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Abstract

Lambert says, in a clear analogy with spherical geometry, that in an imaginary
sphere the sum of the angles of a triangle would be less than π. There are
historical reasons for believing Gauss could have used this analogy as a method
of discovering non-Euclidean geometry.

In this paper we analyze the reading Gauss made of Bolyai’s Appendix
assuming that his investigations into the foundations of geometry were aimed
at finding, among the surfaces in R3, Lambert’s hypothetical imaginary sphere.

Lambert sagte, in einer deutlichen Analogie mit der Kugelgeometrie, dass in
einer imaginären Kugel die Summe der Winkel eines Dreiecks kleiner als π sein
würde. Es gibt historische Gründe, um zu glauben, dass Gauss diese Analogie
als Methode in der Entdeckung der nichteuklidischen Geometrie nützen haben
könnte.

In diese Artikel, wir analysieren die Vorlesung, dass Gauss über den Bolyai
Appendix gemacht hat, mit den Annahme, dass seinen Forschungen über die
Grundlagen der Geometrie orientiert wurden an, zwischen die Fläschen in R3,
die hypotetische imaginären Kugelfläche zu finden.
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1. The classical problem

In definition XXIII of the Elements1, Euclid defines straight parallel lines as
those straight lines which, being in the same plane and being produced indefinitely
in both directions, do not meet one another in either direction.

The Euclidean Theory of Parallels is based on the fifth postulate, that says:
That, if a straight line falling on two straight lines makes the interior angles on
the same side less than two right angles, then the two straight lines, if produced
indefinitely, meet on that side on which the angles are less than two right angles.

The classical problem of the Euclidean Theory of Parallels consists of demons-
trating that this postulate is a consequence of the other postulates of the Ele-
ments.

In the 1st century B.C. Posidonius had already attempted to solve this
problem, confusing straight parallel lines with equidistant straight lines (see
[Bon55], page 2).

Nevertheless, the problem was resolved negatively at the end of 19th century,
two thousand years later. The definitive proof of this independence is attributed
to Beltrami, in 18682. He represented the new plane by the points inside a
circle, its new lines by chords, and parallel lines by chords meeting at a point on
the circumference of the circle. In this way he obtains a geometry that satisfies
all of Euclid’s postulates except the fifth (see [Bel68] and the footnote on page
11). This geometry is called non-Euclidean geometry.

In the two thousands years that separate Posidonius from Beltrami,
many mathematicians had thought they had resolved the problem of the Eu-
clidean Theory of Parallels positively.

One of the most important works during this time was the Euclides ab omni
naevo vindicatus, of 1733, by Saccheri, [Sac20]. Using Saccheri’s quadrilateral—
a quadrilateral in which two opposite sides are equal and are perpendicular to
the base— he obtains results from the Euclid’s postulates, first without using
the fifth postulate and later using the negation of it, expecting to find a con-
tradiction and hence prove that the fifth postulate is, in fact, a theorem. He
proves, for example, the remarkable fact that this negation implies the existence
of asymptotic straight lines. The only error that he commits is to consider as
ordinary points of the new plane points that are not on it; but the true rea-
son was that some results disgust him, because they were against his Euclidean
intuition.

1See, for instance, [Euc56], pages 154-155.
2As Gray has remarked in [Gra04], Beltrami was not aware of this, and it was Bonola

reading Beltrami who in fact noticed it. See [Bon55], page 177 and page 234 and also [Rod09].

2



In a similar way the work of Lambert Theorie der Parallellinien is devel-
oped ([Lam86]), but without arriving at any satisfactory conclusion. In fact he
says: I should almost conclude that the third hypothesis holds on some imagi-
nary sphere3. This idea, the existence of a sphere of imaginary radius, was the
most important tool for the discovery of non-Euclidean geometry. The Analogy
consists of the formal substitution of R by the imaginary number Ri in all for-
mulas that appear in the study of the geometry of a sphere of radius R. Recall
that sin ix = i sinhx, and cos ix = cosh x (see [RR05] and [Rod06]).

However the difficult acceptance of complex numbers during the 18th and
the first part of the 19th centuries led to insufficient discussion of the Analogy.
Gauss deserves great recognition, because in 1830 he had boldness to defend
the complex numbers as the numbers that describe the plane, the basic example
of a doubly extended quantity, in the same way that real numbers describe the
line, the basic example of a simply extended quantity.

In the famous letter to Farkas Bolyai of 6–3–1832, on non-Euclidean ge-
ometry, Gauss suggested Farkas should study complex numbers4, thus relating
non-Euclidean geometry and complex numbers. This is further evidence that
Gauss was using the Analogy (see letter 8 page 13).

Many articles have been written about this history, but we believe that
the strong relation between classical and differential geometry and the key role
played by the imaginary sphere in the discovery of non-Euclidean geometry have
not been sufficiently emphasized. These are the main reasons that impelled us
to write the present paper.

