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Abstract

An autonomous semi-linear model for the proliferation of bacteria within a het-
erogeneous population of animals is developed. It is assumed that bacteria grow
inside the intestines and that they can be either attached to the epithelial wall or
as free particles in the lumen. A condition involving ecological parameters is given,
which can be used to decide the existence of endemic equilibria as well as local sta-
bility properties of the non-endemic one. Some implications on phage therapy are
addressed.

1 Introduction

Most enteropathogenic microorganisms such as Salmonella, enterotoxigenic Escheri-
chia, Yersinia or protozoans within the Giarda genus have the potential to infect
a broad spectrum of animals, including humans and livestock. They are able to
adhere to the intestinal epithelium in order to persist in the gut in a way that
they may damage some tissues and promote harmful inflammatory responses. As a
consequence, the absorption of nutrients by the infected animal becomes severally
reduced. Hence, epidemics driven by enteropathogens must be controlled in farms
not only to improve production and the animal welfare, but also to prevent infection
of people through food derivatives, eggs and meat primarily, or by contamination of
rivers and lakes. Nowadays, the rising levels of multidrug resistant bacteria make
the use of antibiotics a controversial option [17], while more ecologically based al-
ternatives are becoming more popular, such as viral therapy with bacteriophage [1]
or probiotic usage [13].

It is well known that the complex relations between the agents in such epidemio-
logical scenarios make mathematical modelling a powerful tool to better understand
the infection progression as well as to search and test different strategies designed
to prevent and/or eradicate it (reviewed in [14] and [4]). Several theoretical re-
sults exist relating the epidemics evolution with bacteria-bacteriophage interactions

∗2010 MSC: 34B15, 35L45, 92D25
†carlesbarril@mat.uab.cat
‡acalsina@mat.uab.cat

1



[19, 5, 6], competition between virulent and innocuous strains [20, 10, 2], or the
spatial and physiological structures of the host populations [15, 22]. They provide
valuable information on how we can take advantage of certain processes in order to
treat a group of animals just changing some ecological parameter. However, the link
between the pathogen ecology inside and outside the host is in general not consid-
ered explicitly. From our point of view this issue deserves to be analysed carefully
when dealing with living beings as therapeutic agents. This may give clues about
how the cleaning of animals enclosures affects the bacterial growth. For example, if
the detergents are much harmful for bacteriophage than for bacteria, then it could
be better doing nothing instead of adopting an intensive hygienic policy. This work
is partially motivated by this idea. Although we are not attempting to give precise
therapeutic protocols, the qualitative results we derive shed some light on how the
external environment together with the structure of the susceptible population affect
the epidemic progression.

Our main goal is to present a rather general mathematical model about the
dynamics of microorganisms that grow within the guts of animals. To this end,
we somehow extend the linear PDE system introduced by Barbara Boldin to ex-
plore the Escherichia coli growth within a pig intestine [3], whose main feature is
to distinguish those microbes present in the lumen from the ones attached to the
epithelium. Thus, the former are affected by the intestinal flow while the latter
are not. One of the incorporations we propose is nothing but to assume non-linear
relations between the variables. Although it is a quite natural procedure since it
allows to consider competition interactions or relations between bacteria and bacte-
riophage, some care must be taken from the mathematical point of view due to the
fact that the variables belong to an infinite dimensional space. The aim of applying
rigorously mathematical tools such as the linear stability principle lead us to make
use of the so-called sun-dual formulation developed in [8] and [9] (see [11] for an
application of the theory to population dynamics and [16] where it is used to treat
a non-linear hyperbolic system similar to ours). Another important difference with
respect to Boldin paper is that our framework makes possible to consider the spread
of bacteria trough an heterogeneous group of hosts, while the model in [3] assumes
an isolated animal. This is done just adding a new scalar variable that represents
the amount of microbes in the external media. With this new ingredient we can
also study which actions not on the animals but on the environment could be useful
to control the spread of bacteria. The model analysis leads to a set of quantitative
expressions that determines the stability of the non-endemic steady state. Several
biological conclusions can be drawn from such magnitudes, and many of them will
be highlighted along the text as Biological remarks.

The structure of the paper is the following: section 2 is devoted to the formulation
of a rather general model to study how microbes behave within the gastrointestinal
ecosystem. In section 3, we focus on a specific competition scenario and we give
conditions on the parameters that ensure the existence of an endemic steady state
(Theorem 3.7). In Theorem 3.13 we show that this equilibrium is stable whenever
it exists. Finally, in section 4 we consider the possible effects on such equilibrium
of a phage therapy consisting in the administration to the host animals of a certain
dose of bacteriophage mixed with their food.
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2 A rather general model for the gastrointestinal ecosystem

Consider a population with n hosts and m microbial types (bacteria and bacterio-
phage for example). Let H = {1, 2, · · · , n} and S = {1, 2, · · · ,m} be the indexes
for the host and the microbial types (or strains) respectively. Let us call uh,s(x, t)
and vh,s(x, t) the densities of attached and luminal microbes of type s in the host h
respectively, and rs(t) the density of strain s in the soil. Then the set of equations
describing the dynamics of the microorganisms can be written as





∂tuh,s = gh,s(x, uh, vh),
∂tvh,s = −∂x(ch(x)vh,s) + fh,s(x, uh, vh) ∀(h, s) ∈ H × S.
drs
dt = ms(r) +

∑
h∈H kh,s(ch(lh)vh,s(t, lh))−∑h∈H λh,srs,

(1)
Here, uh = (uh,1, . . . , uh,m), vh = (vh,1, . . . , vh,m) and r = (r1, . . . , rm). The pa-
rameter lh is the intestine length of host h and ch(x) stands for the celerity of its
intestinal flow. As a first approximation we assume this is autonomous for math-
ematical convenience. The functions gh,s and fh,s take into account the ecological
processes happening locally at the position x of the intestine. Besides replication and
mortality of bacteria, these functions may also reflect migration between epithelium
and lumen, competition interactions or whatever we are interested in. Similarly,
function ms describes the ecology in the external media of the population of type
s, and kh,s gives the amount of strains s leaving the intestine of host h. Finally,
we assume that microbes enter the intestine proportionally to their amount in the
soil. Thus, λh,s represents a kind of ingestion rate of particles of type s by host
h. Consequently, a boundary condition for vh,s must be incorporated relating such
reinfection term, which is

ch(0)vh,s(0, t) = λh,srs ∀(h, s) ∈ H × S.

