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RECTIFIABLE MEASURES, SQUARE FUNCTIONS INVOLVING
DENSITIES, AND THE CAUCHY TRANSFORM

XAVIER TOLSA

ABSTRACT. This paper is devoted to the proof of two related results. The first one asserts that
if 4 is a Radon measure in R? satisfying

1
lim sup M >0 and /
r 0

r—0

2 dr
— < o0

w(B(z,r)  p(B(z,2r))
r 2r

for p-a.e. z € R?, then 1 is rectifiable. Since the converse implication is already known to
hold, this yields the following characterization of rectifiable sets: a set E C R? with finite
1-dimensional Hausdorff measure H' is rectifiable if and only

/1 H (ENB(z,r) H(ENB(x,2n)|" dr

— < 0 for H'-a.e. z € E.
r 2r r

The second result of the paper deals with the relationship between a similar square function
in the complex plane and the Cauchy transform C,f(z) = [ zig f(&)du(€). Suppose that
has linear growth, that is, u(B(z,7)) < cr for all z € C and all » > 0. It is proved that C, is
bounded in L?(y) if and only if

oo 2
/ / wQAB(=m) M@0 B(2r) ‘ % du(z) < cp(Q)  for every square @ C C.
z€EQ YO

r 2r
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1. INTRODUCTION

A set E C R? is called n-rectifiable if there are Lipschitz maps f; : R* — R%, i =1,2,...,
such that

(1) w (=AU sEn) =0

where H" stands for the n-dimensional Hausdorff measure. Also, one says that a a Radon
measure p on R? is n-rectifiable if 4 vanishes out of an n-rectifiable set E C R? and moreover
p is absolutely continuous with respect to H"|g. On the other hand, E is called purely n-
unrectifiable if for H"(F N E) = 0 for any n-rectifiable set F' C R%. In the case n = 1, instead
of saying that a set or a measure is 1-rectifiable, one just says that it is rectifiable.

One of the main objectives of geometric measure theory consists in characterizing n-rectifiable
sets and measures in different ways. For instance, there are characterizations in terms of the
almost everywhere existence of approximate tangent planes, in terms of the size of projections
on n-planes, and in terms of the existence and densities. To describe the latter characterization
in detail, we need to introduce some terminology.

Given a Radon measure p and 2 € R? we denote

©™*(x, u) = limsup M, O (z, 1) = liminf u(B(z,r))
r—0 (2r) 70 (2r)m
These are the upper and lower n-dimensional densities of p at x. If they coincide, they are
denoted by ©"(z, ). In the case when p = H"| for some set E C R%, we also write O™*(z, F),
O} (z,E), O"(z, E) instead of ©™*(z, H"|g), O} (z, H"|g), ©"(x,H"|E), respectively.

The following result is due to Besicovitch for n = 1, d = 2, to Marstrand [Mar] for n = 2,

d = 3, and to Mattila [Mat1] for arbitrary n,d.

Theorem A. Let n be a positive integer and let E C R? be H"-measurable with H"(E) < co.
We have:

(a) E is n-rectifiable if and only if O™ (x, E) exists and equals 1 for H"-a.e. x € E.
(b) E is purely n-unrectifiable if and only if ©7(x, E) <1 for H"-a.e. x € E.
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Another fundamental result concerning the relationship between rectifiability and densities
is given by the following celebrated theorem of Preiss [Pr].

Theorem B. A Radon measure p in R?® is n-rectificable if and only if the density O™(x, i)
exists and is non-zero for u-a.e. v € RY.

In particular, for p = H"|E with H"(E) < oo, the preceding theorem ensures the n-
rectifiability of E just assuming that the density ©"(z, E') exists and is non-zero for H"-a.e.
rekl.

Quite recently, in the works [CGLT] and [TT], the authors have obtained some results which
can be considered as square function versions of Preiss theorem. In particular, in [TT] the
following is proved:

Theorem C. Let p be a Radon measure in R such that 0 < O%(x, ) < ©™*(z, 1) < oo for
p-a.e. x € RE. Then p is n-rectifiable if and only if

! z,r z,2r)) | dr
(1.2) /0 M(Bin’ ) _ M(]?;ij ) dT <oo  for p-ae. v € RY,

This theorem was preceded by the proof of a related result in [CGLT] which characterizes
the so called uniform n-rectifiability in terms of a square function similar to the one in (1.2).
See the next section for the precise definition of uniform rectifiability and the statement of this
result.

A natural question is if the condition (1.2) above implies the n-rectifiability of E just under
the assumption that 0 < ©™*(z, 1) < co p-a.e. If this were true, then we would deduce that a
set B C RY with H"(FE) < oo is n-rectifiable if and only if

1 n n 2
/ H(EN B(z,7)) — H'(EN B(z,2r)) ﬁ < oo for H"ae. z € E.
0 rn (2r)" r

The arguments used in [TT] make an essential use of the assumption that the lower density
O.(z, ) is positive. So different techniques are required if one wants to extend Theorem C
to the case of vanishing lower density. In the present paper we solve this problem in the case
n=1:

Theorem 1.1. Let pu be a Radon measure in R? such that ©Y*(x,u) > 0 for p-a.e. x € RY,
Then p is rectifiable if and only if

' z,T z,2r)) |* dr
(1.3) /0 pB(x,r))  p(B(x,2 ))’ d

— < oo for p-a.e. x € RY,
Corollary 1.2. Let E C R? be a Borel set with H'(E) < co. The set E is rectifiable if and

,
only if
1
/

I do not know if the analogous result in the case n > 1 holds.

Note that the “only if” part of Theorem 1.1 is an immediate consequence of Theorem C
above. Indeed, if ;i is rectifiable, then it follows easily that 0 < ©F(x, u) < ©™*(x, u) < oo for
p-a.e. z € R9. So the assumptions of Theorem C are fulfilled and thus (1.2) holds.

r 2r

1 1 2
HY(EN B(z,r)) H (EmB(x,2r))‘ % <o forHlne zcE.

r 2r
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In the present paper we prove the “if” implication of Theorem 1.1. This combines a compact-
ness argument which originates from [CGLT] and constructive techniques involving stopping
time conditions. One of the main difficulties, which is absent in [TT], consists in controlling
the oscillations of the densities 2B a5y —5 0. If the power in the integrand of (1.3) were 1
instead of 2, then this task would be significantly easier, and we could argue as in [TT] or as in
[ADT].

In our arguments, a basic tool for the control of such oscillations of the density is the con-
struction of suitable measures o* supported on some approximating curves I'* so that, for each
k, o® has linear growth with some absolute constant and such that the L?(c*) norm of a smooth
version of the square function in (1.3), with p replaced by o*, is very small. The main obstacle
to extend Theorem 1.1 to higher dimensions lies in the difficulty to extend this construction to
the case n > 1.

In the final part of this paper we prove a striking connection between the boundedness in
L?(p1) of the square function

Tu(z) = </Ooo ‘M(B(a?,r)) B w(B(x,2r)) ’2 £> 1/2

T 2r T

and the L?(u) boundedness of the Cauchy transform. Recall that given a complex Radon
measure v on C, its Cauchy transform is defined by

1
C = dv(§),
o) = [ a9
whenever the integral makes sense. For € > 0, the e-truncated Cauchy transform of v is given
by

Cgu(z):/| ! dv(§).

Z—€|>e X T 3
Note that the last integral is absolutely convergent for all z € C, unlike the integral defining
Cv(z), in general. Given f € LP(u), one denotes C,f = C(f p) and Cpof = C(f p). One says
that C, is bounded in LP(y) if and only if the operators C, . are bounded in L”(y) uniformly
on e > 0.

In the particular case when pu = H!|g with H!(E) < oo, by the theorem of David-Léger [Lé],
the L?(x) boundedness of C, implies the rectifiability of E. So it is natural to expect some
relationship between the behaviors of the Cauchy transform of p and of the square function
Tp. The next theorem, which is the second main result of this paper, shows that indeed there
is a very strong and precise connection between the L?(x) boundedness of C,, and the L?(u)
behavior of T for arbitrary measures p with linear growth.

Theorem 1.3. Let p be a finite Radon measure in C satisfying the linear growth condition
w(B(x,r)) <cr for all x € C and all r > 0.
The Cauchy transform C,, is bounded in L?(u) if and only if

(1.4)
/ /m’u(QﬁB(x,T)) _ QN B(,2r))
z€Q JO

d
a du(x) <cu(Q)  for every square Q C C.
r 2r r
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The behavior of the square function T'u is related to the cancellation properties of the densities
M, x € C, r > 0. On the other hand, heuristically the L?() boundedness of C,, seems to

be I;lOI’e connected to the behavior of the approximate tangents to p. So it is quite remarkable
(to the author’s point of view) that the behavior of T'u is so strongly connected to the L?(p)
boundedness of C,,, as shown in the preceding theorem.

The proof of Theorem 1.3 uses a corona decomposition analogous to the one of [Tol]. We
will see in this paper that, loosely speaking, the condition (1.4) is equivalent to the existence
of a corona decomposition such as the one mentioned above, which in turn is equivalent to the

L?() boundedness of the Cauchy transform because of the results of [Tol].

The plan of the paper is the following. In Section 2 we introduce some notation and termi-
nology and we review some results which will be needed later. Section 3 contains a blow up
argument which, roughly speaking, shows that, given a ball B(xzg, 1), if

/5‘”‘0 p(B(x,r))  p(B(,2r))|* dr
oro

T 2r T
is very small for a big proportion in measure p of points z € B(xq,d 1), with § > 0 sufficiently
small, then the measure p is close to a flat measure in B(xg,79). The argument is quite similar
to the one used for the AD-regular case in [CGLT] (see Section 2 for the definition of AD-regular
measures). Next, in Section 4 we review the construction of the dyadic cells from David-Mattila
[DaM], which will be very useful for the proof of Theorem 1.1.
In Section 5 we state the Main Lemma 5.1. In a sense, this lemma asserts, in some quantitative
way, that given a doubling dyadic cell R with side length £(R), if

/“W W(B(a,r)  p(B,2r) | dr
0

r 2r r
is very small for a big proportion in pu-measure of the points x near R and ¢ is small enough,
then either a big proportion of the measure u|g is concentrated on an AD-regular curve, or
”(Bgfc’r)) < “(B(ZE%R))) for many points € supp i and some r = r(z) < ¢(R). In the same
section, we show how Theorem 1.1 follows from the Main Lemma 5.1 by means of a suitable
corona type decomposition.

Sections 6-16 are devoted to the proof of the Main Lemma. In Sections 6-9 we introduce some
stopping cells and an auxiliary measure g and we prove some related results. In Section 10 we
construct some AD-regular curves I'* and in Section 12 we construct measures v* supported on
I'* which, in a sense, approximate p. Section 14 deals with the construction of the aforemen-
tioned auxiliary measures 0¥, which are supported on I'*. In this section we also obtain some
suitable square function estimates involving o, which will be used in the subsequent section to
estimate the L?(o*) norm of the density of v* with respect to o*. This is the main ingredient
used in Section 16 to show that there are very few stopping cells of high density, and to finish
the proof of the Main Lemma.

Sections 17-19 deal with the proof of Theorem 1.3. By means of the Main Lemma 5.1,
in Section 17 it is shown that if the condition (1.4) holds, then one can construct a corona
type decomposition for p analogous to the one of [Tol], which suffices to show that the Cauchy
transform is bounded in L?(p). In the subsequent section, some Calderén-Zygmund type results
are obtained for the square function operator 7, f := T'(fu), which will be necessary later to
show the remaining implication of Theorem 1.3, namely that the L?(x) boundedness of C,
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implies (1.4). This is proved in the final Section 19 of this paper, relying on the corona type
decomposition for p constructed in [Tol].

2. PRELIMINARIES

In this paper the letters ¢, C stand for some constants which may change their values at
different occurrences. On the other hand, constants with subscripts, such as ¢;, do not change
their values at different occurrences. The notation A < B means that there is some fixed
constant ¢ (usually an absolute constant) such that A < ¢ B. Further, A &~ B is equivalent to
A S B S A We will also write A =, ¢, B and A S, 0, B if we want to make explicit the
dependence on the constants ¢; and ¢ of the relationships “~” and “<”.

2.1. AD-regular and uniformly rectifiable measures. A measure p is called n-AD-regular
(or just AD-regular or Ahlfors-David regular) if there exists some constant ¢y > 0 such that

cgtr™ < p(B(z,r)) < cor™  for all z € supp(u) and 0 < r < diam(supp(p)).

A measure p is uniformly n-rectifiable if it is n-AD-regular and there exist 6, M > 0 such
that for all z € supp(u) and all r > 0 there is a Lipschitz mapping ¢ from the ball B, (0,r) in
R"™ to R? with Lip(g) < M such that

w(B(z,r) N g(Bn(0,r))) = Or".

In the case n = 1, p is uniformly 1-rectifiable if and only if supp(u) is contained in a rectifiable
curve I' in R such that the arc length measure on T' is 1-AD-regular.

A set E C R? is called n-AD-regular if H"|g is n-AD-regular, and it is called uniformly
n-rectifiable if H"|g is uniformly n-rectifiable.

The notion of uniform rectifiability was introduced by David and Semmes [DaS1], [DaS2].
In these works they showed that a big class of singular singular integrals with odd kernel is
bounded in L?(p) if g is uniformly rectifiable. See [NToV] for a recent related result in the
converse direction involving the n-dimensional Riesz transforms.

In [CGLT] it is shown that uniform n-rectifiability can be characterized as follows.

Theorem 2.1. Let u be an n-AD-reqular measure. Then p is uniformly n-rectifiable if and
only if there exists a constant ¢ such that, for any ball B(xo, R) centered at supp(u),

[ /R w(B,r) (B2 | dr
z€B(zo,R) JO

B r
2.2. The 8 and « coefficients. Given a closed ball B C R?, we set

T 2r
) 1 dist(y, L)
Bun(B) =gt — [ S ),

where r(B) stands for the radius of B and the infimum is taken over all the lines L. The L>
version is the following:

du(z) < cR™

) dist(y, L)
Buoo(B) =inf sup ——Z".
a ( ) L yEBNsupp T(B)
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The analogous bilateral coefficients are defined by

bBr (B) = iILlf[ 1 / dist(y, L) duly) + 1 / dist(z, supp p) d?-[l(x)],
B LNB

n(B) r(B) r(B) r(B)
and
. dist(y, L) dist(z, supp )
bBu.co(B) = mf[ sup ———+ sup ——=
ool B) L |yeBrsupppu T(B) yeLNB r(B)

Below we will use the so called « coefficients from [To2]. They are defined as follows. Given
a closed ball B C R? which intersects supp(p), and two Radon measures o and v in R? | we set

distg(o,v) := sup{‘ffdo — ffdy‘ : Lip(f) <1, supp f C B},

where Lip(f) stands for the Lipschitz constant of f. It is easy to check that this is indeed a
distance in the space of finite Borel measures supported in the interior of B. See [Chapter 14,
Ma] for other properties of this distance. In fact, this is a variant of the well known Wasserstein
distance W from mass transport. Given a subset A of Radon measures in R%, we set

dist := inf dist .
istp(u, A) == inf distp(y, o)

We define

1
a,(B) = ir(l)fL distp(u, cH|L),

r(B) y(B) e
the infimum is taken over all the constants ¢ > 0 and all the lines L. Also, we denote by cp
and Lp a constant and a line that minimize distp, (1, ¢H'|L), respectively (it is easy to check
that this minimum is attained). We also write Lp := cgH!|L,, so that

au(B) = distp(p, Lp).

r(B)u(B)

Let us remark that ¢g and Lp (and so £g) may be not unique. Moreover, we may (and will)
assume that Lp N B # @.

Lemma 2.2. Let B, B’ C R? be two balls. The coefficients a,(-) satisfy the following properties:
(a) au(B) S 1.
(b) If BC B, r(B) = r(B’), and u(B) ~ p(B'), then o, (B) S au(B').
(c) If n(3B) ~ w(B) and ou(B) < c1, where ¢i is some constant small enough, then
LBH%B;«EQ and cg ~ ifgg;

Proof. The statements (a) and (b) are direct consequences of the definitions.
Let us turn our attention to (c). To show that Lp N 3B # @ if ¢; is small enough, take a
smooth function function ¢ such that x1,5 < ¢ < x15 with |Vl < 1/7(B). Then we have
4 2

IV(edist(-, L))l <

~

1, and since @ dist(-, Lp) vanishes on Lp, we have

[ elontisi(e, o) du(o)| < e, (8)(B) ().
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On the other hand,

/ o(@)dist(z, L) du(x) > dist(supp(e), L) / o dps

Z dist(supp(p), Lp) p(3B)
~ dist(supp(p), Lg) u(B).

If a,,(B) is small enough we infer that dist(supp(¢), L) < r(B)/10, and so Lp N 3B # .
Let us check now that cg ~ %. Let 9 be a smooth function such that X1p <Y < xp and

IVY|loo < 1/7(B). Then
fon foi

[ du - CaBuB) < cn [van!lu, < [vdu+ CanBIu(b)

S au(B)u(B).

Thus,

From the second inequality, we deduce easily that cg < #PB) From the first one, we see that if

S W)
a,(B) < ¢1, where ¢; is small enough, then
1 1
i [WaH! Ly = 5 u(B) ~ Can(BIn(B) = 1u(B),
which implies that cg 2> u(B) O

~ r(B)”
We have the following relationship between f,,1(B), b1, (B) and o, (B):
Lemma 2.3. Let B C R? be a ball such that u(%B) ~ 1(2B). Then we have
Bu1(B) < 01(B) S au(2B).
In fact,

dist(y, Lp) dist(z,supppt) 01y oy o
/BT(B)M(B) du(y)+/LBmB rBe Tl (@) S eu2B).

This result has been proved in the case that p is AD-regular in [To2]. Almost the same
arguments work in the present situation.

Lemma 2.4. Let B, B' C R? be balls such that B C B’ which satisfy u(+B) ~ p(3B') ~ w(B'),
with r(B) ~ r(B’). Then we have

(2.1) distzy (LB NB', LgNB') < Cau(B)r(B),
where disty stands for the Hausdorff distance. Also,
(22) |CB — CB/| < CQM(B/).

This result has also been proved for p being AD-regular in [To2], and again the same argu-
ments are valid in the present situation.
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3. A COMPACTNESS ARGUMENT
Let F denote the family of 1-flat measures, that is, the family of measures o of the form
o=cHz,
where L is a line and ¢ > 0. Given x € R? and r > 0, we denote

Al ) = [HBET) _ (B2

and for a ball B C R?,

The main objective of this section is to prove the following result:

Lemma 3.1. Let € > 0 and let u be a Radon measure on R and By C R% some closed ball.
Given § > 0, denote by G(By,d) the collection of points x € R? such that

[ e < sty
o7(Bo) r
Suppose that 1(By N G(Bo,d)) > 0 and that
(61 By \ G(Bo,d)) < 6* u(671By).
If 6 is small enough, depending only on d and €, then
a,(2By) < e.

First we will need to prove some auxiliary results and to introduce some additional notation.
For any Borel function ¢ : R — R, let

1 T
or(x) = ?p <¥),t>0

and define
(3.1) Apolat) = / (ely — ) — oy — ) duly),

whenever the integral makes sense.

Lemma 3.2. Let ¢ : [0,00) — R be a C*° function supported in [0,2] which is constant in
[0,1/2]. Let x € RY and 0 < 71 < r9. For any 1 < p < 0o we have

T2 d 279 d
[ uetanr e [T aue et

T1 T‘1/2

where ¢ depends only on ¢ and p.

Proof. This follows by writing ¢ as a suitable convex combination of functions of the form x| .
For completeness we show the details. For s > 0, we write

B = [ ()t
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so that, by Fubini and changing variables,
(3.2)

St 0001; ¢ (7)ol -D *“(I)d”/om(zzla)z ¢ (53) o (1 - ]) = u(z) dr
— /000 (1) <% Xjor)(| - 1) * p(x) — %X[O’th“ ) * M($)> gt

2
:_/ t¢'(t) Ay, tR) dt,
1/2

taking into account that ¢ is supported on [1/2,2] in the last identity. As a consequence, since
[1t¢'()P'dt <1, by Cauchy-Schwarz we get

p 2 2r ds

< / A, tr)|P dt = / A, )P 2.
1/2 r/2 r

T2 d 2ro d
/ |A () / / (z,9)Pds r; N/ |A#(a:,s)\p—s.
T1 7‘1/2 S

Lemma 3.3. Let p be a non-zero Radon measure in RY.  Then p is 1-flat if and only if
Ay(z,r) =0 for all x € supp . and all r > 0.

|Au,¢($’r)‘p <

/ to'(t) Az, tr)dt
1/2

Thus

O

Proof. 1t is clear if ;1 1-flat, then A, (z,r) = 0 for all z € suppp and all » > 0. To prove the
converse implication it is enough to show that p is 1-uniform, that is, there exists some constant
¢ > 0 such that

w(B(z,r)) =cr for all € supp p and all r > 0.
It is well known that 1-uniform measures are 1-flat (see [Mat2, Chapter 17], for example).

We intend to apply Theorem 3.10 from [CGLT], which asserts that, if u is AD-regular and
Ay o(z,r) =0 for all z € supp p and all » > 0, with ¢(y) = e’|y|2, then p is 1-flat. To prove the
AD-regularity of y, assume for simplicity that 0 € supp p. Since A,(0,7) = 0 for all r > 0, we
deduce that u(B(0,2")) = 2" u(B(0,1)) for all n > 1. For x € supp N B(0,n) and any integer
m < n, using now that A, (x,7) = 0 for all r > 0, we infer that u(B(x,2™)) = 2™ "u(B(z,2")).
Since B(0,2" 1) C B(x,2") C B(0,2"!), we have

2" u(B(0,1)) < u(B(x,2")) < 2" u(B(0,1)).
Thus
2™ < p(B(z,2™)) < ¢ 27,

with ¢o = u(B(0,1)). Since n can be take arbitrarily large and the preceding estimate holds for
all m < n, the AD-regularity of u follows.
On the other hand, as in (3.2), we have

2
Bulor) == | O 8

and so A, ,(z,r) vanishes identically on supp p for all > 0, as wished. O
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Lemma 3.4. Let i be a Radon measure in R? such that 1 < pu(B(0,1)) < u(B(0,2)) < 9. For
all € > 0 there exists 6 > 0 depending only on d and € such that if

5
/ / Ap(,r)| dp(z ) L< g,
x€B(0,6~ 1) r

diStB(Og) (,U/, .F) <eE.

then

Proof. Suppose that there exists an € > 0, and for each m > 1 there exists a Radon measure
tm such that 1 < p,(B(0,1)) < pm(B(0, 2)) <9, which satisfies

1
(3.3) / / By ) () & <
1/m JzeB(0, m)
and
(3.4) dist g(o,2) (b, F) = €.

We will first show that the sequence {u,,} has a subsequence which is weakly * convergent (i.e.
when tested against compactly supported continuous functions). This follows from standard
compactness once we show that u,, is uniformly bounded on compact sets. That is, for any
compact K C R?, sup,, jt,m(K) < co. To prove this, for n >4, 1/4 <r < 1/2, and z € B(0,1),
we write

pn(B(0,2"7%) _ pm(B(2,2")) _ ¢ k1 pm (B(z,7))
27’L+2 S ALY Skz ,Ufm 2 )| r

3

<Y AL, (2, 2570) [+ 4 1 (B(0, 2)).
k=1

Integrating this estimate with respect to p on B(0,1) and with respect to r € [1/4,1/2], using
(3.3) for m big enough we obtain

1/2 ,
(B0, 27)) < 2742 lZ L L B 2 ) 1 (B10,2) | < ),

which proves the uniform boundedness of p,, on compact sets.

Our next objective consists in proving that p is a 1-flat measures. As shown in Lemma 3.3
it is enough to show that A,(z,7) = 0 for all # € suppp and all r > 0. Indeed, it is easy to
check that 1 < u(B(0,1)) < u(B(0,2)) <9, and thus p is not identically zero.

To prove that A, (x,r) vanishes identically on supp u for all » > 0, we will show first that,
given any C* function ¢ : [0,00) — R which is supported in [0,2] and constant in [0,1/2], we
have

(35) L[ 18l <o

The proof of this fact is elementary. Suppose that fi,,; converges weakly to p. Fix mg and let
n > 0. Set K = [1/mg, mo] x B(0,2mg). Now {y = ¢i(z —y) — pu(z —y), (t,z) € K} is
an equicontinuous family of continuous functions supported inside a fixed compact set, which
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implies that (¢; — @at) * fm; () converges to (¢ — w2r) * p(w) uniformly on K. It therefore
follows that
dt

J[ Vo= e s tan@ G =im [ Y= ) s @y ()5 =0
/mo EEB 0 mg)

by (3.3). Since this holds for any mgy > 1, our claim (3.5) is proved.
Denote by G the subset of those points = € supp(p) such that

o0 dr
A|%uxm—=a

It is clear now that G has full y-measure. By continuity, it follows that A, ,(x,r) = 0 for all

x € suppp and all » > 0. Finally, by taking a suitable sequence of C* functions ¢, which

converge to X[o,1) we infer that A, (z,r) =0 for all € suppp and 7 > 0, and thus p is 1-flat.
However, by condition (3.4), letting m — oo, we have

dist p(o,2) (1, F) > €,

because distp(g,2)(-, F) is continuous under the weak * topology, see [Mat2, Lemma 14.13]. So
w ¢ F, which is a contradiction. O

By renormalizing the preceding lemma we get:

Lemma 3.5. Let pu be a Radon measure in R? and let By ¢ R? be some ball such that 0 <
w(Bo) < w(2By) < 9u(By). For all € > 0 there exists 6 > 0 depending only on d and & such

that if
=1 r(Bo) dr ( )
|A,(z,r)|dp < 61/2 K ,
/(5T(Bo) /9066 1B, ()l du( ) r(Bo)

distop, (11, F) < e7(Bo) u(Bo).

Proof. Let T : RY — R? be an affine map which maps By to B(0,1). Consider the measure

o= #(EO) T#u, where as usual T#u(E) := p(T~1(E)), and apply the preceding lemma to

o. O

then

Lemma 3.6. Let j1 be a Radon measure on R and let x € R, r > 0, be such that u(B(x,r/2)) >

0. I
2r

o dt
A —<-—0 2
'r/2 H(x’ ) t 200 ( ( )) )
then
pu(B(z,2r)) <9u(B(x,r)).

Proof. Observe that

2r dt v dt

Az, t)? < :/ [Au(x,t)® + Ay, 2t)?] 7= % Ou(B(x,7))*.
r/2 r/2

Denote by o the measure dt/t on (0,00). Then, by Chebyshev,

o({ter/2,r]: [A,L(gc,t)2 + A, (x,2t) ] > A}) < 0, (B(z,7))2.

1
= 200\
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Thus, if we choose A = ©,(B(x,r))?/100, then there exists some ¢ € [r/2,7] such that

Aﬂ(xvt)2+A#($72t) < m(—) ( ( ))27
taking into account that o([r/2,r]) =log2 > 1/2. This implies that

< L o,(B ),

max (A, (z,t), Au(z,2t)) < 0

and so
|@#(B(a:,4t)) — @u(B(:v,t))| <Ap(x,t) + Ap(w,2t) < 1@,L(B(x,r)).

Then we deduce that
2
Ou(B(z,2r)) < 20,(B(z, 4)) < 20u(B(2,1)) + ¢ Ou(B(z, 7))

ot

< (4 + %) GH(B(I.’T)) = % @H(B(ZL‘,’I’)),

which is equivalent to saying that u(B(z,2r)) < % w(B(z,r)). O

Proof of Lemma 3.1. We set B(xg,79) := Bg. We will assume first that g € G(By,d) N
supp . We will show that if > 0 is small enough, the assumptions in the lemma imply that
0 < u(Bo) < u(2By) < 9u(Bp) and

()=t dr 172 #(Bo)*
(3.6) /Mm / i, 1Bl ) S < (492 B

Then the application of Lemma 3.5 finishes the proof (in the case zg € G(By,9)).
The constant § will be chosen smaller than 1/10, and so Lemma 3.6 ensures that

(3.7) 0 < u(2Bo) < 9 u(Bo) < 81 (3 Bo)-
For any = € G(By,d), we write
5717‘0 (571T0 1/2
(58) | B T < 21052 ( | st d—)
57"0 r 67‘0 r

< (24" log5_1)1/2 Ou(B(z,1)).
For z € (46) 7' By \ G(Bo, ) and and 4rg < r < (45)~'rg we use the brutal estimate
z,(20)7'r0)) _ p(B(zo, 6" r0))
491 - 4671 '

By integrating the estimate (3.8) on (46)~1 By N G(By, ) and (3.9) on (40)~1By \ G(Bo, )
and using that u(6 1By \ G(By,d)) < 6* u(6 1 By), we get

(3.10)

(49)~ dr B(xg,r
[ g, () < e gy EEERTOD (571
[ 0

(3.9) Ay (a,r)] < M5B

) T0 TO

54 M(B(ZCO, 6717‘0))2
4(57”’0 ’
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We will estimate (B (xg,d 'rg)) now. Without loss of generality we assume that § = 27",
for some big integer n. By changing variables, we have

2’% dr - & o dr
A, (zo,7) Z . u(o, 7 Z A, (0,2%7) -

27"ro k=—n+1 717«0 0/2 g="pny1

2"rg

Denote by o the measure dr/r on (0,00). Then, by Chebyshev,
4

({r € [ro/2, 7o) Z A, (z0,287)% > )\}) < %@u(30)2~

k=—n+1
Thus, if we choose, for instance A = §2 ©,(By)?, then there exists some ¢ € [ro/2, o] such that

S Ao 240 < 520,50
k=—n+1

taking into account that o([rg/2,70]) = log2 > 62, for ¢ small enough. From the fact that
A, (wo,2t) < 50,(Bo) for —n + 1 < k < n, we infer that

0,(B(w0,2"t)) < ©,(B(z0,1)) + ZA#(xoﬂkt) <20,(B(x0,70)) + (n+1) 6 0,(Bo).
k=0
Using that n = log(671)/log 2 and that ©,(B(z, 6 rp)) < 20, (B(z0,2" 1)), we get

©u(B(20,67'r0)) < (4+cd logd™") ©,(Bo) < 50,(Bo),
(B

for 6 small enough. This is equivalent to saying that u(B(wg,d 'rg)) < 5671 u(By). Plugging

this estimate into (3.10), we obtain

o dr
/ / 1A (z,7)| du(z) — < (¢ (log 612 + ¢4)
. 2€(48)~" Bo r

57’0

1(Bo)?
To ’

For § small enough the right hand side above is smaller than , as wished, and thus

(3.6) holds and we are done.

