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ABSTRACT. The Cuntz semigroup of a C*-algebra is an important invariant in
the structure and classification theory of C*-algebras. It captures more infor-
mation than K-theory but is often more delicate to handle. We systematically
study the lattice and category theoretic aspects of Cuntz semigroups.

Given a C*-algebra A, its (concrete) Cuntz semigroup Cu(A) is an object
in the category Cu of (abstract) Cuntz semigroups, as introduced by Coward,
Elliott and Ivanescu in [CEIO8]. To clarify the distinction between concrete
and abstract Cuntz semigroups, we will call the latter Cu-semigroups.

We establish the existence of tensor products in the category Cu and study
the basic properties of this construction. We show that Cu is a symmetric,
monoidal category and relate Cu(A ® B) with Cu(A) ®cy Cu(B) for certain
classes of C'*-algebras.

As a main tool for our approach we introduce the category W of pre-
completed Cuntz semigroups. We show that Cu is a full, reflective subcategory
of W. One can then easily deduce properties of Cu from respective properties of
W, e.g. the existence of tensor products and inductive limits. The advantage is
that constructions in W are much easier since the objects are purely algebraic.

For every (local) C*-algebra A, the classical Cuntz semigroup W (A) to-
gether with a natural auxiliary relation is an object of W. This defines a
functor from C*-algebras to W which preserves inductive limits. We deduce
that the assignment A +— Cu(A) defines a functor from C*-algebras to Cu
which preserves inductive limits. This generalizes a result from [CEIOS8].

We also develop a theory of Cu-semirings and their semimodules. The
Cuntz semigroup of a strongly self-absorbing C*-algebra has a natural product
giving it the structure of a Cu-semiring. For C*-algebras, it is an important
regularity property to tensorially absorb a strongly self-absorbing C*-alge-
bra. Accordingly, it is of particular interest to analyse the tensor products
of Cu-semigroups with the Cu-semiring of a strongly self-absorbing C*-alge-
bra. This leads us to define ‘solid’ Cu-semirings (adopting the terminology
from solid rings), as those Cu-semirings S for which the product induces an
isomorphism between S ®cy S and S. This can be considered as an analog of
being strongly self-absorbing for Cu-semirings. As it turns out, if a strongly
self-absorbing C*-algebra satisfies the UCT, then its Cu-semiring is solid.

If R is a solid Cu-semiring, then a Cu-semigroup S is a semimodule over
R if and only if R ®cy S is isomorphic to S. Thus, analogous to the case
for C*-algebras, we can think of semimodules over R as Cu-semigroups that
tensorially absorb R. We give explicit characterizations when a Cu-semigroup
is such a semimodule for the cases that R is the Cu-semiring of a strongly
self-absorbing C*-algebra satisfying the UCT. For instance, we show that a
Cu-semigroup S tensorially absorbs the Cu-semiring of the Jiang-Su algebra
if and only if S is almost unperforated and almost divisible, thus establishing
a semigroup version of the Toms-Winter conjecture.

In the course of our investigations, we often incorporate two additional
axioms that do not appear in the initial description of the category Cu: these
are the ‘almost algebraic order axiom’, introduced by Rgrdam and Winter in
[RW10], and the ‘almost Riesz decomposition axiom’, introduced by Robert in
[Rob13a]. We identify a stronger version of the almost algebraic order axiom
and establish that it is satisfied by all Cuntz semigroups of C*-algebras. The
advantage of our formulation is that, in this stronger form, the axiom passes
to inductive limits in Cu.
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CHAPTER 1

Introduction

1.1. Background

This paper is concerned with a number of regularity properties of Cuntz semi-
groups, which are invariants naturally associated to C*-algebras. To put our results
into perspective, we first review the C*-motivation behind our work, as well as the
importance of these semigroups in the context of the Elliott classification program.

1.1.1. The Elliott classification program. The Cuntz semigroup W(A) of
a C*-algebra A is an important invariant in the structure theory of C*-algebras,
particularly in connection with the classification program of simple, nuclear C*-
algebras initiated by George Elliott. In itself, nuclearity is a finite-dimensional
approximation property that includes a large number of our stock-in-trade C*-al-
gebras.

The original Elliott Conjecture asserts that simple, separable, unital, nuclear
C*-algebras can be classified by an invariant of a K-theoretic nature. In the stably
finite case, the invariant used is

Ell(A) = ((Ko(A), Ko(A) ", [14]), K1(A), T(A),74),

consisting of the ordered Ky-group, the topological Kj-group, the trace simplex
T(A) and the pairing between traces and projections.

CoNJECTURE 1.1.1 (Elliott’s Classification Conjecture). For C*-algebras A and
B as above, we have Ell(A4) = Ell(B) if and only if A = B.

The Elliott program has had tremendous success in the classification of wide
classes of algebras (see, e.g. [Rgr92] and [ETO08]). However, the first counterexam-
ples to the conjecture as stated above appeared in the work of Rgrdam ([Rgr03))
and Toms ([TomO05]). Both examples allowed to repair the conjecture by adding
a minimal amount of information to the invariant (in this case, the real rank).
Soon after that though, Toms produced in [TomO08] two simple AH-algebras that
agreed not only on the Elliott invariant, but also on a whole collection of topological
invariants (among them the real and stable rank).

The distinguishing factor for the said algebras is precisely the Cuntz semigroup.
This is an object that was introduced by Cuntz in [Cun78] as equivalence classes of
positive elements in matrices over a C*-algebra A, in very much the same way the
semigroup V' (A) (as a precursor of Ky(A)) is constructed via Murray-von Neumann
equivalence classes of projections in matrices over A.

Briefly, if A is a C*-algebra and a and b are positive elements in A, set a 3 b
if and only if @ = lim,, z, bz}, for some sequence (x,), in A. This can be extended
to the directed union M, (A) of matrices over A and, setting a ~ b if both a X b
and b X a occur, one obtains a partially ordered set W (A) = My (A)4 /~. This set
can be endowed with an addition by setting [a] + [0] = [(& )], so that it becomes a
partially ordered semigroup. It is worth noting that the relation =, when restricted
to projections, becomes the usual Murray-von Neumann subequivalence.

1



2 1. INTRODUCTION

One of the key features of the Cuntz semigroup is its ordering, which is in
general not algebraic. As a matter of fact, it is one order property — almost unper-
foration — that is used to distinguish the algebras mentioned above.

It is important to mention that the Cuntz semigroup for purely infinite, simple
C*-algebras is degenerate (it is equal to {0, 00}) and hence its use is only of relevance
in the stably finite case.

Many of the classes of algebras considered in the classification program admit
an inductive limit decomposition, and hence it is desirable that any addition to the
original Elliott invariant behaves well with respect to inductive limits. This is not
the case of the Cuntz semigroup, when considered as an invariant from the category
of C*-algebras to the category of semigroups. This shortcoming can be remedied by
passing to stable algebras and considering as a target category a suitable category
Cu of ordered semigroups (see below). This was carried out by Coward, Elliott and
Ivanescu in [CEIO8], where they defined Cu(A) using Hilbert modules (and showed
it is naturally isomorphic to W(A ® K)). In this way, the assignment A — Cu(A)
defines a sequentially continuous functor.

To this date, there is no counterexample to the conjecture of whether the Elliott
invariant, together with the Cuntz semigroup, constitutes a complete invariant for
the class of unital, simple, separable, nuclear C*-algebras. It is therefore natural to
ask what is the largest possible class for which the Elliott Conjecture can be proved
to hold.

It is important to point out that the Cuntz semigroup alone has become a use-
ful tool in the classification of certain classes of nonsimple algebras. A remarkable
instance of this situation is found in the work of Robert, [Rob12], where the Cuntz
semigroup is used to classify, up to approximate unitary equivalence, *-homomor-
phisms out of an inductive limit of 1-dimensional noncommutative CW-complexes
with trivial K;-groups into a stable rank one algebra. As a consequence, Robert
classifies all (not necessarily simple) inductive limits of 1-dimensional NCCW-
complexes with trivial K;-groups using the Cuntz semigroup.

1.1.2. Strongly self-absorbing C*-algebras. Z-stability. Toms and Win-
ter, [TWO7, Definition 1.3], termed a C*-algebra D strongly self-absorbing if
D # C and if there is an isomorphism ¢: D — D ® D that is approximately
unitarily equivalent to the inclusion in the first factor (or, as it turns out, in the
second). Such C*-algebras are automatically simple, nuclear (Effros-Rosenberg),
and are either purely infinite or stably finite with a unique trace (Kirchberg). The
only known examples of strongly self-absorbing C*-algebras are: The Cuntz alge-
bras Oy and O, every UHF-algebra of infinite type, the tensor products Oy ® U
where U is a UHF-algebra of infinite type, and the Jiang-Su algebra Z. All these
algebras satisfy the Universal Coefficient Theorem (UCT). The Elliott classification
program predicts that they are in fact the only strongly self-absorbing C*-algebras
satisfying the UCT. It remains an important open problem to determine whether
there is a strongly self-absorbing C*-algebra outside the UCT class, as this would
provide a nuclear, non-UCT C*-algebra. If D is strongly self-absorbing, a C*-alge-
bra A is called D-stable provided that A =2 A® D. Winter showed that all strongly
self-absorbing C*-algebras are Z-stable (see [Winll] and also [DR09]). It fol-
lows from this result that Z becomes an initial object in the category of strongly
self-absorbing C*-algebras.

The Jiang-Su algebra Z has the same Elliott invariant as the complex numbers,
and it has become prominent in the classification program. In fact, tensoring a C*-
algebra with Z is inert at the level of K-Theory and traces (although it may change
the order of the Kp-group, except under some additional assumptions). It is thus
reasonable to expect that classification can be achieved within the class of simple,
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separable, unital, nuclear, Z-stable algebras. In this way, Z-stability postulates
itself as a regularity property for C*-algebras.

All classes of simple, nuclear C*-algebras for which the Elliott Conjecture has
been verified consist of Z-stable C*-algebras, see [TWO08]. One may therefore
wonder what role the Cuntz semigroup plays in these results, if any. As proved in
[ADPS14] (see also [Tik11], [BPTO08]), for the class of unital, simple, separable,
nuclear and Z-stable C*-algebras, the Elliott invariant and the Cuntz semigroup
of any such algebra tensored with the circle determine one another in a functorial
way. Thus, Ell(_) is a classifying functor if and only if so is Cu(C(T,.)).

1.1.3. The regularity Conjecture. This conjecture, which is also known
as the Toms-Winter conjecture, see [TW09, Remarks 3.5] and [Winl2, Conjec-
ture 0.1], links three seemingly unrelated regularity properties that a simple, sepa-
rable, nonelementary C*-algebra A may enjoy. The first of these properties is that
A has finite nuclear dimension. We will not define nuclear dimension here. Instead
let us just say that it is a strengthening of the definition of nuclearity that uses
completely positive order-zero maps (i.e. completely positive maps that preserve
orthogonality of elements).

The second regularity property is Z-stability, and the third one is strict compar-
ison of positive elements, which may be roughly stated by saying that comparison
of positive elements (modulo Cuntz subequivalence) is determined by the states on
the Cuntz semigroup. This is equivalent to saying that the Cuntz semigroup is
almost unperforated.

CONJECTURE 1.1.2 (Toms-Winter). Let A be a simple, separable, nonelemen-
tary C*-algebra. Then, the following conditions are equivalent:

(i) The C*-algebra A has finite nuclear dimension.
(ii) The C*-algebra A is Z-stable.
(iii) The Cuntz semigroup W(A) is almost unperforated.

Rordam showed that (ii) implies (iii) (see [Rgr04]). It is known that (iii) im-
plies (ii) if T'(A) has finite dimensional extreme boundary (see [KR12], [ TWW12],
[Sat12]). Sato, White and Winter ([SWW14]) showed that (ii) implies (i) in the
case that A has a unique tracial case. Very recently, Bosa, Brown, Sato, Tikuisis,
White and Winter proved that Z-stability implies that the nuclear dimension is at
most one in the case that the trace simplex is a Bauer simplex. If A has no tra-
cial states then it is purely infinite and the conjecture had been confirmed in that
case by work of Kirchberg, Phillips and Rgrdam. It follows that the Toms-Winter
conjecture is verified whenever the C*-algebra has at most one tracial state.

Winter proved in [Win12] that (i) implies (ii). The Jiang-Su algebra Z stands
out as the C*-analogue of the hyperfinite II;-factor. Following this analogy, a Z-
stable, simple C*-algebra can be considered as the analog of a McDulff factor, which,
by definition, tensorially absorbs the hyperfinite II;-factor. We may therefore view
Winter’s result as the analogue of Connes’ theorem that, for II;-factors, injectivity
implies McDuff.

CoNJECTURE 1.1.3 (Elliott). If A is a simple, separable C*-algebra satisfy-
ing the UCT and with finite nuclear dimension, then A admits an inductive limit
decomposition whose blocks are either Cuntz algebras over the circle, or subhomo-
geneus algebras whose primitive ideal spaces have dimension at most 2.

Therefore, if classification and the regularity conjecture hold, the Elliott con-
jecture above would also hold and we would get deep insight into the structure of
simple, nuclear C*-algebras.
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1.2. The categories W and Cu

As we have mentioned in 1.1.1, Coward, Elliott and Ivanescu introduced a
category of ordered semigroups Cu such that Cu(A) is an object in Cu for every
C*-algebra A. The four axioms defining this category capture the continuous nature
of the Cuntz semigroup. The first axiom asks for every increasing sequence to admit
an order-theoretic supremum, while in the second axiom it is required that every
element can be reached as a supremum of a sequence (s,,) such that s, < s, for
each n. (Here, a < b means that whenever b < sup,, ¢,,, for an increasing sequence
(¢n)n, then a < ¢ for some k.) Given a C*-algebra A, a positive element a in A and
¢ > 0, one always has that [(a — €)+] < [a] in Cu(A). A projection p in A always
satisfies [p] < [p]. The elements s satisfying that s < s play an important role
and are termed compact. We may think with advantage that they are equivalence
classes of projections. The third and fourth axioms express compatibility between
order, addition, suprema, and the relation <.

It is natural to ask, then, what continuity properties are reflected already in
W(A) and how Cu(A) is obtained out of them. Attempts in this direction may be
found in [ABP11].

We introduce here a new category of semigroups W parallel to the category Cu
and show that WW(A) is an object of this category. One of the key ingredients here
is that the objects in W are semigroups equipped with an additional relation, suffi-
ciently compatible with addition, referred to as an auxiliary relation ((GHK™'03]).
We show that W(A) can be endowed with such a relation; this is also the case with
Cu(A), as was already noted in [CEI08], and where one takes < as an auxiliary
relation. Another ingredient in our approach consists of considering the larger cat-
egory Cy . of local C*-algebras. Essentially, these are pre-C*-algebras that admit
functional calculus on finite sets of positive elements.

We then prove:

THEOREM. The following conditions hold true:
(i) The category W admits arbitrary inductive limits and the assignment A —
W (A) defines a continuous functor from the category Cyf . of local C*-algebras
to the category W.
(ii) The category Cu is a full, reflective subcategory of W. Therefore, Cu also
admits arbitrary inductive limits.
(iii) There is a diagram, that commutes up to natural isomorphisms:

w
X
Cre.—W

v Q U U > bl
cr s cu
where v: W — Cu is the reflection functor and v: Cy,. — C* is the com-
pletion functor that assigns to a local C*-algebra its completion (which is a
C*-algebra).
In particular, the assignment A — Cu(A) is also a continuous functor
from the category of C*-algebras to the category Cu.

Notice that condition (i) above sets up the right framework for the functor
W to be continuous, by enlarging the source category to C}. . and identifying the
range category W. Condition (iii) generalizes [CEIO8, Theorem 2] from sequential
to arbitrary inductive limits.

A key concept in the proof is that of a Cu-completion of a semigroup S in the
category W. This may be thought of as a pair (T, «), where '€ Cuand a: S — T
is a morphism that, suitably interpreted, is an embedding with dense image.
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1.2.1. The range problem. Additional axioms. It is an important prob-
lem to determine which semigroups in the category Cu come as Cuntz semigroups
of C*-algebras. For example, we know that, for any finite dimensional, compact
Hausdorff space, the semigroup Lsc(X,NU {oo}) of lower semicontinuous functions
is an object of Cu ([APS11]), but if fails to be the Cuntz semigroup of a C*-algebra
whenever the dimension of X is larger than 2 ([Rob13b]).

There are two additional axioms that the Cuntz semigroup of any C*-algebra
satisfies, and which are not derived from the original set of axioms used to define
the category Cu. The first of such axioms was established by Rgrdam and Winter
([RW10]) and indicates how far the partial order in Cu(A) is from being algebraic.
It is usually referred to as the almost algebraic order axiom. Given three elements
a’,a and b, the axiom says that:

¢ <a<b = thereiscsuchthatad +c<b<a+c.

It is worth pointing out that, if @ < a, then the above implies that whenever a < b,
there is an element ¢ with a + ¢ = b. Thus, this axiom is a generalization of the
fact that the order among Cuntz classes of projections is algebraic.

The second axiom was established by Robert ([Rob13a]) and is a condition of
a Riesz decomposition type, usually referred to as the almost Riesz decomposition
axiom. Given elements a’, a,b and c, the axiom reads as follows:

ad <a<b+c = therearet <ba ¢ <c,awitha <V +¢.

In Definition 4.1, we introduce a strengthening of the almost algebraic order
axiom, and we prove that it is satisfied by the Cuntz semigroup Cu(A) of any C*-
algebra A. It is equivalent to the original formulation if the semigroup is weakly
cancellative (i.e., if elements cancel from inequalities with <). With this new
formulation, the axiom passes to inductive limits.

We also introduce corresponding versions of these axioms for the category W
and show that they are satisfied by W(A), for any local C*-algebra A. The Cu-
completion process, as described above, relates exactly each one of the W-axioms
with its Cu-counterpart. All the axioms considered pass to inductive limits.

Although it may be premature to recast the category Cu by adding the axioms
of almost algebraic order and almost Riesz decomposition (as new axioms may
emerge in the near future), it is quite pertinent to add them to our basket of
assumptions in many results of the paper.

1.2.2. Softness and pure noncompactness. While compact elements may
be thought of as ‘projections’, the class of purely noncompact elements can be
placed at the other end of the scale, that is, as far as possible from projections.
This may be phrased by saying that the element in question only becomes compact
in a quotient when it is zero or properly infinite. It was shown by Elliott, Robert,
and Santiago that the purely noncompact elements in Cu(A) are, in the almost
unperforated case, the ones that can be compared by means of traces [ERS11].

It is natural to seek for a result of this nature in the framework of the category
Cu alone. For this, given a semigroup S € Cu, we need to consider the set F'(S) of
functionals on S, that is, extended states on S that respect suprema of increasing
sequences. Note that, in this way, any element s € S then can be represented as a
linear, lower semicontinuous, [0, co]-valued function § on F'(S) by evaluation. It is
to be noted that F(Cu(A)) is homeomorphic to the trace simplex of non-normalized
traces on A (when A is exact), as shown in [ERS11, Theorem 4.4]. Indeed, given
a trace 7, its corresponding functional d, maps [a] to lim 7(a/™).

The key notion in the abstract setting of Cu-semigroups is that of a soft element.
By definition, a € S is soft if any o’ < a satisfies (n + 1)a’ < na for some n. As it
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turns out, the subset Sgop of soft elements is a submonoid of S. If S is furthermore
simple and stably finite, then Sy is also a Cu-semigroup. Our definition of softness
is inspired by [GH82].

For almost unperforated Cu-semigroups, soft elements are the ones whose com-
parison theory is completely determined by functionals. Namely, if a, b € S with
a soft, then a < b precisely when @ < b. This includes [ERS11, Theorem 6.6].
It is worth mentioning that, in the presence of the almost algebraic order axiom,
softness is equivalent to a suitable weakening of pure noncompactness. The concept
of softness is, however, easier to state and to use.

1.2.3. Algebraic semigroups. A particularly interesting class of Cu-semi-
groups is that of algebraic semigroups. These are Cu-semigroups where the compact
elements are dense, and they are modelled after C*-algebras of real rank zero, where
the structure of projections determines a great deal of the structure of the algebra.

We show that this is also the case at the semigroup level. Of particular signif-
icance is the fact that axioms of interest have a translation into properties of the
compact elements, namely:

THEOREM. Let S be an algebraic Cu-semigroup, and let S, be the submonoid
of compact elements. Then:

(i) The Cu-semigroup S satisfies the axiom of almost algebraic order if and only
if Sc is algebraically ordered.

(ii) The Cu-semigroup S is weakly cancellative if and only if S. is a cancellative
Semigroup.

(iii) If S. has Riesz decomposition, then S satisfies the aziom of almost Riesz
decomposition. Conversely, if S satisfies the axioms of almost algebraic order
and almost Riesz decomposition and is weakly cancellative, then S. has Riesz
decomposition.

1.2.4. Near unperforation. The notion of near unperforation allows us to
analyse almost unperforation from a different perspective. A positively ordered
monoid S is nearly unperforated if a < b whenever 2a < 2b and 3a < 3b. (This is not
our original definition, but a useful restatement.) Nearly unperforated semigroups
are always almost unperforated. In the simple case, a converse is available:

THEOREM. Let S be a simple, stably finite Cu-semigroup that satisfies the al-
most algebraic order axiom. Then S is nearly unperforated precisely when it is
almost unperforated and weakly cancellative.

This result has as a corollary that, if A is a Z-stable C*-algebra, Cu(A) is nearly
unperforated in a variety of situations. For example, if A is simple or has real rank
zero and stable rank one, or also if A has no Kj-obstructions. It then remains an
interesting open problem to decide whether Cu(A) is always nearly unperforated
for any Z-stable C*-algebra A. We conjecture this is always the case, and prove it
in a number of instances.

1.3. Tensor products

Tensor products with the Jiang-Su algebra or, more generally, by a strongly
self-absorbing C*-algebra, are of particular relevance in connection with the current
status of the classification program.

The tensor product construction at the level of (ordered) semigroups has a long
tradition (for completeness, we have included a review of the necessary definitions
and results in Appendix B). It is therefore a very natural question to ask how
Cu(A ® B) and Cu(A) ® Cu(B) are related. The first step towards a solution to
this question resides in carrying out a construction of the tensor product within the
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category Cu, so as to ‘equip’ the usual semigroup tensor product with the necessary
continuity structure.

Our approach has a categorical flavor, and at the same time allows for compu-
tations of examples. A central notion is that of a bimorphism ¢: SxT — R, that is,
a biadditive map that is required to satisfy certain additional conditions depending
on the category where the objects S, T and R live. Thus, for example, if we focus
on the category Cu, we speak of Cu-bimorphisms and we shall be asking that ¢ is
continuous in each variable (i.e. preserves suprema) and is jointly preserving the
relation <, that is, s’ < s and ¢’ < ¢ imply ¢(s',t') < ¢(s,t). One then asks a
tensor product in Cu of S and T to be a pair (Q, ¢), where @ is an object in Cu
and ¢: S x T — @ is a Cu-bimorphism with certain universal properties.

We can also regard the tensor product as an object that represents the bimor-
phism bifunctor BiCu(S x T, _). We use Cu(-,_) and W(_, _) below to denote the
corresponding morphism sets, which are naturally positively ordered semigroups.
We prove:

THEOREM. Let S and T be Cu-semigroups. There is a Cu-semigroup S @cy T’
and a Cu-bimorphism p: SXT — S®cuT such that the pair (SQcuT, ) represents
the bimorphism functor BiCu(S x T, _) that takes values in the category of positively
ordered semigroups. Thus, for every Cu-semigroup R, ¢ induces a positively ordered
semigroup isomorphism of the following (bi)morphisms sets:

Cu(S ®cy T, R) — BiCu(S x T, R) .

In outline, the construction of the object S ®cy T in the Theorem above uses
the reflector functor v: W — Cu as described in 1.2, and so the tensor product in
Cu comes as a completion of the corresponding object in W. In fact, recalling that
Cu is a reflective subcategory of W, we have:

THEOREM. Let S and T be semigroups in the category W. There is then a
W-semigroup S @w T and a W-bimorphism that induces a commutative diagram
where every row and column are semigroup isomorphisms:

W(S®&wT,R) —— = BiW(S x T, R)

; 4

Cu(y(S ®w T), R) — BiCu(y(S) x ¥(T), R).
In particular, we can identify v(S) @cu Y(T') with v(S @w T').
Applied to C*-algebras, the results above yield:

THEOREM. The following conditions hold true:
(i) Let A and B be local C*-algebras. Then

Cu(A) ®ca Cu(B) = 4(W(A) @w W(B)).

(ii) Let D be a strongly self-absorbing C*-algebra of real rank zero that satisfies
the UCT. Then

Cu(A® D) = Cu(A) ®cy Cu(D),
for any C*-algebra A.

1.4. Multiplicative structure of Cu-semigroups. Solid Cu-semirings

As noted in 1.1.2, the class of D-stable C*-algebras, where D is strongly self-
absorbing, is relevant for the theory, and thus a description of their Cuntz semigroup
is of particular interest. Towards this end, we identify which semigroups should play
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the role of strongly self absorbing C*-algebras. If D is such an algebra, then the
isomorphism D ® D = D induces a Cu-bimorphism Cu(D) x Cu(D) — Cu(D),
which in turn can be used to equip Cu(D) with a unital semiring structure (see
Section B.4 for the definition of a semiring). This is also compatible with the
continuous properties of Cu(D) and leads us to introduce the notion of a Cu-
semiring. In the case of the Jiang-Su algebra Z, its Cuntz semigroup may be
identified with Z := N U (0, 00], where the product of two elements is the obvious
one in either N or (0, co] and mixed terms multiply into (0, co].

In a similar vein, if A is a D-stable C*-algebra, there is natural Cu-bimorphism
Cu(D) x Cu(A) — Cu(A) which is moreover compatible with the multiplicative
structure of Cu(D). This leads us to define the notion of a Cu-semimodule S over a
Cu-semiring R. We refer to this situation by saying that S has an R-multiplication.

Of particular importance is the structure of Cu-semimodules over semirings
that come from strongly self-absorbing algebras, or from the Jacelon-Razak algebra
R, whose Cuntz semigroup is [0, 00] (see [Jacl3] and also [Rob13a]). As Robert
points out for Cu(R) (see [Rob13al), having a Cu(R)-multiplication is in fact a
property of the semigroup rather than an additional structure. Denote by R, the
Cuntz semigroup of a UHF-algebra of infinite type (and supernatural number q).
We then prove the following:

THEOREM. Let S be a Cu-semigroup. Then:

(i) The Cu-semigroup S has Z-multiplication if and only if S is almost divisible
and almost unperforated.

(i) The Cu-semigroup S has Rq-multiplication if and only if S is p-divisible and
p-unperforated whenever p is an integer that divides q.

(iii) The Cu-semigroup S has [0, co]-multiplication if and only if S is unperforated,
divisible and every element of S is soft.

(iv) The Cu-semigroup S has {0, co}-multiplication if and only if 2o = = for every
x€S.

Condition (i) above allows us to prove a semigroup version of the Toms-Winter
conjecture:

THEOREM. Let S be a Cu-semigroup. Then, the following conditions are equiv-
alent:
(i) We have S =2 S ®cy, Z.

(i) The Cu-semigroup S is almost unperforated and almost divisible.

A key ingredient in the above Theorem is the fact that Z ®c, Z = Z, where the
isomorphism is induced by the natural product. This naturally poses the question
of which is the right notion for a ‘strongly self-absorbing Cu-semigroup’. We adopt
here the terminology of a solid ring, as introduced in [BK72], and call a unital
Cu-semiring R solid if the multiplication induces an isomorphism R ®c, R = R.
Every such semiring is automatically simple and, in the stably finite case, has a
unique normalized functional. We then prove:

THEOREM. Let D be a strongly self-absorbing C*-algebra satisfying the UCT.
Then Cu(D) is a solid Cu-semiring, and so Cu(D) ®¢, Cu(D) = Cu(D).

As solid Cu-semirings have good structural properties, it is natural to analyse
the tensor product of a Cu-semigroup with one of these semirings. This process may
be termed a regularization, as the final object enjoys regularity properties (e.g. it
absorbs the Cu-semiring Z tensorially). We explore two such constructions, closely
related to C*-algebras: the rationalization and the realification of a semigroup.

The rationalization of a Cu-semigroup S is, by definition, its tensor product
with a semigroup of the form R,, where R, is, as mentioned above, the Cuntz
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semigroup of a UHF-algebra of infinite type, so that ¢ = (p;) is a supernatural
number of infinite type. The tensor product S ®cy R, can be realized as the

inductive limit S, constructed as S N N

Given a Cu-semigroup S, Robert introduced in [Rob13a)] the realification of S,
which is a Cu-semigroup denoted by Sr. Robert indicates that his construction may
be thought of as the tensor product with [0, 00]. This semigroup is, by definition,
the subsemigroup of lower semicontinuous, linear, [0, co]-valued functions defined on
F(S) that can be obtained as pointwise suprema of functions of the type %5‘, where
s € 5. Robert obtains in [Rob13a, Theorem 3.2.1] a more abstract characterization
of Sr. We make the connection of Sr with the tensor product construction precise
and we show that we indeed have Sp = S ®cy [0,00]. It then follows from our
results and [Rob13a, Theorem 5.1.2] that Cu(A®R) = Cu(A) ®cy Cu(R) for any
C*-algebra A.

Using the classification theory for solid rings (see [BK72], [BS77]) we prove
a classification theorem for solid Cu-semirings. In essence, this result states that if
R is a solid Cu-semiring then it is either {0,1,...,k, 00}, for some k, [0,0], Z, or
is constructed out of a solid ring T 2 7Z with non-torsion unit.

Now denote by @ = Q4 U (0, 00] the Cuntz semigroup of the universal UHF-
algebra. As a consequence of our classification theorem, we obtain that Z and Q
can be (uniquely) characterized as initial and final objects in the category of nonele-
mentary, solid Cu-semirings satisfying the almost algebraic order axiom. Likewise,
[0, 00] is the unique solid Cu-semiring that contains no nonzero compact elements.
This is an exact parallell of Winter’s result that strongly self-absorbing C*-algebras
are Z-stable and in fact, our methods allow us to recover this result.

It would be interesting to know whether the Cuntz semigroup of any strongly
self-absorbing C*-algebra D is always solid. This is clearly the case if D is purely
infinite simple. As D is Z-stable by Winter’s result, [Winl11], and monotracial in
the stably finite case, it follows that Cu(D) may be identified with V(D) U (0, o0].
With our classification theorem of solid Cu-semirings at hand, this would shed light
on whether there could exist a non-UCT strongly self-absorbing example.
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CHAPTER 2
Pre-completed Cuntz semigroups

In the first part of this chapter, we introduce the categories PreW and W of
(abstract) pre-completed Cuntz semigroups and we develop their general theory.
An object of PreW or W is a positively ordered monoid (see Paragraph B.2.1
for the definition) equipped with an auxiliary relation such that certain axioms
are satisfied; see Paragraph 2.1.1 and Definition 2.1.2. We show that W is a full,
reflective subcategory of PreW, see Proposition 2.1.5, and that both categories have
inductive limits; see Theorem 2.1.8 and Corollary 2.1.9.

In the second part, we associate to every local C*-algebra A its pre-completed
Cuntz semigroup W(A), which naturally belongs to the category W. It is given
as the original definition of the Cuntz semigroup (equivalence classes of positive
elements in matrices over A), together with a natural auxiliary relation; see Prop-
osition 2.2.5. We show that the assignment A — W(A) extends to a continuous
functor from local C*-algebras to the category W; see Corollary 2.1.9. This is
inspired by [CEIO8], where the analogous results are shown for the completed
Cuntz semigroup; see Chapter 3.

2.1. The categories PreW and W
We refer to Section B.2 for the basic theory of positively ordered monoids.

2.1.1 (Axioms for the category W). Let S be a positively ordered monoid.
Following [GHK 103, Definition I-1.11, p.57], an auziliary relation on S is a binary
relation < such that the following conditions hold:

(i) We have that a < b implies a < b, for any a,b € S.
(ii) We have that a < b < ¢ < d implies a < d, for any a,b,c,d € S.
(iii) We have that 0 < a, for any a € S.