For the purposes of this paper, all functions introduced above (ch, gh,s, fh,s and
kh,s) are assumed to be differentiable.

In this article stability properties and processes of equilibria bifurcation of system
(1) are addressed for a particular class of functions f and g. We proceed in a quite
formal way, leaving the theory that justifies some key properties of (1) for a second
publication. However, next we give some clues about such a theory, which is based on
the sun-dual semilinear formulation developed in [8, 9] and which has been applied
in previous biological and physical models [16, 11] (see also [18] where the standard
semilinear formulation is presented). The idea is to treat (1) as the semilinear
evolution problem





du
dt = G(u, v),
dv
dt = −∂x(cv) + F(u, v),
dr
dt = K(v, r)− Λr,
(v(0), u(0), r(0)) = (v0, u0, r0) ∈ X,

(2)

X being the Banach space

X =
∏

s∈S

(( ∏

h∈H
L∞(0, lh)

)
× Cs

)
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where

Cs =

{
(v, r) ∈

(∏

h∈H
C([0, lh],R)

)
× R | ch(0)vh(0) = λh,sr ∀h ∈ H

}
.

If the right hand side of (2) is written as the sum of a linear unbounded operator
plus a Lipschitz non-linear operator, then a generalized version of the variation of
constants equation can be used to prove important properties about the dynamics
of (1). Specifically, it can be shown that for any x ∈ X there exists one, and only
one, mild solution of the system. Although the term mild solution has a precise
definition, for the purpose of this work it is enough to say that a mild solution
could be non differentiable with respect time in the classical sense, but it has good
regularity properties that make the equations in (2) meaningful. It can also be
shown that a point (u, v, r) = x ∈ X is a stationary state of (2) if and only if vh,s is
Lipschitz for all pair (h, s) ∈ H × S and




0 = gh,s(x, uh, vh),
0 = −∂x(ch(x)vh,s) + fh,s(x, uh, vh), ∀(h, s) ∈ H × S
0 = ms(r) +

∑
h∈H kh(ch(lh)vh,s(lh))−∑h∈H λh,srs,

where we take ∂x as the derivative in distributional sense. Moreover, the stability
of a given steady state (u, v, r) = x ∈ X can be determined taking into account
properties of the linearized generator of (2) around x, namely the linear operator

A




ξ
ζ
ρ


 =




D2g(·, u(·), v(·))ξ +D3g(·, u(·), v(·))ζ
−∂x(cζ) +D2f(·, u(·), v(·))ξ +D3f(·, u(·), v(·))ζ∑

h∈H k
′
h(ch(lh)vh(l))ch(lh)ζh(l) + (m′(r)−∑h∈H λh)ρ


 (3)

with domain

D(A) = {(ξ, ζ, ρ) ∈ X | each component of ζ is Lipschitz and A(ξ, ζ, ρ) ∈ X} .

An important theorem relating the operator A with the stability of the steady state
(u, v, r) is the following.

Theorem 2.1. Let us assume that the spectrum of A can be written as a disjoint
union σ(A) = Σ1∪̇Σ2 satisfying:

• Σ1 is finite and for all η ∈ Σ1, η is an eigenvalue with finite algebraic multi-
plicity,

• there exists ω ∈ R such that Re(η1) > ω > Re(η2) for all η1 ∈ Σ1 and η2 ∈ Σ2

and
ω > ess supD2g(·, u(·), v(·)).

Then the equilibrium (u, v, r) is exponentially asymptotically stable if maxη∈Σ1
Re(η) <

0 and unstable if maxη∈Σ1 Re(η) > 0.

In this article we do not give a proof of the above result because it would be
quite long and technical and we prefer to first illustrate the theory with particular
scenarios. Let us just say that difficulties arise because of the unboundedness status
of the generator A so typical of partial differential equations, forcing us to verify some
compactness properties of the associated semigroup in order to relate the non-linear
dynamics of (2) with the spectral properties of A. The methodology to overcome
these problems is similar to the one used in the monograph [23] by G. F. Webb.
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3 Spread of bacteria within a population of multiple hosts

In this section we consider a strain of bacteria growing within the intestines of
an heterogeneous group of n animals enclosed in the same pen. Let h ∈ H =
{1, 2, . . . , n} be an index for each animal and consider





∂tuh = γh1 (uh)uh + αhvh − δhuh
∂tvh = −ch∂xvh + γh2 (vh)vh − αhvh + δhuh
ṙ =

∑
h∈H(chvh(lh, t)− λhr)− µr

chvh(0, t) = λhr

. (4)

The parameters α and δ are per capita attachment and detachment rates to the
epithelium respectively. The functions γ1 and γ2 are per capita growth rates. The
sub and super indexes h indicate that these parameters may depend on which host
the bacteria is inside. We make the assumption that

∀h ∈ H, γh1 and γh2 are smooth functions on [0,∞), have negative
derivative and are negative valued for large enough arguments,

(5)

thus reflecting competition interactions both in the epithelium and in the lumen.
We also assume that the transport speeds are constant. The free bacteria in the
media are degraded at a per capita rate µ. Notice that the proposed model assumes
a stable background bacterial community, whose effects on the modelled bacteria are
constant in time. In this sense, the model may serve to decide if a foreign microor-
ganism such as Salmonella can spread and persist within a mature intestine. The
linear approximation of the attachment and detachment rates keeps the equations
tractable and allows us to give qualitative results of the asymptotic behaviour of
the population depending on α and δ. However, we are aware that it seems very
difficult to determine experimentally how bacterial cells move from the epithelium
to the lumen and vice versa. The stationary states of the system above are the
solutions of 




0 = γh1 (uh)uh + αhvh − δhuh
0 = −ch∂xvh + γh2 (vh)vh − αhvh + δhuh
0 =

∑
h∈H(chvh(lh)− λhr)− µr

chvh(0) = λhr

. (6)

Clearly (u, v, r) = (0, 0, 0) is always an equilibrium point, which corresponds to the
infection free scenario. The interesting question is when positive solutions exist
depending on the parameters. To address this issue, we will assume λh > 0 for all
h ∈ H, which implies that every host is susceptible to be infected by environmental
bacteria. We refer to such situation as the reinfection case. At the end of section 3
it is shown that if λh = 0 for some h, then system (4) becomes degenerate in some
sense and a non-numerable set of equilibria may exist.

