
P
re

p
u
b
lic

ac
ió
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GLOBAL-IN-TIME WEAK MEASURE SOLUTIONS, FINITE-TIME
AGGREGATION AND CONFINEMENT FOR NONLOCAL

INTERACTION EQUATIONS

J. A. CARRILLO1, M. DIFRANCESCO2, A. FIGALLI3, T. LAURENT4 AND D. SLEPČEV5

Abstract. In this paper, we provide a well-posedness theory for weak measure solu-
tions of the Cauchy problem for a family of nonlocal interaction equations. These equa-
tions are continuum models for interacting particle systems with attractive/repulsive
pairwise interaction potentials. The main phenomenon of interest is that, even with
smooth initial data, the solutions can concentrate mass in finite time. We develop an
existence theory that enables one to go beyond the blow-up time in classical norms and
allows for solutions to form atomic parts of the measure in finite time. The weak meas-
ure solutions are shown to be unique and exist globally in time. Moreover, in the case
of sufficiently attractive potentials, we show the finite time total collapse of the solution
onto a single point, for compactly supported initial measures. Finally, we give condi-
tions on compensation between the attraction at large distances and local repulsion of
the potentials to have global-in-time confined systems for compactly supported initial
data. Our approach is based on the theory of gradient flows in the space of probability
measures endowed with the Wasserstein metric. In addition to classical tools, we exploit
the stability of the flow with respect to the transportation distance to greatly simplify
many problems by reducing them to questions about particle approximations.

1. Introduction

We consider a mass distribution of particles, µ ≥ 0, interacting under a continuous
interaction potential, W . The associated interaction energy is defined as

W[µ] :=
1
2

∫
Rd

∫
Rd

W (x− y) dµ(x) dµ(y). (1.1)

Our paper is devoted to the class of continuity equations of the form
∂µ

∂t
= div

[(
∇δW

δµ

)
µ

]
= div [(∇W ∗ µ)µ] x ∈ Rd , t > 0. (1.2)

The equation is typically coupled with an initial datum

µ(0) = µ0. (1.3)

The velocity field in the continuity equation, −(∇W ∗ µ)(t, x), represents the combined
contributions, at the point x, of the interaction through the potential W with particles
at all other points.

The choice of W depends on the phenomenon studied. For instance in population
dynamics, one is interested in the description of the evolution of a density of individuals.
Very often the interaction between two individuals only depends on the distance between
them. This suggests a choice of W as a radial function, i.e. W (x) = w(|x|). Moreover,
a choice of w such that w′(r) > 0 corresponds to an attractive force among the particles
(or individuals), whereas w′(r) < 0 models a repulsive force.
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Equation (1.2) arises in several applications in physics and biology. Simplified inelastic
interaction models for granular media were considered in [4, 18] with W = |x|3/3 and
[40, 26] with W = |x|α, α > 1. Such models usually lead to convex attractive potentials.

Mathematical modelling of the collective behavior of individuals, such as swarming,
has also been treated by continuum models steaming from discrete particle models [30,
14, 38, 31, 39, 15, 33, 13, 21, 22, 16, 17]. Typical examples of interaction potentials
appearing in these works are the attractive Morse potential W (x) = −e−|x|, attractive-
repulsive Morse potentials W (x) = −Cae

−|x|/`a + Cre
−|x|/`r , W (x) = −e−|x|

2
, W (x) =

−Cae
−|x|2/`a + Cre

−|x|2/`r , or W being the characteristic function of a set in Rd. A
major issue is the possibility of a finite time blow-up of initially regular solutions, which
occurs when w is attractive enough near r = 0. In particular, the solution can aggregate
(collapse) part (or all) of its mass to a point in finite time. Blow-up producing potentials
feature a suitable singularity in their second derivative at r = 0. Typically, the potential
is of the form W (x) ≈ |x|1+α with 0 ≤ α < 1, see [25, 7, 6, 5] in case of the Lipschitz
singularity. Related questions with diffusion added to the system have been tackled in
[9, 27, 28, 29].

Finally, another source of models with interaction potential appear in the modelling of
cell movement by chemotaxis. In fact, the classical Patlak-Keller-Segel [35, 24] system,
see [12, 10, 11], corresponds to the choice of the Newtonian potential in R2 as interaction,
W = 1

2π log |x| with linear diffusion. In the case without diffusion, a notion of weak meas-
ure solutions was introduced in [36] for which the author proved global-in-time existence,
although uniqueness is lacking.

Given a continuous potential W , thanks to the structure of (1.2), we can assume
without loss of generality that the following basic assumption holds:

(NL0) W is continuous, W (x) = W (−x), and W (0) = 0.

We will say that W is a locally attractive potential if it verifies (NL0) and:

(NL1) W is λ–convex for a certain λ ∈ R, i.e. W (x)− λ
2 |x|

2 is convex.
(NL2) There exists a constant C > 0 such that

W (z) ≤ C(1 + |z|2), for all z ∈ Rd.

(NL3) W ∈ C1(Rd \ {0}).
(NL4) W has local minimum at x = 0.

We will say that the potential is a pointy locally attractive potential if it satisfies (NL0)-
(NL4) and it has a Lipschitz singularity at the origin. In case the potential is continuously
differentiable at the origin, we will speak about a smooth potential.

Remark 1.1. Assumptions (NL0)-(NL1) imply that

W (x) ≥ λ

2
|x|2, (1.4)

since 0 ∈ ∂W (0) and W (0) = 0. Hypotheses (NL1)-(NL3) imply a growth control on
the gradient of W . More precisely, using the convexity of x 7→ V (x) := W (x)− λ

2 |x|
2 and

the quadratic growth of W (x), there exists K > 0 such that

∇V (x) · p ≤ V (x + p)− V (x) ≤ K(1 + |x|2 + |p|2)
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for any x 6= 0. Now, taking the supremum among all vectors p such that |p| = max{|x|, 1},
we get |∇V (x)| ≤ K(2 + 2|x|) from which

|∇W (x)| ≤ 2K + (2K + |λ|) |x|. (1.5)

Let us also remark that (NL1) together with (NL3) imply that if the potential is not
differentiable at the origin, then it has at most a Lipschitz singularity at the origin.
Examples of locally attractive potentials neither pointy nor smooth are the ones with a
local behavior at the origin like |x|1+α, with 0 < α < 1.

The first problem we treat in this paper is to give a well-posedness theory of weak
measure solutions in the case of locally attractive potentials. Due to the possible concen-
tration of solutions in a finite time, one has to allow for a concept of weak solution in a
(nonnegative) measure sense. Our work fills in an important gap in the present studies
of the equation. Simplistically speaking: [2, 3] provide a good theory for weak measure
solutions for potentials which do not produce blow-up in finite time. On the other hand
in the works that study potentials that do produce blow-up [25, 7, 6, 5] the notion of the
solution breaks down at the blow-up time.

Before discussing the main results of this work, we introduce the concept of weak
measure solution to (1.2). A natural way to introduce a concept of weak measure solution
is to work in the space P(Rd) of probability measures on Rd. Since the class of equation
described here does not feature mass–threshold phenomena, we normalize the mass to 1
without loss of generality. Following the approach developed in [2, 3], we shall consider
weak measure solutions which additionally belong to the metric space

P2(Rd) :=
{

µ ∈ P(Rd) :
∫

Rd

|x|2 dµ(x) < +∞
}

of probability measures with finite second moment, endowed with the 2–Wasserstein
distance dW ; see the next section.

Definition 1.2. A locally absolutely continuous curve µ : [0,+∞) 3 t 7→ P2(Rd) is said
to be a weak measure solution to (1.2) with initial datum µ0 ∈ P2(Rd) if and only if
∂0W ∗ µ ∈ L1

loc((0,+∞);L2(µ(t))) and∫ +∞

0

∫
Rd

∂ϕ

∂t
(x, t) dµ(t)(x) dt +

∫
Rd

ϕ(x, 0) dµ0(x) =∫ +∞

0

∫
Rd

∫
Rd

∇ϕ(x, t) · ∂0W (x− y) dµ(t)(x) dµ(t)(y) dt,

for all test functions ϕ ∈ C∞
c ([0,+∞)× Rd).

In this definition, ∂0W (x) denotes the element of minimal norm in the subdifferential
of W at x. In particular, thanks to (NL3) and (NL4), we show

(∂0W ∗ µ)(x) =
∫

y 6=x
∇W (x− y) dµ(y).

Here, the absolute continuity of the curve of measures means that its metric derivative is
integrable, see next section. Let us point out that the nonlinear term is well-defined due
to the integrability of the velocity field against the weak measure solution.
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The main idea to construct weak measure solutions to (1.2) is to use the interpretation
of these equations as gradient flows in the space P2(Rd) of the interaction potential
functional (1.1) with respect to the transport distance dW . Such an interpretation turns
out to be extremely well-adapted to proving uniqueness and stability results for gradient
flow solutions compared to other strategies. This basic intuitive idea, introduced in [34]
for the porous medium equation and generalized to a wide class of equations in [19], was
made completely rigorous for a large class of equations in [2, 3] including some particular
instances of (1.2). Let us point out that the solutions we eventually construct, called
gradient flow solutions, satisfy more properties than just being weak measure solutions.
For these solutions, we are able to obtain the existence, uniqueness and dW -stability.

Let us remark that the well-posedness theory of gradient flow solutions in the space of
probability measures is developed in [2, 3] in case the potential W is smooth and convex.
Here, we mainly focus on generalizing this theory to allow Lipschitz singularities at the
origin. In the case of locally attractive potentials, the technical point to deal with is the
characterization of the subdifferential and its element of minimal norm. Moreover, we
generalize this gradient flow theory allowing a negative quadratic behaviour at infinity.
This fact introduces certain technical difficulties at the level of coercivity and lower semi-
continuity of the functional defining the variational scheme. The well-posedness theory
of gradient-flow solutions is the goal of Section 2.

One of the key properties of the constructed solutions is the stability with respect to
dW : given two gradient flow solutions µ1

t and µ2
t ,

dW (µ1
t , µ

2
t ) ≤ e−λt dW (µ1

0, µ
2
0)

for all t ≥ 0. This stability result is not only useful for showing uniqueness but it is mainly
a tool for approximating general solutions by particle ones. In fact, the previous estimate
can be considered as a proof of the convergence of the continuous particle method for this
equation on bounded time intervals. This is very much in the spirit of early works in the
convergence of particle approximations to Vlasov-type equations in kinetic theory [32, 37].

Section 3 is devoted to show qualitative properties of the approximate solutions ob-
tained by the variational scheme as in [23]. More precisely, we prove that particles
remain particles at the level of a discrete variational scheme, provided the time step is
small enough. In particular, this shows that the gradient flow solution starting from a fi-
nite number of particles remains at any time a finite number of particles, whose positions
are determined by an ODE system. Although the fact that this construction give the
solutions for finite number of particles can be directly checked on the solution concept,
it is quite interesting to prove it directly at the variational scheme level, as it shows its
suitability as a numerical scheme.

Section 4 is devoted to the question of finite-time blow-up of solutions. For a radially
symmetric attractive potential, i.e. W (x) = w(|x|), w′(r) > 0 for r > 0, the number

T (ε1) :=
∫ ε1

0

dr

w′(r)
, ε1 > 0 (1.6)

can be thought as the time it takes for a particle obeying the ODE Ẋ = −∇W (X) to
reach the origin if it start at a distance ε1 from the origin. This number quantifies the
attractive strength of the potential: the smaller T (ε1) is, the more attractive the potential
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is. It was shown in [6, 7, 8] that if T (ε1) = +∞ for some (or equivalently for all) ε1 > 0,
then solutions of (1.2) starting with initial data in Lp will stay in Lp for all time, whereas
if T (ε1) < +∞ for some ε1 > 0, then compactly supported solutions will leave Lp in finite
time (this result holds in the class of potentials which does not oscillate pathologically
around the origin). In Section 4, thanks to our developed existence theory, we are able
to obtain further understanding of the nature of the blow-up: loosely speaking, we prove
that if the potential is attractive enough (i.e. T (ε1) < +∞ for some ε1 > 0) then solutions
of (1.2) starting with measure initial data will concentrate to a single Delta Dirac in finite
time. We refer to this phenomena as finite time total collapse.

We will say that W is a locally attractive non-Osgood potential if in addition to (NL0)-
(NL4), it satisfies the finite time blow-up condition:

(NL-FTBU) W is radial, i.e. W (x) = w(|x|), W ∈ C2(Rd \ {0}) with w′(r) > 0
for r > 0 and satisfying the following monotonicity condition: either (a) w′(0+) >
0, or (b) w′(0+) = 0 with w′′(r) monotone decreasing on an interval (0, ε0).
Moreover, the potential satisfies the integrability condition∫ ε1

0

1
w′(r)

dr < +∞, for some ε1 > 0.

Let us emphasize that the condition of monotonicity of w′′(r) excludes potentials oscil-
lating badly at the origin, as in [6, 7] (more comments on this assumption are done in
Section 4). Examples of this type of potentials are the ones having a local behavior at
the origin like w′(r) ' rα with 0 < α < 1 or w′(r) ' r log2 r.

The proof is based on showing a finite-time total collapse result for the particles ap-
proximation independent of the number of particles possibly depending on the initial
support. This fact, together with the convergence of the particle approximation, leads to
the finite-time aggregation onto a single particle with the total mass of the system. This
is the main technical novelty of our approach to blow-up.

