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A fully discrete approximation of the one-dimensional
stochastic wave equation
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Abstract A fully discrete approximation of one-dimensional nonlinear stochastic
wave equations driven by multiplicative noise is presented. A standard finite dif-
ference approximation is used in space and a stochastic trigonometric method for
the temporal approximation. This explicit time integrator allows for error bounds in
Lp(Ω), uniformly in time and space, in such a way that the time discretisation do not
suffer from any kind of CFL condition. Moreover, uniform almost sure convergence
of the numerical solution is also proved. Numerical experiments are presented and
confirm the theoretical results.
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1 Introduction

We consider the numerical discretisation of the one-dimensional nonlinear stochastic
wave equation

∂ 2u
∂ t2 (t,x) =

∂ 2u
∂ 2x

(t,x)+ f
(
t,x,u(t,x)

)
+σ
(
t,x,u(t,x)

) ∂ 2W
∂x∂ t

(t,x) in [0,T ]×[0,1],

u(t,0) = u(t,1) = 0 for t ∈ [0,T ],

u(0, ·) = u0,
∂u
∂ t

(0, ·) = v0 in (0,1),
(1.1)

where T > 0 is a fixed time horizon and W is a Brownian sheet on [0,T ]× [0,1] de-
fined on some probability space (Ω ,F ,P). Precise conditions on the functions f
and σ and on the initial values u0 and v0 are given below. For the numerical discreti-
sation of (1.1), we first discretise in space by a standard finite difference scheme (as
in [24]) and then in time by a stochastic trigonometric method (see e.g. [2,5,4]).

While much efforts have been devoted to the numerical discretisation of stochas-
tic parabolic problems (see e.g. [11,12,25,23,32,22,17,21,20,18,30]), our paper of-
fers one of the few attempts to the numerical discretisation of stochastic nonlinear
hyperbolic problems. In fact, as far as strong approximations for stochastic wave
equations with multiplicative noise is concerned, references [24,27] used finite dif-
ference discretisations in space and both in time and space, respectively. We also
point out that weak approximations, in the probabilistic sense, have also been stud-
ied in [15] and more recently in the preprint [29]. On the other hand, in the case of
linear problems with additive noise, the paper [19] used a finite element discretisa-
tion, while in [4] a stochastic trigonometric method has been applied for the time
discretisation of such problems. More recently, we point out that the preprint [31]
presents a full discretisation of the semilinear wave equation with additive noise: a
spectral Galerkin approximation is used in space and an adapted stochastic trigono-
metric method, using linear functionals of the noise as in [16], is employed in time.
Eventually, time discretisation of nonlinear stochastic wave equations by stochastic
trigonometric methods, without the use of filter functions, is analysed in the preprint
[29]. Note that all these latter references deal with Lp([0,1]) convergence in the space
variable, whereas we are concerned with space-time uniform convergence in L2p(Ω).

The author of [27] noted that the spatial convergence rate of the scheme proposed
in [24] was unexpectedly slow and that it would be interesting to know whether time-
discretisations of this method would converge faster. In the present paper, we will
answer positively to this question and, moreover, show that our numerical scheme for
the time discretisation of (1.1) does not suffer a stepsize restriction due to the CFL
condition, as does the numerical integrator proposed in [27]. In the latter reference,
this condition thus forces the numerical scheme to use (at most) the same step sizes
in time and in space.

In order to discretise efficiently the problem (1.1) in time, one is often interested
in using explicit methods with large step sizes (see for example [9] for deterministic
problems). A standard approach in the deterministic case is the leap-frog scheme, but
unfortunately one has a step-size restriction due to stability issues (as seen above).
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Much efficient numerical integrators for the time discretisation of deterministic wave
equations are the trigonometric methods considered in [3,9] and more recently [8],
for example. Observe, that these explicit numerical methods were firstly designed for
an efficient discretisation of highly oscillatory problems (see [13, Chapter XIII] and
references therein). In [2,5,4], an extension of the trigonometric methods to stochas-
tic problems is presented and analysed. This is the numerical method that will be used
for the time discretisation of (1.1) in the present publication.

Throughout the paper we will assume that the functions f and σ satisfy the fol-
lowing conditions:

sup
t∈[0,T ]

(
| f (t,x,z)− f (t,y,v)|+ |σ(t,x,z)−σ(t,y,v)|

)
≤C

(
|x− y|+ |z− v|

)
(1.2)

and
sup

(t,x)∈[0,T ]×[0,1]

(
| f (t,x,z)|+ |σ(t,x,z)|

)
≤C

(
1+ |z|

)
, (1.3)

for every x,y ∈ [0,1] and z,v ∈ R. On the other hand, let us introduce the spaces
where the initial data u0 and v0 will be assumed to take their values. Namely, for any
α ∈R, we denote by Hα([0,1]) the subspace of the fractional Sobolev space of order
α formed by functions g : [0,1]→ R such that

‖g‖α :=

(
∞

∑
j=1

(1+ j2)α〈g,ϕ j〉2L2([0,1])

)1/2

<+∞,

where ϕ j(x) :=
√

2sin( jπx), j ≥ 1, and we note that (ϕ j) j≥1 forms a complete or-
thonormal system of L2([0,1]). Moreover, we assume the obvious compatibility con-
dition u0(0) = v0(0) = 0.

As far as the rigorous formulation of our equation (1.1), we will use the random
field approach set up by Walsh in [28]. That is, if we let (Ft)t≥0 be the filtration
generated by the Brownian sheet W , a (mild) solution to equation (1.1) will be an
Ft -adapted process {u(t,x), (t,x) ∈ [0,T ]× [0,1]} satisfying

u(t,x) =
∫ 1

0
G(t,x,y)v0(y)dy+

∂
∂ t

(∫ 1

0
G(t,x,y)u0(y)dy

)

+
∫ t

0

∫ 1

0
G(t− s,x,y) f (s,y,u(s,y))dyds

+
∫ t

0

∫ 1

0
G(t− s,x,y)σ(s,y,u(s,y))W (ds,dy), (1.4)

where G = G(t,x,y) is the Green function of the wave equation with homogeneous
Dirichlet boundary conditions. The following expansion will be very useful in the
sequel [24]:

G(t,x,y) =
∞

∑
j=1

sin( jπt)
jπ

ϕ j(x)ϕ j(y).