3.1 Stationary states in the reinfection case

3.1.1 Existence of an endemic equilibrium

First of all notice that, using the monotony properties of γh1 , one easily proves that
for every ṽh > 0 there is a unique value ũh = ũh(ṽh) satisfying

γh1 (ũh)ũh + αhṽh − δhũh = 0

5



(see the graphical proof in Proposition 3.1 below). Moreover, the corresponding
function ũh(ṽh) is increasing, regular and unbounded from above in the domain
ṽh ∈ (0,∞). We may denote ũh(0) as the limit of ũh(ṽh) as ṽh decreases to zero.
The following property relates ũh(0) with the sign of γh1 (0)− δh.

Proposition 3.1. If γh1 (0) − δh ≤ 0, then ũh(0) = 0, and if γh1 (0) − δh > 0, then
ũh(0) > 0.

Proof. Realize that ũh(ṽh) is nothing but the inverse function of ṽh(ũh) = −(γh1 (ũh)−
δh)ũh/αh, which takes the following forms depending on the hypotheses.

Notice that if ṽh(ũh) > 0, then necessarily ṽ′h(ũh) > 0 and that ṽ′h(ũh) > δh/αh for
large values ũh.

Let (u, v, r) be an endemic equilibrium. The relation between uh and ũh is given
by uh(x) = ũh(vh(x)) provided vh(x) > 0.

Proposition 3.2. The component r of any endemic equilibrium (u, v, r) satisfying
(6) must be positive.

Proof. Suppose r = 0. Then vh(0) = vh(lh) = 0 for all host h since we are assuming
λh > 0 for all h. If vh(x) ≡ 0, then the second equation in (6) gives uh(x) ≡ 0.
Otherwise, vh(x) is solution of the scalar differential equation chv

′
h = γh2 (vh)vh −

αhvh + δhũh(vh), which is autonomous and whose right hand side is smooth for
vh > 0. Hence, vh(x) is necessarily monotone, which is not compatible with the
boundary conditions vh(0) = vh(lh) = 0 unless vh(x) ≡ 0.

The above observations reduce system (6) to




v′h = (γh2 (vh)vh − αhvh + δh ũh(vh))/ch =: gh(vh),
vh(0) = λhr/ch,
0 =

∑
h∈H(chvh(lh)− λhr)− µr.

(7)

Next we are going to show that all equations v′h = gh(vh) have a well defined
solution ϕh(x; vh(0)) > 0 for all x ≥ 0 provided vh(0) > 0, so that there are as many
non trivial solutions of (6) as positive solutions r̄ > 0 the equation

0 =
∑

h∈H
(chϕh(lh;λhr/ch)− λhr)− µr (8)

has. The equilibrium is expressed in terms of r̄ as

ūh(·) = ũh(v̄h(·)) and v̄h(·) = ϕh(·;λhr̄/ch) ∀h ∈ H.

In order to prove the existence of the functions ϕh(x; vh(0)) we use the lemmas below.
We omit the indexes h because all we need to use are the structural properties of
γh1 and γh2 given in (5), which are shared by all hosts.
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Lemma 3.3. The function c g(v)
v = γ2(v)v−αv+δũ(v)

v is strictly decreasing for v > 0
and it is either always negative or it vanishes at some value v∞ > 0.

Proof. First we prove the monotony property. Since γ2(v) decreases, it is enough
to show that h(v) := ũ(v)/v is strictly decreasing. From the definition of ũ(v) we
obtain the equation (γ1(vh(v))− δ)h(v) + α = 0, and taking the derivative we have

γ′1(vh(v))(h(v) + vh′(v))h(v) + (γ1(vh(v))− δ)h′(v) = 0.

Therefore, the derivative h′(v) can only vanish if h(v) vanishes too. In addition
it is easily seen that h′(v) < 0 for some v small enough, since limv↓0 h(v) = ∞ if
γ1(0)−δ ≥ 0 and, on the other hand, using L’Hôpital’s rule and the second derivative
of the inverse function, we have

lim
v↓0

h′(v) =
1

2
ũ′′(0) = −1

2

ṽ′′(0)

ṽ′(0)3
= −α2 γ′1(0)

(γ1(0)− δ)3
< 0

if γ1(0) − δ < 0. Finally, as h(v) is always positive for v > 0, we conclude that
h′(v) < 0 for all v > 0.

Now we show that γ2(v)v−αv+δũ(v) is negative for v large enough, which implies
the second claim of the lemma. Since γ2(v) eventually becomes negative, it suffices to
prove δ ũ(v) < αv for large values of v. Taking into account the negativeness of γ1(u)
for large arguments, and also that ũ(v) is an increasing function of v unbounded
from above, it follows −γ1(ũ(v))ũ(v) > 0 for v large enough. Then, using that
γ1(ũ(v))ũ(v) +αv− δũ(v) = 0 we finally obtain αv = δũ(v)− γ1(ũ(v))ũ(v) > δũ(v),
for v large enough.

Lemma 3.4. Let ϕ(x;ϕ0) be the solution of the initial value problem

ϕ′(x) = f(ϕ(x))ϕ(x), ϕ(0) = ϕ0 > 0,

where f is a strictly decreasing smooth function defined on (0,∞). Then, ϕ(x;ϕ0)
is uniquely defined and positive for all x ≥ 0. Moreover, for any l > 0, the function

h(ϕ0; l) :=
ϕ(l;ϕ0)

ϕ0

is a strictly decreasing function of ϕ0 ∈ (0,∞).

Proof. We start by proving that ϕ(x;ϕ0) is uniquely defined for all x ≥ 0. On the
one hand, either f(ϕ) > 0 for some ϕ > 0 and therefore ϕ(x;ϕ0) increases for ϕ0

small enough, or f(ϕ) < 0 for all ϕ > 0, in which case one easily obtains the lower
bound ϕ(x;ϕ0) ≥ ϕ0e

f(ϕ0)x. In any case ϕ(x;ϕ0) keeps away from 0 and positive
for finite x. On the other hand, ϕ(x;ϕ0) cannot grow up to infinity for finite positive
values of x because, for any ε > 0, f(ϕ)ϕ < f(ε)ϕ when ϕ ≥ ε.