(46)'/2 u(Bo)?
0

Suppose now that z¢ & G(By,d) Nsupp . Let 1 € By N G(By, d) Nsupp i and consider the
ball By = B(x1,2rg). Since ©,(By) < 20,(B1), every x € G(By, 0) satisfies

(46— Hyr(B1) 0~1r(Bo)
/ Ao )P Y < / Do) D < 510,(By)? < (46)* ©,(By)*.
46r(By) r 6r(Bo) "

and thus z € G(B1,49). Therefore,
p((46) ") BI\G(B1,46)) < p(6~" Bo\G(Bo, 9)) < 6* (6" Bo) < 6* (6" By) < (40)* p(67"' By).

Thus, applying the conclusion of the lemma to the ball By, with § small enough, we deduce
that a,(2B1) < e. Taking also into account that lBl C 2By, by (3.7) applied to B; we have

1(2B1) < 81 (3 Br) < 81 u(2Bo),

and thus we get

a(2Bg) = 1nf distop, (1, cHY 1) <

1nf distap, (14, cH! L) S m

27“0 M(QB()) c>0
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Remark 3.7. By arguments very similar to the ones used in the preceding proof, one shows
that under the assumptions of Lemma 3.1, for all € G(By,d) N By, we have

B
w(B(x,r)) ~ 1(Bo) T for 6rg <7 < 8 g,
0

assuming ¢ small enough.

4. THE DYADIC LATTICE OF CELLS WITH SMALL BOUNDARIES

In our proof of Theorem 1.1 we will use the dyadic lattice of cells with small boundaries
constructed by David and Mattila in [DaM, Theorem 3.2]. The properties of this dyadic lattice
are summarized in the next lemma.

Lemma 4.1 (David, Mattila). Let p be a Radon measure on R?, E = supppu, and consider
two constants Cy > 1 and Ay > 5000 Cy. Then there exists a sequence of partitions of E into
Borel subsets Q, Q € Dy, with the following properties:

e For each integer k > 0, E is the disjoint union of the cells Q, Q € Dy, and if k < I,
Q € Dy, and R € Dy, then either QN R = or else Q C R.

e The general position of the cells Q can be described as follows. For each k > 0 and each
cell Q € Dy, there is a ball B(Q) = B(zg,r(Q)) such that

zg € E, AEkST(Q)ﬁcoAak»
ENB(Q)CQCEN28B(Q)=ENB(2q,28"(Q)),

and
the balls 5B(Q), Q € Dy, are disjoint.

o The cells QQ € Dy have small boundaries. That is, for each Q@ € Dy and each integer

[1>0, set
Nlext(Q> ={z e F\Q: dist(z,Q) < Aak*l}’
N;nt(Q) ={ze@: dist(z,F\ Q) < Aak:—l}7
and
N(Q) = N*H(Q) U NI™(Q).
Then
(4.1) 1(N1(Q)) < (C71Cy 347 Ag) ™! u(90B(Q)).

e Denote by ng the family of cells Q € Dy, for which

(4.2) #(100B(Q)) < Co (B(Q)),
and set By = Dy \ D{’. We have that r(Q) = Ay* when Q € By and

(4.3)  p(100B(Q)) < Cy'!t p(100" 1 B(Q))  for all 1 > 1 such that 100! < Cy and Q € By.
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We use the notation D = (J;5oDk. For Q € D, we set D(Q) = {P € D: P C Q}. Given
Q € Dy, we denote J(Q) = k. We set £(Q) = 56 Cy Agk and we call it the side length of Q.
Note that

1

55 Co (@) < diam(Q) < £(Q).
Observe that 7(Q) ~ diam(Q) ~ ¢(Q). Also we call zg the center of @, and the cell Q' € Dy,
such that Q" D @ the parent of Q. We set Bg = 28 B(Q) = B(zq,287(Q)), so that

ENsBg CQC Bg.
We assume Ay big enough so that the constant C‘lCa 3d=1 4, in (4.1) satisfies
Cley¥ 1Ay > AP > 0.
Then we deduce that, for all 0 < A <1,
(4.4)
p({z € Q:dist(x, E\ Q) < M(Q)}) + p{x € 4Bg : dist(z,Q) < M(Q)}) < eAV? u(3.5B0).

We denote D = J;+o DL and DP(Q) = D® N D(Q). Note that, in particular, from (4.2)

it follows that -
p(100B(Q)) < Cou(Q) it Q € DP.

For this reason we will call the cells from D% doubling.
As shown in [DaM, Lemma 5.28], any cell R € D can be covered p-a.e. by a family of doubling
cells:

Lemma 4.2. Let R € D. Suppose that the constants Ay and Cy in Lemma 4.1 are chosen
suitably. Then there exists a family of doubling cells {Q;}icr C D% with Q; C R for all i, such
that their union covers p-almost all R.

The following result is proved in [DaM, Lemma 5.31].

Lemma 4.3. Let R € D and let Q C R be a cell such that all the intermediate cells S,
Q S S C R are non-doubling (i.e. belong to Jy~oBx). Then

(4.5) n(100B(Q)) < Ay V@I 1 100B(R)).

Let us remark that the constant 10 in (4.5) can be replaced by any other positive constant if
Ap and Cy are chosen suitably in Lemma 4.1, as shown in (5.30) of [DaM].
From the preceding lemma we deduce:

Lemma 4.4. Let Q,R € D be as in Lemma 4.4. Then

0,(100B(Q)) < Cy 4,V @~V 0, (100B(R))

and

0,(100B(S)) < ¢0,(100B(R)),
SeED:QCSCR

with ¢ depending on Cy and Ag.
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Proof. By (4.5),

_ _sry—1) (100 B(R)) _10(J(Q)-J(R)—1) r(B(R))

0,(100 B(Q)) < A7 @-Tw-n pUOBER) _ 0,(100 B(R)) ———2-.

The first inequality in the lemma follows from this estimate and the fact that r(B(R))
Co AE)J(Q)_J(R)) r(B(Q)).

The second inequality in the lemma is an immediate consequence of the first one. O

IN

From now on we will assume that Cy and Ag are some big fixed constants so that the results
stated in the lemmas of this section hold.

5. THE MAIN LEMMA

5.1. Statement of the Main Lemma. Let y the measure in Theorem 1.1 and F = supp p,
and consider the dyadic lattice associated with p described in Section 4. Let F C E be an
arbitrary compact set such that

! o dr
(5.1) / / Ay(z,r)” —dp(r) < oo.
FJo r
Given Q € D, we denote by G(Q, d,n) the set of the points z € R? such that
6H(Q) d
(5.2) [ AT < 0,800
§4(Q) r

The next lemma concentrates the main difficulties for the proof of the “if” implication of
Theorem 1.1.

Main Lemma 5.1. Let 0 < ¢ < 1/100. Suppose that § and n are small enough positive
constants (depending only on €). Let R € D™ be a doubling cell with £(R) < § such that

(5.3) w(R\ F) <nu(R), pu(ABR\ F) <nu(ABg) forall2 <\X<671,
and
(5.4) (6 ' BrRNF\ G(R,6,m)) <nu(RNF).

Then there exists an AD-regular curve T'p (with the AD-regularity constant bounded by some
absolute constant) and a family of pairwise disjoint cells Stop(R) C D(R) \ {R} such that,
denoting by Tree(R) the subfamily of the cells from D(R) which are not strictly contained in
any cell from Stop(R), the following holds:

(a) p-almost all FﬂR\UQeStop(R) Q is contained in T'r and moreover 'u’|FﬂR\UQ€Stop(R) Q is
absolutely continuous with respect to H'|r,.

(b) For all @ € Tree(R), ©(1.1Bg) < AO©,(1.1Br), where A > 100 is some absolute
constant.
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(c) The cells from Stop(R) satisfy
> 0u(1.1Bo)? w(Q) < £ 0,(Br)* u(R)

QeStop(R)

d

v X [ [ e T
QETree(R Fné=1Bq J6L(Q) "

Let us remark that the assumption that £(R) < § can be removed if we assume that

/ / Ay(z,r)? dr du(x) < oo,
FJo r
instead of (5.1).

We will prove the Main Lemma in Sections 6—16. Before proving it, we show how Theorem
1.1 follows from this.

5.2. Proof of Theorem 1.1 using the Main Lemma 5.1. As remarked in the Introduction,
we only have to prove the “if” implication of the theorem. First we prove the following auxiliary
result, which will be used to deal with some cells R € D such that (5.4) does not hold.

Lemma 5.2. Let R € D be a cell such that

(5.5) /,L((SilBRﬁF\G(R,(S,T])) >nu(RNEF).
Then g )
«R
0,(2Bp)? u(RNF) < _/ / 22 2 ).
LBrNF J§4(R) r

Proof. For all x € 5" 'Br N F \ G(R,§,n) we have
(R dr
/ A2 2 > 1 0,(2Bp)%
5 4(R) r
Thus, integrating on 6 'Br N F \ G(R, §,n) and applying (5.5), we derive
) 2 dr 2 1
/ [ B dute) 2 00,288 n(5 B\ G 8.1)
§—1BrNF\G(R,5,n) J& L(R) r
> 772 @#(233)2 p(RNF),
and the lemma follows. O
To prove the “if” implication of Theorem 1.1 clearly it is enough to show that u|p is rectifiable.

To this end, let xg be a point of density of F' and for n > 0 let By = B(xg,79) be some ball
such that

(56) p(Bo\F) < Pp(Bo)  and p(3Bo) > sy i(Bo).

Taking into account that for p-almost every zy € F' there exists a sequence of balls like By
centered at x¢ with radius tending to 0 fulfilling (5.6) (see Lemma 2.8 of [To3] for example), it
suffices to prove that any ball like By contains a rectifiable subset with positive p-measure.
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Denote by B! the family of cells R € D with § ' Br C By such that
u(ABRr \ F) <nu(ABg) for some A with 2 < A <4671,
and by B? the family of cells R € D contained in By such that

W(R\F) = nu(R).
Next we show that union of the cells from B! U B2 has very small y-measure.

Lemma 5.3. We have

(5.7) u( U R>§cw(Bo)-

ReB'UB?

Proof. To deal with the cells from B we consider the maximal operator

(5.8) Mf(@)= s —e /B fldu.

B ball:ze1B #(B)
This operator is known to be bounded from L'(u) to L1°°(u). Note that for all x € R € B!,

Mixpy\r(z) > 1.
Then, using the first estimate in (5.6) we get

)SCM(BO\F)

< c¢np(Bo),
n

u( U R) < p({r eR*: Moxpy\r(z) > n}
ReB!
as wished.

To deal with the cells from B2, we argue analogously, by taking the maximal dyadic operator

(o) = sp ——
59 MR = e u(@)/ Tl

O

Let us continue with the proof of Theorem 1.1. From (5.7) and the fact that 1(Bo) ~ u(3 Bo)
we infer that, for n small enough, there exists some cell Ry € D% satisfying Ry C %Bo, L(Ry) <94,
6 'Bg, C By, and

u(RO\ U Q> > 0.

QeBluB?
We are going now to construct a family of cells Top contained in Ry inductively, by applying
the Main Lemma 5.1. To this end, we need to introduce some additional notation.

Recall that the Main Lemma asserts that if R € D, with £(R) < §, satisfies the assumptions
(5.3) and (5.4), then it generates some family of cells Stop(R) fulfilling the properties (a), (b)
and (c). Now it is convenient to define Stop(R) also if the assumptions (5.3) or (5.4) do not
hold. In case that R is a descendant of Rg such that R € D%\ (B! UB?) does not satisfy (5.4),
that is,

p(6'BRNF\ G(R,8,17)) > nu(RNF),
we let Stop(R) be the family of the sons of R. In other words, for R € Dy, Stop(R) =
D1 ND(R).
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On the other hand, if R is a descendant of Ry such that R € D% N (B! U B?) (note that this
means that some of the inequalities in (5.3) does not hold), we set Stop(R) = @.

Given a cell @ € D, we denote by MD(Q) the family of maximal cells (with respect to
inclusion) from P € D%®(Q) such that 2Bp C 1.1Bg. Recall that, by Lemma 4.2, this family
covers pi-almost all Q. Moreover, by Lemma 4.4 it follows that if P € MD(Q), then ©,(2Bp) <
C @H(l' 1BQ).

We are now ready to construct the aforementioned family Top. We will have Top = (J,.~, Topy.
First we set -

Topy = {Ro}.
Assuming Top;, to be defined, we set
Tpn= J U MD@
ReTopy, QeStop(R)

Note that the families MD(Q) with @ € S(R), R € Top,, are pairwise disjoint. Next we prove
a key estimate.

Lemma 5.4. If € is chosen small enough in the Main Lemma, then

L dr
5:10) Y 0,28 u(R) < 20,285, n(Ro) +end) [ [ Auwr? o)

ReTop

Proof. For k > 0 we have

Y 0u@BpuP)= > >, Y. ©u2Bp)*u(P).

PeTopyyy ReTop,, QeStop(R) PEMD(R)
From Lemma 4.3 we infer that any P € MD(Q) satisfies ©,(2Bp) < c0,(1.1Bg). So we get
(5.11) Y @B rPuP e Y 6,(11Bo)u(@).
PeTopyyy ReTop,, QeStop(R)

If the conditions (5.3) and (5.4) hold, then (c) in the Main Lemma tells us that
(5.12)

2 2 1é(Q) )2 dr
D ©,(1.1B0)*u(Q) < £ ©,(2BR)*u(R)+ / 1 / (2,7)* = dp().
QeStop(R) QETree(R) Fné=1Bq /oL@

In the case R ¢ B'UB? and p(6~'Br N F\ G(R,6,1)) > nu(RNF), recalling that Stop(R)
is the family of the sons of R, we derive

3 0u(11Bg)* (Q) < ¢©,(2BR)? u(R).
QEeStop(R)
On the other hand, by Lemma 5.2
~1(R) dr
0,(2Br)* u(R) <20,(2BR)* W(RNF) < —/ / Au(x,r)z du(z),
1BrNF J64(R)

taking into account that pu(R) < 2u(RNF), as R ¢ B2, n < 1/2. So (5.12) also holds in this
case, replacing c(¢) by 2/n%.
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Finally, if R € B' U B2, by construction we have
Y Ou(11Bo)* (@) =0,
QeStop(R)
since Stop(R) = @.
Plugging the above estimates into (5.11) we obtain

> 0.2Bp)?u(P)<cse > ©,(2Br)* u(R)

PeTopy 44 ReTopy,

1@(Q)
teen) Y / / (2,1 L ()
Fro—1Bg JouQ

ReTopy, QeTree(R)
Choosing € such that c3e < 1/2, we deduce that

(5.13) Y ©.(2Bg)*u(R) < 20,(2Bg,)’
ReTop

67M(Q) dr
+ c(e, / / Ay (z,r)? d
DI S . p(@,r)? — dp(z).

ReTop Q€eTree(R)
By the finite overlap of the domains of the last integrals as Q € D(Ry), we derive

1E(Q) dr

> / / (e, L ()
ReTop QeTree(R) Y 1071 Ba /ol(@

/ / (012 L du(a)

er Fné—1Bg J50(Q) r
dr
5) [ / A, L dpu(a),
FJo r
which together with (5.13) yields (5.10). O

From the preceding lemma we deduce that for u-a.e. x € Ry,
(5.14) > ©u(2Br)* < .
ReTop:zeR

For a given = € Ro \ Ugep1pz @ such that (5.14) holds, let Ry, R1, R, ... be the cells from Top
such that x € R;. Suppose that this is an infinite sequence and assume that Ry D Ry D Ry D ...,
so that for each i > 0, R;y1 € MD(Q) for some @ € Stop(R;). From the property (b) in the
Main Lemma and Lemma 4.3 it follows that

Ou(B(z,r)) < cO,(2BR,) for £(R;11) <1 < {U(R;),
with ¢ depending on the constant A. As a consequence,
O'*(z, ) < ¢ limsup ©,,(2Bg,).

i—00
From (5.14), we infer that the limit on the right hand side above vanishes and so ©'*(z, 1) = 0.
So we have shown that for any = € Ry satisfying (5.14), the condition ©'*(z, ) > 0 implies
that the collection of cells R € Top which contain x is finite.
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Given R € Top, denote by Top(R) the collection of cells from Top which are strictly contained
in R and are maximal with respect to the inclusion. That is,

Top(R) = U MD(Q).

QeStop(R)

Note that by the property (a) in the Main Lemma and the above construction, if R € Top\B'UB?
and (5.4) holds, then there exists a set Zr of p-measure 0 and a set Wr C I'g such that

(5.15) RcZpuWrUu |J @,
QEeTop(R)

with u|w, being absolutely continuous with respect to H!|p,. On the other hand, if R €
Top \ B' UB? and (5.4) does not hold, then

(5.16) R=zZzu |J @
QeTop(R)

for some set Zr of u-measure 0.
Suppose now that ©1*(z, ) > 0, that

(5.17) x€R0\< U ZRr U Q),

RcTop QeBluB?

and that (5.14) holds. Note that the set of such points is a subset of full y-measure of Ry \
UQeBlqu Q. Let R, be the smallest cell from Top which contains x. Since = ¢ UQeBluB2 Q,
we have R,, ¢ B' U B?. So either (5.15) or (5.16) hold for R,,. Since x ¢ Zg, and x does not
belong to any cell from Top(R,) (by the choice of R,,), we infer that we are in the case (5.15)
(i.e. Ry, is a cell for which (5.15) holds) and © € Wg, C I'r,. Thus the subset of points x with
OL*(z, u) > 0 satisfying (5.17) and (5.14) is contained in |J,, Wg,,, which is a rectifiable set
such that ”|Un Whg, is absolutely continuous with respect to HE. O

6. THE STOPPING CELLS FOR THE PROOF OF MAIN LEMMA 5.1

6.1. The good and the terminal cells. The remaining part of this paper, with the exception
of Sections 17-19, is devoted to the proof of Main Lemma 5.1.

The main task in this section consists in the construction of the stopping cells from D, which
later will be used in the construction of the curve I'g of the Main Lemma.

First we introduce the notation G(Q1,Q2,0,n) for Q1,Q2 € D and 4, > 0. This is the set
of the points = € R? such that

510(Qs) , dr ,
(6.1) / Au(er)? Y < 06,280, )
0 4(Q1) r

Note that G(Q, Q,4,7) = G(Q,d,n).
Let R € D be as in the Main Lemma 5.1. We denote 29 = zp (this is the center of R) and

ro = r(BR), so that B(xzg,r9) = Bgr, and thus
RCB({E(),T()), TOZE(R)
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Now we need to define some families of stopping cells which are not good for the construction
of the curve mentioned above. Let A, 7 > 0 be some constants to be fixed below, an We assume
7 to be very small, with 7 < 1073Y say, and A > 100. Moreover, we let K > 100 be some big
absolute constant (probably K = 10* suffices) which depends on the ambient dimension d but
not on the other constants 6,7, 7, A. The reader should think that 1 < K < 6.

o A cell Q € D belongs to BCFy if £(Q)) < {(R) and either
MQ\F) >n"? (@) or  p(ABg\ F) >n'/? u(ABg) for some 1.1 <\ < §71/2,
e A cell Q € D belongs to LDy if £(Q) < ¢(R), Q & BCFy, and
0,(1.1Bg) < 70,(Br).
e A cell Q € D belongs to HDy if (Q) < ¢(R), Q ¢ BCFy, and
©,(1.1Bg) > A©,(1.1Bg).
o A cell Q € D belongs to BOGy if Q & BCFyU LDy U HDy, £(Q) < {(R), and
p(6~?Bo N F\G(Q, R,6"%,m)) = nu(6~ By N F).
e A cell Q € D belongs to BSA if Q ¢ BCFyU LDy U HDy U BCGy, £(Q) < ¢(R), and

1 s~le(pP) d
o R S
pepigepcr PBP) Jiappar Jsup) r

Next we consider the subfamily of BC'FyU LDoU H DgU BCGoU BSAq of the cells which are
maximal with respect to inclusion (thus they are disjoint), and we call it Term. We denote by
BCF the subfamily of the cells from Term which belong by BC Fjy, and by LD, HD, BCG, BSA,
BSA the subfamilies of the cells from Term which belong to LDy, HDy, BCGqy, and BSAy,
respectively. Notice that we have the disjoint union

Term = BCFU LD UHD U BCG UBSA.

The notations BCF, LD, HD, BCG, and BSA stand for “big complement of F”, “low density”,
and “high density”, “big complement of G”, and “big sum of A coefficients”, respectively; and
Term for “terminal”.

We denote by Good the subfamily of the cells Q C B(wo, 15Kro) with £(Q) < ¢(R) such that
there does not exist any cell Q' € Term with Q' D Q. Notice that Term ¢ Good while, on the
other hand, R € Good.

6.2. Some basic estimates. The following statement is an immediate consequence of the
construction.

Lemma 6.1. If Q € D, 4(Q) < {(R), and Q is not contained in any cell from Term (and so in
particular, if Q € Good), then

TGM(BR) < @H(l.lBQ) < AGH(BR)
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Lemma 6.2. If Q € D, Q C B(zo, K?r), £(Q) < U(R), and Q is not contained in any cell
from Term (and so in particular, if Q € Good), then

(6.2) n(aBg) < ca) n(Q)

for any a > 1 such that r(a Bg) < 6%/*r(Bg), assuming that the constant Cy in the construc-
tion of the lattice D in Lemma 4.1 is big enough.

Proof. First we will show that
(6.3) u(aBq) < cla) u(3.3B4)

for a as in the lemma. Since @ is not contained in any cell from BCF U BSA, we have

1Z(Q)
u(1.1BQ\F) < n'/? u(1.1Bg) and / / r)? dr du <n6,(Bgr)*.
(L. 1BQ 11BonF Jo4(Q)
Thus
1E(Q) 5 dt ) )
/ / x,t) " dp <n0,(Br)*n(1.1Bg) <21n0,(Br)*n(1.1Bg N F).
1.1BoNF J854(Q)

Hence there exists yo € 1.18B¢ N I such that
571(Q) dt
/ Au(yo,t)27du <2n0,(Bg)*.
54(Q)
Take r such that 2.2r(Bg) < r < §714(Q)/2. For these 7’s we have B(yo,r) D 1.1B¢ and thus
©u(B(yo,7)) > ¢(7,0) ©u(Br),
and thus, by Lemma 3.6,
(6.4) 1(B(yo,2r)) < 9pu(B(yo,r)) for 2.2r(Bg) <r < 6-1(Q)/2.
Iterating this estimate we deduce that

1(B(yo,ar)) < c(a) (B(yo, 7)) < c(a) u(3.3Bg)  for ar < 671(Q)/4,

since B(yo,2.2r(Bg)) C 3.3Bg. Applying this estimate also to the ancestors of @, (6.3) follows.
To prove (6.2) it is enough to show that

(6.5) u(3:3Bq) < e Q).
Note that by the property (4.3) of the cells of David and Mattila, if @ € D\ D?, then
(6.6)  p(3:3Bq) = nu(28-3.3B(Q)) < p(100B(Q)) < Cy* p(100°B(Q))  if Co > 100.

By (6.3), for a cell @ satisfying the assumptions in the lemma we have

p(100°B(Q)) < cu(3.3Bg)

with ¢ independent of Cy. Thus (6.6) does not hold if Cy is chosen big enough. Hence Q € D%
and then

1(3.3Bq) < u(100B(Q)) < Co u(B(Q)) < Co pu(Q),
and so (6.5) holds. O
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Remark 6.3. Let Q be as in the preceding lemma. That is, Q € D, Q C B(wg, K*rg),
(Q) < L(R), and @ is not contained in any cell from Term. We showed in (6.4) that there
exists some yg € 1.1Bg N F' such that

w(B(yo,2r)) < 9pu(Blyo,r))  2.2r(Bq) <r <6 1(Q)/2.
From this estimate it follows that
(6.7) u(bBg) < C(a,b) u(a Bg) for 3.3<a <b<o /2

with the constant C'(a,b) independent of the constant Cj from the construction of the David-
Mattila cells. This fact will be very useful later. On the contrary, the constant in the inequality
(6.5) depends on Cj.

Lemma 6.4. If n is small enough (with n < §), then

u( U Q>§6n1/4u(R)~

QEBCF:QCR

Proof. The arguments are similar to the ones of Lemma 5.3. Denote by B}, the family of cells
Q@ € D which are contained in R and satisfy

p(\Bg \ F) > n'/? u(ABg)
for some 1.1 < A < Y2 and by B%% the family of the ones that are contained in R and satisfy

1@\ F) > n"? p(Q).

To deal with the cells from B]{2 we consider the maximal operator M,, (which is a variant of
M, introduced in (5.8)):

1
M. f(x)= sup 7/ du.
i@ B ball:zeB #(1.1B) 1.1B|f| a

Similarly to M,, this operator is bounded from L!(u) to L%*°(u). It turns out that for all
T € Q € Bk, MuXes-12p\p(T) = n'/2, because 6" /2By C cd~1/2Bg, for some absolute
constant c¢. So we have

u( U R> < p({z €RT: Muxos-1/2p,p(2) = 0'?})
ReBg
<. p(c62Br\ F)

< 2 < en'? (™2 Bg).

By Lemma 6.2, we know that
u(c6Y2BR) < e(6) u(R).

Hence,
6.8 7 R\ < d(6)n2 u(R) < Lyt u(),
2
ReB},

assuming 7 enough (depending on ).
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To deal with the cells from B%, we argue with the maximal dyadic operator M 4 defined in
(5.9). Indeed, since every Q € B% is contained in {z € R : MdXR\F(x) > n'/2}, we have

w(R\ F
(69) /L( U R) < u({l’ c Rd: MdXR\F(x) > 771/2}) < C% < C771/2 ,U,(R)
ReB%, "
Adding the estimates (6.8) and (6.9) the lemma follows. O

Lemma 6.5. For all Q € BCG,

2 s—1/2 2 8THUR) g dr
©u(Br) (6" /"Bg) < — Ap(z,r)” — dp().
N Js-1BgonF J50(Q) r

Proof. Note that for all z € 5~'Bgy N F\ G(Q, R, 6,7n) we have

5~ (R) dr
/ Al Y s 1 0,(Br).
5 4(Q) r

Thus, integrating on 6 *Bg N F \ G(Q, R, §,7n) and taking into account that @ € BCG we get

TR o dr 2 -1
/ [ B S 2 0@, (Brf a5 Bo N F\ G(R,.1)
§—1BoNF\G(Q,R,5,1) /5 £(Q) r

> 12 0,(Br)? u(6 " By N F).

Since @ ¢ BCF, we have u(07Y/?Bg N F) > (1 — nt2) u(6~Y2Bg) > $u(671/?Bg), and the
lemma follows. O

6.3. The regularized family Reg and the family Qgood. The cells from Term have the
inconvenient that their side lengths may change drastically even if they are close to each other.
For this reason it is appropriate to introduce a regularized version of this family, which we
will call Reg. The first step for the construction consists in introducing the following auxiliary
function d : RY — [0, 00):
6.10 d(x) = inf — l .
(6.10) () = dnf (le— 20l +4(Q)
Note that d(-) is a 1-Lipschitz function because it is the infimum of a family of 1-Lipschitz
functions.

We denote

Wo = {z € R?: d(z) = 0}.

For each x € E \ W, we take the largest cell @, € D such that z € Q, with

1
6.11 12 < — inf d(y).
(6.11) (Qa) < 55 il d(y)
We consider the collection of the different cells Q,, © € E \ Wy, and we denote it by Reg.
Also, we let Qgood (this stands for “quite good”) be the family of cells Q € D such that @ is
contained in B(zg,2Kry) and @ is not strictly contained in any cell of the family Reg. Note
that Reg C Qgood.
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Let us remark that the family Stop(R) described in the Main Lemma is made up of the cells
from the family Reg which are contained in R. That is,

Stop(R) := D(R) N Reg.

To simplify notation, from now on we will write Stop instead of Stop(R) and, analogously, Tree
instead of Tree(R).

Lemma 6.6. The cells from Reg are pairwise disjoint and satisfy the following properties:

(a) If P € Reg and © € B(zp,50(P)), then 104(P) < d(z) < cl(P), where ¢ is some
constant depending only on Ag. In particular, B(zp,50¢(P)) N Wy = &.

