ln)x2 − 16mnxy − 8n2y2,

G8 = 2n(ln−m2)Z, G1 = 4c2n(ln−m2)Z = T4.

6.3.2.1. The case L̃ 6= 0. We consider two subcases: η 6= 0 and η = 0.

6.3.2.1.1. The subcase η 6= 0. In this case G8 6= 0 and we examine two possibilities: T4 6= 0 and T4 = 0.

1) The possibility T4 6= 0. Then we have cn 6= 0 and due to the rescaling (x, y, t) 7→ (x, cy/n, t/c) we may

assume c = n = 1. So we get the family of systems

(70) ẋ = x+ dy, ẏ = lx2 + 2mxy + y2, 0 6= 1− 2dm+ d2l ≡ Z ′,

where we may consider d ∈ {0, 1} due to the rescaling x → dx if d 6= 0. For these systems we have

T4 = 4(l−m2)Z ′ = G1 = 2G8, η = 4(m2 − l), θ2 = d(l −m2),

µ2 = Z ′(lx2 + 2mxy + y2), L̃ = 8(lx2 + 2mxy + y2).

As G8G1 6= 0 according to [5] (see Table 1, line 171) the finite singular point is a saddle-node.

a) The case η < 0. Considering Lemma 6 we get the following two global configurations of singularities:

sn(2); N
d,
(
1
1

)
c©,
(
1
1

)
c© : Example ⇒ (d = 1, l = 1, m = 0) (if θ2 6= 0);

sn(2); N
∗,
(
1
1

)
c©,
(
1
1

)
c© : Example ⇒ (d = 0, l = 1, m = 0) (if θ2 = 0).

b) The case η > 0. We observe, that sign (µ2L̃) = sign (Z ′). Moreover if d = 0 we obtain Z ′ = 1 > 0. So

considering Lemma 6 we arrive at the following three global configurations of singularities:

sn(2);
(
1
1

)
SN,

(
1
1

)
SN, Nd : Example ⇒ (d = 1, l = 0, m = 1) (if µ2L̃ < 0);

sn(2);
(
1
1

)
SN,

(
1
1

)
NS, Nd : Example ⇒ (d = 1, l = 0, m = −1) (if µ2L̃ > 0, θ2 6= 0);

sn(2);
(
1
1

)
SN,

(
1
1

)
NS, N∗ : Example ⇒ (d = 0, l = 0, m = 1) (if µ2L̃ > 0, θ2 = 0).



ALGORITHM FOR DETERMINING THE GEOMETRIC CONFIGURATIONS FOR QUADRATIC SYSTEMS 59

2) The possibility T4 = 0. By (69) due to the condition η 6= 0 we obtain c = 0 and then dln 6= 0. So via the

rescaling (x, y, t) 7→ (dx/n, y/n, t) we may assume n = d = 1 and we arrive at the family of systems

(71) ẋ = y, ẏ = lx2 + 2mxy + y2.

We observe that we may assume m ∈ {0, 1} due to the rescaling (x, y, t) 7→ (x,my, t/m) if m 6= 0. For these

systems we calculate

G1 = 0, G8 = 2l(l−m2), η = 4(m2 − l), θ2 = l −m2,

µ2 = l(lx2 + 2mxy + y2), L̃ = 8(lx2 + 2mxy + y2).

So the condition ηµ2 6= 0 implies G8 6= 0 and due to G1 = 0 by [5] (see Table 1, line 175) the double finite

singular point is a cusp.

On the other hand we have θ2 6= 0 and sign (µ2L̃) = sign (l). So considering Lemma 6 we get the following

three global configurations of singularities:

ĉp(2); N
d,
(
1
1

)
c©,
(
1
1

)
c©: Example ⇒ (l = 1, m = 0) (if η < 0);

ĉp(2);
(
1
1

)
SN,

(
1
1

)
SN, Nd : Example ⇒ (l = −1, m = 1) (if η > 0, µ2L̃ < 0);

ĉp(2);
(
1
1

)
SN,

(
1
1

)
NS, Nd : Example ⇒ (l = 1, m = 2) (if η > 0, µ2L̃ > 0).

6.3.2.1.2. The subcase η = 0. As n 6= 0 (due to L̃ 6= 0) we may assume n = 1 due to a rescaling. So

considering (69) the condition η = 0 gives m2 − l = 0 and we obtain l = m2. Then for systems (68) we have

µ2 = (c− dm)2(mx + y)2, κ1 = 32m(c− dm),

and as µ2 6= 0 the condition κ1 = 0 is equivalent to m = 0.