Let S be a positively ordered monoid and fix an auxiliary relation < on S.
We say that S is countably-based if there exists a countable subset B C S such
that for any two elements a’,a in S satisfying a’ < a, there exists b € B such that
a’ <b < a. A subset B with these properties is called a basis for S; cf. [GHK'03,
Proposition 111.4.2, p. 241].

A particularly interesting auxiliary relation is the following: Given elements a
and b in a positively ordered monoid S, we say that a is compactly contained in b
(or a is way-below b), denoted a < b, if whenever (b, )nen is an increasing sequence
in S for which the supremum sup,, b,, exists, then b < sup,, b,, implies that there is
k such that a < by. If a € S satisfies a < a, we say that a is compact, and we shall
denote the set of compact elements by S..

Note that the compact containment relation is usually defined by considering
suprema of arbitrary upwards directed sets; c.f. [GHK'03, Definition I-1.1, p.49].
The definition given here is a sequential version. In Remarks 3.1.3 we will see that
both notions agree under a suitable separability assumption.

We will use the following axioms to define the objects in the categories PreW
and W. Given an element a € S, we use the notation o™ := {zx € S | = < a} for
the set of predecessors of a.

11
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(W1) For each a € S, there exists a sequence (ax)r C a™ such that ap < ag41
for each k and such that for any b € a™ there exists an index k such that
b < ag.

(W2) For each a € S, we have a = supa™.

(W3) If a’,a,b',b € S satisfy a’ < a and b’ < b, then o/ + b < a+b.

(W4) Ifa,b,c € S satisfy a < b+c, then there exist ¥, ¢’ € S such that a < ¥'+¢/,
b <band ¢ <ec.

Axiom (W1) means that for each a € S, the set a= is upward directed and
contains a cofinal increasing sequence with respect to <. Given a,b € S, axiom
(W3) means that the set

a+b%={d+¥V | d <a,b <b},

is contained in (a + b)~. Moreover, axiom (W4) means that a™ + b~ is cofinal in
(a +b)=. We also remark that axioms (W3) and (W4) mean precisely that the
addition map

4 SxS5 S, (a,b)—atb (abeS)

is a W-bimorphism, as defined in Definition 6.2.3.

DEFINITION 2.1.2. A PreW-semigroup is a pair (S, <), where S is a positively
ordered monoid and < is a fixed auxiliary relation on S satisfying axioms (W1),
(W3) and (W4) from Paragraph 2.1.1. If (S, <) also satisfies axiom (W2), then it
is called a W-semigroup. We often drop the reference to the auxiliary relation and
simply write S for a (Pre)W-semigroup.

Given two PreW-semigroups S and T, a generalized W-morphism f: S — T is
a PoM-morphism that is continuous in the following sense:

(M) For every a € S and b € T with b < f(a), there exists o’ € S such that
a <aand b< f(a).
We denote the collection of all such maps by W[S,T]. A W-morphism is a gener-
alized W-morphism that preserves the auxiliary relation and we denote the set of
all such maps by W(S,T).

We let PreW be the category that has as objects all PreW-semigroups, and
whose morphisms are the W-morphisms. We let W be the full subcategory of
PreW whose objects are W-semigroups. Note that we call the morphisms in both
categories W-morphisms.

REMARKS 2.1.3. (1) The order of the axioms (W1)-(W4) has been chosen so
that it roughly correspond to the axioms (O1)-(0O4) for Cu-semigroups, see Para-
graph 3.1.1. Indeed, one should think of the W-axioms as a version of the O-axioms
formulated in such a way that the semigroup is not required to have suprema of
increasing sequences.

(2) Let S be a semigroup with an auxiliary relation < such that (W1), (W3)
and (W4) are satisfied. It is easy to check that S satisfies (W2) if and only if for
every a,b € S we have that a~ C b= implies a < b. Note that the converse of this
statement is always true, that is, if @ < b then = C b=. This means that in the
presence of (W2), the partial order may be derived from the auxiliary relation. For
a Cu-semigroup, the converse is also true, since then the auxiliary relation is the
compact containment relation which is defined in terms of the partial order.

(3) In a W-semigroup, the relation < is stronger than <. The class of W-
semigroups where < is equal to < was studied in [ABP11].

(4) Let f: S — T be a PoM-morphism between W-semigroups. If f is contin-
uous, then for each a € S we have

f(a) = sup f(a7).
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Indeed, by (W2) in T, we have that f(a) = sup f(a)~. Continuity of the map f
implies that f(a™) is cofinal in f(a)= in the sense that for every ¢’ € f(a)™ there
exists @’ € a™ with ¢/ < f(s’). However, let us remark that we do not assume that f
preserves the auxiliary relation, so that we do not necessarily have f(a~) C f(a)~.
Nevertheless, it follows from this version of cofinality that the suprema of the sets
f(a™) and f(a)™ agree.

The converse of this statement in the context of Cu-semigroups is given in
Lemma 3.1.4.

2.1.4. We will now show that the category W is a reflective subcategory of
PreW. This means that the inclusion functor W — PreW admits a left adjoint.
We use the idea of a universal completion as described in [KL09, § 2]. Thus, given
a PreW-semigroup, we will construct its W-completion.

Let (S, <) be a PreW-semigroup. In order to enforce (W2), we consider the
binary relation < on S given by a < b if and only if ¢~ C b=, for any a,b € S. It
is clear that =< is a pre-order on S. By symmetrizing <, we obtain an equivalence
relation ~ on .S such that for any a,b € S we have

a~b ifandonlyif a=<b=<a ifandonlyif a==>57.
We let p(S) = S/~ denote the set of equivalence classes, and we denote the class
of an element a € S by [a]. By construction, the pre-order < induces a partial
order on p(S) by setting [a] < [b] if and only if a= C b=, for any a,b € S. It is easy
to check that the addition on S induces an addition on x(S) and that this endows
1(S) with the structure of a positively ordered monoid.

We define an auxiliary relation on u(S) by setting [a] < [b] if and only if a € b,
for any a,b € S. With this structure, (S) becomes a W-semigroup. Moreover, the
map

B:S—=pulS), ar—la], (a€s)

is easily seen to be a W-morphism. The only detail that needs some verification
is that u(S) satisfies (W2), and for this we use the second observation in Re-
marks 2.1.3. Thus assume that a,b € S satisfy [a] C [b]¥. By definition, this
means that [a'] < [b] for any a’ € S satisfying [a/] < [a]. This in turn mean that
a’ < b whenever o’ € S satisfies a’ < a. Therefore a~ C b~, which means [a] < [b],
as desired.

The map B: S — p(S) has the following universal property: For every W-
semigroup R and for every W-morphism f: S — R, there is a unique W-morphism
f: u(S) — Rsuch that f = fof. This means precisely that 8: S — u(S) is the W-
completion of S. By [KLO09, § 2], this induces a reflection functor p: PreW — W.

ProproSITION 2.1.5. The category W is a full, reflective subcategory of PreW.

2.1.6 (Inductive limits in PoM). Let (S;, ¢; ;) be an inductive system in PoM,
indexed over a directed set 2. We define an equivalence relation ~ on the disjoint
union | |;c, Si, by setting for any a € S; and any b € S;:

a~b if and only if there exists k > 4, j such that ¢; x(a) = ¢, 1(b).

The set of equivalence classes is denoted by PoM-lim S;. We denote the equivalence
class of an element a € S; by [a]. Given a € S; and b € S}, we define

[a] + [b] = [pin(a) + ¢jr(b)],  for any k>, j.

It is clear that this is a well-defined addition on PoM—hAl S;. We also define a partial
order by setting for a € S; and b € §;:

[a] <[b] if and only if there exists k > ¢, j such that ¢; x(a) < ¢; (D).
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This gives PoM-lim S; the structure of a positively ordered monoid, and it is well-
known that this is the inductive limit in the category PoM. The PoM-morphism
from S; to the inductive limit is denoted by ¢; .

DEFINITION 2.1.7 (Auxiliary relation on PoM-lim S;). Let (S, ¢i;) be an in-
ductive system in PreW. We define a relation < on the inductive limit PoM-lim S;
of the underlying positively ordered monoids as follows: For a € S; and b € S;, we
set

[a] < [b] if and only if there exists k > 4, j such that ¢; r(a) < ;.1 (D).

THEOREM 2.1.8. The category PreW has inductive limits. More precisely, let
(Ss,i,5) be an inductive system in PreW. Let S = PoM-lim S; be the inductive
limit of the underlying positively ordered monoids, together with PoM-morphisms
PYioo: S — 8. The relation < on S as defined in Definition 2.1.7 is an auziliary
relation and (S, <) is a PreW-semigroup, denoted by PreW-lim S;. Moreover, the
maps p; o are W-morphisms and PreW—li_n; S; is the inductive limit of the system
(Ss, i,5) in PreW.

PROOF. Let us first show that < is an auxiliary relation. Let [a], [b], [¢] and [d]
be elements in S. It is easy to see that 0 < [a], and that [a] < [b] implies [a] < [b].
Now suppose that [a] < [b] < [c] < [d]. We have to show that [a] < [d]. We may
assume that there is an index ¢ such that all four elements are represented in S;.
Since [a] < [b], there is j > ¢ such that ¢; ;(a) < ¢; ;(b). Similarly, there are k > ¢
and [ > ¢ such that ¢; (b) < @i r(c) and @;(c) < @;i(d). Let n > j, k, 1. Using
that the connecting maps preserve the order and the auxiliary relation, we obtain

gai,n(a) S @z,n(b) < (pj,n(c) S Wi,n(d)a

which implies that [a] < [d].

Next, we show that (S <) is a PreW-semigroup. In order to verify (W1), let
a € S; for some 4. Since S; satisfies (W1), there is a cofinal <-increasing sequence
(ak)ken in S;. Then [ax] < [a] for all k. Further, if [b] < [a] for some j and b € S,
then there is n > 4, j with ¢;,(b) < ¢; »(a). Using that ¢, , is continuous, there
is k such that ¢;.,(b) < @;n(ag). Thus [b] < [ax]. This shows that [a]~ is upward
directed and contains a cofinal <-increasing sequence.

It is routine to check (W3). In order to show that (S, <) satisfies (W4), suppose
that [c] < [a] + [b] for some elements [a], [b] and [c] in S. We may assume that there
is an index ¢ such all three elements are represented in S;. Then there is j > i such
that ¢; j(¢) < @i, j(a)+; ;(b). Since S; satisfies (W4), there are elements d, e € S;
such that

i) <d+e, d=<g;ia), e=<p;;b).
Using that ¢; ; is continuous, there are elements a’, b’ € S; such that

a <a, V=<b d<oid), e<ep ;).
Then [a'] < [a], [b'] < [b] and [¢] < [a'] + [0'], which shows that the elements [a]

and [b'] have the desired properties to verify (W4) in S.

The natural maps @; o: S; — S clearly preserve the auxiliary relation. We
need to check that they are also continuous. So let a € S; and s € S satisfy s < [a].
Then there is j and b € S; such that s = [b]. It follows that there is k > 4, j such
that ¢; (b)) < @i k(a) in Si. Since g, is continuous, there is ¢’ € S; such that
a’ < aand @; k(b)) < @; p(a’). It follows that s < ¢; o (a’), which shows that o’ has
the desired properties.

Finally, we show that .S is the inductive limit in the category PreW. So let T be
a PreW-semigroup and let A;: S; — T be are W-morphisms such that A\jop; ; = \;
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whenever ¢ < j. Since S is the limit in the category PoM, there is a unique PoM-
morphism a: S — T such that a o ; o = A; for each 4. It is left to the reader to
verify that a is a W-morphism. g

Given an inductive system (S;,¢; ;) in W, the inductive limit PreW—ligl S
from Theorem 2.1.8 need not be a W-semigroup. However, since W is a reflective
subcategory of PreW, it follows from general category theory that W has inductive
limits and that the reflection functor p: PreW — W is continuous; see e.g. [Bor94,
Proposition 3.2.2, p.106].

COROLLARY 2.1.9. The category W has inductive limits.
More precisely, let (S;, i ;) be an inductive system in W. Then the inductive
limit in W is the W-completion of the inductive limit in PreW:

W-lim Si = /L(PreW—liﬂ Si).

2.2. The pre-completed Cuntz semigroup of a C*-algebra

2.2.1 (Local C*-algebras). A pre-C*-algebra A is a *-algebra over the complex
numbers together with a C*-norm ||_||, that is, ||a*a|| = ||a||? for all a € A. Tt is
known that such a norm is automatically submultiplicative and that the involution
becomes isometric; see [Pal01l, Theorem 9.5.14, p.956]. Every pre-C*-algebra A
naturally embeds as a dense sub-*-algebra, in its completion A, which is a C*-alge-
bra.

In this paper, we will say that A is a local C*-algebra if there is a family of
complete, *-invariant subalgebras A; C A such that for any iq,is there is i3 such
that A;, U A;, C A;, and such that A = |J; A;. Note that each A; is a C*-alge-
bra. Viewing a pre-C*-algebra A inside its completion A, it is a local C*-algebra
if and only if for any finite subset F' C A, the C*-algebra C*(F) generated inside
A is contained in A. The main point is that local C*-algebras are closed under
continuous functional calculus.

We say that A is separable if it contains a countable dense subset (equivalently,
A is separable). If A is a local C*-algebra, then so is every matrix algebra My (A),
and there is a natural dense embedding My, (A) C My(A). The C*-algebras My (A)
sit (as upper left corners) inside the stabilization A ® K, and we may consider the
union

Myo(A) = JMi(4) C A®K.
k
This is a dense embedding, hence M, (A) = A ® K, and one sees that M., (A) is
again a local C*-algebra.

A *-homomorphism between local C*-algebras is automatically continuous and
even norm-decreasing. We let Cj . be the category whose objects are local C*-al-
gebras, and whose morphisms are *-homomorphisms.

We remark that there are other definitions of a local C*-algebra in the literature,
in particular in [Bla98, 3.1], [Mey99], [CMRO07] and [BH82, Definition I.1.1(a)].
Some of these definitions seem to be more general than the one given here. It is
conceivable that the theory of pre-completed Cuntz semigroups can be carried out
in this more general framework, but we will not pursue this here.

2.2.2 (Cuntz comparison in a local C*-algebra). Let A be a local C*-algebra
and let z,y € A, be positive elements. We say that z is Cuntz sub-equivalent to y,
in symbols z 3 y, if there exists a sequence (zy,), in A such that x = lim,, 2} yz,.
We say x is Cuntz equivalent to y, in symbols x ~ y, if x X y and y = x. These
relations were introduced in [Cun?78|.
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Rordam’s fundamental results on Cuntz comparison, [Rgr92, Proposition 2.4]
(see also [APT11, Proposition 2.17]), remain valid in local C*-algebras, that is,
for any x,y € Ay the following conditions are equivalent:

(1) We have xz 3 y.
(2) For every € > 0 there exists 6 > 0 such that (x — )1 2 (y —0)+.
(3) For every € > 0 there exist 6 > 0 and r € A such that (x —¢); = r(y— )47

2.2.3. Given a local C*-algebra A, the (original) definition of the Cuntz semi-
group of A is

W(A) = Moo (A)1/~,

the set of Cuntz equivalence classes of positive elements in matrix algebras over
A. The equivalence class of an element & € My, (A)y is denoted by [z]. Given
2,y € Mo(A)y, we set [z] < [y] if # 2y, and we define [z] + [y] = [(§§)]. This
defines a partial order and a well-defined abelian addition on W(A). The zero
element in W (A) is given by the class of the zero element 0 € A. This equips W (A)
with the structure of a positively ordered monoid. Next, we will endow W (A4) with

an auxiliary relation, making it a W-semigroup.

DEFINITION 2.2.4. Let A be a local C*-algebra. We define a relation < on the
positively ordered monoid W(A) = My (A)4/ ~ as follows: For a,b € My, (A)4,
we set

[a] < [b] if and only if there exists e > 0 such that [a] < [(b—&)4].
We call W(A) = (W(A), <) the pre-completed Cuntz semigroup of A.

PROPOSITION 2.2.5. Let A be a local C*-algebra. Then the relation < defined
in Definition 2.2.4 is an auziliary relation and (W(A), <) is a W-semigroup. If A
is separable, then W (A) is countably-based.

PROOF. By abusing notation, let us define a relation < on positive elements
in M (A) by setting a < b if there exists € > 0 such that a 3 (b — ¢)4. Rordam’s
results on Cuntz comparison show that a < b if and only if for every ¢ > 0 there
exists 6 > 0 such that (a —e); 3 (b — d)4; see Paragraph 2.2.2 and [Rgr92,
Proposition 2.4], Thus, given any three positive elements a,b and ¢, we see that
a < b= cimplies a < c.

It follows that < is a well-defined auxiliary relation on W(A). The axioms
(W1)-(W4) are now straightforward to check. Finally, if A is separable, it follows
that W(A) countably-based; the argument can be found in the proof of [APS11,
Lemma 1.3]; see also [Rob13a, Proposition 5.1.1]. O

REMARKS 2.2.6. (1) Usually, by W(A) we denote the pre-completed Cuntz
semigroup of A, considered as a W-semigroup which is understood to be equipped
with an auxiliary relation. It should be clear from the context when by W(A) we
only mean the underlying positively ordered monoid.

(2) It is not known whether the auxiliary relation on W (A) can be deduced
from its structure as a positively ordered monoid, but it seems unlikely that this is
the case without assuming certain regularity properties on the C*-algebra. Thus,
we consider the auxiliary relation on W(A) as an additional structure, not just as
a property. This is in contrast to Cu-semigroups, where the auxiliary relation (the
way-below relation) is defined in terms of the order structure, see Chapter 3.

The case when the auxiliary relation in W(A) is just the way-below relation
was studied in [ABP11]. The class of such semigroups was denoted by PreCu. See
also Remarks 2.1.3(3).
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We want to extend the assignment A — W(A) to a functor from the cat-
egory of local C*-algebras to the category W. Thus, we need to show that a
*-homomorphism ¢: A — B induces a W-morphism between the respective W-
semigroups. We will first prove a related result for c.p.c. order-zero maps. As
shown in [WZ09, Corollary 4.5], a c.p.c. order-zero map between C*-algebras in-
duces a PoM-morphism between the respective W-semigroups. In the result below
we establish that this map is also continuous, hence a generalized W-morphism.

Note that a c.p.c. order-zero map ¢: A — B naturally extends to a c.p.c.
order-zero map between the local C*-algebras My, (A) and M (B). By abuse of
notation, we will denote this extension also by .

PROPOSITION 2.2.7 (cf. Winter, Zacharias, [WZ09, Corollary 4.5]). Let A and
B be local C*-algebras. Then every c.p.c. order-zero map ¢: A — B naturally
induces a generalized W -morphism

W(p): W(A) = W(B), [z] = [p@)]. (v€ Mx(A)y)

If ¢ is a *-homomorphism, then W (p) also preserves the auziliary relation and thus
is a W-morphism.

PrOOF. We denote by the map W(y) by f. It follows from [WZ09, Corol-
lary 4.5] that f is a well-defined PoM-morphism, that is, f preserves addition, order
and the zero element.

To check that f is continuous, let b € W(B) and a € W(A) satisfy a < f(b).
We need to show that there exists a’ € W(A) such that a’ < a and b < f(a’). To
that end, let € My, (A)4+ such that a = [z]. Then, by definition of < on W(B),
there exists € > 0 such that b < [(¢(z) — €lz)4]. We have

plr—celz) =p() —ep(lz) > p(z) —€lp.

Then, using that ¢(z — el ;) commutes with ¢(z) — el for the first step, and that
o(y)+ = p(y+) for every self-adjoint y at the second step, we deduce that

(p(z) —elp)t < px —elz)y = p((z —elz)y).

For o' := [(x — €1 3) ] we have o’ < a in W(A) and b < f(a’), as desired.
If ¢ is a *-homomorphism, then p((x—¢)y) = (¢(x)—¢)+ for each z € M (A) 4,
which implies that f = W () preserves the auxiliary relation. O

It follows that W is a functor from the category C}

e of local C*-algebras with
*-homomorphisms to the category W.

2.2.8 (Inductive limits in C} ). Let (A;,¢; ;) be an inductive system in the
category Cf ., indexed over the directed set I. To construct the inductive limit in
Cy ., we first consider the algebraic inductive limit A, with the pre-norm defined

by
[zl = inf {{lpis (@) | j€Jj=i},
for € A;. The set N = {x € Aag | ||z| = 0} is a two-sided *-ideal. Set
Coerlim A; := Aqg /N,

which is a local C*-algebra satisfying the universal properties of an inductive limit.

Observe that each for each i,j € I satisfying ¢ < j, the map ¢; ; induces a
natural *-homomorphism M (A;) = Mo (A;), which we denote by @; ;. The limit
of the inductive system (M (A;), @;;) is naturally isomorphic to MDO(CI*;C—@ A).

THEOREM 2.2.9. The functor W: C . — W is continuous.
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PRrROOF. Let (4;,¢; ;) be an inductive system in C}; .. We let A be the algebraic
inductive limit, and we let N denote the *-ideal defined in Paragraph 2.2.8 so that
the inductive limit in Cj_ is given by A/N with *-homomorphisms ¢; oo: A; —
A/N. As explained in Paragraph 2.2.8, we may replace each A; by My, (4;). Then
every Cuntz class in W(A4;) is realized by a positive element in A;. It follows
that also every class in W(A/N) is realized by a positive element in A/N, that is,
W(A/N) = (A/N); /~.

The following diagram shows the algebras and maps to be constructed.

A — s A A A/N
W(A/N)
W(A) YL W (A;) == . —= PreW-li W(4;) —= W-lim W(A,)

[ I
S 1(S)

Yj 00

B

For i < j, set 1, ; := W(y; ;) and consider the induced W-inductive system
(W (As),¥;,5). Let S be the inductive limit in PreW; see Corollary 2.1.9. Denote the
W-morphisms into the limit by ¢; oo W(A;) — S. The maps W(p; ): W(4;) —
W(A/N) induce a W-morphism w: S — W(A/N). The limit in the category W
is given as the W-completion of the limit in PreW; see Corollary 2.1.9. Thus, to
show that W(A/N) is the inductive limit of the W (A4;) in the category W, we need
to prove that w has the universal property of the W-completion.

Since every positive element in A/N is the image of a positive element in some
A;, we conclude that w is surjective. It remains to show that w has the following
property: Given s,t € S with w(s) < w(t), it follows that s C ¢= in S.

So let s,t € S satisfy w(s) < w(t) and let s’ be an element in S with s’ < s. Then
there is ¢ and elements a’,a € W(A;) such that a’ < a in W(A;) and s’ = v; oo (a’)
and s = ¥; (a). We may assume that ¢ is also realized by an element in W (A;)
(by passing to a larger index, if necessary). This means there is b € W(4;) with
t =1 00 (D).

Let @ and y be positive elements in A; such that @ = [z] and b = [y]. By
definition of the relation < in W(A4;), there is € > 0 such that o’ < [(z — )]
Note that w(s) and w(t) are the Cuntz classes of ¢; o (z) and ¢; (y) in A/N,
respectively. By assumption, ¢; oc(z) 3 ¢00(y). Using Regrdam’s lemma, see
Paragraph 2.2.2, there is § > 0 and r» € A/N such that

€

(froc@) = 3) , =T (Pusl®) — ), 1"

Then there is j and 7 € A; such that r = ¢; (7). We may assume j > 7. It follows
that

Pioe (@ = 2)4) = Proo (i ((y = 0)4)7)

Using the description of the limit in Cf}_, see Paragraph 2.2.8, this implies that
there exists k > j such that

<

eir ((@=5)+) = @i (i ((y = ) )7)

N ™
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Using [Rgr92, Lemma 2.2] at the second step, we get that
€ €
(el —e), = (our (@ = 5)+) = 5),
2 ik (Tei;((y = 6)4)77)
2 (pjey) = 0),

It follows that ¥; oo ([(z — €)+]) < ¥i,00([(y — d)4]). Using this at the third step, we
obtain that

§' = 1i00(a") < Vi ([( = €)4]) < Pioo([(y — 0)4]) < Yi0(ly]) =1

Hence, s’ < t as desired. O






CHAPTER 3

Completed Cuntz semigroups

In the first part of this chapter, we recall the definition of the category Cu of
(abstract) completed Cuntz semigroups, as introduced in [CEIO8]. We show that
Cu is a full, reflective subcategory of PreW, see Theorem 3.1.10. The reflection of
a PreW-semigroup S in Cu is called its Cu-completion. Since PreW has inductive
limits, the same holds for Cu. This generalizes [CEIO8, Theorem 2] and it provides
a new description of inductive limits in Cu; see Corollary 3.1.11.

In the second part, we consider the functor Cu: C* — Cu, as introduced in
[CEIOS8]. It associates to a C*-algebra A the set of Cuntz equivalence classes of
positive elements in the stabilization of A, that is, Cu(A4) = (A ® K)4+/~. It turns
out that Cu(A) is an object in Cu and we call it the completed Cuntz semigroup of A.
The main result of this chapter, Theorem 3.2.8, states that for every C*-algebra A,
its completed Cuntz semigroup Cu(A) is naturally isomorphic to the Cu-completion
of its pre-completed Cuntz semigroup W(A). Moreover, all involved functors are
continuous.

3.1. The category Cu

3.1.1 (Axioms for the category Cu). Given a positively ordered monoid S,
the following axioms were introduced in [CEIO8], see also [Rob13a]. Recall the
definition of the compact containment relation < from Paragraph 2.1.1.

(O1) Every increasing sequence (a,)nen in S has a supremum sup,, a,, € S.

(02) Every element a € S is the supremum of a sequence (a,), such that

Gp K ap4q for all n.
(03) If d/,a,b',b € S satisfy ' < a and b’ < b, then o’ +b < a +b.
(04) If (an)n and (by,), are increasing sequences in S, then sup, (a, + b,) =
sup,, @, + sup,, by,.
A sequence as in (02) is called rapidly increasing.

DEFINITION 3.1.2 (The category Cu; c.f. Coward-Elliott-Ivanescu, [CEIO8]).
A Cu-semigroup is a positively ordered monoid that satisfies axioms (O1)-(04) from
Paragraph 3.1.1. Given two Cu-semigroups S and T, a Cu-morphism f: S — T
is a PoM-morphism that preserves compact containment and suprema of increas-
ing sequences. We denote the collection of such maps by Cu(S,T). We let Cu
be the category whose objects are Cu-semigroups and whose morphisms are Cu-
morphisms.

A generalized Cu-morphism between two Cu-semigroups is a Cu-morphism that
does not necessarily preserve compact containment, i.e., a PoM-morphism that
preserves suprema of increasing sequences. We denote the set of generalized Cu-
morphisms by CulS,T].

REMARKS 3.1.3. (1) In lattice theory, a partially ordered set M is called a
directed complete partially ordered set, often abbreviated to dcpo, if each upward
directed set in M has a supremum; see [GHK 03, Definition 0.2.1, p. 9]. If the
existence of suprema is only required for increasing sequences, then M is called an
w-dcpo.

21



22 3. COMPLETED CUNTZ SEMIGROUPS

A dcpo M is called continuous if each element a in M is the supremum of the
elements compactly contained in a; see [GHK'03, Definition 1.1.6, p. 54]. Recall
from Paragraph 2.1.1 that we use a sequential version of compact containment. An
w-dcpo is called w-continuous if every element a is the supremum of a sequence
(ar)r where ay is sequentially compactly contained in a4 for each k.

Thus, axioms (O1) and (O2) mean exactly that the positively ordered monoid
in question is a w-continuous w-dcpo.

(2) Let S be a positively ordered monoid, considered with the derived auxiliary
relation <. Recall from Paragraph 2.1.1 that S is called countably-based if there
exists a countable subset B C S such that, whenever a’,a € S satisfy a’ < a, there
exists b € B with o/ < b <« a. If S satisfies (O1) and (0O2) from Paragraph 3.1.1,
then this is equivalent to the condition that every a € S is the supremum of a
rapidly increasing sequence (ay ) with ay € B for each k. It is easy to check that a
countably-based positively ordered monoid satisfying (O1) and (O2) is a continuous
dcpo.

(4) A PoM-morphism between Cu-semigroups preserves suprema of increasing
sequences if and only if it is sequentially continuous for the so-called Scott-topology;
see [GHK ™03, Definition 11-2.2, p. 158].

(3) Axioms (03) and (O4) mean precisely that the addition map +: S xS — S
is a Cu-bimorphism, as defined in Definition 6.3.1.

Given a Cu-semigroup S, it is easily checked that the pair (S, <) is a W-
semigroup. The next result implies that under this identification, the notions of
(generalized) Cu-morphisms and (generalized) W-morphisms agree.

LEMMA 3.1.4. Let S and T be two Cu-semigroups, and let f: S — T be a
PoM-morphism. Then the following are equivalent:

(1) The map f: S — T preserves suprema of increasing sequences.
(2) The map f: S — T is continuous in the sense of Definition 2.1.2.
(3) We have f(a) =sup f(a<) for each a € S.

PrOOF. For the implication ‘(1)=(2)’, let « € S and b € T satisfy b < f(a).
Using (02) for S, there exists a rapidly increasing sequence (ay) in S with a =
supy, ag. Since f(a) = supy, f(ax) by assumption, it follows that there is k such that
b < f(ar). Then ay, has the desired properties.

The implication ‘(2)=(3)’ was shown in Remarks 2.1.3(4).

Finally, to show the implication ‘(3)=-(1)’, let (ax)x be an increasing sequence in
S. Set a = supy, ai,. We clearly have f(a) > supy, f(ax). For the converse inequality,
we choose a rapidly increasing sequence (¢, ), in S satisfying a = sup,, ¢,,. It follows
from the assumption that f(a) = sup,, f(¢,). Now, given any b € T satisfying
b < f(a), there exists an index n such that b < f(c,). Since ¢, < a = supy, ax,
there is an index k such that ¢, < ag. Then

b< flen) < flax) < Sup flak).

Thus, for every b satisfying b < f(a) we have shown that b < sup,, f(ax). It follows
that f(a) < supy f(ax), as desired. O

3.1.5 (Cu is a full subcategory of W). Consider the functor Cu — W that maps
a Cu-semigroup S to the W-semigroup (5, <), and that sends a Cu-morphism
f:S — T to the same map f, considered as a W-morphism. It follows from
Lemma 3.1.4 that this functor is fully faithful. This means that we may consider
Cu as a full subcategory of W, and we will therefore usually not distinguish between
a Cu-semigroup S and the associated W-semigroup (S, <).
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We will now show that Cu is a reflective subcategory of W, using again the
idea of a universal completion as described in [KL09, § 2]. We first show that
every PreW-semigroup S can be suitably completed to a Cu-semigroup v(5); see
Proposition 3.1.6. We then show that this has the desired universal properties; see
Theorem 3.1.8.

The proof of the following result is inspired by the so-called round ideal comple-
tion, that associates to a partially ordered set with an auxiliary relation a continu-
ous dcpo, see [Law97, Theorem 2.4]. The construction given here is a sequential
version that also takes the additive structure into account.

PRrROPOSITION 3.1.6. Let (S, <) be a PreW-semigroup. Then there exist a Cu-
semigroup ¥(S) and a W-morphism a: S — ~v(S) satisfying the following condi-
tions:

(1) The map « is an ‘embedding’ in the sense that o' < a whenever a(a’) < a(a),
for any a’;a € S.

(2) The map « has ‘dense image’ in the sense that for every b',b € v(S) with
b < b there exists a € S such that ¥ < a(a) <b.

In particular, if S is countably-based, then so is vy(S).

PROOF. To construct v(S), first consider the set S of <-increasing sequences
in §. We write such sequences as a = (ag)r = (a1,as,...). For a and b in S, we
define their sum as a + b = (ax + bx)r. We define a binary relation C on S by
setting for any a,b € S:

a Cb if and only if for every k£ € N there exists n € N such that ay < b,,.

It is easy to check that C is a preorder on S. We obtain an equivalence relation by
setting for any a,b € S:

a~b ifandonlyif acCbandbcCa.
We denote the set of equivalence classes by
V(S) =S5/~

For an element a € S, we denote its class in v(S) by [a]. The relation C induces a
partial order < on (S) by setting [a] < [b] if and only if a C b, for any a,b € S.