(b) There exists some absolute constant ¢ such that if P,P' € Reg and B(zp,50((P)) N
B(zpr,500(P")) # @, then

¢ H(P) < U(P) < cl(P).
(c) For each P € Reg, there at most N cells P' € Reg such that
B(zp,50¢(P)) N B(zp,504(P")) # @,

where N is some absolute constant.

(d) Ifz & B(xo, %K’r’o), then d(z) ~ |z—x¢|. As a consequence, if P € Reg and B(zp,50¢(P)) ¢

Bz, %Km), then £(P) 2 Kry.
Proof. To prove (a), consider z € B(zp,504(P)). Since d(-) is 1-Lipschitz and, by definition,
d(zp) > 60£(P), we have

d(z) > d(zp) — |z — zp| > d(zp) — 50£4(P) > 10£(P).

To prove the converse inequality, by the definition of Reg, there exists some 2’ € f’, the
parent of P, such that

d(2') < 60£(P) < 60 Ag £(P).
Also, we have
|z — 2| < |z — 2p| + |2p — /| < BOL(P) + Ay £(P).
Thus,
d(z) < d(2') + |z — 2| < (50 + 61 Ag) £(P).

The statement (b) is an immediate consequence of (a), and (c) follows easily from (b).

Finally, the first assertion in (d) follows from the fact that all the cells from Good are con-
tained in B(xg, %Kro), by definition. Together with (a), this yields that if B(zp,50¢(P)) ¢
B(zo, Krg), then ((P) 2 Krg. O

Lemma 6.7. Every cell Q) € Reg with Q C B(xo, 11—0K7‘0) is contained in some cell Q' € Term.

Proof. Suppose that @ is not contained in such a cell @’. This means that @) € Good. Then,
by the definition of d(-) in (6.10), for every z € @ we have d(z) < diam(Q) + £(Q) < 24(Q).
Thus, by (6.11), £(Q.) < 4(Q), and so Q ¢ Reg. O
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Lemma 6.8. There exists some absolute constant cy > 2 such that for every cell Q € Qgood
contained in B(xo, 2K rg) there exist Q" € Good such with ((Q") =~ ¢(Q) such that 2Bg C c4Byg.
Further the following holds:

70,(Br) < Ou(csBg) S AO,(BR).

Proof. The first statement is consequence of the construction of the family Reg. The second
one follows from the first one, together with the doubling properties of 1.1B¢ (by Lemma 6.2)
and the fact that
TGM(BR) < @M(l.lBQ/) < AGM(BR)~
O

Lemma 6.9. If Q € Qgood and Q C B(zo, K rg), then there exists some ball EQ containing

2Bgq, with radius r(Bg) < ¢5 £(Q) (where c5 > 1 is some absolute constant) which satisfies the
following properties:

a) Denote by G Bg) the subset of points x € R? such that
Q
(571/27"(@@) dr ~
Lo B E <0 0,(Bo)?
51/2r(BQ)) r
Then we have B B
wd V" Ba \ G(Bq)) < n'* u(6~* By,

and moreover u(EQ N G(EQ)) > 0.
(b) Ifeg > 0 is some arbitrary (small) constant, assuming n and § small enough (depending
on €p), we have

a#(ZEQ) < gp.
(¢) For any a > 1 such that r(a EQ) < 673/4r(BR).

maBq) < c(a) u(Bg).

Proof. By the definition of the cells from Qgood, there exists some Q" € Good such that 2Bg C
¢ Bgy, for some absolute constant ¢ > 2. Since Q" is good, by construction it satisfies

p(6~ 2By \ F) < n'? u(67/*Bg)
and
p(6~?Bo: N F\G(Q', R,6"2,n)) < nu(6~'/*By N F).
From these two estimates we infer that
n(67? By \ G(Q', R, 6" m)) < 20'* u(671/* Bgy).
Further, by Lemma 6.2, if n < & we get 2n'/2 ,u(5*1/2BQ/) < p(Bg), and thus
1(Bg NG(Q', R,5'? ) > 0.
The first assertion of the lemma follows if we take EQ = By, noting that G(Q', R, 51/2, n) C

G(EQ) if 77 is small enough depending on 7 (using that ©,(Q") > 7 ©,(R)). The second assertion
is an immediate corollary of the first one and Lemma 3.1. The last one follows from Lemma
6.2. O
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From the preceding results, we obtain the following easily. We leave the proof for the reader.

Lemma 6.10. Given ¢y > 0, assume that n and § are small enough. If Q € Qgood and
Q C B(x9,2K rg), then there exists some absolute constant cg > 4 such that, for any a > cg
such that a £(Q) < £(R),

(6.12) TOu(Br) S Ou(aBq) S AO,(Br)
and
(6.13) au(aBg) S €o-

7. THE MEASURE ﬁ AND SOME ESTIMATES ABOUT ITS FLATNESS

We consider the set

(7.1) E = B(z,2Kr9) N (Wo U |J 4BrNFNG(PR, 51/4,77)]).
PcReg
Then we set
h=plg.
Our first objective consists in showing that, in a sense, pu(E N B(zg, 2K7g) \ E) is very small.

Lemma 7.1. If P € Reg, then we have
p(4Bp \ E) < n'/* u(c7 Bp),

with ¢ = beg (where cg appears in Lemma 6.10), where c7 is some absolute constant, and we
assume n mall enough.

Proof. Note that
p(ABp \ E) < p(4Bp \ (FNG(P, R, 5", 1)),
By the definition of the cells from Reg, there exists some cell Q € Good with ¢(Q) =~ £(P) such
that 4 Bp C g Bg, where cg is some absolute constant. Since ¢(Q) ~ ¢(P), we deduce that
G(Q,R,6Y2,n) € G(P,R,5"* 1), and thus
(7.2) u(4Bp \ (FNG(P, R,6"* ) < u(67*Bg \ (FNG(Q, R,5'2,m))).
To estimate the right hand side above we take into account that since @) ¢ BCF,
u(6~2Bg \ F) < 02 u(67'2By),
and as @ ¢ BCG,
n(@*Bo N F\G(Q.R,6"% n) <nu(s~"* By N F).
So we get
w2 Bo \ (FNG(Q, R, 6", m)) < (67 /*Bg \ F) + u(6*Bo N F\ G(Q, R,5"/% )
<02 u(6?Bg) + nu(6/?BoN F)
<292 (572 By).
Gathering the estimates above, we obtain

u(Bp \ E) < 20"/ u(67?Bg).
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By Lemma 6.2, we know that
(62 Bg) < e(0) n(Bq) < ¢(8) ABL(R) U(Q).
On the other hand, since ¢; > ¢g, by Lemma 6.10,
p(er Bp) 2 1O,(R)U(P) 2 TOL(R) Q).
Thus we derive N
w(4Bp \ E) < ¢(8)n"/? Ar71 u(er Bp).

If 7 is small enough, we get the desired conclusion. O

Lemma 7.2. Let Q € Good and let a > 2 with r(aBg) < K{(R). Denote by B(aBg) the
subcollection of cells P from Reg which intersect aBg and satisfy

(7.3) p(4Bp) < n'"pu(c; Bp).
Then we have

> u(P) <n'*paBy),
PGB(@BQ)

Proof. Note first that every P € B(aBg) satisfies r(P) < cr(aBg). In fact, Q contains either
some point from Wy or some cell P’ € Reg, and if P were too big, we would have too close cells
with very different sizes (or a cell and a point from Wy), which would contradict the properties
(a) or (b) of Lemma 6.6. As a consequence of the fact that r(P) < cr(aBg), we infer that
P C daBg, for some absolute constant ¢’.

We consider two types of cells P € B(aBg). We set P € Bi(aBg) if u(P\ F) > $ ju(P), and
P € By(aBg) otherwise. Taking into account that @ ¢ BFy (because Q € Good), we derive

douP)<2 > wP\F)<2u(daBy\F) < en'?u(caBy).
PeBi(aBg) PeBi(aBg)

By Lemma 6.2, we have p(c'aBg) < ¢’ p(aBg), and so we get

(7.4) > wP) <en'? p(aBg) < %n”‘* p(aBg).
PeBi(aBg)

Now turn our attention to the cells from By(aBg). Take P € Bay(aBg) such that p(P) > 0.
We claim that for every = € Bp

4C7T‘(Bp) dt
(7.5) / A, % > 0, (crBp).
2r(Bp) t

To see this, note first that for such z and for 1 < ¢ < 2 we have B(z,tr(Bp)) C 4Bp. Let N
be the minimal integer such that ¢;Bp C B(x,2N7(Bg)) for every x € Bp. Obviously, N is an
absolute constant depending on c¢7. We write

¢'0,(c1Bp) — ¢0,(4Bp) < 0,(B(z,t2Nr(Bp))) — ©,(B(z,tr(Bp)))
N-1
< |0u(B(z, t2°r(Bp)) — ©,(B(z, 12"+ 'r(Bp))|.
k=1
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From the assumption (7.3) it turns out that the left hand above is comparable to ©,(c7Bp).
Therefore, we deduce that
N-1 N—
Ou(crBp)? < ¢ Y |0u(B(x, t25r(Bp)) — ©,(B(x, 12" 'r(B Z (z,t2%r(Bp))?,
k=1 k=1

with the constant ¢ possibly depending on N and thus on c¢;. Integrating with respect to
€ [1,2], (7.5) follows easily.
Integrating now (7.5) with respect to g on PN F and recalling that pu(P) = u(PNF), we get

4err( Bp ) dr )
| P2 L du() 2 0,(erBp)? (P O F)
PNF J2 r

r(Bp)
~ Ou(crBr)? u(P) 2 (A, ) ©,(Br)? u(P).

Consider S(P) € Good such that P C 4Bgpy and £(S(P)) ~ £(P). Then, for § small enough,
we have

1Z(S(P)) 4c7r(Bp) , dr
/ / v L)z [ L)
Bs(p)ﬁF 80(S(P)) PNF J2r(Bp)

Z C(A7 T) G)/L(BR) IU'(P)

Since ¢(P) ~ £(S(P)) and P C 1.1Bg(p), for a given S € Good, the number of cells P € D such
that S = S(P) does not exceed some fixed absolute constant. Moreover, it is easy to check that
S C caBg for some fixed ¢ > 1. Then we infer that

le(s ,
(76) ©uBr’ Y u(P)<c(A7) | /M e 2 du(a)

r
PeB2(aBg) SEGood SCcaBg (5)

We estimate the right hand side above using the fact that the good cells are not in BSAg:

16(5) dr
/ / v, L i)
1.1BgNF J50(S)

1@(5)
,u (T) / / 5 dr
< § E du
w(S) JiaBsnr Jsecs) ™) (=)

S€Good:SCcaBg TeTerm

SEGood SCcaBg

dr
e Y oum Y -/ / v,1)* = dp(e)
TeTerm: S€Good:T'CSCcaBg M(l 1BS L1BsNF J4e(S) "
TCcaBg
1
<c Y nOu(Br)’ u(T) < enOu(Br)* p(aBg) < 5 n'" ©,(Br)* naBg)-
TeTerm:
TCcaBg
This estimate, together with (7.4) and (7.6), proves the lemma. O

Lemma 7.3. Let Q € Good and let a > 1 be such that r(aBg) < K {(R). Then
ulaBo \ E) < "' u(aBy),
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assuming 1 small enough.

Proof. Denote by A(aBg) the subfamily of the cells from Reg which intersect aBg \ E. We
have

s\ B)s Y P\ B
PeA(aBgq)

We distinguish two cases according to wether or not the cells P belong to B(aBg) (this is the
family of cells introduced in Lemma 7.2). For the cells P € A(aBg) which belong to B(aBg),
we have shown that

(7.7) > wP) <0 p(aBg).
PEB(GBQ)

For the ones that do not belong to B(aBg), by Lemma 7.1 and the finite superposition of the
balls 4Bp, P € Reg, we have

> w(P\ E) <n'/* > pu(cr Bp)
PeA(aBo)\B(aBg) PeA(aBo)\B(aBo)
< plftymt/10 > 4(4Bp)
PEA((LBQ)\B((ZBQ)
§U3/20M< U 4BP)
PEA(aBQ)\B(aBQ)

The same argument used in the previous lemma for the cells of B(aBg) shows that the cells
from A(Bg) are contained in ’aBy, for some absolute constant ¢’. Thus we have

,u( U 4Bp> <en? u(daBg) < ¢ PP u(aBg).
PEA(&BQ)\B(GBQ)

Adding this estimate and (7.7), the lemma follows, assuming 7 small enough. O
Notice that, by the preceding lemma, we have

(7.8) f(aBg) > (1 — nl/lo)u(aBQ) for @ € Good, a > 1, with 7(a Bg) < K {(R).

Lemma 7.4. Let Q € Qgood and and let Q' € Good be such that 2Bg C 2B¢gy and £(Q) ~ £(Q").
For any y € QN E, we have

19 B =uBen) = e for Q) <1 <0(Q)
Further, if p(Q) > 0, then
(7.10) fi(2Bq) ~ w(2Bq) ~ n(Q'").

As a consequence, for any @ € Qgood such that i(Q) > 0, we have
©1(2Bq) 2 T Ou(Br).
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Proof. By the definition of E, either y € Wy or there exists some P € Reg such that
y € 4Bp N QN G(P,R, 5% n).

In the later case, from Lemma 6.6 it follows that /(P) < 4(Q) ~ £(Q’). Together with the
definition of G(P, R,5'/4,n) in (6.1), this yields

5~Y44(R) d §—144(R) d

Lo P s [ A S <06,2Br) < 77 6,(280)"
cd1/4 2(Q) T s1/4 L(P) r

In the case that y € Wy, it is immediate to check that the last estimate also holds. So in any

case, by Remark 3.7, we get

2Bg
(7.11) w(B(y,r)) ~ % T for ¢c6Y*0(Q") <r < 6 V4U(R),
assuming 7 and § small enough. This proves one of the comparabilities in (7.9). For the
remaining one, we apply Lemma 7.3. Indeed, for for 6'/5¢(Q) < r < £(Q) we have B(y,r) C

cBg, for some absolute constant ¢, and thus

w(B(y,r) \ E) < u(cBg \ E) <"/ u(cBgr) < n'/1° u(2Bg)).
Plugging (7.11), we get

w(B(y, )\ E) <" w(B(y,r)) f(g/) <1067 w(B(y,r)).

Thus, assuming 1 < &, we deduce that fi(B(y,r)) = u(B(y,r) N E) ~ u(B(y,r)) and so we are
done with (7.9).

To prove (7.10), we take y as above and note that, in particular, by (7.9) u(B(y,r(Bg))) ~
w(B(y,m(Bg))) = u(Q"). Since B(y,r(Bgq)) C 2B, this implies that

[i(2Bq) ~ w(2Bq) ~ n(2Bg) ~ w(@Q').

The last statement of the lemma follows from (7.10) and the fact that ©,(2B¢g/) 2 7 ©,(BR).
O

Lemma 7.5. For given eq, £, > 0, if n and § are taken small enough, the following holds for
all Q € Good and a > 1 such that r(a Bg) < K {(R):

(7.12) ayu(aBg) S <o and a(aBg) < €.

Proof. The first estimate in (7.12) has already been seen in (6.13).
To show that az(a Bg) < g0, take a 1-Lipschitz function f supported on aBg. Then we have

[ 1au= [ san| < 2r(a Boyuta g \ B) < 20/ (o) (o B,
by (7.8). Thus, dista g, (1, 1) < 20t/ r(a Bg) u(a Bg), and so

au(a Bg) < ag(aBg) + 27" < &,

if 7 is taken small enough. O
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Remark 7.6. From the preceding proof, it follows that if cg, Lo minimize oy, (aBg), then

dist, B, (11, €@ 7—[1|LQ) < cegp.
In next lemma we extend the result stated in Lemma 7.5 to the cells from Qgood.

Lemma 7.7. For given eq, £ > 0, if n and § are taken small enough, the following holds for
all Q € Qgood with [i(Q) > 0 and a > 2 such that r(a Bg) < K{(R):

(7.13) au(aBg) < eo and  ap(aBg) S €.
Proof. Let S € Qgood be such that 2Bg C aBg and r(aBg) = £(S), and let Q" € Good be such

that aBg C 2B¢ and ¢(Q') = r(aBg). Since 2Bg C 2B¢ and {(Q") = {(S), by Lemma 7.4 we
have i(2Bg) ~ u(2Bg). As 2Bs C aBg C 2Bg, we infer that

[i(2Bs) ~ [i(aBq) ~ u(2Bg).
Then we deduce
ayu(aBg) < cay,(2Bgr) and ag(aBg) < cap(2Bg),
and by Lemma 7.5 we are done. [l
We also have:

Lemma 7.8. Let e > 0 be an arbitrary (small) constant. Let Q € Qgood be such that 11(Q) > 0.
If4<a<6 % and r(aBg) < LK ((R), then
bﬂooﬁ(aBQ) < 56/7
assuming 6 and n small enough. In fact,
(7.14) sup dist(z, La,Q) n 4 dist(z, supp i) <
r€aBg T(a BQ) x€L4 gNaBg 7"(0, BQ)

where L, ¢ is the same line minimizing o, (2aBq).

Proof. We can assume o, (2a Bg) < ¢(f, with & as small as wished if 7 and § are small enough.

As shown in Lemma 2.3 this implies that

1 dist(y, La,Q) dist(z, supp u) 1 "
(7.15) / Dap)+ [ LIRS o
/“L(a BQ) (lBQ T(a BQ) La.QﬂaBQ T(a’ BQ)2 @ 0
From Lemma 7.5 and the subsequent remark we also have
1 dist(y, La,@) ~ dist(z, supp f) 1 n
7.16 / == du(y +/ ———————dH"'|r, () S ey -
1) aBg) sy rtaBg) VT, B2 el S50

Moreover, minor modifications in the proofs of these results show that the ball a By can be
replaced by %a Bg in (7.15) and (7.16), at the cost of worsening the constants implicit in the
“<” relation.

We will now estimate the first sup in the the left hand side of (7.14). To this end, recall that
p= p|g. Take x € EnN aBg \ Lq,g and set

1
dy = 3 min(dist(z, Lq,),7(aBg)) =~ dist(z, La,q)-
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Then we have B(z,d,) C 3a Bg, and thus

(7.17) % / dist(y, La) 4 v dapB@d)) o dop(B(r,ds))

w(3aBg) J3ap, r(3aBg) ~ r(3aBg) p(3aBg) ~ r(aBq) ula Bg)

By Lemma 7.4 we have

1(2Bg)
Q)

So we infer that if d, > §'/°4(Q), then pu(B(x,d;)) 2 7©,(Bgr)ds, and by (7.17),

" 1 / dist(y, La.q) , ) > TOLUBR)dE  _ AT'7dl
%aBQ

w(B(z, 7)) ~ r>7O(Bgr)r  for 6V/54(Q) <r <5 V50(Q).

0~ u(%aBQ) r(%a Bg) yr= r(aBg) u(aBg) ™~ r(aBg)?
Therefore,
ds S (e¢)' AT r(a Bg),
and then in either case
dy < max(51/5 0Q), c(ag’)l/zA 1 r(a BQ)) < max((51/5, (86”)1/214 7'71) r(a Bg).
Taking the supremum on all x € EN a Bg, we deduce that

dist(z, L
(7.18) sup dist(w, Lo.g) < max(51/5, (56”)1/2147'*1).
z€supp pNa Bg T'(CL BQ)
To estimate the second sup on the left side of (7.14), take € L, g NaBg, and let dy =
dist(x,supp ). Then it follows that for all y € L, o N %a Bg N B(x,d,), dist(y,supp i) > dy /2.
Thus,

dist 7 dy HY(B(z,d,/2) N 3a B d,)?
66’2/ is (;L“,SUPPQM) s, (@) 2 ( (x3 /)2 5a Bq) > 3( ) .
Logn3aBy T(30BQ) ’ r(3a Bq) r(3a Bq)

Taking the sup on all the points x € L, g N aBg, we obtain

(7.19) sup dist(z, supp /1) < 56"1/2.
€L ,gNa Bg T(a’ BQ)
The lemma follows from (7.18) and (7.19), assuming 7 and ¢ small enough. O

From now on, we assume that for some small constant €y > 0, we have
(7.20) au(aBg) < e, ap(aBg) <eo, bBwjlaBg) < eo,

for any @ € Qgood with /(@) > 0 and for a > 2 with r(a Bg) < $K ((R). To this end, we will

need the constants § and 1 to be chosen small enough in the Main Lemma.
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8. THE MEASURE OF THE CELLS FROM BCF, LD, BSA anp BCG
To prove the property (c¢) stated Main Lemma 5.1, we have to estimate the sum
> ©u(1.1Bp)? u(P).
PeStop(R)

According to Lemma 6.7, this sum can be split as follows:

PeStop QED(R)NBCF P&Stop: PCQ QED(R)NLD PeStop: PCQ Q€ED(R)NHD PEStop: PCQ
Py Y ey Y
QED(R)NBCG PeStop: PCQ QED(R)NBSA PeStop: PCQ
where we denoted ... = 0,(1.1Bp)? u(P). In this section we will estimate all the sums on the

right had side above, with the exception of the one involving the cells @ € HD.
Regarding the sum involving the family BCF, we have:

Lemma 8.1. If n is small enough, we have
> > 0u(L1Bp)* u(P) $n'°©,(Br)* u(R).
QED(R)NBCF P&Stop: PCQ
Proof. Recall that, by Lemma 6.4
u( U Q) <cn'* u(R).
QeBCF:QCR

On the other hand, by Lemma 6.8, any cell P € Stop satisfies ©,(1.1Bp) S A©,(Br), and
thus
> > 0u,(1L1Bp)*u(P) SAGL(BR® Y. (@)
QED(R)NBCF PeStop: PCQ QeD(R)NBCF
S A0 ©,(Br)? p(R) $0'/° ©,(Br)? n(R)-

Concerning the family LD we have:
Lemma 8.2. We have

> Y Ou(l1Bp)’ u(P) £ A1/ ©,(BR)* u(R).
QED(R)NLD PeStop:PCQ

Proof. Let @ € D(R) NLD. To estimate the sum » pegiop. pcg 0,(1.1Bp)? u(P) we distinguish

two cases according to wether £(P) > 7'/2£(Q) or not.

Suppose first that ¢(P) > 71/24(Q). If the parameters Ay, Cy in the construction of the
David-Mattila cells are chosen appropriately (with 1 < Cy < Ag), then 1.1Bp C 1.1Bg and so
it follows that

0,(1.1Bp) < % 0,(1.1Bg) <7 Y27 0,(Br) ~ 7V/20,(Bg).
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Therefore,

(8.1) > ©u(1.1Bp)? u(P) $ 70,(Br)* u(Q).

PeStop:PCQ

For the case when £(P) < 7'/24(Q) we will use the small boundaries condition of Q. By
Lemma 6.6 this implies that d(z) < 7/24(Q) for all z € P. Since P C Q ¢ Good, then we
deduce that

dist(P, E\ Q) < /2 4(Q).
Thus, by (4.4),

(8.2)
S Ou(L1BR)u(P) S A20u(Br)* Y. p(P) S A Y1 0,(Br)? u(3.5Bg).
PEStop: PCQ PeStop:PCQ
L(P)<TY/20(Q) dist(P,E\Q)<r1/2 £(Q)

Next we claim that if there exists some cell P € Stop contained in @ such that ¢(P) <
71/2 £(Q), then Q is doubling, i.e. Q@ € D%. Indeed, by the definition of Reg, assuming 7 small
enough, the existence of such cell P implies the existence of some cell Q' € Good such that
Q') = £(P) and 3.3Bg C 1.02Bg. Taking a suitable ancestor of @', we deduce that there
exists some Q" € Good such that 3.3Bg» C 1.05B¢ and £(Q") ~ £(Q).
Let a > 3.3 be the maximal number such that a Bor C 1.1Bg. Notice that r(a Bgr) >
r(1.1Bg) —r(1.056Bg) = 0.05r(Bg). By Remark 6.3, we know that u(bBg~) < C(a,b) pu(aBgr)
for 3.3 <a < b <6 1/24(Q), with C(a,b) not depending on Cy. So we have

(8.3) #(400Bg) < cu(a Bgr) < cu(1.1Bg),

with ¢ independent of Cy. By arguments analogous to the ones of Lemma 6.2, this implies that
Q € D%, Indeed, if Q & D%, we have

p(1.1Bg) = p(28 - 1.1B(Q)) < p(100B(Q)) < Gyt u(100*B(Q)),
while by (8.3),
1(100°B(Q)) = p(5 100> Bg) < p(400Bq) < cpu(1.1Bg),

and so we get a contradiction if Cy is assumed big enough in the construction of the David-
Mattila cells.

Since @ is doubling, we have ;(3.5Bg) < p(100B(Q)) < cpu(B(Q)) < cu(Q). Then, by (8.2),
we deduce that

S 0u(L1Bp)? u(P) £ A2 rY40,(Br)? u(Q).
PeStop: PCQ
UP)<T20(Q)

Together with (8.1), this yields the desired conclusion. O
Next we will deal with the cells from BSA:

Lemma 8.3. We have

1 TH@) dr
> emrus, Y [ / A, < du(e).
1.1BoNF J66(Q

QEBSA:QCR 77 QETree
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Proof. Recall that the cells Q € BSA satisfy

1£(P dr
2 (1. 1B / / x,r)° —dnz 16,(Br)>.
pep:Qcrcr P) Juspor Jsap)
So we have
—1
1 u . dr
> emtu@<t Y oy Ma )
QEBSA: T QéTerm: PeD: 1.1BpnF J5e(P)
QCR QCR QCPCR

Denote now Tree the family of cells P which are contained in R and are not strictly contained
in any cell from Term. By interchanging the order of summation, the term on the right hand
side above equals

1 RGN )
Z /UBPmp/a ) > )

¢(p) Q€ETerm:
QCP
IZ(P dr
- Z / /[ v, L ()
1.1BpNF J6§£(P) r
Since Tree C Tree, we are done. O

Now we turn our attention to the cells from BCG:

Lemma 8.4. Suppose that § is small enough Then we have

lf(Q dr
2 < s1/2 2 2
E : ©u(Br)" Q) S 677 Ou(Br)" 1t /6 - /65£ (x,7) du( ).

QeBCG: 77 QETree
QCR

Proof. We need to distinguish three types of cells from BCG:
e Q € BCG; if Q € D(R) and £(Q) > 6* ¢(R).
e Q €BCGyif Q € D(R), £(P) < §*4(R), and dist(Q, E \ R) < §/(R).
e Q € BCG3if Q € D(R), £(P) < §*4(R), and dist(Q, E \ R) > § /(R).
First we will estimate the measure of the cells from BCGy. To this end we will use the fact
that R has “small boundaries”. More precisely, recall that by (4.4) we have

p({z € R: dist(z, E\ R) < M(R)}) < c A2 u(R).
By definition, every cell @@ € BCG, satisfies
Q c{z € R:dist(x, E\ R) < (6 +cé")U(R)},
and thus

S uQ) < plfa € R: dist(e, B\ R) < (546" €(R)}) S 6+ 0% u(R) < 6" u(R).
QEBCGy

To deal with BCGy recall that the cells @ € BCG satisfy

(8.4) p(0 2 Bo NF\ G(Q, R,6" n) 2 nu(d*Bo N F) > 5 (6~ /*Bg),

DO | =
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where we used that @@ € BCF for the last inequality. Taking also into account that

1/2£(R) d'r
(8.5) / Aﬂ(m,r)2 - > 77(9N(2BR)2 for all z & G(Q, R, 6'/2,n),
51/20Q) r

by Chebyshev we infer that
1 V2R dr
<2u(6~Y?BonF <7/ / Ay (z, ) — du(z).
N(Q) — ‘LL( Q ) — GM(QBR)Q 5*1/23Q0F 51/2“@) H( ) r M( )
Using that £(Q) > §* ¢(R) for Q € BCGy, we infer that
1 ) dr
J(Br)?1(Q) S - A 2 —d
> eumtu@s, ¥ o[ / o) L dp(a)

QEBCG, T oérce, 61/24(Q)

§—1/20(R
dr
/ / ,r)? — dp(x).
§—1BRrNF J§%(R) r

Finally we will estimate the measure of cells from BCG3. To this end we consider the function

5-14(R) 2\ 2
flz) = Z (/5 Au(x,r)2d7> xpar ().