Existence and uniqueness of solution to our stochastic partial differential equation
(1.1) under the above assumptions can be obtained using standard arguments (see
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e.g. [28,1]). Additionally, assuming that u0 ∈Hα([0,1]) and v0 ∈Hβ ([0,1]) for some
α > 1/2 and β >−1/2, one has almost surely Hölder continuity of the sample paths
of the solution of order δ , for all δ ∈ (0,δ0), where δ0 =

1
2 ∧
(
α− 1

2

)
∧
(
β + 1

2

)
(see

[24, Prop. 2]).
The present paper is organised as follows. In Section 2, we will recall the spatial

discretisation method used in [24] and prove an auxiliary result. Section 3 will be
devoted to set up the time discretisation method for our stochastic wave equation and
define a suitable space-time continuous interpolation process associated to it. The
main convergence result of the paper will be stated and proved in Section 4. Finally,
numerical experiments are presented in Section 5.

2 A finite difference approximation of the nonlinear stochastic wave equation

In this section, we will recall how in [24] the problem (1.1) has been discretised in
space using a standard finite difference scheme and state the main result on strong
convergence of the spatial discretisation contained therein (cf. [24, Thm. 1]). Using
some arguments contained in the latter paper, we will also deduce a straightforward
result which will be needed in the sequel (see Lemma 2.1 below).

Let an integer M≥ 1 and the partition xm =m/M, for m= 1, . . . ,M−1, of the unit
interval (0,1) with equidistant (spatial) mesh size ∆x = 1/M. Then, the spatial semi-
discretisation of (1.1) is defined as the solution of the following system of stochastic
differential equations:

duM
m (t) = vM

m (t)dt

dvM
m (t) = M2

M−1

∑̀
=1

dm`uM
` (t)dt + f (t,xm,uM

m (t))dt

+
√

Mσ(t,xm,uM
m (t))dW M

m (t),

(2.1)

for m= 1, . . . ,M−1, where uM
m (t) := uM(t,xm) and vM

m (t) := vM(t,xm). Here, W M(t)=
(W M

1 (t), . . . ,W M
M−1(t)) is an (M − 1)-dimensional standard Brownian motion with

W M
m (t) :=

√
M(W (t,xm+1)−W (t,xm)). The dm` are the entries of the tri-diagonal

(M−1)× (M−1) matrix

D =




−2 1
1 −2 1

. . . . . . . . .
1 −2


 .

Defining the vector wM(t) := (uM(t),vM(t))T ∈ R2(M−1), one can rewrite the above
system of stiff stochastic differential equations as

dwM(t) = AwM(t)dt +F(wM(t))dt +Σ(wM(t))
(

0
dW M(t)

)
, (2.2)
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where F(wM(t)) = (0, f (t,x1,uM
1 (t)), . . . , f (t,xM−1,uM

M−1(t))
T ∈ R2(M−1),

A =

(
0 I

M2D 0

)
and Σ(wM(t)) =

√
M
(

0 0
0 Bσ (wM(t))

)

with a diagonal matrix Bσ (wM(t)) ∈R(M−1)×(M−1) of entries σ(t,xm,uM
m (t)) for m =

1, . . . ,M−1.
By Itô’s formula, one easily proves that the solution of (2.2) satisfies the following

mild equation:

wM(t) = etAwM(0)+
∫ t

0
e(t−s)AF(wM(s))ds+

∫ t

0
e(t−s)AΣ(wM(s))

(
0

dW M(s)

)
.

(2.3)
For x ∈ [0,1], a continuous version of the above approximation can be obtained

by linear interpolation:

uM(t,x) := uM(t,xm)+(Mx−m)
(
uM(t,xm+1)−uM(t,xm)

)
,

if x ∈ [xm,xm+1). This sequence of processes, {uM(t,x)}M≥1, approximates the solu-
tion of our stochastic wave equation (1.1) and can be shown to satisfy the following
evolution equation (see [24] for details):

uM(t,x) =
∫ 1

0
GM(t,x,y)v0(κM(y))dy

+
∂
∂ t

(∫ 1

0
GM(t,x,y)u0(κM(y))dy

)

+
∫ t

0

∫ 1

0
GM(t− s,x,y) f (s,κM(y),uM(s,κM(y)))dyds

+
∫ t

0

∫ 1

0
GM(t− s,x,y)σ(s,κM(y),uM(s,κM(y)))W (ds,dy),

for x ∈ (0,1) and t ∈ (0,T ]. Here, we use the notation κM(y) = [My]/M and the
discrete Green function

GM(t,x,y) =
M−1

∑
j=1

sin
(

jπt
√

cM
j

)

jπ
√

cM
j

ϕM
j (x)ϕ j(κM(y)), (2.4)

with 4
π2 ≤ cM

j := sin2 ( jπ
2M

)
( jπ

2M

)2 ≤ 1 and

ϕM
j (x) = ϕ j(xm)+(Mx−m)

(
ϕ j(xm+1)−ϕ j(xm)

)

for x ∈ (xm,xm+1), where we recall that ϕ j(x) =
√

2sin( jπx) for j = 1, . . . ,M−1. As
pointed out in [24, Eq. (20)], the function GM verifies that

sup
M≥1

sup
(t,x)∈[0,T ]×[0,1]

∫ 1

0
|GM(t,x,y)|2 dy <+∞. (2.5)
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Moreover, [24, Prop. 3] asserts that, for all p≥ 1,

sup
M≥1

sup
(t,x)∈[0,T ]×[0,1]

E[|uM(t,x)|p]<+∞. (2.6)

Before stating the main convergence result of [24], let us prove the following
simple lemma, which will be used in the proof of our main result, Theorem 4.1.