Let us remark that the blow-up of the solution in Lp norms will in general happen before
the total aggregation/collapse onto a single point. The transition from the first L∞-blow-
up to the total collapse can be very complicated. For instance one could have multiple
points of aggregation onto Dirac deltas interacting between them and with smooth parts
of the measure in a challenging evolution before the total aggregation onto a single point.
This is also explained in Section 4. This complex behavior was already encountered in
[36] in the case of the chemotaxis model without diffusion, but his notion of solution lacks
of uniqueness and stability. Many problems on the details of the blowup in (1.2) and the
interaction of delta masses with surrounding absolutely-continuous-measure part remain.

The last section is devoted to proving confinement of solutions for attractive/repulsive
potentials which are radial and increasing outside a ball, that is for ones that satisfy

(NL-RAD) There exists Ra ≥ 0 such that W (x) = w(|x|) for |x| ≥ Ra, and
w′(r) ≥ 0 for r > Ra.

We say that a potential is strongly-attractive-at-infinity if in addition to (NL0)-(NL4)
and (NL-RAD) it satisfies the strong confinement condition:

(NL-CONF-strong)

lim inf
r→+∞

w′(r) > 8
√

2 CW ,
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where

CW :=

{
0 if Ra = 0

supx∈B(0,Ra)\{0} |∇W (x)| if Ra > 0
(1.7)

From (1.5) follows that CW is finite.
We say that a potential is weakly-attractive-at-infinity if in addition to (NL0)-(NL4)

and (NL-RAD) it satisfies the weak confinement condition:
(NL-CONF-weak)

lim
r→+∞

w′(r)
√

r = +∞.

We prove estimates on the evolution of the radius of the support of solutions. For
potentials satisfying (NL-CONF-strong) these estimates guarantee that if the radius
of the support is large then it must be decreasing. We then refine the argument to show
that even if only (NL-CONF-weak) is satisfied, the radius must remain uniformly
bounded in time. To showcase the robustness of the notion of the solution we use two
different techniques: for the first result we use the JKO approximation scheme, while for
the second one we use the particle approximations.

2. The Jordan–Kinderlehrer–Otto (JKO) scheme

In this section we develop the existence theory for measure–valued solutions in the
sense of Definition 1.2 by following the set up developed in [2]. A natural choice of a
space of measures where to develop such a theory is the space P2(Rd) endowed with the
Wasserstein distance

dW (µ, ν) :=
[
min

{∫
Rd

∫
Rd

|x− y|2dγ(x, y) : γ ∈ Γ(µ, ν)
}]1/2

, (2.1)

where the set Γ(µ, ν) of transport plans between µ and ν is defined by

Γ(µ, ν) :=
{

γ ∈ P(Rd × Rd) : (π1)#γ = µ and (π2)#γ = ν

}
with π1(x, y) = x and π2(x, y) = y, that is,∫

Rd

∫
Rd

φ(x)dγ =
∫

Rd

φ(x)dµ,

∫
Rd

∫
Rd

φ(y)dγ =
∫

Rd

φ(y)dν, for all φ ∈ Cb(Rd).

The space (P2(Rd), dW ) is a complete metric space [41, 2]. The standard theory of optimal
transportation [2, 41] provides the existence of an optimal transport plan for variational
problem (2.1), i.e. there exists γo ∈ Γ(µ, ν) such that

d2
W (µ, ν) =

∫
Rd

∫
Rd

|x− y|2dγo(x, y). (2.2)

The set of all the optimal plans γo satisfying (2.2) is denoted by Γo(µ, ν).
We recall that the interaction energy W : P2(Rd) → R is defined as follows:

W[µ] :=
1
2

∫
Rd

∫
Rd

W (x− y)dµ(x)dµ(y). (2.3)

Note that the definition of W is well-posed due to assumptions (NL1)-(NL2), which
provide suitable control of the integral at infinity. Also, the continuity of W ensures the
well-posedness of W on singular measures.
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Following [2], we shall first address the problem of the existence of a curve of maximal
slope for the functional W. For this purpose, let us introduce some definitions. The slope
of W is defined as:

|∂W|[µ] := lim sup
ν→µ

(W[µ]−W[ν])+

dW (µ, ν)
, (2.4)

where u+ := max{u, 0}. Given an absolutely continuous curve [0, T ] 3 t 7→ µ(t) ∈ P2(Rd),
its metric derivative is:

|µ′|(t) := lim sup
s→t

dW (µ(s), µ(t))
|s− t|

. (2.5)

Finally, we recall the definition of a curve of maximal slope for the functional W. With
the notation in [2], such a notion is referred to as a “curve of maximal slope with respect
to |∂W|”.

Definition 2.1. A locally absolutely continuous curve [0, T ] 3 t 7→ µ(t) ∈ P2(Rd) is a
curve of maximal slope for the functional W if t 7→ W[µ(t)] is an absolutely continuous
function, and the following inequality hold for every 0 ≤ s ≤ t ≤ T :

1
2

∫ t

s
|µ′|2(r) dr +

1
2

∫ t

s
|∂W|2[µ(r)] dr ≤ W[µ(s)]−W[µ(t)]. (2.6)

The notion of solutions provided in Definition 2.1 is purely metric (see [2, Part I]).
We shall improve this notion of solution (in the spirit of [2, Part II]) to a solution in the
“gradient flow” sense in Subsection 2.3.

The inequality (2.6), which defines the notion of curve of maximal slope, is better
understood after providing a representation formula for the slope |∂W| in terms of an
integral norm of a vector field involving the “gradient” of W , or rather its minimal
subdifferential ∂0W . Moreover, the metric derivative |µ′| should be interpreted in a
“length space” sense, which accounts for the metric space P2(Rd) being endowed with a
kind of Riemannian structure, first introduced in [34] and then proven rigorously in [2].
For the sake of clarity, let us briefly recall this framework (see [2, Chapter 8] for further
details).

Given a measure µ ∈ P2(Rd), the tangent space TanµP2(Rd) to P2(Rd) in µ is the
closed vector subspace of L2(µ) given by

TanµP2(Rd) := {∇φ : φ ∈ C∞
c (Rd)}

L2(µ)
.

Moreover, given an absolutely continuous curve t 7→ µ(t) ∈ P2(Rd), the “tangent vectors”
to µ(t) can be identified as elements of the set of vector fields v(t) solving the continuity
equation

∂tµ(t) +∇ · (v(t)µ(t)) = 0 (2.7)
in the sense of distributions. Among all the possible velocity fields v(t) solving (2.7), as
a consequence of [2, Theorem 8.3.1], there is one with minimal L2(µ(t)) norm, equal to
the metric derivative of µ(t). Therefore, we have the following representation formula for
|µ′|(t):

|µ′|(t) = min
{
‖v(t)‖L2(µ(t)) : v(t) solves ∂tµ(t) +∇ · (v(t)µ(t)) = 0

on Rd × (0, T ) in the sense of distributions
}

.
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We recall here the inequality

lim sup
ε↘0

dW ((id + εξ)#µ, µ)
ε

≤ ‖ξ‖L2(dµ) (2.8)

which follows easily from the definition of dW .
As for the slope |∂W| of the functional W (similarly to the classical subdifferential

calculus in Hilbert spaces), it can be written as

|∂W|(µ) = min
{
‖w‖L2(µ) : w ∈ ∂W(µ)

}
,

where ∂W(µ) is the (possibly multivalued) subdifferential of W at the measure µ. The
definition of subdifferential of a functional W on P2(Rd) in the general case is pretty
involved (see [2, Definition 10.3.1]) and we shall not need to recall it here. In the next
subsection, we follow the approach of [2] to characterize the (unique) element of the
minimal subdifferential of W denoted by ∂0W(µ).

2.1. Subdifferential of W. Given W a locally attractive potential, i.e. satisfying
(NL0)-(NL4), let ∂W (x) be the (possibly multivalued) subdifferential of W at the
point x, namely the convex set

∂W (x) :=
{

κ ∈ Rd : W (y)−W (x) ≥ κ · (y − x) + o(|x− y|), for all y ∈ Rd
}

.

Denoting by ∂0W (x) the (unique) element of ∂W (x) with minimal norm, due to the
assumptions (NL3)-(NL4) and (NL0), ∂0W (x) = ∇W (x) for x 6= 0 and ∂0W (0) = 0.

A vector field w ∈ L2(µ) is said to be an element of the subdifferential of W at µ, and
we write w ∈ ∂W[µ], if

W[ν]−W[µ] ≥
∫

Rd×Rd

w(x) · (y − x) dγ(x, y) + o(dW (ν, µ)) (2.9)

for all γ ∈ Γo(µ, ν). In principle, according to [2, Definition 10.3.1], the elements of
∂W (x) are plans γ in the set P2(Rd × Rd) such that (π1)#γ = µ. If a plan γ ∈ ∂W[µ] is
concentrated on the graph of a vector field w ∈ L2(µ), then [2, Definition 10.3.1] reduces
to (2.9). By following the approach of [2, Sections 10.3 and 10.4], it is easy to see that the
(unique) element with minimal norm of ∂W[µ] is concentrated on the graph of a vector
field. Following [2], we call this element the minimal subdifferential of W at µ, and we
denote it by ∂0W[µ]. The following characterization of the subdifferential is obtained in
[2, Theorem 10.4.11] for smooth potentials, and here we generalize it to locally attractive
potentials:

Proposition 2.2. Given a locally attractive potential, the vector field

κ(x) := (∂0W ∗ µ)(x) =
∫

y 6=x
∇W (x− y) dµ(y)

is the unique element of the minimal subdifferential of W, i.e. ∂0W ∗ µ = ∂0W[µ].

Proof. We divide the proof into two steps.
Step 1: κ(x) ∈ ∂W[µ]. We have to show that

W[ν]−W[µ] ≥
∫

Rd×Rd

κ(x) · (y − x) dγ(x, y) + o(dW (ν, µ))
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for all γ ∈ Γo(µ, ν). Thanks to the λ-convexity of W , it suffices to prove that

lim inf
t→0

W[(1− t)π1 + tπ2)#γ]−W[µ]
t

≥
∫

Rd×Rd

κ(x) · (y − x) dγ(x, y). (2.10)

To see this, we observe that the λ–convexity of W implies that the function

t 7→ f(t) :=
W (ty + (1− t)x)−W (x)

t
− λ

2
t|x− y|2 (2.11)

is nondecreasing in t. Therefore, by writing f(1) ≥ lim inft↘0 f(t), integrating in dγ(x, y)
and using the monotone convergence theorem, we easily recover

W[ν]−W[µ] ≥ lim inf
t→0

W[(1− t)π1 + tπ2)#γ]−W[µ]
t

.

We now prove (2.10). Let us compute

W[(1− t)π1 + tπ2)#γ]−W[µ]

=
1
2

∫
Rd×Rd

∫
Rd×Rd

[W (t(y2 − y1) + (1− t)(x2 − x1))−W (x2 − x1)] dγ(x1, y1) dγ(x2, y2)

=
1
2

∫
x1 6=x2

[W (t(y2 − y1) + (1− t)(x2 − x1))−W (x2 − x1)] dγ(x1, y1) dγ(x2, y2)

+
1
2

∫
x1=x2

W (t(y2 − y1)) dγ(x1, y1) dγ(x2, y2). (2.12)

We decompose µ as µa + µr, where µa =
∑

i miδai denotes the atomic part of µ. Disin-
tegrating γ with respect to µ as γx(dy)⊗ µ(dx), we get∑

i

mi

∫
Rd

|y − ai|2 dγai(y) =
∫

Rd×Rd

|y − x|2 dγx(y) dµa(x)

≤
∫

Rd×Rd

|y − x|2 dγ(x, y) = d2
W (µ, ν).