Since 0 < 0 in S, the sequence 0 = (0,0,...) is an element of S. We denote its
class in v(S) by 0. For each a € S, we have that 0 C a, and therefore 0 < [a]. Tt
follows from axiom (W3) for S that a C b implies a+-c C b+c, forany a,b,c € S.
Thus, the addition on S induces an addition on ~(S). Together with the partial
order and the zero element, this gives (S) the structure of a positively ordered
monoid.

We define a binary relation  on S by setting for any a,b € S:

a C b if and only if there exists n € N such that ax < b, for all &k € N.

It is easy to check that @ is an auxiliary relation on S. This induces an auxiliary
relation < on 7(S) by setting [a] < [b] if and only if a € b, for any a,b € S.

We will now check that v(S) satisfies axioms (01)-(04). To show (O1), let
an increasing sequence al’) c a® c ... in § be given. We employ a standard
diagonalization argument, which is also used to show existence of suprema in the
inductive limit construction in Cu, see e.g. [APT11, Theorem 4.34]. Write al*) =

(agk), aék), ...) for each k. We inductively find indices nj such that

a;?ﬂ» =< ag? for all 4,j with ¢+ 75 <k.
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We start with n; = 0. Since a®) C a(?)| there exists ny such that asl)ﬂ = agl) <

a%). Now assume n; has been constructed for ¢ < k. Since al¥), ..., a®) c alk+1)
there exists nyy1 such that
1) (2) (k—1) (k) k+1
an1+k’ an2+k—1’ ce Oy 420 Oyt = a’ELk+1)

This completes the inductiv_e step. _Af_ter reindexing the sequences, we may assume
that n; = ¢ and therefore az(-i)j =< agf:;-]) for all 4,5 > 1. Set b; = a;J) for each j, and
set b = (by,bs,...) € F;It is straightforward to check that b is the supremum of
the sequence (a(’“))/rC in S. It follows that
[b] = sup[a™],
k

in v(S), which verifies (O1). It is left to the reader to prove axiom (O4) for v(S5).

Next, we show that « induces the compact containment relation < on (.5).
To that end, we first show that the analog of (02) holds for @, that is, for every
a = (a,), in S there exist elements a®) €S for k € N such that

a = sup a(k), and aV ca® ca® ...
k

By (W1) for S, for each k there is a sequence ap 1] < app) < ... with ap < apq
and af,q < agy1 for all 4. Set

a® = (a1, a0,...,az, A]s Ofk,2]s - - -)-
It is straightforward to check that this sequence has the desired properties.
Now let a,b € S satisfy [a] <« [b]. As explained in the previous paragraph, we
can choose a sequence of elements b¥) € S such that b = supy, b® and such that
¥ = by, and b¥) < by, for each k,i € N. Then

[a] < [b] = Sgp[b('“)],

which implies that there exists an index k such that [a] < [b®)]. This mean that
ac b and it follows easily that a C b.

Conversely, let a,b € S satisfy a € b. We want to show that [a] < [b] in
7(S). So let (c®));, be an increasing sequence in S satisfying [b] < sup,[c(*)]. Set
¢ =sup, ¢ in S. Then

bCc= supc(k).
k

After reindexing, we may assume ¢ = (cgck))k. Since a C b, there is an index n
such that a; < b, for all i. Since b C c, there is some m such that b,, < ¢,,, = cffln).
It follows that a C c(™) and therefore [a] < [c("™)]. Thus, for any two elements

a,b € S we have shown that
aCbinS ifandonlyif [a] < [b]iny(9).

It easily follows that (O2) holds in ~(S). B B

To verify (O3) for (S), we first show the analog for S. So let a’,a,b’,b € S
satisfy a’  a and b’ « b. Then there are two indices m and n such that ay, < am
for all k and such that b}, < b, for all k. Set d = max{m,n}. Using (W3) for S, it
follows that

ay, + by, < an + by,

for all k. This shows that a’ +b’ < a+b. It easily follows that v(.S) satisfies (O3).
This completes the proof that v(S) is a Cu-semigroup.

We define the map a: S — v(S) as follows: Given a € S, there exists by (W1)
a sequence a; < as < ... that is cofinal in a™. Set a(a) = [(a1,asz,...)]. It is
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straightforward to check that a(a) does not depend on the choice of the cofinal
sequence in ¢~ and that « is a W-morphism satisfying conditions (i) and (ii) of the
statement. g

DEFINITION 3.1.7. Let S be a PreW-semigroup. A Cu-completion of S is a
Cu-semigroup T together with a W-morphism «: S — T satisfying the following
universal property: For every Cu-semigroup R and for every W-morphism f: S —
R, there exists a unique Cu-morphism f: T — R such that f = fo Q.

Any two Cu-completions of a W-semigroup are isomorphic in the following
sense: If o;: S — T; are two Cu-completions, then there is a unique isomorphism
p: Ty — T5 such that as = p o ag.

THEOREM 3.1.8. Let S be a PreW-semigroup, let T be a Cu-semigroup and let
a: S —= T be a W-morphism. Then the following are equivalent:

(1) The map « satisfies the conditions of Proposition 3.1.6, namely:

(i) The map « is an ‘embedding’ in the sense that a’ < a whenever a(a’) <
ala), for any a’,a € S.

(i1) The map « has ‘dense image’ in the sense that for every b/,b € T with
b < b there exists a € S such that b’ < a(a) <b.

(2) The map « is a Cu-completion of S.

(8) For every Cu-semigroup R and every generalized W-morphism f: S — R,
there exists a generalized Cu-morphism f: T — R such that f = f o .
Moreover, f is a W-morphism if and only if f is a Cu-morphism. Moreover,
if g1,92: T — R are generalized Cu-morphisms such that g1 o < ga o« then
g1 < ga. (We consider the pointwise ordering among morphisms.)

ProOF. The implication ‘(3)=-(2)’ is clear. To show the implication ‘(1)=(3)’,
let R be a Cu-semigroup, and let f: S — R be a generalized W-morphism. It follows
from conditions (i) and (ii) that for every ¢t € T, the set {a € S | a(a) < t} is <-
upwards directed and contains a cofinal sequence. Thus, we may define a map
f:T — Rby

f(t) :==sup{f(s) | ala) <t}
Let us show that f is a generalized Cu-morphism. Let t1,to € T. If t; < t3, then
it follows from condition (ii) of an auxiliary relation (see Paragraph 2.1.1) that

{a€eS | ala)gty}Cc{aelS | ala) < t2},

and therefore f(t1) < f(t2).
Similarly, it follows from axiom (W3) for S that there is an inclusion

{a€eS | ala) <t1}+{a€eS | ala) <t} C{aeS | ala) Kty +1ta},

which is moreover cofinal by (W4). Tt follows that f(t; +t2) = f(t1) + f(t2). It is
easy to check that f is continuous in the sense of Definition 2.1.2. By Lemma 3.1.4,
this implies that f preserves suprema of increasing sequences. Thus, f is a gener-
alized Cu-morphism.

Let us check that f = foa. Let a € S be given. Using at the second step that
«a preserves the auxiliary relations and satisfies condition (i), and at the third step
that f is continuous, we obtain:

foa(a)=suw{f(d) | a(d)<ala)} =sup{f(@) | o <a}=f(a).

We claim that if f is additionally assumed to preserve the auxiliary relation,
then so does f. To see this, let t < t in T. Choose x € T such that ’ < z < t.
By condition (ii) for «, there is a € S such that z < a(a) < t. Then ¢’ < a(a), and
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since « is continuous, there is a’ € S such that a’ < a and ¢’ < a(a’). We obtain
that

Ft') < fla(a) = f(d') < f(a) = f(a(a) < f(1).
Finally, assume g¢1,92: T — R are two generalized Cu-morphisms such that

groa < gooa. Given t € T, let (ax)x be an increasing sequence in S such that
t = sup;, a(ax). Then

g1(t) = gi(sup a(ax)) = sup(g1 o @)(ax) < sup(gz o @)(ax) = g2(1),
k k k

which shows that g; < go.

Let us show the implication ‘(2)=-(1)’. By Proposition 3.1.6, there exists a
Cu-semigroup v(S) and a W-morphism &: S — v(5) satisfying (1). We have seen
that (1) implies (2). Thus, & is a Cu-completion satisfying (1). Since every two
Cu-completions of S are isomorphic, it follows that every Cu-completion satisfies
(1), as desired. O

REMARKS 3.1.9. (1) By Proposition 3.1.6 and Theorem 3.1.8, for every PreW-
semigroup S there exists a Cu-completion a: S — «(S). Given a Cu-semigroup
R, assigning to a (generalized) Cu-morphism f: v(S) — R the (generalized) W-
morphism f o« is an isomorphism of the following morphism sets:

WI[S, R] <— Cu[(S), R]

W(S, R) == Cu(+(S), R).

(2) Given a PreW-semigroup S, let a: S — ~(S) be its Cu-completion, as
constructed in Proposition 3.1.6. As remarked in Remarks 2.1.3(2), S satisfies
(W2) if and only if a™ C b~ implies a < b. It follows that « is an order-embedding
if and only if S is a W-semigroup.

(3) More generally, let a: S — T be a W-morphism from a W-semigroup S to a
Cu-semigroup 7. Then « is a Cu-completion if and only if « is an order-embedding
that has ‘dense image’ in the sense of condition (ii) from Theorem 3.1.8.

Necessity follows from (2) above. For the converse, assume « is an order-
embedding. Let a’,a € S such that a(a’) < a(a). Since « is continuous, there
exists z € S with z < a and a(a’) < a(z). Since a is an order-embedding, o’ <
and then a’ < a, as desired.

By Paragraph 3.1.5, the category Cu is a full subcategory of PreW. Moreover,
for every PreW-semigroup S, there exists a Cu-completion. As described in [KL09,
§ 2], this induces a reflection functor v: PreW — Cu (see also Remarks 3.1.9(1)).

THEOREM 3.1.10. The category Cu is a full, reflective subcategory of PreW.

As noticed before Corollary 2.1.9, it follows from general category theory that
the category Cu has inductive limits and that the reflection functor v: PreW — Cu
is continuous. Thus, we obtain the following generalization of [CEIO8, Theorem 2].

COROLLARY 3.1.11. The category Cu has inductive limits.
More precisely, let (S;,¢; ;) be an inductive system in Cu. Then the inductive
limit in Cu is the Cu-completion of the inductive limit in PreW:

Cu-hg"l Sl = ’y(PreW-@ Sz)

REMARK 3.1.12. The reflection functors p: PreW — W from Paragraph 2.1.4
and v: PreW — Cu from Theorem 3.1.10 commute in the sense that the composed
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functor v o u: PreW — Cu is naturally isomorphic to . The situation is shown in
the following diagram:

PreW £ > W —15 Cu

W
More precisely, starting with a PreW-semigroup S, let us first consider the universal
W-morphism fBg: S — p(S) from S to its W-completion. There is a universal W-
morphism a,,(gy: p(S) — v(1(S)) to the Cu-completion of (S). The composition
aus) © Bs: S — y(u(S)) is a Cu-completion of S. Since any two Cu-completions
are isomorphic, there is an isomorphism ~(S) 2 v(x(S)) which intertwines g and
Au(s) © Bs-

3.2. The completed Cuntz semigroup of a C*-algebra

3.2.1. Let A be C*-algebra. In [CEI08]|, a new definition of the Cuntz semi-
group is introduced as Cu(A) = (A ® K)4/~, the set of Cuntz equivalence classes
of positive elements in the stabilization of A. (See Paragraph 2.2.2 for the def-
inition of Cuntz equivalence.) The relation of Cuntz subequivalence induces a
partial order on Cu(A4). Using an isomorphism M>(K) =2 K we get an isomor-
phism 9: M2(A ® K) — A ® K, which is used to obtain a well-defined addition
[2] + [y] = [W(§9)]. With this structure, Cu(A) becomes a positively ordered
monoid.

DEFINITION 3.2.2. Let A be a C*-algebra. We call
Cu(4) = (A®K)4/~
the completed Cuntz semigroup of A.

ProprosITION 3.2.3 ([CEIO8, Theorem 1]). Let A be a C*-algebra. Then the
positively ordered monoid Cu(A) satisfies (01)-(04) from Paragraph 3.1.1 and is
therefore a Cu-semigroup. If A is separable, then Cu(A) is countably-based.

REMARKS 3.2.4. (1) We will show in Theorem 3.2.8 that Cu(A) is isomorphic
to the Cu-completion of W(A). This is why we call Cu(A) the completed Cuntz
semigroup, and W (A) the pre-completed Cuntz semigroup of A.

(2) Another way of looking at Cu(A) is to identify it with W (A ® K). In fact,
the *-homomorphism A ® K — M (A ® K) given by embedding an element in the
upper-left corner induces a bijection of Cuntz equivalence classes, respecting the
given order and addition. Thus, as a positively ordered monoid, Cu(A) is nothing
but W(A®K). The auxiliary relation < on W(A®K) as defined in Definition 2.2.4
is precisely the compact containment relation, which is deduced from the order
structure.

Indeed, it was shown in [CEIO8] that for every b € (A® K); and £ > 0 we
have that [(b —¢)+] < [b] in W(A ® K). It follows in particular that [p] < [p]
for any projection p, so projections are a natural source of compact elements in
Cu(A) (sometimes the only source, see [BC09]). Given a,b € (A ® K)4, we have
by definition that [a] < [b] if and only if [a] < [(b — €)+] for some € > 0. It follows
that

[a] < [b] in WA®K) if and only if [a] < [b] in Cu(4A) =W(ARK).

3.2.5. Let ¢: A — B be a *-homomorphism (respectively, a c.p.c. order-zero
map). Then ¢ naturally extends to a *~homomorphism (respectively, a c.p.c. order-
zero map) between the stabilizations, which we denote by ¢: A®@ K — B® K. By
Proposition 2.2.7, this induces a (generalized) W-morphism W(g): W(A ® K) —
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W(B®K). Using the identification Cu(4) = W(A®K), see Remarks 3.2.4(2), and
Lemma 3.1.4, the map W () corresponds to a (generalized) Cu-morphism

Cu(y): Cu(4) — Cu(B).
One obtains a functor Cu: C* — Cu; see [CEIO8, Theorem 2].

We have seen that c.p.c. order-zero maps between C*-algebras naturally in-
duce generalized Cu-morphisms between their respective completed Cuntz semi-
groups. Another source of generalized Cu-morphisms are lower-semicontinuous 2-
quasitraces. For each C*-algebra A, these are in natural one-to-one correspondence
with the generalized Cu-morphisms from Cu(A) to the extended positive real line,
[0,00], also called the functionals on Cu(A), see Paragraph 5.2.1. We refer the
reader to [BKO04, Section 2.9] and [ERS11, Section 4] for details.

3.2.6. Let us clarify the connection between the functors
W:Ci.—»W and Cu:C* — Cu.

The category C* of C*-algebras with *-homomorphisms is a full, reflective subcat-
egory of C}f . Indeed, assigning to a local C*-algebra A its completion A extends
to a functor v: Cf . — C* which is left adjoint to the inclusion of C* in Cf; .

On the other hand, we have the functor v: W — Cu from Theorem 3.1.10. In
Theorem 3.2.8, we will show that the functors W and Cu are intertwined by these
completion functors.

LEMMA 3.2.7. Let A be a local C*-algebra, considered as a dense subalgebra of
its completion A. Then:
(1) Formx,yc Ay, we have x 3y in A if and only if x 3y in A.
(2) For every x € Ay and € > 0, there exists y € A such that (v — &)y Sy 3«
in A.

PROOF. (1): The forward implication is obvious. So assume x 3 y in A.
Then z = limy z{yz;, for some sequence (zj)x in A. Since A is dense in A, we
may approximate each zj arbitrarily well by elements from A. A diagonalization
argument shows that x 3 y in A.

(2): Let x and ¢ be as in the statement. Since A is dense in A, there exists
z € Awith |z —z| < 5. By [Rer92, Proposition 2.2], (z—£); 2 « in A. Similarly,
since ||z — (z — §)+|| < &, we obtain that (x —e) 3 (2 — §)4. Thus, the element

2
y:= (2 — §)4 has the desired properties. O

THEOREM 3.2.8. The compositions v o W and Cuovy are naturally isomorphic
as functors Cf . — Cu. This means that the following diagram commutes (up to
natural isomorphism):

W
*
Cr.—W

¥ Q U U > ¥
cr —2s Cu
In particular, if A is a C*-algebra, then its completed Cuntz semigroup Cu(A)
is naturally isomorphic to the Cu-completion v(W(A)) of its pre-completed Cuntz

semigroup W (A).

PROOF. Let A be a local C*-algebra. Set B := My, (A), which is again a local
C*-algebra. Let ¢: B — B be the natural inclusion map into the completion. Note
that there is a natural isomorphism B = v(A) ® K.

We have W(A) = By /~ and Cu(y(4)) = B, /~, and the *-homomorphism ¢
induces a W-morphism W (¢): W(A) — Cu(y(A)). It is enough to show that W (¢)
is the Cu-completion of W(A). By Remarks 3.1.9(2), since W(A) is a W-semigroup,
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it is enough to check that W(¢) is an order-embedding satisfying condition (ii) of
Theorem 3.1.8. But this follows directly from Lemma 3.2.7. ]

By Theorem 2.2.9, the functor W: C}f . — W is continuous. Since v: W — Cu

is also continuous, we obtain from Theorem 3.2.8 the following generalization of
[CEIO8, Theorem 2].

COROLLARY 3.2.9. The functor Cu: C* — Cu is continuous.

More precisely, given an inductive system of C*-algebras A;, there are natural
isomorphisms:

Cu(C*-lim4;) = A(W-lmW(4;)) = Cu-limCu(4;).






CHAPTER 4

Additional axioms

In this chapter, we consider additional axioms for (pre)completed Cuntz semi-
groups. For Cu-semigroups, these are denoted by (O5) and (O6), and they are
satisfied by all completed Cuntz semigroups of C*-algebras; see Proposition 4.7.
We work with a slightly stronger version of (O5) than the one that has previously
appeared in the literature. The advantage is that the new (O5) passes to inductive
limits in Cu; see Theorem 4.5.

We also introduce axioms (W5) and (W6) for pre-completed Cuntz semigroups,
which are the exact counterparts of (O5) and (O6). Indeed, a PreW-semigroup
satisfies (W5) if and only if its Cu-completion satisfies (O5), and analogously for
(W6) and (O6); see Theorem 4.4.

Let A be a C*-algebra. The axiomatic description of Cu(A4) as an object in
Cu had a positive impact in the study of the Cuntz semigroup as an invariant.
For instance, the structure as a w-continuous w-dcpo provides Cu(A) with nice
topological properties.

However, the category Cu of (abstract) Cuntz semigroups is still far bigger
than the subcategory of concrete Cuntz semigroups that are isomorphic to Cu(A)
for some C*-algebra A. For example, it is shown in [Rob13b, Theorem 1.3] that
the semigroup Lsc(S2,N) of lower-semicontinuous functions from the sphere to N =
{0,1,2,...,00} is not the Cuntz semigroup of any C*-algebra. In order to get a
better understanding of the class of concrete Cuntz semigroups, it has been useful
to determine additional axioms satisfied by Cuntz semigroups of C*-algebras.

DEFINITION 4.1. Let S be a Cu-semigroup.

(O5) We say that S has almost algebraic order, or that S satisfies (05), if for
every a’,a,b’,b,c € S that satisfy

a+b<ec, d<a, V<D,
there exists = € S such that
d+zr<c<a+t+z, V <z

(O6) We say that S has almost Riesz decomposition, or that S satisfies (06), if
for every a’,a,b,c € S that satisfy

d <a<b+ec,
there exist elements e and f in S such that
al§e+f7 6§aaba f§a>c'

(C) We say that S has weak cancellation, or that S is weakly cancellative, if
for every a,b,x € S we have that a + x < b+ x implies that a < b.

REMARKS 4.2. (1) The axiom (O5) of almost algebraic order was first con-
sidered in [RW10, Lemma 7.1]. It also appeared in [ORT11, Corollary 4.16]
and [Rob13a, 2.1]. Note, however, that the version of (O5) given here is slightly
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stronger than the original versions in the literature. Nevertheless, (O5) is satis-
fied by every Cuntz semigroup coming from a C*-algebra, see Proposition 4.7, and
the proof is essentially the same as the original one in [RW10, Lemma 7.1], with
additional care in the choice of the complement.

The new (O5) has the advantage that it passes to inductive limits in the cate-
gory Cu; see Theorem 4.4. This seems unlikely for the original (O5), although we
have no example where the original (O5) does not pass to an inductive limit. In
Remarks 4.9, we show that for weakly cancellative Cu-semigroups, the new (05) is
equivalent to the original version of the axiom.

(2) Axiom (0O6) was introduced in [Rob13a, §4]. It was shown to hold for
completed Cuntz semigroups of C*-algebras in [Rob13a, Proposition 5.1.1].

(3) The axiom of weak cancellation was introduced in [RS10, after Lemma 1].
The definition given there is equivalent to Definition 4.1. It is also equivalent to
the property that a + ¢ < b+ ¢’ for ¢ < ¢ implies a < b, which was shown to hold
in completed Cuntz semigroups of C*-algebras with stable rank one; see [RW10,
Theorem 4.3].

The spirit of W-semigroups is that the order relation < is derived from the
auxiliary relation <. It is therefore natural to formulate versions of axioms (O5) and
(O6) only in terms of the auxiliary relation, without using the partial order. That
the axioms (W5) and (W6) of Definition 4.3 are the ‘correct’ analogs is justified
by Theorem 4.4. We also formulate the axiom of weak cancellation for PreW-
semigroups, simply by replacing the compact containment relation by an arbitrary
auxiliary relation. It should cause no confusion that we call this axiom ‘weak
cancellation’ as well.

DEFINITION 4.3. Let (S, <) be a PreW-semigroup. We define the axioms (W5),
(W6) and weak cancellation for S as follows:

(W5) We say that S satisfies (W5) if for every a’,a,,b,c,é € S that satisfy
a+b=<c, a<a b <b c<Eg,
there exist elements ' and x in S such that:
ad+x=<é c<a+a, b <a <z
(W6) We say that S satisfies (W6) if for every o/, a,b,c € S that satisfy
a <a<b+ec,
there exist elements e and f in S such that
ad<e+f, e<ab f=<a,c
(C) We say that M satisfies weak cancellation, or that M is weakly cancellative,
if for every a, b, x € S we have that a + = < b+ = implies that a < b.
THEOREM 4.4. Let S be a PreW-semigroup and let v(S) be its Cu-completion.
Then:

(1) The semigroup S satisfies (W5) if and only if v(S) satisfies (O5).
(2) The semigroup S satisfies (W6) if and only if v(S) satisfies (O6).
(3) The semigroup S is weakly cancellative if and only if v(S) is.

PROOF. Given an element s € S, we will denote its image in v(S) by 5.

First, let us show that weak cancellation passes from S to its Cu-completion.
Let a,b,c € ~(S) satisfy a + ¢ < b+ ¢. Using that a has dense image in the
sense of Theorem 3.1.8, we can find elements s,¢t € S such that § < b, t < ¢ and
a+ c < §+t. Moreover, there is an increasing sequence (ry), in S such that
a = sup,, Tn. Then 7, +1 < 5+ ¢ for each n. Since « is an embedding in the sense
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of Theorem 3.1.8, we obtain the same inequality for the pre-images in S. Since S
is weakly cancellative, we have r,, < s for each n. Then

a=sup7, < § Kb,
n

which verifies that v(S) is weakly cancellative.

The converse follows directly from the properties of a. Using similar methods
one proves (2) and the implication that S satisfies (W5) whenever v(S) satisfies
(O5). Details are left to the reader.

The other implication of (1) is, however, not straightforward. So assume that
S satisfies (W5). We have to show that ~v(S) satisfies (O5). Let a’,a,b’,b,¢c € v(5)
satisfy

a+b<c, d<a, VKb

Choose a rapidly decreasing sequence (a,, ), in S such that o/ < Gp41 < @n < a
for all n. Choose s’ and s in S such that V' < & < § < b. Finally, choose a rapidly
increasing sequence (¢, )n in S such that ¢ = sup,, ¢,. We can moreover assume
that a; + § < ¢1, and so a1 + s < ¢y.

We will inductively define elements x,, and z, in S satisfying:

!/ ! !/
(Ry) Ty 4 =Ty = Ty, Apg1 + Ty < Cpp1,  Cn < Qp + T,
To make sense of (Ry), we set zg := s’. Then:
a1 +s<c, a=<a, To=<S8 € <Ca.

By (W5), there exist o} and z; in S fulfilling (R;).

For the inductive step, assume z/, and z;,, have been constructed satisfying (R, ).
Applying (W5) to apt1 + T < cpt1 and apqa < py1, 2, < Tp and cpp1 < Cpa,
we can find z;,; and x4 fulfilling (R,41).

We obtain a rapidly increasing sequence (z),), in S. Using the existence of
suprema in v(.5), we may set x := sup,, Z,,. For each n, we have:

a' +Z, <any1+ T, < Anp1 + Tn < Cpy1, G < An+ T, < a+ Ty
Therefore:
a' +x =sup(a’ +z,) <supcpy1 = c=supc, <sup(a+7,) =a+x.
n n n n
Moreover, x > } > ¥/, which shows that z has the desired properties. O

THEOREM 4.5. Let (S;) be an inductive system in PreW. If each S; satisfies
(W35) (resp. (W6), or weak cancellation), then so does the inductive limit in PreW.

Similarly, axiom (05) (resp. (06), weak cancellation) passes to inductive limits
in Cu.

PROOF. Let us verify that weak cancellation passes to inductive limits in PreW.
Let a, b, c be elements in S := PreW-%ﬂ S; satisfying a+c < b+c. Then here are an
index 4 and elements z,y, z € S; such that a = [z],b = [y] and ¢ = [z]. By definition
of < on S, see Definition 2.1.7, there is j > i such that ¢; ;(z 4+ 2) < ¢; j(y + 2) in
S;. Using that S; is weakly cancellative, we deduce that ¢; ;(z) < ¢; ;(y) in S;. It
follows that a < b in S, as desired.

It is shown analogously that the other axioms pass to inductive limits in PreW.

Now, let (S;) be an inductive system in Cu. Assume that each S; is weakly
cancellative. Considering S; as a PreW-semigroup that is isomorphic to its own
Cu-completion, we obtain from Theorem 4.4 that S; is weakly cancellative as a
PreW-semigroup. It follows that the limit in PreW, S := PrcW—li_I)ni Si, is weakly
cancellative. By Corollary 3.1.11, the limit in Cu is isomorphic to the Cu-completion
of S. Using the ‘only if’ implication of part (3) of Theorem 4.4, we deduce that
Cu—li_n)li S; is weakly cancellative.
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The argument for (O5) and (O6) is completely analogous. O

PROPOSITION 4.6. Let A be a local C*-algebra. Then W (A) is a W-semigroup
satisfying (W5) and (W6).

PRrOOF. By Proposition 2.2.5, W(A) is a W-semigroup. Its Cu-completion is
Cu(A), which satisfies (O6) by [Rob13a, Proposition 5.1.1]. Therefore, (W6) for
W(A) follows from Theorem 4.4.

The proof of (W5) is based on that of [RW10, Lemma 7.1]. Let a’,a,b’,b,c €
W(A) satisfy a +b < ¢, ' < a and ' < b. We will show that there is an element
s € W(A) such that ' + s < ¢ < a+ s and b’ < s. One verifies that this implies
that (W5) holds.

Let Z, 9,2 € Moo (A) 4 such that a = [Z], b = [g] and ¢ = [z]. Choose £ > 0 such
that ' < [(Z —¢)4] and b' < [(§ — €)4]. Since T+ ¢ 3 2, by [Rgr92, Section 2]
and Paragraph 2.2.2, there exist § > 0 and r € A such that

@—e)++@—e)y=@+7—€)s=1"(2—08)4r

Set v = (2 — 5)1+/QT, set z = v(Z — )2 v* and set y = v(Z — £)3 v*.

Then z 1 y and

(F—e)y ~(F—e)2 = (F—e) v v(E—e)? ~v(@—e)v" =u,
and similarly (§ —e)4 ~y.

Let B be a sub-C*-algebra of A that contains z,y and z. We will work inside
B from now on. We have shown that there exist § > 0 and orthogonal positive
elements 2,y € Her((z — d)4) such that o’ < [z] <a and V' < [y] <b.

For n > 0, let f,: RT — [0,1] be the function that takes value 0 at 0, value 1
on [n,00) and which is linear on [0,7]. Set e = f5(z). Then e ~ z and e acts as
a unit on z and y. Choose 8 > 0 such that o’ < [(z — 8)4+]. Set w = e — faz(x)e,
which is positive since e commutes with x and therefore with fz(x). We will show
that the element s = [w] has the desired properties.

Observe that w € Her(z), that (x — 8)+ L w, and that = +w is strictly positive
in Her(z). Hence,

a' + [w] < [(z = B)4] +[w] =[x - B ©w] <[] =b
b=[e) = la+w] < o] + 0] < a+ [u].
Moreover, z + w = (z + e — fg(x))e > ¢’e for some ¢’ > 0. Therefore, since

z Ly,

1
y =y 2eyl/? <

< gy”z(w +w)y'/? = %y”zwy”2 3w,

and thus & < [w], as desired. O

PROPOSITION 4.7. Let A be a C*-algebra. Then Cu(A) is a Cu-semigroup
satisfying (05) and (0O6).
ProOF. By [CEIO08, Theorem 1], Cu(A) is a Cu-semigroup. Axiom (O6) is

verified in [Rob13a, Proposition 5.1.1]. Our strengthened version of (O5) follows
from Proposition 4.6 combined with Theorem 4.4. a

Though (05) holds for all complete Cuntz semigroups coming from C*-algebras,
we note that, under the additional hypothesis of weak cancellation, it is equivalent
to the original formulation of the axiom:

(05’) If a < b and o’ < a, then there is z € S such that o/ + 2 < b < a+ x.

LEMMA 4.8. Let S be a Cu-semigroup. If S satisfies (O5), then it also satisfies
(05°). The converse holds if S is weakly cancellative.
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PRrROOF. It is clear that (O5) implies (O5’) in general. To show the converse,
assume that S is a weakly cancellative Cu-semigroup satisfying (05’). By Theo-
rem 4.4, it is enough to verify (W5). Suppose we are given a + b < ¢ and ¢’ < a,
b < band ¢ < & There is cf with ¢ < ¢f < & Applying (05’) to ¢’ < a < ¢, we
obtain z such that ¢’ +z < ¢! < a+z. Then b+a < ¢ < ¢! < z+a, which by weak
cancellation implies b < x. Choose z’ such that 2’ < z, ¥ < 2’ and ¢ < a + 7'.
The elements x, z’ have the desired properties to verify (W5). O

REMARKS 4.9. Let W56 be the full subcategory of W consisting of W-semi-
groups satisfying (W5) and (W6). It follows from Theorem 4.5 that W ¢ is closed
under inductive limits in W and therefore has inductive limits itself. By Proposi-
tion 4.6, the functor W from Theorem 2.2.9 takes values in W5 g.

Similarly, the full subcategory Cus ¢ of Cu consisting of Cu-semigroups satisfy-
ing (O5) and (06) is closed under inductive limits. By Proposition 4.7, the functor
Cu takes values in Cus .

By Theorem 4.4, the reflector v: W — Cu maps W5 ¢ to Cus 6.

Given a PreW-semigroup (.5, <), we say that an element s € S is full if, when-
ever there are t',t € S satisfying ¢’ < ¢, then there is n € N such that ¢’ < ns. We
say that an element s cancels from sums if a + s < b+ s implies a < b for any a, b.

PROPOSITION 4.10. Let (S, <) be a PreW-semigroup satisfying (W5). If S
contains a full element e such that e < e and e cancels from sums, then S has weak
cancellation.

Similarly, if a Cu-semigroup satisfying (05) contains a full compact element
that cancels from sums, then it has weak cancellation.

PROOF. Suppose a + ¢ < b+ ¢. Using (W1) and (W4), there are b’ < b and
¢ < ¢ such that a + ¢ <V + . By (W1), there is ¢/ with ¢/ < ¢’/ < ¢. Since e is
full, there is n with ¢” < ne. By (W5), applied to ¢’ + 0 < ne, ¢’ < ¢’, and using
that e < e, there are elements =’ < x such that ¢/ +z < ne < ¢’ + /. Now

a+ne<a+c +2'<a+tcH+a2’ b+ +x<b+ne,

from which it follows that a < b, as desired.
The analogous result for Cu-semigroups follows from Theorem 4.4. d






CHAPTER 5

Structure of Cu-semigroups

This chapter contains some general results about the structure of Cu-semi-
groups.