Lemma 2.1 There is a positive constant C independent of M such that, for all 0 <
s < t and all x ∈ (0,1), it holds

∫ 1

0
|GM(s,x,y)−GM(t,x,y)|2 dy≤C (t− s).

Proof It follows with similar arguments as those in the proof of [24, Prop. 2] (see the
analysis of the term D11(s, t,x) therein). Namely, the very definition of GM and the
fact that ∫ 1

0
ϕ j(κM(y))ϕk(κM(y))dy = δ{ j=k},

with the Kronecker delta function δ{ j=k}, implies that

∫ 1

0
|GM(s,x,y)−GM(t,x,y)|2 dy≤C

M−1

∑
j=1

(
sin
(

jπs
√

cM
j

)
− sin

(
jπt
√

cM
j

))2

j2π2cM
j

.

Then, since cM
j ∈ [ 4

π2 ,1], we have

∫ 1

0
|GM(s,x,y)−GM(t,x,y)|2 dy≤C

∞

∑
j=1

1
j2 min

(
1, j2(t− s)2),

where the constant C does not depend on M. It can be seen that the last series is
bounded by (t− s), which concludes the proof. ut

The following result establishes the convergence of the above semi-discrete so-
lution uM(t,x) to the exact solution u(t,x) of our stochastic wave equation (1.1) (cf.
[24, Thm. 1]).

Theorem 2.1 Suppose that u0 ∈ Hα([0,1]) with α > 3/2 and v0 ∈ Hβ ([0,1]) with
β > 1/2. Assume that the functions f and σ satisfy the Lipschitz condition (1.2) and
the linear growth condition (1.3).

Let p≥ 1. Then, there exists a positive constant C independent of M such that

sup
(t,x)∈[0,1]×[0,T ]

(
E
[∣∣uM(t,x)−u(t,x)

∣∣2p
])1/(2p)

≤C(∆x)ρ−ε

for all ε > 0 with ρ = 1/3∧ (α − 3/2)∧ (β − 1/2). Moreover, uM(t,x) converges
almost surely to u(t,x) as ∆x = 1/M tends to zero, uniformly with respect to (t,x) ∈
[0,T ]× [0,1].
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3 Time discretisation by a stochastic trigonometric method

This section is devoted to present the time discretisation method that will be applied
to the semi-discrete problem (2.1) (or (2.2)). As explained in the Introduction, our
method corresponds to a particular case of the so-called trigonometric schemes for
second order differential equations and, on the other hand, if we focus on the mild
evolution equation (2.3), it can be seen as an explicit Euler-Maruyama scheme for
this formulation of the problem.

For ease of exposition and for the rest of the presentation, we will now assume
that the functions f and σ only depend on the variable u. All forthcoming results can
be easily extended to the general setting.

Let ∆ t = T/N denote the step size of our numerical time integrator and tn = n∆ t,
for n = 0,1, . . . ,N, denote the discrete times. Looking at the mild solution (2.3) of
our problem (2.2) on the interval [tn, tn+1], and discretising the integrals (by freezing
the integrands at the left-end point of the interval), one can iteratively define the
following (explicit) stochastic trigonometric scheme. We note that, for the sake of
simplicity, we will omit the explicit dependence on M in the vectors W n, Un, V n and
∆W n defined below.

W 0 := wM(0),

W n+1 := e∆ tAW n +∆ t e∆ tAF(W n)+ e∆ tAΣ(W n)

(
0

∆W n

)
, n≥ 0. (3.1)

Here, W n is a vector in R2(M−1) which can be written as W n =: (Un,V n)T , where
each component defines a (M−1)-dimensional vector. The terms ∆W n:=W M(tn+1)−
W M(tn) denote the M−1-dimensional Wiener increments. Computing explicitly the
C0-semigroup e∆ tA, one obtains that the above scheme can be equivalently written as

(
Un+1

V n+1

)
=

(
cos(∆ tΘM) Θ−1

M sin(∆ tΘM)
−ΘM sin(∆ tΘM) cos(∆ tΘM)

)(
Un

V n

)

+

(
∆ t2 sinc(∆ tΘM) f (Un)
∆ t cos(∆ tΘM) f (Un)

)

+

(
Θ−1

M sin(∆ tΘM)
√

MBσ (Un)∆W n

cos(∆ tΘM)
√

MBσ (Un)∆W n

)
,

(3.2)

where ΘM =
√
−M2D. The components of the vector Un (resp. V n) will be denoted

by Un
m (resp. V n

m). We also note that the (M− 1)× (M− 1) matrix Bσ (Un) is de-
fined analogously as the corresponding one in Section 2, namely it is diagonal with
entries σ(Un

m), m = 1, . . . ,M− 1. We will sometimes use the notation t sinc(tΘM)
for Θ−1

M sin(tΘM), which is defined for arbitrary matrices ΘM . We thus obtain a nu-
merical approximation Un ≈ uM(tn) (resp. V n ≈ vM(tn)), of the exact solution (resp.
derivative of the solution), of our finite difference problem (2.1) at the discrete times
tn = n∆ t.

The time integrator (3.2) can be seen as simple representative of stochastic trigono-
metric methods with simple choices of filter functions (see e.g. [2,5,4]). Observe that,
the purpose of these filter functions is to attenuate numerical resonances (see e.g. [13,
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Chapter XIII] for the deterministic setting and [2] for the stochastic one). Further-
more, we remark that the choice of the filter functions may also have a substantial
influence on the long-time properties of the method (see e.g. [13, Chapter XIII] for
the deterministic case). We will not deal with these issues in the present paper.

Remark 3.1 We note that an effective numerical computation of the matrix functions
present in the integrators (3.2) can be done using (rational) Krylov subspace approx-
imations (see for example [10] and references therein).