2. Gauss’s isolation

In 1794 Legendre published his Eléments de géométrie. There, and in pos-
terior editions, he gave

several proofs of the fifth postulate. See [Leg94], [Leg33], and [Bon55], pages
55-60. Independently of whether these proofs were or were not correct, it is
clear that Legendre was convinced not only of the certainty of this postulate,
but also that he had finally removed the serious difficulties surrounding the
foundations of geometry, see [Bon55], page 60. We believe that, because of the
great influence of Legendre, mainly on French mathematicians,5 the problem

3Ich sollte daraus fast den Schlufs machen, die dritte Hypothese komme bey einer ima-
ginären Kugelfläche vor. In 1980 Boris L. Laptev stated that Lambert also arrived at a
contradiction. See [Ros88], page 101. See also [Rod06].

4Farkas followed Gauss’s advice, see [Kis99].
5Lutzen, mentioning Karin Reich, says that it was principally due to Liouville that

Gauss’s ideas on differential geometry became known in France: To be sure, Sophie Germain
had read Gauss’s Disquisitiones generales circa superficies curvas [1828], but during the fol-
lowing 15 years Lame’s theories of systems of orthogonal surfaces dominated the French
scene, and Gauss’s work was forgotten. In 1843, in a paper in Liouville’s Journal on this
subject, Bertrand admitted that “After having written this memoir, I have learned about a
memoir by Mr. Gauss entitled Disquisitiones generales...”[Bertrand 1843]. The following
year, Bonnet also referred to Gauss. It is not impossible that Liouville himself had called
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of the Euclidean Theory of Parallels was not sufficiently considered by the great
mathematical schools of these times.

Gauss believed in the importance of this problem, but he felt alone among
the great mathematicians of that period.

He did have a group of supporting friends: Bessel, Farkas Bolyai, Ger-
ling, Olbers, and Schumacher; he must thank them for news of the im-
portant works of Schweikart, Taurinus, and János Bolyai. But all of
them were outsiders or amateur mathematicians. Lobachevsky, the other im-
portant person in this story, was a professor of mathematics at the peripheral
University of Kazan, whose ideas on the Euclidean Theory of Parallels were held
up to ridicule by his russian colleagues. He was rector of Kazan University and
achieved fame as a reformer of education.

3. The three ds2 of Bolyai’s Appendix

As is well known, in 1831 Gauss, talking about the Euclidean Theory of
Parallels and more particularly about one equivalent formulation of the fifth
postulate, said to Schumaker (letter of 05–17–1831)6: In the last few weeks I
have begun to put down a few of my own meditations, which are already to some
extent nearly 40 years old. These I have never put in writing, so that I have
been compelled 3 or 4 times to go over the whole matter afresh in my head. I
did not wish it to perish with me.7

Nevertheless, some months later, in February 1832, Gauss read Bolyai’s
Appendix, and he decided not write on the subject anymore. In a letter to
Gerling (14–02–1832) he said: In addition I note that in recent days I received
a small work from Hungary on non-Euclidean geometry in which I find all of
my ideas and results developed with great elegance, although in a concentrated
form that is difficult for one to follow who is not familiar with the subject. The
author is a very young Austrian officer, the son of a friend of my youth with
whom I had often discussed the subject in 1798, although my ideas at that time
were much less developed and mature than those obtained by this young man
through his own reflections. I consider this young geometer, v. Bolyai, to be a
genius of the first class.8

the attention of these two young talents to the Disquisitones, and it is certain that when the
interest in Gauss’s ideas spread in France after 1847 it was due to Liouville. See [Lüt90].
This happened twenty years after the publication of Disquitiones!

6Gauss’s letters on non-Euclidean geometry are commented, using the Analogy, in [RR05].
See also [Rev04].

7Von meinen eigenen Meditationen, die zum Theil schon gegen 40 Jahr alt sind, wovon ich
aber nie etwas aufgeschrieben habe, und daher manches 3 oder 4 mal von neuem auszusinnen
genöthigt gewesen bin, habe ich vor einigen Wochen doch einiges aufzuschreiben angefangen.
Ich wünschte doch, dass es nicht mit mir unterginge.

8Noch bemerke ich, dass ich dieser Tage eine Schrift aus Ungarn über die Nicht-
Euklidische Geometrie erhalten habe, worin ich alle meine eigenen Ideen und Resultate
wiederfinde, mit grosser Eleganz entwicklet, obwohl in einer für jemand, dem die Sache fremd
ist, wegen der Concentrirung etwas schwer zu folgenden Form. Der Verfasser ist ein sehr
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Would Gauss have said this if he had thought that the work of Bolyai was
a mere formal manipulation of concepts, along the lines of Taurinus,9 without
any content?

Would Gauss have stopped writing his notes if he had not considered that
the problem was completely solved?

Moreover, in the above letter to Farkas Bolyai (6–03–1832), after the
words Now some remarks about the work of your son10, he said: Praising him
would mean praising myself [...] In truth I am astonished [...] And I am very
glad that it is precisely my old friend’s son who so wonderfully outmatched me.11

It is in this letter that Gauss suggests the name Parasphere for the sur-
face called only F by J. Bolyai and Horosphere by Lobachevsky. He says:
For instance, the surface and the line your son calls F and L might be named
parasphere and paracycle, respectively: they are, in essence the sphere and circle
of infinite radii. One might call hypercycle the collection of all points at equal
distance from a straight line with which they lie in the same plane; similarly for
hypersphere12. See [Kár87].

Bolyai introduces the surface F , cited in Gauss’s letter above, in section
§11 of the Appendix.