Therefore, observing that 0 ≤ mi ≤ 1 and using the fact that δai(dx1) ⊗ µr(dx2) and
µr(dx1)⊗ µr(dx2) give no mass to the diagonal set {x1 = x2}, we get∫

x1=x2

W (t(y2 − y1)) dγ(x1, y1) dγ(x2, y2) =
∑

i

m2
i

∫
x1=x2

W (t(y2 − y1)) dγai(y1) dγai(y2)

≥ −λ

2
t2
∑

i

m2
i

∫
Rd×Rd

|y2 − y1|2 dγai(y1) dγai(y2)

≥ −λt2
∑

i

mi

∫
Rd×Rd

[
|y2 − ai|2 + |y1 − ai|2

]
dγai(y1) dγai(y2)

≥ −2λt2d2
W (µ, ν).

which implies that in taking the limit as t → 0 in (2.12) we can neglect the term coming
from the integral over the set {x1 = x2}. As for the other term in (2.12), we write it as
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follows:

lim
t→0

∫
x1 6=x2

W (t(y2 − y1) + (1− t)(x2 − x1))−W (x2 − x1)
2t

dγ(x1, y1) dγ(x2, y2)

= lim
t→0

∫
x1 6=x2

[
W (t(y2 − y1) + (1− t)(x2 − x1))−W (x2 − x1)

2t

−λt

4
|x2 − x1 − y2 + y1|2

]
dγ(x1, y1) dγ(x2, y2)

+ lim
t→0

∫
x1 6=x2

λt

4
|x2 − x1 − y2 + y1|2 dγ(x1, y1) dγ(x2, y2). (2.13)

Now, since W is locally Lipschitz with quadratic growth at infinity and has no singularity
out of the origin, in the first integral in the right-hand side of (2.13) we can pass the limit
into the integral because of the monotonicity of the function f(t) defined in (2.11) and
the monotone convergence limit. The second term in the right-hand side of (2.13) equals
zero since µ, ν ∈ P2(Rd). Therefore, using the fact that ∇W is odd, we have

lim
t→0

1
2

∫
x1 6=x2

W (t(y2 − y1) + (1− t)(x2 − x1))−W (x2 − x1)
t

dγ(x1, y1) dγ(x2, y2)

=
1
2

∫
x1 6=x2

∇W (x2 − x1) · [(y2 − x2)− (y1 − x1)] dγ(x1, y1) dγ(x2, y2)

=
∫

x1 6=x2

∇W (x2 − x1) · (y2 − x2) dγ(x1, y1) dγ(x2, y2)

=
∫

Rd×Rd

κ(x) · (y − x) dγ(x, y),

and this gives the desired result.
Step 2: w is the element of minimal norm of ∂W[µ]. We closely follows the
argument in [2, Theorem 10.4.11]. Fix a vector field ξ ∈ C∞

c (Rd, Rd). Observing that
W (x− z + t(ξ(x)− ξ(z))) = W (x− z) = 0 when x = z, we get

lim
t→0

W[(id + tξ)#µ]−W[µ]
t

= lim
t→0

1
2

∫
Rd×Rd

W ((x− z) + t(ξ(x)− ξ(z)))−W (x− z)
t

dµ(x) dµ(z)

= lim
t→0

1
2

∫
x 6=z

W ((x− z) + t(ξ(x)− ξ(z)))−W (x− z)
t

dµ(x) dµ(z)

=
1
2

∫
x 6=z

∇W (x− z) · (ξ(x)− ξ(z)) dµ(x) dµ(z)

=
∫

Rd

κ(x) · ξ(x) dµ(x). (2.14)

Hence, since the definition of slope (2.4) easily implies

lim inf
t↘0

W[(id + tξ)#µ]−W[µ]
dW ((id + tξ)#µ, µ)

≥ −|∂W|(µ),
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we can use (2.8) and (2.14) to get∫
Rd

κ(x) · ξ(x) dµ(x) ≥ −|∂W|(µ) lim inf
t→0

dW ((id + tξ)#µ, µ)
t

≥ −|∂W|(µ)‖ξ‖L2(µ).

Changing ξ with −ξ gives∣∣∣∣∫
Rd

κ(x) · ξ(x) dµ(x)
∣∣∣∣ ≤ |∂W|(µ)‖ξ‖L2(µ),

so that by the arbitrariness of ξ we get ‖κ‖L2(µ) ≤ |∂W|(µ), and therefore κ is the (unique)
element of minimal norm. �

2.2. Well-posedness and convergence of the scheme. The approach of [2] in proving
the existence of a curve of maximal slope for a functional on P2 is based on a variational
version of the implicit Euler scheme, sometimes referred to as the Jordan–Kinderlehrer–
Otto (JKO) scheme or minimizing movement scheme [23, 1, 2]. Given an initial measure
µ0 ∈ P2 and time-step τ > 0, we consider a sequence µτ

k recursively defined by µτ
0 = µ0

and

µτ
k+1 ∈ arg minµ∈P2

{
W[µ] +

1
2 τ

d2
W (µτ

k, µ)
}

, (2.15)

for all k ∈ N.
We shall address here the well-posedness of the definition (2.15) and the convergence of

µτ
k as τ → 0 (after a suitable interpolation) to a limit which satisfies Definition 2.1. Such a

problem has been widely studied for smooth convex potentials in [2], where convergence of
the discrete scheme to a suitable limit is shown. However, allowing for W (x) behaving like
−C|x|2 as |x| → +∞ and for a pointy singularity at x = 0 requires some improvements of
the arguments in [2, Part I], as we shall see below. Indeed let us point out that, for W (x)
behaving like −C|x|2, the functional W[µ] is upper (and not lower!) semicontinuous with
respect to the convergence in dW .

For the sake of clarity, we shall recall all the main steps of the JKO scheme developed in
[2] in the particular case of a functional given by a pure nonlocal interaction energy. We
shall perform this task also for another reason, namely to relax the set of assumptions
(NL0)-(NL4) in order to admit |∇W | to be possibly unbounded at the origin (see
Remark 2.10).

We start by showing that the minimization problem (2.15) admits at least one solution,
which in our situation is not a trivial issue. To this aim, we prove a technical lemma
which will be also useful in the sequel.

Lemma 2.3 (Weak lower semi–continuity of the penalized interaction energy). Suppose
W satisfies (NL0)-(NL3). Then, there exists τ0 > 0 depending only on W such that,
for a fixed µ ∈ P2(Rd), the penalized interaction energy functional

P2(Rd) 3 µ 7→ W[µ] +
1
2τ

d2
W (µ, µ)

is lower semi–continuous with respect to the narrow topology of P(Rd) for all 0 < τ < τ0.

Proof. Let {µn}n ⊂ P2(Rd) such that limn→+∞ µn = µ∞ narrowly. We have to prove
that

lim inf
n→+∞

[
W[µn] +

1
2 τ

d2
W (µn, µ)

]
≥ W[µ∞] +

1
2 τ

d2
W (µ∞, µ). (2.16)
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Let us first suppose that µ has compact support contained in the sphere B(0, R) = {|x| ≤
R}. From the estimate in Remark 1.1, we have

W (x− y) ≥ λ

2
(1 + |x− y|2) ≥ λ

2
(1 + 2|x|2 + 2|y|2),

which implies that

h(x, y) := W (x− y)− λ

2
(1 + 2|x|2 + 2|y|2)

is a nonnegative continuous function. Therefore,

W[µn] +
1

2 τ
d2

W (µn, µ) =
λ

2

∫
Rd

∫
Rd

(1 + 2|x|2 + 2|y|2) dµn(x) dµn(y)

+
∫

Rd

∫
Rd

h(x, y) dµn(x) dµn(y) +
1

2 τ
d2

W (µn, µ)

=
1

2 τ
d2

W (µn, µ) +
∫

Rd

∫
Rd

h(x, y) dµn(x) dµn(y)

λ

2
+ 2λ

∫
Rd

|x|2 dµn(x). (2.17)

Since h ≥ 0, we easily get

lim inf
n→+∞

∫
Rd

∫
Rd

h(x, y)dµn(x)dµn(y) ≥
∫

Rd

∫
Rd

h(x, y)dµ∞(x)dµ∞(y). (2.18)

Now, let γn ∈ Γo(µ, µn). Then,

1
2 τ

d2
W (µn, µ)+ 2λ

∫
Rd

|x|2dµn(x) =
∫

Rd

∫
Rd

(
1
2τ
|x− y|2 + 2λ|y|2

)
dγn(x, y)

=
∫ ∫

|x−y|≤4R

(
1
2τ
|x− y|2 + 2λ|y|2

)
dγn(x, y) (2.19)

+
∫ ∫

|x−y|>4R

(
1
2τ
|x− y|2 + 2λ|y|2

)
dγn(x, y). (2.20)

As for the term in (2.19), we first note the compactness of the domain of integration since
supp(µ̄) ⊂ B(0, R) and thus supp(γn) ⊂ B(0, R) × Rd and the integration is reduced to
the set where x ∈ B(0, R) and |x−y| ≤ 4R. Stability of optimal transportation plans (see
[42, Theorem 5.20]) implies that there exists a subsequence, that we may assume to be
the whole sequence, such that γn converges narrowly to an optimal plan γ∞ ∈ Γo(µ∞, µ).
As a consequence, we easily obtain

lim
n→+∞

∫ ∫
|x−y|≤4R

(
1
2τ
|x− y|2 + 2λ|y|2

)
dγn(x, y)

=
∫ ∫

|x−y|≤4R

(
1
2τ
|x− y|2 + 2λ|y|2

)
dγ∞(x, y) (2.21)

where γ∞ is the narrow limit of γn as n → +∞.
As for the integrand in the term (2.20), we observe that, since |x| ≤ R and |y| ≥

|x− y| − |x| ≥ 4R−R = 3R,

|x− y|
|y|

≥ |y| − |x|
|y|

= 1− |x|
|y|

≥ 1− R

3R
=

2
3
.
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Hence, on the set {|x− y| ≥ 4R}, we have

1
2τ
|x− y|2 + 2λ|y|2 ≥

(
1
3τ

+ 2λ

)
|y|2,

and the right-hand side above is nonnegative for τ small enough. Therefore, as for (2.18),
we easily get

lim inf
n→+∞

∫ ∫
|x−y|>4R

(
1
2τ
|x− y|2 + 2λ|y|2

)
dγn(x, y)

≥
∫ ∫

|x−y|>4R

(
1
2τ
|x− y|2 + 2λ|y|2

)
dγ∞(x, y), (2.22)

where once again, γ∞ ∈ Γo(µ∞, µ). By combining together (2.17), (2.18), (2.21) and
(2.22), and by using that γ∞ ∈ Γo(µ∞, µ), we obtain the desired assertion (2.16).

The proof for a general µ ∈ P2(Rd) easily follows by approximating µ with respect to
dW by a sequence of compactly supported probability measures. �

Remark 2.4. We observe that the optimality of the plans γn is never actually needed
in the previous proof.

Next, we prove the solvability of the minimization problem (2.15).

Proposition 2.5 (Existence of minimizers). Suppose W satisfies (NL0)-(NL3). Then,
there exists τ0 > 0 depending only on W such that, for all 0 < τ < τ0 and for a given
µ ∈ P2(Rd), there is µ∞ ∈ P2(Rd) such that

W[µ∞] +
1

2 τ
d2

W (µ, µ∞) = min
µ∈P2(Rd)

{
W[µ] +

1
2 τ

d2
W (µ, µ)

}
.

Proof. Step 1: Compactness. Let us fix a measure µ ∈ P2(Rd) and a time step τ > 0,
and consider a minimizing sequence µn ∈ P2(Rd), i.e.

inf
µ∈P2(Rd)

{
W[µ] +

1
2 τ

d2
W (µ, µ)

}
= lim

n→+∞

{
W[µn] +

1
2 τ

d2
W (µn, µ)

}
.

Since µn is a minimizing sequence, we have

W[µn] +
1

2 τ
d2

W (µn, µ) ≤ C1 (2.23)

for some constant C1. Then, the lower estimate of W in Remark 1.1 implies

1
2 τ

d2
W (µn, µ) +W[µn] ≥ 1

2 τ
d2

W (µn, µ) +
λ

2

∫
Rd

∫
Rd

(1 + |x− y|2)dµn(x)dµn(y)

≥ 1
2 τ

d2
W (µn, µ) +

λ

2
+ 2λ

∫
Rd

|x|2dµn(x)

≥ 1
2 τ

d2
W (µn, µ) +

λ

2
+ 2λ

∫
Rd

|x|2dµ(x) + 2λd2
W (µn, µ) (2.24)

and the above with τ small enough together with (2.23) implies that d2
W (µn, µ) is uni-

formly bounded with respect to n. Prokhorov’s compactness theorem then implies that
the sequence {µn}n is tight.
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Step 2: Coercivity. We need to prove that

lim inf
n→+∞

[
W[µn] +

1
2 τ

d2
W (µn, µ)

]
≥ C0 d2

W (µn, µ)− C1

for some positive constant C0, C1 independent on n. This follows easily from (2.24) for τ
small enough.

Step 3: Passing to the limit by lower semi–continuity. This is a consequence
of Lemma 2.3. �

Next we have to establish that the family {µτ
k}τ∈(0,τ0) (up to a suitable interpolation)

converges narrowly to a certain limit. This task can be performed exactly as described
in [2, Chapters 2, 3]. For the sake of clarity, we recall here the result in [2] stating the
convergence of the JKO scheme. The proof can be found in [2, Proposition 2.2.3]. First,
we introduce the piecewise constant interpolation

µτ (0) := µ0

µτ (t) := µτ
k if t ∈ ((k − 1)τ, kτ ], k ≥ 1.

Proposition 2.6 (Compactness in the JKO scheme [2]). Suppose W satisfies (NL0)-
(NL4). There exists a sequence τn ↘ 0, and a limit curve µ ∈ ACloc

(
[0,+∞);P2(Rd)

)
,

such that
µn(t) := µτn(t) → µ(t), narrowly as n → +∞

for all t ∈ [0,+∞).

Let us first remark that the previous theorem holds true for potentials that are smooth
everywhere in the sense of replacing (NL4) by W ∈ C1(Rd), fact that will be used later
in Section 5.

According to the notation recalled in [2, Definition 2.0.6], the above proposition states
that the set of minimizing movements for W starting from µ0 is not empty. The last step
of the procedure proposed in [2] is to check that the limit curve provided by Proposition
2.6 is a curve of maximal slope for W according to definition 2.1.

Let µ̃n(t) denote the De Giorgi variational interpolation (see [2, Section 3.2]). Then,
from [2, Lemma 3.2.2] we have the energy inequality

W[µ0] ≥
1
2

∫ T

0
‖vn(t)‖2

L2(µn(t)) dt +
1
2

∫ T

0
|∂W|(µ̃n(t))2 dt +W[µn(T )] (2.25)

for all T > 0, where vn(t) denotes the minimal velocity field associated to the curve
t 7→ µn(t), namely vn(t) is the minimizing velocity field in definition given in (2.5). Up
to a subsequence, both µn(t) and µ̃n(t) narrowly converge to the same limit curve µ(t)
on [0,+∞) provided by Proposition 2.6. The following lemma is needed to suitably pass
to the limit the slope term in (2.25).