Having established that h(ϕ0; l) is well defined for all l > 0, we show that it
is strictly decreasing. Consider 0 < ϕ1 < ϕ2. It is clear that, for any s, 0 <
ϕ(s;ϕ1) < ϕ(s;ϕ2) holds, so that f(ϕ(s;ϕ1)) > f(ϕ(s;ϕ2)) due to the monotony of

f . Finally, since lnh(ϕ0; l) =
∫ l

0
f(ϕ(s;ϕ0))ds, it follows that h(ϕ1; l) > h(ϕ2; l) for

all l ∈ (0,∞).

Lemma 3.5. Under the hypotheses of Lemma 3.4,

7



i) If limϕ↓0 f(ϕ) =∞, then limϕ0↓0
ϕ(l;ϕ0)
ϕ0

=∞.

ii) If f(0) := limϕ↓0 f(ϕ) <∞, then limϕ0↓0
ϕ(l;ϕ0)
ϕ0

= ef(0)l

Proof. Notice that ϕ(l;ϕ0) is a positive increasing function of ϕ0. In case i), if
ϕ(l;ϕ0) tends to a positive limit when ϕ0 goes to 0, the conclusion is obvious.
Otherwise, since ϕ(x;ϕ0) increases with x (when ϕ0 is small) and f is a decreasing
function, we easily obtain ϕ(l;ϕ0) ≥ ϕ0 + lf(ϕ(l;ϕ0))ϕ0 which clearly implies

lim
ϕ0↓0

ϕ(l;ϕ0)

ϕ0
≥ lim
ϕ0↓0

(1 + lf(ϕ(l;ϕ0))) = 1 + l lim
ϕ↓0

f(ϕ) =∞.

In case ii), limϕ0↓0 ϕ(l;ϕ0) = 0 and the limit of the ratio ϕ(l;ϕ0)/ϕ0 turns out to
be undetermined. To resolve this, we compute the first variation ∂2ϕ(l; 0) and we
get

ϕ(l;ϕ0) = ϕ(l; 0) + ∂2ϕ(l; 0)ϕ0 + o(ϕ0) = ϕ0e
f(0)l + o(ϕ0),

which gives the claim.

Remark 3.6. In case i), ϕ(l;ϕ0) can indeed tend to 0 as ϕ0 goes to 0. An example
is given by f(ϕ) = − ln(ϕ).

Realize that Lemma 3.3 ensures that gh(v)/v satisfies the hypotheses on f of
Lemma 3.4, so that not only ϕh(x; v) exists for any initial condition v > 0, but
also satisfies that ϕh(x; v)/v is a decreasing function with respect to v. Moreover,
since gh(v) < 0 if v is large enough, ϕh(x; v)/v < 1 for such large v values. These
properties allows us to prove that (8) has at most one positive solution. Indeed,
dividing (8) by r > 0 we get

0 =
∑

h∈H

(
λh
ϕh(l;λhr/ch)

λhr/ch
− λh

)
− µ =: k(r).

The properties of ϕh mentioned above clearly imply that k(r) is an eventually neg-
ative decreasing function. So, equation (8) has one unique solution if and only if
limr↓0 k(r) > 0, that is if

lim
r↓0

∑

h∈H
λh
ϕh(lh;λhr/ch)

λhr/ch
> µ+

∑

h∈H
λh . (9)

Defining

εh :=
λh

µ+
∑
h∈H λh

,

we proceed to prove a theorem which gives necessary and sufficient conditions for
the existence of an endemic equilibrium of system (4).

Theorem 3.7. In the reinfection case (i.e., if λh > 0 for all h ∈ H), system (4)
has an endemic equilibrium if and only if

i) γh1 (0) > δh for some h ∈ H, or

ii) γh1 (0) < δh for all h ∈ H and

∑

h∈H
εhe

lh
ch

(
γh2 (0)−αh+

αhδh
δh−γh1 (0)

)

> 1 . (10)
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Proof. Recall that for each gh(v), the function

fh(v) :=
gh(v)

v
=
γh2 (v)v − αhv + δhũh(v)

ch v

satisfies the hypotheses on f of Lemma 3.4 (due to Lemma 3.3).
In case i), fh(v) tends to infinity at the origin for some host h. Indeed, this is

clear if γh1 (0) > δh since then ũh(0) > 0, whereas if γh1 (0) = δh then ṽh(u)/u =
(δh − γh1 (u))/αh → 0 as u tend to 0 and so ũh(v)/v → ∞ as v tends to 0 (recall
Proposition 3.2 and the definition of ṽh(u) therein). Hence,

lim
r↓0

ϕh(lh;λhr/ch)

λhr/ch
=∞

by Lemma 3.5. Therefore, the limit in (9) equals infinity and an endemic equilibrium
must exist.

In case ii), fh(v) tends to

1

ch

(
γh2 (0)− αh +

δhαh
δh − γh1 (0)

)

at the origin for all h (since now limv↓0 ũh(v)/v = ũ′h(0) = 1/ṽ′h(0) = αh/(δh −
γh1 (0)). Therefore, by Lemma 3.5,

lim
r→0

ϕh(lh;λhr/ch)

λhr/ch
= e

lh
ch

(
γh2 (0)−αh+

αhδh
δh−γh1 (0)

)

.

Then, condition (9) can be rewritten as (10) and the theorem is proven.

3.1.2 Stability of the equilibria

Next we give stability results related to the steady states of system (4). Recall that
we take perturbations within the Banach space X = (

∏
h∈H L

∞(0, lh))× C, where

C :=

{
(v, r) ∈

(∏

h∈H
C([0, lh],R)

)
× R | chvh(0) = λhr

}
.