The first ds2

In later sections, concretely in §24, Bolyai proves that the relation between
the length z of the paracycle (horocycle) cd, the length y of the paracycle ab
and the length x of the geodesic ac (see Fig. 1) is given by

z = ye−x/R,

where R is the constant denoted i by Bolyai, and it represents the radius of the
imaginary sphere.

junger ósterreichischer Officier, Sohn eines Jugendfreundes von mir, mit dem ich 1798 mich
oft über die Sache unterhalten hatte, wiewohl damals meine Ideen noch viel weiter von der
Ausbildung und Reife entfernt waren, die sie durch das eigene Nachdenken dieses jungen
Mannes erhalten haben. Ich halte diesen jungen Geometer v. Bolyai für ein Genie erster
Grösse.

9Taurinus developed formally non-Euclidean geometry using the imaginary sphere. The
results were correct, but it should be proved first that this imaginary sphere really exists.

10Jetzt einiges über die Arbeit Deines Sohnes.
11sie loben hiesse mich selbst loben [...] In der That bin ich dadurch auf das Ausserste

überrascht [...] Und höchst erfreulich ist es mir, dass gerade der Sohn meines alten Freundes
es ist, der mir auf eine so merkwürdige Art zuvorgekommen ist.

12So könnte z. B. die Fläche, die Dein Sohn F nennt, eine Parasphäre, die Linie L ein
Paracykel genannt werden: es ist im Grunde Kugelfläche, oder Kreislinie von unendlichem
Radius. Hypercykel könnte der Complexus aller Punkte heissen, die von einer Geraden, mit
der sie in Einer Ebene liegen, gleiche Distanz haben; eben so Hypersphäre.
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Figure 1.
Corresponds to figure 9 of the Appendix. See page 11.

From this it is easy to see that

ds2 = dx2 + e−2x/R dy2. (1)

We affirm that this computation, that we give next, could have been done by
Gauss. We also emphasize that this expression is obtained without trigonometry
and without resorting to three dimensions.

Moreover, it seems impossible to look at Bolyai’s figure above without
seeing a system of local coordinates.

In fact, it is clear that the length element, in the sense used by Gauss, can
be written in x, y coordinates as

ds2 = dx2 + f2(x)dy2

for a certain function f(x), since

• this coordinate system is orthogonal13 (so the term dx dy does not appear),

• the lines y = constant are geodesics parametrized by the arc length (so
the coefficient of dx is 1), and

• it is invariant under translation in the y direction (so f(x, y) = f(x)).

To find f(x) one takes the curve γ(t) = (x, t), for a constant value of x, with
0 ≤ t ≤ y. The length L of γ is given by

L =
∫ y

0

|γ′(t)|dt =
∫ y

0

f(x)dt = yf(x)

But, since L = ye−x/R, we have f(x) = e−x/R.

13The paracycles are orthogonal to the family of parallel straight lines.
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The second ds2

In Section §30, he gives the length of a circle in function of its radius r. This
relation is

L(r) = 2π R sinh
r

R
.

But similar calculations as above imply14 that the metric in cyclic coordinates
(r, θ) is given by

ds2 = dr2 + R2 sinh2 r

R
dθ2. (2)

In fact, it is clear that

ds2 = dr2 + f2(r)dθ2

for a certain function f(r), since this coordinate system is orthogonal15 (so the
term dr dθ does not appear), θ = constant are geodesics parametrized by the
arc length (so the coefficient of dr is 1), and it is invariant under rotation (so
f(r, θ) = f(r)).

To find f(r) one takes the curve γ(t) = (r, t), for a constant value of r, with
a ≤ t ≤ b. The length L of γ(t) is given by

L =
∫ b

a

|γ′(t)|dt =
∫ b

a

f(r)dt = (b− a)f(r)

But, since L(r) = 2π R sinh r
R , the length of γ (a portion of the circle) is

L = (b− a)R sinh
r

R
.

Hence f(r) = R sinh
r

R
, and the metric of the Bolyai plane in cyclic coordinates

is the metric of the imaginary sphere !
Note that the metric of the sphere in cyclic coordinates is given by ds2 =

dr2 + R2 sin2 r

R
dθ2. Applying here the Analogy we obtain expression (2).

Did Gauss see this in Section §30 of the Appendix?

The third ds2

In Section §32 of the Appendix a metric appears explicitly! Bolyai says:

Figure 2.

14This computation does not appear in the Appendix; but it is something that would be
easy for Gauss to do.

15Gauss’s lemma, proved in [Gau28].
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That is,

It can be proved, that
dz2

dy2 + bh2
∼ 1;

which is equivalent, using the computation of bh given in the Appendix, to

ds2

dy2 + cosh2 y

R
dx2

= 1,

that is

ds2 = dy2 + cosh2 y

R
dx2, (3)

which is the expression of the metric in hypercyclic coordinates.
In fact, expression (3) is almost evident to any person (Gauss, for instance)

that knows the local theory of surfaces well.16

Concretely, it is clear that

ds2 = dy2 + f2(y)dx2

for a certain function f(y), independent of x, since, by Gauss’s lemma, this
coordinate system is orthogonal (so the term dx dy does not appear), the lines
x =constant are geodesics (so the coefficient of dy is 1), and it is invariant under
translation in the x direction (so f(x, y) = f(y)).