Lemma 2.7 (Lower semicontinuity of the slope).

lim inf
n→+∞

∫ T

0
|∂W|(µ̃n(t))dt ≥

∫ T

0
|∂W|(µ̃(t))dt.

Proof. By using the representation formula proven in Proposition 2.2, we have to prove
that

lim inf
n→+∞

∫ T

0

∫
Rd

|κn(x, t)|2dµn(t)(x)dt ≥
∫ T

0

∫
Rd

|κ(x, t)|2dµ(t)(x)dt,
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where
κn(x, t) := ∂0W ∗ µn(x, t), κ(x, t) := ∂0W ∗ µ(x, t).

As a byproduct of [2, Theorem 5.4.4] on the measure space X(T ) := Rd × [0, T ] with the
family of measures µn ⊗ dt, we get the desired assertion once we prove that∫ T

0

∫
Rd

|κn(x, t)|2dµn(x)dt is uniformly bounded (2.26)

and that κn converges weakly to κ, i.e. that for any vector field φ ∈ C∞
c (Rd × [0, T ]; Rd)∫ T

0

∫
Rd

φ(x, t) · κn(x, t)dµn(t)(x) →
∫ T

0

∫
Rd

φ(x, t) · κ(x, t)dµ(t)(x) (2.27)

as n → +∞. We start by showing (2.27). The term on the left-hand side is given by∫ T

0

∫
Rd

φ(x, t)·κn(x, t) dµn(t)(x) =
∫ T

0

∫
x 6=y

φ(x, t) · ∇W (x− y) dµn(t)(y) dµn(t)(x) dt

=
1
2

∫ T

0

∫
x 6=y

(φ(x, t)− φ(y, t)) · ∇W (x− y) dµn(t)(y) dµn(t)(x)dt.

By [2, Lemma 3.2.2], the sequence µn has uniformly bounded second moments. Therefore,
thanks to the linear growth control on the gradient of W in (1.5), the function (φ(x, t)−
φ(y, t)) · ∇W (x − y) is uniformly integrable with respect to µn(t) ⊗ µn(t) ⊗ dt, and we
easily recover (2.27) by weak convergence arguments.

Thanks to (1.4) and the fact that the sequence µn has uniformly bounded second
moments, W[µn] is bounded from below. This fact together with (2.25) trivially implies
(2.26). �

We are now ready to complete the proof of the existence of a solution to (1.2)–(1.3) in
the sense of Definition 2.1.

Theorem 2.8 (Existence of curves of maximal slope). Let W satisfy the assumptions
(NL0)-(NL4). Then, there exists at least one curve of maximal slope for the functional
W, i.e. there exists at least one curve µ ∈ ACloc

(
[0,+∞);P2(Rd)

)
such that the energy

inequality

W[µ0] ≥
1
2

∫ T

0
‖v(t)‖2

L2(µ(t)) dt

+
1
2

∫ T

0

∫
Rd

∣∣∣∣∫
x 6=y

∇W (x− y)dµ(t)(y)
∣∣∣∣2 dµ(t)(x) dt +W[µ(T )], (2.28)

is satisfied, where v(t) ∈ L2(µ(t)) is the minimal velocity field associated to µ.

Proof. We want to prove that the curve µ(t) provided by Proposition 2.6 satisfies the
desired condition. As a consequence of (2.25) and of Lemma 2.7, if we show that

lim inf
n→∞

1
2

∫ T

0
‖vn(t)‖2

L2(µn(t)) dt +W[µn(T )] ≥ 1
2

∫ T

0
‖v(t)‖2

L2(µn(t)) dt +W[µ(T )], (2.29)

all the remaining part of the proof of the convergence of the scheme to a solution goes
through like in the case when W is lower semicontinuous with respect to the narrow
topology, see [2, Chapter 3].
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To prove the inequality (2.29), having in mind the representation formula (2.7) linking
µn and vn, we regularize the solutions of ∂tµ

n(t) + div(vn(t)µn(t)) = 0 and ∂tµ(t) +
div(v(t)µ(t)) = 0 as follows:

vn,ε(t) :=
(vn(t)µn(t)) ∗ ηε

µn(t) ∗ ηε
, µn,ε(t) := µn(t) ∗ ηε,

vε(t) :=
(v(t)µ(t)) ∗ ηε

µ(t) ∗ ηε
, µε(t) := µ(t) ∗ ηε,

where ηε = 1
εd η
( ·

ε

)
∈ C∞(Rd) is a smooth convolution kernel with support the whole Rd,

say a gaussian. Applying [2, Proposition 8.1.8] we deduce that the measures µn,ε(t), µε(t)
are given by the formula µn,ε(t) = (Xn,ε(t))#µ0 and µε(t) = (Xε(t))#µ0, where Xn,ε(t)
and Xε(t) denote the flows of vn,ε(t) and vε(t) respectively, more precisely

d

dt
Xn,ε(t, x) = vn,ε(t, Xn,ε(t, x)), Xn,ε(0, x) = x,

d

dt
Xε(t, x) = vε(t, Xε(t, x)), Xε(0, x) = x.

We now define the transport map from µε(T ) to µn,ε(T ) as T ε
n := Xn,ε(T ) ◦ (Xε(T ))−1.

We have

d2
W (µε(T ), µn,ε(T )) ≤

∫
Rd

|T ε
n(x)− x|2 dµε(T )(x)

=
∫

Rd

|Xn,ε(T ) ◦ (Xε(T ))−1(x)− (Xε(T ))−1(x) + (Xε(T ))−1(x)− x|2 dµ(T )(x)

=
∫

Rd

∣∣∣∣∫ T

0

[
vn,ε(t, Xn,ε(t) ◦ (Xε(T ))−1(x))− vε(t, Xε(t) ◦ (Xε(T ))−1(x))

]
dt

∣∣∣∣2dµε(T )(x)

=
∫

Rd

∣∣∣∣∫ T

0

[
vn,ε(t, Xn,ε(t, x))− vε(t, Xε(t, x))

]
dt

∣∣∣∣2 dµε
0(x)

By Hölder’s inequality and expanding the squares, we get

d2
W (µε(T ), µn,ε(T )) ≤ T

∫
Rd

∫ T

0

∣∣vn,ε(t, Xn,ε(t, x))− vε(t, Xε(t, x))
∣∣2 dt dµε

0(x)

≤ T

∫
Rd

∫ T

0
|vn,ε(t, x)|2 dµn,ε(t)(x) dt + T

∫
Rd

∫ T

0
|vε(t, x)|2 dµε(t)(x) dt

− 2T

∫
Rd

∫ T

0
vn,ε(t, Xn,ε(t, x)) · vε(t, Xε(t, x)) dt dµ0(x). (2.30)

Thanks to [2, Lemma 8.1.10] we have∫
Rd

∫ T

0
|vn,ε(t, x)|2 dµn,ε(t)(x) dt ≤

∫
Rd

∫ T

0
|vn(t, x)|2 dµn(t)(x) dt ∀ ε > 0. (2.31)

Moreover, thanks to the weak convergence of (µn(t), vn(t)µn(t)) to (µ(t), v(t)µ(t)), which
is a consequence of the linear growth control of the gradient of W in (1.5) and the fact
that µn,ε(t) and µε(t) are uniformly (in n ∈ N) bounded away from zero on compact sets
of Rd, we deduce that

vn,ε(t) → vε(t) in L1([0, T ], C∞
loc(Rd)). (2.32)
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Indeed,

Dα[vn,ε − vε] =
Dαηε ∗ (vnµn)

µn,ε
− Dαηε ∗ (vµ)

µε

= Dαηε ∗ (vnµn)
(

µε − µn,ε

µεµn,ε

)
+

1
µε

Dαηε ∗ (vµ− vnµn)

and vn is uniformly bounded in L2(µn) with respect to n. Since the flows Xn,ε(t) and
Xε(t) are globally defined (see for instance [2, Proposition 8.1.8]), (2.32) easily implies
that for any t ∈ [0, T ]

Xn,ε(t) → Xε(t) locally uniformly on compact subsets of Rd. (2.33)

This fact, together with the fact that vn,ε(t, Xn,ε(t)) are uniformly bounded in L2(µ0⊗dt)
thanks to (2.31), implies that

lim
n→∞

∫
Rd

∫ T

0
vn,ε(t, Xn,ε(t, x)) · vε(t, Xε(t, x)) dt dµ0(x)

=
∫

Rd

∫ T

0
|vε(t, Xε(t, x))|2 dt dµ0(x) =

∫
Rd

∫ T

0
|vε(t, x)|2 dµ0(x) dt. (2.34)

To prove (2.34), split the integral on the left-hand side as follows∫
Rd

∫ T

0
vn,ε(t, Xn,ε(t, x)) · vε(t, Xε(t, x)) dt dµ0(x)

=
∫
|x|>R

∫ T

0
vn,ε(t, Xn,ε(t, x)) · vε(t, Xε(t, x)) dt dµ0(x)

+
∫
|x|≤R

∫ T

0
vn,ε(t, Xn,ε(t, x)) · vε(t, Xε(t, x)) dt dµ0(x) =: I1 + I2.

Now, thanks to (2.31) and the fact that vn is uniformly bounded in L2(µn) with respect
to n, we can estimate

I2
1 ≤

∫
Rd

∫ T

0
|vn,ε(t, Xn,ε(t, x))|2 dt dµ0(x)

∫
|x|>R

∫ T

0
|vε(t, Xε(t, x))|2 dt dµ0(x)

≤ C

∫
|x|>R

∫ T

0
|vε(t, Xε(t, x))|2 dt dµ0(x)

for some constant C independent on n. Hence, one can choose R large enough such that
|I1| < η for an arbitrarily small η > 0. On the other hand, (2.32) and (2.33) imply

I2 →
∫
|x|<R

∫ T

0
|vε(t, x)|2 dµ0(x) dt

as n → +∞, and (2.34) follows by letting R → +∞.
Therefore, by combining (2.34) with (2.30) and (2.31) we obtain

lim inf
n→∞

d2
W (µε(T ), µn,ε(T )) + 2TW[µn(T )] (2.35)

≤ lim inf
n→∞

T

[∫
Rd

∫ T

0
|vn(t, x)|2 dµn(t) dt−

∫
Rd

∫ T

0
|vε(t, x)|2 dµε(t)(x) dt + 2W[µn(T )]

]
.
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We now claim that there exists a constant C0 > 0, depending only on the convolution
kernel η, such that for any µ ∈ P(Rd)

d2
W (µ, µ ∗ ηε) ≤ C0ε

2. (2.36)

Indeed is suffices to consider the transport plan γε ∈ Γ(µ, µ ∗ ηε) defined has∫
Rd×Rd

f(x, y) dγε(x, y) :=
∫

Rd×Rd

f(x, y)ηε(y − x) dy dµ(x) ∀ f ∈ Cb(Rd × Rd),

to get that ∫
Rd×Rd

|y − x|2 dγε(x, y) =
∫

Rd

|z|2ηε(z) dz = ε2

∫
Rd

|z|2η(z) dz,

which proves (2.36). We finally observe that

lim inf
ε→0

∫
Rd

∫ T

0
|vε(t, x)|2 dµε(t)(x) dt ≥

∫
Rd

∫ T

0
|v(t, x)|2 dµ(t)(x) dt (2.37)

(actually using (2.31) one could prove that the above liminf is a limit, and equality holds).
Combining (2.35) with (2.36) we obtain

lim inf
n→∞

d2
W (µ(T ), µn(T )) + 2TW[µn(T )] ≤ lim inf

n→∞
T

[∫
Rd

∫ T

0
|vn(t, x)|2 dµn(t) dt

−
∫

Rd

∫ T

0
|vε(t, x)|2 dµε(t)(x) dt + 2W[µn(T )]

]
+ O(ε),

so, that letting ε → 0, thanks to (2.37) we finally get

lim inf
n→∞

d2
W (µ(T ), µn(T )) + 2TW[µn(T )] (2.38)

≤ lim inf
n→∞

T

[
2W[µn(T )] +

∫
Rd

∫ T

0
|vn(t, x)|2 dµn(t) dt−

∫
Rd

∫ T

0
|v(t, x)|2 dµ(t)(x) dt

]
.