Let (ū, v̄, r̄) be an equilibrium of (4), where ū and v̄ have n components, one for each
host. In view of (3), (u, v, r) ∈ X belongs to D(A) if, for all h ∈ H, vh is Lipschitz,

v̂h := −chvh′ + (γh2 (v̄h)− αh +
(
γh2
)′

(v̄h)v̄h)vh + δhuh is continuous on [0, lh] and

chv̂h(0) = λhr̂,

where r̂ :=
∑
h∈H(chvh(lh, t)−λhr)−µr (recall that v′ indicates the weak derivative

of v). If we define

ah1 (x) := γh1 (ūh(x))− δh +
(
γh1
)′

(ūh(x))ūh(x)

ah2 (x) := γh2 (v̄h(x))− αh +
(
γh2
)′

(v̄h(x))v̄h(x)

then

A




u
v
r


 =




û
v̂
r̂


 where

ûh = ah1 (x)uh + αhvh
v̂h = −chv′h + ah2 (x)vh + δhuh
r̂ =

∑
h∈H(chvh(lh)− λhr)− µr

. (11)
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Lemma 3.8. The spectrum of the linear operator A is the set

σ(A) = σess(A)
⋃
{η ∈ C \ σess(A)|Γ(η) = 0},

where σess(A) =
⋃
h∈H

ess range ah1 (·) is the essential spectrum of A and Γ(η) is the

characteristic function

Γ(η) := µ+ η +
∑

h∈H
λh −

∑

h∈H
λh exp

(
1

ch

∫ lh

0

ah2 (s)− δh αh
ah1 (s)− η − η ds

)
. (12)

Proof. By definition, η ∈ σ(A) if the operator A − ηId : D(A) → X does not have
a continuous inverse. Take (û, v̂, r̂) ∈ X and consider the system





ah1 (x)uh + αhvh − ηuh = ûh
−chv′h + ah2 (x)vh + δhuh − ηvh = v̂h∑
h∈H(chvh(lh)− λhr)− µr − ηr = r̂

chvh(0) = λhr

. (13)

Clearly, the system above fails to have a solution for all (û, v̂, r̂) if ah1 (x) − η = 0
for some h ∈ H, and this condition determines the set σess(A). If η /∈ σess(A), the
component uh can be isolated and the equations for vh in (13) reduce to

{
−v′h + 1

ch
(ah2 (x)− η − δh αh

ah1 (x)−η )vh = 1
ch

(
v̂h − δh ûh

ah1 (x)−η

)

vh(0) = λh
ch
r

. (14)

Solving the above differential equations by means of the variation of constants for-
mula, one in particular gets

vh(lh) =
λh
ch
r exp

(
1

ch

∫ lh

0

ah2 (s)− η − δh
αh

ah1 (s)− η ds
)

+ Ih(η, ûh, v̂h) (15)

where Ih(η, ûh, v̂h) depends continuously on the pair (ûh, v̂h) and can be given ex-
plicitly. Finally, we use (15) in the equation for r of system (13), so that r must
satisfy

−Γ(η) r = r̂ −
∑

h∈H
chIh(η, ûh, v̂h). (16)

Therefore, since the right hand side of (16) can be any real value because it depends
on the arbitrary elements ûh, v̂h and r̂, we conclude that system (13) fails to have
a unique solution for all points (û, v̂, r̂) ∈ X if Γ(η) = 0.

Proposition 3.9. If A has a real eigenvalue ηd greater than maxh∈H ess sup ah1 (·),
then there exists ω ∈ R such that ηd > ω > supη∈σ(A),η 6=ηd Re(η).

Proof. Notice that Γ|R : (maxh∈H(ess sup ah1 (·)),∞) −→ R is a strictly increasing

function, so that only one real eigenvalue greater than maxh∈H ess sup ah1 (·) may
exist. Assume such a real eigenvalue, referred as ηd, exists. Now we show that all
other complex eigenvalues are located to the left of ηd. Define, for real ρ and y,

fh(ρ, y) :=
1

ch

(
αhδh

∫ lh

0

(ρ− ah1 (x))dx

y2 + (ρ− ah1 (x))2
+

∫ lh

0

ah2 (x)dx− ρ lh
)
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and

gh(ρ, y) := − 1

ch

(
αhδh

∫ lh

0

ydx

y2 + (ρ− ah1 (x))2
+ y lh

)
,

which are, respectively, the real and the imaginary part of

1

ch

∫ lh

0

ah2 (x)− δhαh
ah1 (x)− (ρ+ iy)

− (ρ+ iy) dx.

Then, for all (ρ + iy) ∈ C with y 6= 0 satisfying maxh∈H(ess sup ah1 (·)) < ρ, clearly
fh(ρ, y) < fh(ρ, 0) for all h ∈ H and

Re(Γ(ρ+ iy)) = ρ+ µ+
∑
h∈H λh −

∑
h∈H λhe

fh(ρ,y) cos gh(ρ, y) >

> ρ+ µ+
∑
h∈H λh −

∑
h∈H λhe

fh(ρ,0) = Γ(ρ).

This inequality implies that, if ρ ≥ ηd, then Re(Γ(ρ + iy)) > Γ(ρ) ≥ Γ(ηd) = 0
(recall Γ|R is increasing), so that (ρ+ iy) cannot be an eigenvalue.

Finally, let us prove that there exists a stripe (ω, ηd)× iR in the complex plane
which does not include any spectral value. Choose ω > maxh∈H ess sup ah1 (·). Next
we show that function Γ can only have a finite number of zeros in the stripe deter-
mined by such an ω. On the one hand, since

lim
|y|→∞

|Im(Γ(ρ+ iy))| = lim
|y|→∞

∣∣∣∣∣y −
∑

h∈H
λhe

fh(ρ,y) sin gh(ρ, y)

∣∣∣∣∣ =∞ ∀ρ ∈ (ω, ηd),

the solutions of Γ(ρ+iy) = 0 within the stripe are a bounded set. On the other hand,
since Γ is holomorphic in the stripe, the set of its zeros cannot have accumulation
points. These two facts clearly imply that Γ(η) only vanishes for finitely many values
η within the stripe. Hence, for an ω close enough to ηd the stripe will not include
any solution of Γ.

Theorem 3.10. In the reinfection case (λh > 0 for all h ∈ H),

i) If a non-trivial equilibrium of (4) exists, then the trivial one is unstable.

ii) If the trivial equilibrium is the only stationary solution of (4), then it is asymp-
totically stable or it is non-hyperbolic (more precisely, such that s(A) = 0).

Proof. Setting (ū, v̄, r̄) = (0, 0, 0), we obtain ah1 (x) ≡ γh1 (0)−δh and ah2 (x) ≡ γh2 (0)−
αh, so the characteristic function (12) reduces to

Γ(η) = η + µ+
∑

h∈H
λh −

∑

h∈H
λhe

lh
ch

(
γh2 (0)−αh− αhδh

γh1 (0)−δh−η
−η

)

.