PeStop 2(P)
We claim that
(8.6) Qc{reR: M,f(z) > 1n/?0,(2Bg)}  for all Q € BCGs,

where M, is the maximal operator introduced in (5.8). To prove the claim, consider @@ € BCGg
and notice that by (8.5),

/ 1/2
IQE(R)A (z r)Q@ >n'?20,02Bg)  forall z € G(Q,R,5/2,n)
s u\T, ” 2 I R or all ) L1, 1)

124(Q)

and as (8.4) also holds in this case, we infer that

1/2
1 0=1/2U(R) dr 1
8.7 S A 2 d >~ n'/20,(2BR).
®.7) w(6=12Bg) /51/2BQ0F </51/2 Q) ulm) r He) = 2! u(25r)

Observe now that if P € Reg, PN 6_1/2BQ # &, then
(8.8) U(P) < co 20(Q) < 671(Q) < 83 ¢(R).
In particular, this implies that the left hand side of (8.7) is not greater than

1/2
I/QK(R)
1 dr
8.9 - A 2 d .
(8.9) (07 Bg) /51/23Q( > xpor(z /E(P) meNg T) e

PcReg
Further, from (8.8) it follows that
dist(P, E'\ R) > dist(Q, E \ R) — diam(6~*/?Bg) — diam(P)
> 0U(R) —cd V25 U(R) — ¢ 6% ¢(R) > 0,
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assuming 0 small enough. Thus P C R, and so we can assume that the sum in (8.9) runs over
R € Stop. Altogether, from (8.7) and the above considerations it follows that
1 1
— d > —n'20,(2Bg),
SETTBg) Jy g, 1O ) = 50 0,280

which proves (8.6).
From the claim above and Chebyshev we deduce that

> 0umnru@s Yo o[ Mserane 5 5 [ M) s 12

QeBCG3 EBCG3

To conclude with the family BCGg it just remains to note that

firtme £ [ fo et

PeStop
—1
<> > / / A 2.7 2 du(a)
PeStop Q:PCQcR” PNF /82U(Q) "
lz(Q)
> / o) ().
QETree QNF J524(Q

Gathering the estimates we obtained for the families BCGy, BCGy and BCG3, the lemma
follows. O

By combining the results obtained in Lemmas 8.1, 8.2, 8.3, and 8.4, and taking into account
that ©,(1.1Bg) S A©,(Bg) for all @ € Stop(R), we get the following.

Lemma 8.5. If n and § are small enough, then

> 0,(1.1Bg)? u(Q) S A% (/5 + 714 4 61/2) 0,,(Br)? u(R)

QED(R):
1E(Q) dr
/ / v, ).
1BoNF J55 6(Q)

QCBCFULDUBCGUBSA
77 QETree
9. THE NEW FAMILIES OF CELLS BSS, NTerm, NGood, NQgood AND NReg

To complete he proof of the Main Lemma 5.1, it remains to construct the curve I'g and to
estimate the sum > o cp(p)nHD 2- Pestop:Pc0 ©,(1.1Bp)? u(P). To this end, we need first to
introduce a new type of terminal cells. Let M be some very big constant to be fixed below (in
particular, M > A7~ 1). We say that a cell Q € D belongs to BSf if Q ¢ BCFy U LDy U
HDyU BCGyU BCAg, ¢(Q) < ¢(R), and

(9.1) > Buw(2Bp)* = M.

PeD:QCPCR
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Next we consider the subfamily of Term U BS3 of the cells which are maximal with respect
to inclusion (thus they are disjoint), and we call it NTerm. We denote by BSS the subfamily of
the cells from NTerm which belong by BSfBy. The notation NTerm stands for “new term”, and
BSS for “big sum of 3's”. Note that

NTerm C Term U BSg.

The definition of the family BSfBy, and so of BS3, depends on the measure p. This is the
reason why BSfBy and BSS were not introduced in Section 6, like the others cells of Term. The
introduction of the new family BSg is necessary to guaranty the lower Ahlfors-David regularity
of the measures o, in the forthcoming Section 14.

Similarly to Section 6, we denote by NGood the subfamily of the cells Q@ C B(xo, %K 70)
with £(Q) < £(R) such that there does not exist any cell Q" € NTerm with Q' D Q. Notice that
R € NGood, NGood C Good, and NTerm ¢ NGood.

We need now to define a regularized version of NTerm which we will call NReg. To this
end, we proceed exactly as in Section 6. First we consider the auxiliary 1-Lipschitz function
d:R% = [0,00):

(9.2) d(z) = QE}\Intood(\m — 20| +£(Q)).

We denote _
NWy = {z € R?: d(z) = 0}.
For each = € E\ NWj we take the largest cell Q, € D such that x € @, with
1 . ~
(Qu) < g5 inf dly)

We denote by NReg the collection of the different cells Q,, x € E'\ Wy. Further, we consider the
subcollection of the cells from NReg with non-vanishing ji-measure and we relabel it as {Q; }ier-
Also, we denote by NQgood the family of cells @ € D such that @ is contained in B(xg,2K7rg)
and @ is not strictly contained in any cell of the family NReg. Note that NReg C NQgood.
Moreover, since d(z) > d(z) for all z € R? it follows that NQgood C Qgood. Thus all the
properties proved in Sections 6 and 7 for the cells from Qgood also hold for the ones from
NQgood.

The following result and its proof, which we omit, are analogous to the ones of Lemma 6.6.

Lemma 9.1. The cells {Q;}icr are pairwise disjoint and satisfy the following properties:

(a) If € B(zg,,500(Q;)), then 104(Q;) < d(z) < cl(Q;), where c is some constant de-
pending only on Ag. In particular, B(zg,,500(Q;)) N NWy = @.
(b) There exists some constant ¢ such that if B(zq,,506(Q;)) N B(zq,,500(Q;)) # @, then

cTH(Q:) < UQy) < el(Qy).
(c) For each i € I, there at most N cells Q;, j € I, such that
B(zq,,506(Qi)) N B(zq;,50L(Q;)) # 2,

where N 1s some absolute constant.

(d) If v € B(zo, 1Kro), then d(z) =~ |z — x0|. As a consequence, if B(zq,;,500(Q;)) ¢

8
B(xo, %K?"o), then K(Q@) = Kry.
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10. THE APPROXIMATING CURVES I'*

In this section we will construct somes curves I'* which, in a sense, approximate supp i on
B(xo, %Kro) up to the scale of the cubes {Q;}ic;. This curves will be used to show that the
measure of the cells from HD is small.

The curves I'* are constructed inductively in the following way. Let

dy = diam (supp fz N B(zo, 1K70)),

and take z4,zp € supp i N B(xo, %KT’o) such that |24 — zg| = dp. The curve I'! is just the
segment L{ with endpoints a:(l) = z4 and 7 = 2B.

) For k > 1 we assume that I'* contains points z4 = x’é, x’f, ... ,af’f\,k_l, x?vk = zp from supp N
B(xo, %Kro)) and that I'* is the union of the segments L;? = [x;?_l, xf] ,forj=1,...,Nj. Then
I'*+1 is constructed as follows. Each one of the segments L;?, j=1,..., Ny, that constitutes T'*

is replaced by a curve Ff with the same end points as Lé? by the following rules:
(A) If HI(L;?) < 27072 4y we set F? = Lf.

(B) If there exists some cell Q;, ¢ € I, such that 2Bg, N Lé? # @ and Hl(L;?) < 4(Q;), then
we also set F;? = L;?.

(C) If the conditions in (A) and (B) do not hold, that is to say, if Hl(L;?) > 2= (k4172 g
and also Hl(L;?) > 0(Q;) for all i € I such that 2Bg, N L;? # &, then we consider the
mid point of the segment L?, which we denote by zf, and we take a point p;? € supp
such that
(10.1) Pl — 25| < ceo HU(LY).

The existence of p? is ensured by the fact that the ball B centered at :r;‘?_l (recall that
?_1 and x? and they belong to supp 1) satisfies b3(B) < &p.
This follows from the fact that if () € D is the smallest cell containing a:;ﬂl such that
20Q) > Hl(Lf) and x?_l belongs to some cell Q;, ¢ € I, then we have @; C @, and so

we can apply Lemma 7.8 to Q). Then we set

k ko k ko k
I = [zj_y,p;]U[pj, 5]

the end points of L;? are x

. — k1 k+l E+1 k41— :
The points z4 =257, 27", ... TN, TN,,, = 2B are obtained from the sequence
E ok k k
Zos L1y TN,—1) TN,

just by inserting the point p;? between x;‘-;l and xf when F? is constructed as in (C), for every

j € [1, Ng], and relabeling the points from the resulting sequence suitably. Note that in the

cases (A) and (B), the segment L¥ will coincide with some segment LE+! from TR+, while in

+1

11, satisfying

the case (C) L? is replaced by two new segments L’;LH, L’fL
Lok 1 h+1 Lok
s H (L) < H (L) < iz H (L),
both for A’ = h and A’ = h + 1. In the cases (A) and (B) we say that Liﬂ is generated by L;?
and in the case (C), that both Lﬁ“ and L]flﬁ are generated by L;?.
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We will call the points 24 = 2§, o, ... ,x’ka_l, :cﬁ,k = zp vertices of I'*,

Next we define the auxiliary map IIj, : ¥ — T**1 ag follows. Given z € L?, we let IIg(z)
be the unique point in F? C I'**1 whose orthogonal projection to Lf is z. In particular, note
that if Fé? = L?, then I (z) = x. To simplify notation, we denote Ef = Hl(L;‘?). Note that the

condition (A) guaranties that
(10.2) k> 2 FD2 4, forallk>1,1<j < Ny
We denote by p;? the line which contains Lf .
Also, we consider the (open) ball
k _ k gk
recall that z¥ stands for the mid point of L¥). Observe that L* C LBk, By the argument just
J J i =27

below (10.1), it is clear that EN % Bf #+ @ is g¢ is small enough. By Lemma 7.4 this guaranties
that if @ € Good fulfils 2Bg N BJ’-C # @ and 4(Q) ~ T(Bf), then

(10.3) n(§B)) = u(Bj) = p(2B5) = p(Q),
assuming 7, 0 and g small enough. That such a cell ) exists follows easily from the construction
of T¥ and (b) in the next lemma.

Lemma 10.1. The following properties hold for all L? C Tk, with k> 1:
(a) Ifx € L?, then
[T () — x| < ceq éf.
(b) If there exists some Qiy, iy € I, such that dist(Q;,, Lf) < 26;? +20(Qi,), then
? ~ max(E(QiO)7 2_k/2d0).
(c) If there exists some point & € NWy (i.e. d(z) = 0) such that dist(ac,L?) < 24?, then
E;C ~ Q_k/Qd().
(d) If Ly satisfies dist(L¥, Lf) < 2%, then €5 ~ (.

Proof. The statement in (a) is an immediate consequence of (10.1). To prove (b), consider a

sequence of segments [z4, 2p] = le-17 L?Z, e Lg?k = L;ﬂ so that for each m L;’::rll is one of the
segments that form I'7" (n particular, we may have L?;‘n':ll =L7).

Suppose first that in the construction described above, the option (B) holds for some m =
1,...,k. That is, there exists some cell Q);, i € I, such that 2Bg, N Ly # @ and ’Hl(L;»?n) <
0(Q;). Take the minimal index m € [1,k| such that this holds. By construction, we have
Lm =t — =Lk So

Jm Im+1 e 7"

(10.4) 05 < 0(Qs).

Note now that L;’:;ll # LT (otherwise this would contradict the definition of m). Suppose
that x;';;ll is a common endpoint both of L7 and L;’:;ll Then

dist(acg?;ll,QBQi) <47 < A(Qq),
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which implies that x;?n_}l € B(zg,,50((Q;)). From Lemma 9.1 we infer that c?(x;’:;ll) > 0 and
that there exists some ¢’ € I such that ac;f‘;ll € Qy with £(Q}) ~ ¢(Q;). Since the option (B) in
the construction of I';;,—; does not hold for L?:;ll, we have Hl(L;:nill) > ((Qir). Thus

k _ pm . pm—1 N o~ ]
Zj - gjm ~ gjm—1 > E(QZ’) ~ E(QZ)

Together with (10.4), this estimate shows that
(10.5) 05~ 0(Q;).

Moreover, the fact that L?Z;ll # L' also implies that the option (A) does not hold for m — 1,
and thus HM (L") > 2-"/2d,. Hence,
=0 m s 9mm 24y > 27k 24y,
That is, f;‘? ~ max(£(Q;), 27/2dy) if the option (B) of the algorithm holds for some m. Moreover,
if 4, is as in (b), by (10.4) we get
dist(Qiy, 2Bg,) < dist(Qi,, L¥) + £F + dist(L¥, 2By,)
<205 4+ 20(Quy) + 05 +0 < 34(Qs) + 2£(Qsy),

which implies that B(zq,,500(Q:)) N B(zq,,,50(Qi,)) # 2. So £(Q;) ~ £(Qj,) and Eé? ~

max(£(Q;, ), 27%/%dy), as wished.
If the option (B) does not hold for any m € [1, k|, then we claim that

Ok~ 272,
This follows easily form the fact that 5}1 = dy, and for any m we have:

m —(m+1)/2 m+1 _ gm
o If (7 <27 (mtD/2qy then £77F1 = (.

o If £ > 27(mHD24,, then Lo < ¢ < zem

We leave the details for the reader.
To complete the proof of (b) it remains to check that £(Q;,) < Ay 27%/2dy for some absolute
big enough constant A;. Suppose not and let Q;, ¢ € I, such that x;»?;_ll € Q. Then we have

dist(Qu, Qi) < 0§ + dist(Quy, L) < 365 +26(Qu) < 272y +20(Qiy) < (5, +2) UQu):
For A; big enough this tells us B(zq,,#(Qi)) N B(2q,,¢(Qi)) # @ and thus
UQir) = 6(Q:) > Ay 277,

So £(Qy) > Ay 27k/2q, for Ay big enough, which is not possible in this case (as we assumed
that the option (B) does not hold for any m € [1, k]).

The statement in (c) can be considered as a particular case of the one in (b). Indeed, when
d(xz) = 0, one can thing that of the point = as a cell from the family {Q;};c; with side length
0. We leave the details for the reader.

Finally we turn our attention to (d). So we consider L? and L} such that dist(Lé‘?, LF) < 24?
and we have to show that E;? R Eﬁ. We intend to apply the statement just proved in (b). If
tk ~ 27k/2dy and £} ~ 27%/2dy we clearly have £5 ~ (f. Suppose now that (¥ > Ay €} for some
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big constant As. By (b) this implies that Eé? > ¢ Ay 27%/2dy and so there exists some cell Q;,
i € I such that dist(L¥, Q;) <245 +20(Q;) with £(Q;) = ¢%. Then we have

. . . ¢
dist(Ly, Q) < dist(Ly, L¥) + ¢F + dist(LY, Qi) < 208 +20(Q) + ¢F + 205 < cth < e 0.
Assuming Ay big enough again, this yields dist(L¥,Q;) < 2% and then, by (b),
S uQ) =
So we get é;‘; ~ é;?.

If we suppose that 4? > Ay Eﬁ, by interchanging the roles of j and h we derive analogously
that Eé? > %, and thus 4? ~0F. O

Remark 10.2. Note that, from the statements (b) and (c¢) in Lemma 10.1, in particular one
deduces that if dist(z, Lf) < 25?), then then

E? ~ max(a?(:v), 2_k/2d0).

Lemma 10.3. For all k > 1 and 1 < j < Ng, supppu N QB]’? is contained in the (ceg 4?)-
neighborhood of the line p;? (recall that Bf = B(z;-C 4“)) Moreover, if LY satisfies dist(L?, L¥) <
26;?, then

disty (pf N 2B}, pi N 2B) < o 5.

In particular,

(106) £k 1. ) S eo.
Proof. For k > 1 and 1 < j < N, consider the ball B;“ = B(zf,ﬁ?) and the segment L;? with
endpoints x?fl,xg? € supp . Suppose that cflv(xffl) > 0. Then there exists some cell Q;, i € I,

such that x?_l € @;. By (b) in the preceding lemma, éf > £(Q;). So there exists some cell

P > @Q; such that 4Bp D 2B§c, with £(P) = 4?. By Lemma 7.8 and (7.20),

(10.7) DBoc,i(P) < c0.

Moreover, since the endpoints of L? are both in supp t and é;? ~ ((P), it easily follows that
(10.8) dist (o N4Bp, pp NABp) < ¢ Boo 5(P) < ceg U(P),

where pp stands for a best approximating line for bf. z(P). From this fact and (10.7) one
infers that supp N QB]’-C is contained in the (cgg Ef)—neighborhood of p;? . The proof is analogous
if J(m?_l) =0.

The second statement of the lemma follows as above, just taking the cell P big enough so
that 2leC U 2B C 4Bp, still with ((P) ~ E;?. We leave the details for the reader. O

Next we intend to show that each curve I'y is a AD-regular, with a constant uniform on k.
The lemma below is the first step.
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Lemma 10.4. For fited k > 1 and j € [1, Ni], the only segment of the family {L¥}1<p<n, that
intersects the open ball %B]k = B(zf, %éf) is L;?. In other words,

1 pk~1k _ 1 pkArk

Proof. Suppose that the statement above does not hold and let us argue by contradiction.
Consider the least integer k > 1 such that there exists h,j € [1, Ng], with h # j, such that
(10.9) LENiBS + 2.

By construction, we must have k¥ > 2. By the preceding lemma, for each m € [1, Ny_; —
1], the angle between the lines pf ' and pkjrll is bounded by ceg. This implies that either

m
Lk ekt gk L) s very close to to 0 or very close to 7. Since LE ! does not intersect
%Bf;ll, this angle must be very close to w. That is,
k=1 k-1 k-1
(10.10) | L (2, 1, Ty ) — 7| S €0

Because of the way I'* is generated from I'*~1 we infer that the angles £ (x%, | ¥ 2% 41) are
also very close to 7 for all m € [1, Ny — 1]. As a consequence, if L¥ and B;? satisfy (10.9), then
|h — j| > N(ep), where N(gp) is some big integer depending only on €y which tends to oo as
gg — 0.

Consider the segments Lifl and Lffl which generate Lﬁ and L;? respectively. Notice that

h—j| 1
> |— _1>°N
-z B o1z SN ),
for N (ep) big enough (i.e. g9 small enough). Take y € L’IfLﬁB]’-C and y € LZTI with Il _1(y') = v,
so that
vy =y Seo byt meoly = ol
by Lemma 10.1 (a), (¢). By Lemma 10.3, we deduce that

distz (pf N Bj’-“, p? N B]k) Seo €§,
and so dist(y, L? N %Bf) <ep Ef. Thus, there exists some x € L;? N %Bjk such that |z —y| S e E?.

We take now 7’ € L?,_l such that II;_q(2') = z, which, in particular, implies that
|z — 2’| S el

Then we have .
@ =y <o’ —al+ o =yl + |y —y/| Scalf < 1 67

assuming €y small enough. Therefore,

k—1 3 pk—1

Ly ngBy #@.

From (10.10) and the fact that the lines pi,_l and pi,_l are very close we infer that that exists
some h” € [1, Ni_1], with |h” — B/| < ¢109 (where ¢19 is some absolute constant), such that

k—1 1 pk—1
(10.11) Ly n 5By #* O.

The fact that |h” — h'| < ¢1p and |h' — j'| > N(ep) ensures that h” # j'. This contradicts the
minimality of & and proves the lemma. (]
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Lemma 10.5. Forallk>1 and1 < j < N —1,

(10.12) |A{(x§:11,x?71,x?;11) — 7| < ep.
Proof. This has been shown in (10.10). O

Lemma 10.6. For every fixed k > 1, the balls %BJ’?, 1 < j < Ng, are pairwise disjoint.

Proof. Suppose not. Let 1 < j,h < Ni be such that %B;? N %B’}f # @, with h # j, and é;? > éﬁ,
say. Then %B}’f C %B]k and thus L¥ is intersects Bf, which contradicts Lemma 10.4. O

Lemma 10.7. For all k > 1, we have
N
supp i N B(xo, iKT‘()) C U Bjk.
j=1

Proof. We will argue by induction on k. This clearly holds for k¥ = 1, taking into account
Lemma 7.8. Suppose now this holds for k£ and let us see how this follows for k£ + 1. Consider
the ball B]’?, for some k£ > 1 and 1 < j < Ni. Take a segment Lﬁ“ generated by L;?. By

construction, we have Ei"‘l ~ Z?, and by Lemma 10.3,

. k kK k k
(10.13) disty (o} 7' N B}, pf N BY) < ceq £}
Consider now the maximal m,n > 0 such that all the balls

k+1 k+1 k+1 k+1 k+1
(10.14) Brtl Bl B B B

intersect Bf. By (c) from Lemma 10.1 it follows easily that f’;“ ~ E;? forh—m<p<h+n
and moreover m and n are uniformly bounded. Further (10.13) also holds replacing pffl by
p’;“ and by Lemma 10.5,

L (FFL hHL gkt ly <

p—1>"p p+l
k+1 k+1 k+1 k+1
. ,Lh s, L L

k
for all p. By elementary geometry, the segments thin, Lyt hon-17 Lhin

form a polygonal line v such that
disty (v N Bf, pf N BY) S eo th.

Moreover, one can also verify that, for ¢y small enough, the intersection of the (c'gg €§)—
neighborhood of p;? with B;? is contained in the union of the balls (10.14), and so
h+4n
suppﬁﬁB;-c C U B;;H,
p=h—m
which yields
Nk Nlc+1

supp i N U B;“ C suppp N U Byt
j=1 h=1



48 XAVIER TOLSA

Lemma 10.8. The curves T'* are AD-regular uniformly on k, with the AD-reqularity constant
bounded by c AT71.

Proof. Since T* is a curve, we only have to check the upper AD-regularity. Let B(z,r) be a
ball centered at some point x € L;‘?. Suppose first that r < 25?. If B(x,r) intersects another

segment L’fb, then ¢F ~ 4? because dist(Lf , L’fl) <r< 26? . Therefore, there exists some absolute
constant ¢ > 1 such that B,’j C ch’?. Since the balls %B}’f, 1 < h < Ny, are pairwise disjoint, it

follows that the number of balls B contained in (:Bj’»c which satisfy r(BF) ~ r(B;?) is uniformly
bounded above. Then we infer that

M ([TFNB,r) < > HYLENB(z,1) <er.

Rk k
hABthBj

Suppose now that r > 26;?. First we claim that if B(z,r) intersects another segment Lﬁ,
then Zg < My, for some absolute constant M. Indeed, if r < Eﬁ, then we obtain

dlbt(LZ,L?) <r< 627
which implies that Zfb ~ é;? < %r, and proves the claim. So we deduce that the ball B;f is

contained in B(z,C'r), for some C' > 1.
Now we write

H (TN B,r)< Y HY(L).
h:BFCB(x,C'r)

Observe now that u(% BF) > 7©,(Bg) ¢} by (10.3), and thus

1
1k < 1 npk
(10.15) H(T* N B(z,r)) < 6 (B9 ©,(Bn) E (5 By).-
h:BFCB(z,Cr)

Since, for a fixed k, the balls % B,]f are disjoint, we have
S uBY) < u(Be,Cr) < AB,(Br)r.
h:BECB(x,Cr)
Plugging this estimate into (10.15) we obtain
HYT* N Bz, r) < AT
O

Remark 10.9. It is easy to check that the limit in the Hausdorff metric of the sequence of
curves {Fk}k exists. By the preceding lemma, it is an AD-regular curve I with the AD-regularity
constant bounded by ¢ A7~ 1.
The next lemma asserts that, in a sense, supp i is very close to T'¥.
Lemma 10.10. If z € supp iz N B(xo, %Kro), then
dist(z, %) < &g max(élv(x), 27]“/2(10),
for all k > 1.
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Proof. By Lemma 10.7, there exists some ball B]’-“ which contains x. Therefore,
dist(a;,p?) <eo é?.
By Lemmas 10.1 (d) and 10.5, we deduce that
dist(z, T%) < g 6?.
On the other hand, by Lemma 10.1 (b), (¢), since dist(z, Lf) < 24?, we have
;? ~ max(d(z), 27k/2d0),
and thus we are done. (]
Note that, in particular, from the preceding lemma one deduces that NW, is supported in
the limiting curve I'. So we have:
Lemma 10.11. The set NW is rectifiable.
The next result can be understood as a kind of converse of Lemma 10.10. Roughly speaking,
it asserts that for each z € T'* there exists some point from supp ji which is very close.

Lemma 10.12. Letk > 1 and1 < j < Ni. For everyz € I"“(TB]]»c there exists some T’ € supp i
such that
|z — /| Seolh.

Proof. This follows from the fact that bﬁoo,ﬁ@B]’?) < gg and since :v?_l, xf € suppp N 2B§C and
|m§_1 - xf| ~ diam(Bj]?) we infer that distH(p;? N QB]’?, Lopr N QB]’?) < €0, where L, e is the best
J J

approximating line for bﬂ(2B§-€). O

Finally we have:

Lemma 10.13. Let le»l,ng, . 7L§k be a sequence of segments such that L;::;ll is generated by
L;’;‘n form=1,...,k—1. Then
k—1
142
> L0 PN S eM.
m=1

Proof. Is is easy to check that

Let Q € Qgood be a cell such that xfk € Q with 4(Q) =~ E?k. By the construction of the cells
from BSS, we have

> Boo,i(2Bp)* S M.
PeD:QCPCB(z0,KT0)
Then we deduce that

k—1
> Booii(B ) S > Bso,i(2Bp)* S M,
m=1 PeD:QCPCB(zo,Kr0)

and we are done. O
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Remark 10.14. If in the construction of the curves I'* above we replace the function J() by
d(-) and the cells {Q;};c; by the cells from the family Reg which have positive ;1 measure, we
will get curves F'}% which will satisfy properties analogous to the ones of I'*, with the exception
of the one stated in Lemma 10.13. So very similar versions of Lemmas 10.1-10.12 will hold for
I‘Iﬁz, k > 1. Moreover, letting I'g be the limit in the Hausdorff metric of the curves F’I%L, one
obtains Wy C I'r and so Wy is rectifiable. Using the fact that ©,(1.1Bg) < A©,(Bg) for
any @ € D with £(Q) < ¢(R) such that p(Q N Wy) > 0, it follows easily that u|w, is absolute
continuous with respect to Hl\pR.

11. THE SMALL MEASURE /i OF THE CELLS FROM BSf

Recall that Q € BSg, if Q@ ¢ BCFyU LDy U HDy U BCGyU BCAy, £(Q) < ¢(R), and
(11.1) S Bral2Br) 2 M.
PED:QCPCR

The cells from BSS are the ones from NTerm which belong to BSSZ,. We denote by BS3; the
cells from BSS which are contained in B(zg, %K 70).
In this section we will prove the following;:

Lemma 11.1. Assume that M is big enough (depending only A and 7). Then
_ (A, 7 K)
< .
u( U Q> S = HER)

QEBSB,

To prove the preceding result we will use the usual lattice D(R?) of dyadic cubes of RY. Given
a cube Q € D(R?), we denote by £(Q) its side length and by z¢ its center. We define

: dist(y, L)
Brk oo(Q) =inf sup ——2—,
ree L yesorre  HQ)
where 3@Q) stands for the cube concentric with ¢ with side length 3¢(Q).

Proof of Lemma 11.1. Consider the following auxiliary curve:

Ny,
Tk k k
¥ =1*ulJoB;.
j=1
Since H1(TF) < H(TF) Sar KU(R), by Jones’ traveling salesman theorem [Jo], [Ok], it follows
that
(11.2) D B (@7 UQ) S KUR).
QED(RY)
Now we claim that
Z ﬁﬁ,oo(QBP)z E(P) S./A,T Z 6oo7fk (Q)2 e(Q)
P€Qgood: QED(TE,):

PCB(z0, K70) QCB(x0,KT0)
L(P)>27%/24,
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To this end, recall that
supp fn N B( 370,4Kr0 UBk

Take a cell P € Qgood such that ¢(P) > 27%/2d;. To such a cell we can associate a cube
Q(P) € D(R?) such that 2Bp C 3Q(P) and £(Q(P)) ~ £(P). Then it follows that

/BOO,M(2BP) N Boo Tk (Q(P))a

and since for a given Q € D(R?), the number of cells P € Qgood such that Q = Q(P) does not
exceed some absolute constant, the claim follows. Together with (11.2), this gives

Y Bus(2Bp)*U(P) Sarx UR).
PeQgood:
PCB(xo,%Km)
(P)>27F/2dy

From the last estimate, taking into account that BS3; C Qgood, by (11.1) and Chebyshev,
we derive

— 1 -
Y. HQ<g Y > Boo,i(2Bp) Q)
QeBSB;: QeBSp;: PeD:QCPCB(z0,K10)
£€Q)>27"/2dy 0Q)>27"/2dy
1 ~
S0 (N(B(!L”m Kro))+ > Boo,ﬁ(ZBP)QU(Q)>
QeBSB,  PeD:QCPCB(wo,5 Kro)

§(Q)>27F/2dy

0,.(B
SATK # <£(R) + > 5007,7(231:)26(13))
PeQgood:
PCB(z0, 5 K7o)
£(P)>27F/24,
0.(Br){(R) _ u(R)
M A1, K M
Letting & — oo, the lemma follows. O

SJA,T,K

12. THE APPROXIMATING MEASURE ¥ oN Tk,

For technical reasons, it is convenient to define an extended curve I'*,. Recall that the
endpoints of I'* coincide with the endpoints z4 zp of the segment L}, which is contained in the
line pi. We set

L =TFU(p1\ L)
We define analogously I'., = T'U (p} \ L}). Notice that T'L, = pi.

In this section, we will construct a measure v* supported on F’gx which will approximate [
at the level of the balls B]’?, 1 < j < Nj. Taking a weak * limit of the measures v* we will get
a measure v supported on I'.; which approximates i on B(xo, %Kro).
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Consider a radial C® function # which is supported on the ball B(0, %) and equals 1 on

B(0,1). For k> 1 and 1 < j < Ny, we set

k
R ZU—Z]
9]._9< N >
J

Recall that Bf = B(zj-“,ﬁ?) and thus 5;“ equals 1 on BJZg and is supported on %Bjk Notice that

Ny

ok ~ Ny pk
Zﬁj ~1 on ;2 By.
i=1

: sone Ak ions 0% satisfvi N gk _— Ny pk
Next we modify the functions 6} in order to get functions 67 satistying Zj:jl 07 =1on sz’“l Bj.