Then, in view of Lemma 2.3, we deduce that

lim inf
n→∞

d2
W (µ(T ), µn(T )) + 2TW[µn(T )] ≥ 2TW[µ(T )] (2.39)

holds for T small enough. From (2.39) combined with (2.38) we obtain that (2.29) holds
provided T is sufficiently small (but independent on the initial datum µ0), and this allows
to prove the existence of a curve of maximal slope on a small time interval [0, T ]. Iterating
now the construction via minimizing movements on [T, 2T ], [2T, 3T ] and so on, and adding
the energy inequalities (2.28) on each time interval, we get the desired result. �

Remark 2.9 (The ODE system). It is straightforward to verify that C1 solutions of the
ODE system (for the time intervals that such exist)

ẋi = −
∑
j 6=i

mj∇W (xi − xj), i = 1, . . . , N (2.40)

with mi > 0 for i = 1, . . . , N and
∑

i mi = 1, are solutions, in the distributional sense, as
in Definition 1.2, of the PDE

∂µ

∂t
= div[(∇W ∗ µ)µ],
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with µ(t) =
∑N

i=1 miδxi(t). Conversely if µ(t) of this form solves the PDE, and xi are C1

for i = 1, . . . , N then xi solve the ODE system.
The question is what happens if the particles collide: can the solutions of the PDE still

be represented by an ODE? To give an affirmative answer to this question we amend the
ODE system (2.40). We consider absolutely continuous solutions of

ẋi =−
∑

j∈C(i)

mj∇W (xi − xj), i = 1, . . . , N (2.41)

where C(i) := {j ∈ {1, . . . , N} : j 6= i, xj(t) 6= xi(t)} (2.42)

More precisely we consider the solutions of the associated integral equation. If C(i) is
empty, then all particles have collapsed to a single particle. We then define the right hand
side to be zero, that is we define the sum over empty set of indexes to be zero. The right
hand side of this ODE system is bounded and Lipschitz-continuous in space on short time
intervals. Thus the ODE system has a unique Lipschitz-continuous solutions on short time
intervals. The estimate (1.5) then implies that the solutions are global-in-time. Note that
the solutions are Lipschitz (in time) on bounded time intervals. Also note that collisions
of particles can occur, but that we do not relabel the particles when they collide. Since
the number of particles is N there exist 0 ≤ k ≤ N − 1 times 0 =: T0 < T1 < T2 < · · · <
Tk < ∞ =: Tk+1 at which collisions occur. Note that µ(t) =

∑N
i=1 miδxi(t) is a solution

of the PDE on the time intervals [Tl, Tl+1). Furthermore, the Lipschitz continuity of xi

implies that µ is an absolutely continuous curve in P2(Rd). It is then straightforward
to verify that µ is a weak solution according to Definition 1.2. Since the solution to the
PDE is unique the converse claim also holds.

Let us mention that while above we did not relabel the particles after collisions, at
times it is useful to do so. That is on time intervals [Tl, Tl+1) the ODE system (2.41) is
equivalent to

dx̃i

dt
= −

∑
j 6=i

m̃j∇W (x̃l − x̃j), i = 1, . . . , Nl (2.43)

where Nl is the number of distinct particles on the time interval [Tl, Tl+1), and x̃j , m̃j

are their locations and masses, respectively.

Remark 2.10 (Existence of minimizing movements when∇W is unbounded). We remark
here that the construction of the JKO scheme up to the proof of the Proposition 2.6 can
be performed even in case ∇W has a singular behavior such as W (x) = |x|α for α ∈ (0, 1)
(although in this case we are not able to characterize the subdifferential). Therefore,
one can easily prove that there exist at least one minimizing movement for such a kind
of functional. Note that the case α = 0 is critical, since one recovers the logarithmic
kernel W (x) = log |x| as α → 0, for which it is a open problem how to define unique
global-in-time weak measure solutions for all initial masses, see [36].

2.3. Gradient Flow Solutions. In this subsection, we will show the existence of global-
in-time weak measure solutions for (1.2) for locally attractive potentials as a consequence
of the general abstract theorems proved in [2]. In fact, using that the potential is λ-convex
by (NL1), Lemma 2.3 and the existence of minimizers in Proposition 2.5, we meet the
hypotheses of [2, Theorem 11.1.3]. This abstract theorem shows that curves of maximal
slope are equivalent under certain hypotheses to gradient flows. As a direct consequence
of the existence of curves of maximal slope in Theorem 2.8, we can assert the following
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result. Let us remark that Proposition 2.2 has played a key role in the argument leading
to Theorem 2.8 in two ways: allowing to show the lower semicontinuity of the slope to
get the energy inequalities, and in order to identify the limiting velocity field.

Theorem 2.11 (Existence of the Gradient Flow). Given any µ0 ∈ P2(Rd), then there
exists a gradient flow solution, i.e. a curve µ ∈ ACloc([0,∞);P2(Rd)) satisfying

∂µ(t)
∂t

+ div(v(t)µ(t)) = 0 in D′([0,∞)× Rd),

v(t) = −∂0W[µ(t)] = −∂0W ∗ µ(t),

‖v(t)‖L2(µ(t)) = |µ′|(t) a.e. t > 0,

with µ(0) = µ0. Moreover, the energy identity∫ b

a

∫
Rd

|v(t, x)|2 dµ(t)(x) dt +W[µ(b)] = W[µ(a)]

holds for all 0 ≤ a ≤ b < ∞.

As a summary, the curves of maximal slope are gradient flow solutions and weak
measure solutions in the sense of Definition 1.2. Moreover, the λ-geodesic convexity of
the functional plays a crucial role for the uniqueness of gradient flow solutions. The
following result follows readily from [2, Theorem 11.1.4].

Theorem 2.12 (dW -Contraction). Given two gradient flow solutions µ1(t) and µ2(t) in
the sense of the theorem above, we have

dW (µ1(t), µ2(t)) ≤ e−λt dW (µ1
0, µ

2
0)

for all t ≥ 0. In particular, we have a unique gradient flow solution for any given µ0 ∈
P2(Rd). Moreover, the gradient flow solution is characterized by a system of evolution
variational inequalities:

1
2

d

dt
d2

W (µ(t), σ) +
λ

2
d2

W (µ(t), σ) ≤ W[σ]−W[µ(t)] a.e. t > 0,

for all σ ∈ P2(Rd).

With this we have completed the existence, uniqueness and stability for gradient
flow solutions for locally attractive potentials and smooth potentials with less restrictive
growth conditions at infinity than in [2].

Remark 2.13 (Comparison with classical PDE arguments). Let us observe that a more
classical strategy to construct weak measure solutions is based on approximating the
initial datum by atomic measures, i.e. showing the convergence of the particle method.
More precisely, one exploits the existence of solutions for the discrete particle system in
Remark 2.9 and the stability result in Theorem 2.12 to show convergence of the discrete
approximating solutions to a limit curve. In this way, everything reduces to prove that
the limit curve is a weak measure solution to (1.2), which is however not completely
trivial, and would require some work. Moreover, it is not clear how to show directly that
the weak measure solutions constructed in this way are both gradient flow solutions and
curves of maximal slope, and that they satisfy the energy identity. This kind of strategy
is well-known in kinetic theory, see for instance [32, 37].
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3. Particle measures in the JKO scheme

In this section, we show that the JKO scheme preserves the atomic part of the initial
datum for all times, provided the time step is small enough. In particular, if we start
with N -particles measure, it remains so, possibly with less particles, for all times. As
a consequence, this immediately identifies the limit solution of the JKO scheme in this
particular case. Moreover, it shows the well-posedness of a particle numerical scheme for
solving numerically (1.2). More comments on this will be given below.

Given µ ∈ P2(Rd) let, for τ > 0,

Fτ [µ] := W[µ] +
1
2τ

d2
W (µ, µ). (3.1)

Let us denote u− := max{0,−u}. We show that during a sufficiently small step of the
JKO scheme, the mass contained in a particle remains concentrated, regardless of what
the rest of the state looks like.

Definition 3.1 (atomization). Given µ ∈ P1(Rd), µ∗ stands for the point mass located
at the center of mass of µ, i.e:

µ∗ := δz where z =
∫

Rd

x dµ(x)

We say that µ∗ is the atomization of µ.

Theorem 3.2. Assume W satisfies (NL0)-(NL1). Let µ = mδa + µr ∈ P2(Rd) with
0 < m ≤ 1 and δa⊥µr. Given any τ > 0 such that τλ− < 1, let

µ ∈ argmin ν∈P2(Rd)Fτ [ν], (3.2)

and denote by π an optimal transportation plan between µ and µ. Let us define

µ1(E) :=
1
m

π({a} × E), (3.3)

for any Borel set E. Then µ1 = µ∗1. In particular,

µ = mδz + µs

for some z ∈ Rd and µs a nonnegative measure.

To rephrase the statement of the theorem in plain language: Any optimal transporta-
tion plan from the present state µ to a minimizer of the JKO step µ carries all the mass
from the particle at a to another point z. Thus the updated state has a particle at z,
whose mass is at least the same as the one of the particle which was in a.

In case the measure µ is a sum of N particles, by applying Theorem 3.2 to each particle,
we easily conclude that µ is still a sum of particles, possibly less than N .

Corollary 3.3 (Particles remain particles). Assume W satisfies (NL0)-(NL1). Let
µ =

∑N
i=1 miδxi, where x1, . . . , xN are distinct points in Rd,

∑N
i=1 mi = 1 and mi ∈ (0, 1).

Given any τ > 0 such that τλ− < 1, let

µ ∈ argmin ν∈P2(Rd)Fτ [ν].

Then there exist y1, . . . , yN ∈ Rd, not necessarily distinct, such that µ =
∑N

i=1 miδyi.
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To prove Theorem 3.2, given a minimizer µ of the JKO step, we show that

µnew := mµ∗1 + (µ−mµ1) (3.4)

decreases the JKO functional:

Fτ [µnew] < Fτ [µ], if µ1 6= µ∗1. (3.5)

This implies µ = µnew. To prove (3.5) we examine what effect does atomizing µ1 have on
the terms in the JKO functional: the energy and the Wasserstein distance. We show that,
as expected, atomizing decreases the Wasserstein distance. On the other hand atomizing
can increase the interaction energy, but only if λ is negative. The key observation is that
in each of the terms the change is controlled by the variance of µ1. Taking the time step
small enough allows us to conclude.

Lemma 3.4. Assume W satisfies (NL0)-(NL1). Let ν1, ν2 ∈ P2(Rd) and ν = m1ν1 +
m2ν2 with 0 ≤ m1 ≤ 1 and m2 = 1−m1. Let νnew := m1ν

∗
1 + m2ν2. Then

W[ν]−W[νnew] ≥ λ

2
m1V ar(ν1)

Proof. Introduce the symmetric bilinear form

B(η1, η2) =
1
2

∫
Rd

∫
Rd

W (x− y) dη1(x) dη2(y)

so that

W[ν]−W[νnew] = B(m1ν1 + m2ν2,m1ν1 + m2ν2)−B(m1ν
∗
1 + m2ν2,m1ν

∗
1 + m2ν2)

= 2m1m2B(ν1, ν2) + m2
1B(ν1, ν1)− 2m1m2B(ν∗1 , ν2)−m2

1B(ν∗1 , ν∗1)

= m1m2

∫
Rd

∫
Rd

[W (x− y)−W (z1 − y)] dν1(x) dν2(y)

+
m2

1

2

∫
Rd

∫
Rd

[W (x− y)−W (z1 − z1)] dν1(x) dν1(y),

where z1 is the center of mass of ν1. By the λ-convexity assumption (NL1), for each
p ∈ Rd and rp ∈ ∂W (p) 6= ∅ the inequality

W (q) ≥ W (p) + rp · (q − p) +
λ

2
|q − p|2

holds for all q ∈ Rd. So for y ∈ Rd there exist rz1−y ∈ ∂W (z1 − y) and r0 ∈ ∂W (0) such
that

W (x− y)−W (z1 − y) ≥ rz1−y · (x− z1) +
λ

2
|x− z1|2

W (x− y)−W (0) ≥ r0 · (x− y) +
λ

2
|x− y|2
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holds for all x, y ∈ Rd. Using that
∫

Rd(x− z1) dν1(x) = 0, we obtain

W[ν]−W[νnew] ≥ m1m2
λ

2
V ar(ν1) +

m2
1

2
λ

2

∫
Rd

∫
Rd

|(x− z1)− (y − z1)|2 dν1(x) dν1(y)

= m1m2
λ

2
V ar(ν1) + m2

1

λ

2
V ar(ν1)

=
m1λ

2
V ar(ν1),

concluding the proof. �

Lemma 3.5. Let µ given as in Theorem 3.2. Given any ν ∈ P2(Rd), let π be the optimal
plan between µ and ν and ν1 defined by (3.3). Then, being νnew := mν∗1 + (ν −mν1),

d2
W (µ, ν)− d2

W (µ, νnew) ≥ m Var(ν1),

Proof. Let z be the center of mass of ν1 (so that ν∗1 = δz). Denote by π1 the restriction
of π to {a} × Rd, and π2 := π − π1. Let πnew := mδ(a,z) + π2. Note that πnew is a
transportation plan between µ and νnew. Therefore,

d2
W (µ, ν) =

∫
Rd

∫
Rd

|x− y|2 d(π1 + π2)

= m

∫
Rd

|y − a|2 dν1(y) +
∫

Rd

∫
Rd

|x− y|2 dπ2

= m

∫
Rd

[
|y − z|2 + 2(y − z) · (z − a) + |z − a|2

]
dν1(y) +

∫
Rd

∫
Rd

|x− y|2 dπ2

= m

∫
Rd

|y − z|2 dν1(y) +
∫

Rd

∫
Rd

|x− y|2 d(mδ(a,z) + π2)

≥ mV ar(ν1) + d2
W (µ, νnew),

as desired. �

Proof of Theorem 3.2. Assume that the claim does not hold, and consider µnew defined
by (3.4). Then, Lemmas 3.4 and 3.5 imply that

Fτ [µ]− Fτ [µnew] = W[µ]−W[µnew] +
1
2τ

(
d2

W (µ, µ)− d2
W (µ, µnew)

)
≥ m

2

(
λ +

1
τ

)
V ar(µ1) > 0,

contradicting the minimality of µ. �

Remark 3.6. The above property of minimizers in each step of the JKO scheme carries
over to the limiting solution, thanks to the convergence of the JKO scheme towards curves
of maximal slope and gradient flow solutions of Section 2, see Theorem 2.8. Therefore,
solutions corresponding to initial data with a finite number of particles plus an orthogonal
part remain so for all times, with a possibly decreasing number of particles in time, see
also Proposition 4.6. Moreover, combining Corollary 3.3 with the convergence of the JKO
scheme in Theorem 2.8 allows to recover Remark 2.9, i.e. the correspondence between
solutions of the ODE system (2.40) and gradient flow solutions of (1.2) with atomic initial
measures.
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4. Finite-time Total Collapse and Multiple Collapse by Stability

In this section, we focus on studying the large-time asymptotics of locally attractive
non-Osgood potential, i.e. potentials satisfying assumptions (NL0)-(NL3) and (NL-
FTBU). Note that the hypothesys (NL-FTBU) implies (NL4) since the origin becomes
a global minimum.