5.1. Ideals and quotients

In this section, we study ideals and quotients of Cu-semigroups. We show that
(05), (06) and weak cancellation pass to ideals and quotients, see Proposition 5.1.3.
Given a Cu-semigroup S, we denote the set of ideals in S by Lat(S). We show that
Lat(S) has a natural structure as a complete lattice, see Paragraph 5.1.6. The
subset of singly-generated ideals forms a sublattice, denoted by Lats(S). We show
that Late(S) is a Cu-semigroup, Proposition 5.1.7. In Proposition 7.2.3, we will see
that Lat¢(S) is naturally isomorphic to the tensor product S ® {0, co}.

Then, we consider the case of a concrete Cuntz semigroup Cu(A) of a C*-al-
gebra A. We show that there is a natural isomorphism between Lat(Cu(A)) and
the lattice of ideals in A, which we denote by Lat(A), see Proposition 5.1.10. This
isomorphism identifies the Cu-semigroup Lat¢(Cu(A)) with the subset of Lat(A)
consisting of ideals that contain a full, positive element. In the case that A is
separable, every ideal in A is o-unital and hence contains a positive, full (even
strictly positive) element. It follows that in this case, Lat(A) is a Cu-semigroup,
see Corollary 5.1.13.

5.1.1. Let M be a positively ordered monoid. A subset I of M is order-
hereditary if for every a,b € M we have that a < b and b € I imply that a € I.
An ideal (also called order-ideal) in M is a subsemigroup which is order-hereditary.
Given a Cu-semigroup S, we shall also require that an ideal in S is closed under
suprema of increasing sequences.

Given an ideal I in a Cu-semigroup S, we define a binary relation <; on S
as follows: For elements a,b € S, we set a <; b if and only if there exists ¢ €
such that a < b+ ¢. By symmetrizing, we define a relation ~; on S: For elements
a,b € S, we set a ~y b if and only if both conditions a <; b and b <; a are met.

It is easy to see that ~ is a congruence relation on S. We denote the set of
congruence classes by

S/ =8/~ .
The partial order on S induces a partial order on S/, giving the latter the structure
of a positively ordered monoid. Given an element a € S, we denote its congruence
class in S/I by ay. In the next result, we verify that S/I satisfies (01)-(04).

LEMMA 5.1.2. Let S be a Cu-semigroup, and let I be an ideal in S. Then S/I
is a Cu-semigroup. Moreover, the map

wr: S —=S/I, a—a;, (a€s)
is a surjective Cu-morphism.

PROOF. Let S and I be as in the statement. As explained in Paragraph 5.1.1,
we have that S/I is a positively ordered monoid. It is also easy to see that 7 is a
surjective PoM-morphism. The following two claims are easily verified.

37
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Claim 1: Given two elements z,y € S/I, we have that < y if and only if there
exist representatives a,b € S such that x = ay, y = by and a < b.

Claim 2: Given an increasing sequence (xy)r C S/I, there exists an increasing
sequence (ay)r C S such that x = (ax)s for each k.

To verify (O1) for S/I, let (zx)r C S/I be an increasing sequence in S/I. By
claim 2, we can choose an increasing sequence (ax)r C S such that for each k, the
element zj, is represented by ay. Since S satisfies (O1), the sequence (ay)x has a
supremum in S which we denote by a = sup,, ay. We claim that a; is the supremum
of the sequence (xy) in S/I.

It is clear that x; < aj for each k. Conversely, let y be an element in S/I such
that z <y for all k. Let b € S be an element such that y = b;. Then, for each k,
there exists an element ¢, € I such that ai < b+ c¢i. Set

oo n
k=0 " k=0
which is an element in I. We obtain that
ap <b+cp <b+e,
for each k. By definition of a, this implies that

a=supap <b+c.
k

Since ¢ € I, we get that a <; b and therefore = < y, as desired. It also follows from
the above argument that 7 preserves suprema of increasing sequences.

Next, we show that m preserves the way-below relation. So let a,b € S satisfy
a < bin S. To show that a;y < by in S/I, let (x)r C S/I be an increasing
sequence satisfying by < sup,, . By claim 2, we can choose an increasing sequence
(br)r C S such that x = (bg)r for each k. Then

by <supzy = (supby)r,
k k

whence there exists ¢ € I such that b < (supy, bx) + ¢. Using that S satisfies (04),
we obtain that

a < b< (supby)+ c=sup(by + ¢).
k k

Therefore, there exists n € N such that a < b, + ¢, and hence ay < (b,); = @, as
desired.

To verify (02) for S/I, let € S/I. Choose a € S such that z = a;. Since
S satisfies (02), we can choose a rapidly increasing sequence (ay)r C S such that
a = supy, aj. For each k, set x1, = (ay)r. It follows that (xy )y is a rapidly increasing
sequence in S/I such that x = supy ;. This finishes the proof of (02) for S/I.
Finally, it is straightforward to verify the axioms (O3) and (O4) for S/I. O

PROPOSITION 5.1.3. Let S be a Cu-semigroup, and let I be an ideal in S. If
S satisfies (05) (resp. (06), or weak cancellation), the so does the ideal I and the
quotient S/1.

PROOF. It is easy to verify that each of the axioms passes to ideals. To show
that (O5) passes to quotients, let S be a Cu-semigroup and let I be an ideal in S.
Assume that S satisfies (O5). To verify (O5) for S/I, let o’,a,b',b,c € S/I satisty

a+b<c, d<a, b Kb
We can choose s,t,r € S such that

a=s;, b=t;, c=r;, s+t<r.
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Since the quotient map is continuous, there exist s’,# € S such that
s<s, t'<t, o <), <)
Since S satisfies (O5), there exists x € S such that
5’+I§r§s+x, t < z.

Then z; has the desired properties to verify (O5) for S/I. The proofs that (O6)
and weak cancellation pass to quotients can be obtained with the same technique
and are left to the reader. g

REMARK 5.1.4. It is possible to define the notion of ideals and quotients in the
category PreW. We do not pursue this idea.

PRrROBLEM 5.1.5. Let S be a Cu-semigroup, and let I be an ideal in S. As-
sume that I and S/I satisfy (O5) (resp. (O6), weak cancellation). Under what
assumptions does this imply that S itself satisfies the respective axiom?

5.1.6. Let S be a Cu-semigroup. We denote the set of all ideals in S by Lat(.S).
Inclusion of ideals defines a partial order on Lat(S). Given two ideals I and J, we
define their sum as

I+J={a€eS | a<y+z forsomeyecl,zeJ}.

In particular, we have I 4+ I = I for every I € Lat(S). Observe also that I C J if
and only if I + J = J, whence the ordering is algebraic. This endows Lat(S) with
the structure of an algebraically ordered monoid.

Let (Ix)x C Lat(S) be a family of ideals. It is easy to check that the intersection
D) is again an ideal. Clearly, this is the largest ideal contained in each Iy.
Therefore, the family (1)) has an infimum in Lat(S), given by A, Ix =, Ix.

On the other hand, the union |J, I is an order-hereditary submonoid that,
however, is in general not closed under suprema of increasing sequences in S. Nev-
ertheless, using that S is itself an ideal in .S, the family (7)), has a supremum in
Lat(S) given by

\/ Ix=({J € Lat(S) | I, C J for all A}.
A

This shows that Lat(S) is a complete lattice.
Let M =J, I. As mentioned above, M is an order-hereditary submonoid of
S. We claim that the supremum of the family (1)), is also given by

\/I)\ = {sup an | (an)n C M rapidly increasing sequence } .

A n

To see this, let us temporarily denote the right hand side in the equation above
by P. Using that S satisfies (O3) and (O4), it follows easily that P is closed
under addition. To show that P is order-hereditary, let a,b € S satisfy a < b and
b € P. By definition of P, there exists an increasing sequence (b, ), C M such that
b = sup,, b,. Since S satisfies (02), we can choose a rapidly increasing sequence
(ar)r C S such that a = sup,, ai. For each k, we have

ar <€ a<b=supb,,
n

whence there exists n(k) € N such that aj < by, k). Since M is order-hereditary,
this implies that ar € M, and hence a € P, as desired. Finally, a standard diago-
nalization argument shows that P is closed under suprema of increasing sequences.
Thus, P is an ideal of S that contains Iy for each A. Since P is clearly the smallest
ideal with this property, we have P =\/, I,.
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It follows that an element a € S is contained in \/, I, if and only if for every
a’ € S satisfying a’ < a we have that o’ is contained in J, Ix.
Given a € S, we denote by Idl(a) the ideal generated by a, that is:

Idl(a) ={z €S | 2 <o0-a}.

We claim that Idl(a’) < Idl(a) in Lat(S) for any a’,a € S satisfying o/ < a. To
prove the claim, let (I)reny C Lat(S) be an increasing sequence with Idl(a) C \/,, I.
Then ¢’ < a € \/, I and therefore o' € |J, Ix. Thus, there is n € N such that
a’ € I,,. But this implies Idl(a’) C I,,, which proves the claim.

Let a € S. Since S satisfies (02), there exists a rapidly increasing sequence
(an)n C S with a = sup,, a,. It follows that Idl(a) is the supremum of the rapidly
increasing sequence (Idl(a,)), in Lat(S).

However, this is no longer true for general ideals in a Cu-semigroup. We define

Lat¢(S) = {Idl(a) | a € S} C Lat(9),

which is the set of singly-generated ideals in S.
Note that for an ideal I in S, the following are equivalent:

(1) We have I € Lats(5), that is, I is generated by a single element.
(2) The ideal T is generated by countably many elements.
(3) The ideal I has a maximal element, denoted by \/ I, and then

fzm(vgz{xeS|mgVI}

It is clear that (1) implies (2), and that (3) implies (1). To show that (2) implies
(3), assume that I is an ideal that is generated by a countable set of elements, say
{ag,a1,aa,...} C S. Then the element

oo n
s:oo-E ak.:supg nay,
k=0 " k=0

is contained in I. Since ap < s for each k, it is clear that I = Idl(s). Since,
moreover, oo - s = s, we also have that s =\/I.

PROPOSITION 5.1.7. Let S be a Cu-semigroup. Then Lat¢(S) is a Cu-semigroup
satisfying (05). If S satisfies (0O6), then so does Lat¢(S). Moreover, the map

S — Lat¢(S), aw~1dl(a), (a€S)

is a surjective Cu-morphism.
If S is countably-based, then

Lat(S) = Lat¢(S).

PrROOF. We denote the map S — Lat¢(S) from the statement by Idl. Let
a,b € S. It is easy to see that Idl(a 4+ b) = Idl(a) + Idl(b). Moreover, we have
Idl(a) C Id1(b) if and only if co-a < 0o-b. It follows that Late(.9) is an algebraically
ordered submonoid of Lat(S). We also get that the map Idl is a PoM-morphism.

To verify (O1) for Lat¢(S), let (I,), be an increasing sequence of singly-
generated ideals. The supremum \/, I, in Lat(S) is a countably-generated ideal.
As observed in Paragraph 5.1.6, this implies that \/, I,, € Lat;(S). It follows that
V,, I, is the supremum of (I,,),, in Lat¢(.S), which verifies (O1).

In Paragraph 5.1.6, we have already observed that Lat¢(S) satisfies (02) and
that the map Idl preserves the way-below relation. Then, it is easy to check that
Lat¢(S) satisfies (O3) and (O4), and that Idl is a surjective Cu-morphism. More-
over, since the order on Lat¢(S) is algebraic, (O5) holds trivially.

Next, let us show that Late(S) satisfies (O6), assuming that S does. So let
I',I,J, K € Lat¢(S) satisfy

I'<IcJ+K.
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Choose a € S such that I =Idl(a). Since I’ < I, there exists a’ € S such that
ad <a, I'cldl(a), I=1Idl(a).
Moreover, since I C J + K, there exist elements b, ¢ € S such that
a<b+4+ec, J=1dI(b), K =Idl(c).
Using that S satisfies (O6), there exist elements e, f € S such that
ad<e+f, e<ab f<a,c

It is now easy to check that the ideals Idl(e) and Idl(f) have the desired properties
to verify (06) for Late(.S).

Finally, assume that S is a countably-based Cu-semigroup. Given an ideal I in
S, it is straightforward to check that I is generated by countably many elements.
As observed in Paragraph 5.1.6, this implies that I € Lat¢(S), as desired. O

REMARK 5.1.8. In Proposition 7.2.3, we will show that there is a natural iso-
morphism

Lat¢(S) 22 S @ {0, 00}

5.1.9. Let A be a C*-algebra, and let I be an ideal in A. (By an ideal in a
C*-algebra, we always mean a closed, two-sided ideal.) The inclusion map ¢: I — A
induces a Cu-morphism

Cu(e): Cu(l) — Cu(4).
It is shown in [Ciu08, Proposition 3.1.1] that Cu(¢) is an order-embedding. We may
therefore identify Cu(I) with a subsemigroup of Cu(A). (The assumption that the
C*-algebra is separable is not needed in the proof of [Ciu08, Proposition 3.1.1].)
In fact, the argument is not difficult and we include it for completeness.

First, we show that Cu(¢) is an order-embedding. We may assume that A and
I are stable. Let z,y € I, such that x is Cuntz-subequivalent to y in A. Then,
using Rgrdam’s lemma, see Paragraph 2.2.2, we have that for every ¢ > 0 there
exists 6 > 0 and r € A such that

(x—e)s =r(y—0)4r"
Let f5: R — [0,1] be the function that takes value 0 on (—o0,d/2), that takes value
1 on [d,00), and that is linear on [§/2, §]. By functional calculus, we obtain that

(y = 6)4 = F5(y)(y = 0)+f5(y)-
This implies that
(x =)+ =[rfs(y)l(y = O)+[rfs(y)]"
Since fs(y) € I and since I is an ideal, we have that rfs(y) € I. Then, using
Rgrdam’s lemma in the other direction, it follows that x is Cuntz subequivalent to
y in I, as desired.

Let us also show that Cu(I) is an ideal in Cu(A). First, it is clear that Cu([) is a
submonoid of Cu(A). To show that it is an order-hereditary subset, let a,b € Cu(A)
satisfy @ < b and b € Cu(I). Choose z € Ay and y € I; such that a = [z] and
b = [y]. By definition, there exists a sequence (ry); C A such that z = limy, rpyr}.
Since [ is an ideal, we have that ryyr} € I for each k. As I is also closed, we get
xz €I and so a € Cu([), as desired.

Finally, we need to show that Cu(I) is closed under suprema of increasing
sequences. So let (ar)r C Cu(l) be an increasing sequence with a = supy ax €
Cu(A). Choose representatives xy € I, for k € N and 2 € A such that a = [z]
and ay = [zx] for each k. We need to show that a € I. Let € > 0. Then

[(z—e)4] < [z]=a= SUp
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which implies that there exists n € N such that [(x — ¢)4+] < ar. We have already
observed that this implies that (x — )4 € I. Since this holds for every ¢ > 0, we
get « € I, and hence a € Cu([), as desired.

We let Lat(A) denote the collection of ideals of A, equipped with the partial
order given by inclusion of ideals. It is well-known that Lat(A) is a complete lattice.
We let Lat¢(A) denote the subset of ideals in A that contain a full, positive element.
We remark that every o-unital ideal of A belongs to Lat¢(A), but the converse does
not hold. Indeed, in [BGRT77, Lemma 2.2] an example of a simple C*-algebra
without strictly positive element is given.

It is easy to see that Lat¢(A) is a sublattice of Lat(A).

PrROPOSITION 5.1.10. Let A be a C*-algebra. Then, the map
Lat(A) — Lat(Cu(A4)), I~ Cu(I), (I € Lat(A))

is a natural isomorphism of complete lattices.
Moreover, it maps the sublattice Lats(A) of ideals in A that contain a full,
positive element onto the sublattice Late(Cu(A)) of singly-generated ideals in Cu(A).

PrOOF. For the case that A is a separable C*-algebra, a proof of the statement
can be found in [Ciu08, Proposition 3.1.2]. Our proof is based on the ideas given
by Ciuperca, and we include it for completeness. We may assume that A is stable,
so that Cu(A) = A4 /~. Let us denote the map of the statement by ¢: Lat(A) —
Lat(Cu(A4)).

Consider the map

c: A— Cu(A), zw[zz], (z€A)

which assigns to an element = € A the Cuntz class of zz*. Given an ideal I in A,
it is easy to see that
o(I)={[z] e Cu(A) | z € I;} ={[zz"] € Cu(A) | z €I} =c().
We define a map that will turn out to be the inverse of ¢ as follows:
¢: Lat(Cu(A)) — Lat(A),
Jc W (J)={zc A |[zz*]€J}. (J€Lat(Cu(4)))

Given an ideal J in Cu(A), let us check that ¢(J) is an ideal of A.
To show that ¢(J) is closed under addition, let z,y € ¥ (J). We have that

(z+y)@+y) <(@+y)(z+y)" + @ —y)(r—y)" =2za" + 2yy",
and therefore [(z+y)(z+y)*] < [za*]+[yy*]. Since J is an ideal and [z2*], [yy*] € J,
we get that [(x +y)(z+y)*] € J and so z+y € ¥(J). It is straightforward to check

that ¢(J) is closed under scalar multiplication.
To show that ¢ (J) is an ideal, let « € ¢)(J) and y € A. We have that

(zy)(zy)" = z(yy")a” Jaz®,  (yz)(yz)" = y(za)y" 3 aa”,
which again implies that xy, yz € ¥(J). It is left to the reader to check that ¢(J)
is also closed.
It is clear that both ¢ and v are order-preserving. Next, let us show that
these maps are inverses of each other. Given an ideal J in Cu(A), using that ¢ is a
surjective map, it follows easily that

pot(J) =c(c'(J)) = J.
Conversely, let I be an ideal of A. Then [ is clearly a subset of op(I) = ¢~ 1(c(I)).
By definition, if € ¢ (c(I)), then zz* € ¢(I), which means that there exists

y € I such that xx* ~ y. We have already seen that this implies xx* € I and
hence also = € I, as desired.
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Finally, let us see that ¢ maps Lat¢(A) onto Lat¢(Cu(A)). In one direction, let
I € Lat¢(A) and choose a full, positive element x € I.. Set a = [z] € Cu(I). We
claim that oo - a is the largest element of Cu(I). So let y € I, and let £ > 0. Since
x is full and y is positive, there exist K € N and elements r1,...,rx € I such that

K
y— Z reery|| < e.
k=1

It follows that
[(y —e)4] < Klz] < 00 a.
Since this holds for every € > 0, we get [y] < 00 - a, as desired.

Conversely, assume that J is a singly-generated ideal in Cu(A) and set I =
¥(J). Then, as observed in Paragraph 5.1.6, there exists a largest element in J,
which we denote by a. Choose x € I such that a = [z]. We claim that z is a full
element in I. So let y € I. Since a is the largest element in J, we get that yy* 3 z.
This implies that yy* and hence y is contained in the ideal generated by x. Hence,
z is full in I, as desired. d

Recall that a C*-algebra A is called simple if {0} and A are the only ideals of
A. Analogously, we define for Cu-semigroups:

DEFINITION 5.1.11. A Cu-semigroup S is called simple if {0} and S are the
only ideals of S.

COROLLARY 5.1.12. A C*-algebra A is simple if and only if its (completed)
Cuntz semigroup Cu(A) is a simple Cu-semigroup.

COROLLARY 5.1.13. Let A be a separable C*-algebra. Then the ideal lattice
Lat(A) is a Cu-semigroup.

REMARKS 5.1.14. Let A be a separable C*-algebra.
(1) In Corollary 7.2.13, we will show that there are natural isomorphisms be-
tween the following Cu-semigroups:

Cu(A® Oy) 2 Lat(A) = Lat(Cu(A)) = Cu(A) ® {0, c0}.
(2) The Cu-semigroup Lat(A) is algebraic (see Section 5.5) if and only if the
C*-algebra A has the ideal property.

ProposITION 5.1.15 (c.f. [CRS10, Proposition 3.3]). Let A be a C*-algebra,
and let I be an ideal in A. Then, there is a natural isomorphism

Cu(A)/Cu(I) = Cu(A/I).

5.1.16 (Elementary semigroups). We call a simple Cu-semigroup S elementary
if S = {0} or if S contains a minimal, nonzero element. The typical example is the
semigroup of extended natural numbers

N=1{0,1,2,...,00}.
For each k € N, we define a semigroup
Ek:{07172>"'7k700}:

with the natural order and a+b defined as oo if usually one would have a+b > k+1.
For k = 0 we obtain Ey = {0,00}. It is easy to check that these are simple Cu-
semigroups satisfying (O5) and (O6), and all elements are compact.

There exist simple, elementary Cu-semigroups satisfying (O5) that are not iso-
morphic to {0}, to N or to Ej, for some k; see Example 8.1.2. With the assumption
of (06), this is not possible as we will show in Proposition 5.1.18.
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LEMMA 5.1.17. Let S be a simple Cu-semigroup satisfying (O5) and (0O6).
Given nonzero elements ay,...,a, € S, there exists a nonzero element x € S such
that © < ay, for all k.

PROOF. It is enough to prove the case n = 2 (and then use induction). So let
a and b be nonzero elements in S. We need to find a nonzero element x € S such
that © < a and = < b.

Choose nonzero elements @’ and a” in S such that ¢’ < @’ < a. By simplicity
of S, there is k € N such that a’ < kb. Considering the situation

a' <ad <kb=b+b+...+0b,
we may apply (O6) in S to obtain elements ¢y, ..., ¢, € S such that
' <ci+-4cy, ¢ <db i=12,... k.

Since a” is nonzero, there has to be an index ip with ¢;, # 0. Choose a nonzero
element z € S with © < ¢;,. Then x has the desired properties. O

The following result was observed independently by Engbers, [Eng14]. He also
noted that one must exclude elementary semigroups to obtain results like Glimm
Halving, [Rob13a, Proposition 5.2.1]; see Proposition 5.4.1.

PROPOSITION 5.1.18. Let S be a simple Cu-semigroup satisfying (05) and
(0O6). Then S is elementary if and only if S is isomorphic to {0}, to N, or to
Ey for some k € N.

PROOF. The ‘if’ part of the statement is clear. So assume that S is an elemen-
tary Cu-semigroup and assume that S # {0}. Then there exists a minimal, nonzero
element a in S. By Lemma 5.1.17, the element a is compact. We claim that a is
the least nonzero element. Indeed, let b € S be an arbitrary nonzero element. By
Lemma 5.1.17, there exists a nonzero element b’ with o’ < a,b. Since a is minimal,
we have V' = a and therefore a < b.

Now, let b be an arbitrary nonzero element in S. Then a < b and since a is
compact and S satisfies (O5), there exists € S such that a + 2z =b. If z = 0, we
have b = a. Otherwise, since a is the least nonzero element, we obtain that a < z
and so there is y € S with a + y = x and consequently 2a + y = b. Continuing in
this way, we find that either b = na for some n € N or otherwise na < b for all
n € N. The latter implies b = oo, whence

S ={o0}U{na|neN}

Now, if na # ma for any n,m € N with n # m, then we have S = N. Otherwise,
there is k € N with ka = (k + 1)a. For the smallest such k, we have S = E,. O

5.2. Functionals

In this section, we study functionals on Cu-semigroups and their connection
to the order structure. First, we show that the existence of nontrivial functionals
characterizes stable finiteness of simple Cu-semigroups, see Proposition 5.2.5. Then,
we study the relation of ‘stable domination’ of elements in a positively ordered
monoid, see Definition 5.2.7.

We recall that comparison by extended states is closely related to stable dom-
ination of elements, see Proposition 5.2.8. In the context of Cu-semigroups, we
introduce the ‘regularization’ of a relation, see Definition 5.2.9. The main result
of this section is Theorem 5.2.13, where we show that comparison by functional
on a Cu-semigroup is closely related to the regularization of the stable domination
relation.
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5.2.1. Let S be a positively ordered monoid. A state on S is a map f: S —
[0, 00) that preserves addition, order and the zero-element. If the value oo is allowed,
then we call f an extended state. Thus, an (extended) state is a PoM-morphism
from S to [0,00) (resp. from S to [0, 00]).

Assume now that S is a Cu-semigroup. A functional on S is a map \: S —
[0, 00] that preserves addition, order, the zero-element, and suprema of increasing
sequences. Hence, a functional is a generalized Cu-morphism from S to [0, o0].
The set of functionals on S is denoted by F'(S). When equipped with a suitable
topology, F'(S) becomes a compact Hausdorfl space; see [ERS11, Theorem 4.8],
see also [Rob13a]. If S is countably-based, then F'(S) is second-countable, hence
a compact, metrizable space.

It is clear that by multiplying a functional A € F(S) with a positive scalar
6 € (0,00), one obtains a functional 6 - X\. It was shown in the comments before
Theorem 4.8 in [ERS11] that this can be extended to a jointly continuous scalar
multiplication

[0,00] x F(S) — F(S).

We equip F(S) with pointwise addition and order, which provides it with the
structure of a positively ordered monoid. If S satisfies (O5) (or just the weaker
(05)), then F(S) is algebraically ordered, [Rob13a, Proposition 2.2.3].

Given an element a € S, we say that a functional X is normalized at a provided
Aa) = 1, and we denote the set of these functionals by F,(S). If S is simple and
a € S is a compact element, then F,(S) is a closed, convex subset of F(5).

We denote by Lsc(F'(S)) the set of functions f: F(S) — [0, 00] that are lower-
semicontinuous, order-preserving and linear (i.e., f is additive and f(6X) = 6f(\)
for 6 € [0,00] and A € F(S)). If F(S) is algebraically ordered (e.g. if S satisfies
(05)), then being order-preserving follows automatically from additivity.

We define a binary relation <1 on Lsc(F(S)) as follows: For two elements f, g €
Lsc(F(S)), we set f<g if and only if f < (1—¢)g for some € > 0, and if moreover f is
continuous at each A € F'(S) where g(\) < oo; see the paragraph after Remark 3.1.5
in [Rob13a]. We let L(F(S)) be the subset of Lsc(F(S)) consisting of all f €
Lsc(F'(S)) for which there exists a sequence (f,), C Lsc(F(S)) satisfying f =
sup,, fn (the pointwise supremum) and f,, < f,4+1 for each n.

Any element a € S induces a function

a: F(S) = [0,00, a=(—Aa). (AeF(S))

The assignment a — @ defines a map S — L(F(S)) that preserves addition, order
and suprema of increasing sequences.

If S is a Cu-semigroup satisfying (O5), then it is shown in [Rob13a] that
L(F(9)) is also a Cu-semigroup satisfying (O5).

5.2.2 (Stable finiteness). Let S be a Cu-semigroup. An element a € S is finite
if for every element b € S, we have that a + b = a implies b = 0. Equivalently, we
have a < a + b for every nonzero element b € S. We call an element infinite if it is
not finite. An infinite element a € S is properly infinite if 2a = a. We say that S is
stably finite if an element a € S is finite whenever there exists a € S with a < a. If
S contains a largest element, denoted by oo, then the latter condition is equivalent
to a < oo.

In general, a Cu-semigroup does not contain a largest element. There are,
however, two important cases when a largest element always exists. First, consider
a simple Cu-semigroup S. We may assume that S # {0}. Choose any nonzero
element a € S and consider the increasing sequence (ka)gen. By axiom (O1), the
supremum of this sequence exists and it is easy to check that it is the largest element
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of S:
oo = sup ka.
keN
In the other case, assume that S is a countably-based Cu-semigroup. Choose
a countable set {ag, a1,as,...} in S that is a basis in the sense of Paragraph 2.1.1.
For each n € N, consider the n-th partial sum Y_;_,a. It is straightforward to
check that the supremum of this increasing sequence of partial sums is the largest

element of S:
n

0O =Ssup Yy ag.
Thus, if S is a Cu-semigroup that is simple or countably-based, then S is stably
finite if and only if an element a € S is finite whenever a < co.

LEMMA 5.2.3. Let S be a simple Cu-semigroup, and let a € S. Then, the
following are equivalent:

(1) The element a is infinite.

(2) The element a is properly infinite.

(3) We have a = co.

Moreover, the following are equivalent:

(1) The element a is nonzero, and for every n € N the element na is finite.

(2) For every n,m € N, we have na = ma if and only if n = m.
(8) There exists a functional A € F(S) such that A\(a) = 1.

PRrOOF. For the first part of the statement, observe that in a general nonzero
Cu-semigroup the largest element is properly infinite (if it exists), and that every
properly infinite element is infinite. It remains to show that (1) implies (3). So
assume that S is a simple Cu-semigroup, and let ¢ € S be an infinite element.
By definition, there exists a nonzero element b € S such that a = a +b. Then
a = a + 2b, and inductively a = a + kb for every k € N. Therefore,

oo = sup kb < sup(a + kb) = supa = a < oo,
k k k

which shows that a = oo, as desired.

To show the second part of the statement, let S be a simple Cu-semigroup, and
let a € S. One easily checks that (1) implies (2). Let us show that (3) implies (1).
So assume that there exists a functional A with A(a) = 1. This clearly implies that
a is nonzero. Given k € N, we need to show that ka is finite. So let b € S be an
element such that ka+b = ka. This implies that A(b) = 0. Note that every nonzero
functional p on a simple Cu-semigroup is faithful in the sense that p(z) # 0 for
every nonzero element z. Thus, it follows from A(b) = 0 that we have b = 0, as
desired.

Finally, let us show that (2) implies (3). So let a € S satisfy (2). Then a is
nonzero. Consider the following subsets of S:

H={zeS | z<ka,somek € N}.
So={zesS | <K }.

Using that a is nonzero, it is easy to check that Sy C H. It is also clear that H is

a subsemigroup of S. Endowed with the partial order induced by S, the semigroup

H becomes a positively ordered monoid. By construction, a is an order unit of H.
Consider the submonoid of H, generated by a:

(a) ={0,a,2qa,3a,...}.
Using the assumption on a, we may define a function f as follows:

f:{a) = [0,00), na—n. (neN)
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It is clear that f is a state on (a), which by [BR92, Corollary 2.7] can be extended
to a state f on H. Using that Sy C H, we may define a function Ay as follows:

Ao: S — [0, 00], )\O(as):sup{f(:r') | :r'<<:r}. (x€9)

It is straightforward to check that Ag is a nonzero functional on S. Then, the
functional A = ﬁ(a))\o has the desired properties to show (3). d

REMARKS 5.2.4. (1) Let S be a simple Cu-semigroup, and let a € S. Then a
multiple of a can be infinite even if a itself is finite. This happens for instance in
the elementary semigroups Ej, from Paragraph 5.1.16.

(2) Let S be a not necessarily simple Cu-semigroup, and let a € S. Considering
the statements in the second part of Lemma 5.2.3, it is not known whether (1) and
(2) imply (3). For Cuntz semigroups of C*-algebras, this is related to the global
Glimm halving problem; see [BK04, Definition 1.2] and [ER06, Question 1.2].

For the next result, we call a functional nontrivial if it does not only take the
values 0 and oo.

PROPOSITION 5.2.5. Let S be a simple Cu-semigroup with S # {0}. Then, the
following are equivalent:

(1) The semigroup S is stably finite.

(2) Every compact element in S is finite.

(8) The largest element oo is not compact.

(4) There ezists a nontrivial functional A € F(S).

PROOF. In general, every compact element in a stably finite Cu-semigroup is
finite. Moreover, the largest element oo is never finite. It follows that (1) implies
(2), and that (2) implies (3).

Let us show that (1) implies (4). Choose a nonzero element a € S satisfying
a < 00. Then na < oo for all n € N. Since S is stably finite, we obtain that na
is finite for every n € N. By Lemma 5.2.3, there exists a functional A € F(S) with
A(a) = 1. This functional is nontrivial, as desired.