For a fixed k, we define 9;“ inductively on j as follows. First we set HIf = 9’f. Then we write

0% = (1 — 0§)6%.

In general, if 9’f, . ,9;“ have already been defined, we set

j ~

k
o0, (1 — Z@) 0%,
h=1

Also, we define

Ny,

oh=1-3 6
j=1

Lemma 12.1. For each k > 1, the functions 0;?, 1 < j < Ni satisfy the following properties:
(a) 9;? is a non-negative and it is supported on %Bf, and for alln > 0,
1
ynn
()"

IV} llo < c(n)

(b) For all x € RY,

Z Gf(x) <1

1<j<Ng

> () =1.

1<j<Ng

(¢) Forallz € UlgjgNk Bf?

We leave the easy proof for the reader.

Remark 12.2. Concerning the function 6%, let us remark that

1
npk k
(12.1) (V"0 (x)] < c(n) for all z € I'".

@
This is due to the fact that
" N supp(VOG) C B(zf, C £7) U B(2K, ,C 1X,),

for some absolute constant C.
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On the other hand, one should expect (12.1) to hold for all z € R%. In this case, one can

only ensure that
1

We are ready now to define the measures vk For 1< 7 < Ng, we set
J 05 du
12.2 =0 H e, with F=—L
( ) j 3 Yj |F’£I J fef dH1|r§z

Also, we set cf = cf and v} = cf 05 H!|rx . Then we write
N
k __ k
V= E Vi
Jj=0

Lemma 12.3. The measure v* is AD-reqular. Indeed, there exists some constant ¢ = c(A,T)
such that

¢'0,(Br)r < V*(B(z,1r)) < cO,(Br)r for all x € T*.
Proof. This follows easily from the fact that

C? %AJ— @u(BR)~

13. SQUARE FUNCTION ESTIMATES FOR vk

Let ¢ : [0,00) — R be a C* function supported in [0, 2] which is constant in [0,1/2]. We
denote ¥ (2) = ¢,(2) — p2r(2), with

or(x) = 190 <M> ;7 >0,

r T
so that we have A, ,(x,7) = ¥ * p(x). In Lemma 3.2 we showed that, for 0 < rq < o, we have
2 dr 2r2 dr
(13.) [ P <e [ A
1 r 7‘1/2 r

Recall that i = |z, with

E = B(z0,2Kro) N (Wo U |J [4BgnFnG(Q,R, 51/4,77)]).
Q€EReg
If x € E, then either z € Wy or there exists some some @' € Reg such that € 4By N F N

G(Q', R,6'*,n). If Q is the cell from Reg which contains z, then £(Q) ~ ¢(Q’), and by (13.1)
and the definition of G(Q’, R, 6"/*,7) it follows that

c™16-1/40(R) dr 6—1/4¢(R) dr
13.2 / A J:,TZ—S/ Ay(z,r)? — <n0,(Bg)>.
w2 [ At TS [ e TS n0un)

The next objective consists in proving the following.
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Lemma 13.1. Let k> 1 and 1 < j < Ni. For every x € rtn Bj’?,

Kro/4 o dr or o )
L Bl E < 0 e 42 0,(Br)"
J

Proof. By Lemma 10.12, there exists some 2/ € E such that |z — 2| < eo E?. From Remark

10.2 it follows easily that there exists some cell Q € Qgood with £(Q) =~ é;‘? which contains z’.
Together with (13.2) this gives

Krg d
2 ar
/g |Alh@(xlvr)} 7 5 n@u(BR)Z-

k
J

By Lemma 6.8, we know that p(B(z',r)) < A©,(Bg)r for E? <r < Kry. Next note that, for
r such that |z — /| <r < 6 'r/4,

x—a otk
) o) < fe | s 19 e )e)] € (B, ) £ 52 A0, ()
z€[x,x
Therefore,
/ |l’ — xl|
’Au,w(x’r) A 7T)| S A©,(Br)

for r such that |z — 2/| < r < §~1r/4. Thus,

KTO/4 dr KT‘O/4 d'r o) (616)2 d'f’
[ 1uslan E <2 [ A e (0,8 [ T
14 £

: r § oo
J J J

<2nA?0,(Bg)* +cel A20,(Br)*

Recall the definition of ij and cé? in (12.2).

Lemma 13.2. Suppose that 2B§€ C B(xo,%KTo) for some k> 1 and 1 < j < Ng. For all
z € R and all 7 > c_lﬂé?,

1(B*) ¢k
(13.3) ‘/wr(m —y) dujl-f(y) - /%«(x ) 9;“(3/) du(y)| < o M(T#

Let us remark that the condition 2B]’? C B(xo, %K ro) guaranties that 2B;? is far from the
endpoints of T'*.

Proof. Taking into account that v¥ = ¢& 0¥H!|pi and that [dvF = [0F dji, we have
19 [oe-piaie) - [o6- e dw
— [l =) = o = ) A0} - W)

- / (@ — ) — Yol — 229) O5() d(EH | — ) ().



RECTIFIABLE MEASURES, SQUARE FUNCTIONS, AND THE CAUCHY TRANSFORM 55

To estimate the last integral we wish to apply that aﬁ(ZBf) < €0. Denote by cypr and Ly gk the
J J

constant and the line minimizing aﬁ(QB]’?). For fixed z, denote f(y) = ¥, (z —y) — ¥ (x — Zf)
Then the left side of (13.4) can be written as follows

[ H) 05 ik s = ) = (& = o) [ £ 650) ¥
oo [ FWO@AH e~ e, )0

+ [ 1) 80 sy W, ~ V)
=T +1Tr+T;.

To estimate T we use (13.7) and the fact that |copr| S @(23;?), by Lemma 2.2 (¢). Then
J
we have

(13.5) Ty| < ©5(2B)) Lip(f 6}) disty e (H1|Fk,’H1|LQB§).
Observe that
ok
1o 2 = e (@ =) = (@ = )l o S 3
and
: k k k 1 E? 1 1
(13.6) Lip(£05) < [1fllcol605 10 + ||f||oo,zB; VO ]loo < e B et
J

From Lemmas 7.8 and 10.5 and the construction of I'*, one can easily check that
dist (2B} NT*,2BF N Lype) S e lh
J

and also that

(13.7) dist, (H1|Fk,H1\L23§) Seo (€5)2.
Therefore, by (13.5), (13.6), (13.7), and (10.3), we obtain
< gy L k)2 o b
IT2| < 917(23]') 2 €0 (fj) ~ €0 M(Bj) 72

Concerning T3, using (13.6) and (10.3) again, we get

N o+ N o+
T3] S Lin(f 04) 0u(2B5) w(2BY) & S ag(2BY) (BY) % < 2 il BY) .

To deal with 77 we need first to estimate |c§C — ¢opr|. To this end, we write
J

(13.8) ’/efdﬁ—cm/ 05 d’*
7 Jrk

< /efdﬁ—cw;/L

oF dH'| + Copt / Hfd’Hl—CQB]k /F ) o dH'|.

2Bk 2Bk
J J
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Since ||V0§“||Oo <1 /6;‘7 , the first term on the right hand side does not exceed
1 ~ ~
¢ (@B ABY) & 5 2o (B,
j
Arguing as in (13.5), we deduce that the last term on the right hand side of (13.8) is bounded
by

©7(2BY) Lip (65 )dlStQBk(H Ires H L, ) O, (zB’f)g eo (1)? < eo fi(BY).

J
Then we deduce that
‘/Qfdﬁ Capk / ‘ Hfd”;'-[l
Tk

< eo i BY).

Recalling that c NQ}TC?T we obtain
~nk
k koo g0 A(By)
=—— | [ ¢an 07 dH _—
5 = ol = 1 ek aH / a CQB’“/ S o
Therefore, we have
~pky pk ~ Dk gk
A 1o fo w(By) 4 L eo (B
1] S \C - CQB’“| Hf”oosz/ 9 y)dH' < W Tg - '(Z/) dH” = -2z
Gathering the estimates obtained for 77, T5 and T3, the lemma follows. O

Lemma 13.3. For x € T, let ¢*(x) denote the segment Lé? which contains x (if this is not
unique, the choice does not matter). We have

KTQ/lOO 9 d,r k
(13.9) / / Az (2,1) = Ay y(@,7)* — dv¥(2) Sark 6 ©u(Br)? p(R).
B(zo,5Kro) J ¢ (x) r

Note that in the integral above supp v* N B(x, %K?‘o) c Ik,

Proof. Let x € B(x, %Kro) ATk, r > (*(z), and write

Agoler) — By, (/%x— ) vk >—/W@—m¢@mmw)

Since supp 9;? - %B;?, the 1ntegral on the right hand side vanishes unless %B]k intersects B(x, ).

Since r > ¢¥(z), it follows easily that the latter condition implies QB]’»f C B(z,eq1r), for some
absolute constant ¢y, by Lemma 10.1.
For a ball BJZ€ such that QB’{C C B(z,c117), by Lemma 13.2 we have

[ ota =k = vz M(mmﬂ<@—@32

Hence,
(By) £
INPCR RV RERS| PR DR LS

i k
].QBj CB(z,c117)
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By Cauchy-Schwarz, from the last estimate we infer that

2 ~ (B*) (¢%)2
|%wmﬂ—AwA%ﬂ|s%< > m%ﬁ( 2 MJ;“)>

j:QBJkCB(m,cnr) j:ZB;?CB(:r,cllr)

< i(B(z,cinr)) 5 [i(BY) (€5)?

r 73

)

j:ZB;?CB(a:,cur)

where in the last inequality we took into account that ,u(B;-“) ~
are pairwise disjoint for every fixed k. Since p(B(z,c117)) S AO,

BY) and that the balls §BY

1
6
(Br) r, we obtain

(BY) (£h)
|Aﬁ,(p($,7") - Auk,go(mar”? S E’%A@H(‘BR) Z — =g

3
J:2BFCB(2,c11r)
Now we use this inequality to estimate the left hand side of (13.9):
Kr0/100 d
(13.10) / / A (,7) = A (a,7)|> = dvF ()
B(xo, g Kro) J k() r
s 10 RBE) (65 ar
SEgA@M(BR)Z/k/ jrg £ 7duk(x).
h= L QBkCB (z,c117)
Note now that if x € B}’f, r> Ek and QB’? C B(z,c117), then
r 2 dist(By, Bf) + r(B}) + r(By) =: D(B}, By).
Then, by Fubini,
[ s R S [C L
¢k J2BF Bl en) r3 T (R LD(B,BE) o
N, k2
38 B
< D(B, B)?
Plugging this estimate into (13.10), this gives
Kr/100 d
(13.11) / / A (@,7) = Ay (a,r)|> = dv¥ ()
B(zo,t Kro) J k() ’ r
Ny, Ni ~(pk\(pk\2
(B (45)
S AOuBR) Y VI Y S or BIe
~ 3
h=1 j=1 D(Bj’Bh)
2 % ky(pk\2 % Vk(Lﬁ)
=e5 AOu(Br) ) (BF)(5)” ) =i
ST i DB B

Since the measure v* satisfies the linear growth condition

V(B(y,r)) < Sar ©u(Br)r forallr >0,
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one easily gets
N,
S B
~A,T .
D(B}, BJ)? (%)

h=1
Then, going back to (13.11), we obtain

/ /Kro/loo 9 dr k
Az (x,r) — Ak (x,7)|" — dv™ (2
B(zo0,3Kro) J £F(x) | HW( : 780( ! " o
NATEO u(BR) Z,u ) <arK 506 (BR) n(R),

as wished.

Lemma 13.4. Let H* be the subset of those points x € T* N B(xo, %Kro) such that
Kro/100
Lo st & > 20,
Then
VR(H") < 5(1)/2 vk (Th),
assuming 1 small enough.

Proof. For x € T* N B(xg, §Kro) we write

Kro/100 1/2
(/ \Aﬂwunw2@> g(
rk (z) ’ r

’“(x) T

Kro,/100 d 1/2
9 dr
/[ |Al,k7¢(x,r) — Ap (2, r)| —>

Kro/IOO d 1/2
2 dr
< u&p( ) AH#P(‘I’T” 7)
1/2
Kro/loo , dr /
Ay ()| s
=:I(x) +IQ )+ I3(x).
By Lemma 13.1, if  and ¢y are assumed small enough,
172
I(z) < % ©u(Bg)  for all z € I'* N B(xg, 1 Kro).
Thus,
k( g7k k k 1 1.1/2
(13.12) VW(HY) <wv ({.73 €T*N B(wo, 3Kro) : [1(z) > 1e/°© (BR)})

+ ({x e " N B(xy, LK) : Ih(z) > 5(1)/2 @M(BR)}) .
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By Chebyshev and Lemma 13.3, the first term on the right hand side does not exceed

9 / /Kr0/100|A (.7 — Ao (1) dr K(z)

s 1,0\, T) — 4, z,r —dvi(z
00,(Br)? B(xo, 1 Kr0) J () Bsp ko r

1/2

9¢(A, 7, K) <5 GZ(BR)Q n(R) < &’

where in the last inequality we took into account that g < ¢(A, 7, K) and that u(R) ~x v*(T'%).
To estimate the last term in (13.12), we consider the operator T, defined as follows for a

measure A € M(R%):
o0 2 d’l“ 1/2
ToAz) = /0 |Ay o (z,7)] . .

As shown in [TT, Theorem 5.1], T}, is bounded from M (R?) to L**°(H1!|px) when I'* is an AD-
regular curve, with the norm bounded by some constant depending only on the AD-regularity
constant of I'*, and so on A and 7. Take the measure

Vk(rk)a

)\ = XB(zo,KTo) (I'L - ﬁ)
Using the aforementioned boundedness of T, and the fact that v* < A4©,(Bg) H1|F§x’ we
deduce that the last term in (13.12) is bounded by
cA©,(Br)H" ({LE eTr: T,\(z) > %5(1]/2 @u(BR)})
AL (A ) Al

< C(Av T) ®H (BR) =
Feub A

Note now that by Lemma 7.3

IN| = w(B(wo, Km0) \ E) < 0" u(B(ao, Kro)) Sk '/ u(R) S /100 (0F).
Thus, for n small enough,
(A, 7, K)nt/10 Jk(Tk &’

172

v ({2 € T 0 Blag, 1Kr0) : B(e) > del/” Ou(Br) }) <
€o

which completes the proof of the lemma. O

Lemma 13.5. We have

00 L () e o dr
ar a1y < 1/2 2

100 8

Proof. First we will estimate the integral

/ /
K
Ik, J220

100

d
Ay ()| % dM (z).

To this end, take r > Kr(/100 and let x by a C* bump function x which equals 1 on B(xo, %Kro)
and vanishes on R?\ B(xg, Kr¢), with || Vx|leo < ¢(d)/ro. For x € pi, we have wr*H1|p% (x) =0,
and thus

Do) = [nle =) dhw) — [ unte =) aH!40).
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As V¥ coincides with cf dH1| p1 out of a small neighborhood of B(x, iK r0), we have

Bysploir) = [ (@)l = ) d* = st ().
Therefore,
|Auk,<p(x’ T)| < Lip(X ¢r($ - )) diStB(:cg,Kro)(Vkv CIS dH1|p%)
By the construction of v* and the definition of cf, it is not difficult to see that
(1313) diStB(a:Q,Kro)(Vkﬂ CIOc Hl |p%) S C(K) €0 Vk(B(Jj‘m KTO)) ro-
We leave the details for the reader. Using also that Lip(x ¢r(z —))) < ¢(K)/(r 1), we obtain

c(K) e p(R) 1o
rTro

< ¢(K) ey ©,(Br) %

(13.14) Ak (@, 7)| <
If x € T, \ pi, then we consider the point 2’ which is the orthogonal projection of x on p},
and we write

|Al/k,tp(x’r)| < ‘Auk,w('xl’T” + |Auk,g@(x/’r) - Auk,<p(x’r)|

< (K)o ©,(Br) %0 1Ak (@) = A (7)),

790(
by applying (13.14) to z’. To estimate the last term note that

|z —2'| < sup dist(mf,p%) S Boo(B(zo, Kro) K19 < ¢(K) £ 7p-
1<j<Ng
So we have

O(B
By (1) — Do ()] < Jo — 2| [V 8y 5 ¥ loe < oK) g g DR,

Thus (13.14) also holds in this case.
Note also that A, ,(x,7) vanishes for z € I'*, such that B(z,4r) N B(zo, 3Kro) # . So we
may assume that r = K rg + |z — z¢|, and thus

* 2 dr 9 9 ™ 7"8
Ak p(2,7)]" — < e(K) € O,(Br) "0 g
K T r
ro/100 ¢ Kro/100+c |z —x0|
2 Br)?
< (k)< 10 Ou(BR)

rg + o — zol*
From the preceding estimate, it follows immediately that

o0

100

Byp gl )| Lt (2) < oK) & 0,(Br)? £R) < e 0,(Br)? ((R).

By arguments in the same spirit, one can show that

0

ti(x) e d
(/ / +/ /) Ak (2, 7) [P - d (2) S ey * ©,u(Br)* U(R).
rk, Jo I, \B(xo, 552) Jo ’ "

8

We leave the details for the reader. O
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Remark 13.6. For the record, note that from (13.13) it follows easily that
&k~ ©,(Br)

with the comparability constant not depending on A, 7, K or M.

Now we need the following auxiliary result.

Proposition 13.7. For g € LP(H1|F;§m), consider the operator

5 gr\ /2
vl )@ )

oo
(13.15) Ty o) = ([
Then T¢7H1|F§w is bounded in LP(H'|pe ) for 1 < p < co.

Proof. We consider the operator

*° odr 1/2
Ty 00 = ([ Sy (0r?E)

exr T
As shown in [TT], TH1|F,&C is bounded in L?(H!|p«) and from L'(HY|p) to LY (H!|pw). Thus
by interpolation it is bounded in LP(H!|px) for 1 < p < 2. By applying Lemma 3.2 to the
measure g’H1|F§Z, it follows that

(13.16) T¢,H1|F§z9(1’) < CTyl\F,gzg(x)a

and thus T%Hl‘rlgw is also bounded in LP(HI\F{;Z) for 1 <p<2.

We will show in Proposition 18.1 that the L?(#!|p«) boundedness of T7“1|r’gz
boundedness in LP(H!|px) for 2 < p < oco. Thus again by (13.16), T%H”r’gz is bounded in
LP(H1|F§I) for 2 < p < 0.

An alternative argument to show that T%H1|F§w is bounded in L”(H1|F§z) for 2 < p <

implies its

oo consists in proving its boundedness from L>(H!|px) to BMO(H!|p«) (which follows by
rather stander arguments). Then by interpolation between the pairs (L*(H!|pr), L2(H|r«))
and (L®(H!|pk), BMO(H!|x)) we are done. O

Lemma 13.8. We have

> d
/ / Ay ()P L art (@) < </ ©,(Br) ((R).
e Jo

g
Proof. Let F* be the subset of those points = € T* N B(xo, %Kro) such that

Krg d

100 9 dr

/ |Ayk7¢(x,7')| — > 6(1)/4 0,.(Br)*.
0
From Lemmas 13.4 and 13.5 we deduce that
H(F*) S el U(R),
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assuming 7 small enough. Therefore,

Krg

Su d
(13.17) / A (@) Td’H (@) Sarx eyt O,(BR)2U(R).

/F’COB(xO,éKm)\F’“

Denote by gi the density of v* with respect to H'|rx. Note that Ak p(x,m) = Py %
(XB(zo,2Kro)Vk) for © € s n B(x07%K7‘0) and 7 < Krp/100. Then, by Holder’s inequality
and the L4(H1|Fle€x) boundedness of the operator T, 31, from (13.15), we get

Ik,

Krg

100 2 dr
L[ 1o P Lant @) < [ 18001, 06 Xm0 a0
Fk Jo r Fk ex

< Hl(Fk)l/z ||T<p Hl‘r’gm (9 XB(xo,zKro))”Zm(Hl\Fk )

1/4
Sari (e URD llge XB(wo om0 a3,

Saneq” Ou(Br) UR).
From this estimate and (13.17) we deduce

Krg

100 d
/ / A (@, m)[* = dHN @) Sar (2! +20%) ©,(BRIUR)
T NB(z0,L Kro) J0 r

Sarx e ©.u(Br)*(R).

In combination with Lemma 13.5, this concludes the proof of the lemma. O

14. THE GOOD MEASURE o* oN ¥

In this section, for each k we will construct a measure o* supported on I'* having linear
growth (with an absolute constant), so that moreover

(14.1) /Fk/ 1Ak, (z,r)| %d%l(x)

is very small. The measure o will be used as a kind of reference measure in Section 15, where
we will estimate the wavelet coefficients of the density of v* with respect to ¢* in terms of
the square function (14.1) and of the analogous square function involving the measure v*. By
means of these estimates we will prove later that the cells from HD have small p-mass.

To define the measures o we will use the maps IIj, : I'* — T'**+1 introduced at the beginning
of Section 10. Recall that, given z € Lé‘?, I (x) is defined by the property that the orthogonal
projection of ITx(x) on Lk is 2. We extend II}, to the whole curve I'¥, just by setting Iy (z) = z
for z € T* \ T'*. Note that Ik \T* =T*+1\ 751 and so the definition is correct. By abusing
notation, we continue to denote by I thls extension.

We set 0! = Hllréz = ’H1|p%7 and then by induction, o*1 = TI; 4 (o*) for k& > 1, where
Hk#(ak) is the image measure of o* by II,. Note that o' is just the length on the line P
(which coincides with T'1), and then for k > 1, o* = g, H'|px, with ||gr]|ec < 1. This follows
from the easily proved fact that [|gr+1llsc < ||gk|loo- Taking into account that I'* is AD regular,
it follows that o has linear growth with some constant depending on A and 7 (analogously to
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Fk). Next we show that the linear growth of o does not depend on these constants. This fact
will play an important role later.

Lemma 14.1. There exists an absolute constant cy such that
o"(B(z,7)) < cor for x € R? and r > 0.

Proof. Tt is enough to show that o*|+ has linear growth with some absolute constant because

o* coincides with the arc length measure on I'*, \ T'*. So it suffices to prove that

(14.2) ¥ (B(z,r)NT*) <er for z € T and 0 < 7 < diam(T'%).
Suppose first that r < 27%/2dy (recall that dy = ¢} ~ diam(T'*)). In this case, by Lemma 10.6

it follows easily that B(z,r) intersects a number of segments L;? bounded above by an absolute
constant. Since o*|pw = g H'|px with ||grlleo < 1, (14.2) holds in this case.

Suppose now that r > 27%/2dy. Let 0 < m < k be the integer such that
2—(m—1)/2 do <r< 2—m/2 do.
Note that
o* = 4 (M1, - (M (0™))))-
Let y € B(z,r). For m < n < k, let z,,y, be such that IIy_1(IIx_o(... (I, (z,)))) = = and
I (Tg—2(. .. (I (yn)))) = y. Since |z, — Tpt1] S €0 27124, for all n, writing = = x;, we get

k-1
|z — 2| < Z 20 — Tna1] < g0 272 dy.

Analogously, |y — ym| < €027™/2 dy. Therefore,

I, (- (T, (T (B2, 7)) € B, (14 c20)2” ™ 2do),
and so

o*(B(z,r) NT¥) = o™ (I (L, (L2, (B(e,r) N T™)))))

™ (B, (1 + ce0)27™2dg) N T™).

IN

Arguing as above, since f;” < 27m/2dy for 1 < j < N,, and the number of segments L7 that
intersect B(,, (14 c9)2-™/2dy) is bounded by some absolute constant, we deduce that

o™ (B(xm, (1 + 050)27m/2d0) Nnrm < 2724y < cr.

Next we show that o is also lower AD-regular, with a constant depending on M now.
Lemma 14.2. The density g of o* with respect to ’H1|F§1 satisfies
gk(z) = (M) >0 for all z € T% .
Proof. For z € T% \ T* we have ¢*(z) = 1.

Suppose now that z € Lf C T'*, and consider a the sequence of segements Li= le-l , LJZQ, cee Lé?k =

L% such that L;’zntll is generated by L7 form =1,...,k — 1. By Lemma 10.13 (see (10.8)) we
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know that A(pj , p;”tl) is bounded by the B, coefficient of a suitable cell P € D such that
2Bp contains L;”:1 and L;’Z:ll Thus we have

k—1
(14.3) > (L)) < e M.
m=1

Denote by g, the (constant) value of the density g, on L. We claim that

gm M
L&%—4<umw%ﬁ».

Indeed, let I,,,4+1 be an arbitrary interval contained in L;"mtll and denote by I,,, the interval from
L7 such that I, (1) = Im+1, so that o™t (Ih41) = o(I,,) and thus

9(m+1) H! ( m—‘rl) = 9(m) H1<Im>a

Since H(I,,) = cos A(pjm,p?:ntll)’l-l (Im+1), we get

9(m+1) _ Hl(Im)
g(m) Hl(Im—H)

= cos 4(p.7m7 p;:::ll)

Thus,
9m+1)
9(m)

and the claim follows.
From the previous claim and (14.3) we derive

(144) ‘ ) p]m_'_l ’ p]m+1 p]m’ p]m+1

1| = oos 40 A1) = 11 < sin L ) < (Ll P

k-1
9(m+1) ‘ el
1| 9(m)
which implies that
H L < (),
As gy =1, we get gy > C(M)7!, as WlShed -

To estimate the integral (14.1) it is convenient to introduce a dyadlc lattice over T'¥,, which
we will denote by D(T'%,). This lattice is made up of subsets of I'*, and is analogous to the
lattice D associated with g which has been introduced in Section 4. However, since the arc-
length measure on I'*, is AD-regular, the arguments for the construction of D( k) are easier
than the ones for D. There are many references where the reader can find such a construction.
For example, see the classical works of [Ch] and [Da], or the more recent [NToV] for the precise
version that we state below:

e The family D(T'%,) is the disjoint union of families D,,(T'¥,) (families of level m cells,
which are subsets of T'*), m € Z.

e If Q. Q" € D, (T, ) then either Q' = Q" or Q' N Q" =

e Each Q' € D,,41(I'%,) is contained in some Q € Dy, (Few) (necessarily unique due to the
previous property). We say that @’ is the son of @, and that @ is the parent of @Q'.
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e For each m € Z, T, = Ugep, ) @-
e For cach Q € D, (I'},), there exists 2o € @ (the “center” of Q) such that @ C

exr

B(zg,274m2) and dist(zq, Q') > 2743 for any Q' € D,,(T%,) different from Q.
We write £(Q) = 274" and we call it the side length of Q. Also, we set

Bq = B(zq, 4(Q)),
so that we have
k. n %BQ cQcT* nBg.
We define

Brk, oo (P) = Bre_ o (4Bp).

Lemma 14.3. We have
o° dr
ws) [ e Tt @ S Y i (@0Q)

QeD(TE,)

Note the power 4 over 51“’:,,00 (@) in the last equation. At first sight, it may seem surprising
because the usual power is 2 in most square function type estimates. The fact that we get a
power larger than 2 will allow us to show that the left hand side of (14.5) is small if g is also
small.

Proof of Lemma 14.3. By convenience, for i < 0, we denote I', = pl and o = H1|r‘éz, and II;
is the identity map on pi.

The first step to prove the lemma consist in estimating Ak ,(z,7) = ¥, * o®(z) in terms
of the 8 coefficients of F’gz. Suppose first that » > 2_(k+2)/2d0. Let m < k the maximal
integer such that 2-(m+2)/2 g, > 10r. Note that Z}” > 10r for all 1 < j < N,,,, by (10.2).
Consider the sequence of points T, Tmi1,. .., 2, = x such that z; € ', and II;(z;) = x;41 for
i=m,m+1,...,k—1. Then we write

[ % 0" ()] < [ty 5 0" () = Y % 0™ ()| + [ty % 0™ (20,
so that
(14.6

)
o0 d o0 d

/ iy # 0*(@) 2 2L () < / / iy % 0 () — 5 0™ ()2 L ()

Ik, 2—(k+2)/2(, r Ik, 2—(k+2)/24, T

* m o dr 1
+ [ty x o™ (x)|” — dH (2)
F’;w 2—(k+2)/2d0 r

=O+@
Notice that, although it is not stated explicitly, in the integrals above m depends on r, and

thus x,, depends on x and r.

Estimate of @
We write

=

-1
(14.7) [ % 0 () — by % 0™ ()] < 2 [r o' (i) = ¢p % 0 (wiga)|-

]
3
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Since ¢! =TI, 40?, we have

[y % 0 () — Gy % 0! m-\/wr 2 do') ~ [ty - H(xn)dl“(y)\
\ [ty =2 = e 0) - ) da%y)'.