We start by discussing the monotonicity assumption in (NL-FTBU). If the potential
satisfies w′(0+) > 0, i.e. it has a Lipschitz singularity at the origin, nearby particles
move towards each other with a relative speed of about 2w′(0+), and thus we expect the
concentration in finite time. In case (NL-FTBUb), thanks to the non-Osgood condition,
we do expect again concentration in finite time. In fact, in the case of a single particle
subject to the potential W (x), one easily checks that the particle reaches the origin in
finite time. As we show in Theorem 4.4, compactly supported measures do collapse
completely in finite time.

Let us start by showing that the monotonicity assumption in the hypotheses (NL-
FTBUb) gives local information about the potential behaviour.

Lemma 4.1 (Local behavior at the singularity). Given ω ∈ C2((0,+∞)) such that
ω′(0+) = 0 with ω′′(r) monotone decreasing on an interval (0, ε0), then ω′(r)

r is decreasing
in (0, ε0).

Proof. Since ω′′ is monotone decreasing on (0, ε0), for all r ∈ (0, ε0) there exists s ∈ (0, r)
such that ω′(r)

r = ω′′(s) ≥ ω′′(r). This implies

d

dr

(
ω′(r)

r

)
=

1
r

(
ω′′(r)− ω′(r)

r

)
≤ 0.

Therefore ω′(r)/r decreases in this neighborhood of 0. �

Remark 4.2 (No Oscillation Condition on the potential). Let us point out that the
condition of ω′′(r) being monotone decreasing on an interval (0, ε0) is not too restrictive.
Actually, the non-Osgood assumption, i.e. 1/ω′ integrable at 0, together with plain
monotonicity of ω′′(r) on an interval around 0, implies that ω′′ is monotone decreasing on
some interval around 0 (the only possibility to violate this condition would be that the
second derivative oscillate wildly at 0). Let us give a quick proof. By the non-Osgood
condition, we easily have

lim
ε→0+

sup
r≤ε

ω′(r)
r

= +∞ (4.1)

Now, we use it to deduce that there exists a sequence rn → 0+ such that ω′(rn)/rn → +∞.
Since by assumption ω′(0+) = 0+, we know that ω′(rn)/rn = ω′′(sn) → +∞ for some
sequence 0 < sn ≤ rn. But since ω′′ is monotone, this implies that limr→0+ ω′′(r) = +∞
and that ω′′ is decreasing around 0.

Let us start by showing the finite total collapse in the case of finite number of particles.

Proposition 4.3 (Finite Time Particles Collapse). Assume W satisfies (NL0)-(NL3)
and (NL-FTBU). Given the initial datum µ0 =

∑N
i=1 miδx0

i
with center of mass

xc :=
N∑

i=1

mix
0
i ,
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let µ(t) denote the unique gradient flow solution with µ(0) = µ0. Set R0 to be the largest
distance from the initial particles to the center of mass:

R0 := max
i=1,...,N

|x0
i − xc|.

Then there exists T ∗ > 0, depending only on R0 but not on the number of particles, such
that µ(t) = δxc for t ≥ T ∗.

Proof. Let us define the curves t 7→ xi(t), i = 1, . . . , N as the solution of the ODE
system discussed in Remark 2.9:

ẋi = −
∑

j∈C(i)

mj∇W (xi − xj), i = 1, . . . , N

where C(i) = {j ∈ {1, . . . , N} : j 6= i, xj(t) 6= xi(t)}. Recall also that we define the
sum over empty set of indexes to be zero. Then, µ(t) =

∑N
i=1 miδxi(t), where possibly

xi(t) = xj(t) for some i 6= j.
Our claim is equivalent to saying that there exists T ∗ > 0 such that xi(t) = xc for all

t ≥ T ∗ and i = 1, . . . , N . Note that, due to assumption (NL0) the center of mass of the
particles is preserved in time for the solutions of the ODE system. Since the system is
translation invariant, we can assume that xc = 0 without loss of generality.

We define the Lipschitz function R(t) to be the distance of the furthest particle from
the center of mass:

R(t) := max
i=1,...,N

|xi(t)|.

Recall that xi are Lipschitz in time, and are C1 for all but finitely many collision times
0 =: T0 < T1 < T2 < · · · < Tl < Tl+1 := +∞.

We first compute a differential inequality for the function R(t). Due to assumption
(NL-FTBU), for all t ≥ 0 and all i = 1, . . . , N

d+xi

dt
:= lim

h→0+

xi(t + h)− xi(t)
h

= −
∑

j∈C(i)

mj∇W (xi − xj)

= −
∑

j∈C(i)

mj
xi − xj

|xi − xj |
w′(|xi − xj |). (4.2)

While it would have been sufficient to deal with the derivative dxi
dt which exists a.e., we

wanted to highlight the fact that the right-hand derivative exists for all times, including
the collision times. Using (4.2), we have

d+

dt
R2(t) = max

{i : xi(t)=R(t)}

d+

dt
|xi|2

= max
{i : xi(t)=R(t)}

−2
∑

j∈C(i)

mj
(xi − xj) · xi

|xi − xj |
w′(|xi − xj |) .

(4.3)

Note that since R is Lipschitz, d
dtR

2 exists a.e. and is equal to d+

dt R2. Observe that for
any i as above, (xi − xj) · xi ≥ 0 since all other particles are inside B(0, R(t)). Using
again assumption (NL-FTBU), we have w′(|xi − xj |) > 0 and thus d+

dt R(t) ≤ 0, from
which we deduce that R(t) ≤ R0 for all t ≥ 0. Let us distinguish two cases:
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Case (a): w′(0+) > 0. Let us define

D := min
r∈[0,2R0]

w′(r) > 0.

By coming back to (4.3), we deduce that for all t ≥ 0

d+

dt
R(t)2 ≤ max

{i : xi(t)=R(t)}
−2D

∑
j∈C(i)

mj
(xi − xj) · xi

|xi − xj |

≤ max
{i : xi(t)=R(t)}

− D

R(t)

∑
j 6=i

mj(xi − xj) · xi

since |xi − xj | ≤ 2R(t) for j 6= i and (xi − xj) · xi ≥ 0. It is easy to check, using the unit
total mass of the measure and that the center of mass is zero, that for any i as above∑

j 6=i

mj(xi − xj) · xi = R(t)2.

Hence d+

dt R(t) ≤ −D. We conclude that the claim of the proposition holds with T ∗ =
R0/D.

Case (b): w′(0+) = 0 together with the other assumptions in (NL-FTBUb). From
Lemma 4.1 we deduce that there exists ε0 > 0 such that w′(r)/r is decreasing in (0, ε0).
Without of loss of generality, we can assume that ε0 < ε1, with ε1 as in (NL-FTBUb).

Let us first show that R(t) must reach values less than ε0/2 in finite time. Since
R(t) is decreasing, it suffices to consider the case R0 > ε0/2. Fix any time such that
R(t) ≥ ε0/2. Coming back to (4.3), we distinguish for any i such that R(t) = |xi(t)|, two
sets of particles: I, where |xi− xj | ≤ ε0/2, and II where |xi− xj | > ε0/2. For indexes in
the set I we can use that w′(r)/r is decreasing, while to handle the set II we define

D := min
r∈[ε0/2,2R0]

w′(r) > 0.

Using again |xi − xj | ≤ 2R(t) for j 6= i and (xi − xj) · xi ≥ 0, we can write

d+

dt
R2(t) ≤ max

{i : xi(t)=R(t)}

−2
w′(ε0)

ε0

∑
(I)

mj(xi − xj) · xi −
D

R(t)

∑
(II)

mj(xi − xj) · xi

 .

Thanks to R(t) ≥ ε0/2 and w′(ε0) ≥ D, we can finally conclude that

d+

dt
R2(t) ≤ max

{i : xi(t)=R(t)}
− D

R(t)

∑
j 6=i

mj(xi − xj) · xi = −DR(t)

for all times such that R(t) ≥ ε0/2. Thus, there exists a time τ such that R(t) ≤ ε0/2
for t ≥ τ .

We now refine the above argument for t ≥ τ using that the distance between any two
particles satisfies |xi− xj | ≤ 2R(t) ≤ ε0. Since w′(r)/r is decreasing on (0, ε0) we deduce
that for times t ≥ τ

d+

dt
R(t)2 ≤ max

{i : xi(t)=R(t)}
−w′(2R(t))

R(t)

∑
j 6=i

mj(xi − xj) · xi = −w′(2R(t))R(t),
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so that d
dtR(t) ≤ −w′(2R(t))/2 for almost all t ≥ τ . Using the non-Osgood condition,

i.e. the integrability of 1/w′(r) at the origin, we conclude that R(t) = 0 for a certain T ∗

completely determined by the inequality d
dtR(t) ≤ −w′(2R(t))/2.

Let us remark that this proof shows that the time of total collapse of the particles to
their center of mass does not depend either on the number of particles or their masses,
but only on R0. �

Making use of the stability result, the convergence of the particle method, and the total
collapse for finite number of particles, we deduce the second main result of this work.

Theorem 4.4 (Finite Time Total Collapse). Assume W satisfies (NL0)-(NL3) and
(NL-FTBU). Let µ(t) denote the unique gradient flow solution starting from the prob-
ability measure µ0 with center of mass

xc :=
∫

Rd

x dµ0,

supported in B(xc, R0). Then there exists T ∗, depending only on R0, such that µ(t) = δxc

for all t ≥ T ∗.

Proof. As in the previous proposition, we can assume xc = 0. Given any compactly
supported measure µ0 in B(0, R0) and any η > 0, we can find a number of particles
N = N(η), a set of positions {x0

1, . . . , x
0
N} ⊂ B(0, R0), and masses {m1, . . . ,mN}, such

that

dW

(
µ0,

N∑
i=1

miδx0
i

)
≤ η.

Let us denote by µη(t) the particle solution associated to the initial datum µη(0) =∑N
i=1 miδx0

i
.

By Proposition 4.3, there exists a time T ∗ independent of N such that µη(t) = δ0 for
t ≥ T ∗. Hence, by the stability result in Theorem 2.12 we obtain

dW (µ(T ∗), δ0) = dW (µ(T ∗), µη(T ∗)) ≤ e−λT ∗ dW

(
µ0,

N∑
i=1

miδx0
i

)
≤ e−λT ∗η.

By the arbitrariness of η, we conclude that µ(t) = δ0 for all t ≥ T ∗ as desired. �

Remark 4.5 (Finite Time Total Collapse and Tail Behavior). The previous result can be
generalized for measures which are not compactly supported by the following procedure.
Let us consider the case in which c0 := inf [0,+∞) w′ = w′(0+) > 0. Then the proof of case
(a) in Proposition 4.3 shows that, if µ0 is supported in B(xc, R0), then µ(t) = δxc for
t ≥ R0/c0. From this fact and the stability estimate, it is not difficult to show that for
any initial datum µ0 decaying more than exponentially at infinity (say a gaussian), µ(t)
converges exponentially fast to δxc in infinite time. Indeed, if

µ0,R :=
µ0bB(xc,R)

µ0(B(xc, R))
,

then one easily gets dW (µ0, µ0,R) . e−CR for any C > 0, and their centers of mass xc

and xc,R are exponentially close too. Hence, if µR(t) denotes the solution starting from
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µ0,R, then µR(R/c0) = δxc,R . Therefore, choosing C > 2|λ|/c0, we get

dW (µ(t), δxc) ≤ dW (µ(t), µc0t(t)) + |xc − xc,c0t| . e−λtdW (µ0, µ0,c0t) + e−Cc0t . e−Cc0t,

as desired. As expected the tail behavior of the initial measure has to be fast enough
to compensate the exponential growing bound in the stability when λ < 0. On the
other hand, if λ ≥ 0 then we do not need any assumption on the initial datum to prove
convergence in infinite time, although having estimates on the tails allows to prove better
rates of convergence.

The aim of the following proposition is to show that, if we start with a measure which
has some atomic part, then the atoms can only increase their mass. We present a proof
based on particle approximations, an alternative approach is using the JKO-scheme, via
Theorem 3.2.

Proposition 4.6 (Dirac Deltas can only increase mass). Let µ(t) denote the unique
solution starting from the probability measure

∑N
i=1 miδx0

i
+ ν0, and define the curves

t 7→ xi(t), i = 1, . . . , N, as the solution of the ODE

ẋi(t) = −(∂0W ∗ µ(t))(xi(t)).