Denote ah1 = γh1 (0) − δh. Since limρ↓maxh∈H ah1
Γ(ρ) = −∞ and limρ↑∞ Γ(ρ) =

∞, there exists a real number ηd > maxh∈H ah1 such that Γ(ηd) = 0. Hence, by
proposition 3.9, the stability of the trivial state depends on the sign of ηd (see
proposition 2.1). Let us first assume either γh1 (0) ≥ δh for some h or γh1 (0) < δh for
all h and

∑

h∈H
εhe

lh
ch

(
γh2 (0)−αh+

αhδh
δh−γh1 (0)

)

> 1

11



(i.e. that there exists a non-trivial equilibrium by Theorem 3.7). Then, in the
first case ηd > maxh∈H(ess sup γh1 (0)− δh) ≥ 0, while in the second case we obtain
Γ(0) < 0 which also implies ηd > 0. Thus the trivial steady state is unstable (by
propositions 2.1 and 3.9). On the other hand, let us now assume that the trivial
state is the only steady state and that the strict inequality

∑

h∈H
εhe

lh
ch

(
γh2 (0)−αh+

αhδh
δh−γh1 (0)

)

< 1

holds. Then Γ(0) > 0, so that ηd is negative. In this case, the trivial steady state is
stable (by propositions 2.1 and 3.9).

Finally notice that the remaining special case γh1 (0) < δh for all h and equality in
(10), implies Γ(0) = 0 and ηd = s(A) = 0, where s(A) denotes the spectral bound of
A. In order to determine the trivial state stability in this situation other non-linear
techniques should be used, but such an analysis is beyond our scope.

The combination of Theorems 3.7 and 3.10 allows us to give the following bio-
logical interpretations of the system.

Biological remark 3.11. If one animal houses an attached bacteria whose growth
rate is bigger than its detachment rate, then an outbreak occurs. Alternatively, if
the previous condition does not hold, then an outbreak occurs if the residence time
of a bacterium within the intestine of one animal is large enough. Notice that both
conditions involve only the features of one animal, but the epidemic will spread trough
all the population. Hence, treatments targeted to some special animal could be more
effective than treating all the population in the same way.

Biological remark 3.12. Notice that if all the animals are physiologically equiva-
lent, then the condition in Theorem 3.7 becomes

e
l
c

(
γ2(0)+

αγ1(0)

δ−γ1(0)

)
>
µ+ nλ

nλ
.

In particular, we see that bacteria are always able to grow and persist if the number
of animals is large enough and γ2(0) > 0.

Theorem 3.13. The endemic equilibrium is locally asymptotically stable whenever
it exists.

Proof. Since, for all h ∈ H, the functions ūh(x) and v̄h(x) are positive and differ-
entiable (it is easy to check that), then ah1 (x) and ah2 (x) are also differentiable within
[0, lh]. In particular, this implies that Γ(ρ)→ −∞ as ρ tends to maxh∈H(ess sup ah1 (·))
from above. Next we show that Γ(0) > 0, which ensures the existence of a unique
ηd ∈ (maxh∈H(ess sup ah1 (·)), 0) satisfying Γ(ηd) = 0) due to the monotony and
continuity of Γ. Recall

Γ(0) = µ+
∑

h∈H
λh −

∑

h∈H
λhe

fh(0,0),

where fh is defined in proposition 3.9. Next we show that

fh(0, 0) < ln
v̄h(lh)

v̄h(0)
for all h ∈ H.

12



Using the positiveness of ūh and v̄h, the assumption (5) on the γ functions, and
the equilibrium conditions of (6), namely 0 = γh1 (ūh)ūh + αhv̄h − δhūh and ch v̄

′
h =

γh2 (v̄h)v̄h − αhv̄h + δhūh, we obtain (recall the definitions of ah1 and ah2 in (11))

ah1 (x) < −αh
v̄h(x)

ūh(x)
< 0 and ah2 (x) <

chv̄
′
h(x)− δhūh(x)

v̄h(x)
.

Therefore,

fh(0, 0) =
1

c

(
αδ

∫ l

0

dx

−a1(x)
+

∫ l

0

a2(x)dx

)
<

1

c

(
αδ

∫ l

0

ū(x)

αv̄(x)
dx+

+

∫ l

0

cv̄′(x)− δū(x)

v̄(x)
dx

)
=

∫ l

0

v̄′(x)

v̄(x)
dx = ln

v̄h(lh)

v̄h(0)
,

where the subindex h is supressed in the intermediate steps for ease of reading.
Since v̄h(0) = λhr̄/ch (boundary condition), then

Γ(0) = µ+
∑
h∈H λh −

∑
h∈H λhe

fh(0,0) >

> µ+
∑
h∈H λh −

∑
h∈H λh

v̄h(lh)
v̄h(0) = µ+

∑
h∈H λh −

∑
h∈H ch

v̄h(lh)
r̄ = 0

where the last equality is due to the equilibrium condition 0 =
∑
h∈H(chvh(lh) −

λhr)− µr. Finally, by means of propositions 2.1 and 3.9 the asymptotic stability of
the endemic equilibrium is proven.

3.2 Stationary states in the case of no reinfection

In the case λ = 0 similar results exist, although the uniqueness of endemic equilibria
does not hold any more. We may restrict to the case n = 1 without loss of generality.
This is so because any animal satisfying λh = 0 does not depend on the infection
state of the other animals. Next we show that when γ1(0) = δ a kind of non-
standard bifurcation occurs in which an uncountable set of equilibriums are suddenly
generated. We must say that this subsection is more a mathematical curiosity
rather a useful biological result. This is because the continuum of endemic equilibria
disappears if diffusion is taken into account, which would be the case in a more
realistic situation.

Theorem 3.14. If λ = 0 and γ1(0) < δ, then the only equilibrium state is the trivial
one.

Proof. If γ1(0) < δ, then the equation 0 = γ1(u)u+αv−δu defines a unique function
ũ(v) on [0,∞) which is Lipschitz and satisfies u(0) = 0. Therefore, a solution (ū, v̄, r̄)
of (6) must satisfy {

c v̄′ = γ2(v̄)v̄ − αv̄ + δũ(v̄),
v̄(0) = 0,

, (17)

ū(x) = ũ(v̄(x)), and r̄ = cv̄(l)/µ. However, problem (17) has a unique solution
v̄(x) = 0 because the right hand side of the differential equation is Lipschitz and it
vanishes at zero, so that (ū, v̄, r̄) = (0, 0, 0).
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Theorem 3.15. If λ = 0 and γ1(0) > δ, then there is an uncountable set of non-
trivial equilibrium states.