To deal with the last integral, recall that v, (z) = %@(M) — % @(%) and that ¢ is supported

n [—2,2] and constant in [—1/2,1/2]. So we have '
|or (T (y) — M) — ey — 2)| < = HH — ()| — |y — il

and moreover the left hand side vanishes unless |y — x;| ~ 7 or [I;(y) — II;(z;)| ~ r, which is
equivalent to saying just that |y — ;| = r (because |y — x;| =~ |IL;(y) — IL;(z;)| for y € T%,).
Therefore,

. . 1 .
(148) [ o) = 20 i) S 5 [ Mi(y) — i) — by — il do (y):
" Jemtr<|y—azi|<5r
Now we have:
Claim 14.4. For m <i <k, let x;,y € T%, be as in (14.8), with

(14.9) clr<|y—axz| <57

Let Q'(x;),Q'(y) € D(I'E)) be the largest cells with £(Q(x;)),4(Q'(y)) < 2/%dy such that
2Bgi(s,;) contains x; and 2B, contains y. Let S € D(T%,) be the smallest cell such that 2Bg
contains Q(x;) and Q'(y) for all y € T, satisfying (14.9) and m < i < k (so diam(Bg) ~ 7).
Then

2
(14.10) [T (y) — Ti(a)| — |y — @il S €Q(y)) ( > ﬁrkl,oo(Q)>
QeD(TE,):
Q*(y)CQC2Bs

2
"’E(Qi(xi))( > ﬁpg,,oo@)),

QeD(TE,):
Q' (z;)CQC2Bs

form <i<k.

Let us assume the claim for the moment and let us continue the proof of the lemma. Let j(i)
the level of the largest cells P € D(I'%,) such that £(P) < 2¥/2 dy. Plugging the above estimate
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into (14.8) we derive

(14.11)

[ % 0" (25) — b % 0T (@441))

1
S L sy

PeD;y(TE,):
PC2Bg

2
(P)?
¥ (T )
PeD;;(TE,): QeD(TE,):

PC2Bg PCQC2Bs

2
¢(P)?
DY g((S;( > 51“5,,00(@)) :
PED;(;)(TE,): QeD(TE,):
PC2Bg Q"(z;)CQC2Bg

/yEZBp:clrgyzi|§5 r

Note that

((P)? Qx4
yo4n <C(A,T)7(C§(g)).
PeD;,(TE,):

PC2Bg

So the last sum in (14.11) does not exceed

C(A, 1) M < Z ﬂF’gx,oo(Q)> :

14
(%) QeD(TE,):
Q" (z;)CQC2Bg
Going back to equation (14.7), we get
2
(14.12) [ % 0" () = P % 0" (@m)| Sar D TSE > Bre Q)
PeD(Tk,): QeD(TE,):
PC2Bg PCQC2Bs
2
L{(P
- (Y ).
PeD(TE,): QeD(TE,):
rePC2Bg PCQC2Bs

where we took into account that #{i € Z : j(i) = jo} is bounded independently of jo.

| (y) — T ()| — |y — ]| do* (y)
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To prove (14.5) we will need to square the preceding inequality. Let us deal with the first
sum on the right hand side. By Cauchy-Schwarz, we obtain

¢ 9 2\ 2
( Z g((fgz( Z /Brfgzoo(Q)>>

PeD(Tk,): QeD(Tk,):
PC2Bg PCQC2Bs
4
((P)? {(P)?
<X T @) ) X 2
E(S) E(S)
PeD(TE,): QeD(Tk,): PeD(Tk):
PC2Bg PCQC2Bg PC2Bg

The last factor on the right side does not exceed some constant depending on A and 7. Also,
by Holder’s inequality, it easily follows that

! Q)M
(14.13) 2 Ae@) 2 D Ans@'yps
QeD(I'g,): QeD(T'g,):
PCQC2Bs PCQC2Bg
So we get

, 2 2\ 2
< 2 Xg’;z( > 6%,00(@)))

PED(TE,): QeD(TE,):
PC2Bg PCQC2Bg
((P)? 0(Q)Y/?
Sar Y ( )2 > 6F§x,oo(Q)4%
£(S) L(P)
PeD(TE,): QeD(T%,):
PC2Bg PCQC2Bg
/¢ Q 1/2@ P 3/2
=ar Y. B @ D W
QeD(Tk,): PeD(Tk,):
QC2Bg PCcQ
20(Q)?
Sar S @t A
s 0S)
QeD(T'E,):

QC2Bg
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Now we turn our attention to the last sum on the right side of (14.12). By Cauchy-Schwarz,
we obtain

( z)g(—f;( 5 ﬁrwoo(Q)>2>2

PeD(Tk,): QeD((Tk,):
z€PC2Bg PCQCQBS
4
/(P L(P
(v D s @ 4D
(S) ((S)
PeD(Tk,): QeD((Tk,): PeD(Tk,):
z€PC2Bg PCQC2Bg z€PC2Bg
4
(P
< ¥ %( ) ﬂpg,m(@) .
PeD(TE,): QeD(TE,):
r€PC2Bg PCQC2Bg

By (14.13), the right hand side above is bounded by

/P 1/2 Y] Q 1/2( P 1/2
© Y e X ne@ggme Y @ Y s
r€PC2Bgs PCQC2Bg erCQBS zePCQ
(Q
S Y @y
QED(TE,):
IEQCZBS
Gathering the above estimates, we obtain
2 R4 Q
(0o @ =t @) Sar X S @ Rt X (@ A
QED(IE,): QED(TE,):
QC2Bgs r€EQC2Bgs

The preceding inequality holds for all z € T'* and r > 2-*+2/24y with S € D(T'*)) being the
smallest cell such that 2Bg contains B(x,4r). If these conditions hold, then we write (x,r) € Ig.
Then it follows that

= k m 2 dr 1
~/F’§z /2(k+2)/2d0|¢r *x O (ZL') B wr *x O (l'm)l 7 dH ([L‘)
Q)2 d
Sar 2. // Y. Bre (@) K(S))Z %d”Hl(x)

sep(rk,)” 7 @r)€ls QED(F’?Z)

QC2Bg
Q) dr .1
+ Bri, 0o(Q)* s 5 4t (@),
SGDZ(F’“ //(;z:r)e[s QE'DZFk . T, ( ) r

xGQCQBS
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Applying Fubini for the last term on the right hand side, we infer that
(14.14)

/ / |1Z),n*ak(x) —wr*om(xmﬂ?ﬂd?-ll(m)
k. Jo-(k+2)/24, r

2
S Y ( > @ o () Y 5r§m,oo(Q)4Z—g))f(Q)>

SeD(TE,) \ QeD(Ik,): QED(I'E,):
QC2Bg QC2Bs

V4
STEED SIED SRR TR
SeD(Tk,) QeD(Tk,):
QC2Bg

l

i Y @@ Y
QeD(TE,) SeD(TE,):
2BsDQ

SA,T Z ﬁF’gw,oo(Q)él K(Q)

QeD(TE,)

For the record, note that the preceding estimate is also valid if we replace ¢, by .. Indeed,
above we did not use any cancellation property of ¢,. Instead, we just took into account that
1, is smooth, radial, supported on B(0, 4r), and constant on B(0,r/2). All these properties are
also satisfied by ¢,.

Estimate of @
Recall that
& dr
@-/ | 0™ () L ().

1‘\I€c:c 2—(k+2)/2d0 T
Since 1, * 0™ () = 0 for m < 0, we can assume that m > 1, which implies that 10r < ¢ by
the dependence of m on r. Recall that I'™ = fiﬂf L. For convenience, for each m € [1, k], we
will consider two additional segments LE, Ly, 1 of length £f = Klfvm = 2724y, so that they
are contained in pi \ L1, and one of the endpoints of L7 is 2/ = 24 and one of the endpoints
of Ln,,+1 18 7y . So joining these segments to I'™ we obtain a small extension of I'™ which we
denote by I'”" and is contained in I'7%. Note that ¥, o™ (z,,) = 0 if z,,, € T/ For convenience
again, we say that Lg“l generates L', and that LT]\'};L 41 generates Ly ;.

On each segment L7, 0<j < Np+1, 0™ equals some constant multiple of the arc length
measure. So it turns out that, for x € T, ¥, * ¢™(x,,) vanishes unless supp ¥, (x,;, — -)
intersects more than one segment Lg-”. Recall also that é}" > 10r for all j € [1,N,,] and
that supp (T, — -) C B(xm,4r). As a consequence, by Lemma 10.4 it follows easily that
supp ¥ (2, — +) can intersect at most two segments LT, L;{‘H. We have:

Claim 14.5. Let z,, € L] C '™ be such that B(zy,,4r) N L # @. Denote by gj* and g7,

the constant densities of o™ on Ly and L7, respectively. Then

(14.15) W 0™ (@m)| S LT PT0)° + 195 — gl
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We will assume the claim for the moment and we will continue the proof of the lemma. To this
end, denote by L%, L2, L3 ..., L™ ! the ancestors of L;”. That is to say, foreach 1 <i<m—1,
LY is one of the segments L} that constitutes I'* and L generates L™ (with LT = L;”)

Analogously, let L1, L7, L3 N ! be the ancestors of L7 ;. Let n be maximal integer

such that Ly = Lj. That is, L” = L;} is the closest common ancestor of L7 and L7, ;. We

denote by g% and gz the constant density of 0% on L% and Lz, respectively. Then we write

m
(14.16) 9 — gl < D 1gh — gt + Z 9 — g™

As in (14.4), for each i we have
(14.17) 192 = ga | < £(0hs P57 S Br, oo (4B4)*.
So from (14.15), (14.16) and (14.17) we deduce that

m—1
[ 5 0™ ()| S L0 007 + 0 (B, o (4BE)* + i, o (45)?) Zﬂm (c12BL)?,
i=n

for some absolute constant cis.

We need now to introduce some additional notation. We write L ~ I'* if L = L§ for some
1<i<k, 0<j<N;+1. For such L, we write /(L) = 272 dy and Bre. oo(L) = Bre_ oo (c12BY).
We say that L§—1 and Lé- 41 are neighbors of L; Also, given L ~ T* and L' ~ T*, we write
L’ < L if L' is an ancestor of L such that L’ is not the ancestor of all the neighbors of L.

Using the above notation, given zy, € L7" = L, by Cauchy-Schwarz, we get

9 ZL/ 1/2
(14.18) Wby % 0™ ()2 < ( Z Bre_ oL )2> < Z 5F’§z,<><>(L,)4 Z(L)UQ'
L/~TF: L/ <L L/~TR:L/<L &
Then we deduce
do/10 d
(14.19) o=,/ e w0 @) S (@)
rk Jo (k+2)/2d0
Y) LI 1/2 _
Y Y e
L~Tk [/~Tk. L/ <L ( )
Z(L/)I/Q -
= Z ﬁr'gw,oo(Ll)él Z o (L),
L/ ~Tk L~Tk. L/ <L Z(L)l/Q

To deal with the last sum on the right hand side, note that for any given L' ~ T'* the number
of segments L} ~ T'* such that L' < L of a fixed generation i is at most 2. Then it follows

that - /
nN1/2 -
> Wi saw),
L~Tk:L'<L E(L)

So we deduce that

@D Y B IV UL Sar D Bre, o (@1Q).

L/~TF QeD(Tk,)
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The remaining term.
It remains to estimate the integral

(14.20) @—/Fk/o

The arguments will be quite similar to the ones we used for @ We will use the same notation
as the one for that case.

Note that t, * o¥(z) = 0 for z € T* \ T . In fact, ¥, * c*(x) vanishes unless = belongs
to some segment L7*, 0 < j < N + 1 and z is the at a distance at most 4r from one of the

o= (k+2)/24, dr
[ 0F ()] — dH ().
T

endpoints of LY. Moreover, arguing as in (14.18) (setting m = k and z,, = z), for z € L;? we
get

Z(L/)l/Z
e @) S D Bre, (I T
L'~DR: L <Lk (L)
As a consequence,
A Z(L/)1/2

[ oF (@) dH () < Brt, o (L) =22
/L? war%m e
J

using also that ¢, xo*(x) = 0 far from the endpoints of L?, as explained above. Then we obtain

Negr o po-(k+2)/24,

@:;A

Nigy1 2—(k+2)/24, 4Z(L/)1/2 dr

S g/o Z Bre oo(L') W7

r
L'~F’€:L’<L§.~'
Nig1 ~
A E(L/)l/z .

=> X o) Wﬁ(Lf).

J=0 L/~rk.L'<Lk

/ Wy o* () dH ()
Lt

r

Note that the right had side above does not exceed the right hand side of (14.19). So arguing
as we did for @, we deduce

B Sar Y. Bre o @1UQ).
QeD(Tk,)
O

Proof of Claim 14.4. To simplify notation, we set y; := y and y;4+1 := II;(y). In this way,
the left side of (14.10) becomes ||y¢+1 — 1| — |yi — m,H Denote by L the line through x; and
y;. If 2, € T, let p'(z;) be the line which supports the segment Lz that contains x;, and in the
case that z; € T%, \ T', let pi(x;) = pl. Let p'(y;) the analogous one that contains y;. Denote
by a, the angle between L and p’(z;), and by «, the one between L and p’(y;).

We distinguish two cases. In the first one we assume that both oy, oy are very small, say
ay + ay < 1/1000. Consider the line L' through x;;; which is parallel to L. See Figure 1.



RECTIFIABLE MEASURES, SQUARE FUNCTIONS, AND THE CAUCHY TRANSFORM 73

1
1
i+1 (o !
P (@ig1) ! i
| P (yit1)
W
L AN \Otz: B
\ W

\ v
\T; Qg Qay NG

o' (i)

FIGURE 1. The points =, Zit1, ¥, Yiv1, ¥, y" v, y* and the different lines in
the proof of Claim 14.4.

Let y, € L’ be the point such that the segment [z;, z;11] is parallel to [y;,y'], so that moreover
lyi — /| = |x; — xip1] and |y; — 25| = |y — 21| So we have
(14.21) Yis1 — it — [y — @il| = |[yit1 — zita] — ¥ — @i ]|

_ ||yi+1 - xi+1|2 -y - $i+1|2|

s =z + Y~z

< “%‘4—1 - l‘z‘+1|2 -y - $i+1|2‘

~ y

r

since |y’ — xi11] ~ r. Let p't'(y;11) be the line containing the segment L;H such that
Yit1 € L;+1. NoteA that the angle between p”l(yiﬂ) and L is small because a, < 1/1000
an Yi+1), P (y;)) 18 also small too. Let y” € Yi+1) be such that the angle between
d £(p™ (yi11), p' (i) is also small too. Let y” € pi*!(y;11) be such that the angle b
the segment [y”, 4] and the line L’ is a right angle. Then, by Pythagoras’ theorem,
W =i+ 1y =" = [y — zia]*
Thus
(14.22)
[1Yit1 — zis1 > = [V — 21| < |lyivr — @i = v — i P + ||V — 2ia)® = |y — @i |
= ’|yi+1 —zia? =y - mz’+1|2’ +ly =y
For the last term on the right side we set
' =" S 1Y = uil® + 1y — v P+ g — " = o= i Py = v P e -y
Regarding the first term on the right hand side of (14.22), we have
(14.23)
||yi+1 - $i+1|2 — |y - $i+1\2| = ||yi+1 — iy =y - $i+1|| ) |\yz‘+1 — iy + |y — $i+1||

< lyiv1 — 4" |\yz‘+1 — x| + |y — $i+1|‘-
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We write

[Yir1 — i | < |y — vil + [y — @l + 2 — 2.
By the assumption (14.9), |y; — x;| < r. The other terms on the right side above are also
bounded by ¢7 because for all z € T, |z — II;(2)| < €9 27"2dy < €92~ ™/2dy < r. We also set

Y —Tit1| S Y — Yi+1 Yit1 — Zit1| S Y — Yiy1| T CT-
" | < Iy |+ | < ly" |+
Thus the left side of (14.23) does not exceed
i1 =y +erlyi — o).
Then, by (14.22) and the above inequalities, we obtain
. Yi+l = Ti+1| — Y —Tit1] | = [Ti — Tit+1 Yi —Yi+1 ClY —VYi+1 Cr|Yy —Yit+1l|-
(14.24) || 2=y’ < [+ P ely” erly” |
Note that

(14.25) ‘ 4 , 4
|2 — @i S UQ"(wi)) Bry, oo (Q"(xi))  and  |yi — yis1| S UQ" (i) Bre, 0o (Q" (1))

So it remains to estimate the term |y” — y; 41| from (14.24). To this end, we consider the points
y", y™, as in Figure 1. That is, we consider a hyperplane H orthogonal to L through y; and
then we put {y”’} = HN L' and {y™} = H N p" " (y;11).
We write
irr =y < i =y + 1y =y
By elementary geometry, it follows that

lyit1 — ™| < sinay [y — yis|

and
" — 4" Sy — " Ssinag |y — ¢ = sinag o — wigal.
So we get
yit1 = y"| S sinag [z — w1 | +siney |y — yia | S
Therefore,

i1 =¥+ lyi =y S (sin oy |z — 21| + sin oy [y — yiga])-
Now we take into account that

(14.26) sin o, < > Br

QED(TE,):Qi(z;)CQC2Bs

0o(@),

k
ex?

and analogously for sin a,,. Appealing to (14.25) then we deduce

(1427) Ay — ¥ Py — | Sl — il > Bri 00(Q)
QED(TE,):Q(2:)CQC2Bs
+ 7y — Yitl > Bri, (@)

QeD(I'E,):Q4(yi)CQC2Bs

sri@n( Y B el@)

QeD(Tk,):Qi(z;)CQC2Bs

+T€(Qi(yi))< Z ’BFQI’“(Q))Q'

QeD(I'E,):Q(y:)CQC2Bs
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By (14.25) again, it is also clear that both |z; — x;,1]? and |y; — y;+1]|*> are bounded by some
constant times the right hand side of the preceding inequality. Then, from (14.24) and (14.27)
it follows that

. e 2 _ | o 2
“yz—l—l xz+1|r [y — g1 } SE(Qi(xi))( Z ﬁF’gw,oo(Q))z
QeD(T'E, ):Q*(x:)CQC2Bs
+0(Qi(w)) ) B (@)

QeD(IE,):Q(y;)CQC2Bs

which together with (14.21) proves the claim in the case when oy + a, < 1/1000.
Suppose now that a, + o, > 1/1000, so that, for example, o, > 1/2000. Then we write

yit1 = zir| = lyi — il | < |yirr — vl + w1 —
< UQi(xi)) +UQi(y:)
= 24(Qi(ws))
< (sinag)? €(Qi(wy)).

Using (14.26), we obtain
2
||yi+1 = Tiy1| = yi — l“z” S Qi) (sin Oéx)z S Qi) ( Z 5F§I,M(Q)> )
QeD(T,):
Q*(z;)CQC2Bs

which proves the claim in this second case. (]

Proof of Claim 14.5. Note that supp ¢, (z,, — -) intersects L%, L7, and no other segments
of the form Lj'. So we have

Yr x 0™ (Ty) = V(T — y) g;‘n dHl(y) + V(T — y) gﬂ-l dHl(y)

m m
L L

m
LT

= < i Yr(Tm —y) g;'n dHl(y) + V(T — ) g;’n dHl(y)>

+ ( | Orem =) (g — g dHl(y))
(D) (®)

It is immediate to check that " Sgft = gl
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F1cURE 2. The points xm,xg’l,y,y’,Rfl(y) and the segments L7" and L%, in
the proof of Claim 14.5.

Regarding @, we set

_ T — m 1
OF < [ vrtam gy i w+ [

P

Ur(m —y) 9" dHl(@/))

+ ( " Pr(zm — y) gj* dH (y) — / Ur(xm —y) g dHl(y)) :

PPALT

The first term on the right hand side vanishes (taking into account that z,, € p?,l), and so we
only have to deal with the last one. To this end, consider a rotation R which transforms L;??H
into a segment contained in p;" \ L}”, fixes xf' = L7 N LYY, and leaves invariant the subspace
of R? orthogonal to plane formed by L7 and L7 (assuming these segments to be not collinear,
otherwise we let R be the identity). Since Hl\L;@H = R_l#(H”R(L;’;l), we have

Urlen = ) g7 Hw) = [ =) g AR i, )

m
L

_ / Y (em — B W) 6 dH e, (0)
_ / V(= B (y) g dH (y).
pAL

Therefore,

@ = /m [Ur(m — R () = thr(@m — )] g dH (y).
p]

L
For y € supp [¢r(zm — R71()) — Up (2 — )] N P}, we claim that

(14.28) l[Zm — R W) — 2w — yl] ST LT, p]1)
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To see this, consider the orthogonal projection ¢’ of R~!(y) on P} (see Figure 2), and set

||xm_y|_|$m_R || me— — |om — y/||+“$m_y/|_|xm—R_1(y)||'
By Pythagoras theorem, taking into account that |z, — ¢/| = |z, — y| = r, we get
B Rfl y) _ y/ 2
e~ /]~ o — B ) £ 2=V

S Sin(L«{(Rfl(y),ggmwl))?r < Sin(K(Rfl(y),SE;n,y,)) ,
On the other hand,
o =31 = ko = ¥/l| = ly = /| = o' = B @] =" =
= (1= cos(L(R™ (), 2", y)) o = B ()| S sin(4(R7H ), 2" 9) 7,

which completes the proof of (14.28).
Now, from (14.28) we deduce

|¢r($m - Ril(y)) = P (T — y)| <
So we obtain
L(p™, pm )2
@) s LI 30 1 supp i 0 — B0) =l = )) S L0

Together with the estimate we got for , this concludes the proof of the claim. O

Next we denote

1
Ak (1) = = / ‘cpr s« of(x) — @p % ak(y)’ do* (y)
|[z—y|<dr
and

By e = | \ [lora = 2) e = 1) = el = 2)in(z — )] M) do* ).

Arguing as above, we will get estimates for Eo.k  and E , analogous to the ones obtained
in Lemma 14.3 for A . We will not give detailed proofs because the arguments are very
similar to the ones for Lemma 14.3.

Lemma 14.6. We have
|~ 2 dr
[ ] Bosen| Tante <ar X b (@@
Fea /0 QeD(rE,)

Sketch of the proof. We will just explain the estimate of the integral

o0 . d
[/ B ()2 L ) (2).
Tk, Jo-(k+2)/24, ’ T

The arguments for remaining integral

- (42)/2g) dr
@:/ / Bi ()2 2 ar (@),
rt, Jo ’ r
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are very similar to the analogous integral in (14.20) in Lemma 14.3.
Notice that by Cauchy-Schwarz we have

1
A (2,12 S = /| - pr 5 0" (2) = @r % * ()| do* (y).
r—y T

Thus,

o0 ~ d
/ / Bt gl = ! (2)
rk, Ja- 042724,
dr

ST | o 0H(8) o O )00 )
2-(k+2)/2dy JaeTk, Jyelk :|oc— y|<4r "

Given z € I‘]gm and r > 27(k+2)/2d0, take the maximal integer m < k such that 9~ (m+2)/2 do >
10r. As in the proof of Lemma 14.3, consider the points ,,, y+1, - - . , ¥ = @ such that x; € T'%
and IT;(z;) = @41 for i =m, m+1,...,k—1. Analogously, for y € Fez, let Yo, Ymats - Y = Y
be such that y; € I, and I1;(y;) = yi1 fori =m, m+1,...,k — 1. Then we set

o % 0" (2) — @ % ¥ (y)| < |or % 0" (2) = 0 % ™ (@m)| + |00 % " (y) — r % 0™ (ym)|
+ “Pr * 0" () — or % 0" (Ym)|,

so that

> ~ d
/ / Ak (T, r)? a dH!(z)
Flgm 2—(k+2)/2d0 T
dr

00 m 9
< [ o % 0H (@) — o1 0™ ()P 1 () AH () 5
2-(k+2)/2dy STk, Jyelk :|lz—y|<dr r
oo m 2 dr
+ [ [/ [or 5 () — o 5 0™ )| AH ()M () S
2-(k+2)/24y JxeTk  JyeTk :|z—y|<dr r
d

2 r
/ / / 907’ * Um(xm) - Y * Um(ym)| dHl(y)dHl(x) )
2-(k+2)/2dy JxeTk, JyeTk :|z—y|<dr r
@@
To deal with observe that
k dr
‘NA |(pr*a() op ko™ xm’ dH(z) —
2-(k+2)/2dy Jzelk, r

By (14.14) (which also holds with ), replaced by ¢,.), we get

NAT Z Bre, 0o (@)* Q).

QeD(T%,)

By Fubini, the integral coincides with . On the other hand, the estimates for @

are also analogous to the ones for the term also denoted by @ in the proof of Lemma 14.3 and
so we omit the details again. O
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Lemma 14.7. We have

/Fk /Ooo‘gok,@(x,r)lz % dH (z) Sar Z 5%1700@)4 °Q).

QeD(TE,)

Sketch of the proof. The arguments are very similar to the ones of the preceding two lemmas.
So we will just explain the estimate of the integral

o) ~ d
/ / Ak (T, r)? @& dH! (z).
Tk, Jo—(k+2)/24, ’ T

Denote
Fhz,y) =7 / (0r(@ — 2) oar (2 — 9) — an(z — 2) (2 — ) do*(2),

so that

Bosplar) =7 [ IFE @)l do* ).

Note that F¥ vanishes identically if o coincides with the arc-length measure on some line
containing = and y. Observe also that F¥(x,y) = 0 if | — y| > 6r. By Cauchy-Schwarz then
we have

1
A lr? st / 5 ()2 dH ().
T Jyerk :|z—y|<6r

Thus,

J

/ Ao (o) L ar) ()
2

~(k+2)/24,

i, r
o0
2 dr
< / / / | 2, y) 2 dH () dH () 2.
2= kD /2dy Jzelk, Jyelk,:la—y|<6r r

Given z,y € T*_ and r > 2-*+2/24; let m < k the maximal integer such that 2~(m+2)/2 4y >

10r. As in the proof of Lemma 14.6, consider the points ,,, ;4 1, - - . , ¥ = @ such that x; € T'%,

and II;(x;) = 2441 for i =m, m+1,...,k — 1 and the analogous ones Y, Ym+1,-- -, Yk = Y-
For each i, denote

Fi o (woys) =1 / or(@i — 2) ar (2 — yi) do (2),

Fri,b(xiayi) = T/%OQr(Ii —2)or(z —yi) dai(z)a



80 XAVIER TOLSA

so that F( xl,yl)—F (T ys) — F (@i yi). Write

/ / ak (z,7)? —dH (z)
Flc 2— (k+2)/2d0

2 dr

sl ] FEo(,y) — E )| dH () dH (2)

2-(k+2)/2dy Jzelk, Jyelk :|z— y\<6r r
- 2 dr
| (Ey () — Fy s ) |2 dH () A ()
2-(k+2)/2dy Jzelk, Jyelk, :|z— y\<6r r

dr
o S | om0 )
2—(k+2)/2¢y Jzerk, Jyelk, :|z— y\<6r "

:‘++@.

Estimate of
By the triangle inequality,

k—1
| b(xmaym)’ < Z’Ff,a(%,yz’) - Ff:gl(ﬂﬁiﬂayiﬂ”-

i=m

Since ¢! =TI, »0?, we have
it1
| o(@iyi) — Fi L (@i, yig)|

r(2i — 2) (2 — yi) do’ (2) — / r(i(zi) — TLi(2)) @2 (W (2) — Ti(ys) do’ (2)

<r / lor (z; — 2) — r(ILi(z) — I1i(2))| par (2 — yi) do* (2)
+r / lpor (2 — i) — par(i(2) — i) or (I (25) — ILi(2)) do’(2).

As ¢, is supported on B(0,2r) and constant in B(0,7/2), we derive

(14.29)
[Fa(aio) = B s, v S 75 [T (5) = Ti(2)] = |ai = 2| dor*(2)
isYi ra \Li+1l, Yit+1 N2 e <6 i\Tq i i
cIr<|z;—z|<6r

1
v f )~ TG2)| [y — oI do* )
I Jemtr<|y;—z|<6r

Observe the similarities between this estimate and the one of |1, x 0%(z;) — 9, * "7 (2;41)| in
(14.8). Then we obtain

2
dr
‘ / / / |[TL () — I0;(2)| — \xi—z||da 2)| dH(z) —
(k+2)/24y JzeTk, —— clr<|z;—2z|<6r r
2
o k 1 dr
. ML () — T0(2) — s — 21| o (2)| a2 &
2—(k+2)/24, ygI"éz P clr<|y;—z|<6r r
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By Fubini, both terms on the right hand side coincide. Moreover, arguing as in the estimate of
the term @ in the proof of Lemma 14.3 it follows that both are bounded by

CAT) D Bre (@1Q).

QeD(TE,)

Estimate of .

The arguments are almost the same as the ones for .

Estimate of @
We will use the following.

Claim 14.8. Let x,, € LT C I™ be such that B(xy,, 6r) N LT, | # @. Denote by gi" and gj,
the constant densities of o™ on L7" and L7, respectively. Then

(14.30) [E (@, ym)| S L0 0407 + 19 — gl
The proof is quite similar to the one of Claim 14.5, taking into account that

/L(%(x —2) oo (2 = y) = ar(x — 2) or (2 — y)) dH' (2)

vanishes when L is a line and x,y € L. For the reader’s convenience we show the detailed proof
below.

Arguing as we did to estimate the term denoted also by @ in the proof of Lemma 14.3, we
find that

@D Sar D Bre o @MUQ).

QeD(TE,)

Proof of Claim 14.8. To simplify notation, we write
Fr(@y,2) = oz = 2) par (2 = y) — par(x = 2) 1 (2 — ¥)),
so that
E ) = [ fr o2 do™ ).