Then µ(t) ≥
∑N

i=1 miδxi(t) for all t ≥ 0, with possibly xi(t) = xj(t) for some t > 0, i 6= j.

Proof. This result is again an application of the result in the case of a finite number
of particles, combined with the stability of solutions. Let us approximate ν0 with a
sequence νk

0 = m
∑k

j=1
1
kδyj , with m := ν0(Rd). Then the unique solution starting from∑N

i=1 miδx0
i
+ νk

0 is given by

µk(t) =
N∑

i=1

miδxk
i (t) +

k∑
j=1

m

k
δyk

j (t),

where xk
i (t) and yk

j (t) solve the ODE system

ẋk
i = −

∑
l 6=i, xk

l 6=xk
i

mj∇W (xk
l − xk

i )−
∑

l, yk
l 6=xk

i

m

k
∇W (yk

l − xk
i ), i = 1, . . . , N,

ẏk
j (t) = −

∑
i, xk

i 6=yk
l

mi∇W (xk
i − yk

j )−
∑

l 6=j, yk
l 6=yk

j

m

k
∇W (yk

l − yk
j ), j = 1, . . . , k.

This gives in particular

µk(t) ≥
k∑

i=1

miδxk
i (t) (4.4)

as measures, since the particles coming from the “discretization” of ν0 can only join
the fixed particles xi but they will not split them. We now observe that the curves
t 7→ xk

i (t) are uniformly Lipschitz (locally in time). Indeed to obtain a bound on the
velocity ∂0W ∗ µ, by (1.5) it suffices to show that the second moments of the measures
µk(t) are uniformly bounded, locally in time. To check this, we use as test function |x|2
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for a general gradient flow solution µ(t) of (1.2), and exploiting the λ-convexity of W we
get

d

dt

∫
Rd

|x|2 dµ(t)(x) = − 2
∫

Rd

x · (∂0W ∗ µ(t)) dµ(t)(x)

= −
∫

x 6=y
(x− y) · (∇W (x)−∇W (y)) dµ(t)(y) dµ(t)(x)

≤ − λ

∫
x6=y

|x− y|2 dµ(t)(y) dµ(t)(x) ≤ 4|λ|
∫

Rd

|x|2 dµ(t)(x).

Therefore, using the stability of solutions and Ascoli-Arzelà Theorem, up to a sub-
sequence each curve t 7→ xk

i (t) converges locally uniformly to a limit curve t 7→ xi(t)
which satisfies

ẋi(t) = −
∫

Rd

∂0W (y − xi(t)) dµt(x), i = 1, . . . , N.

Taking the limit in the inequality (4.4) we get the desired result. �

Finally, let us show that the blow up of the L∞ norm of a solution to (1.2) may
occur at a time strictly less than the time of total collapse. In order to produce such
a phenomenon, we shall work again with the ODE system (2.40) and then we argue by
approximation. We first show a simple argument in a particular situation. We introduce
some notation following Proposition 4.3. Let us define the curves t 7→ xi(t), i = 1, . . . , 2N
as the solution of the ODE system

dxi

dt
= −

∑
j∈C(i)

1
2N

∇W (xi − xj), xi(0) = x0
i , i = 1, . . . , 2N,

so that µ(t) =
∑2N

i=1
1

2N δxi(t) is a gradient flow solution to (1.2). We define xc1(t) and
xc2(t) to be the center of masses of the first N and the last N particles respectively. Let
us consider the functions

R1(t) := max
i=1,...,N

|xi(t)− xc1(t)| and R2(t) := max
i=N+1,...,2N

|xi(t)− xc2(t)|.

Finally, we denote by µ1(t) and µ2(t) the measures
∑N

i=1
1

2N δxi(t) and
∑2N

i=N+1
1

2N δxi(t)

respectively.

Proposition 4.7 (Multiple Collapse). Assume the potential W satisfies (NL0)-(NL3),
(NL-FTBUa), and limx→+∞ w′(x) = 0. There exist r0, d0, T0, T1 > 0 such that if
max{R1(0), R2(0)} ≤ r0 and |xc1(0)− xc2(0)| ≥ d0, then

µ1(t) = δxc1 (t) 6= µ2(t) = δxc2 (t) for all T0 ≤ t < T1.

Proof. The ODE system satisfied by the particles is given by
dxi

dt
= −

∑
j∈C(i)

1
2N

xi − xj

|xi − xj |
w′(|xi − xj |) , i = 1, . . . , 2N.

We distinguish two sets of particles: (I) the set of the first N particles and (II) the set of
last N particles. Arguing as in Proposition 4.3, we obtain

d+

dt
R2

1(t) = max
{i : |xi(t)−xc1 (t)|=R1(t)}

−
∑

j∈C(i)

1
N

(xi − xj) · (xi − xc1)
|xi − xj |

w′(|xi − xj |) .
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with (xi − xj) · (xi − xc1) ≥ 0 for j = 1, . . . , N . Fix d0 large enough such that |w′(r)| ≤
1
4w′(0+) for r ≥ d0/2. Then, as long as max{R1(t), R2(t)} ≤ 1

8d0 and |xc1(t)− xc2(t)| ≥
3
4d0, we have that for some i for which |xi(t)− xc1(t)| = R1(t)

d+

dt
R2

1(t) ≤ − w′(0+)
2N R1(t)

∑
(I)

(xi − xj) · (xi − xc1) +
|xi − xc1 |

N

∑
(II)

∣∣w′(|xi − xj |)
∣∣

≤ −w′(0+)
2

R1(t) +
w′(0+)

4
R1(t) = −w′(0+)

4
R1(t), (4.5)

where we used ∑
(I)

(xi − xj) · (xi − xc1) = NR1(t)2.

By continuity in time of solutions, there exists t∗ > 0 small enough such that |xc1(t)−
xc2(t)| ≥ 3

4d0 is satisfied for 0 ≤ t ≤ t∗. Choosing r0 ≤ min{1
8d0,

w′(0+)
8 t∗} and using (4.5),

we ensure that max{R1(t), R2(t)} ≤ 1
8d0 in 0 ≤ t ≤ t∗ and R1(t∗) = 0. Analogously,

we have that R2(t∗) = 0. Then, it is clear by continuity in time that we can choose
T0 ≤ t∗ < T1 such that the statement holds. �

By a more refined analysis, one could produce an analogous result in case the poten-
tial W satisfies (NL0)-(NL4), (NL-FTBUb), and limx→+∞ w′(x) = 0. For instance,
one can explicitly construct examples of particle configurations with special symmetries
where one can check by tedious computations the multiple collapse phenomena. As a
consequence, we obtain the following result

Corollary 4.8. Assume the potential W satisfies (NL0)-(NL3), (NL-FTBU), and
limx→+∞ w′(x) = 0. Then, there exists a nonnegative function ρ0 ∈ C∞

c (Rd) with unit
mass and there two curves xck

(t), k = 1, 2, and 0 < T0 < T1 such that the gradient flow
solution associated with the initial datum ρ0 dx satisfies

µ(t) =
1
2
δxc1 (t) +

1
2
δxc2 (t) and xc1(t) 6= xc2(t)

for all t ∈ (T0, T1).

It is clear from the previous proof that this two particle collapse can be generalized to
multiple collapse situations with as many particle collapses as we want and choosing the
time ordering of their collapses in any desired manner.

5. Confinement

We prove two results on confinement for potentials that satisfy (NL-RAD). The first
one gives an estimate on the evolution of the radius of the support of solutions starting
from compactly supported data. For potentials that are strongly attractive at infinity,
that is the ones satisfying (NL-CONF-strong), it implies that if the radius of the
support is large, then it is decreasing. Heuristically, we can estimate the outward velocity
of the particles that are the furthest from the center of mass. In particular for potentials
satisfying (NL-CONF-strong), if the particles are far enough from the center of mass,
then the attractive effects of the particles that are on the “opposite side” of the center of
mass overwhelm the repulsive effects of the nearby particles. For sufficiently attractive
potentials, with no repulsive part, this leads to an upper bound on the time of collapse.
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For the potentials that are weakly-attractive at infinity, that is for ones which satisfy
(NL-CONF-weak), we show that the support of solutions stays uniformly bounded for
all times, with an explicit bound.

For variety, we prove the confinement statements using two different approaches. For
the first set of results, we use the JKO scheme to approximate the solution, and establish
control on the support at each step of the JKO scheme. For the weak confinement we
approximate the solution by atomic measures. For such an approximation the equation
reduces to the ODE system discussed in Remark 2.9. The heart of the matter is proving
confinement for the ODE approximation, with bounds independent of the number of
particles.

We define for r ≥ Ra

σ(r) := inf
s≥r

w′(s). (5.1)

Lemma 5.1. Assume that W satisfies (NL0)-(NL3) and (NL-RAD). Let r0 > 2Ra

and α = σ(r0)

8
√

2
− CW . Then, given a compactly supported probability measure µ with the

center of mass at x0 such that for some τ > 0

suppµ ⊂ B(x0, r0 + ατ),

if µ ∈ argmin ν∈P2(Rd)Fτ [ν] then

suppµ ⊂ B(x0, r0).

Here CW is defined by (1.7) and Fτ is the JKO functional (3.1). Note that α may be
negative, and the only restriction on τ is that r0 + ατ > 0, since otherwise the statement
has no content.
Proof. As we did previously, we can assume without loss of generality that x0 = 0. Since
W is translation invariant, µ has center of mass 0 as well. We divide the proof in two
steps

Step 1: The support does not grow faster than at the maximal repulsive speed CW . More
precisely, we first show that suppµ ⊂ B(0, r0 + (α + CW )τ). We do this by constructing
a measure µnew for which Fτ (µnew) < Fτ (µ) unless the support of µ is contained in the
appropriate ball above.

Consider Πr, the projection onto the ball B(0, r),

x̄ = Πr(x) :=
{

x if |x| ≤ r
r x
|x| if |x| ≥ r

Consider r ≥ r0 and define µnew := Πr#µ. Let π be an optimal transportation plan
between µ and µ. Consider πnew := (I ×Πr)#π. Note that πnew is a transportation plan
between µ and µnew. Thus

d2
W (µ, µnew) ≤

∫
Rd×Rd

|x− y|2 dπnew(x, y) =
∫

Rd×Rd

|x− ȳ|2 dπ(x, y). (5.2)

where the notation ȳ = Πr(y) was used for simplicity. We claim that for all x ∈ B(0, r0 +
ατ) and all y ∈ Rd

|x− ȳ|2 ≤ |x− y|2 + 2(ατ + r0 − r)|y − ȳ|.
The proof relies only on elementary geometric discussion of the cases: r0 + ατ < r and
r0 +ατ > r with subcases r0 +ατ < |y|, r < |y| ≤ r0 +ατ , and |y| ≤ r. While the proof is
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straightforward, it is not short, due to the need to discuss the four cases. Thus we chose
to leave the details to the reader. The above inequalities imply

d2
W (µ, µnew) ≤

∫
Rd×Rd

[
|x− y|2 + 2(ατ + r0 − r)|y − ȳ|

]
dπ(x, y)

= d2
W (µ, µ) + 2(ατ + r0 − r)

∫
|y|>r

|y − ȳ| dµ(y).
(5.3)

A3

A1 A2

r

Ra

xx̄

r
2

Figure 1. Relevant regions for |x| > r.

To estimate the change in the interaction energy we estimate the contributions from
the “attractive” and “repulsive” parts:

W[µnew]−W[µ] =
1
2

∫
Rd

∫
Rd

W (x̃− ỹ) dµnew(x̃) dµnew(ỹ)

− 1
2

∫
Rd

∫
Rd

W (x− y) dµ(y) dµ(x)

=
∫
|x|>r

∫
|y|≤r

[W (x̄− y)−W (x− y)] dµ(y) dµ(x)

+
1
2

∫
|x|>r

∫
|y|>r

[W (x̄− ȳ)−W (x− y)] dµ(y) dµ(x)

≤
∫
|x|>r

∫
A1(x)

[W (x̄− y)−W (x− y)] dµ(y) dµ(x)

+
1
2

∫
|x|>r

∫
A2(x)

[W (x̄− ȳ)−W (x− y)] dµ(y) dµ(x)

 I

+
1
2

∫
|x|>r

∫
A3(x)

[W (x̄− ȳ)−W (x− y)] dµ(y) dµ(x)

}
II

= I + II ≤ I

(5.4)

where A1(x) := {y : |y| ≤ r, |x̄ − ȳ| < Ra}, A2(x) := {y : |y| > r, |x̄ − ȳ| < Ra}, and
A3(x) := {y : x · y < 0} are illustrated on Figure 1. Note that on the region we omitted
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above Ra ≤ |x̄ − ȳ| ≤ |x − y|, so the contribution is non-positive, which allowed us to
omit it.

We first estimate I. To do so observe that for y ∈ A2(x) if |x − y| ≤ Ra then by
definition of CW and (1.7),

W (x̄− ȳ)−W (x− y) ≤ CW |x̄− ȳ − (x− y)| ≤ CW (|x− x̄|+ |y − ȳ|).