Let us show that (4) implies (3). Choose a nontrivial functional A € F(S). By
rescaling if necessary, we may assume that there exists a € S with A(a) = 1. In
order to show (3), assume that oo is compact. Then, since oo = supy(ka), there
exists n € N with co < na, and hence co = na. This implies that

n = A(na) = A(c0) = A(200) = A\(2na) = 2n,

which clearly is a contradiction. Hence, oo is not compact, which shows (3).
Finally, let us use contraposition to show that (3) implies (1). So assume that
S is not stably finite. Then there exists a nonzero, infinite element a € S satisfying
a < o0. By Lemma 5.2.3, every infinite element in S is equal to the largest element
oo. It follows that co = a < 0o, and so oo is compact. O

REMARK 5.2.6. The equivalence of statements (1) and (4) in Proposition 5.2.5
is well-known, especially for Cuntz semigroups of (simple) C*-algebras. It is used
to show that every unital, simple, stably finite C*-algebra has a 2-quasitrace. In
fact, the correspondence between 2-quasitraces on a C*-algebra and functionals on
its Cuntz semigroup, were one of the original motivations for Cuntz to introduce
the semigroups named after him; see [Cun78], [BHS82].

In the next part of this section, we will study the connection between the
order-structure of a positively ordered monoid and the set of its functionals. We
first recall a notion that has appeared many times in the literature. The notation
chosen here follows [OPR12, Definition 2.2].



48 5. STRUCTURE OF Cu-SEMIGROUPS

DEFINITION 5.2.7. Let M be a positively ordered monoid, and let a,b € M.
We will write a o b if there exists & € N such that a < kb.

We say that a is stably dominated by b, denoted by a <; b, if there exists k € N
such that (k + 1)a < kb.

The following result provides useful characterizations of the relation <. Several
versions of this results have appeared in the literature, see e.g. [OPR12, Proposi-
tion 2.1], and most are based on [GH76, Lemma 4.1].

PROPOSITION 5.2.8. Let M be a positively ordered monoid, and let a,b € M.
Then, the following are equivalent:

(1) We have a <s b, that is, there exists k € N such that (k + 1)a < kb.

(2) There exists ko € N such that (k+ 1)a < kb for all k > ko.

(3) Given n € Ny, there exists k € N such that (k +n)a < kb.

(4) Given n € Ny, there exists ko € N such that (k +mn)a < kb for all k > k.

(5) We have a o< b, and f(a) < f(b) for every extended state on S that is nor-
malized at b.

If b is an order-unit for M, then the above statements are also equivalent to:
(6) We have f(a) < f(b) for every state on S that is normalized at b.

PRrOOF. It is clear that (4) implies (3) and (2), and that (3) implies (1), and
that (2) implies (1). It is also easy to see that (1) implies (3). Indeed, assume that
n € N4 and that (k + 1)a < kb for some k € N. Then (kn + n)a < knb, as desired.

Let us show that (3) implies (4). So let n € N4 be given. By assumption,
there exists d € N such that (d + n)a < db. We claim that ko = d(d + 1) has the
desired properties. So let k € N satisfy k& > kg. Then there are z,y € N with
k=(d+1)xz+yand z > dand y < d. Then

(k+n)a=[(d+ 1Dzla+ (y +n)a < [(d+n)x]a + (d + n)a < (dz)b+ db < kb,

as desired.
Finally, the equivalence between (1) and (5) is shown in [OPR12, Proposi-
tion 2.1]. If b is an order-unit, it is easy to verify that (5) and (6) are equivalent. O

DEFINITION 5.2.9. Let S be a Cu-semigroup, and let R C S x S be a binary
relation. The regularization of R, denoted by R*, is the binary relation defined as
follows: For any a,b € S, we set aR*b if and only if a’ Rb for every o’ € S satisfying
a < a.

A relation R is regular if it is equal to its own regularization.

ExXAMPLE 5.2.10. Let S be a Cu-semigroup.

(1) The usual order-relation < on S is regular. Indeed, given a,b € S, it is
clear that a < b implies that a <* b. The converse follows from axiom (02) for S.

(2) The way-below relation < on S is not regular. In fact, it is straightforward
to check that the regularization of < is nothing but the order-relation <.

(3) The stable domination relation <, from Definition 5.2.7 is not regular.
However, we will show in Theorem 5.2.13 that the regularization of <y is closely
related to comparison by functionals. In Section 5.3, we will study elements a € S
satisfying a <* a. (We call such elements ‘soft’.)

(4) The relation o is not regular. However, its regularization determines exactly
which ideal an element of S generates. More precisely, given a,b € S, we have a oc* b
if and only if @ < 0o - b, and if and only if Idl(a) C Idl(b), see Paragraph 5.1.6.

DEFINITION 5.2.11 (Rgrdam, [R@r92, Section 3]). A positively ordered monoid
M is almost unperforated if for every a,b € M, we have that a <s; b implies a < b.

The following result is straightforward to verify.
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LEMMA 5.2.12. Let S be a Cu-semigroup. Then S is almost unperforated if for
every a,b € S, we have that a <} b implies a < b.

THEOREM 5.2.13. Let S be a Cu-semigroup, and let a,b € S. Consider the
following statements:

(1) We have a <s b, that is, there exists k € N such that (k+ 1)a < k

(2) We have & <4 b, that is, there exists k € N such that (k +1)a < k

(8) We have a oc* b, and A(a) < A(b) for every functional A € F(S) satisfying
A(b) =1.

(4) We have a <% b, that is, we have a’ < b for every a’ € S satisfying o’ < a.

(5) We have a < b.

Then, the following implications hold: (1) = (2) = (3) = (4) = (5)".

If a is compact, then (4) implies (1). If the element a satisfies a <% a (such
elements will be called ‘soft’, see Definition 5.5.1), then (5) implies (4). If S is
almost unperforated, then (4) implies that a < b. The different implications are
shown in the following diagram:

b.
b.

a soft
~ < - 7= =~ ~
0<sb=——= a<sb (3) a<ib=——=a<b
S s almost:
unperfomtedv

a<b

PROOF. It is clear that (1) implies (2), and it is straightforward to check that
(4) implies (5). To see that (2) implies (3), assume that @ <, b. This clearly implies
that A(a) < 1 for every A € Fy(S). Thus, it remains to show that a oc* b. Let I be
the ideal generated by b, that is, I = {x € S | # < oo -b}. Consider the following
map

0, ifeel

. S
oo, ifx¢l (weS)

)\I:S%[QOO], )\](l‘)_{
It is easy to check that A; is a functional. Since A;(b) = 0 and 4 <; 137 it follows
that Ar(a) = 0 and therefore a < oo - b, as desired.

Let us show that (3) implies (4). Assume a and b satisfy the statement of (3),
and let us show that a <* b. Let o’ € S satisfy ¢’ < a. We want to verify (5) of
Proposition 5.2.8 to show that a’ <; b. The argument is similar to the one in the
proof of [ERS11, Proposition 6.2] and [Rob13a, Proposition 2.2.6]. Since o’ < a,
we get that a’ o b.

Now, let f: S — [0,00] be an extended state with f(b) = 1. We want to show
that f(a) < f(b). Consider the map

f:8—=10,0], f(z)=sup{f(z) | 2’ <z}. (z€8)

It is easy to see that f is a functional on S. In the literature, the functional f is
sometimes called the regularization of f. We distinguishA two cases: ~
In the first case, assume that f(b) = 0. Since a <; b, it follows that f(a) = 0.
Using the definition of f at the first step, we deduce that
fla) < fla)=0<1=f(b).

_ In the second case, assume that f(b) > 0. Since @ <, b, it follows that f(a) <
f(b). Using the definition of f at the first and last step, we obtain that

f(d) < fla) < f(b) < f(0).
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Thus, in either case, we have f(a’) < f(b). Applying Proposition 5.2.8, we get that
a' <4 b, as desired.

Finally, if a is a compact element, it is clear that (4) implies (1). Moreover, as
observed in Lemma 5.2.12, if S is almost unperforation thent a <} b implies a < b.
It remains to show that & < b implies a <% bif a satisfies a <} a. Let x € S satisfy
x < a. Choose y such that © < y < a. By assumption, this implies that y <; a.
It follows that

§<sa<b.
Using that (2) implies (3), we get that y <¥ b. Since 2 < y, we obtain that x <, b,
as desired. 0

The next result describes which information about the order-structure of a
Cu-semigroup is recorded by its functionals. It has appeared in [Rob13a, Proposi-
tion 2.2.6], under the additional assumption that the Cu-semigroup satisfies (O5).
However, an inspection of the proof of [Rob13a, Proposition 2.2.6] shows that (O5)
is not needed.

PROPOSITION 5.2.14. Let S be a Cu-semigroup, and let a,b € S. Then, the

following are equivalent:

(1) We have a < b.

(2) For each n € N, we have na <% (n + 1)b.

(8) For every a’ € S satisfying a’ < a and every € > 0, there exist k,n € N such

that (1 —¢) < £ and ka' < nb.

If S is almost unperforated, then these conditions are also equivalent to:

(4) For each n € N, we have na < (n+ 1)b.

PROOF. Let a,b € S. We first show that (1) implies (2). So assume that @ < b.
This clearly implies that na <, (n + 1)b for each n € N. Then, (2) follows from
Theorem 5.2.13.

It is straightforward to check that (2) implies (3), and that (3) implies (1).
Finally, statements (4) implies (1) in general. Conversely, it is clear that (2) implies
(4) if S is almost unperforated. O

The equivalence of statements (1) and (2) in the next result follows immediately
from Proposition 5.2.8 and was first obtained by Rgrdam, [Rgr04, Proposition 3.2]
(see also [R@r92, Proposition 3.1]). The equivalence with condition (3) follows
easily from Theorem 5.2.13 and was first shown in [ERS11, Proposition 6.2].

PROPOSITION 5.2.15. Let S be a positively ordered monoid. Then, the following
are equivalent:

(1) The semigroup S is almost unperforated.
(2) For all a,b € S we have that a < b whenever a o< b and f(a) < f(b) for every
extended state f on S that is normalized at b.

If, moreover, S is a Cu-semigroup, then these conditions are also equivalent to:
(8) For all a,b € S we have that a < b whenever a oc* b and A(a) < A(b) for
every functional A on S that is normalized at b.

For the next result, recall that a 2-quasitrace on a C*-algebra A is a map
T: (A®K)+ — [0, 00],

such that 7(0) = 0, such that 7(xz*) = 7(z*z) for all z € A ® K, and such that
T(x+y) = 7(x) + 7(y) for all 2,y € (A ® K) that commute. The set of lower-
semicontinuous 2-quasitraces on A is denoted by QT5(A), and its structure (e.g. as
a lattice and as a noncancellative cone) has been thoroughly studied in [ERS11].
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Given a 2-quasitrace 7 on A, consider the map
d-: (A®QK)y —[0,00], dr(z)= li]rch(xl/k). (re(A®K):)

If x is Cuntz-subequivalent to y, then d.(z) < d,(y). It follows that a 2-quasitrace
7 on A induces a map

d.: Cu(A) — [0,00], dT(:c):lilgnT(:cl/k), (€ (A®K)y)

which is an extended state on Cu(A). If 7 is a lower-semicontinuous, then d, is a
functional on Cu(A).

ProPOSITION 5.2.16 ([ERS11, Theorem 4.4]). Let A be a C*-algebra. Then
the map

QT5(A) —» F(Cu(A)), 7w—d,, (1€ QTy(A4))

is a bijection. When QT5(A) and F(Cu(A) are equipped with suitable natural
topologies and order-structures, then this map becomes a homeomorphic order-
isomorphism.

COROLLARY 5.2.17. Let A be a simple, unital C*-algebra with a unique 2-quasi-
trace T that satisfies T(14) = 1. Then the Cuntz semigroup Cu(A) has a unique
functional X that satisfies A([14]) = 1.

5.3. Soft and purely noncompact elements

In this section, we first introduce the notion of ‘softness’ for elements in a Cu-
semigroup, see Definition 5.3.1. This concept is closely related to that of ‘pure
noncompactness’, which was introduced in the Definition before 6.4 in [ERS11].
In fact, we will slightly generalize their definition to that of ‘weak pure noncom-
pactness’, which for elements in a Cu-semigroup S satisfying (O5) is equivalent to
softness, see Proposition 5.3.5. In Corollary 5.3.10, we will show that under the
addition assumption that S is almost unperforated or residually stably finite, an
element a € S is soft if and only if it is purely noncompact.

The set of soft elements in a Cu-semigroup S forms a submonoid that is closed
under suprema of increasing sequences and that is absorbing in a suitable sense, see
Theorem 5.3.11. The main result of this section is Theorem 5.3.12, where we show
that the order among soft elements in an almost unperforated Cu-semigroup S is
determined solely by the functionals of S. This generalizes [ERS11, Theorem 6.6],
where the analogous result is shown for the comparison of purely noncompact ele-
ments in the Cuntz semigroup of a C*-algebra. We point out that we obtain our
result without using (O5), by considering soft elements instead of (weakly) purely
noncompact elements, see Remark 5.3.13.

Let M be a positively ordered monoid. An interval in M is a subset I C M
that is upward directed and order-hereditary. An interval I is soft if for every x € I
there exist y € I and n € N such that (n + 1)z < ny. This notion was introduced
by Goodearl and Handelman; see the Definition before Lemma 7.4 in [GHS82]. It
was also studied in [Goo96] and [Per01].

Using the relation <, from Definition 5.2.7, an interval I is soft if and only if
for every x € I there exists y € I such that x <; y.

Next, we introduce the notion of ‘softness’ for elements in Cu-semigroups. In
Proposition 5.3.3, we will show that it is equivalent to softness of the interval of
compactly contained elements.



52 5. STRUCTURE OF Cu-SEMIGROUPS

DEFINITION 5.3.1. Let S be a Cu-semigroup. An element a € S is soft if for
every a’ € S satisfying @’ < a there exists n € N such that (n + 1)a’ < na.
We denote by Sgofe the subset of soft elements in S.

REMARK 5.3.2. Let S be a Cu-semigroup, and let a € S.

(1) Consider the set of compactly-contained elements a< ={z € S | = < a}.
We have that a is soft if and only if for every z € a< we have z <, a. Thus, an
element is soft if and only if it stably dominates every compactly-contained element.

(2) Recall that <} denotes the regularization of the stable domination relation
<s; see Definitions 5.2.7 and 5.2.9. Then, the element a is soft if and only if
a <} a. In Theorem 5.2.13, we have seen that for soft elements there is a close
connection between the order comparison in the Cu-semigroup and the comparison
by functionals. In the case that the Cu-semigroup is almost unperforated, we
even have that the functionals record the complete information about comparison
between soft elements, see Theorem 5.3.12.

PROPOSITION 5.3.3. Let S be a Cu-semigroup, and let a € S. Then the follow-
ing are equivalent:

(1) The element a is soft.
(2) The set of compactly-contained elements, a<, is a soft interval.

(8) For every b € S satisfying b < a, we have that b <, a.

PROOF. Let a € S. To see that (1) implies (2), assume that a is soft and let x
be an element in <. Choose an element & € S such that z < # < a. Since a is
soft, there exists n € N such that (n + 1)Z < na. Then

(n+ 1)z < (n+1)Z < na.

It follows that there exists y € S such that y < a and (n+ 1)z < ny. Thus, z <, y
and y € a<, which shows that a< is a soft interval.

It is easy to see that (2) implies (3). So assume that (3) holds and let us show
that a is soft. Let o’ € S satisfy ¢’ < a. Choose an element b € S such that
a’ < b < a. By assumption, we have that b <, . By Theorem 5.2.13, this implies
that b <* a. Since o’ < b, we get that o’ <; a, as desired. O

For the next definition, recall from Paragraph 5.1.1 that given an ideal I in a
Cu-semigroup S, we denote the image of an element a € S in the quotient S/I by
ay. To notion of ‘pure noncompactness’ was introduced in the Definition before 6.4
in [ERS11]. We will recall their definition and also generalize it to the concept
of ‘weak pure noncompactness’, which is more closely connected to softness; see
Proposition 5.3.5.

DEFINITION 5.3.4. Let S be a Cu-semigroup. An element a € S is purely
noncompact if for every ideal I in S, we have that a; < a; implies that 2a; = aj.

An element a € S is weakly purely noncompact if for every ideal I in S, we have
that a; < ay implies that (k4 1)a; = kay for some k € N.

Thus, if a is a (weakly) purely noncompact element, and if I is an ideal such
that ay is compact, then either a; = 0 or (a multiple of) a; is properly infinite.

The following result clarifies the connection between softness and weak pure
noncompactness. In the context of Cuntz semigroups of C*-algebras, the following
result has partially been obtained in [ERS11, Proposition 6.4].

PRrROPOSITION 5.3.5. Let S be a Cu-semigroup, and let a € S. Consider the
following statements:

(1) The element a is soft.
(2) The element a is weakly purely noncompact.
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(8) For every o' and x in S satisfying o’ < a < a’ + z, there is k € N such that
(k+1)a<kd +oc0-z.
(4) For every a’ and z in S satisfying ' < a < o’ +z, we have that o’ <; a’ + .
Then, the following implications hold: ‘(1)=(2)=(3)=(4)".
If S satisfies (05), then (4) implies (1), and so all 4 statements are equivalent
in that case.
Moreover, if a is purely noncompact, then (3) holds for k = 1, and the converse

holds if S satisfies (O5).

PROOF. Let us show that (1) implies (2). So let I be an ideal of S and assume
that a;y < ay. We have to show that a multiple of ay is properly infinite. Choose a
rapidly increasing sequence (ay,), C S such that a = sup,, a,,. Then, in the quotient
S/1, we have that a; = sup,,(an)r.

Since ay is compact, there is n such that a;y < (a,);. Since a, < a, we
have by assumption that a, <s a. This means that there exists k € N such that
(k+ 1)a, < ka. It follows that (k + 1)ay = kay, as desired.

Next, let us show that (2) implies (3). So assume that a is weakly purely
noncompact, and let @',z € S satisfy o/ < a < a'4+x. Let I={be S | b<oo-z}
be the ideal of S generated by z. Then, in the quotient S/I, we have that ay <
a < ay, whence by assumption there is k € N such that ka; = (k + 1)a; = ka}.
This implies that (k + 1)a < ka' 4+ 0o - z, as desired.

To show that (3) implies (4), let elements a’,x € S be given and assume that
a’ € a < a' + z. By assumption, there is k € N such that (k + 1)a < ka’ + oo - .
Then

(k+1)a’ < (k+1)a < ka' + co -z = sup(ka’ + nx).
neN

It follows that there is n € N such that (k + 1)a’ < ka’ + nz. Let m € N be the
maximum of k& and n. We get that

(k+1)a' < ka +ma.
Adding (m — k)a’ on both sides, we obtain that
(m+1)a’ <ma' +mz =m(a +2),

and hence a’ <, a’ + z, as desired.

Finally, let us show that (4) implies (1) under the assumption that S satisfies
(O5). By Proposition 5.3.3, it is enough to show that b < a for every b € S
satisfying b < a. Let such b be given. Choose ¢ € S such that b < ¢ < a. Since S
satisfies (O5), there exists 2 € S such that

b+r<a<c+H+ux.
By assumption, we get that ¢ < ¢+ x. This means that there is k¥ € N such that
(5.1) (k+ e < ke + k.

Let us show that (k+1)b < ka. So let A € F(S) be a functional. If A(a) = co, then
there is nothing to show. So assume that A(a) < co. Since ¢ < a, it follows that
A(e) < co. Applying A to the inequality (5.1), we obtain that

(k+ 1DA(c) < kA(c) + kX(z).
Since A(¢) < 0o, we may cancel k& summands of A(c) on both sides to get that
Ae) < kA(x).

Then, using that b < ¢ at the first step, and that b + z < a at the last step, we
deduce that

(k + D)ADB) < kAD) + A(c) < k(D) + kA(z) < kA(a).
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This shows that b <s G, as desired.
The implications concerning a purely noncompact element are obtained analo-
gously. g

5.3.6. Let S be a Cu-semigroup. Let us denote the subsets of (weakly) purely
noncompact elements in S by Swpnc and Spne. We clearly have that Spne C
Swpne, but the converse might fail. Indeed, if S is the elementary semigroup
E, ={0,1,2,...,k,00} as considered in Paragraph 5.1.16, then Sypnc = S and
Spne = {0, 00}

Let us say that S satisfies condition (RQQ) if in every quotient of S, an element
is properly infinite whenever a multiple of it is properly infinite. This property is a
residual version (meaning to hold in all quotients) of property (QQ) as introduced
in [OPR12, Remark 2.15], where it is also shown that (QQ) is connected to the
(strong) Corona factorization property.

It is easy to see that for a Cu-semigroup satisfying (RQQ), we have that Spne =
Swpnc-

LEMMA 5.3.7. Let S be a Cu-semigroup that is almost unperforated. Then S
satisfies (RQQ).

PROOF. Let I be an ideal of S, and let a € S be an element such that a multiple
of ay is properly infinite. This means that there is k& € N such that (k+1)a; = kay.
We need to show that 2a; = a;.

Assuming that S is almost unperforated, it is straightforward to check that
the quotient S/I is also almost unperforated. It follows from (k 4 1)a; = kay that
(k+n)ay = kay for every n € N. In particular, we have that (k + 1)2a; = kay.
By almost unperforation, it follows that 2a; < ay. The converse inequality always
holds, which shows that 2a; = ay, as desired. O

In the next results, we will say that a Cu-semigroup S is residually stably finite
if for every ideal I in S, the quotient Cu-semigroup S/I is stably finite. This is
in accordance with the terminology used in C*-algebra theory, see e.g. [Bla06,
Definition V.2.1.3].

LEMMA 5.3.8. Let S be a residually stably finite Cu-semigroup satisfying (05),
and let a € S. Then, the following statements are equivalent:

(1) The element a is soft.

(2) For every o' € S satisfying o' < a, there exists x € S such that o’ +x < a
and a < 00 - x.

(8) For every o' and x in S satisfying o’ < a < a' + x, we have that a < oo - x.

PRrROOF. The proof is similar to that of Proposition 5.3.5. First, let us show that
(1) implies (2). So let o’ € S satisfy o’ < a. Choose b € S such that ¢’ < b < a.
By (05) in S, there exists x € S such that a’ + z < a < b+ z. Consider the ideal
J of S generated by x. Then a; is compact.

By Proposition 5.3.5, the element a is weakly purely noncompact. Thus, a
multiple of a; is properly infinite. Since S/.J is stably finite, this implies that a
is zero. Therefore a < oo - x, as desired.

Conversely, let us show that (2) implies (1). So let a’ € S satisfy o/ < a. We
have to show that a’ <, a. By assumption, there exists x € S such that

d+r<a<oo-z.
Since a’ < a, there exists n € N such that ¢’ < nz. Then
(n+1)a’ <nd +nz < na,

which shows that a’ <, a, as desired.
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Next, let us show that (1) implies (3). Solet o’ and z in S satisfy o’ < a < a'+z.
Consider the ideal J of S generated by x. Then a; is compact. As in the first part
of the proof, we obtain that a; = 0 and hence a < oo - z, as desired.

Finally, statement (3) is stronger than statement (3) of Proposition 5.3.5, which
shows that it implies that a is soft. a

REMARK 5.3.9. Let S be a Cu-semigroup satisfying (O5), and let a € S. Con-
sider the statements (2) and (3) from Lemma 5.3.8. Even if S is not necessarily
residually stably finite, then these imply that a is soft.

Conversely, if a is soft, then (3) of Lemma 5.3.8 might fail (one could have
2 = 0). It is not clear to the authors whether (2) might also fail, that is, it would
be interesting to know whether a soft element satisfies (2) of Lemma 5.3.8 for a not
necessarily residually stably finite Cu-semigroup.

COROLLARY 5.3.10. Let S be a Cu-semigroup satisfying (05), and let a € S.
Assume that S satisfies (RQQ) (e.g. S is almost unperforated) or that S is residually
stably finite. Then, the following statements are equivalent:

(1) The element a is soft.
(2) The element a is weakly purely noncompact.
(8) The element a is purely noncompact.

PROOF. Since S satisfies axiom (O5), the statements (1) and (2) are equivalent
by Proposition 5.3.5. If S satisfies (RQQ), then the statements (2) and (3) are
equivalent, as observed in Paragraph 5.3.6. Finally, if S is residually stably finite,
it follows easily from Lemma 5.3.8 that (2) and (3) are equivalent. O

THEOREM 5.3.11. Let S be a Cu-semigroup. Then:

(1) The set Ssoy of soft elements of S is a subsemigroup of S that is closed under
passing to suprema of increasing sequences.

(2) The set Ssott is absorbing in the sense that for any a,b € S with b oc* a, we
have that a + b is soft whenever a is.

Proor. To prove (1), let us first show that Sseg is closed under addition. So
let a,b € Sgoy and let & € S satisfy x < a +b. We need to show that x <; a + b.
Choose elements a’, b’ € S such that

z<d+V, d<a VKb

Since a and b are soft, it follows that a’ <, a and b’ <, b. By Proposition 5.2.8, this
means that there exist ko,lp € N such that (k+ 1)a’ < ka for all k > k¢ and such
that (I +1)b" <1b for all I > ly. Let n € N be the maximum of kg and ly. Then

(n+ 1z < (n+1)(d +V) <nfa+0b),

which shows that © <, a + b, as desired.

Next, let us show that Ssof is closed under suprema of increasing sequences.
Let (an)nen C Ssoft be an increasing sequence and set a = sup,, a,. Let z € S
satisfy © < a. We need to show that x <; a. Choose € S such that » < T < a.

By definition of the way-below relation, we get that there is n € N such that
T < apn. Then x < a,. Since a, is soft, it follows that z <y a,, and therefore
T <;s a, as desired.

To prove (2), let a € Seott and b € S satisfy b oc* a. To show that a + b is soft,
let z < a +b. We need to show that x <, a + b. Choose elements a’,b’ € S such
that

r<ad 4V, d<a V0.
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Since b oc* a, it follows that there is n € N such that ¥’ < na. Moreover, since a is
soft, we get that a’ <, a. By Proposition 5.2.8, this implies that there exists k € N
such that (k +mn+ 1)a’ < ka. Then:

(k+n+1z<(k+n+1)(a +b)
=(k+n+1)ad + (k+n)b +b
<ka+ (k+n)b+na=(k+n)a+bd),
which shows that z <g a + b, as desired. a

THEOREM 5.3.12. Let S be an almost unperforated Cu-semigroup, and let a,b €
S. Assume that a is soft. Then a <b if and only if a < b.

PROOF. It is clear that a < b implies that a < b. So assume that @ < b. Tt is
enough to show that x < b for every z € S satisfying x < a. So let x € S such that
r < a.

Since a is soft, we get that * <s; a. Then & <, a, and together with the
assumption we obtain that & < b. By Theorem 5.2.13, it follows that =z <} b.
Since S is almost unperforated, this implies that x < b, as desired. a

REMARK 5.3.13. Theorems 5.3.11 and 5.3.12 are inspired by Proposition 6.4
and Theorem 6.6 in [ERS11]. Their results are concerned with purely noncompact
elements in Cuntz semigroups of C*-algebras, and their proofs use C*-algebraic
methods.

We generalize the mentioned results in [ERS11] in two ways. First, we consider
abstract Cu-semigroups instead of concrete Cuntz semigroups coming from C*-al-
gebras. Therefore, our proofs are necessarily purely algebraic.

Second, we do not assume (O5), which is implicitly used to prove the results
in [ERS11]. Note that axiom (O5) automatically holds for Cuntz semigroups of
C*-algebras, see Proposition 4.7, whence it is not an unreasonable assumption. We
were able to obtain our results without using (O5), by considering soft elements
instead of (weakly) purely noncompact elements.

It seems that soft elements form the right class to prove desirable results like
Theorems 5.3.11 and 5.3.12. In the absence of (O5), it is unclear whether the same
results hold for the class of (weakly) pruely noncompact elements. Moreover, as
shown in Proposition 5.3.5, under the assumption of (O5) the class of soft and
weakly purely noncompact elements coincide, so that then the results for (weakly)
purely noncompact elements follow from that for soft elements.

PROBLEM 5.3.14. Given a Cu-semigroup S, is the subsemigroup Sgof; of soft
elements again a Cu-semigroup? Does this hold under the additional assumption
that S satisfies (O5)? If so, does then Ssof satisfy (O5) as well?

REMARK 5.3.15. By Theorem 5.3.11, Sgof; is a subsemigroup of S. It therefore
inherits a natural structure as a positively ordered monoid. Moreover, axiom (O1)
is satisfied. It is not clear, whether axiom (O2) holds. (If so, axioms (O3) and (O4)
should follow immediately.)

The answer to Problem 5.3.14 is not even clear for Cuntz semigroups of C*-alge-
bras. In Proposition 7.3.14, we will provide a positive answer for semigroups with
Z-multiplication, which includes in particular the Cuntz semigroups of Z-stable
C*-algebras.

We end this section by showing that Problem 5.3.14 also has a positive answer
for simple, stably finite Cu-semigroups satisfying (O5) and (O6). We first observe
that, in this case, every noncompact element is automatically soft. This should be
compared to [Per01, Lemma 3.4].
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PROPOSITION 5.3.16. Let S be a simple, stably finite Cu-semigroup satisfying
(05). Then a nonzero element in S is soft if and only if it is not compact.

PRrROOF. In general, a finite compact element is never soft. Thus, let S be a
simple, stably finite Cu-semigroup, and let a € S be a nonzero element that is not
compact. We need to show that a is soft. By Lemma 5.3.8 and Remark 5.3.9, it is
enough to show that for every o',z € S satisfying o’ < a < a’ + x, we have that
a < oo -x. Given such @’ and z, since @’ < a and a is not compact, we get that
a’ # a. Therefore, z is nonzero. Since S is simple, this implies that a < co - z, as
desired. a

LEMMA 5.3.17. Let S be a Cu-semigroup, and let B C S be a submonoid.
Assume that for every b € B, there exists a sequence (bg)ren in B such that b =
supy br and such that by < biy1 in S for each k. Then

B= {sup br | (br)ken increasing sequence in B}
k

is a submonoid of S that is closed under passing to suprema of increasing sequences.
Moreover, B is a Cu-semigroup such that for each pair of elements a,b € B we have
a<bin B if and only if a < b in S.

PRrROOF. We view B is a subset of S. It is easy to see that B is a subset of B
and that B is a submonoid of S. Thus, endowed with the partial order induced by
S, we have that B is a positively ordered monoid. Given an increasing sequence
(cn)n C B, let us show that the supremum sup,, ¢, is an element of B. For each
n € N we can, by assumption, choose a sequence (¢, ;) C B that is rapidly
increasing in S and such that ¢,, = supy, ¢p . As in the proof of Proposition 3.1.6,
we can inductively choose indices k,, for n € N such that

Clky4+n—15C2 kotn—2s+ -5 Cnky < Cntlknir-
Then (cpk,)n is an increasing sequence of elements in B such that sup, ¢, =
SUp,, Cn.k, - By definition, the element sup,, ¢, &, belongs to B. Thus, B is closed
under passing to suprema of increasing sequences. Then, axioms (O1) and (O4) for
B follow easily from their counterparts in S.

For clarity, let us denote the compact-containment relation with respect to S
by <, and similarly for <. Given a,b € B satisfying a <g b, let us prove that
a <z b. Since B satisfies (O1), we need to show that for every increasing sequence
(bx)x in B satisfying b < supy, by, there exists k& € N such that a < b,. Since the
sequence (by ) has the same supremum in S as in B, this follows directly form the
assumption that a <g b.

It follows that every element in B is the supremum of a sequence of elements
in B that is rapidly increasing in B. A diagonalization argument shows that the
same holds for every element in B. This verifies (02) for B.

Finally, given a,b € B satisfying a <z b, let us show that a <g b. Choose an
element z in B such that a <z 2 <7 b. Let (by)r C B be an increasing sequence
such that b = sup,, by. Then there exists & € N such that 2 < bz. By assumption,
the element by is the supremum of an increasing sequence (b, ,)n in B such that
bg.n <5 bf 41 for each n. Then

a < < b =supby,,
n
which implies that there is 72 such that a < b 5. Then
a<bps <sbgaq <0,

which implies that a <g b, as desired. Therefore, axiom (O3) for B follows since
S satisfies (03). O
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PROPOSITION 5.3.18. Let S be a simple, stably finite Cu-semigroup satisfying
(05) and (O6). Then the subsemigroup Ssofs s a Cu-semigroup satisfying (O5)
and (06).