Note that f,(@m, Ym, z) vanishes unless |z, — ym| < 6r and |z, — 2| < 4r. So to estimate
E (2, ym) We may assume that x,, € L' and ym,z € L7 U LT,. Denote by Il the

orthogonal projection on the line pi", and let o = Hp;n’#am and y/, = Iy (Ym). Then we
have

an(wm,ym) - /fT(xmay;n7z) dam,(z) = /[fr(xmaymaz) - fr(xmaHp;-" (ym>va;-" (Z))] dU(Z)
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Arguing as in (14.29), we derive

FP i) [ o )40 5 2

5—2/ [ — T (2)] — [ — 2] do™
r cr<|zm—2|<6r /

1

= L7 () — T (2)] = Iy — 21| do™ (2).
cr<|ym—z|<6r
By Pythagoras’ theorem it follows easily that
<‘HP§N(Z’)—Z|2< m om \2
[lem = T ()] = |om = 2] § ———— S 7 £(p}" 1)

and also
|Hp;-”(z) - Z|2 n |Hp;-"(ym) - ym‘Q

T r

[T (ym) = W (2)] = lym — 21| S STl el

Therefore,

(14.31)

E ) = [ $om 2 do™ ()| S L0651
On the other hand, it is easy to check that

Uml|B(zm,6r)mL;" = g}n H1|B(zm,6r)r‘|L;.”
and
g;-ih
o5 207 71)
So taking into account that [ f,(zm,yl,,2) d’;’—l1|pm(z) = 0, we obtain

T | B(@m, 6r)npp\L = B(wm 6r)Np\L

/fr xm)y'rru dam/

’/fr T Yo 2) 0™ — g7 HY ) (2)

< [ 1lemetips2)

g]-i-l _.m 1
cos Z(p7, 71 gj' | dH | g (2).

Using that

9;)}4.1
cos £(p}", Pl 1)
and that |fy(m, Y, 2)| < 1/r and supp fr(Tm, Yo, ) C B(zm, cr), we infer that

] [ 5oz o™ 2

which together with (14.31) proves the claim. O

S LT PT)? + g = gl

S LT P + gl — gl

The following is an immediate consequence of the preceding results.

Lemma 14.9. We have
(14.32) / / A ()] P ar! (@) < (A7, K) R U(R).
Tk ! r

The analogous estimate holds replacing Ay ,(x,7) by £0k7¢(a:,7“) or Ea.k#p(x7r).
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Proof. We have shown in Lemma 14.2 that

/F]C /Ooo |Aak,§0(m7’r)‘2 g d’Hl(Qj) < C(AaT) Z Brlgz,m(Q)4 Z(Q)

QeD(TE,)
Since Brr (Q) Seo for all Q € D(T'%,), we have
Y. Pre@UQ S D B @7UQ).
QeD(TE,) QeD(TE,)

On the other hand, by Jones’ traveling salesman theorem [Jo], [Ok] , it follows easily that the
sum on the right is bounded by ¢H!(I'*), and so by C(A,7, K){(R). O

15. THE L?(o*) NORM OF THE DENSITY OF v¥ WITH RESPECT TO o*

Recall that both v* and ¢* are AD-regular measures supported on T'*. In particular, they
are mutually absolutely continuous with respect to H!|p« and thus there exists some function
fr bounded above and away from zero such that v¥ = fi, 0. By Lemma 12.3, the density of v/*
with respect to Hl‘r‘lgr satisfies

dvk

15.1 =~
( ) d’H1|F]E(;l A,T

GN(BR))

and by Lemmas 14.1 and 14.2,

do*
(15.2) g 1.
So we have .
fr= % ~aArM Ou(BRr).
Recall also that the density vt g constantly equal to c’é far away from B(zg, Kr9). Anal-

T,
ogously, o* coincides Hlll"éz out of B(xg, Kr9). So fr — ¢k is compactly supported. The main

k
ex

objective of this section consists in estimating the L? norm of f;, — clg with respect to o*. To
this end, for 7 > 0, z € R%, and a function g € L} (c*) we define

loc

e x(gof) (@) par x (go") (@)
Drg(z) = or % 0% (2) P+ 0F(z)

(recall that ¢, (y) = %Lp(‘%l))

d k
Lemma 15.1. For fi, = de, r >0, and x € ¥, we have
o

exr’

o0 dr
L [ 1o o S = 0,50 ()
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Proof. By Lemmas 13.8 and 14.9, it is enough to show that

(15.3) Dy ()] Sazar [ *05(@)| + ©,u(BR) [1hr + 0" ().
Then we write
k k
_erxrt(@) o w1 (@)

|D7’fk(x)| - ©r *a’“(m) Dor *O’k(l’)

or * VM () o % 0" () — por ¥ VF () o * 0¥ ()
or * 0F(2) oy x oF ()

@ % VF(2) — gy ¥ VF(2) N (ar * o (x) — o, * ak(x))apgr * VR ()

o (1) PR s e

<

The inequality (15.3) just follows then from (15.1) and (15.2), which imply that ¢, xo*(z) >/ 1,
@or * 0*(2) Zr 1, and o, * V*(2) Sa s ©,4(Br). O

Notice that the operators D, vanish on constant functions. That is, D,1 = 0. In order to
apply some quasiorthogonality arguments, we would also need their adjoints to satisfy D1 = 0.
Unfortunately this property is not fulfilled. For this reason, we are going to introduce a variant of
the operator D, which we will denote by D, that will be better suited for the quasiorthogonality
techniques we intend to apply.

For a function g € L} (o) and r > 0, we denote

k
pr * (go") (x)
S, = ,

so that D, g = S,g— Sa,g. Let W, be the operator of multiplication by 1/S1. Then we consider
the operator

Sy =S, W, Sy,
and we define l~)r = §T - §2r. Notice that 3}, and thus lNDT, is self-adjoint. Moreover §T1 =1,
so that N B

D,1=D;1=0.

We denote by s,(x,y) the kernel of S, with respect to o*. That is, s.(x,y) is the function
such that S,g(z) = [ s.(z,y) g(y) do*(y). Observe that this equals

! (z) or(z —y).

sp(w,y) = SO*T
N

On the other hand, the kernel of §k is the following;:
1
) = [ 5@2) gy 02 Aot ).
The following is, by now, a standard result from Littlewood-Paley theory in homogeneous
spaces due to David, Journé, and Semmes.

Theorem 15.2. [DJS] Let 1 < g < 2 and let g € L*(o*). Then

2 - = 2k
(15.4) 191172 (o) ~ai7 M /Fk %IDWTOQ\ do*.
8")3]
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Note that the constants involved in the estimate (15.4) do not depend on ryo. An easy
consequence is the following.

Lemma 15.3. For g € L?(c*), we have

- dr
2 - 2 2
ol ~anas [, [ 1Dral? o

Proof. Just notice that

© dr 2 ~ dr
D,g|? —do* = Dooigl? Ll do®
Jo Tt = [ | P

JEL

and then use Fubini and (15.4). O

Lemma 15.4. Let f € L>®(c%). The following estimates hold:

> . dr
(15.5) [, [ 150 = 5002 L do* Saacar 1B R,
k. Jo r
and
o0 dr
(15.6) Lo 15 S =S 502 St S oy AR

Proof. To see the first estimate, we write

/Fk (apr x (17/«(:5) o ik@)) or(z —y) fy) do* (y)

S Wl [, lor 0" (@) = o0 )] o =) do* ).

ex

15:4(x) — 531 (x)] =

Since supp ¢, (x — -) C B(z,2r), the last integral is bounded by

Cc

/ [or % 0*(2) — oy % 0" ()] do* () < ¢ Bon (1),
r |z—y|<2r ’

By Lemma 14.9, we derive

|~ 2 dr
Lo [ Borsten)| F @) Samscn 17w oy €48 (R,

and thus (15.5) follows.
To prove (15.6) we write

5, S2nf2) = 500 1 (0) = [ [ o e = 2 e =) f0) do* () dot )

_// ©ar * Uk(xl B par (@ — 2) 0 (2 — y) f(y) do®(2) do™ (y)

) or * ok
=I5+ 1+ I,
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where

= ! - ! xr—Zz z — O'kZ O'k
= [ oo e P~ el D arE1io )

1 1
& _// L’zr*ak @r*ak(z) o kok(z )@%*Uk(ﬂf)}
[or(@ = 2) par(z — y) — Qar(x — 2) r(z — y)] fly) do®(2)do"(y),

h= s [ 1@ = 29 6 e =) = o = D = 9] T )Mot ).
To estimate I; we set
1 1

or * ok (2) o x 0¥ (2) B oar * 0k () pr % ok (2)

"PZT * Jk(m) — Pr* Uk(x)’
= @ * 08 (2) o * oF () o * oF(2)
|<pr % 0%(2) — o * Jk(z)}
par x ¥ () oy * o (2) por * 0F(2)
SA,T,M | * Uk(x” + [ty * Uk(z)|‘

Then we obtain
L] Sart [1Flleoory [[9r 0" (@) +p 5 (4 x 0" 0" ()]
So writing I} = I »(z), we have
(15.7) 171l 2(o) Samnr 1Fllzos ok 1dor [ 12(on)-
Concerning I, we have

1 1
por x ok (x) pp x 0k (2)  @p x ok (x) por * oF(2)

N ‘Wr*gk(m)_@r*gk(z)}
or % 0F(2) o x oF(2) o * ok (2)
SAnM |<Pr * Uk@) — Pr* Jk(z)}-

Notice that if z,y belong to the domain of integration of Iy, then |z — z| < 4r and |y — 2| < 6r.
So we can write

2| S m % /|x_z|§4,«’“"r xoF () — pp x 0¥ (2)| ot (2) /| oo, T W47 @)

1
SArM ||f||Loo(ak);/ » [or + 0 (2) — @ % 0¥ (2)| do(2)
r—z|<4r

—ATmM ||f||L°°(0'k) Ao"“,go(xa 7”).

To deal with I3 we just write

I Sarar 1l o / / [or (& — 2) @2 (2 — 1) — o (& — 2)pr (2 — )] 0¥ (2)| do*(y)

—A,7,M ||f||L°°(0'k) Aak,cp(‘rvr)'
Gathering the estimates obtained for I7, Iy and I3 and applying Lemma 14.9 we obtain

e dr
L 1808 0@) = S 8,0 @F T a1 @) s 11 g R
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k

d
Lemma 15.5. For f, = L, we have
dok
(15.8) i = b3 2oy Samacar e’ Ou(Br)* (R).

Proof. As explained at the beginning of this section, the function fi — clg is compactly supported
and moreover it is bounded. Thus it belongs to L?(c*). Then by Lemma 15.3,

k2 ~ * D ok 2@03 k
||fk COHLZ(Jk) ~A,m,M | r(fr Co)| g
k. Jo r

Since D, vanishes on constant functions, it turns out that ﬁr( fe—ck) = D, fx. Thus, using
also Lemma 15.1, to prove (15.8) it suffices to show that

* ~ dr o dr
(15.9) / / |D, f1.|* — do* SA,T,K,M/ / |Dpfil? = do® + 5 || fil ] o (o) U(R).-
Ik, Jo r Ik, Jo r

We are going to show that (15.9) holds for any function f € L>(o*). To this end, recall that
D, =S, — Sy and S, = S, W,. S, where W, is the operator of multiplication by 1/5*1. Note
that for any x € RY,

|§rf(x) - Sy S:f($)| =

5 (e -1) s5)o

Since, for any y € RY, |m =1 Sarm |S71(y) — 1] and [SEf(y)| S (1 f [l Loo(or), We get

S0 f (@) = S Sy F @) Samaa [fllzory [Sr(1S71 = 1)) ()],
As S, is bounded in L?(¢*) uniformly on 7, we obtain
180 = Sr S5 Fllz2(ory St 11l (or) 151 = Ll 2oy

Applying (15.5) to f = 1, taking into account that S,.1 =1, we deduce that

R N dr R dr
/ / IS0 f = Sy SEf2 —do* Sarur ||f||ioo(gk)/ / 1551 — S,1|> — do*
rt, Jo r rt, Jo r

SAnEM 5% ||f||2Loo(o—k) U(R).
So we infer that
= * N A 2 2
e Jo |Drf —(Sr Sy f— Sor S2rf)| . do SA,T,K,M €0 ”f”Loc(Uk)E(R)'
As a consequence, to prove (15.9) for fi = f it is enough to show that
(15.10)
> * o p2dr g > 2 dr 4 2 2
1,52 = Sar S5, T do* St s 1D f12 5 do® + 311712 oy £(R)-
0 r k. Jo r

k
Fez
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We write
||ST S:f — Sop S;rf”LQ(ak)
< HST Srf — Sor SQerB(ak) + ||Sv" Spf =5 S:f”L?(ak) + ||527' Sorf — Sor S;rf”L?(ak)
SA,T,M HST Sy f — Sar SQerLQ(a’“) + 150 f — S:fHLQ(a’C) + HSQrf - SSrf”L?(a’c)'
To estimate the last two terms on the right side we will use (15.5). For the first one we set
”S'r" Srf — Sor SQerLz(ak)
< ||Sr Srf - Sy SQerLQ(a’“) + ||ST‘ SQrf — So SerLQ(ak) + H52r Srf — So SQerL2(a’“)
SA,T,M 15rf — SQTfHLQ(ak) + ISy Sor f — Sar STf”LQ(ak) + |Srf — SQTf”L?(o—k))
because of the L2(ak) boundedness of S, and Sy,. Thus,

//|sr5:f—ssz;Tf|2ﬁdak
Ik, Jo r
dr

T

SA,T,M / ||Sr SQrf — Sor Srf”%ﬂ(gk)
0

& . N dr *° dr
b [0S = St oy + 1S f = S5 ) T+ [ 1508 = SenFIBagor) -
0 r 0 r
By Lemma 15.4, the first and second integrals on the right hand side do not exceed
C(Aa T, Ka M) Eg ||f||i°°(g’k) E(R)’
while the last one equals
o d
/ / 1D, f12 L do*.
rt, Jo r
So (15.9) is proved for any f € L°°(c*) and consequently the lemma follows. O

16. THE END OF THE PROOF OF THE MAIN LEMMA 5.1

In this section first we will show that the measure of the union of the cells from HD which
are contained in R is small. The estimate of the L?(c*) norm of f; — cf will play a key role in
the arguments. Afterwards we will finish the proof of the Main Lemma.

First we show a technical result:

Lemma 16.1. Let @) € NTerm. There exists some cell P € NReg such that
(16.1) PN1.1Bg # @, L(P) = 4(Q), w(P) 2 n(1.1Bg).
If moreover @ € HD, then

W(P) ~ u(P) ~ u(1.1Bg),
assuming 1 small enough.

Proof. By Lemma 9.1, it follows easily that any cell S € NReg with S N 1.1Bg satisfies £(S) <
£(Q). Let 0 < t < 1/100 be some constant to be fixed below. Suppose first that all the cells
S € NReg which intersect 1.1B¢ satisfy £(S) > t £(Q) and that NWyN1.1Bg = @. In this case,
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the number of such cells is bounded above by some constant depending only on ¢, and so if we
let P be a cell of this family with maximal pg-measure, then we have

(16.2) u(P) 2 u(11Bg)  and  U(P) ~ U(Q).

Suppose now that there exists some cell S € NReg which intersects 1.18¢ such that £(S5) <
t4(Q), or that NWyN1.1Bg # @. We claim that this implies that Q € D%. To prove this, note
that if there exists a cell S with SN1.1Bg # @ and 4(S) < t{(Q), then S C 1.2B, and taking
a suitable ancestor of S we infer that there exists some cell S’ € NGood with £(S") ~ ¢(Q),
dist(S’,5) < 4(S’). The same holds in the case when NWy N 1.1Bg # @. Further, if ¢ is small
enough, then we can assume that 3.3Bg C 1.3Bg. Let a > 3.3 be the maximal number such
that a Bg C 1.5B¢. Notice that r(a Bg/) > r(1.5Bg) —7(1.3Bg) = 0.2r(Bg). Since 100°B(Q)
is contained in ca Bg for some constant ¢ < 1 (independent of Cj), by Remark 6.3 we deduce
that

1(100°B(Q)) < 13 pla Bs) < c13 u(1.5Bg) = c13 (1.5 - 28 B(Q)) < c13 u(100B(Q)),

with ¢13 independent of Cy. Then (4.3) does not hold for @ if Cy is taken big enough, which
ensures that Q € D® as claimed.

The fact that Q € D® guaranties that u(B(Q)) ~ u(1.1Bg), by (4.2). Using also the small
boundaries condition (4.1) we infer that, for some ! big enough, the set G(Q) = B(Q) \ Ni(Q)
has p-measure comparable to p(B(Q)), and so to u(1.1Bg). Since @@ ¢ NGood, from the

definitions of d(-) and NReg, it follows easily that any cell S € NReg which intersects G(Q)
satisfies £(S) &~ £(Q). Thus letting P be a cell from NReg with P N G(Q) # @ having maximal
p-measure, as in (16.2) we deduce that

w(P) 2 m(G(Q)) ~ u(1.1Bg) and  {(P) = Q).

It remains now to show that if @ € HD N NTerm, then p(P) ~ p(P) ~ p(1.1Bg). In this
case, (1.1Bq) 2 AO,(R) £(Q), and thus

u(P) S A®u(Br)U(P) ~ A©,(Br) Q) < 1(1.1Bq),

and so p(P) ~ p1(1.1Bg). To prove that fi(P) ~ u(P), let Q be the parent of Q and let ¢14 > 0 be
such that P C c14Bg. Since Q € Good, by Lemma 7.3 we have u(cMB@ \ E) < pl/10 ,u(cMB@),
and thus

n(P\E) < p(e1aB\E) < 0" p(e1aBg) £ 0" A0, (Br)KQ) S /" u(11Bg) < /" u(P),

which ensures that (P) = pu(P N E) ~ p(P) for n small enough. O

Lemma 16.2. We have
c(A, 7, K
(U Q) (B v canmana) um,
QeHDND(R)
Proof. Notice that

(U Q=u( U @ U o)

QeHDND(R) QEBSBND(R) QEHDNNTermND(R)
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By Lemma 11.1, the first term on the right side does not exceed % 1(R). So it is enough

to show that
(163) o U @) e mana un)
Q€eHDy

where
HD; = HD N NTerm N D(R).
k

Consider a cell @ € HD;. We wish to relate the measure p on @ to the measure v” on some
appropriate ball B]’?(Q). To this end, let P = P(Q) € NReg be the cell satisfying (16.1). Suppose
that k is big enough so that

(16.4) 27%2 4y < £(P(Q)).
By Lemma 10.7 we know that pi-almost all P(Q) is contained in the union of the balls Bf,

j=1,...,Ng, and by Lemma 6.6 (a), the balls B;€ which intersect P have radii comparable to

(P(Q)). Thus the number of such balls does not exceed some absolute constant. So letting

B;:(Q) be the ball of this family which has maximal ji-measure, it turns out that

(B = i(P(Q)) ~ p(1.1Bg) Z ABL(Br) U(Q) ~ AO,(Br) (B ))-

Recall now that v* = Z;V:ko 1/]]»“, with supp 1/;c C %B]k for j € [1, Ni|. Further, if %B;WWB;?(Q) =+
@, by Lemma 10.1 (d), we have T(Bjk) = E? R~ E;?(Q) = T(BJ].“(Q)) and thus %Bf C 015Bj’.“(Q) for
some absolute constant ¢15. So we have

G I ESD DR
j:%B;“ﬁB;?(Qﬁé@

Since ||V]kH = f@f du (see (12.2)) and by Lemma 12.1

ok >
,3%2@ i = XBg)
33 BjNBj o) #2
we infer that
k k k ~ink N\ k
FesBlg) = Y 0% du > ji(BY ) = A©,(BR) r(Bl ).
j:2BkNBk £
PR B (o))

From the preceding estimate, taking into account that cf ~ ©,(Bg) (see Remark 13.6) and
that o* has linear growth with an absolute constant (see Lemma 14.1), we obtain

/ ) |fx — b do® > Vk(clg,Bf(Q)) —ck O'k(015B]k(Q))
)

> ¢ A®,(BRr)r(Bjg)) — ¢ Ou(Br) 7(Bjq)) = Ou(Br) r(Bjq));
assuming A big enough. By Cauchy-Schwarz and the linear growth of o*, the left hand side is
bounded above by ¢ || fi — C’SHLQ(Ok) T(B;?(Q))l/Q. Then for some constant ¢ > 1 big enough so
that 0153]’?@) C c16Bg we get
(16.5)
Iese o =) Baony = e, (fi=ch) o) Z Ou(Br) r(Blg)) Zar Ou(Br) u(11Bq).
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Consider now a finite family HDo C HDq such that

(16.6) (U @)=5( U @),

Q€eHD2 Q€eHD;

and take k big enough so that (16.4) holds for all the cells P(Q) associated to any @ € HD,
as explained above. Consider a subfamily HD3 C HD2 such that the balls {c16Bq }geHp, are
pairwise disjoint and

U 616BQC U 3616BQ.
Q€eHD2 Q€eHD3

Taking into account that 11(3ci6Bg) S AO,(BRr) Q) < 1(1.1Bg) and using (16.6), (16.5) and
(15.8), we get

u( U Q)<2u< U CIGBQ)<2 > u(BesBo) S Y p(1.1Bg)

Q€eHDy Q€eHD2 QEHD3 QEcHDs
1 1
< ~ T N EANIP: < _ k2
~A,T @p,(BR) Z HchBQ (fk CO)”LZ(Uk) > @u(BR) ka: COHLQ(Uk)

Q€eHD3
Sarxar ey " ©u(Br)€(R),

which proves the lemma. O

The preceding lemma was the last step for the proof of Main Lemma 5.1. For the reader’s
convenience, we state it here again. Recall that F' C suppu = E is an arbitrary compact set

such that
1
d
/ / Ay (z,7)? & du(x) < oo.
FJo r

Main Lemma. Let 0 < e < 1/100. Suppose that § and n are small enough positive constants
(depending only on ¢). Let R € D% be a doubling cell with ¢(R) < § such that

n(R\ F) < nu(R), p(ABR\ F) <nu(ABgr) forall2 <X <4571,

and

p(6'BRNF\ G(R,8,1n)) <nu(RNF).
Then there exists an AD-regular curve T'g (with the AD-regularity constant bounded by some
absolute constant) and a family of pairwise disjoint cells Stop(R) C D(R) \ {R} such that,

denoting by Tree(R) the subfamily of the cells from D(R) which are not strictly contained in
any cell from Stop(R), the following holds:

(a) p-almost all FN R\ UQeStop(R) Q is contained in T'r, and moreover ”|FﬂR\UQEStop(R)Q
is absolutely continuous with respect to H'|r,.

(b) For all @ € Tree(R), O(1.1Bg) < AO©,(1.1Br), where A > 100 is some absolute
constant.
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(c) The cells from Stop(R) satisfy
> 0u(1.1Bo)* w(Q) < £0,(Br)* u(R)

QeStop(R)

IZ(Q 5 dr

e Y [ L ()
QETree(R Fné=1Bg JoU(Q)

Notice that the curve I'r mentioned in the Main Lemma is not the limit in the Hausdorff
distance of the curves I'*, but the limit of the curves F’f{ which are described in Remark 10.14.
On the other hand, the statement in (b) is a consequence of Lemma 6.8, possibly after adjusting
the constant A suitably.

The inequality in (c) follows from Lemmas 8.5 and 16.2. Indeed, recall that Lemma 8.5
asserts that, for n and § are small enough,

> 0,(1.1Bg)” n(Q) S A% (n'/* +7Y/* 4 6'/%)©,(BR)* u(R)
while from Lemma 16.2 we deduce that

QED(R):
H(Q
dr
> /. / v, L),
§~1BoNnF J556(Q r
c(A, 1, K)

QCBCFULDUBCGUBSA
> 0@ Q) 5 A2 (T (4,75, 0) 2} ) 0,822 ()
QeHDND(R)

QETree

< (AR o an ™) 0,802 (R

So choosing M big enough and ¢y (and thus n and ¢) small enough, the inequality in (c) follows,
replacing 6 by §°, say.

17. PROOF OF THEOREM 1.3: BOUNDEDNESS OF T}, IMPLIES BOUNDEDNESS OF THE
CAUCHY TRANSFORM

For the reader’s convenience, we state again Theorem 1.3:
Theorem. Let u be a finite Radon measure in C satisfying the linear growth condition
w(B(z,r)) <ecr for all x € C and all 7 > 0.

The Cauchy transform C,, is bounded in L*(u) if and only if
(17.1)

/er/ ’ QﬂBwT))u(QmB(%QT))’ dr

—dp(z) <cp(Q)  for every square Q C C.

1/2
QQ/
7' )

2r

Given f € L, .(11), we denote

T f () = ( /0“’ ‘ () (B,r)  (fu)(B,2r)

T 2r
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where (fu)(A) = [, fdu, and we write Tu(x) = T,1(x). In this way, the condition (17.1)
states that

HT#XQH%Q(MQ) <cu(Q)  for every square @ C C.
In this section we will prove that if u has linear growth and

(17.2) 1 Tuxellz2(ulg) < ep(Q)V? for every square Q C C,

then C, is bounded in L?(p). To prove this, we will use the relationship between the Cauchy
transform of p and the curvature

cw =[] m dpz) dply) dp(2),

where R(z,y,z) stands for the radius of the circumference passing through z,y,z. If in the
integral above we integrate over {(z,y,2) € C3: |z —y| > ¢,|y — 2| > &, |z — 2| > £}, we get the
e-truncated curvature c2(u). The following result is due to Melnikov and Verdera [MV].

Proposition 17.1. Let u be a finite Radon measure on C with co-linear growth. For all e > 0,
we have

(173) ICoplaquy = 56200) + O((C),
with
OW(©)] < e u(C),

where ¢ is some absolute constant.

Another important tool to show that the condition (17.2) implies the L?(x) boundedness of
Cu is the so called non-homogeneous T'1 theorem, which in the particular case of the Cauchy
transform reads as follows.

Theorem 17.2. Let p be a Radon measure on C with linear growth. The Cauchy transform
C,, is bounded in L*(u) if and only if for all ¢ > 0 and all the squares Q C C,

||C#75XQ||L2(,U,\_Q) < CM(Q)I/Qv

with ¢ independent of €.

See Theorem 3.5 of [To3] for the proof, for example.
By Proposition 17.1 and Theorem 17.2, to prove that (17.2) implies the L?(1) boundedness
of C,, it suffices to show that for any measure p with linear growth

Aplg) <C @) +C HTIJ«XQ”%’Z(H\Q) for every square @ C C.

Clearly, this is equivalent to proving the following.

Theorem 17.3. Let p be a compactly supported Radon measure on C with linear growth. Then

we have
> T, T z,2r)) |2 dr
) < Clul 40 [ BRI L HERED gy,

To obtain the preceding result we will construct a suitable corona type decomposition of p
by using the following variant of the Main Lemma 5.1:
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Lemma 17.4. Let p be a compactly supported Radon measure on C. Let 0 < ¢ < 1/00.
Suppose that & and 1 are small enough positive constants (depending only on ¢). Let R € D%
be a doubling cell such that

(67 Br\ G(R,8,n)) < np(R).

Then there exists an AD-regular curve I'g (with the AD-regularity constant bounded above by
some absolute constant) and a family of pairwise disjoint cells Stop(R) C D(R)\{R} such that,
denoting by Tree(R) the subfamily of the cells from D(R) which are not strictly contained in
any cell from Stop(R), the following holds:

(a) p-almost all R\ Ugesiop(ry @ 18 contained in I'r, and moreover “'R\qusm(mQ is ab-

solutely continuous with respect to HIIFR.
(b) There exists an absolute constant c such that every Q € Stop(R) satisfies cBoNI'r # @.

(c) For all Q@ € Tree(R), ©(1.1Bg) < A©,(1.1Br), where A > 100 is some absolute
constant.

(d) The cells from Stop(R) satisfy
> 0u(11Bg)* Q) < £6,(Br)* u(R)

QeStop(R)

1E(Q) dr

+ee) / / v L),
QETree(R §1Bq J6L(Q)

Recall that given a cell @ € D, we denoted by G(Q, d,7n) the set of points z € C such that

1[ Q
/ ( )Au(x,r)Q dr <n©,(2Bg)*.
§4(Q) r

Basically, Lemma 17.4 corresponds to the Main Lemma 5.1 in the particular case when
F = supp p. Further, in (b) we stated the fact that every @ € Stop(R) satisfies cBg NT'r # @,
which comes for free from the construction of the curve I'r in Section 10, recalling that given
@ € Stop(R), if ¢ is big enough, then the ball ¢Bg contains some cell Q" € Good which in turn
contains some cell from the family {Q;}ic;. Moreover, unlike in the Main Lemma 5.1, above
we do not ask £(R) < §. Indeed, this assumption was present in the Main Lemma only because
we cared about the truncated square function

(/lu&%umx_MBuaww2ﬁ>”5
0

r 2r r
Let Ry € D be a cell which contains supp g with £(Rg) &~ diam(supp p). Consider the family
of cells Top constructed in Subsection 5.2 (with F' = suppu and By = Bz = & now). Recall
that this is a family of doubling cells (i.e., Top C ’Ddb) contained in Ry and that Ry € Top.
Given a cell Q € Top, we let End(Q) be the subfamily of the cells P € Top satisfying

e PCQ.
e P is maximal, in the sense that there does not exist another cell P’ € Top such that
PCP CQ.
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In fact, it turns out that End(Q) coincides with the family MD(Q) from Subsection 5.2.
Also, we denote by Tr(Q) (the tree associated with Q) the family of cells D which are
contained in @ and are not contained in any cell from End(Q). The set of good points for @ is

GQ =\ |J P

PeEnd(Q)
Further, given two cells @, R € D with @ C R, we set

su@.R)= [ !