The above formulation (3.2) of the numerical method will be used for practical
computations in Section 5. For the theoretical parts presented below, we will make use
of the discrete Green function GM introduced in the previous section in order to write
the numerical method (3.2) in mild form. Namely, performing explicit computations
of the matrices cos(∆ tΘM) and sin(∆ tΘM) in equation (3.2) above, one obtains that
the mth component of the vector Un+1 is given by

Un+1
m

=
1
M

M−1

∑
l=1

M−1

∑
j=1

sin
(

jπ∆ t
√

cM
j

)

jπ
√

cM
j

ϕ j(xm)ϕ j(xl)V n
l

+
1
M

M−1

∑
l=1

M−1

∑
j=1

cos
(

jπ∆ t
√

cM
j

)
ϕ j(xm)ϕ j(xl)Un

l

+∆ t
1
M

M−1

∑
l=1

M−1

∑
j=1

sin
(

jπ∆ t
√

cM
j

)

jπ
√

cM
j

ϕ j(xm)ϕ j(xl) f (Un
l )

+
1√
M

M−1

∑
l=1

M−1

∑
j=1

sin
(

jπ∆ t
√

cM
j

)

jπ
√

cM
j

ϕ j(xm)ϕ j(xl)σ(Un
l )
(
W M

l (tn+1)−W M
l (tn)

)
,

for m ∈ {1, . . . ,M−1}, where we recall that ϕ j(x) =
√

2sin( jπx), cM
j =

sin2 ( jπ
2M

)
( jπ

2M

)2 ,

W M
l (tn) =

√
M
(
W (tn,xl+1)−W (tn,xl)

)
,

and V n
l is the lth component of the vector V n defined in (3.2). Then, owing to the

definition of the discretised Green function (2.4), we can infer that, for all n= 0, . . . ,N
and m = 1, . . . ,M−1,

Un+1
m =

∫ 1

0
GM(tn+1− tn,xm,y)V n

MκM(y) dy+
∫ 1

0

∂GM

∂ t
(tn+1− tn,xm,y)Un

MκM(y) dy

+
∫ tn+1

tn

∫ 1

0
GM(tn+1− tn,xm,y) f (Un

MκM(y))dyds

+
∫ tn+1

tn

∫ 1

0
GM(tn+1− tn,xm,y)σ(Un

MκM(y))W (ds,dy). (3.3)
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In order to exhibit a more convenient mild form for Un+1
m , we should iterate the

above expression with respect to n. However, it is much easier to iterate the unified
expression (3.1), and this procedure yields, for all n ∈ {0, . . . ,N−1},

W n+1 = e(n+1)∆ tAW 0 +∆ t
n

∑
r=0

e(n+1−r)∆ tAF
(
W r)

+
n

∑
r=0

e(n+1−r)∆ tAΣ
(
W r)

(
0

∆W r

)
.

Writing the first component of W n+1, that is Un+1, componentwise, we obtain that

Un+1
m =

∫ 1

0
GM(tn+1,xm,y)v0(κM(y))dy

+
∫ 1

0

∂GM

∂ t
(tn+1,xm,y)u0(κM(y))dy

+
n

∑
r=0

∫ tr+1

tr

∫ 1

0
GM(tn+1− tr,xm,y) f (U r

MκM(y))dyds

+
n

∑
r=0

∫ tr+1

tr

∫ 1

0
GM(tn+1− tr,xm,y)σ(U r

MκM(y))W (ds,dy). (3.4)

At this point, we introduce a continuous version of our time discretisation scheme,
as follows. For any (t,x) ∈ [0,T ]× [0,1], we define

uM,N(t,x) :=
∫ 1

0
GM(t,x,y)v0(κM(y))dy

+
∫ 1

0

∂GM

∂ t
(t,x,y)u0(κM(y))dy

+
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y) f
(

UκT
N (s)/∆ t

MκM(y)

)
dyds

+
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y)σ
(

UκT
N (s)/∆ t

MκM(y)

)
W (ds,dy),

where we have used the notation κT
N (s) := T κN(s/T ). First, let us observe that, for

all n = 0, . . . ,N and m = 0, . . . ,M−1, we have uM,N(tn,xm) =Un
m. Indeed, this can be

deduced from (3.4) because, for instance, we clearly have that

∫ tn

0

∫ 1

0
GM(tn−κT

N (s),xm,y) f
(

UκT
N (s)/∆ t

MκM(y)

)
dyds

=
n−1

∑
r=0

∫ tr+1

tr

∫ 1

0
GM(tn− tr,xm,y) f (U r

MκM(y))dyds.
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In particular, the process {uM,N(t,x), (t,x) ∈ [0,T ]× [0,1]} satisfies the following
integral equation:

uM,N(t,x) :=
∫ 1

0
GM(t,x,y)v0(κM(y))dy

+
∫ 1

0

∂GM

∂ t
(t,x,y)u0(κM(y))dy

+
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y) f
(
uM,N(κT

N (s),κM(y))
)

dyds

+
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y)σ
(
uM,N(κT

N (s),κM(y))
)

W (ds,dy). (3.5)

As we will deduce from the forthcoming Proposition 4.2, the random field
{uM,N(t,x), (t,x)∈[0,T ]×[0,1]} admits a modification with Hölder-continuous paths.
The main task to be done in the remaining of the paper will be to compare the random
fields uM,N(t,x) and uM(t,x) in L2p(Ω). This will be the main part of Theorem 4.1
below.

4 Strong convergence of the stochastic trigonometric methods

This section is devoted to state and prove the main result of the paper. Namely, we
will derive L2p(Ω)-error estimates for the stochastic trigonometric method (3.3) ap-
plied to the solution (1.4) of our problem (1.1). After stating the main results to be
addressed (Theorems 4.1 and 4.2 below), in Subsection 4.1 we will consider two pre-
liminary results, while the proof of Theorem 4.2 will be developed in Subsection 4.2.

Recall that {u(t,x), (t,x) ∈ [0,T ]× [0,1]} denotes the solution to our stochas-
tic wave equation (1.1), {uM(t,x), (t,x) ∈ [0,T ]× [0,1]} is the numerical approx-
imation of (1.1) by the finite difference scheme with mesh size ∆x = 1/M, and
{uM,N(t,x), (t,x) ∈ [0,T ]× [0,1]} refers to the numerical solution given by the ex-
plicit stochastic trigonometric method (3.2) with a time step size ∆ t = T/N on the
interval [0,T ]. The main result reads as follows.