1) The possibility κ1 6= 0. Then m 6= 0 and we may assume m = 1 due to the rescaling x → x/m. Therefore

we arrive at the family of systems

(72) ẋ = cx+ dy, ẏ = (x+ y)2,

for which we calculate

(73)

η = κ = G8 = 0, µ2 = (c− d)2(x+ y)2, K̃ = Ñ = 0,

L̃ = 8(x+ y)2, M̃ = −8(x+ y)2, θ5 = 96(c− d)d(x + y)3,

κ1 = 32(c− d), F3 = 24c(c− d)(x + y), B1 = 2c2(c− d)2.

a) The case B1 6= 0. Then c 6= 0 and we may assume c = 1 due to the rescaling (x, y, t) 7→ (cx, cy, t/c). We

observe that in this case F3 6= 0 and as G8 = K̃ = Ñ = 0, according to [5] (see Table 1, line 174), the finite

singular point is a saddle-node.

On the other hand we have η = κ = K̃ = 0 and M̃L̃κ1 6= 0. Therefore considering Lemma 6 we obtain the

following two global configurations of singularities:

sn(2);
(̂
2
2

) y
Pf

x
P Hf−H, Nd : Example ⇒ (c = 1, d = 2) (if θ5 6= 0);

sn(2);
(̂
2
2

) y
Pf

x
P Hf−H, N∗ : Example ⇒ (c = 1, d = 0) (if θ5 = 0).

b) The case B1 = 0. Then c = 0 and this implies F3 = 0. So by [5] (see Table 1, line 177) the double finite

singular point is a cusp. As in this case θ5 = −96d2(x + y)3 6= 0 (due to µ2 = d2(x + y)2 6= 0), considering

(73) and Lemma 6 we get the configuration ĉp(2);
(̂
2
2

) y
Pf

x
P Hf−H, Nd: Example ⇒ (c = 0, d = 1).

1) The possibility κ1 = 0. In this case we have m = 0 and this leads to the family of systems

(74) ẋ = cx+ dy, ẏ = y2,

for which we calculate µ2 = c2y2, F3 = 24c2y, K2 = 0, θ6 = −8dy4 and therefore the condition µ2 6= 0

implies F3 6= 0. So the double finite singularity is a saddle-node and considering Lemma 6 we obtain the

following two global configurations of singularities:
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sn(2);
(
2
2

) y
P H−

y
P H, Nd : Example ⇒ (c = 1, d = 1) (if θ6 6= 0);

sn(2);
(
2
2

) y
P H−

y
P H, N∗ : Example ⇒ (c = 1, d = 0) (if θ6 = 0).

6.3.2.2. The case L̃ = 0. Then for systems (68) we have n = 0 and then d 6= 0 (otherwise we get degenerate

systems). So we may assume d = 1 (due to a rescaling) and we obtain the family of systems

(75) ẋ = cx+ y, ẏ = lx2 + 2mxy,

for which we calculate

(76)
η = κ = G8 = K̃ = L̃ = 0, µ2 = (l − 2cm)x(lx+ 2my), Ñ = −4m2x2,

M̃ = −32m2x2, G10 = c2m3(l − 2cm), B1 = 2c2m(l − 2cm).

6.3.2.2.1. The subcase M̃ 6= 0. Then m 6= 0 and we may assume m = 1 due to the rescaling (x, y, t) 7→
(x/m, y/m, t). Moreover for systems above with m = 1 we may consider c ∈ {0, 1} due to the rescaling

(x, y, t) 7→ (cx, c2y, t/c) if c 6= 0.

Therefore we have Ñ 6= 0 and by [5] (see Table 1, lines 173,176) the finite singular point is a saddle–node

if G10 6= 0 and it is a cusp if G10 = 0. We observe that the condition G10 = 0 is equivalent to B1 = 0. So as

M̃ 6= 0 and L̃ = 0, considering Lemma 6 we obtain the following two global configurations of singularities:

sn(2);
(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN : Example ⇒ (c = 1, m = 1, l = 1) (if B1 6= 0);

ĉp(2);
(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN : Example ⇒ (c = 0, m = 1, l = 0) (if B1 = 0).

6.3.2.2.2. The subcase M̃ = 0. Then m = 0 and l 6= 0 (otherwise we get degenerate systems). Hence we

may assume l = 1 due to the rescaling (x, y, t) 7→ (x/l, y/l, t). Then for systems (75) with m = 0 and l = 1

considering (76) we obtain

M̃ = K̃ = Ñ = G8 = 0, C2 = −x3, F3 = −24cx, B4 = 6cx2(cx+ y).

So by [5] (see Table 1, lines 174,177) the finite singular point is a saddle–node if F3 6= 0 and it is a cusp if

F3 = 0. We observe that the condition F3 = 0 is equivalent to B4 = 0. Considering the conditions above

according to Lemma 6 we obtain the following two global configurations of singularities

sn(2);
(̂
2
3

) y
Pf

x
P −

y
Pf

x
P : Example ⇒ (c = 1, m = 0, l = 1) (if B4 6= 0);

ĉp(2);
(̂
2
3

) y
Pf

x
P −

y
Pf

x
P : Example ⇒ (c = 0, m = 0, l = 1) (if B4 = 0).

Since all possibilities are examined for this case, we have proved that the family of systems with a single finite

real singular point which is of multiplicity two possesses exactly 30 geometrically distinct global configurations

of singularities.

With this the whole proof of our Min Theorem is finished.
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