PROOF. The statement holds if S is elementary. So we assume from now on
that S is nonelementary. We want to apply Lemma 5.3.17 with B = Sy By
Theorem 5.3.11, we have that Sy is closed under passing to suprema of increasing
sequences. This implies that S satisfies (O1) and that Ssort = Ssofs-

Claim 1: For every nonzero element a € S there exists a nonzero element
b € Ssot satisfying b < a. To prove this claim, we inductively construct nonzero
elements a,, € S for n € N such that 2a,41 < a, for each n. We start by setting
ap = a. Assuming that we have constructed ay for all k¥ < n, we apply [Rob13a,
Proposition 5.2.1], see Proposition 5.4.1, to obtain a nonzero element an+1 € S
such that 2a,,+1 < a,. Then, set

We have b < a. Since S is stably finite, the element b cannot be compact. Therefore,
by Proposition 5.3.16, it is a soft element. This proves the claim.

Claim 2: For every two elements a € S and b € Sy satisfying a < b, there
exists an element s € Ssop such that a + s < b. Note that by Theorem 5.3.11(2)
this implies that a + s is soft. To prove this claim, we first choose b’ € S such that
a < b < b. By Lemma 5.3.8, there exists x € S such that ¥ +z < band b < co-x.
In particular, = is nonzero. Choose a nonzero element x’ € S such that 2’ < z.
By claim 1, there exists a nonzero element s € Sqop; such that s < z/. This implies
that s < x. Moreover, we get that

a+s<b +x<b,

which proves the claim.

Claim 3: For every a € Sy, there exists a sequence (ax)r C Ssoft that is
rapidly increasing in S and such that a = sup, ax. Since S satisfies (02), it is
enough to show that for every o’ € S satisfying a’ < a, there exists b € Sgop; such
that @’ < b < a. This follows directly from claim 2.

We can now apply Lemma 5.3.17 to deduce that Sgog is a Cu-semigroup. To
verify (O5) for Seoft, let a’,a, b, b, c € Ssop satisfy

a+b<c, d<a, b Kb
Applying claim 2 for @’ < a, there exists s € Sgf such that @’ + s < a. Then,
using (O5) in S, we obtain an element x € S such that

(@ +s)+x<c<a+z, V<uz
Set d = s + x, which is soft by Theorem 5.3.11(2). Then
ad+d=d+s+z<c<at+z<a+d b <x<d,

which show that d has the desired properties to verify (O5) for Ssof;-
Finally, to verify (O6) for Ssof, let a’, a,b, ¢ € Ssofy satisfy

ad <a<b+e.

Without loss of generality, we may assume that the elements a’,a,b and c are
nonzero. Using (06) for S, there exist elements e, f € S such that

ad<e+f, e<ab f<a,c

If e and f are soft, then these elements have the desired properties to verify (O6)
for Soft. So assume that e is not soft. By Proposition 5.3.16, this implies that e
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is compact. Using (O5) for S, this implies that there are elements x1, x5 € S such
that

e+x1=a, e+xy="0.

Since a and b are not compact, we have that z; and zo are nonzero elements. By
Lemma 5.1.17, there exists a nonzero element & € S satisfying & < x1,x5. Then,
by claim 1, there exists a nonzero element x € Sy such that z < Z and hence
x < x1,%2. By Theorem 5.3.11, the element e + x is soft. Moreover, we get that

etx<etz=a, etx<et+z2=0

An analogous argument works in the case that f is not soft. a

5.4. Predecessors, after Engbers

In [Engl4], Engbers develops a theory of predecessor of compact elements in
Cuntz semigroups of simple, stably finite C*-algebras. Using algebraic methods,
we obtain a weaker version of his results; see Theorem 5.4.5. First, we recall the
following Glimm-halving result of Robert:

PrOPOSITION 5.4.1 (Robert, [Rob13a, Proposition 5.2.1]). Let S be a simple,
nonelementary Cu-semigroup satisfying (O5) and (O6). Then, for every nonzero
element a € S, there exists a nonzero element b such that 2b < a.

PROPOSITION 5.4.2. Let S be a simple, countably-based Cu-semigroup satisfying
(05) and (06). Then, there exists a sequence (gn)n C S of nonzero elements with
the following properties:

(1) The sequence is rapidly decreasing, that is, gn > gn41 for each n.
(2) The sequence is cofinal among all nonzero elements, that is, for every nonzero
element a € S, there exists n € N such that g, < a.

PROOF. Since S is countably-based, we can choose a countable set of nonzero
elements {a, }neny C S that is dense in the sense of Paragraph 2.1.1. We inductively
construct the sequence (g,), such that for each n we have that

In+1 < n, A0, 01, ..., Qpt1.

We start by letting gg € S be any nonzero element satisfying gy < ag. Assume we
have constructed gy, for all ¥ < n. By Lemma 5.1.17, we can find g,,+1 with the
desired properties.

By construction, the sequence (gy), is rapidly decreasing. Finally, let a € S
be a nonzero element. Since {a,}, is a basis, there exists n such that a, < a. It
follows that g, < a, as desired. O

In [Eng14], Engbers introduced the notion of a predecessor of a compact ele-
ment p in a simple Cu-semigroup S. It is defined as

v(p) =max{z €S | = <p},

provided this maximum exists. Engbers shows the existence of predecessors for
Cuntz semigroups of separable, simple and stably finite C*-algebras, and he proves
the following properties:

(1) For every nonzero element z € S, we have p < v(p) + z.
(2) For every noncompact element y € S, we have y(p) +y = p + .
(3) For every A € F(S), we have A(y(p)) = A(p).
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With the new axiom (O5) we can almost recover this result in the algebraic
setting, by showing that elements in {x € S | x < p} with these three properties
do exist. However, we only get existence of the maximum (and thus uniqueness of
predecessors) in the presence of weak cancellation or almost unperforation.

Since for a compact element p, the induced map p in Lsc(F(S)) is continuous,
the result gives us a noncompact element with the same property.

LEMMA 5.4.3. Let S be a simple, countably-based, nonelementary, stably finite
Cu-semigroup satisfying (05) and (0O6). Then, for every compact element p € S,
there exists a noncompact element ¢ € S such that ¢ < p and such that p < c+ z
for every nonzero element z € S.

Proor. Without loss of generality, we may assume that p € S is a nonzero,
compact element. Using Proposition 5.4.2, we can choose a rapidly decreasing
sequence (gp)n C S that is cofinal among the nonzero elements of S. By reindexing,
if necessary, we may assume that go < p. We will inductively construct elements
CnyTn,Cn € S such that

Cn K Tp L Cpy €y S Cnyl, Tn S Cptly Gntl 08 S P < gn+cn,
for each n € N. First, we have that
g1 < go < p.
Applying axiom (O5), there exists an element ¢y such that
g1+ ¢ <p < go+Co.

Since p is compact, there exists an element ¢y € S such that ¢y < ¢y and p < go+cg-
Choose xy € S such that ¢y <€ zg < &.

For the induction, assume that we have constructed cg,rr and & for k < n.
Thus, we have that

gn+1 + 577, S P, In+2 < In+1, Tn < 6n

Then, by applying axiom (O5), there exists an element ¢&,1 such that

In+2 + én+l S p S In+1 + 5n+17 Tn S 6n-‘,—l-

Then ¢, < ¢,41. Using also that p is a compact element, we can find an element
Cnt1 € S such that ¢, < ¢py1 <€ épy1 and p < gpy2 + cpy1. Choose xpqq € S
such that Cn+1 < Tn+1 < En+1-

Note that the sequence (c,),, is increasing. Therefore, we may set

¢ = supcy,.
n
Let us show that ¢ has the desired properties.

We first observe that ¢ < p. Indeed, it is clear that ¢ < p. To obtain a
contradiction, assume that ¢ = p. Then, since p is compact and ¢ = sup,, ¢,, we
would have p = ¢,, for some n. But we have that g,+1+¢, < p and g,,+1 is nonzero.
Thus, p would be an infinite compact element, which is not possible since S is stably
finite.

Next, let z € S be a nonzero element. Then, there exists n € N such that
z > gn- It follows that

ctz2ctgn>Cntgn =D,

as desired.
Finally, let us show that ¢ is not compact. Indeed, if ¢ were compact, then by
(O5) there would exist an element y € S such that ¢ +y = p. Since ¢ < p, the
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element y is nonzero. By Proposition 5.4.1, there exists a nonzero element z € S
such that 2z < y. As shown above, this implies that p < ¢+ z. But then

p+z<c+z+z<p,

which is impossible since S is stably finite. a

PROPOSITION 5.4.4. Let S be a simple, nonelementary, stably finite Cu-semi-
group satisfying (05) and (O6). Let p € S be a compact element, and let ¢ € S be
a nonzero element such that ¢ < p. Consider the following conditions:

(1) For every nonzero element z € S, we have p < c+ z.
(2) The element ¢ is noncompact, and for every noncompact element y € S, we
have c+y=p+y.
(8) For every A € F(S), we have A\(c) = X\(p).
Then, the following implications hold: ‘(1)&(2)=(3).
Moreover, if S has weak cancellation, then an element c satisfying (1) or (2) is
equal to the mazimum of the set {x | x < p}, and hence it is uniquely determined.
If S is almost unperforated, then all three conditions are equivalent and the
element ¢ satisfying (1)-(3) is uniquely determined.

PROOF. Let us show that (1) implies (2). So let ¢ € S be an element satisfying
the statement of (1). As shown at the end of the proof of Lemma 5.4.3, we have
that ¢ is necessarily noncompact.

Let y be a noncompact element in S. To show that ¢ +y = p + y, we follow
an argument similar to the one in [Engl4, Theorem 5.7], which we include for
completeness. We clearly have ¢ + y < p + y. For the converse inequality, it is
enough to show that p + vy’ < ¢+ %/ for every element y' € S satisfying ¢/ < v.
Given such an element 3, choose an element y”’ € S such that ¢y < ¢y’ < .
Applying (O5) in S, there exists an element z € S such that

y4+z<y<y’ +a

Notice that z is nonzero, as otherwise y would be compact. Using the assumption
at the first step, we deduce that

y+p<y+tc+tz<y+c<y+p,

as desired.

Next, let us show that (2) implies (1). So let z € S be a nonzero element.
We need to show that p < ¢+ z. By assumption, this is clear if z is noncompact.
So assume that z is compact. Choose a noncompact, nonzero element y € S with
y < z. Then

pspty=cty=<ctz
as desired.
Next, let us show that (2) implies (3). So let A € F(S). We distinguish two
cases. In the first case, we assume that A\(p) < oco. Then A(¢) < oo. Applying A to
the equality p 4+ ¢ = 2¢, we get that

Alp) + Ae) = Ale) + A(e).

Then, we can cancel A(c) on both sides and obtain that A(p) = A(c), as desired.

If the other case, we assume that A(p) = oo. It follows that A is equal to Ao,
the functional that takes value co everywhere except at 0. Then, A(c) = co = A(p),
as desired.

Suppose now that S has weak cancellation, and that the element ¢ € S satisfies
(1)-(2). Assume that = € S satisfies x < p. We need to show that = < ¢. For this,
it is enough to show that z’ < ¢ for every 2’ € S satisfying ' < x.
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So let such z’ be given. By (O5), there exists t € S such that
+t<p<a+t.
Note that ¢ # 0 as S is stably finite. Therefore, we get that
r+i<p<p<cHt.

Applying weak cancellation, we obtain that ' < ¢, as desired.

Finally, assume that S is almost unperforated, and let us show that (3) implies
(1). So let z € S be a nonzero element. By assumption, we have that p = ¢é. Since
S is simple and z is nonzero, it is straightforward to check that

P<sC+z

By Theorem 5.2.13, we get that p <} ¢+ z. Since p is compact and S is almost un-
perforated, it follows that p < ¢+ z. Moreover, the element is uniquely determined
by Theorem 5.3.12. ]

THEOREM 5.4.5 (cf. Engbers, [Engl4, Theorem 5.15]). Let S be a simple,
countably-based, nonelementary Cu-semigroup satisfying (05), (06) and weak can-
cellation. Then every compact element p € S has a predecessor vy(p), uniquely
determined by the property that p < v(p) + z for every nonzero element z.

PROOF. This follows from Lemma 5.4.3 and Proposition 5.4.4. (|

5.5. Algebraic semigroups

In this section, we study Cu-semigroup that have a basis of compact elements.
Such semigroups are called ‘algebraic’. Important examples are given by Cuntz
semigroups or C*-algebras with real rank zero.

Given a positively ordered monoid M, we show how to construct an algebraic
Cu-semigroup Cu(M) such that the semigroup of compact elements in Cu(M) can
be naturally identified with M, see Proposition 5.5.4. This establishes an equiva-
lence between the category PoM of positively ordered monoids, and the full sub-
category of Cu consisting of algebraic Cu-semigroups, see Proposition 5.5.5. In
Proposition 5.5.8, we will see how certain properties of M translate to properties
of Cu(M). Then, we provide a version of the Effros-Handelman-Shen theorem
by showing that a Cu-semigroup is an inductive limit of simplicial Cu-semigroups
if and only if it is weakly cancellative, unperforated, algebraic and satisfies (O5)
and (06), see Corollary 5.5.12. This also characterizes the Cuntz semigroups of
separable AF-algebras.

DEFINITION 5.5.1. A Cu-semigroup S is algebraic if every element in S is the
supremum of an increasing sequence of compact elements of S.

REMARKS 5.5.2. (1) Definition 5.5.1 is following the convention of domain
theory to call a continuous partially ordered set algebraic if its compact elements
form a basis; see [GHK 03, Definition 1-4.2, p. 115].

(2) If A is a C*-algebra with real rank zero, then Cu(A) is algebraic. For
C*-algebras with stable rank one, the converse holds; see [CEIO8, Corollary 5].

5.5.3. Given a positively ordered monoid M, it is easy to see that the partial
order < is an auxiliary relation in the sense of Paragraph 2.1.1. In fact, it is the
strongest auxiliary relation on M. Moreover, it is straightforward to check that
(M, <) is a W-semigroup. We denote its Cu-completion by Cu(M). In Prop-
osition 5.5.4, we will see that Cu(M) is algebraic and that every algebraic Cu-
semigroup arises this way.
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Every PoM-morphism f: M — N between positively ordered monoids induces
a Cu-morphism Cu(f): Cu(M) — Cu(N). Thus, we obtain a functor

Cu: PoM — Cu, M +— Cu(M). (M € PoM)

Conversely, given a Cu-semigroup .S, we let S. denote the set of compact ele-
ments in S. It is easy to see that S, is a submonoid of S and we equip it with the
order induced by S. It follows that S, is a positively ordered monoid. Moreover, ev-
ery Cu-morphism f: S — T between Cu-semigroups restricts to a PoM-morphism
from S, to T.. Hence, we obtain a functor

Cu— PoM, S+~ S.. (SecCu)

PROPOSITION 5.5.4. (1) Let M be a positively ordered monoid. Then Cu(M)
as introduced in Paragraph 5.5.3 is an algebraic Cu-semigroup. Moreover,
there is a natural identification of M with the positively ordered monoid of
compact elements in Cu(M).

(2) Let S be an algebraic Cu-semigroup. Consider the positively ordered monoid
S. of compact elements in S. Then there is a natural isomorphism S =

Cu(S,.).

PRrROOF. Let us show (1). Consider the natural map o: M — Cu(M) from
M to its Cu-completion. Since (M, <) is a W-semigroup, the map « is an order-
embedding, see Remarks 3.1.9(2).

Given a € M, we have a < a and therefore a(a) < a(a), showing that oo maps
M to the compact elements of S. On the other hand, let s € S be a compact
element. By Theorem 3.1.8(1,ii), there exists a € M such that s < a(a) < s, and
hence s = a(a). This shows that « is an order-embedding that maps M onto S..
It also follows from Theorem 3.1.8(1,ii) that every element in S is the supremum
of an increasing sequence of compact elements, showing that S is an algebraic Cu-
semigroup.

We leave the proof of (2) to the reader. O

PROPOSITION 5.5.5. The two functors from Paragraph 5.5.3, assigning to a
positively ordered monoid M its Cu-completion Cu(M), and assigning to an alge-
braic Cu-semigroup its positively ordered monoid of compact elements, establish an
equivalence of the following categories:

(1) The category PoM of positively ordered monoids, see Paragraph B.2.1.
(2) The full subcategory of Cu consisting of algebraic Cu-semigroups.

REMARK 5.5.6. Let M be a positively ordered monoid. The Cu-completion
Cu(M) has appeared in the literature before using different but equivalent con-
structions. First, recall that an interval in M is a nonempty, upwards directed,
order-hereditary subset of M. In the literature, intervals are often called ideals
or sometimes round ideals; see [GHK'03, Definition 0-1.3, p. 3] and [Law97,
Definition 2.1].

An interval I in M is countably-generated if there exists a countable cofinal
subset for 1. This is equivalent to saying that there is an increasing sequence (ay,),
in I such that

I={aeM|a<a, for some n}.

Countably generated intervals in M form a positively ordered monoid A, (M), where
addition of intervals I and J is the interval generated by I + J, and order is given
by set inclusion; see [Weh96], and also [Per97].

Let us define a map A,(M) — Cu(M). Given a countably generated ideal
I € Ay (M), let (ay)y be a cofinal subsequence of I. Considering M as a submonoid
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of Cu(M), we may assign to I the element sup,, a,, in Cu(M). This induces a natural
isomorphism A, (M) = Cu(M).

Similarly, if S is a Cu-semigroup, we may consider the natural map ®: S —
Ao (Se), which sends an element a € S to the interval

O(a)={z€S. | z<a}.

If S is algebraic, then ® is an isomorphism of positively ordered monoids, cf.
[ABP11, Theorem 6.4].

We will now study how properties of a positively ordered monoid relate to prop-
erties of its Cu-completion. The results in Proposition 5.5.8 should be compared to
Theorem 4.4.

DEFINITION 5.5.7. Let M be a positively ordered monoid.

(1) We say that M has the Riesz refinement property if whenever there are
ai,a2,b1,b0 € M with a1 + ag = by + b, then there exist z;; € M for
i =1,2 such that a; = z;1 + ;2 for i =1,2 and b; = x1 ; +xo; for j =1,2.

(2) We say that M has the Riesz decomposition property if whenever there are
a,b,c € M with a < b+ ¢, then there exist b’,c’ € M such that a =V + ¢/,
b <bandd <ec.

(3) We say that M has the Riesz interpolation property if whenever there are
a1,a2,b1,b2 € S such that a; < b; for 4,j = 1,2, then there exists ¢ € S such
that ay, a2 S C S bl,bg.

(4) We say M has cancellation (or that M is cancellative) if for any a, b,z € M,
a+x < b+ x implies a < b.

The three Riesz properties are closely related but not equivalent in general.
If M is algebraically ordered, then Riesz refinement implies Riesz decomposition.
If M is cancellative and algebraically ordered, then all three Riesz properties are
equivalent.

PROPOSITION 5.5.8. Let M be a positively ordered monoid. Then:
(1) The monoid M is algebraically ordered if and only if Cu(M) satisfies (05).
(2) The monoid M is cancellative if and only if Cu(M) is weakly cancellative.
(8) The monoid M has Riesz interpolation if and only if Cu(M) does.
(4) If M satisfies the Riesz decomposition property, then Cu(M) satisfies (O6).
Conversely, if Cu(M) satisfies (05), (06) and weak cancellation, then M
satisfies the Riesz decomposition property.

PRrROOF. Let us show (1). By Theorem 4.4(1), Cu(M) satisfies (O5) if and only
if M, considered as a W-semigroup M = (M, <), satisfies (W5). First, assume that
M is algebraically ordered. To show that M satisfies (W5), let @, a,b',b,¢c,é € M
satisfy

a+b<c, d<a, b <b c<Eg,
Since M is algebraically ordered, there exists y € M such that a +b+y = c. Set
2’ = x = b+y. One checks that 2’ and x have the desired properties to verify (W5)
for the M = (M, <).

Conversely, assume that M satisfies (W5). To show that M is algebraically
ordered, let a,c € M satisfy a < c. Set a’ = a, set ¥ = b = 0 and set ¢ = ¢. Since
M satisfies (W5), there exist ¢/, z € M such that

ad+zx<é c<a+1, <=z

Then
at+r=ad +rx<é=c<a+2 <a+zx,
showing that a + z = ¢. Thus, M is algebraically ordered.
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Statement (2) follows directly from Theorem 4.4(3). Statement (3) is shown in
[Per97, Proposition 2.12].

Finally, let us show (4). First, assume that M satisfies the Riesz decomposition
property. By Theorem 4.4(2), it is enough to verify (W6) for M. Let a’,a,b,c € M
satisfy

a <a<b+e.
By assumption, there exist &', ¢’ € M such that
ad=v+c, ¥<b d<ec

Then V' < a and ¢’ < a, showing that b’ and ¢’ have the desired properties to verify
(W6) for the W-semigroup (M, <).

Conversely, assume that S satisfies (05), (O6) and weak cancellation. By
statements (1) and (2) and Theorem 4.4(2), we have that M is algebraically ordered,
cancellative and satisfies (W6). To show that M has Riesz decomposition, let
a,b,c € M satisfy a < b+ c. Set ' = a. Since M satisfies (W6), there exist
e, f € M such that

d=a<e+f, e<ab f<a,c
Since M is algebraically ordered, there exist x,y,2 € M such that
a+x=e+f, ety=a, f+z=a.

Then
at+x+y+z=e+ f+y+2z=2a.

Since M is cancellative, we obtain that a = = 4+ y + z. It follows that
y+z+zl=a<atz=f+[z+z],

which implies that y < f. Thus, we have that a = e+ y with e < b and y < ¢, as
desired. |

COROLLARY 5.5.9. Let S be an algebraic Cu-semigroup satisfying (05) and

weak cancellation. Then the following are equivalent:

(1) The Cu-semigroup S satisfies (0O6).

(2) The Cu-semigroup S has Riesz refinement.

(8) The Cu-semigroup S has Riesz decomposition.

(4) The Cu-semigroup S has Riesz interpolation.

(5) The monoid of compact elements, S., has Riesz refinement (or equivalently,

M has Riesz decomposition, or M has Riesz interpolation).

PROOF. Let S be an algebraic Cu-semigroup satisfying (O5) and weak can-
cellation. Let M be the positively ordered monoid of compact elements in S. As
shown in Proposition 5.5.4, we have that S is isomorphic to the Cu-completion of
M. By Proposition 5.5.8, M is algebraically ordered and cancellative. It follows
that the three Riesz properties stated in (6) are equivalent for M.

By Proposition 5.5.8, we have that M has Riesz interpolation if and only S
does. This shows the equivalence between (4) and (5). Similarly, we obtain the
equivalence between (1) and (5) from Proposition 5.5.8.

It is easy to check that (3) implies (1). To see that (2) implies (1), let a’,a,b,c €
S satisfy ' < a < b+ c¢. Since S is algebraic, there exists a compact element
x € S such that o/ < x < a. Since S satisfies (O5), there exists y € S such that
z +y = b+ c. Using Riesz refinement, there exist r; ; € S for ¢,j = 1,2 such that

T=7r11+712, Y=ro1+r22, b=r11+7r21, b=r12+T20.
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Set e =ry,; and f =r; 9. Then e and f have the desired properties to verify (O6)
for S. Finally, it follows from Lemma 2.6(a) and Proposition 2.5 in [Goo96] that
(5) implies (2) and (3). O

We will now consider the class of algebraic Cu-semigroups that are Cu-comple-
tions of dimension groups. We first recall some definitions.

DEFINITION 5.5.10. Let M be a positively ordered monoid.

(1) We call M a simplicial monoid if it is isomorphic to the algebraically ordered
monoid N", for some r € N;.

(2) We call M a dimension monoid if it is isomorphic to the inductive limit in
PoM of simplicial monoids.

Let M be a positively ordered monoid. Recall that M is unperforated if for
every a,b € M we have that a < b whenever na < nb for some n € N;. Every
simplicial monoid is algebraically ordered, cancellative, unperforated and satisfies
the Riesz refinement property. It is easy to see that all these properties pass to
inductive limits, whence they are satisfied by all dimension monoids. The converse
is known as the Effros-Handelman-Shen theorem, [EHS80], which is formulated for
partially ordered groups. The version given here for a positively ordered monoid
M follows by passing to the Grothendieck completion G, from which M can be
recovered as M = G7T. It is clear that for every separable AF-algebra A, the
Murray-von Neumann semigroup V(A) is a dimension monoid. The converse can
for instance be found in [Rgr02, Proposition 1.4.2, p.20].

THEOREM 5.5.11 (Effros, Handelman, Shen). Let M be a countable positively
ordered monoid. Then, the following are equivalent:

(1) The monoid M is a dimension monoid.

(2) The monoid M is algebraically ordered, cancellative, unperforated and satis-
fies the Riesz refinement property.

(8) There is a separable AF-algebra A such that M = V(A).

In order to formulate the analog of the Effros-Handelman-Shen theorem for
Cu-semigroups, we will call a Cu-semigroup S a simplicial Cu—semig@up if it is

isomorphic to the Cu-completion of a simplicial monoid, that is, if S = N" with the
algebraic order, for some r € N

COROLLARY 5.5.12. Let S be a countably-based Cu-semigroup. Then, the fol-
lowing are equivalent:

(1) The semigroup S is isomorphic to an inductive limit of simplicial Cu-semi-
groups.

(2) There is a dimension monoid M such that S = Cu(M).

(38) The semigroup S is weakly cancellative, unperforated, algebraic and satisfies
(05) and (06).

(4) There is a separable AF-algebra A such that S = Cu(A).

PROOF. It easy to see that (1) and (2) are equivalent, and that (3) implies (2).

Let us show that (2) implies (3). So let M be a dimension monoid such that
S = Cu(M). It follows directly from Theorem 5.5.11 and Proposition 5.5.8 that S
is weakly cancellative, algebraic and satisfies (O5) and (O6). Let us check that S is
unperforated. So let a,b € S and assume that na < nb for some n € N;. Since § is
algebraic, we can choose increasing sequences (ay ) and (bg) of compact elements
in S, such that a = sup,, ax and b = sup,, by. For each k we have

nap < na < nb = supnb;.
leN
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Thus, there is [ € N such that nay < na;. Since M is unperforated and the natural
map from M to S is an order-embedding, this implies that a; < b;. Thus, we have
ar, < b for each k, and therefore a < b, as desired.

Finally, let us show that (2) and (4) are equivalent. Given a separable AF-
algebra A, the Cuntz semigroup of A is isomorphic to the Cu-completion of V(A).
Therefore, the desired equivalence follows from Theorem 5.5.11. a

5.6. Nearly unperforated semigroups

In this section, we introduce the notion of ‘near unperforation’ for positively
ordered monoids, see Definition 5.6.1. We study how this concept is connected to
other notions like almost unperforation, separativity and cancellation properties.
The main result of this section is Theorem 5.6.10 where we show that a simple,
stably finite Cu-semigroup that satisfies (O5) is nearly unperforated if and only if
it is weakly cancellative and almost unperforated.

In [JS99], the famous Jiang-Su algebra Z was introduced. Recall that it is
a unital, separable, simple, nonelementary, nuclear C*-algebra with stable rank
one and unique tracial state. It is strongly self-absorbing and K K-equivalent to
the complex numbers, which means that Ky(Z) = Z and K;(Z) = 0. Therefore,
tensoring with Z has no effect on the K-theory of a C*-algebra, although it can
change the ordering on the Ko-group (see e.g. [GJS00]). In the Elliott classification
program, the Jiang-Su algebra is considered as the stably finite analog of the Cuntz
algebra O, which plays a central role in the classification of purely infinite C*-al-
gebras.

Given a C*-algebra A that tensorially absorbs the Jiang-Su algebra Z, it is
well-known that the Cuntz semigroup Cu(A) is almost unperforated, [Rgr04, The-
orem 4.5]. Under the additional assumption that A is simple or that A has real
rank zero and stable rank one, we obtain that Cu(A) is even nearly unperforated,
see Corollary 5.6.15. We conjecture that the Cuntz semigroup of every Z-stable
C*-algebra is nearly unperforated, see Conjecture 5.6.18.

DEFINITION 5.6.1. Let M be a positively ordered monoid. We define a binary
relation <, on M by setting a <, b for a,b € M if and only if there exists kg € N
such that ka < kb for all k£ € N satisfying k > ko.

We say that M is nearly unperforated if for all a,b € M we have that a <, b
implies a < b.

Note that a <, b if and only if there exists k& € N such that ka < kb and
(k+1a < (k+1)b.

LEMMA 5.6.2. Let M be a positively ordered monoid. Then the following are
equivalent:

(1) The monoid M is nearly unperforated.
(2) For all a,b € M, we have that 2a < 2b and 3a < 3b imply a < b.

PROOF. It is easy to see that (1) implies (2). For the converse implication, let
a,b € M satisfy a <, b. Let n € N be the smallest integer such that ka < kb for all
k > n. Arguing as in [AGOP98, Lemma 2.1], we will show that (n—1)a < (n—1)b
if n > 2. This shows that n = 1, and so a < b.

Assuming n > 2, we have that 2(n — 1) > n and 3(n — 1) > n. It follows that

2(n—1a <2(n—1)b, 3(n—1)a <3(n—1)b.
By assumption, this implies (n — 1)a < (n — 1)b, as desired. O
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Let M be a positively ordered monoid. Recall that M is unperforated if for
all elements a,b € M we have that na < nb for some n € N, implies that a < b.
Recall from Definition 5.2.11 that M is almost unperforated if a <s b implies a < b.

Let us say that M is weakly separative if for all elements a and b we have that
2a < a+ b < 2b implies a < b. We warn the reader that different definitions of
‘separativity’ for (partially ordered) semigroups appear in the literature. However,
in most of the recent literature, the notion of ‘separativity’ has been used for a
concept which is stronger than the condition above, see e.g. [Weh94, Definition 1.2].
That is why we call the above condition ‘weak separativity’.

PROPOSITION 5.6.3. Let M be a positively ordered monoid. Then, the following
implications hold:

M is unperforated =—> M 1is nearly unperforated =—> M is almost unperforated

M is weakly separative .

Proor. It follows from Proposition 5.2.8 that the relation a <y b is stronger
than the relation <,,. Therefore, for any pair of elements a,b € M, the following
implications hold:

na <nbforsomen e Ny <= a<,b <— a<b

This implies the horizontal implications of the diagram. It remains to show that
near unperforation implies weak separativity. So let a,b € M satisfy 2a < a+b < 2b.
Then

2a <2b, 3a<a+2b=(a+b)+b<3b

By Lemma 5.6.2, this implies that a < b, as desired. d

LEMMA 5.6.4. Let M be a positively ordered monoid, and let a,b € M and
k,leN. Ifa+ka <b+ka and a+1b<b+1b, then a <, b.

ProOOF. Let a,b and k,l be as in the statement. Arguing as in [AGOP98,
Lemma 2.1], it follows that

20+ ka=a+[a+ka <a+ [b+ ka] < 2b+ ka.

Inductively, we get that ra + ka < rb + ka for all » € N. Analogously, we obtain
that b+ sa < b+ sb for all s € N. Then, for any n € N, we get that

(k+1+n)a<ka+ (I+n)b=lka+1b+nb<[kb+ b +nb=(k+ 1+ n)b,

which shows that a <, b, as desired. O

DEFINITION 5.6.5. Let M be a positively pre-ordered monoid. We say that M
is preminimally ordered if for all elements a, b, x,y € M, we have that a+x < b+ =z
and z <y imply that a +y < b+ y.

We say that M is simple if for all elements a,b € M with b nonzero, we have
that a oc b, that is, there exists n € N such that a < nb.

An element a in M is finite if a < a + x for every nonzero element z € M. We
say that M is stably finite if each of its elements is finite.

REMARKS 5.6.6. (1) The notion of being ‘preminimally ordered’ was introduced
in [Weh94, Definition 1.2]. This concept is closely related to what has been called
‘well-behaved’ and ‘strictly well-behaved’ in [Bla90, Definition 2.2.1].
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(2) Let M be a positively pre-ordered monoid. If M is cancellative, then it is
stably finite. Indeed, given two elements a and x in M we always have a < a + z
and if @ = a + x then cancellation implies that = = 0.

(3) Let M be a conical monoid equipped with its algebraic pre-order. Then M
is a positively pre-ordered monoid. If M is stably finite, then its algebraic pre-order
is antisymmetric and hence M, with its algebraic order, becomes a partially ordered
monoid.