Theorem 4.1 Suppose that u0 ∈ Hα([0,1]) with α > 3/2 and v0 ∈ Hβ ([0,1]) with
β > 1/2. Assume that the functions f and σ satisfy the Lipschitz condition (1.2) and
the linear growth condition (1.3).

Let p ≥ 1. Then, the following estimate of the error for the full discretisation
holds:

sup
(t,x)∈[0,T ]×[0,1]

(
E
[∣∣uM,N(t,x)−u(t,x)

∣∣2p]) 1
2p ≤C1 (∆x)ρ−ε +C2 (∆ t)τ ,

with ρ = 1
3 ∧ (α− 3

2 )∧ (β − 1
2 ) and τ = 1

2 ∧ (α− 1
2 )∧ (β + 1

2 ), for all small enough
ε > 0. The constants C1 and C2 are positive and do not depend neither on M nor on
N.

Moreover, uM,N(t,x) converges to u(t,x) P-a.s., as M and N tend to infinity, uni-
formly with respect to (t,x) ∈ [0,T ]× [0,1].
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As an immediate consequence of the above result, we observe that, in the case
where the initial data u0 and v0 vanish, one obtains that

sup
(t,x)∈[0,T ]×[0,1]

(
E
[∣∣uM,N(t,x)−u(t,x)

∣∣2p]) 1
2p ≤C1 (∆x)

1
3−ε +C2 (∆ t)

1
2 ,

for all small enough ε > 0.

Remark 4.1 As already pointed out in the Introduction, the space and time steps ∆x
and ∆ t do not need to satisfy any kind of CFL condition, which turns out to be optimal
as far as the numerical implementation of the method is concerned. In Section 5, we
will perform several numerical experiments illustrating the above theoretical result.

The proof of Theorem 4.1 will immediately follow from the spatial convergence
result of Theorem 2.1 and the following one.

Theorem 4.2 Under the assumptions of Theorem 4.1, we have the following error
estimate for the stochastic trigonometric method (3.3) applied to (2.1):

sup
(t,x)∈[0,T ]×[0,1]

(
E
[∣∣uM,N(t,x)−uM(t,x)

∣∣2p]) 1
2p ≤ C (∆ t)τ ,

with τ = 1
2 ∧ (α − 1

2 )∧ (β + 1
2 ), where the constant C is non-negative and do not

depend neither on M nor on N. In particular, in the case where the initial data vanish,
the above error estimate will be simply of order (∆ t)

1
2 .

Moreover, uM,N(t,x) converges to uM(t,x) P-a.s., as N tends to infinity, uniformly
with respect to (t,x) ∈ [0,T ]× [0,1] and M ∈ N.

4.1 Preliminary results

In order to proceed with the proof of Theorem 4.2, we will need two auxiliary results
which will be addressed in this Subsection.

Proposition 4.1 Under the assumptions of Theorem 4.1, we have, for all p≥ 1,

sup
M,N≥1

sup
(t,x)∈[0,T ]×[0,1]

E
[∣∣uM,N(t,x)

∣∣2p
]
<+∞.

Proof By the proof of [24, Prop. 3], the first two terms in (3.5) can be estimated by

sup
M,N≥1

sup
(t,x)∈[0,T ]×[0,1]

∣∣∣∣
∫ 1

0
GM(t,x,y)v0(κM(y))dy

∣∣∣∣
2p

≤C1

sup
M,N≥1

sup
(t,x)∈[0,T ]×[0,1]

∣∣∣∣
∫ 1

0

∂GM

∂ t
(t,x,y)u0(κM(y))dy

∣∣∣∣
2p

≤C2,

where the constants C1 and C2, as well as the forthcoming C3, . . . ,C6, are generic
constants which do not depend on M nor N nor on the mesh parameters ∆ t and ∆x.
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For the term containing the stochastic integral, an application of Burkholder-
Davis-Gundy’s inequality, Hölder’s inequality with respect to the finite measure
|GM(t−κT

N (s),x,y)|2 dsdy, property (2.5), and assumption (1.3) for the function σ ,
yield

E

[∣∣∣∣
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y)σ
(
uM,N(κT

N (s),κM(y))
)

W (ds,dy)
∣∣∣∣
2p
]

≤ CE
[(∫ t

0

∫ 1

0
|GM(t−κT

N (s),x,y)|2|σ
(
uM,N(κT

N (s),κM(y))
)
|2 dyds

)p]

≤ C
∫ t

0

∫ 1

0
|GM(t−κT

N (s),x,y)|2E
[
|σ
(
uM,N(κT

N (s),κM(y))
)
|2p] dyds

≤ C3 +C4

∫ t

0
sup

(r,x)∈[0,s]×[0,1]
E
[
|uM,N(r,x)|2p] ds.

In order to estimate the remaining term in (3.5), we use Hölder’s inequality, Hölder’s
inequality with respect to the finite measure |GM(t − κT

N (s),x,y)|2 dsdy, property
(2.5), and assumption (1.3) for the function f to get

E

[∣∣∣∣
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y) f
(
uM,N(κT

N (s),κM(y)
)

dyds
∣∣∣∣
2p
]

≤ CE
[(∫ t

0

∫ 1

0
|GM(t−κT

N (s),x,y)|2| f
(
uM,N(κT

N (s),κM(y))
)
|2 dyds

)p]

≤ C
(∫ t

0

∫ 1

0
|GM(t−κT

N (s),x,y)|2 dyds
)p−1

×E
[∫ t

0

∫ 1

0
|GM(t−κT

N (s),x,y)|2| f
(
uM,N(κT

N (s),κM(y))
)
|2p dyds

]

≤ C5 +C6

∫ t

0
sup

(r,x)∈[0,s]×[0,1]
E
[
|uM,N(r,x)|2p] ds.