Proof. If γ1(0) > δ, then the equation 0 = γ1(u)u + αv − δu defines two functions
of v ∈ [0,∞) that only differ at v = 0. The first one referred as ũ(v) is Lipschitz
on [0,∞) and satisfies ũ(0) > 0. The second one is a version of ũ(v) that vanishes
at v = 0, so it is not continuous at this point. This phenomenon implies that the
initial value problem (17) has multiple solutions of the form

v̄x0
(x) = v̄0(x− x0)1[x0,l](x),

where v̄0(x) is the unique solution of (17) satisfying v̄0(0) = 0 and v̄0(x) > 0 for
all x ∈ (0, l]. Such solution is unique because ũ(v) is positive and smooth within
[0,∞). Therefore, for each x0 ∈ [0, l) there is an associated non trivial equilibrium
of the form

(ūx0
(x), v̄x0

(x), r̄x0
) = (ũ(v̄x0

(x))1[x0,l](x), v̄x0
(x), c v̄x0

(l)/µ).

Notice that ūx0
is not continuous at x0 (it has a jump discontinuity of height ũ(0),

so that the endemic equilibria are isolated as points of X.

At the bifurcation point γ1(0) = δ, the equation 0 = γ1(u)u + αv − δu still
defines a unique function ũ(v) on [0,∞) satisfying u(0) = 0, though ũ(v) fails to
be Lipschitz at v = 0. In this case two situations may occur depending on some
integrability properties of the function h(v) := (γ2(v)v − αv + δũ(v))/c, specifically
on the value of the limit

∆0(v0) := lim
ε↓0

∫ v0

ε

dy

h(y)
,

where v0 > 0 is any value such that h(y) > 0 for all y ∈ (0, v0]. Notice that h(v) is
positive for v small enough since, when γ1(0) = δ, ũ(v)/v tends to infinity as v ↓ 0
(see the proof of Theorem 3.7).

Theorem 3.16. In the case λ = 0 and γ1(0) = δ,

i) if ∆0(v0) =∞, then the trivial equilibrium is the only solution of (6),

ii) if ∆0(v0) <∞, then (6) has an uncountable set of solutions.

Proof. Consider the differential equation v′(x) = h(v(x)) (the same equation as in
(17)) with initial condition v(0) = v0. Since h(y) > 0 for all y ∈ (0, v0], ∆0(v0) is
nothing but the distance to the left of 0 at which the trajectory through v0 reaches
0, so that v(−∆0(v0); v0) = 0 and v(−x; v0) > 0 if x < ∆0(v0). Therefore, any
solution of (17) satisfying v̄(x0) > 0 for some x0 > 0 must reach zero at some point
in [0, x0), which implies ∆0(v̄(x0)) ≤ x0. This clearly proves i), and to conclude
ii) we can use the same arguments as in Theorem 3.15. However, notice that in
this case the functions ūx0 are continuous, so that the endemic equilibria form a
connected set in X.
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4 Effects of bacteriophage therapy on the spread of bacteria

System (4) can be extended in order to include a bacteriophage population used to
control an epidemics in a farm. As a first approximation to this scenario we may
neglect the effects of latency periods of viruses, so that the associated dynamical
system takes the form





∂tuh = γh1 (ui)uh + αhvh − δhuh − κh1uhph
∂tvh = −ch∂xvh + γh2 (vh)vh − αhvh + δhuh − κh2vhph
ṙ =

∑
h∈H(chvh(lh, t)− λh1r)− µ1r

∂tph = −ch∂xph + b(κh1uh + κh2vh)ph
q̇ =

∑
h∈H(chph(lh, t)− λh2q)− µ2q

chvh(0, t) = λh1r
chph(0, t) = λh2q + qh0

. (18)

Notice that two families of new dependent variables have been added to system
(4), namely ph(x, t) which represent the bacteriophage in host h being drafted by the
intestinal flow of host h, and q(t) which is the amount of bacteriophage in the soil.
We assume a mass action law for the infection process, where κ1 and κ2 are phage
adsorption constants rates in the epithelium and lumen respectively. Parameter b
stands for the amount of viruses released per infected cell and q0 is the amount of
bacteriophage given to the animals as part of the therapy.

Our main goal in this section is to show that a non-endemic stationary state
always exist and give a condition on the parameters that determines if it is stable
or it is not. We are specially interested in the dependence of the terms q0

h in the
previous condition, since such parameters are the ones that can be tuned as part of
the viral therapy. In the calculations below we avoid writing as many details as in
the previous section since they can be done essentially in the same way.

A mere checking shows that the point (u, v, r, p, q) = (0, 0, 0, p̄, q̄), with

p̄h(x) ≡ λh2 q̄ + qh0
ch

and q̄ =
∑

h∈H

qh0
µ2
, (19)

is a steady state of (18), which corresponds to the bacteria free scenario. According
to (3), the linearized system around this equilibrium is given by the operator

A




u
v
r
p
q




=




û
v̂
r̂
p̂
q̂




where

ûh = (γh1 (0)− δh − κh1 p̄h)uh + αhvh
v̂h = −chv′h + (γh2 (0)− αh − κh2 p̄h)vh + δhuh
r̂ =

∑
h∈H(chvh(lh)− λh1r)− µ1r

p̂h = −chp′h + bκh1 p̄huh + bκh2 p̄hvh
q̂ =

∑
h∈H(chph(lh)− λh2q)− µ2q

, (20)

with (u, v, r, p, q) in the domain of A if, for all h ∈ H, vh and ph are Lipschitz, v̂h and
p̂h are continuous, and the boundary conditions chv̂h(0) = λh1 r̂ and chp̂h(0) = λh2 q̂
hold (notice that the constant quantities qh0 do not appear in the last boundary
condition because they cancel out due to the linearisation). In order to simplify the
coefficients let us denote

ah1 = γh1 (0)− δh − κh1 p̄h and ah2 = γh2 (0)− αh − κh2 p̄h.
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Lemma 4.1. The spectrum of the operator A is the set