(4) The notions of simplicity and stable finiteness have already been defined for
Cu-semigroups, see Paragraph 5.2.2 and Definition 5.1.11. However, we warn the
reader that for a Cu-semigroup S, theses notions do not coincide when considering
S as a positively pre-ordered monoid. For instance, a nonzero Cu-semigroup always
contains elements that are not finite. Moreover, a nonzero, simple Cu-semigroup
is not simple as positively ordered monoid, since for a nonzero element a € S we
need not have oo o« a, but only co oc* a.

One can, however, obtain a close connection as follows. Given a Cu-semigroup
S, consider

So={xeS | <7 for some & € S}.
Then S is simple (resp. stably finite) as a Cu-semigroup if and only if Sy is simple
(resp. stably finite) as a positively ordered monoid.

The next result shows that for Cu-semigroups, the axiom (O5) of almost alge-
braic order implies a suitable version of preminimality:

LEMMA 5.6.7. Let S be a Cu-semigroup satisfying (05), and let a,b,x,y € S.
Ifa+x<b+axandx <y, thena+y <b+y.

PROOF. Let a,b,z and y be as in the statement. Choose an element z’ € S
such that 2’ < z and a + x < b+ 2’. Applying (O5) to the inequality 2’ < = <y,
there exists d € S such that 2’ +d <y <z +d. Then

a+y<a+tz+d<b+a'+d<b+y,
as desired. O

PROPOSITION 5.6.8. (1) Let M be a preminimal positively ordered monoid, and
leta,b,xe M. Ifa+x <b+z and x < a,b, then a <, b.

(2) Let S be a Cu-semigroup satisfying (05), and let a,b,x € S. Ifa+x < b+x
and x oc* a,b, then a <, b.

ProOF. To show (2), let S be as in the statement, and let a,b,z € S satisfy
a+x < b+xand x o* a,b. Choose an element 2’ € S such that 2/ < z and
a+z<<b+a'. Then

at+a' <atz<b+a
Moreover, we have x’ o a, b, whence there are k,l € N such that x < ka and x < Ib.
By Lemma 5.6.7, we obtain that

a+ka<b+ka, b+1b<b+1b.

Then, by Lemma 5.6.4, it follows that @ <, b. The proof of (1) is similar (and
easier). O

The following result should be compared to [Bla90, Theorem 2.2.6].

COROLLARY 5.6.9. (1) Let M be a simple, stably finite, preminimal positively
ordered monoid, and let a,b,x € M. Ifa+x < b+, then a <, b.

(2) Let S be a simple, stably finite Cu-semigroup satisfying (O5), and let
a,byr € S. Ifa+xz <K<b+2x, thena <, b.
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PROOF. The argument for both statements is analogous. So let the elements
a,b and x be as in the statements. The conclusion is clearly true if a is zero.

So assume that a is nonzero. Then, using stable finiteness in both cases, we get
that b cannot be zero. Thus, we may assume that both a and b are nonzero. By
simplicity, this implies that 2 o a,b or x oc* a, b, respectively. Then, the conclusion
follows from Proposition 5.6.8. a

Recall from Definition 4.1 that a Cu-semigroup S is weakly cancellative if a +
x < b+ x implies a < b, for any a,b,x € S. It follows from the previous result that
S is weakly cancellative whenever it is simple, stably finite, nearly unperforated and
satisfies (O5). We remark that a simple, almost unperforated Cu-semigroup need
not be weakly cancellative, see Chapter 9(8). See also Chapter 9(9) where we ask
if this phenomenon is also possible for Cuntz semigroups of (simple) C*-algebras.

By Proposition 5.6.3, near unperforation implies almost unperforation in gen-
eral. The following result provides a converse.

THEOREM 5.6.10. Let S be a simple, stably finite Cu-semigroup satisfying (05).
Then S is nearly unperforated if and only if S is weakly cancellative and almost
unperforated.

PRrROOF. It remains to check the ‘if’ part of the statement. So assume S is
weakly cancellative and almost unperforated. It is clear that weak cancellation
implies that S is stably finite. Let a,b € S satisfy a <, b. By Proposition 5.3.16,
an element in a simple, stably finite Cu-semigroup satisfying (O5) is either compact
or nonzero and soft. We may therefore distinguish the following three cases.

Case 1: Assume that a is soft. Let o’ € S satisfy ' < a. Since a is soft, it
follows that a’ <4 a and therefore a’ <, b. Using that S is almost unperforated,
we get that @’ < b. Thus, we have shown that o’ < b for every o’ € S satisfying
a’ < a, whence a < b.

Case 2: Assume that b is soft. Since a <, b, there exists n € N such that
na < nb. Note that nb is also soft.

Let a’ € S satisfy @’ < a. Then na’ < nb, and since nb is soft, it follows that
na’ <z nb. This implies that @’ <4 b, and hence o’ < b by almost unperforation.
Again, as this holds for every a’ € S satisfying o’ < a, we get a < b.

Case 3: Assume that a and b are compact. If there is n € N such that na < nb,
then using (O5) for S, there exists a nonzero element = € S such that na +x = nb.
Since S is simple and a is compact, we have that there exists k € N such that
a < kxz. Then

(kn + 1)a < kna + kx = knb,
which shows that a <, b. Since S is almost unperforated, we get that a < b.

In the other case, there exists n € N with na = nb and (n+1)a = (n+1)b. Let
x =na =nb. Then a +x < b+ z. It follows from weak cancellation that a < b.

Thus, in all three cases, it follows that a < b. This shows that S is nearly
unperforated. O

PROPOSITION 5.6.11. Let M be a simple, stably finite, algebraically ordered
monoid. Then M is nearly unperforated if and only if M is cancellative and almost
unperforated.

Proor. It follows from Corollary 5.6.9 that every simple, stably finite, nearly
unperforated, preminimal positively ordered monoid is cancellative. Moreover, by
Proposition 5.6.3, near unperforation implies almost unperforation. This shows the
‘only if” part of the statement.

For the converse, assume that M is a cancellative, almost unperforated, simple,
algebraically ordered monoid. Let a,b € M satisfy a <, b. If there is n € N such
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that na < nb, then since M is algebraically ordered, there is a nonzero element
x € M such that na + x = nb. As in case 3 in the proof of Theorem 5.6.10, this
implies that a < b.

In the other case, there exists n € N with na = nb and (n+1)a = (n+1)b. By
cancellation, it follows that a < b, as desired. O

PROPOSITION 5.6.12. Let S be a Cu-semigroup satisfying (05). Assume S is
algebraic, almost unperforated and weakly cancellative. Then S is nearly unperfo-
rated.

PROOF. Let S be as in the statement. To show that S is nearly unperforated,
let a,b € S satisfy a <, b. Since S is algebraic, we may assume without loss
of generality that ¢ and b are compact. Choose n € N such that na < nb and
(n+1)a < (n+ 1)b. Since S satisfies (O5), there exist z,y € S such that

na+x=nb, (n+1la+y=(n+1)b

Multiplying the first equation by (n + 1), and multiplying the second equation by
n, we obtain that

nn+1la+ n+ 1)z =nn+1)b, n(n+1)a+ny=n(n+1)b.
Using that b is compact and that S is weakly cancellative, it follows that
(n+ 1)z = ny.

Then, since S is almost unperforated, we get that x < y. Using this at the second
step, we get that

a+nb=a+na+z<a+na+y=>b+nb.

Then, using that b is compact and that S has weak cancellation, it follows that
a < b, as desired. O

PROBLEM 5.6.13. Let S be an almost unperforated Cu-semigroup. Which con-
ditions are necessary and sufficient for S to be nearly unperforated? In particular,
is it sufficient to assume that S satisfies weak cancellation and (O5)?

Concerning the second part of this problem, let S be an almost unperforated,
weakly cancellative Cu-semigroup satisfying (O5). Then S is nearly unperforated
if we additionally assume that S is simple or algebraic, see Theorem 5.6.10 and
Proposition 5.6.12.

Let us draw some conclusions for Cuntz semigroups of C*-algebras.

COROLLARY 5.6.14. Let A be a C*-algebra with stable rank one. Assume that A
is either simple or has real rank zero. Then Cu(A) is nearly unperforated whenever
it is almost unperforated.

Proor. By [RW10, Theorem 4.3], Cu(A) has weak cancellation. If A is sim-
ple, then so is Cu(A), see Corollary 5.1.12. If A has real rank zero, then Cu(A4) is
algebraic.

Then, the statement follows from Theorem 5.6.10 and Proposition 5.6.12 O

COROLLARY 5.6.15. Let A be a Z-stable C*-algebra. Then Cu(A) is nearly
unperforated if A is simple or has real rank zero and stable rank one.

PROOF. Since A is Z-stable, it follows from [R@r04, Theorem 4.5] that Cu(A)
is almost unperforated.

We first assume that A is simple. Without loss of generality, we have A # {0}.
Since A is Z-stable, we can distinguish two cases. If A is purely infinite, then
Cu(A) = {0,000}, which is nearly unperforated. In the other case, we have that A
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is stably finite, which by [R@r04, Theorem 6.7] implies that A has stable rank one.
Then it follows from Corollary 5.6.14 that Cu(A) is nearly unperforated.

If A has real rank zero and stable rank one, then it follows also directly from
Corollary 5.6.14 that Cu(A) is nearly unperforated. O

LEMMA 5.6.16. (1) Let S be a nearly unperforated PreW -semigroup. Then, its
Cu-completion v(S) is nearly unperforated.

(2) Let (S, ¢i) be an inductive system of nearly unperforated semigroups in
PoM, PreW or Cu. Then S = lim; S; is nearly unperforated.

PRrROOF. Let us show (1). Given s € S, we denote by 5 its image in v(5). Let
a,b € y(S) such that 2a < 2b and 3a < 3b. By properties of the Cu-completion,
see Theorem 3.1.8, we can choose rapidly increasing sequences (a,, ), and (by,), in
S such that a = sup,, @, and b = sup,, by,.

Fix n € N. Then

2a,, < 2b=sup2by, 3a, < 3b=sup 3by.
k k

Thus, we can find indices k and [ such that 2a, < 2b; and 3@, < 3b;. Set m =
max{k,!} + 1. Then

2y, < 2bm,  3dn < 3bm.

By properties of the Cu-completion, this implies that 2a, < 2b,, and 3a, < 3b,,.
Using that S is nearly unperforated, we obtain that a,, < b,,, and thus @, < b, < b.
It follows that a < b, as desired.

Next, let us show (2). It is straightforward to check the statement for limits
in PoM. Using that the limit in PreW has the same order structure as the limit in
PoM, the result follows for limits in PreW. Recall that Corollary 3.1.11 shows that
the limit of an inductive system in Cu is the Cu-completion of the limit of the same
system considered in PreW. Therefore, the statement for Cu follows from (1). O

For the next result, recall that we say that a C*-algebra A has no K;-obstruc-
tions, if it has stable rank one and if K7 () = {0} for any closed two-sided ideals I
of A, see [ABP13] and [ABPP14].

PROPOSITION 5.6.17. Let A be a separable Z-stable C*-algebra that has no
K -obstructions. Then Cu(A) is nearly unperforated.

Proor. Recall from [RW10], that Z is isomorphic to a sequential inductive
limit where each algebra in the inductive system is equal to the fixed generalized
dimension drop algebra

22007300 = {f c C([O, 1], Mgoo ®M3<x>) ‘ f(O) S Mro ®]., f(l) € 1®M3w} .
Since A is Z-stable we have A = hﬂk A® Zye 3. By Corollary 3.2.9, we obtain
that

Cu(4) = hglCu(A@ngﬁm).
k

Therefore, by Lemma 5.6.16, it is enough to prove that Cu(A® Zse 3 ) is nearly
unperforated. We remark that so far the argument applies for every C*-algebra A.

We identify A® Zye 300 with the C*-algebra of continuous maps f from [0, 1]
to A®Q Mo~ @ M3 such that

F(0) € A®Mo~®1, f(1) € A®1®Mjw.
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We use evy and ev; to denote the evaluation at the endpoints 0 and 1 of [0, 1],
respectively. Then, we have a commutative pullback diagram:

A®Zyoo goo — — — — — = — > AQ Moo @1 B AR1R® Msoo

|
| L3,L2

evg D evy

Y
C([0,1], A® Mos @ M3 ) —= A® Moo @ M3ec & AR Moo ® M3es,
where t3 and 1o denote the natural inclusion maps
L3 A@Mgoc@l —>A®Mgoo®M3w, Lo A®1®M300 —)A®M200®M30o.

We identify Mgoo with Maco @ M3, and AQ Mo @1 withA® Mo, and AQ1RQ M3zeo
with A® M3~. Then, since A has no Kj-obstructions, we can apply [APS11,
Theorem 3.5] to compute Cu(A® Zz~ 30 ) as the pullback semigroup

evg Devy

Cu(A@Zgoo,goo) - = — — > Cu(A@Mzoo) @ Cu(A@MgoC)
\
[ lcu(ts)vcu(m)
\
Cu(C([0,1], A® Mo ) 2L Cu(A® Mg ) & Cu(A® Mg ).
Given a Cu-semigroup S, we denote by Lsc([0, 1],.5) the semigroup of lower-semi-
continuous functions from [0,1] to S with pointwise order and addition. Again,
using that A has no Kj-obstructions, by [APS11, Corollary 2.7] we have that

Cu(C([0,1], A® M) = Lse([0, 1], Cu(A® Mg=)),
Now, let a,b € Cu(A ® Zz 3 ) satisfy a <, b. Using the pullback description
above, we can choose f, g € Lsc(]0, 1], Cu(A®Mpg=)), and z,u € Cu(A® M), and
y,v € Cu(A® M3 ) such that
fO) ==z, f)=y, 9(0)=u, g(1)=0v,
and so that a, b are identified as

a:(fwrvy)v b:(g’uvv)'
It follows that f <, g, and = <, u, and y <, v. By Corollary 7.4.15, the Cuntz
semigroups Cu(C([0,1], AQ Mg )), Cu(A®Ms~) and Cu(A®Msz- ) are each nearly
unperforated. Therefore, we obtain that f < g, and x < u, and y < v. Hence a < b,
thus completing the proof. ([l

Inspired by the previous results, we make the following conjecture.

CONJECTURE 5.6.18. Let A be a Z-stable C*-algebra. Then Cu(A) is nearly
unperforated.

5.6.19. We have verified Conjecture 5.6.18 for several classes of C*-algebras.
Let A be a Z-stable C*-algebra. Then Cu(A) is nearly unperforated in the following
cases:

(1) If A is simple, see Corollary 5.6.15.
) If A has real rank zero and stable rank one, see Corollary 5.6.15.
) If Ais UHF-stable, see Corollary 7.4.15.
) If A is purely infinite (not necessarily simple), see Corollary 7.2.9.
) If A has no K;-obstructions, see Proposition 5.6.17.






CHAPTER 6

Bimorphisms and tensor products

In this chapter, we first present a framework for a theory of tensor products
in enriched categories. We focus on the categories PreW and Cu, which are both
enriched over the category PoM, see Proposition 6.2.2.

In Section 6.2, we construct tensor products in PreW. Given two PreW-
semigroups S and T', we consider the tensor product S ®pom T’ of the underlying
positively ordered monoids as constructed in Section B.2, and we equip it with a
natural auxiliary relation <, see Definition 6.2.9. We show that

S ®@prew T = (S ®pom T, <)

is a PreW-semigroup that has the universal properties of a tensor product, see
Theorem 6.2.10. We then show that this gives PreW the structure of a symmetric,
monoidal category, see Paragraph 6.2.11.

In Section 6.3, we show the existence of tensor products in Cu by combining
the result for PreW with the fact that Cu is a reflective subcategory of PreW. More
precisely, given two Cu-semigroups S and 7', their tensor product in Cu is given as

S Qcu T= 'Y(S QPrew T)a

which is the Cu-completion of S ®pyew T', see Theorem 6.3.3.
Given two C*-algebras A and B, there is a natural Cu-morphism

Ta,B: Cu(A) ®cy Cu(B) = Cu(A Qmax B).

It is a natural to ask when this map is an isomorphism. In Proposition 6.4.13, we
provide a positive answer if one of the C*-algebras is an AF-algebra. The crucial
observation is that the tensor product in PreW and Cu are continuous functors in
each variable, see Proposition 6.4.1.

In Proposition 7.2.3, we show that for every Cu-semigroup .S, the tensor product
of S with {0, 00} is naturally isomorphic to Lat¢(S), the Cu-semigroup of singly-
generated ideals of S as considered in Proposition 5.1.7. It follows that for every
two Cu-semigroups S and T, there is a natural isomorphism

Lats(S ®@cy T') = Lats(S) ®cu Late(T).

In Corollary 7.2.13, we apply these results for the Cuntz semigroup of a separable
C*-algebra A and obtain that there are natural isomorphisms

Cu(A® Oy) = Lat(A) = Cu(A) Qcy {0, 00} = Cu(4) ®cy Cu(0s),

where Oy denotes the Cuntz algebra generated by two isometries with range pro-
jections adding up to the unit. The same result holds when Os is replaced by any
simple, purely infinite C*-algebra.

6.1. Tensor product as representing object

In this section, we give a general categorial setup for tensor product, which is in
part inspired by the approach in [BN76]. When constructing the tensor product of
objects with a certain structure, the notion of a bimorphism is a crucial ingredient.

75
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In some categories, a bimorphism between three objects X, Y and Z is simply a
map X XY — Z that is a morphism in each variable; for instance in the categories
Mon and PoM, see Paragraphs B.1.1 and B.2.1. In other cases, a bimorphism is a
map X XY — Z that is only required to be a ‘generalized’ morphism in each variable
but additionally has to satisfy a condition taking both variables into account; for
instance in the category of C*-algebras C*, see Example 6.1.3, and the categories
PreW and Cu, see Definitions 6.2.3 and 6.3.1, see also Lemmas 6.2.4 and 6.3.2.

With the notion of bimorphisms at hand, the tensor product of two objects X
and Y can often be defined as an object that represents the functor Z — Bimor(X x
Y, Z). This means, the tensor product X ® Y satisfies:

Bimor(X x Y, Z) & Mor(X ® Y, Z).

Of course, whether the functor Bimor(X x Y,_) is representable or not depends
heavily on the considered categories and the objects X and Y.

If the (bi)morphism sets carry additional structure, we want that it is preserved
by the above identification. This can be made precise using the language of enriched
categories and functors. The basic theory of monoidal and enriched categories can
be found in Appendix A. For details we refer the reader to [Mac71] and [Kel05].

6.1.1 (Representable functor). Let C be a category that is enriched over the
closed, symmetric, monoidal category V. Each object X in C defines a V-functor

C(X,.):C—V

as follows: An object Z in C is sent to the object C(X,Z) in V. Further, given
objects Z and Z’ in C, the V-morphism

C(X, Vg2 :C(Z,7") = C(X, Z2)X2)

is the one corresponding to Mx, z 7/ (defining the composition of morphisms in C)
under the identification

V (C(Z, 7' @ C(X, Z),C(X, Z’)) >~y (C(Z, 7', C(X, Z’)C<X’Z)) .
The V-functor C(X,_) is called the representable functor corresponding to X.

6.1.2 (Bimorphism functor). Let C be a category that is enriched over the
closed, symmetric, monoidal category V. Given objects X and Y in C, we assume
that there is a V-functor

BiC(X xY,.): C— V.

This means that for each object Z in C there is an object BiC(X x Y, Z) in V,
representing the bimorphisms from X x Y to Z. Moreover, for each pair of objects
Z and Z' in C, there is a V-morphism

BiC(X x Y, )12 C(Z,2') = BiC(X x Y, Z/)BIC(Xx¥:2),

We remark that the notation ‘X x Y’ appearing in the bimorphism functor
does not refer to the product of the objects X and Y. In general, we do not need
to assume that the considered category has products. The notation is chosen since
for the concrete cases considered in this paper, a bimorphism is a map from the
Cartesian product of the underlying sets of X and Y to the underlying set of Z.

ExXAMPLE 6.1.3. Let C be one of the concrete categories considered in this
paper (e.g. Cu), and let X,Y and Z be objects in C. Then X,Y and Z are sets
with additional structure, and a C-morphism from X to Z is just a map X — Z
preserving this structure. Similarly, a C-bimorphism from X x Y to Z is just a map
X XY — Z satisfying certain conditions.
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Consider for example the category C* of C*-algebras, which is enriched over
CGHTop, see Examples A.0.7. Given C*-algebras A, B and C, the set of *-homo-
morphisms from A to B has a natural topology, giving C*(A, B) the structure of a
compactly generated, Hausdorff space. The representable functor

C*(A,_): C* — CGHTop,

sends a C*-algebra C' to the space C*(A,C) in CGHTop, and for each pair of
C*-algebras, C and C’, the CGHTop-morphism

C* (A, oo CHC,C") — C* (A, " AO)
is given by
C*(A,)eciamp—aoyl. (aeC*(C,C"),peC*(ACQC))

Given three C*-algebras A, B and C, a C*-bimorphism from A x B to C'is a
map ¢: A x B — C satisfying the following conditions:

(i) The map ¢ is bounded and linear in each variable.
(ii) We have p(a*,b*) = ¢(a,b)* for each a € A and b € B.
(iii) We have ¢(ajag, b1bs) = p(a1,b1)p(asz, be) for each aj,as € A and by,bs € B.

We equip the set BiC*(A x B, C) of all C*-bimorphisms from A x B to C' with the
topology of point-norm convergence.
Then, given two C*-algebras A and B, we define the bimorphism functor

BiC*(A x B,_): C* — CGHTop

as follows: A C*-algebra C is sent to the space BiC*(A x B, (') in CGHTop, and
for each pair of C*-algebras, C' and C’, the CGHTop-morphism

BiC*(A x B, _)¢.cr: C*(C,C") = BiC*(A x B, ")BiC"(AxB.C)
is given by
BiC*(Ax B,_,)c,cr: a— [p— aoyl, (ae€C*(C,C"),¢ e BiC*(Ax B,C))

6.1.4. Let C be a category that is enriched over the closed, symmetric, monoidal
category V. Assume that for each pair of objects X and Y in C, there is a bimor-
phism V-functor BiC(X x Y, _). Let @ be an object in C, and let ¢ be an element
of BiC(X x Y, Q). Let us show that this induces a V-natural transformation

®: C(Q,-) = BiC(X x@Q,-).
Given an object Z in C, we need to define an element
dy € BiC(X x Y, 2)¢(@2),
Elements in BiC(X x Y, Z)¢(@%) correspond naturally to elements in the set
V(C(Q,2),BiC(X xY,Z)).

Thus, we can think of &z as a V-morphism from C(Q, Z) to BiC(X x Y,Z). To
define @z, we use the V-morphism defining the bimorphism functor

BiC(X x Y, )g.z: C(Q,Z) — BiC(X x Y, 2)B¢(X>x¥:Q)
which naturally corresponds to a V-morphism
Go.z:C(Q,2) ®BiC(X xY,Q) — BiC(X x Y, Z).
Then, & is the V-morphism given as the following composition:

CQ.2) 5 ¢(Q.2) 21 22% ¢(Q,2) @ BiC(X x Y, Q) 22% BiC(X x Y, Z).
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DEFINITION 6.1.5. With the notation from Paragraph 6.1.4, we say that the
pair (Q,¢) is a tensor product of X and Y in the enriched category C, if @ is a
natural isomorphism, that is, if

$:C(Q,7Z) - BiC(X xY,2)
is a V-isomorphism for each object Z in C.

REMARK 6.1.6. We retain the notation from Paragraph 6.1.4. Recall that a
representation of a V-functor F': C — V is an object @ in C together with a natural
isomorphism ® from the representable functor C(Q, -) to F'. Thus, a tensor product
(@, ) for X and Y induces a representation (@, ®) of the V-functor BiC(X x Y, _).

Conversely, assume that the V-functor BiC(X x Y,_) is represented by the
object () and the natural isomorphism ®. Then ® is a V-isomorphism

Do C(Q,Q) = BiC(X x Y, Q).
Under this isomorphism, the identity element idg € C(Q,Q) corresponds to an
element ¢ € BiC(X x Y, Q). It is straightforward to check that (Q, ) induces the
V-natural isomorphism (@, ®). Thus, (@, ¢) is a tensor product of X and Y.

To summarize, we have a natural correspondence between the following two
classes:

(1) Concrete tensor products (@, ¢) of X and Y, where @ is an object in C, and
where ¢ is an element in BiC(X x Y, Q).
(2) Representations of the V-functor BiC(X x Y, _).
Any two tensor products of X and Y are isomorphic, which justifies to write X QY.

We also write X ®¢ Y if we need to clarify the category where the tensor product
is taken.

ExAMPLE 6.1.7. Consider the category C* of C*-algebras, which is enriched
over CGHTop. Let A and B be two C*-algebras and consider the C*-bimorphism
functor

BiC*(A x B,_): C* — CGHTop
from Example 6.1.3. Let A ®n.x B denote the maximal tensor product of A and
B. We refer the reader to [Bla06, § I1.9] for an introduction and details of the rich
theory of tensor products of C*-algebras. Consider the map

vap: AXB = A®max B, (a,b)—a®b. (a€ AbeB)

It is easy to see that ¢ 4 p is a C*-bimorphism. For each C*-algebra C| the assign-
ment

C*(A Qmax B,C) = BiC* (A x B,C), T+ Towa g,
is a homeomorphism, that is, an isomorphism in CGHTop. This means that the
maximal tensor product of C*-algebras represents the C*-bimorphism functor.

6.1.8. Let C be a category that is enriched over the closed, symmetric, monoidal
category V. Assume that C has a bimorphism functor that is also functorial in the
first two variables. This means, there is a V-multifunctor

BiC(- x _,-): CP xCP xC — V.

Let us also assume that for each pair of objects X and Y in C the tensor product
exists, that is, there is an object X ® Y in C and a universal bimorphism

exy EBIC(X xY, X®Y).
The functoriality of BiC(_ x _, _) in the first two variables induces a V-bifunctor

®:CxC—=C.
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A pair of objects X and Y in C is sent to the object X ® Y in C. Given objects
X, X’)Y and Y’ in C, let us see how the required V-morphism

CX,X')xCY,)Y)—=C XY, X' @Y
is obtained. We consider the composition of V-morphisms in the following dia-
gram, where the first morphism is obtained using that BiC(- x _, X’ ® Y') is a
(contravariant) V-bifunctor, and where the second morphism is obtained by apply-
ing the V-morphism px/y/: I — BiC(X' x Y/, X’ ® Y’) in the first variable to
the internal hom-bifunctor, and where the last isomorphism is obtained using that
X ®Y represents the functor BiC(X x Y, _):

C(X,X") x C(Y,Y') = BiC(X x Y, X' @ Y/)BiC(X XY .X'@y")
- BiC(X xY, X' @Y')!
2BiC(X xY, X' ®Y')
2C(XY, X' @Y').

6.2. The tensor product in PreW

6.2.1. Let us show that PreW is enriched over the closed, monoidal category
PoM. Given PreW-semigroups S and 7', recall that we denote by W(.S,T") the set of
W-morphisms from S to T. Equipped with pointwise order and addition, W(S,T)
has a natural structure as a positively ordered monoid.

Given three PreW-semigroups S, T and R, it is easy to see that the composition
of morphisms

CS,T,R:W(TvR)XW(SvT)_)W(SvR)v (gvf)Hgof’

is a PoM-bimorphism. By Proposition B.2.5, Cs, 7 r factors through the PoM-tensor
product. This means that there exists a PoM-morphism

Msr.r: W(T, R) ®@pom W(S,T) — W(S, R)

such that go f = Mg r(g® f) for every f € W(S,T) and g € W(T, R).

One can prove that this structure defines an enrichment of PreW over PoM.
Since the categories W and Cu are full subcategories of PreW, they inherit the
enrichment over PoM.

PROPOSITION 6.2.2. The categories PreW, W and Cu are enriched over PoM.
Moreover, the two reflection functors p: PreW — W from Paragraph 2.1.4 and
~v: PreW — Cu from Theorem 3.1.10 are PoM-functors.

Proor. We have already observed in Paragraph 6.2.1 that the three categories
are enriched over PoM. Let us show that the reflection functor +: PreW — Cu is
compatible with the enrichment. So let S and T" be PreW-semigroups. We need to
define a PoM-morphism

BEN AN W(Sa T) - CU(V(S)7’7(T))
Let ar: T — ~(T) be the Cu-completion of T, see Definition 3.1.7. Given f in
W(S,T), we consider the composition ar o f: S — ~(T). Using this assignment at
the first step, and using Theorem 3.1.8 to obtain the natural identification at the
second step, we obtain the following composition:
farof ~
W(S,T) ==55 W(S,4(T)) = Cu(y(S), /(1)

It is easy to see that these maps respect the PoM-structure of the involved morphism
sets. It is then straightforward to check that v is a PoM-functor.
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Analogously, one shows that the reflection functor p preserves the enrichment.
d

DEFINITION 6.2.3. Let S, T and R be PreW-semigroups, and let f: SxT — R
be a PoM-bimorphism. We say that f is a W-bimorphism if it satisfies the following
two conditions:

(i) The map f is continuous in the following sense: For every a € S, b € T and
r € R satisfying r < f(a,b), there exist a’ € S and b € T such that a’ < q,
b <band r < f(a,b).
(i) Ifa’ <aand b <0, then f(a’,b') < f(a,b), for any a’,a € S and ', b€ T.
We denote the set of all W-bimorphisms by BiW (S x T, R).
If the PoM-bimorphism f is only required to satisfy condition (i) then we call

it a generalized W-bimorphism. We denote the collection of all generalized W-
bimorphisms by BiW[S x T\, R].

LEMMA 6.2.4. Let S, T and R be PreW-semigroups, and let f: S xT — R be
a PoM-bimorphism. Then, the following conditions are equivalent:

(1) The map f is a generalized W -bimorphism.
(2) In each variable, f is a generalized W -morphism.

PrOOF. To show that (1) implies (2), fix an element b € T and consider the

map
S— R, a— f(a,b).

This map is clearly a PoM-morphism. It remains to show that it is continuous. So
let a € S and r € R satisfy r < f(a,b). We need to find ¢’ € S such that ¢’ < a
and r < f(a,b).

By assumption, there exist a’ € S and b’ € T such that

a<a, b =<b r<fdl).

Since f(a’,b') < f(a’,b), we see that a’ has the desired properties. The analogous
result holds in the second variable.

To show that (2) implies (1), let a € S, b € T and r € R satisfy r < f(a,b).
Since R satisfies (W1), there exists 7 € R such that

r <7< f(a,b).

Since f is continuous in the first variable, there exists a’ € S such that ¢’ < a
and 7 < f(a/,b). It follows that » < f(a’,b). Using that f is continuous in the
second variable, we obtain an element b’ € T such that ¥’ < b and r < f(d/,b), as
desired. g

6.2.5. Let S and T be PreW-semigroups. Let us show that the W-bimorphisms
define a PoM-functor

BiW(S x T,_): PreW — PoM.

Given a PreW-semigroup R, the set BiW(S x T, R) has a natural structure of a
positively ordered monoid when endowed with pointwise addition and order. This
defines an assignment from the objects in PreW to the objects in PoM. Moreover,
given a pair of PreW-semigroups R and R, we define a PoM-morphism

BiW(S x T,_)g.a: W(R, R') = PoM (BiW(S x T, R), BiW(S x T, R')),
as follows: A W-morphism f € W(R, R') is sent to the PoM-morphism
BiW(S x T, R) — BiW(S x T, R'), 7+ for. (r€BiW(S xT,R))

It is straightforward to check that this defines a PoM-functor. In Theorem 6.2.10,
we show that the bimorphism functor is representable.
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6.2.6 (Auxiliary relation on (bi)morphism sets). Let S, T and R be PreW-
semigroups. We define an auxiliary relation < on the set W[S,T] of generalized
W-morphisms as follows: For f,g € W[S,T], we set f < g if and only if f(a’) < g(a)
whenever two elements o', a € S satisfy o’ < a.

Similarly, we define an auxiliary relation < on the set BIW[S x T', R] of general-
ized W-bimorphisms as follows: For f,g € BiW[S x T, R], we set f < ¢ if and only
if f(a’,0') < f(a,b) whenever four elements a’,a € S and b',b € T satisfy a’ < a
and b’ < b. We have that

W(S,T)={f e W[ST] | f=<[},

and

BiW(S x T,R) = {f € BIWW[S x T, R] | f < f}.
In this way, we can think of the W-(bi)morphisms as the ‘compact’ generalized
W-(bi)morphisms.