Collecting all the above estimates, we arrive at

sup
x∈[0,1]

E
[∣∣uM,N(t,x)

∣∣2p
]
≤ C̃1 +C̃2

∫ t

0
sup

(r,x)∈[0,s]×[0,1]
E
[
|uM,N(r,x)|2p] ds

and an application of Gronwall’s lemma concludes the proof. ut
Proposition 4.2 Set

wM,N(t,x) := uM,N(t,x)−
∫ 1

0
GM(t,x,y)v0(κM(y))dy−

∫ 1

0

∂GM

∂ t
(t,x,y)u0(κM(y))dy.

Then, there is a positive constant C which does not depend neither on M nor on N
such that, for all s, t ∈ [0,T ] and x,y ∈ [0,1], it holds

E
[∣∣wM,N(t,x)−wM,N(s,y)

∣∣2p
]
≤C

{
|t− s|p + |x− y|p

}
.

This implies that the random field wM,N has a version with jointly δ -Hölder continu-
ous paths, for any δ ∈ (0, 1

2 ).
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Proof Making use of the above Proposition 4.1, one can follow exactly the same
lines as part of the proof of [24, Prop. 2], where the same type of estimate has been
obtained for the moments of u(t,x)− u(s,y). Indeed, the fact that the discretising
functions κM and κN are involved in the expression of wM,N does not alter the main
steps to follow. We leave the details to the reader. ut

4.2 Proof of Theorem 4.2

To start with, observe that the difference between the continuous version of the nu-
merical solution given by the stochastic trigonometric method (3.5) and the solution
of the finite difference discretisation uM(t,x) of the stochastic wave equation reads

uM,N(t,x)−uM(t,x) =
∫ t

0

∫ 1

0

{
GM(t−κT

N (s),x,y) f
(
uM,N(κT

N (s),κM(y))
)

−GM(t− s,x,y) f
(
uM(s,κM(y))

)}
dyds

+
∫ t

0

∫ 1

0

{
GM(t−κT

N (s),x,y)σ
(
uM,N(κT

N (s),κM(y))
)

−GM(t− s,x,y)σ
(
uM(s,κM(y))

)}
W (ds,dy).

These differences can be decomposed as the sum of the following six terms:

D1 :=
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y)

×
{

f
(
uM,N(κT

N (s),κM(y))
)
− f
(
uM(κT

N (s),κM(y))
)}

dyds,

D2 :=
∫ t

0

∫ 1

0

{
GM(t−κT

N (s),x,y) − GM(t− s,x,y)
}

× f
(
uM(κT

N (s),κM(y))
)

dyds,

D3 :=
∫ t

0

∫ 1

0
GM(t− s,x,y)

{
f
(
uM(κT

N (s),κM(y))
)
− f
(
uM(s,κM(y))

)}
dyds,

D4 :=
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y)

×
{

σ
(
uM,N(κT

N (s),κM(y))
)
−σ

(
uM(κT

N (s),κM(y))
)}

W (ds,dy),

D5 :=
∫ t

0

∫ 1

0

{
GM(t−κT

N (s),x,y) − GM(t− s,x,y)
}

×σ
(
uM(κT

N (s),κM(y))
)

W (ds,dy),

D6 :=
∫ t

0

∫ 1

0
GM(t− s,x,y)

×
{

σ
(
uM(κT

N (s),κM(y))
)
−σ

(
uM(s,κM(y))

)}
W (ds,dy).
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Let us proceed with the estimation of the above terms. To start with, using Hölder’s
inequality and the Lipschitz condition of the function f (1.2), we arrive at

E
[∣∣D1

∣∣2p]≤ CE
[∣∣∣
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y)
2

×
∣∣uM,N(κT

N (s),κM(y))−uM(κT
N (s),κM(y))

∣∣2 dyds
∣∣∣

p]
,

where, here and in the following, we recall that the constant C is a generic constant
which does not depend on M nor on the mesh parameters ∆ t and ∆x. We next apply
Hölder’s inequality with respect to the measure

GM(t−κT
N (s),x,y)

2 dyds on [0, t]× [0,1].

Hence,

E
[∣∣D1

∣∣2p]

≤C
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y)
2 dy sup

x∈[0,1]
E
[
|uM,N(κT

N (s),x)−uM(κT
N (s),x)|2p]ds.

Using (2.5), we finally obtain

E
[∣∣D1

∣∣2p]≤C
∫ t

0
sup

x∈[0,1]
E
[
|uM,N(κT

N (s),x)−uM(κT
N (s),x)|2p]ds. (4.1)

In a similar fashion, but using Hölder’s inequality with respect to the measure

|GM(t−κT
N (s),x,y)−GM(t− s,x,y)|2 dyds on [0, t]× [0,1],

one obtains

E
[∣∣D2

∣∣2p] ≤C
(∫ t

0

∫ 1

0
|GM(t−κT

N (s),x,y)−GM(t− s,x,y)|2 dyds
)p−1

×E
[∫ t

0

∫ 1

0
|GM(t−κT

N (s),x,y)−GM(t− s,x,y)|2

×| f (uM(κT
N (s),κM(y)))|2p dyds

]
.

Using the properties (2.6) and (1.3) and invoking Lemma 2.1, we get that

E
[∣∣D2

∣∣2p]≤C(∆ t)p. (4.2)

For the last term D3, using similar techniques as above, we arrive at

E
[∣∣D3

∣∣2p]≤ C
∫ t

0
sup

x∈[0,1]
E
[
|uM(κT

N (s),x)−uM(s,x)|2p]ds.