L

y

x

yy y

Figure 3.

To find f(y) we take the equidistant curve γ(t) = (t, y), for a constant value
of y, with a ≤ t ≤ b. The length of γ(t) is

L =
∫ b

a

|γ′(t)|dt =
∫ b

a

f(y)dt = f(y)(b− a)

16Unfortunately J. Bolyai never knew Gauss’s work on the theory of surfaces: Kárteszi
in [Kár87], page 32 says: “Even of Gauss’s results only a small proportion was known to him;
for example, he has not heard of the investigations of Gauss in surface theory contained in
the work Disquisitiones generales circa superficies curvas through his life”.
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But in Section §27 of the Appendix Bolyai gives the relation between the length
of the equidistant in function of the length of the base in the mixed quadrilateral
of the above figure. This relation is

L = x cosh
y

R
.

Hence f(y) = cosh
y

R
, as we wanted to demonstrate.

Note that the metric of the sphere in hypercyclic coordinates is given by
ds2 = dy2 + cos2

y

R
dx2. Applying here the Analogy we obtain expression (3).

Moreover, the curvature formula

k = − 1√
G

∂2
√

G

∂2r
,

known by Gauss since his first version of the Disquisitiones generales circa
superficies curvas in 1825, could be applied to the expressions (1), (2) and (3),
with G = e−2x/R, G = R2 sinh2 y

R and G = cosh2 y
R respectively, to prove that

Bolyai’s plane is represented by a surface of constant negative curvature −1/R2.
Gauss may have seen that Bolyai’s metrics (2) and (3) could be directly

obtained by Analogy from the corresponding cyclic and hypercyclic metrics on
the sphere. However, the paracyclic metric (1) can not appear by Analogy.
The concept of paracycle is characteristic of hyperbolic geometry. However,
Gauss’s manuscripts on the Theory of Parallels of 1831 may be the beginning of
a synthetic approach to finding this paracyclic metric, see [Gau27], Zur Theorie
der Parallellinien, Bd. VIII, pages 202-209.

We make explicit this analytical change of coordinates in appendix A, page
16.

Did Gauss see that the hypercyclic coordinates on the new plane were global,
unlike on the sphere, where they are not? In particular, that the imaginary
sphere can be covered with only one chart?

Did Gauss see the proof of the consistency in the Appendix? The letters
to Gerling and Farkas Bolyai that we have mentioned on page 4 lead us
to conjecture that the answer is yes. But, did Gauss have the problem of the
consistency clear enough?

Gauss and Riemann, who could have done the computations that we do
in this article, did not realize that the problem of the consistency was solved,
because the question that they set themselves: Which surface of R3 has one of
these metrics? was incorrect. Gauss was the founder of the intrinsic geometry
of surfaces, but all the length elements (metrics) used by Gauss came from the
Euclidean metric of R3.

This epistemological mistake is quite understandable: they were discover-
ing a new world and, like all discoverers, passed by something very important
without seeing it.

It seems that Beltrami also made the same mistake, see note number 2 on
page 2.

9



If one assumes that Gauss used the Analogy to find the ds2 of the imaginary
sphere, it is easy to explain all results of the new geometry that Gauss showed

he knew in his letters. It also explains why he did not enclose proofs: the
use of imaginary numbers was not sufficiently accepted and especially if they
were used by analogy.

But, after reading the Appendix, Gauss saw all these results deduced ax-
iomatically and without any reference to imaginary numbers.

4. The drawings of the Appendix

Although we agree with Gray’s comments on the Appendix, see [Gra04],
pages 123-127, we would like to make some further remarks. We hope that
these remarks contribute to enrich the recognition of Bolyai’s work made by
Gray.

First of all, the coordinates used by Bolyai are the hypercyclic coordinates
(the lines x =constant are geodesic, while y =constant are not geodesic but

equidistant).
It is in this sense that Gray uses the expression ‘usual system of Cartesian

(x, y) coordinates’.
Some of Gray’s expressions can be considered as moderate criticism of Bolyai’s

work, for instance:

– Without as much as a hint in the direction just outlined, Bolyai supposed
that his readers would recognise these arguments [...]

– but it requires an interpretation that Bolyai was unwilling to provide [...]

– Bolyai escaped the pedagogic problem, not for the first or only time in the
Appendix by saying: “It can be demonstrated”[...].

All of these can be very well understood if we accept the hypothesis that the
Appendix was written for Gauss. Or at least, having in mind that the

first and most important reader should be Gauss. In fact, the Appendix was
sent to Gauss in 1831 and the Tentamen was published in 1832.

János Bolyai had sent a first version of his work to his former professor
Herr Johann Walter von Eckwehr in 182617, and on the prompting of
his father he had translated it from German into Latin, to be published in
Tentamen, see [Bon55], page XXVIII of Halsted’s introduction. Given the
friendship between Gauss and Farkas, it is logical to assume that Farkas
had already decided to send this latin version to Gauss.

Halsted also remarks that János contributed with 104 florins and 50
kreuzers for the printing of the Appendix (about three and a half florins per
page, so he must have been careful with the number of pages!) Perhaps for this
reason he did not make explicit some details and it explains Gauss’s comment in

17This manuscript has not been found.
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his letter to Gerling (see page 4): [the results of the Appendix are developed]
in a concentrated form that is difficult for one to follow who is not familiar with
the subject.