σ(A) = σess(A)
⋃
{η ∈ C \ σess(A)|Γ1(η)Γ2(η) = 0},

where

σess(A) =
⋃

h∈H
{ah1},

Γ1(η) = η + µ1 +
∑

h∈H
λh1 −

∑

h∈H
λh1e

lh
ch

(
γh2 (0)−κh2 p̄h−αh−

αhδh
γh1 (0)−κh1 p̄h−δh−η

−η
)

, (21)

Γ2(η) = µ2 +
∑

h∈H
λh2 −

∑

h∈H
λh2e
− lh
ch
η
. (22)

Proof. We can start proceeding exactly in the same way as in the proof of Lemma
3.8. Simply notice that the components u, v and r of the preimages of (û, v̂, r̂, p̂, q̂)
by (A−η I) only depend on (û, v̂, r̂). This implies that if η /∈ σess(A) and Γ1(η) 6= 0,
then for all (û, v̂, r̂, p̂, q̂) the triple (u, v, r) of the preimage is always well defined.
Once we dispose of (u, v, r) in terms of (û, v̂, r̂) we can use them to compute p and q.
First we solve the differential equations for ph(x) taking into account the boundary
conditions ph(0) = λh2q. Secondly using the resulting expressions for ph(lh) in the
last equation of (20) we obtain a scalar equation for q. Specifically,

−
(
µ2 +

∑

h∈H
λh2 −

∑

h∈H
λh2e
− lh
ch
η

)
q = q̂ +R(η, û, v̂, r̂, p̂).

where R is a residual term that depends continuously on their arguments. Since the
right hand side can be any value, the above equation fails to have a solution for q if
Γ2(η) = 0.

Notice that all the solutions of Γ2(η) = 0 have negative real part. Therefore, in
order to study if the spectral bound of A is positive we may focus on the zeros of
Γ1. Since Γ1(η) restricted to (suph∈H a

h
1 ,∞) is increasing and it is unbounded as η

goes to both interval limits, we conclude that a real positive solution ηd of Γ(η) = 0
exists if and only if, suph∈H a

h
1 ≥ 0 or Γ1(0) < 0. This implies that bacteriophage

will prevent the spread of bacteria if ah1 = γh1 (0)− δh − κh1 p̄h < 0 for all h ∈ H and

Γ1(0) =

(
µ1 +

∑

h∈H
λh1

)(
1−

∑

h∈H
εh1 e

lh
ch

(
γh2 (0)−αh−κh2 p̄h+

αh δh
δh+κh1 p̄h−γ

h
1 (0)

))
> 0,

(23)
where εh1 = λh1/(µ1 +

∑
j∈H λ

j
1). The negation of these conditions are nothing but

extended versions of the ones appearing in Theorem 3.7. Here they include the
bacteriophage dose given to the animals (in terms of p̄h defined in (19)).

Notice that if qh0 = 0 for all hosts h, then the above condition reduces to the one
in Theorem 3.7. Therefore, the bacteriophage population cannot prevent a bacterial
outbreak by themselves, but an external source of viruses is needed in order to
reduce the last term of the left hand side of (23) below 1. In other words, without
an administration of new viral particles to the system, phage only partially reduce

16



the mean level of bacteria when these are able to grow in a free-phage environment.
Conversely, if qh0 is large enough for some h, then the stability of the free bacteria
state is guaranteed. Indeed, the left hand side of (23) converges to

∑
h∈H ε

h
1 < 1 as

p̄h grows to infinity for all h, and this condition holds provided qh0 →∞ for some h.
Such a behaviour depending on the phage dose is not a big surprise, since something
similar happens in the simplified system

{
Ṡ = (a− S)S − k SP
Ṗ = bSP −mP + P0

,

in which the only equilibrium in the S = 0 axis is (0, P0/m) and it is asymptotically
stable if and only if P0 ≥ am/k. However, in our case condition (23) may be
used to compute efficient phage doses in non homogeneous populations, such as the
ones found when a pen houses animals of different species or ages. For example, it
could be useful to decide whether to split a given dose among all the animals or,
alternatively, to treat only a few of them and take advantage of their capacity to
produce bacteriophage particles.

5 Discussion

Reinfection phenomena of enteropathogens may have a critical role in epidemic out-
breaks. In the present paper we have followed the ideas in [3] to show how the
structure of the host population determines the proliferation of bacteria within the
ecosystem. This relation is illustrated by means of a condition involving important
ecological parameters, such as reinfection probabilities, residence times of bacteria
within the intestines and local bacterial growth rates (see Theorem 3.7). Interest-
ingly, the condition we are referring to is neither the reproduction number R of the
bacterial population nor its population growth rate [21, 12]. Rather, it resembles
the expected number of bacteria that will leave the intestines as a result of a founder
bacterium in the soil. We think that this quantity emerge as a result of the different
scales of the model, namely the dynamics within the intestines and the dynamics
in the soil. This suggests that other biologically relevant values that determine the
dynamics of a given population may exist, whose empirical computation could be
easier and more natural in comparison with the one used to obtain, for example, R.
More studies are needed in this direction in order to deepen into such an issue.

This paper leaves many open questions related to the asymptotic behaviour of the
trajectories. Preliminary simulations suggest that the only locally stable equilibrium
found in system (4) is indeed a global atractor. However we could not find a formal
proof for that. In relation to the extended system with bacteriophage (18), such a
global property could not hold. In fact, in this scenario it is not easy at all to prove
the existence of an endemic equilibrium when the trivial one is locally unstable (at
least using the same techniques of this paper). This implies solving a system of two
differential equations with a boundary condition that links the trajectory endpoints.
In order to address this problem general results from bifurcation theory could be
applied [7]. Finally, we must say something about possible extensions of systems (4)
and (18). Among the many refinements these models may include, we are specially
interested in generalizing the constants ch, which give the celerities of the intestinal
flows, into time-periodic functions ch(t). This not only would improve the model
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realism, but it would also represent a tool for studying how feeding patterns may
affect the microbial dynamics.
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[5] Àngel Calsina, Josep M Palmada, and Jordi Ripoll. Optimal latent period in
a bacteriophage population model structured by infection-age. Mathematical
Models and Methods in Applied Sciences, 21(04):693–718, 2011.
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