Since W is radial and increasing outside of B(0, Ra), when y ∈ A2(x), and |x− y| > Ra

then

W (x̄− ȳ)−W (x− y) ≤ W (x̄− ȳ)−W (ΠRa(x− y)) ≤ CW |x̄− ȳ −ΠRa(x− y)|
≤ CW |x̄− ȳ − (x− y)| ≤ CW (|x− x̄|+ |y − ȳ|)

where the inequality between the first and the second line follows from the fact that
x̄− ȳ ∈ B(0, Ra) and x− y 6∈ B(0, Ra). The estimate also holds for y ∈ A1(x) only that
then y = ȳ. Therefore

I ≤
∫
|x|>r

∫
A1(x)

CW |x̄− x| dµ(y) dµ(x)

+
1
2

∫
|x|>r

∫
A2(x)

[CW (|x− x̄|+ |y − ȳ|)] dµ(y) dµ(x)

= CW

∫
|x|>r

|x− x̄|µ({y : |x̄− ȳ| < Ra}) dµ(x)

≤ CW

∫
|x|>r

|x− x̄|µ
({

y : y · x

|x|
≥ r

2

})
dµ(x)

(5.5)

where in the last inequality (which we only need for the refined argument) we used that
since r ≥ r0 ≥ 2Ra, if |x̄− ȳ| < Ra then y · x

|x| ≥ r −Ra ≥ r
2 .

To obtain the first estimate on the radius of support of µ it is enough to note that the
largest outward velocity of a particle is CW . To obtain the appropriate statement at the
level of the JKO scheme, we combine the above estimates (5.4), (5.5) and (5.3) and use
that µ is a minimizer:

0 ≤ Fτ [µnew]− Fτ [µ] ≤ I +
ατ + r0 − r

τ

∫
|x|>r

|x− x̄| dµ(x)

≤
(

CW + α− r − r0

τ

)∫
|x|>r

|x− x̄|dµ(x).

Thus
∫
|x|>r |x− x̄|dµ(x) = 0 if r > r0 + (CW + α)τ , which implies

suppµ ⊂ B(0, r0 + (CW + α)τ). (5.6)

Step 2: Compensation between repulsion and attraction. Since the support of µ is
bounded, we can consider r̄ := inf{s > 0 : suppµ ⊆ B(0, s)}. Note that supp µ ⊆ B(0, r̄).
Suppose that the claim of the Lemma does not hold. Then r̄ > r0. Let r = 1

2(r0 + r̄).
Note that suppµ 6⊂ B(0, r) but that suppµ ⊂ B(0, 2r).

To refine the argument we need to estimate the effects of attraction, that is the term
II in (5.4). We utilize the following inequality: If y · x < 0 then, since the angle between
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x− x̄ and ȳ − x̄ is greater than 3π/4, (x− x̄) · (x̄− ȳ) ≥ 1√
2
|x− x̄| |x̄− ȳ|. Therefore

|x− ȳ|2 = |(x− x̄) + (x̄− ȳ)|2

≥ |x− x̄|2 + 2
1√
2
|x− x̄| |x̄− ȳ|+ |x̄− ȳ|2

≥
(

1√
2
|x− x̄|+ |x̄− ȳ|

)2

Consequently

|x− y| − |x̄− ȳ| ≥ |x− ȳ| − |x̄− ȳ| ≥ 1√
2
|x− x̄|.

We now estimate

II ≤ −1
2

∫
|x|>r

∫
y·x<0

σ(r)(|x− y| − |x̄− ȳ|) dµ(y) dµ(x)

≤ − 1
2
√

2

∫
|x|>r

σ(r)|x− x̄|µ({y : x · y < 0}) dµ(x).
(5.7)

We remark that if τ is small, more precisely when 0 < τ < r0
M(CW +α) for some M > 0

large, then, due to (5.6), σ(r) above can be replaced by σM (r) := mins∈[r,2(1+1/M)r] w
′(s).

We now use that the center of mass of µ is 0 in order to show that the measure of the
set which is “repulsing” the particle at |x| > r is bounded by a multiple of the measure
of the set which is “attracting”. In particular,

∫
Rd x · y dµ(y) = 0 implies

−
∫

y·x<0
x · y dµ(y) ≥

∫
y·x≥ r

2
|x|

x · y dµ(y).

Thanks to this estimate, using that suppµ ⊂ B(0, 2r) and 2Ra < r, we obtain that for
|x| > r

2r µ({y : x · y < 0}) ≥ r

2
µ
({

y : y · x ≥ r

2
|x|
})

Combining this with estimates (5.4), (5.5), and (5.7) yields

W[µnew]−W[µ] ≤
∫
|x|>r

(
CW − 1

8
√

2
σ(r)

)
|x− x̄|µ

({
y : y · x ≥ r

2
|x|
})

dµ(x)

≤
∫
|x|>r

|x− x̄|
(

CW − 1
8
√

2
σ(r)

)
dµ(x).

The minimality of µ, the above inequality and (5.3) imply

0 ≤ Fτ [µnew]− Fτ [µ] ≤
(

CW − 1
8
√

2
σ(r) + α

)∫
|x|>r

|x− x̄|dµ(x).

Since CW − 1
8
√

2
σ(r) + α < 0 we conclude that suppµ ⊂ B(0, r). Contradiction. �

We use the lemma to obtain detailed upper bound on the radius of support of a solution.

Corollary 5.2. Assume W satisfies (NL0)-(NL3), (NL-RAD), and either W is C1

near 0 or (NL4) holds. Let r0 ≥ 2Ra and define σ̃(r) := infr≤s≤2r w′(s) for r ≥ Ra.
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Then, given a compactly supported probability measure µ0 with the center of mass at x0

such that
suppµ0 ⊂ B(x0, r0),

the solution µ(t) to (1.2) satisfies the following estimates:
(i) Let r(t) be the solution of the ODE{

dr
dt = − σ̃(r)

8
√

2
+ CW

r(0) = r0,

and define r̄(t) := max{r(t), 2Ra}. Then for all t ≥ 0

suppµ(t) ⊆ B(x0, r̄(t)).

(ii) Special case - attractive, radial potentials: Assume further that W is radial, and
such that w(r) is an increasing function. Then CW = 0 and

suppµ(t) ⊆ B(x0, r(t)+)

for all t ≥ 0.
In both cases, if W satisfies the assumption (NL-CON-strong) the support stays uni-
formly bounded in time.

We remark that this corollary complements the results on collapse of Section 4. Fur-
thermore analyzing the ODE dr

dt = −cσ̃(r) can be used to show the finite time collapse
for potentials satisfying the condition (NL-FTBU). On the other hand, the particle ap-
proximation that was used in proving the results of Section 4, can be used to prove this
lemma as well.
Proof. Part (i) of the corollary with σ(r) in place of σ̃(r) follows easily from Lemma
5.1 as it gives the rate α, at which the support of the minimizers of the JKO scheme is
changing. To conclude, we only need to recall that the minimizers of the JKO scheme
converge narrowly towards µ(t), and note that uniform bounds on the support of measures
are preserved in the limit. Part (ii), is just a special case, since Ra = 0.

We need to justify that σ̃ can be used instead of σ. This follows from the fact that,
thanks to the remark below (5.7), for small τ we can improve the estimates on attractive
part in Lemma 5.1 replacing σ by σM . Since M > 0 is arbitrary, letting M → +∞ we
obtain the estimate with σ̃, as desired.

Note that if the assumption (NL-CON-strong) is satisfied then dr
dt ≤ 0 whenever r

is large enough, more precisely in r ≥ inf{r > 2Ra : σ(r) > 8
√

2CW }. Thus the support
stays uniformly bounded. �

For potentials satisfying (NL-CONF-weak) we define for r ≥ Ra

θ(r) := inf
s≥r

w′(s)
√

s.

Lemma 5.3 (Weak confinement for weakly attractive-at-infinity potentials). Assume
that W satisfies the conditions (NL0)-(NL3) and (NL-CONF-weak). Then, for every
R > 0, there exists R ≥ R, depending only on R, CW and W (via θ), such that the
following holds: Let xi(t) be the solution of the ODE system considered in Remark 2.9

ẋi = −
∑

j∈C(i)

mj∇W (xj − xi), i = 1, . . . , N,



36 J.A. CARRILLO, M. DIFRANCESCO, A. FIGALLI, T. LAURENT AND D. SLEPČEV

with mj > 0,
∑

j mj = 1, and
∑

j mjxj(0) = 0. If |xi(0)| ≤ R for i = 1, . . . , N then

|xi(t)| ≤ R for all t > 0 and i = 1, . . . , N.

Proof. The idea of the proof is as follows: Note that there are no direct energetic
obstacles to prevent the support of the solution becoming large. That is the boundedness
of the energy does not prevent a particle from traveling far, as long as its mass is small.
However it turns out that for even a small particle to go far from the center of mass,
there must exist a large mass nearby. That is for the small particle to go far, there
must be particles of relatively large total mass which are “pushing” it out. However the
existence of a large mass far from the center of mass does violate the fact that the energy
is dissipated.

By adding a constant to W , we can assume that W (x) ≥ 0 for all x ∈ Rd. Let R be
such that

R > 4Ra, R > R, and θ

(
R

8

)
> 12

√
2CW ‖W‖L∞(B(0,2R)). (5.8)

Let us observe that for any r > 2Ra

w(r) ≥
√

r

2
θ
(r

2

)
. (5.9)

This follows by noting that w′(s) ≥ θ(r/2)/
√

r for all s ∈ (r/2, r), integrating from r/2
to r, and using that w(r/2) ≥ 0.

Assume that the claim of the lemma does not hold. Since xi are C1 for all but finitely
many times, there exists R̃ ≥ R for which the inequalities (5.8) still hold and such that at
the first time a particle reaches distance R̃ from the origin all of the particle trajectories
are differentiable. Let t1 be the first time that at which particle reaches the distance R̃
from the origin. Consider the relabeled ODE system (2.43) near time t1. For notational
simplicity, we keep the symbols xi and mi for particle positions and masses. We can
assume that |x1(t1)| = R̃. Note that ẋ1(t1) · x1(t1) ≥ 0. Therefore

−
∑
j≥2

mj∇W (x1(t)− xj(t)) · x1(t) ≥ 0. (5.10)

We can assume that x1(t)/|x1(t)| = e1. Let JR be the set of indexes of particles that
at time t1 are repulsing x1, that is JR := {j : ∇W (x1(t1) − xj(t1)) · e1 < 0}, JA :=
{2, . . . , N(t1)}\JR, and Ja = {j : xj(t1) · e1 ≤ R̃/2} with Jc

a its complementary set of
indices. We notice that, since R̃ > 2Ra, Ja ⊆ JA. Using that at time t1 all particles are
contained in B(0, R̃), it follows that

∇W (x1 − xj) · e1 ≥
1
2
w′(|xj − x1|) for all j ∈ Ja.

Furthermore, since 0 is the center of mass,

ma :=
∑
j∈Ja

mj = 1−
∑
j∈Jc

a

mj =: 1−mc
a ≥

1
3
.

The argument is analogous to one in the proof of Lemma 5.1: Since the center of mass is
zero, using the definition of Ja and that all particles lie inside B̄(0, R̃), we get

R̃

2
mc

a ≤
∑
j∈Jc

a

mj (xj(t1) · e1) = −
∑
j∈Ja

mj (xj(t1) · e1) ≤ R̃ ma = R̃ (1−mc
a),
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from which mc
a ≤ 2

3 . Let mR :=
∑

j∈JR
mj . From (5.10) it follows that∑

j∈JR

−mj∇W (x1 − xj) · e1 ≥
∑
j∈Ja

mj∇W (x1 − xj) · e1 ≥
∑
j∈Ja

mj
1
2
w′(|x1 − xj |),

so that

mRCW ≥ 1

12
√

2R̃
θ

(
R̃

2

)
,

which implies a lower bound on mR.
Note that energy W[µ(0)] is bounded by 1

2‖W‖L∞(B(0,2R)). One the other hand, using
that R̃ > 4Ra,

2W[µ(t1)] ≥
∑
j∈JR

∑
k∈Ja

mjmkW (xj − xk) ≥
mR

3
inf

r≥R̃/4
w(r).

Using that W[µ(0)] ≥ W[µ(t1)] and (5.9), we conclude that

‖W‖L∞(B(0,2R)) ≥
mR

3
inf

r≥R̃/4
w(r)

≥ 1
3

[
1

12
√

2R̃ CW

θ

(
R̃

2

)][√
R̃

4
θ

(
R̃

8

)]
≥ 1

144
√

2 CW

θ

(
R̃

8

)2

,

which contradicts (5.8). �

Arguing by approximation as in the proof of Theorem 4.4, we immediately obtain the
following:

Corollary 5.4. Assume W satisfies (NL0)-(NL3), (NL-CONF-weak), and either
(NL4) or W is C1 near 0. Then, given a compactly supported probability measure µ0

with center of mass at x0 such that suppµ ⊂ B(x0, R), there exists R ≥ R, depending
only on R, CW and W , such that the solution µ(t) to (1.2) satisfies

suppµ(t) ⊂ B(x0, R) for all t ≥ 0.

Remark 5.5. We remark that the claim of the above corollary does not hold if W does
not grow at infinity (for instance, consider any W positive in B(0, 1) and zero outside).
We also point out that the assumptions (NL4) or W is C1 near 0 are needed here to be
able to apply the well-posedness theory developed either in Section 2 or in [2] leading to
the dW -stability.

We conclude the paper by making the following conjecture: The result of the corollary
above holds if the condition (NL-CONF-weak) is replaced by the assumption that w
is increasing on [R,∞) for some R and

lim
r→+∞

w(r) = +∞.
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