The 23 drawings of the Appendix, with the legend Tabula Appendicis in the
top right, that we reproduce from [Bol02],

should not be interpreted as

Figure 4.

drawings in the Euclidean plane, as might be infered from Gray’s remark: He
drew a picture of a curve ABC in the familiar Cartesian plane with x- and y-
axes and outlined an interpretation of it as a picture of non-Euclidean geometry
drawn in a Euclidean plane.

These figures play the same role as the figures that appear in the majority of
versions of the Euclid’s Elements: They are only guides for the proofs. In fact,
Bolyai does not use the Euclidean plane at all. Note that Gauss few notes on
the subject uses similar drawings.

Nevertheless, a valid objection to Bolyai’s drawings is that he represents
non-Euclidean segments in the same way that we usually represent the Euclidean
ones. This problem was skillfully solved by Battaglini, see [Rod09], and was
the basis for the proof of the consistency given by Beltrami, using a model
where non-Euclidean segments were represented by the Euclidean ones!

As Gray says, it is a pity that Bolyai did not find the hyperbolic half-plane
model: With a bit of extra work, he could have shown that the entire picture
of non-Euclidean two-dimensional geometry could appear in the right half-plane
(the region defined by x > 0), and that in his new space straight lines were
curves of a certain appearance [...].

But in order to prove the consistency it is not necessary to have this specific
model of hyperbolic geometry. It suffices to have, as Bolyai has, a “plane” with
an appropriate metric. But this presupposes the idea of abstract Riemannian
manifold. This was the great contribution of Riemann many years later. But

11



we defend that this idea, though not in Bolyai’s mind, would be clear to Gauss
when he read the Appendix and decided not to write any more on the subject
(see section 6 below).

Finally we completely agree with Gray when he says: But the fact that
Bolyai got as close as he did to formulating the elements of his new geometry
in terms of the calculus is striking testimony to his insight, and seems not to
have been appreciated sufficiently in his day or since.

5. The modern solution

At the time of Gauss the consistency of Euclidean geometry was accepted
without discussion. For this reason, the negation of the fifth postulate demanded
a proof the consistency of this new geometry. This is what we term the modern
problem: the problem of the independence of the fifth postulate. Moreover
we must consider that the foundation of real numbers was still not rigorously
achieved. They were only an instrument of calculus.

There are some letters written or received by Gauss, talking about astral
geometry or antieuclidean geometry, from which we can deduce that Gauss was
convinced of the consistency of this new geometry.

We mention18:

1. Gauss to Olbers. Goettingen, 28 April 1817. I am coming ever more to
the conviction that the necessity of our geometry cannot be proved at least
not by human comprehension nor for human comprehension. Perhaps in
another life we will come to other views on the nature of space which are
currently unobtainable for us. Until then one must not put Geometry into
the same rank as Arithmetic, which stands a priori, but rather in the same
rank as, say, Mechanics 19.

2. Schweikart’s Note to Gauss. Marburg, December 1818. There is a two-fold
geometry, a geometry in the narrow sense, the Euclidean; and an astral
study of magnitudes 20.

3. Gauss to Gerling. Marburg, 16 March 1819. The note of Herr Professor
Schweikart gave me an incredible amount of pleasure, [...] because although
I can imagine quite well that the Euclidean geometry is not correct 21.

18See [Gau27], Vol 8, Grundlagen der Geometrie, Nachträge zu Band IV, pages 177-220.
19Ich komme immer mehr zu der Überzeugung, dass die Nothwendigkeit unserer Geome-

trie nicht bewiesen werden kann, wenigstens nicht vom menschlichen Verstande noch für den
menschlichen Verstand. Vielleicht kommen wir in einem andern Leben zu andern Einsichten
in das Wesen das Raums, die uns jetzt unerreichbar sind. Bis dahin müsste man die Ge-
ometrie nicht mit der Arithmetik, die rein a priori steht, sondern etwa mit der Mechanik in
gleichen Rang setzen.

20Es gibt eine zweifache Geometrie, eine Geometrie im engern Sinn, die Euklidische; und
eine astralische Grössenlehre

21Die Notiz von Hrn. Prof. Schweikart hat mir ungemein viel Vergnügen gemacht, [...]
denn obgleich ich mir recht gut die Unrichtigkeit der Euklidischen Geometrie denken kann

12



4. Gauss to Taurinus. Goettingen, 8 November 1824. The assumption that
the sum of the three angles is smaller than 180◦ leads to a geometry that is
quite different from ours (Euclidean), which is consistent, and which I have
developed quite satisfactorily to the point that I can resolve every question
in it with the exception of the determination of a constant which does not
present itself a priori. [...] All of my efforts to find a contradiction, an
inconsistency in this non-Euclidean geometry have been fruitless 22.

5. Gauss to Bessel. Goettingen, 27 January 1829. [...] my conviction that
we cannot completely establish geometry a priori has become stronger 23.

6. Bessel to Gauss. Koenigsberg, 10 February 1829. [...] our geometry is in-
complete and needs a correction which is hypothetical and which disappears
if the sum of the angles of a triangle = 180◦ 24.