The regularity properties of the process uM(t,x) given in [24, Lem. 2] permits to show
that

E
[∣∣D3

∣∣2p]≤C (∆ t)2pτ , (4.3)
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where we recall that τ = 1
2 ∧(α− 1

2 )∧(β + 1
2 ), and α and β come from the regularity

assumptions on the initial data.
Next, owing at Burkholder-Davies-Gundy’s inequality, the Lipschitz condition

on the function σ (1.2), Hölder’s inequality with respect to the measure GM(t −
κT

N (s),x,y)
2 dyds, and using property (2.5), we arrive at

E
[∣∣D4

∣∣2p] ≤CE
[(∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y)
2

×|σ(uM,N(κT
N (s),κM(y))−σ(uM(κT

N (s),κM(y)))|2 dyds
)p]

≤C
∫ t

0

∫ 1

0
GM(t−κT

N (s),x,y)
2

× sup
x∈[0,1]

E
[
|uM,N(κT

N (s),x)−uM(κT
N (s),x)|2p]dyds.

Taking into account again property (2.5), it follows

E
[∣∣D4

∣∣2p]≤C
∫ t

0
sup

(r,x)∈[0,s]×[0,1]
E
[
|uM,N(r,x)−uM(r,x)|2p]ds. (4.4)

For the term D5, applying Burkholder-Davis-Gundy’s and Hölder’s inequalities (the
latter with respect to

∣∣GM(t−κT
N (s),x,y)−GM(t− s,x,y)

∣∣2 dyds), and similar argu-
ments as before, we can infer that

E
[∣∣
∫ t

0

∫ 1

0

{
GM(t−κT

N (s),x,y) − GM(t− s,x,y)
}

×σ(uM(κT
N (s),κM(y)))W (ds,dy)

∣∣2p
]

≤C
(∫ t

0

∫ 1

0

∣∣GM(t−κT
N (s),x,y)−GM(t− s,x,y)

∣∣2 dyds
)p−1

×
∫ t

0

∫ 1

0

∣∣GM(t−κT
N (s),x,y)−GM(t− s,x,y)

∣∣2 dy

× sup
(r,x)∈[0,T ]×[0,1]

E[|1+ |uM(r,x)||2p]ds.

Taking into account estimate (2.6) and the result of Lemma 2.1, we obtain

E
[∣∣D5

∣∣2p]≤C (∆ t)p. (4.5)

Let us now deal with the term D6. By Burkholder-Davis-Gundy’s and Hölder’s in-
equalities, followed by the Lipschitz condition on σ and result (2.5), one obtains that

E
[∣∣
∫ t

0

∫ 1

0
GM(t− s,x,y)

{
σ(uM(κT

N (s),κM(y)))−σ(uM(s,κM(y)))
}

W (ds,dy)
∣∣2p]

≤C
∫ t

0

∫ 1

0
GM(t− s,x,y)2 dy sup

x∈[0,1]
E[|uM(κT

N (s),x)−uM(s,x)|2p]ds.
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The regularity properties of the process uM(t,x) given in [24, Lem. 2] (see also [24,
Prop. 2] for the initial values) and estimate (2.5) finally give us

E
[∣∣D6

∣∣2p]≤C (∆ t)2pτ . (4.6)

Putting together estimates (4.1)-(4.4), (4.5) and (4.6), we arrive at

sup
(t,x)∈[0,T ]×[0,1]

E
[∣∣uM,N(t,x)−uM(t,x)

∣∣2p]

≤C1 (∆ t)2pτ +C2 (∆ t)p +C3

∫ t

0
sup

(r,x)∈[0,s]×[0,1]
E
[∣∣uM,N(r,x)−uM(r,x)

∣∣2p]
ds,

for some positive constants C1,C2 and C3 independent of N and M. An application of
Gronwall’s lemma let us conclude the proof of the first part of Theorem 4.2.

In order to prove the assertion about the almost sure convergence of the numerical
solution, we first use [24, Thm. 1] which asserts that uM(t,x) converges to u(t,x) P-
a.s. uniformly in (t,x). It thus suffices to show that uM,N(t,x) converges to uM(t,x) P-
a.s., as N tends to infinity, uniformly with respect to (t,x) ∈ [0,T ]× [0,1] and M ∈N.
Note that it suffices to prove such almost surely convergence for wM,N and wM , where
the former has been defined in Proposition 4.2 and the latter is given by

wM(t,x) := uM(t,x)−
∫ 1

0
GM(t,x,y)v0(κM(y))dy−

∫ 1

0

∂GM

∂ t
(t,x,y)u0(κM(y))dy.

Similarly as in the proof of [24, Thm. 1], we observe that
∣∣wM,N(t,x)−wM(t,x)

∣∣2p ≤C(A1 +A2 +A3),

where C denotes a positive constant and

A1 =
N

∑
n=0

N

∑
i=0

∣∣∣∣wM,N
(

tn,
i
N

)
−wM

(
tn,

i
N

)∣∣∣∣
2p

,

A2 = sup
n,i=0,...,N

sup
|x− i

N |≤ 1
N

sup
|t−tn|≤∆ t

∣∣∣∣wM,N(t,x)−wM,N
(

tn,
i
N

)∣∣∣∣
2p

,

A3 = sup
n,i=0,...,N

sup
|x− i

N |≤ 1
N

sup
|t−tn|≤∆ t

∣∣∣∣wM(t,x)−wM
(

tn,
i
N

)∣∣∣∣
2p

.

By the first part of the proof, we can infer that

E[A1]≤C
( 1

N

)2pτ−2
.

On the other hand, by Proposition 4.1, the paths of wM,N are δ -Hölder continuous
jointly in time and space, for all δ ∈ (0, 1

2 ). Moreover, by [24, Lem. 2], the process
wM also has the same path regularity. Thus, we obtain that

E[A2 +A3]≤C
( 1

N

)2pδ
.
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For the sake of clarity in the notation, let us assume that the initial data are sufficiently
regular so that τ becomes equal to 1

2 . In this case, we have proved that, for all δ ∈
(0, 1

2 ) and p≥ 1,

E

[
sup
M≥1

sup
(t,x)∈[0,T ]×[0,1]

∣∣wM,N(t,x)−wM(t,x)
∣∣2p
]
≤C

( 1
N

)2pδ
,

where the constant C does not depend on M neither on N. At this point, Chebyshev’s
inequality yields

P

{
sup
M≥1

sup
(t,x)∈[0,T ]×[0,1]

∣∣wM,N(t,x)−wM(t,x)
∣∣2p

>
( 1

N

)2
}
≤C

( 1
N

)2pδ−2
.