T dpu(y),
2BR\Q |y - ZQ|

where zq stands for the center of Q).
We have:

Lemma 17.5 (The corona decomposition). Let u be a compactly supported measure on C. The
family Top C D% constructed above satisfies the following. For each cell Q € Top there exists
an AD regular curve I'q (with the AD-regularity constant uniformly bounded above by some
absolute constant) such that:

(a) p almost all G(Q) is contained in I'g.

(b) For each P € End(Q) there exists some cell P containing P such that 5H(P,15) <
CO,(Q) and BsNT'q # @.
(c) If P € Tr(Q), then ©,(1.1Bp) < CO©,4(Bg).

Further, the following packing condition holds:

(17.4)
o0 z,r z,2r)) |* dr
QeTop 0

The preceding lemma follows immediately from Lemmas 17.4 and 5.4. Let us remark that the
property (b) in Lemma 17.5 is a consequence of the property (b) of Lemma 5.1, the construction
of the family MD(Q) = End(Q), and Lemma 4.4.

The corona decomposition of Lemma 17.5 is a variant of the one in [Tol, Main Lemma 3.1].
In the latter reference, the corona decomposition is stated in terms of the usual dyadic squares
of C instead of the dyadic cells of David-Mattila, and the left hand side of (17.4) is estimated
in terms of the curvature of y, instead of the L?(x) norm of the square integral T'p.

We have now the following.

Lemma 17.6. Let p be a compactly supported measure on C such that p(B(z,r)) < cor for
all z € C,r > 0. Suppose that there exists a family Top C D™ such that Top contains a cell
Ry such that supp u C Ry, and so that for each cell QQ € Top there exists an AD regular curve
I'q (with the AD-regularity constant uniformly bounded by some absolute constant) such that
the properties (a), (b) and (¢) of Lemma 17.5 hold (with the set G(Q) and the families End(Q),
Tr(Q) defined in terms of the family Top as above). Then,

(17.5) () < e Y 0u(Be)’u(Q).
QeTop

The proof of this lemma is very similar to the one of Main Lemma 8.1 of [Tol], where this
is proved to hold for bilipschitz images of the corona decomposition of [Tol, Main Lemma 3.1].
We will skip the details.
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Clearly, Theorem 17.3 follows from Lemmas 17.5 and 17.6. Indeed, by (17.5) and (17.4) we
have

Fy<e Y OuBoPu@<Clul+C [ /0 h

QETop

- - du(z).

‘M(B(ff,r)) p(B(x,2r)) |* dr
r 2r

18. SOME CALDERON-ZYGMUND THEORY FOR T},

Before proving that the boundedness of C,, in L?*(u) implies the L?(p) boundedness of T),,
we need to show that some typical results from Calderén-Zygmund theory also hold for the
operator 7),. Since the kernel of T}, is not smooth, the results available in the literature (of
which I am aware) are not suitable for T),.

For more generality, we consider the n-dimensional version of 7),:

1/2
2@/
. )

Proposition 18.1. Let u be an n-AD-reqular measure in R®. If T} is bounded in L?(p), then
T} is also bounded in LP(u) for 1 < p < occ.

rn (2r)

T o) = ( /Ow ’ (fW(Bla,r) _ (fu)(Blx,2r))

We have:

Proof. In [TT, Theorem 5.1] it is shown that the boundedness of T} in L*(u) implies the

boundedness from the space of measures M(R?) to L»*°(u). Then by interpolation 1y is
bounded in LP(u) for 1 < p < 2. To get LP(u) the boundedness for 2 < p < oo, by interpolation
again, it is enough to show that 7}, is bounded from L*°(u) to BMO(yu). The arguments to
prove this are rather standard.

Consider f € L (u) and let @@ be some cell of the dyadic lattice D associated with p. We
have to show that, for some constant cg,

1
m/Q,Tgf_cQwsc||f||Lw<u>-

Set fi1 = f xaBg and fo = f — f1. Since T} is sublinear and positive we have [T}'(f1 + f2)(z) —
T} fo(w)| < T} fi(x). Thus,

T f(z) —col < [T,/ (fr + fo)(x) = T, fo)| + |T}; fo(z) — el < T} fr(z) + |1} fa(z) — cql-
Hence,

(18.1) s —caldn < [ apsaus [ n ol du

The first term on the right hand side is estimated by using Cauchy-Schwarz inequality and the
L*(u) boundedness of T),:

/QTﬁfl dp < T2 full 2o (@)% < el 1l p2 gy (@)Y < el fll ooy 1(Q).
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To deal with the last integral on the right hand side of (18.1) we choose cq = T} fa(zq),
where zq stands for the center of ). To show that

| 11200 — el < el @)
and finish the proof of the proposition it is enough to show that
(18.2) T3 f2(x) = Tp f(2Q)| < e[ fllpoe(uy for z € Q.

To this end, write
(18.3)

d d 1/2
T2 o) - sz(ZQ—‘(/ Al D) ([T s ptarr D)
~ L dr\ 12
< ([T 18spten) - Ao P %)

o0 dr \?
< ([ 108G~ r(Ba)r + 1B i)

00 r 1/2
([T 101G, 27 = r(B). 2 + B i

1/2
2 dr
< HfHLOO(u) </>3 (B )|M(A(ZQ,7“ - T(BQ)J“‘H”(BQM m) .
r23r(bQ

To estimate the last integral, first we take into account that pu(A(zg,r — r(Bg),r +r(Bg)) S
|r +17(Bg)|" Sr" for r > 3r(Bg) and x € () and then we use Fubini:

(18.4)

2 dr dr
/ (A2 — 1(Bo),r + r(BQ)) [P < / 1(A(zqsr — 1(Ba),r + 1(Bq)) —r
>3r(Bg) r r>3r(Bg) r

<
|z—2q|>2r(Bg)

In the last double integral, for z and r in the domain of integration we have r =[x — 2|, and
so we get

lz—20l+7(Bq)  gp 1 lz—2¢[+7(Bg)
/ / 7 du() z/ 7714—1/ dr du(zx)
lo—20|>2r(Bg) J|o—zql-r(Bg) T lo—z0]>2r(Bq) 17 = 2QI" ! Jjo—zg|—r(Bg)

z/ &du(aj) <1
\

z—2q|>2r(Bg) |z — ZQ|n+1

lz=zQl+r(BQ)  gp
/ du(z).

n+1
a—zq|-r(Bg) T

Gathering (18.3), (18.4), and the last inequality, (18.1) follows and we are done. O

In the next proposition we intend to prove a Cotlar type inequality involving the operators

5 dr 1/2
T:Zf(x) = ( Agy(x,r) ) ,
r>{ r
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1
M, r)=8SUuUp —F——"— /
M’[f( ) r>Il? M(B(xv 2T)) B(z,r)

where ¢ is some non-negative constant which may depend on z.

1
[fldp and, M, f(x)=sup— [fldp,
r>¢ T JB(x,r)

Proposition 18.2. Let i be a doubling measure in R®. That is
w(B(y,2r)) < cgpu(B(z,r)) for ally € suppp and all r > 0.
Let f € LP(p), for some 1 < p < 0o. For any x € R? and any £ > 0 we have
(18.5) Tpof (@) Seqy Mpue(Tpef)(x) + My o f ().
Proof. Take x € R? and let ¢ = max(¢, dist(z,supp u)). It is straightforward to check that

(18.6) Tpof(@) <Tjlsf(z) + e My, f(z).
We claim now that for all y € B(x, 2t),

(18.7) Tsef(x) = T f ()| < e M f(z).

To see that (18.5) follows from the preceding claim, just take the mean over the ball B(z,2t)
of the inequality (18.7) to get

1
u(B(z,2t))
<1

p(B(x,4t))
where we took into account that p(B(z,2t)) ~ u(B(x,4t)), since there exists ' € supp u such
that |x —a'| =t and p is doubling. Together with (18.6) and the fact that T)75, f(y) < T}, f (),
this yields the inequality (18.5).
We turn our attention to (18.7). Some of the estimates will be similar to the ones in the
previous proposition in connection with the boundedness from L (u) to BMO(u). We write

N\ 1/2
188 M) - T < ([ |8 - anunE)

>bt

zdr 1/2
< ( [ 18w = Mgty —)
r>5t r

d 1/2
([ isimaer =220 )

T f () < /B Tl ) )+ 10

[ Tt ) dut) + A (@),
B(z,2t)

o dr 1/2
# ([l a2 2,20 v 20 )
r>5t r

dr \1/2
N </T>5t}(|f|u)(z4(x,r—2t,r+2t)|2T2n11> .

To estimate the last integral we use the fact that for z and r in the domain of integration

(Sl W(A@,r —2t,r +20) 1 /B( 2)|f\duch[},gf(:r)

,rn 7'7’7,
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and Fubini:
o dr n dr
T>5t](|f| 1)(A(m,r — 2t + 2t)| RS} <M, f(x) T>5t(|f| p)(A(z,r — 2t,r + 2t) e
(=) sl [ )
<My, f(z / [y / — du(y
T etz je—yl-2e T
|f () l—ylt2e
s [ dr du(y)
- |x—y|>3t ‘CL‘ - y‘n—H |z—y|—2t
tf(y)l 2
Sase) [ U duy) £ M),
ot |x—y|>3t ‘1‘ - y‘n_‘_l wl
Plugging this estimate into (18.8) yields the claim (18.7). O

Proposition 18.3. Let ' be an AD-regular curve in R, and for a given a > 0 set 0 = aH'|r.
Let p1 be a measure in R such that u(B(x,r)) < ar for all x € suppu and all v > {(x), for
some given function £ : supp u — [0,00). Then T, : LP(0) — LP(p) is bounded for 1 < p < oo
with norm not exceeding cig a, with ci1g depending only on p and the AD-reqularity constant of
I.

Proof. Since Ty, is bounded in LP(HYr), we deduce that T, is bounded in LP(c) with norm
not exceeding c19 a, with c1g depending only on p and the AD-regularity constant of I'. Abusing
notation, for x € supp u we set:

Tmff(x) = U,ﬁ(ac)f(x)v Moy@f(x) = Ma,é(z)f(x)a M;,Zf(x) = M;e(m)f(ﬂj')
By (18.5) we have
(18.9) To o f (@) Seay Mot(Toof) (@) + My, f(x)  for all x € supp pi.

Note that the doubling constant cg, of o depends on the AD-regularity constant of ’Hl|r but
not on a.

Bt (18.9), to prove the proposition it is enough to show that M, , and M; ;, are bounded from
LP(0) to LP(u) with

Mot o) 1oy < ¢ and  [[Mg ol ooy Lo < ca.

The arguments to show this are very standard. For completeness, we will show the details.
Concerning M, g, it is clear that it is bounded from L*(o) to L (). Also, it is bounded
from L'(u) to LY*°(o). Indeed, given A > 0 and f € L(o), denote

O ={z: Myof(x) > A}

For each z € Q) N supp i, consider a ball B(x,r,;) with r, > ¢(z) and B(x,r,) Nsuppo # &
such that
1

R do > ).
o(B(x.2ry)) /BW 17
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Consider a Besicovitch covering of Q) N supp p with balls B(z;, ry,) with finite overlap, with
xz; € Q) Nsupp . Then we have

U(QA> < ZM(B(-%’@,TIZ)) <a Zrl’i

7

<c§jd3wu%m»<c§;é( W1do <l

Above we took into account that ary, < o(B(wzi,2rg,)), which follows from the fact that
B(zi,ry;) Nsuppo # @. So M, is bounded from L'(o) to L*°(u), and by interpolation
it is bounded from LP(c) to LP(p).

On the other hand, regarding M;Z, note that if x € suppp and B(x,r) Nsuppo # &, with

r > {£(z), then

1 ca

ooy 1197 Bz fy 19 < caMaf o)

Taking the supremum over the radii » > £(z) such that B(x,r) Nsuppo # &, we infer that
M}, f(z) < caM,,f(z), and thus M}, is bounded from LP(c) to LP(p) with its norm not

exceeding c(p) a. O

19. PROOF OF THEOREM 1.3: BOUNDEDNESS OF THE CAUCHY TRANSFORM IMPLIES
BOUNDEDNESS OF 1),

In this section we will show that if ;4 has linear growth and the Cauchy transform C, is
bounded in L?(p), then

1Tuxellz2(ug) < cu(Q)?

for every square Q C C. Because of the connection between the Cauchy kernel and curvature,
the preceding result is an immediate corollary of the following.

Theorem 19.1. Let u be a finite Radon measure on C with linear growth. Then we have

o0 T, T z.2r) |2 dr
/I Mwi’”—”3“2” Y du(z) < Clull + € ).

2r

To prove this theorem we will use the corona decomposition of [Tol]. To state the precise
result we need, first we will introduce some terminology which is very similar to the one of the
preceding subsection. The most relevant difference is that it involves the usual dyadic lattice
D(C), instead of the David-Mattila lattice D.

Let 4 be a finite Radon measure, and assume that there exists a dyadic square Ry € D(C)
such that suppp C Ry with £(Rg) < 10diam(supp(p)), say. Let Top, € D(C) be a family of
dyadic squares contained in Ry, with Ry € Top,.

Given @Q € Top,, we denote by End,(Q) the subfamily of the squares P € Top, satisfying

s PCQ,
e P is maximal, in the sense that there does not exist another square P’ € Top, such that
PCP CQ.
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Also, we denote by Tr.(Q) the family of squares D(C) which are contained in @ and are not
contained in any square from End,(Q). We set

G.(@Q) =Qnswp(w)\ |J P

PeEnd*(Q)
Given a square ) C C, we denote
1Q)
0.(Q) = wQ)
and given two squares () C R, we set
1
0 u(@Q, R) := / d ,
»IJ«( ) 2R\Q |y_ZQ| :u(y)

where zg stands for the center of Q.
We have:

Lemma 19.2 (The dyadic corona decomposition of [Tol]). Let u be a Radon measure on C with
linear growth and finite curvature c®(u). Suppose that there exists a dyadic square Ry € D(C)
such that supp 1 C Ry with £(Ry) < 10diam(supp(w)). Then there exists a family Top, as above
which satisfies the following. For each square @ € Top, there exists an AD-regular curve I'g
(with the AD-regularity constant uniformly bounded by some absolute constant) such that:

(a) p almost all G,(Q) is contained in I'g.
(b) For each P € End.(Q) there exists some square Pe D(C) containing P, concentric with
P, such that d, (P, ]3) < CO,(7Q) and %]5 NT'g # 9.
(c) If P € Tr(Q), then ©,(7TP) < C0O,(7Q).
Further, the following packing condition holds:

(19.1) > 0u(7Q)* Q) < Clull + C (p).

Q€Top,

Let us remark that the squares from the family Top, may be non-doubling.

The preceding lemma is not stated explicitly in [Tol]. However it follows immediately from
the Main Lemma 3.1 of [Tol], just by splitting the so called 4-dyadic squares in [Tol, Lemma
3.1] into dyadic squares. Further, the family Top, above is the same as the family Topgy from
[Tol, Section 8.2].

Quite likely, by arguments analogous to the ones used to prove Lemma 3.1 of [Tol] (or the
variant stated in Lemma 19.2 of the present paper), one can prove an analogous result in terms
of cells from the dyadic lattice of David and Mattila. This would read exactly as Lemma 17.5,
but one should replace the inequality (17.4) by the following;:

Y 0u(BQ)*u(Q) < CO,(Bry)* n(Ro) + C (1)
Q€eTop
Perhaps this would simplify some of the technical difficulties arising from the lack of a well
adapted dyadic lattice to the measure p in [Tol]. However, proving this would take us too long
and so this is out of the reach of the present paper.
To prove Theorem 19.1, we split Tu(x) as follows. Given @ € D(C), we denote
4Q) 5 dr

Ton@ =xa@) [ - Auter)* T
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Then we have

(192)  Tu(@)?= Y Tou@)?= > Y Toul)’+ > Tou)?

QEeD(C) ReTop, QeTr«(R) QED(C):QZ Ro
The last sum is easy to estimate:

Lemma 19.3. We have
Yo ITonlzzg < cOu(R0)? |ul.

QED(C):QZ Ro
Proof. Since supp u C Ry, we have
Yoo Tanlizy = Y. ITanlizg,
QeD(C):QZ Ro QED(C):QDRo

:/ AM(.T,T)Q@
Ro J4(Ro) r

o dr
< u(Ro)? / / D e 0,(Ro)? (Ro).
Ro J4(Ryp)

r
O

To deal with the first term on the right hand side of (19.2) we need a couple of auxiliary
results from [Tol]. The first one is the following.

Lemma 19.4. Let Top, be as in Lemma 19.2. For each R € Top, there exists a family of
dyadic squares Reg,(R) which satisfies the following properties:

(a) The squares from Reg,(R) are contained in Q and are pairwise disjoint.

(b) Fvery square from Reg,(R) is contained in some square from End.(R).

(c) If P,Q € Reg,(R) and 2P N2Q # @, then £(Q)/2 < L(P) < 24(Q).

(d) If Q € Reg,(R) and x € Q, r > £(Q), then p(B(z,r) N4R) < CO,(TR) .

(e) For each @ € Reg,(R), there exists some square Q, concentric with Q, which contains

Q, such that 6. ,(Q,Q) < CO,(TR) and 1QNTx # @.

This result is proved in Lemmas 8.2 and 8.3 of [Tol]. For the reader’s convenience, let us say
that this follows by a regularization procedure analogous to the one used in the present paper
to construct the families Reg and NReg.

Next lemma shows how, in a sense, the measure u can be approximated on a tree Tr.(R) by
another measure supported on I'g which is absolutely continuous with respect to length. This
is proved in Lemma 8.4 of [Tol].

Lemma 19.5. For R € Top,, denote Reg,(R) =: {P,;};>1. For each i, let P; € D(C) be a
square containing P; such that 6. ,(P;, P;) < CO,(TR) and P, TR # @ (as in (e) of Lemma
19.4). For each i > 1 there exists some function g; > 0 supported on I'r N P; such that

(19.3) /F gidH' = u(P),

(19.4) > 9i SOuTR),
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and
(19.5) lgilloo £(P;) S u(P).

Recalling the splitting in (19.2), to prove Theorem 19.1, it suffices to show that for every
R € Top,

> /TQu2 dpu < cO,(TR)? u(R),

QETr(R)
because of the packing condition (19.1). To this end, denote
{(R) dr
Sun(e)® = xa(@) [ Ay
o(x)/2 r

where {(z) = {(Q) if z € Q € Reg, and {(z) =0 if 2 & Jgepeg, @ By (b) of Lemma 19.4,
> Tou(@)® < Sru(z)*.
QETr(R)

Thus the proof of Theorem 19.1 will be concluded after proving the next result.

Lemma 19.6. For every R € Top,, we have
||5RMH%2(H) < ¢Ou(TR)? u(R).

Proof. Consider the measure o = ©,(7R) H'|r,,, and take the functions g;, i > 0, from Lemma
19.5. Set

Bi = plp, — 9 H'rg,
and denote h; = 6#(7R)_1gi, so that g; 7—[1|FR = h;jo. Denote also h =), h; and notice that

u225i+h0.

As SR is subadditive, we have

(19.6) Srp < Sp(ho) + > Srbi.

1

Since pu(B(z,7) N R) S ©4(TR)r for all x € RNsupp p and all r > ¢(x), by Proposition 18.3
Ty : L*(0) — L*(p|r) is bounded with norm not exceeding ¢©,(7R). So we get

1SR o) T20y < 1 ToehlZ2 () < ¢Ou(TR)? (11172,
To estimate [|h[|3, (o)) Write

1Al 720y < 1l Loe (o) 1Bl L1 (0
and recall that
1B]l Lo (o) = O p(TR) Mgl poo () S 1
and
1Bl (o) = lgllrperyr,) < m(R).
Hence we obtain
(19.7) 1SR(h )72, S Ou(TR)? u(R).
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Now we will estimate the term ), Sgf; from (19.6). We split Srf;(z) as follows:

40(5) . 1/2 UR) . 1/2
(19.8) sRﬁi<x><<xR<x> / Agxx,r)?%) +<><R<x> / Amx,r)?d—)

(x) o(P;) r

~ /2

(P8 ar\ 10(P,) ar )\’
< <><R<x> [ Gy 7) ) [ A
() oupy)/8 r

~ 1/2 1/2

40(P;) dr L(R) dr
+ <XR($)/ Ahio'(x’ T)Q _> + <XR($) / - Aﬁi (.%’, 7“)2 —
£(x) r 40(P;) r

= A;(x) + Bi(z) + Ci(z) + D;(x).

To deal with A;(z), note if x ¢ 2P;, then A;(x) vanishes. Recall now that, by Lemma 19.4,
if x € 2P;, then {(x) = £(P;). So we obtain

o(P,)/8 ar\"? 1(P:)
e 2 ar < vop. .
Az(m) < XQPz(x) (/ce(Pl) AH‘PZ’ (9377") r > ~ X?PL(ZE) E(PL)

Let us turn our attention to the term B;(z) from (19.8). Notice that B;(z) = 0 if z ¢ 20P;,
and moreover A, (z,7) = 0 if 2r < dist(z, P;). Hence, in the domain of integration of B;(z)

we can assume both that r > ¢(P;)/8 and that r > %dist(x, P;), which imply that
1/1 1
res (g UP) + 5 dist(a, a)) ~ |z — zp | + £(P).
So we have

) 40(P;) 5 dr
Bi(2)? < xop () / Ay, ()2 &
! c(lz—zp;|+E(P;)) ¢ r
44(P) dr (P)?
< ~ \2 ar - _ ML
< oo ) (P)? [ < Xoop (@) .
205, la—zp, (P T 205, (|t — 2p) +€(Pi))2

Thus,

pu(F)
Bi(z) < xonp () ————2— .
0 S Xm ) e T )
Concerning C;(x), again it is easy to check that C;(z) =0 if = & 20P;. So we have
Cl(l‘) < X2015iT07ghi($).

Next we consider the term D;(z) from (19.8). Since [ df; = 0, it turns out that Ag, (z,7) =0
unless
(6B(:U, r)UOB(z,2r)) Nsupp B; # @.
If th~is condition holds, we write » € I(i,x). This condition, together with the fact that r >

4/(P;) in the domain of integration of the integral that defines C;(z), implies that r ~ |z —zp,| &
|x — zp,| + ¢(P;). Therefore,

/e(R) Ag (2 T < 2] — / dr p(PUP)
wp) r Y (lz = zp |+ 6(P))? Jretiwy T (Jo —2p) + £(B))*

N
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Hence,

P,) (P2
Di) 5 — MBI
(|$ - sz‘| + E(PZ))
Gathering the estimates we have obtained for A;(x), B;(x), C;(z), and D;(z), we get

1u(P;) () (P, L(Py) V>

Subi(e) S ) gy HXan ) G T i) T (a4 ey )
p(P) p(Py) (P2
S Peor ) T T T (o= 4 | TR )

=: Ez(x) + Xgoﬁdehi(x)'

We will estimate the L?(u|g) norm of Y, SgfB; by duality. To this end, consider a non-
negative function f € L?(u|g) and write

(19.9) /Rf ZSRﬁz‘dﬂSZ/sz‘du+Z/20ﬁfTa7zhidu =D+

First we deal with @ We consider the centered maximal Hardy-Littlewood operator

1
ME ) = sup —/ du.
HlRf( ) r>0 /,L(B(:E, ’I“) N R) B(z,r)NR |f| :

It is casy well known that Mp, —is bounded in LP(p|R), 1 < p < oo, and of weak type (1,1)

with respect to u|g.
For each i we have

e pP) pPUP)2
/fEld'u_/Qoﬁi o enl+ Ry )+/(|x—ZP|+€( ) 1)

We claim now that the following holds:

(19.10) | o= T @) @) S O, (TR inf M 1)
and
(19.11) / e iﬁﬁm)?’” (@) du(z) S Ou(TR) inf My, f(y)-
Assuming these estimates for the moment, we deduce
[ 1B < 0,0 ing M S0P < 0,5R) [ 05 10 )

and then, since the squares P; are pairwise disjoint and contained in R,

ORCRUHDY / < F@)duly) <6, 7R/ e fdu

Ou(7R) || 2 1)V < ©(TR) |1 £l 120y 1(R)'/2
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Next we estimate the term @ from (19.9). By Holder’s inequality and the LP(u) boundedness
of Ty ¢ from LP(0) to LP(p|r) with norm not exceeding c¢©,(7R), we get

1/4 3/4
@< Z(/ |Ta,mir4du) </~|f|4/3du>
20B:NR 205;
3/4
0,TR) S [hillzao) (/ |f|4/3du> .
i 20P;,NR

Consider the following centered maximal operator

3/4
4/ 1
M°’4/3fx = sup —/ fIY3d .
w1 (@) r>0 \ #(B(z,7) N R) B(m,r)ﬁR‘ M di

This is bounded in LP(u|g) for 4/3 < p < oo and of weak type (4/3,4/3) with respect to p|g.
Notice that for all y € P;

3/4 3/4
( / . |f|4/3du> < ( / i f|4/3du>
20P;,NR B(y,£(40F;))NR

< u(B(y, ((40P)) N R)** M7 1 (y)
S OuTRPA LB M 1 (y).
Therefore,

(19.12) (2) < Ou(7R 1+3/4Z||h () LB/ inf MC|4/3f( ).

Recalling that h; = ©,(7R)™! g; and that ||g; ||~ U(P) < u(Py), we get
1l 1oy €CP)Y* < il 0w () o () £(F)
S OuTR) T gill oo (o) £(B) S ©u(TR) ™/ (P

Plugging this estimate into (19.12) and using the L?(u) boundedness of M;"i/?’, we obtain

@x @u(7R)ZM(Pi inf MY f(y) < @u<7R)/RMj’i/3f(y) du(y)

yeP; Hlr
< Ou(TR) | M2 fll 2y m(R)? S ©,(TR) || £l 12y n(R)2.

Gathering the estimates obtained for @ and @, we get
[ S ©,TR) Il (R

for any non-negative function f € L?(y), which implies that

HZ Safil| , < OuTR) u(R)'/2,

N

as wished.
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To conclude the proof of the lemma it just remains to prove the claims (19.10) and (19.11).
We carry out this task in the following lemma. O

Lemma 19.7. Let f € L*(iu|g) be non-negative. We have

(19.13) | e ) dne) S ©,(7R) inf M, 1)
and
(P)'
14 x)du(x) < O,(TR) inf M
(19.14) /<m—aﬂ+aé»””ﬂ)’“)w W(TR) inf M, F(y).

Proof. First we deal with the inequality (19.13). Given a non-negative function f € L?(u|g)
and y € P;, we set

1 1
/201% |z — zp| + U(F) fo)dule) % U(F;) /B(y,ZE(Pi)) fw) dpla(z)

1
+ﬁ o (@) dp|n(x)
Ly(P)<|o—zp,|<400(B;) [T — 2P,]
=1+ I
Concerning I, we have
w(B(y,20(P;)) N R) 1 /
hs fdp $© fly
1 ((P;) w(B(y, 20(P;)) N R) Jpwaupynr u(TR) My f(y).

To deal with Is we apply Fubini:

b= @[ e
L0(Py)<|z—zp, | <406(P;) r>lz—zp,| 72
- 5 (@) dal () dr
Z(P ™ Ja— 2p, |<min(r, 400(F;))

<oz | _ Jdulpdr
54(P) 7 J B(y,min(2r,80¢(F;)))

< MY, F () /°° (B (y, min(2r, 80(F;))) N R)

dr.
2
LuP) r

Since B(y, min(2r,80((F;))) C B(zp,, min(4r, 160((F;))), we get

*  1u(B(zp,, min(4r, 160¢(F;))) N R) p
2

T.

I < MC|Rf(y)/

3U(P:) "
Notice now that, by Fubini, the integral above equals

-y duln(e)dr = [ [ adrdidaa)
Z(P |z—zp, |<min(4r, 160£(P;)) Z(P)<\z 2p\<160l(P) >z \z Zpl

/ 4
Lo(Py)<|a—=p, |<1600(P;) [T — 2P|

dp|r().
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From the condition 5*#(3’,?’1‘) S Ou(TR), it follows easily that the last integral above is
bounded by ¢©,(7R). Thus,

Iy S ©,(TR) M{, ().

and (19.13) follows.

The arguments for (19.14) are quite similar. Consider a non-negative function f € L?(u|g)
and y € P;, and write

0P 1
/ OB S e [ )

| — zp,| + U(P)) ((P)
o(P)Y?
’ /lzzpizée(ﬁi)?’m o — sp 2 /(7 (D)
=Ji+ Jo.

Arguing as in the case of I1, we get
1 S ©,(TR) M, f(v).
To deal with Jo we apply Fubini again:

/ f)z 1/2
Jo :c/ B f(x)/ ( 532 dr du|r(x)
lo—zp;|>30(P;) r>lz—zp| T

[ (P2

o(P;)

[e's) Y 131 1/2
Sﬁ _ ( 532 / fdplrdr
sup) T B(y,2r)

o YP)Y? u(B(y,2r)N R
< My fy /1 _ (F) M(W(Qy rOR) dr.
24(F)
Since ( ( ) )
w(B(y,2r)N R
— S Ou(TR) for r > 20(P),
we obtain o
C > e PL C
RS OUTR My 1) [ A dr 5 0,7 M3, 1),
bl [
and so (19.14) is proved. O
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