7. Gauss to Bessel. Goettingen, 9 April 1830. My innermost conviction is
that the study of space is a priori completely different than the study of
magnitudes; our knowledge of the former is missing that complete con-
viction of necessity (thus of absolute truth) that is characteristic of the
latter 25.

8. Gauss to Bolyai (senior)26. Goettingen, 6 March 1832. Precisely the
impossibility of deciding a priori between Σ and S gives the clearest proof
that Kant was not justified in asserting that space is just the form of
our perception. Another equally strong reason is in a brief essay in the
Scholarly Notices of Goettingen 1831, article 64, page 625. Perhaps it will
not be a disappointment if you try to procure that volume of the G.G.A.
(which may be accomplished through any bookseller in Vienna or Buda27),
as you also find there, developed in a few pages, the essence of my views
concerning imaginary quantities 28.

22Die Annahme, dass die Summe der 3 Winkel kleiner sei als 180◦, führt auf eine eigene,
von der unsrigen (Euklidischen) ganz verschieden Geometrie, die in sich selbst durchaus
consequent ist, und die ich für mich selbst ganz befriedigend ausgebildet habe, so dass ich jede
Aufgabe in derseklben auflösen kann mit Ausnahme der Bestimmung einer Constante, die
sich a priori nicht ausmitteln lässt. [...] Alle meine Bemühungen, einen Widerspruch, eine
Inconsequenz in dieser Nicht-Euklidischen Geometrie zu finden, sind fruchtlos gewesen.

23und meine Überzeugung, dass wir die Geometrie nicht vollst¨ndig a priori begründen
können, ist, wo möglich, noch fester geworden.

24dass unsere Geometrie unvollständig ist, und eine Correction erhalten sollte, welche hy-
pothetisch ist und, wenn die Summe der Winkel des ebenen Dreiecks = 180◦.

25Nach meiner innigsten Überzeugung hat die Raumlehre in unserm Wissen a priori eine
ganz andere Stellung, wie die reine Grössenlehre; es geht unserer Kenntniss von jener dur-
chaus diejenige vollständige Überzeugung von ihrer Nothwendigkeit (also auch von ihrer ab-
soluten Wahrheit) ab, die der letztern eigen ist.

26The same letter is discussed on pages 3 and 5. See also page 14.
27The german name for Buda is Ofen. Budapest became a single city with the unification

in 1873, of Buda and Óbuda (Old Buda) together with Pest.
28Gerade in der Unmöglichkeit, zwischen Σ und S a priori zu entscheiden, liegt der klarste

Beweis, dass Kant Unrecht hatte zu behaupten, der Raum sei nur Form unserer Anschauung.
Einen andern ebenso starken Grund habe ich in einem kleinen Aufsatze angedeutet, der in
den Göttingischen Gelehrten Anzeigen 1831 steht Stück 64, pag. 625. Vielleicht wird es Dich
nicht gereuen, wenn Du Dich bemühest Dir diesen Band der G.G.A. zu verschaffen (was
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The arguments put forward by Gauss in these letters for the belief in the
consistency of non-Euclidean geometry were of inductive and physical type.
Inductive: no matter how much he had looked for an inconsistency with the
hypothesis of the acute angle, he had not found it. Physical: Although the
Euclidean geometry was a very good candidate for the geometry of the physical
space, an antieuclidean geometry with small negative curvature could also be
the answer.

Had Gauss the concept of mathematical model ? Certainly not, but we
believe that he had the idea that a surface in the space of three dimensions, with
constant negative curvature and without singularities (Minding’s pseudosphere
had singularities), would be a proof of the possibility of a new plane. We
completely agree on this point with [BBI01], page 158.

Gauss says to F. Bolyai, in the above-mentioned letter of 1832, that he had
obtained the same results as his son in similar ways: because the whole contents
of the writing, the path that your son has taken and the results to which it
leads, are almost perfectly in agreement with my own meditations, some going
back 30 − 35 years 29. Nevertheless in his letter to Schumacher of 1846 he
says that Lobachevsky had obtained the same results but in a different way:
Lobachevsky carried out the task in a masterly fashion and in a truly geometric
spirit,30 (see [RR05], page 106). We believe that Gauss insinuates that his
discoveries were made using the length element ds2 of the imaginary sphere,
that he obtained by Analogy (whereas J. Bolyai had deduced one of them
explicitly, and the other two implicitly); but, as he could not show a complete
surface31 in the space of three dimensions with this length element, he did not
publish anything; the synthetic rewritting of Theory of Parallels, that Gauss
began in 1831, was widely surpassed by the Appendix, a complete and magistral
synthetic deduction of a hyperbolic arc length.

Perhaps Gauss thought that the imaginary sphere could emerge using the
geometrical interpretation of complex numbers32; that explains the suggestion
made to Farkas Bolyai at the end of the letter. János indeed read Gauss’s
paper33, and developed independently a conception of complex numbers that
applied to Number Theory. As far as we know, J. Bolyai did not relate the new

jeder Buchhändler in Wien oder Ofen leicht bewirken kann), da darin unter andern auch die
Quintessenz meiner Ansicht von den imaginären Grössen auf ein Paar Seiten dargelegt ist.