Hence, the Borel-Cantelli lemma implies that, for sufficiently large p,

sup
M≥1

sup
(t,x)∈[0,T ]×[0,1]

∣∣wM,N(t,x)−wM(t,x)
∣∣2p ≤ 1

N2 P-a.s.

which concludes the proof of the theorem. ut

5 Numerical experiments

Let us first consider the one-dimensional hyperbolic Anderson model [6,7]

∂ 2u
∂ t2 (t,x) =

∂ 2u
∂ 2x

(t,x)+u(t,x)
∂ 2W
∂x∂ t

(t,x), (t,x) ∈ (0,1)× (0,1),

u(t,0) = u(t,1) = 0, t ∈ (0,1),

u(0,x) = sin(2πx),
∂u
∂ t

(0,x) = sin(3πx), x ∈ (0,1).

This linear stochastic partial differential equation with multiplicative noise is now
discretised in space by a finite difference method with mesh ∆x (Section 2). This
leads to a system of stiff stochastic differential equations of the form (2.1). This last
problem is then discretised in time by a stochastic trigonometric method using a step
size ∆ t (Section 3).

Figure 5.1 confirms the results on the spatial discretisation of our numerical dis-
cretisation as stated in Theorem 2.1. The spatial mean-square errors at time Tend = 1

sup
x∈[0,1]

√
E
[
|uM,N(Tend,x)−u(Tend,x)|2

]

are displayed for various values of the parameter ∆x = 1/M. The expected conver-
gence rate O(∆x1/3) is observed. Here, since no exact solution is available, we there-
fore simulate the exact solution u(t,x) with the numerical one using very small step
sizes, i. e., ∆ texact = 2−9 and ∆xexact = 2−9. The expected values are approximated by
computing averages over Ms = 1000 samples. We have checked that, in all numerical
experiments that we present, the Monte-Carlo errors are small enough.
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Fig. 5.1 Anderson model: Spatial rate of convergence of order ∆x1/3. The reference line has slope 1/3
(dashed line).

We are now interested in the time-discretisation of the above stochastic partial
differential equation. In Figure 5.2 one can observe the rate of convergence O(∆ t1/2)
of the mean-square errors in time, as stated by Theorem 4.2. Again, the exact solution
is approximated by the stochastic trigonometric method with a very small step size
∆ texact = 2−9 and uses ∆xexact = 2−9 for the spatial discretisation. Ms = 1000 samples
are used for the approximation of the expected values. For sake of comparison, we
also display the errors of two different time integrators applied to (2.2) (see for exam-
ple [14] or [26]). These numerical schemes are: the semi-implicit Euler-Maruyama
scheme

W n+1 = W n +∆ tAW n+1 +∆ tF(W n)+Σ(W n)

[
0

∆W n

]

and the semi-implicit Crank-Nicolson-Maruyama scheme

W n+1 = W n +
∆ t
2

A(W n+1 +W n)+∆ tF(W n)+Σ(W n)

[
0

∆W n

]
.

Note that no convergence results for nonlinear hyperbolic problems are known for
these numerical integrators.

We next consider a version of the stochastic sine-Gordon equation with multi-
plicative noise

∂ 2u
∂ t2 (t,x)=

∂ 2u
∂ 2x

(t,x)−sin(u(t,x))−sin(u(t,x))
∂ 2W
∂x∂ t

(t,x), (t,x)∈(0,1)×(0,1),

u(t,0) = u(t,1) = 0, t ∈ (0,1),

u(0,x) = sin(2πx),
∂u
∂ t

(0,x) = sin(3πx), x ∈ (0,1).
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Fig. 5.2 Anderson model: Temporal rates of convergence for the stochastic trigonometric method (STM),
the Euler-Maruyama scheme (SEM) and the Crank-Nicolson-Maruyama scheme (CNM). The reference
lines have slopes 1/2 and 1/3 (dashed and dashdotted lines).

As in the first example, we discretise this nonlinear stochastic partial differential
equation by a finite difference method with mesh ∆x (in space) and the stochastic
trigonometric method using a step size ∆ t (in time).

Figure 5.3 displays the spatial mean-square errors at time Tend = 1 and a con-
vergence rate O(∆x1/3) is observed. Again, we simulate the exact solution with the
numerical one using very small step sizes, i. e., ∆ texact = 2−9 and ∆xexact = 2−9. The
expected values are approximated by computing averages over Ms = 1000 samples.

In Figure 5.4 one can observe the rate of convergence in time O(∆ t1/2) for the
stochastic trigonometric method as stated by Theorem 4.2. One can also observe a
faster convergence for this scheme than for the two other semi-implicit numerical
methods. Here again, the exact solution is approximated by the stochastic trigono-
metric method with very small step sizes ∆ texact = 2−9 and uses ∆xexact = 2−9 for
the spatial discretisation. Ms = 1000 samples are used for the approximation of the
expected values.
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Fig. 5.3 Sine-Gordon equation: Spatial rate of convergence of order ∆x1/3. The reference line has slope
1/3 (dotted line).
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Fig. 5.4 Sine-Gordon equation: Temporal rates of convergence for the stochastic trigonometric method
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de Saint-Flour, XIV—1984, volume 1180 of Lecture Notes in Math., pages 265–439. Springer, Berlin,
1986.

29. X. Wang. An exponential integrator scheme for time discretization of nonlinear stochastic wave
equation. arXiv:1312.5185, 2013.

30. X. Wang and S. Gan. A Runge-Kutta type scheme for nonlinear stochastic partial differential equa-
tions with multiplicative trace class noise. Numer. Algorithms, 62(2):193–223, 2013.

31. X. Wang, S. Gan, and J. Tang. Higher order strong approximations of semilinear stochastic wave
equation with additive space-time white noise. arXiv:1308.4529, 2013.

32. Y. Yan. Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM
J. Numer. Anal., 43(4):1363–1384 (electronic), 2005.