29denn der ganze Inhalt der Schrift, der Weg, den Dein Sohn eingeschlagen hat, und die
Resultate, zu denen er geführt ist, kommen fast durchgehends mit meinen eigenen, zum Teile
schon seit 30–35 Jahren angestellten Meditationen überein.

30und zwar von Lobatschewsky auf eine meisterhafte Art in ächt geometrischem Geiste.
Gauss refers to the german version [Lob55] that does not use differential calculus.

31A surface without singularities, where the straight lines are infinite.
32A proof that the Analogy was its source of inspiration. Gauss, and a small number of

friends with whom he spoke about the subject, knew Lambert’s work very well; see Bessel’s
letter of 1829 mentioned above. In section B we sketch an elementary proof of consistency
using complex numbers.

33Kiss comments in [Kis99] that Gauss does not give the correct reference, because the
subject was completely developed in another of Gauss’s works.
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geometrical conception of complex numbers with the problem of consistency of
the new geometry.

It is also possible that Gauss made the same suggestion to Riemann; but
Riemann was by this time occupied with other mathematical and physical
problems, that lead him to the discovery of Riemann surfaces (the first example
of a topological manifold of dimension two that it is not a surface of a three
dimensional space: the first example of an abstract manifold!), and to a con-
ception of physical space as a perfectly elastic and massless medium formed by
an elastic fluid, affected by the energy-momentum of the physical fields within
it. Klein compared Riemann with Faraday who had described the electro-
magnetic field with the idea of lines of force. With Riemann geometry became
a physical geometry. This idea will be developed in [Rod09].

6. The mistake

Gauss made one mistake, possibly the biggest of his life: to look for an
imaginary sphere in R3.

In fact, there exists no imaginary sphere in the usual sense of a surface in R3

of constant negative curvature34. Therefore, the search for an imaginary sphere
was an endless struggle. It is possible that in 1831 he was aware that this way
was a dead end, and decided to take the deductive point of view; but it was too
late: János Bolyai had already followed this path in the Appendix.

The impossibility of finding a complete surface in R3 of constant negative
curvature could have made Gauss doubt his belief in the consistency of non-
Euclidean Geometry, and could be the main reason by which Gauss did not
make any effort to publicize the Appendix.

The Appendix proves that analytical geometry of the new plane is very sim-
ilar to that of the Euclidean plane; indeed, the problem of the consistency is
almost the same in both geometries. Nobody has proved that Euclidean geom-
etry is consistent. Because of this strong relation between the sphere and the
imaginary sphere, the new geometry has the same status as the spherical one, in
the sense that this geometry can be considered either as a section of the spacial
Euclidean geometry or as the geometry of a curved surface of the space.

It would be interesting to answer the following question: Why did Gauss
only look at surfaces in three dimensional space ?

The answer is surprising. Numbers and geometry were on different levels.
The identification of R, R2 and R3 as geometrical objects was still not clearly
made. One must wait for Dedekind for the foundation of real numbers; and
Betti, who learned probably from Riemann the importance of thinking math-
ematics conceptually, for giving the definitive step in the geometrization of Rn.

34Hilbert proved in 1910 that there exists no complete regular surface of constant negative
curvature immersed in R3. In 1955 Kuiper proved that such a surface does exist if we change
“regular” for C1. See [Kui55].
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Gauss, and other contemporary mathematicians, do not identify the set of pairs
of real numbers as done today.

It is precisely with Riemann, as was observed by Ferreirós, that the idea
of a conceptual mathematics comes up, a mathematics that studies manifolds
and their mappings (see [Fer00], pages 93–95, and [Fer07]). Riemann made
this giant’s step because he needed to extend the geometric intuition to other
areas of mathematics different from geometry. But, at the same time, he also
found this way useful for thinking about geometry without any spacial intuition
(see [Fer00], page 94); Riemann coincides on this point with Lambert and his
analytical program, introduced with the hope of solving the classical problem
of the Euclidean Theory of Parallels (see [RR05], page 16). This program was
completed by Hilbert in his fundamental work on foundations of geometry of
1899 ([Hil99]), using set theory introduced by Cantor. As Hilbert said35: No
one shall expel us from the paradise that Cantor has created for us.

Appendix

A. Changes of coordinates

In the hyperbolic plane, apart from the polar or cyclic coordinates and the
cartesian or hypercyclic coordinates, there are also the paracyclic or horocyclic
coordinates in which one of the distances is measured on paracycles.

y
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x
x

_ _

_

_

,!)

ParacyclicHypercyclicCyclic

!O

P(r

O

P(x,y)

O

Q Q

P(x,y)
R

Figure 5.

Cyclic (r, α). Here r is the distance between the point P and the origin O;
and α is the angle between the geodesic PO and a given geodesic through O.
Observe that r = constant is a hyperbolic circle.

Hypercyclic (x̄, ȳ). Here x̄ is the distance between the origin O and the point
Q, intersection of the line through P orthogonal to a given line through O; and
ȳ is the distance between the point P and Q. Observe that ȳ = constant is a
hypercycle (equidistant).

35Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben können.
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Paracyclic (x, y). Here x is the distance between the origin O and the point
Q, intersection with a given line through O of the horocycle through P and axis
this line; and y is the length of the horocycle OR, where R is the intersection of
the axe through P with the horocycle of this family through O. Observe that
x = constant is a paracycle (horocycle).

Recall that three points of the Hyperbolic plane determine a straight line, a
circle, a hypercycle or a paracycle. The assumption that three points not on a
line determine a circle is equivalent to the fifth postulate. In fact, this was the
mistake made by Farkas Bolyai in his proof of this postulate.

Hypercyclic-Cyclic
The change of coordinates cyclic-hypercyclic is immediate applying trigonom-

etry to a right triangle of catheti x̄, ȳ and hypotenuse r (see [RR05], page 120)

cosh
r

R
= cosh

x̄

R
cosh

ȳ

R

sinh
ȳ

R
= sinh

r

R
sin θ,

From this system we can write: x = x(r, θ), y = y(r, θ).
In particular,

dȳ2 + cosh2 ȳ

R
dx̄2 = dr2 + R2 sinh2 r

R
dθ2.

Hypercyclic-Paracyclic
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y

x
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y
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x
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Figure 6.

Let us assume that the point P has hypercyclic coordinates (x̄, ȳ), and para-
cyclic coordinates (x, y). In the picture, CO and PA are arcs of horocycles
orthogonal to the parallel geodesics CP , OA. The hypercyclic coordinates are
given by x̄ = OB, ȳ = PB; and the paracyclic coordinates are given by x = OA,
y = CO.

The relation between the length z of the horocycle PA and the length ȳ of
the geodesic PB is

z = ye−x. (4)
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Also

z = sinh ȳ. (5)

And

ea = cosh ȳ, (6)

where a = AB. We remark that equations (4), (5) and (6) are given directly in
the Appendix ! (Equation (4) in §24 and equations (5) and (6) in §32). Bolyai
writes z = i cot CBN , that in our notation is z = cotΠ(ȳ), (we are assuming
curvature = −1, i.e. i = 1), but it is easy to see that cotΠ(ȳ) = sinh ȳ, and
thus we have equation (5).

From these equations we can explicit the change of coordinates

x̄ = x +
1
2

ln(1 + y2e−2x)

ȳ = ln(ye−x +
√

y2e−2x + 1).

In particular,
dȳ2 + cosh2 ȳ dx̄2 = dx2 + e−2x dy2.

B. A wasted opportunity

The stereographic projection between the sphere SR of radius R and the
plane that contains the equator is given by

p =
Rx

R− z

q =
Ry

R− z

with x2 + y2 + z2 = R2.
Equivalently, the image of the point (x, y, z) ∈ SR is the complex number

w = p + iq.
Let us translate the geometry of SR to the extended complex plane C via

this stereographic projection. First we note that the equator is given by

ww̄ = R2.

Moreover, if w,w′ are the images under the stereographic projection of an-
tipodal points, then

w′ = −R2

w̄
. (7)

Since stereographic projection takes circles to circles, the image of a meridian
is a circle in the complex plane. Hence, if P,Q ∈ C, the straight line PQ is the
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circle determined by the three points P,Q,−P ∗, where P ∗ is the inverse point
of P with respect to the circle ww̄ = R2.

The angles of this geometry on C are the angles in SR. Also congruent
relations can be derived in this way. It is the geometry of the sphere considered
in C ∪ {∞}.

If we apply now the Analogy changing formally R by Ri in (7), we obtain

w′ =
R2

w̄
.

Which are the straight lines of this new geometry? If P,Q ∈ C, the new straight
line PQ is the circle determined by the three points P,Q, P ∗. It is well known
that this circle is orthogonal to the circle ww̄ = R2. Thus, the new straight lines
are circles orthogonal to the boundary of the disc of radius R.

Remark that we have had to exclude the case P = P ∗ because the three
points must be different. But the set of points P with P = P ∗ is the boundary
of the disk. Thus this boundary does not belong to the new geometry.

Thus we have the open disc and its complement, which are ‘equal’ through
inversion. If we consider the open disc with the straight lines defined above, and
we consider that movements are generated by inversions, we have the classical
Poincaré disc. That is, we have a model of non-Euclidean geometry and the
problem of the consistency is solved. In fact, an inconsistency in non Euclidean
geometry would be translated into an inconsistency in inversion geometry, and
hence into an inconsistency in Euclidean geometry. The non Euclidean geometry
is thus as consistent as Euclidean geometry.

We think that this construction of the Poincaré disc using stereographic
projection and Analogy, that we have just done, could be done easily by Monge
or his school in the École Polytechnique, thirty years before the Appendix. This
school had as leitmotif the translation of geometric properties using geometric
transformations. In particular stereographic projections of the quadrics over the
plane.

But, as we have mentioned before, we think that due Legendre’s influence
they were not interested in the classical problem of the Euclidean Theory of
Parallels. Moreover, Lagrange’s analytical point of view spread rapidly all
over the world and the synthetical approach was left buried until Poincaré
found it again.
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euclidianas, Publicacions del Departament de Matemàtiques, UAB 30
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Figure captions
Fig 1. Corresponds to figure 9 of the Appendix. See page 11.
Fig 2. The metric of the Appendix.
Fig 3. Length of a equidistant.
Fig 4. All figures in the Appendix.
Fig 5. Three coordinate systems.
Fig 6. Relation between hypercyclic and paracyclic coordinates.
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