It is clear that the auxiliary relation < on WIS, T] satisfies (W3). In some
cases, < also satisfies (W1) and (W4), but this seems not to be the case in general.
Thus, we do not claim that the pair (W[S,T], <) is a PreW-semigroup. The same
remark applies to (BiW[S x T, R], <).

The following Definition 6.2.7 and Lemma 6.2.8 are rather technical. We en-
courage the reader not interested in all details to skip ahead to Definition 6.2.9,
where we define a natural auxiliary relation on the PoM-tensor product S ®ponm T’
of two PreW-semigroups S and T'. The idea is that for simple tensors in S ®pon T’
we have ¢’ ® b/ < a ® b whenever a’ < a and b’ < b.

For the next definition, we need to recall some notation for the construction of
tensor products in PoM from Proposition B.2.5. Let S and T' be PoM-semigroups.
We denote by S* the submonoid of S consisting of nonzero elements.

On the free abelian monoid F' = N[S* x T*], we consider the congruence re-
lation 2 from Paragraph B.1.2. Then S ®mon T = F/2 is the tensor product of
the underlying monoids. Further, recall the binary relation <’ on F from Para-
graph B.2.4. Let < be the relation on F generated by = and <’. Then < is a
pre-order on F'.

Recall from Paragraph B.1.2 that for a pair of elements ¢ € S* and b € T*,
we write a ® b for the generator in F' indexed by (a,b). Then, every element f € F
can be written as a finite sum f = Ziel a; ®b; for some finite index set I and pairs
(a:,b;) € S* xT* for i € I. Note that we do not require that a; and a; are distinct
for different indices i and j.

DEFINITION 6.2.7. Let S and T be PreW-semigroups. We define a relation <
on the free abelian monoid F' = N[S* x T*] as follows:

For f and g = Zje] a; ®b; in F' we set f < g if and only if there exist a subset
J' C J and elements a; € S* and b; € T for j € J' such that

f< Za;-@b;-, and  aj < a;, b < b; for each j € J'.
jeJ’
LEMMA 6.2.8. Let S and T be PreW-semigroups. Then, the relation < from
Definition 6.2.7 satisfies the following statements:

(1) If f<g, then f <g, for any f,g € F.

(2) If /' < f<g, then f'<g, for any f',f,g € F.

(3) If f<g<g', then f<g', forany f,g,g' € F.

(4) We have that 0 < f, for any f € F.

(5) For each g in F, there exists a sequence (gx)r in F such that g < gky1 for
each k and such that for any f € F satisfying f < g there exists an index k
such that f < gy.
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(6) If fi <g1 and f2 <ga, then fi+ fo < g1 + g, for any f1, f2,91,92 € F.
(7) If f,g1 and g2 in F satisfy f < g1 + g2, then there exist g) and g4 in F such
that f < g} + g5 and g1 < g1 and g5 < ga.
PROOF. Statements (1), (2), (4) and (6) are straightforward to show. To prove
(7), let f,g1,92 € F satisfy f < g1 + g2. Then there exist finite disjoint index sets
I, and I, and elements a; € S* and b; € T for ¢ € I U I such that

g1 = Z%’@bi, 92:Zai®bi~
ich icly

Since f < g1+ go, there exist a subset I’ C I; Ul and elements a} € S* and b} € T
for ¢ € I' such that

f<> ajob, and a <a;, b <b; for eachi € I'.
iel’

gi= > aob, g= > dob.

iehnI’ i€lNI’
Then it is easy to check that

Set

f<di+dh, gi<g, 95 <go,

as desired.

Next, let us show (3). So let f,g,¢’ € F satisfy f < g < ¢g’. Since the relation
< is the transitive closure of the relation generated by —, < and <’, it is enough
to consider the cases where ¢ — ¢’, or g + ¢/, or ¢ <’ ¢’. We may assume that
fyg and ¢ are nonzero. Using statements (6) and (7), it is furthermore enough to
consider the following three cases:

Case 1: Assume that g —° ¢’. This means that there exist elements a € S*
and b € T*, and nonempty finite index sets J and K, and elements a; € S* for
j € J, and elements by € T for k € K such that

a:Zaj7 b= Zb;€7 g=a®b, ¢ = Z aj ® by.
jeJ keK jedkeK
Since f < g, there exist elements a’ € S* and V' € T such that
f<dob, d<a V<b.
Using that S satisfies (W4) and that
a <a= Z aj,
jeJ
we obtain elements a; € S for j € J such that
a < Za;, and a;- < a; for each j € J.
JjeJ
Similarly, we obtain elements b), € T for k € K such that
b < Zb;, and  b) < by for each k € K.
keK

Set J'={j€J | aj#0}and K’ ={k € K | b} #0}. Then it is easy to check
that
f< > dob.
jeJ’ keK’
This shows that f < ¢/, as desired.
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Case 2: Assume that g%«¢’. This means that there exist elements a € S* and
b € T*, and nonempty finite index sets J and K, and elements a; € S* for j € J,
and elements b, € T for k € K such that

CL:Z%A b= Zbk, g= Z aj by, g =a®b
jeJ keK jeJkeK
Since f < g, there exist a subset L C J x K and elements a}; € S* and b}, € T
for (j, k) € L such that
f< Z ajp Oy, and aly <ag, b, < by for each (j,k) € L.

(k)EL
For j% € J and k* € K set

Je={jeJ | (k") el}, Kp={keK | (j%k) eL}.

Moreover, set
J={jfed | Kp#0}, K ={keK | Ju#0}.
Let j* € J'. Then for each k € K;; we have that
g < e

Using that S satisfies (W1), there exists an element a;u € S such that a;u < a;
and such that a;.u e S a;n for each k € K;:. Note that a;.u is necessarily nonzero.

Similarly, we obtain for each k* € K’ an element b, € T such that b}, < bys and
such that b;kﬁ < by, for each j € Jps.
It follows that

f< Y duotius Y aob,

(4,k)eL (J,k)EL
Set
T A
jeJ kEK'

Since S and T satisfy (W3), we get @’ < a and b’ < b. Then

f< Z a; by < Z ;O =d O <avb=¢,
(4.k)eL (J.k)EL X J’
which shows that f < ¢’, as desired.

Case 3: Assume that g <0 ¢’. This means that there exist elements a,a € S*
and b,b € T* such that

a<a, b<5, g=a®b, g'z&@i).

Since f < g, there exist elements o’ € S* and b’ € T such that
f<dot, d<a V=<b

Since < is an auxiliary relation for S and T, we deduce that o’ < @ and b’ < b.
Therefore, we immediately get that f < ¢, as desired.

Finally, let us prove (5). Solet g =3, ;a; ©b; € F. Given a € S, we write
a™ for the set {x € S | = < a}, and similarly for elements in 7. Since S satisfies
(W1), for each ¢ € I there exists a sequence (a; x)reny C S that is cofinal in a;* and
such that a; 1 < a; k41 for each k. Similarly, for each 7 there exists a <-increasing
sequence (b; ;)reny C T that is cofinal in b . Set

I'={iel | af #{0},b7 # {0}
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For i € I'\ I’ we have a;, = 0 for each k € N or b; ;, = 0 for each k € N. For i € I,
we may assume that a; ; and b; j, are nonzero for each k € N. Then, we set

gk = Z air © b,
iel’
which is an element of F. It is clear that gy < gx11 for each k.

Let f € F satisfy f<g. We need to show that there is n € N such that f < g,.
Since f < g, there exist a subset J C I and elements a; € S* and b;- eT*forjeJ
such that

< Za; ©b;, and a} <a;, b <b; for each j € J.
jeJ
Note that J is necessarily a subset of I’.

Since S and T satisfy (W1), for each j € J there exist indices k(j) and I(j) in

N such that
a5 < ajriy b5 < bjag)-

Set
n =max{k(j),l(j) | j€J}.
Then
FEY aioOb <Y ainObjn <Y i ©bin = gn,
jeJ jeJ il
as desired. O

For the next definition, recall that for PreW-semigroups S and 7', and for an
element f € F = N[S* x T*], we denote the congruence class of f in S ®ponm T =
F/= by [f].

DEFINITION 6.2.9 (Auxiliary relation on S ®pom T'). Let S and T be PreW-
semigroups, and let < be the relation on N[S* x T*] introduced in Definition 6.2.7.

We let < be the binary relation on the tensor product S®pomT of the underlying
positively ordered monoids that is induced by <. That is, for elements z and y in
S®@pomT we set x < y if and only if there exist representatives f and ¢ in N[S* xT*]
such that

z=[f], f<g, lgl=y.
THEOREM 6.2.10. Let S and T be PreW-semigroups. Let
w: SXT — S®pom T,

be the tensor product of the underlying positively ordered monoids, as constructed
in Proposition B.2.5. Then, the relation < on SQpom T from Definition 6.2.9 is an
auziliary relation and (S ®@pom T, <) is a PreW-semigroup, denoted by S Qprow T
Moreover, the map w becomes a W -bimorphism.

Furthermore, for every PreW-semigroup R, the following universal properties
hold:

(1) For every (generalized) W-bimorphism f: S x T — R, there exists a (gener-
alized) W-morphism f: S ®prew T — R such that f = fo w.

(2) We have g1 ow < g2 ow if and only if g1 < g2, for any pair of generalized
W-morphisms g1,92: S Qprew T — R.

(3) We have g1 ow < ga ow if and only if g1 < g2, for any pair of generalized
W-morphisms g1,92: S Qprew T — R.

Thus, for every PreW-semigroup R, we obtain a situation as shown in the com-

mutative diagram below. In the top row, the map w induces an isomorphism of

the sets of generalized W-(bi)morphisms with their structure as positively ordered

monoids and with their additional auziliary relations from Paragraph 6.2.6. When
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restricting to W-(bi)morphisms, as in the bottom row of the diagram, the map w
induces a PoM-isomorphism of respective W -(bi)morphisms sets.

WIS @prew T, R}J% BiW[S x T, R]
U U
W(S ®@prew T, R) — BiW(S x T} R).

In particular, the pair (S Qprew T, w) represents the bimorphism PoM-functor
BiW(S x T,_).

PROOF. Set F = N[§* x T*], and let < be the pre-order on F introduced in
Paragraph B.2.4. Let ~ be the binary relation on F' defined by symmetrizing <,
that is, for f and g in F' we set f ~ ¢ if and only if f < g and g < f. Then ~
is a congruence relation on F' and S ®pom I’ = F/~. For an element f € F, we
denote by [f] the congruence class of f in S ®pom T. Let < be the relation on F
from Definition 6.2.7.

It follows from statements (2) and (3) in Lemma 6.2.8 that < does only depend
on the ~-equivalence class of elements in F. Thus, if z and y are elements in
S ®pom T, then the following are equivalent:

(1) We have & < y in the sense of Definition 6.2.9, that is, there are f, g € F such
that z = [f], y = [g] and f < g.
(2) For each f,g € F satisfying « = [f] and y = [g], we have that f < g.
It follows easily from (1)-(4) in Lemma 6.2.8 that < is an auxiliary relation on
S ®@pom T'. Moreover, statements (5)-(7) in Lemma 6.2.8 imply that (S ®pom T, <)
satisfies (W1), (W3) and (W4), showing that it is a PreW-semigroup, denoted by
S QPrew T.
Let us show that the map

w: SXT — SQprew T,

is a W-bimorphism. It is clear that w is a PoM-bimorphism respecting the aux-
iliary relations. Thus, it remains to show that w is continuous in the sense of
Definition 6.2.3. So let a € S, b € T and = € S Qprew T satisfy z < w(a,b).
We may assume that a,b and x are nonzero. Then f := a ©® b is an element in
F such that w(a,b) = [f]. As explained at the beginning of the proof, it follows
from z < [f] that there exists f' € F such that < [f'] and f’ < f. Therefore,
by definition of the relation < and since x is nonzero, there exist elements a’ € S*
and b € T such that

fi<dot, ad<a V=<0
Then
< [f]<[d 0] =uwld,b),
showing that a’ and b’ have the desired properties to verify the continuity of w.
Let §: PreW — PoM be the forgetful functor, which associates to a PreW-
semigroup X the underlying positively ordered monoid (also denoted by X, by
abusing notation). Every W-morphism is already given as a PoM-morphism of the
underlying positively ordered monoids (satisfying additional properties). Thus, §
is faithful.
Given PreW-semigroups X,Y and Z, the functor § induces maps

Sxv: WX, Y] = PoM(X,Y),
Sxxv.z: BIW[X x Y, Z] - BiPoM(X x Y, Z),
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by mapping a generalized W-(bi)morphism to the same map considered as a PoM-
(bi)morphism. It is clear that §x,y and Fxxy,z are order-embeddings when the
respective (bi)morphism sets are equipped with their natural structure as positively
ordered monoids.

To check the universal properties, let R be a PreW-semigroup. Consider the
map

Qr: PoM(S ®@pom T, R) — BiPoM(S x T, R), f+ fouw.

Since S ®pom T and w have the universal property of a tensor product in PoM, the
map Qg is a isomorphism of the (bi)morphism sets with their structure as objects
in PoM, see Proposition B.2.5. In particular, Qg is an order-embedding.

Since w is also a W-bimorphism, the same assignment maps (generalized) W-
morphisms to (generalized) W-bimorphisms. We denote this map by

®p: WIS @prew T, R] = BIW[S x T, R], f+ fouw.

The situation is shown in the following commutative diagram of PoM-morphisms:
PoM(S @pon T, R) —o-> BiPoM(S x T, R)
SseoT,R SsxT,R
WIS @prew T, R] —2 = BiW[S x T, R]

Since §sgr,r and Fgx7,r are order-embeddings, and since the map Qg is a PoM-
isomorphism, it follows that ®g is an order-embedding. This shows the universal
property (2).
For (1), we need to show that ®p is surjective. Thus, let
f:SXxT—R

be a generalized W-bimorphism. Considering f as a PoM-bimorphism and using
that Qg is an isomorphism, there exists a unique PoM-morphism

f: S®pomT — R

such that f = fo w. We need to show that f is continuous.

Solet x € SRprewT and r € R satisfy r < f(m) We need to find 2’ € SQprew T’
such that 2’ < z and r < f(2’). Choose a finite index set I and elements a; € S
and b; € T for i € I such that x =, _; a; ® b;. Then

r=<flx)=>_ fla;@b).
icl
Using that R satisfies (W4), there exist elements r; in R for ¢ € I such that
T'SZ?"Z', and m<f(a,»®bi):f(ai7b,») for each i € I.
icl
Since f is continuous, for each ¢ € I there exist elements a; € S and b € T such
that
a, < a;, b <b;, r; < f(a,bl).
Set o' =3,y a; ®b;. Then '/ < x, and
r< > <Y fla) b)) = f2),
iel iel
as desired.
Finally, to prove (3), we need to show that for any two generalized W-morphisms

f and g in W[S ®prew T, R], we have that f < ¢ if and only if ®Pr(f) < Pr(g).
This is left to the reader. a
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6.2.11 (PreW is a symmetric, monoidal category). It is straightforward to check
that the bimorphism-functor on PreW from Paragraph 6.2.5 is also functorial in
the first entries. Thus, we have a PoM-multifunctor

BiW(_ x _,_): PreW°? x PreW°" x PreW — PoM.

By Theorem 6.2.10, the tensor product for every two PreW-semigroups exists.
Therefore, as explained in Paragraph 6.1.8, it follows that the tensor product in
PreW induces a PoM-bifunctor

®: PreW x PreW — PreW.

We use this to define a monoidal structure on PreW.

Recall that the unit object of PoM is given by N with its usual structure as an
algebraically ordered monoid. We equip N with the auxiliary relation that is equal
to the partial order. Then N is PreW-semigroup.

Let S be a PreW-semigroup. Since N is the unit object of PoM, there are
natural isomorphisms for the underlying positively ordered monoid of S:

N®pom S =S =S @pom N.

It is straightforward to check that these isomorphisms preserve the auxiliary rela-
tions and are therefore isomorphisms in PreW. Thus, N is the unit object in PreW.
In the same way, associativity and symmetry of the tensor product in PreW follow
from the respective properties in PoM.

6.3. The tensor product in Cu

In this section, we will use the construction of tensor products in PreW and
the fact that Cu is a reflective subcategory of PreW to show that the category Cu
has a symmetric, monoidal structure.

Before we make this concrete in Theorem 6.3.3, let us consider the natural
notion of bimorphisms in the category Cu, cf. [ABP13, Definition 4.3].

DEFINITION 6.3.1. Let S, T and R be Cu-semigroups, and let f: SxT — R be
a PoM-bimorphism. We say that f is a Cu-bimorphism if it satisfies the following
two conditions:
(i) We have that sup,, f(ax,br) = f(supy ar,supy bg), for any pair of increasing
sequences (ax)r C S and (by)r C T.
(i) Ifa’ < aand b <b, then f(a',b') < f(a,b), for any a’,a € S and V/,b e T.
We denote the set of all Cu-bimorphisms by BiCu(S x T, R).
If f is only required to satisfy condition (i) then we call it a generalized

Cu-bimorphism. We denote the collection of all generalized Cu-bimorphisms by
BiCu[S x T, R].

The next result is the analog of Lemma 3.1.4 for (generalized) bimorphisms.
It shows that for Cu-semigroups, the notions of (generalized) W-bimorphism and
(generalized) Cu-bimorphism agree.

LEMMA 6.3.2. Let S, T and R be Cu-semigroups, and let f: S xT — R be a
PoM-bimorphism. Then, the following are equivalent:

(1) The map f is a generalized Cu-bimorphism.
(2) In each variable, f is a generalized Cu-morphism.
(8) The map f is a generalized W -bimorphism.

PRrROOF. The equivalence of (2) and (3) follows by combining Lemma 6.2.4
and Lemma 3.1.4. Moreover, it is clear that (1) implies (2), and the converse is
straightforward to show. a
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Given Cu-semigroups S and T, the Cu-bimorphisms from S x T to a Cu-
semigroup R form a positively ordered monoid. This can be used to define a
PoM-functor

BiCu(S x T,_): Cu — PoM.
Indeed, by Lemma 6.3.2, this is just the restriction of the PoM-functor BiW(Sx T, _)
from Paragraph 6.2.5 to the full subcategory Cu of PreW. In the next result, we
will show that this bimorphism functor is representable.

Given three Cu-semigroups S,T and R, we equip the set of generalized Cu-
(bi)morphisms Cu[S, R] and BiCu[S x T, R] with the same auxiliary relation as
defined in Paragraph 6.2.6. For example, for f,g € Cu[S, R], we set f < g if and
only if f(a') < g(a) for any pair of elements o', a € S satisfying ¢’ < a.

THEOREM 6.3.3. Let S and T be Cu-semigroups. Consider the tensor product
w: SXT‘)S@PreWTa

as constructed in Theorem 6.2.10. Applying the completion of Proposition 3.1.6,
we obtain a Cu-semigroup v(S Qprew 1), which we also denote by S ®cy T, and a
universal W-morphism a: S Qprew T — S Qcu T'-
Then, the composed map ¢ := aow
SXT&S@prewTﬂ’y(S@PrewT) =S®cuT
is a Cu-bimorphism. For every Cu-semigroup R, it satisfies the following universal
properties:
(1) For every (generalized) Cu-bimorphism f: S x T — R, there exists a (gener-
alized) Cu-morphism f: S ®cuT — R such that f = fo .
(2) We have g1 0 ¢ < g2 0@ if and only if g1 < g2, for any pair of generalized
Cu-morphisms g1,92: S @cu T — R.
(3) We have g1 0 p < g2 0 @ if and only if g1 < g2, for any pair of generalized
Cu-morphisms g1,92: S ®cu T — R.
Thus, for every Cu-semigroup R, we obtain a situation as shown in the commutative
diagram below, analogous to that in Theorem 6.2.10.

CulS @cu T, B] = BiCul$ x T ]
U @)
Cu(S ®cu T, R) —— BiCu(S x T, R).

In particular, we have that the pair (S @cu T, @) represents the bimorphism PoM-
functor BiCu(S x T, _).

PrROOF. It is clear that ¢ is a W-bimorphism. Therefore, it follows from
Lemma 6.3.2 that it is a Cu-bimorphism. To check the universal properties, let
R be a Cu-semigroup. In the diagram below, the horizontal maps on the left are
PoM-isomorphisms by Theorem 3.1.8 and the horizontal maps on the right are
PoM-isomorphisms by Theorem 6.2.10.

Cu[S ®cu T, R ]%QW[S @prew T, B] ———= BiW[S x T ]

U U U

Cu(S ®cy T, R) —= W(S ®prew T, R) —= BiW(S x T, R).

This establishes the universal properties (1) and (2). It is also straightforward to
check that the isomorphism between Cu[S ®¢, T, R] and BiCu[S x T, R] preserves
the auxiliary relations, which establishes (3). O
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REMARK 6.3.4 (Tensor product in W). Analogous to the above Theorem 6.3.3,
one can construct tensor products in the category W. Given W-semigroups S and
T, one first considers the tensor product in PreW, S ®p,ew T'. Then, one uses the
reflection PreW — W from Paragraph 2.1.4 to obtain the tensor product in W.

THEOREM 6.3.5. Let S and T be PreW-semigroups. Then there is a natural
Cu-isomorphism
V(S) ®Cu ’Y(T) = 'Y(S ®PI‘CW T) .

PROOF. Let R be a Cu-semigroup. Using Theorem 6.2.10 at the first step,
and using that Cu is a reflective subcategory of PreW at the second step, we have
natural isomorphisms of the following (bi)morphism sets

BiW(S x T, R) = W(S Rprew 1 R) = Cu(v(S RPrew T)7 R)
On the other hand, using Lemma 6.3.2 at the first step, and Theorem 6.3.3 at the
second step, we obtain natural isomorphisms
BiW (S x T, R) = BiCu(y(S) x ¥(T), R) = Cu(y(S) ®@cu (T), R).
Hence, the Cu-semigroups 7(S) ®cu v(T') and (S ®@prew 1) both represent the
same functor, which implies that they are naturally isomorphic. g

COROLLARY 6.3.6. Let S, T and R be Cu-semigroups. Then, there is a natural
isomorphism identifying the different iterated tensor products:

S Rcu (T Rcu R) & (S Rcu T) Rcu R.

ProoF. Using Theorem 6.3.5 at the second and last step, and that ®@pew is
a associative (see Paragraph 6.2.11) at the third step, we obtain that
S ®cu (T ®cy R) =2 v(S) @cu (T @prew R)
= (S ®prew (T @prew R))
= y((S @prew T') @prew R) = (S @cu T) ®cu R,

and all isomorphisms are natural. (|

6.3.7 (Cu is a symmetric, monoidal category). Similar as in Paragraph 6.2.11,
it follows that that tensor product in Cu extends to a bifunctor

®: Cu x Cu — Cu.

We showed in Corollary 6.3.6 that this functor is associative. Let us show that the
Cu-semigroup N is a unit object for Cu. Note that N is the reflection in Cu of the
unit object N of PreW. Let S be a Cu-semigroup S. Using Theorem 6.3.5 at the
first step, we obtain natural isomorphisms

S@CuNg'y(S@PreW N) g’Y(‘S’) = S7

and analogously N ®cy S = S. Similarly, symmetry of the tensor product in Cu
follows from symmetry of the tensor product in PreW. Thus, the category Cu has
a symmetric, monoidal structure.

6.4. Examples and Applications

In this subsection, we are mainly concerned with the following two problems:
Under which conditions do the axioms (05), (06) and weak cancellation pass to
tensor products of Cu-semigroups, see Problem 6.4.2. Secondly, for C*-algebras A
and B, what can we say about the natural Cu-morphism from Cu(4) ®c, Cu(B)
to Cu(A ®@max B), see Problem 6.4.11.

The following result is a useful tool to solve particular cases of both problems.
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PROPOSITION 6.4.1. The tensor products in PreW and Cu are continuous in
each variable. More precisely, let (S;, i ;) be an inductive system in PreW, and
let T' be a PreW-semigroup. Then there is a natural isomorphism

PreW—ligl(Si RPrew T) = (PreW-liLn Sz) Rprew 1

The analogous statement holds for the second variable and for the tensor product
in Cu.

PRrROOF. We first note that the tensor product in PoM is a continuous functor
in each variable. This follows from the fact that - ®pov T is a left adjoint to
PoM(T, -). To simplify notation, in the first part of this proof we will write ® for
Rprew and hi>n for PreW-lim.

Let (S;, ¢i,;) be an inductive system in PreW indexed over the directed set I,
and let T' be a PreW-semigroup. This induces an inductive system (S; ® T, ¢; ; ®
idr). For ¢ € I, we denote the respective W-morphisms into the inductive limits
by:

1 1

The W-morphisms ¢; oo ® id7r induce a W-morphism
¢ lim(S; @ T) — (lim ) @ T,
i i

such that ¥ 0 Aj oo (s ® 1) = i00(s) @t for every i and s € S; and ¢ € T. These
maps are shown in the following commutative diagram.

Qi co®idr .
Si0 T P (g S) @ T

lim (S; @ T)

The inductive limit of PreW-semigroups is simply the inductive limit in PoM
of the underlying positively ordered monoids equipped with a natural auxiliary
relation, see Theorem 2.1.8. Similarly, the tensor product of two PreW-semigroups
is the PoM-tensor product of the underlying positively ordered monoids equipped
with a natural auxiliary relation, see Theorem 6.2.10.

Thus, since the tensor product in PoM is continuous in each variable, the map
1 is a PoM-isomorphism. Moreover, i preserves the auxiliary relation since it is a
W-morphism. Hence, to show that 1/ is a W-isomorphism, it remains to prove that
x <y whenever ¢(z) < ¢(y) for any x and y in the domain of .

Given such x and y, we can choose an index i and n € N and elements s € S;
and tp € T for k =1,...,n such that y = A\; oo (3", sk ® ti). Then

U(x) <P(y) = Y Piroo(sk) @ .
k=1

By definition of the auxiliary relation for tensor products in PreW, there are ele-
ments aj, € hﬂz S; and tj, € T such that

n
P(z) < Z:a;c ®1ty, and  a) < @ico(Sk), ty <ty foreach k=1,...,n.
k=1

It follows from the definition of the auxiliary relation for inductive limits in PreW,
that there is an index j > ¢ and elements s}, € S; such that

ay, = Pjoo(s)), Sk < i j(sg) foreach k=1,...,n.
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Set y' = Xj (D pey Sk ®t}). Then
(@) <D ap @t =D iolsh) @1, = V().
k=1 k=1

Since 1) is an order-embedding, we have x < /. It is easily checked that 3" < y.
Thus, « < y, as desired.

The continuity in the second variable is proven analogously. The result for
tensor products in Cu follows from that for PreW. More precisely, let (S;, ¢; ;) be
an inductive system in Cu, and let T be a Cu-semigroup. Using Corollary 3.1.11
at the first and last step, using Theorem 6.3.5 at the second to last step, and using
the result for PreW at the second step, we obtain natural Cu-isomorphisms:

(2

Cu—li_n}l(Si Rcu T) =y (PreW—hAl(S, QPrew T))

14

ot ((PreW—lign Si) @prew T)

1%

5 (PreW-liﬂ Si) ®cu Y(T) = (Cu—lig Si) ®cu T

This finishes the proof. g

PROBLEM 6.4.2. Given Cu-semigroups S and T that satisfy (O5) (respectively
(06), weak cancellation). When does S ®cy 1" satisfy (O5) (respectively (06), weak
cancellation)?

6.4.3. In general, (O5) does not pass to tensor products, see Proposition 6.4.4.
However, for given Cu-semigroups S and 7', we obtain the following partial positive
answers to Problem 6.4.2:

(1) If S or T is an inductive limit of simplicial Cu-semigroups, then each of the
axioms (0O5), (0O6) and weak cancellation passes to S ®@cy T, see Proposi-
tion 6.4.6.

(2) If S and T are algebraic Cu-semigroups, then axiom (O5) passes to S ®cy 7T,
see Corollary 6.4.9.

With view to the above mentioned example and results, this raises the following
refined version of Problem 6.4.2: Does (O5) pass to tensor products where one of
the Cu-semigroups is algebraic? Do the axioms pass to tensor products of simple
Cu-semigroups?

For the next result, we use Z to denote the Cuntz semigroup of the Jiang-Su
algebra Z. We have that Z = NU (0, o0}, see Paragraph 7.3.2. We let Lsc ([0, 1],N)
denote the set of lower-semicontinuous functions from [0, 1] to N, which is known
to be isomorphic to the Cuntz semigroup of the C*-algebra C([0,1]). It follows
from Proposition 4.7 that Z and Lsc ([0, 1],N) satisfy (O5), but this is also easy
to see directly. The next result shows that (O5) does in general not pass to tensor
products.

PROPOSITION 6.4.4. The Cu-semigroup Z ®cy Lsc ([0,1],N) does not satisfy
aziom (05).

PrOOF. Consider the Cu-semigroup S = Lsc([0, 1], Z) which clearly has Z-
multiplication. Let Sog be the smallest submonoid of S containing all elements of
the form z - f for z € Z and f € Lsc ([0, 1],N). Let us verify that the assumptions
of Lemma 5.3.17 are satisfied for Spg. Given z € Z and f € Lsc ([0, 1],N), we
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choose rapidly increasing sequences (z, )y in Z and (fy,), in Lsc ([O7 1],N) such that
z = sup,, z, and f = sup,, fn. Then, by the properties of Z-multiplication, (zy- fn)n
is a rapidly increasing sequence of elements in Sy such that

z-f=supzy- fn.
n

Applying Lemma 5.3.17, we obtain that the sup-closure of Sy in S, denoted by
So 1= Spo = span{z -f | z€eZ f€ Lsc([O7 1],N)},

is a Cu-semigroup. We first show that Sy does not satisfy (O5).

Given an open set U in [0,1], we denote by 1y the indicator function of U,
which is an element in Lsc ([07 1],N) C S. Given a € S, we let supp(s) denote the
support of a, which is open since a is lower semicontinuous. Set

a' =7 lemy, a=3-lapy. b=l

These are all elements in Sp, and it is clear that ¢’ < @ < b. In order to obtain a
contradiction, suppose that there exists ¢ € Sy such that

(6.1) d+c<b<a+ec

(Note that an element ¢ with this property can easily be found in S; in fact, its
existence is guaranteed since S is the Cuntz semigroup of a C*-algebra and therefore
satisfies (05).)

Choose a sequence (¢, )nen in Spo such that ¢ = sup,, ¢,. By evaluation the
inequality (6.1) at each point in [0,1], it is clear that supp(c) = [0,1]. Since
supp(c) = Uy, supp(cy), there exists N € N such that supp(cy) = [0,1]. Without
loss of generality, we may assume that N = 0.

By evaluating (6.1) at %, we have that c (%) = 1. Since the element 1 in Z
is compact, it follows from ¢ (%) = sup,, ¢, (%) that there exists N € N such that
CN (%) = 1. Again, without loss of generality, we may assume that N = 0.

Note that every f in Lsc([0,1],N) has a (canonical) decomposition as f =
> neo Lp=1((k,00])> Where f1((k,o0]) are open sets. Applying this to the element
co, and using that ¢y < 1, it follows that there exist a finite index set I and

nonempty open subsets U; C [0, 1] and nonzero elements z; € Z for ¢ € I such that

Co = Z Zi 1Ui'
iel
We have that cg (%) is the sum of the elements z; for which % € U;. Since 1 = ¢ (%)
is a minimal compact element in Z, and since the noncompact elements in Z are
soft and therefore absorbing, we deduce that % belongs to exactly one of the sets
U;. Let ig be the unique index in I such that % € U;,. We necessarily have that
zi, = 1. Set
V=U, W=|JU.
i#io
We have that V' and W are open subset of [0, 1]. Since supp(cp) = [0, 1], it follows
that V. UW = [0,1]. Sine ¢ is strictly less than 1[0,1), we have that V' is a proper
subset of [0, 1]. Therefore, the intersection VNW is nonempty. For each t € VNW
we have that ¢o(t) > 1, which clearly is a contradiction.
Next, consider the map

7: Z x Lsc ([0,1],N) — Sy C Lsc([0,1], Z), (z,f)— 2 f,

which is easily seen to be a Cu-bimorphism. By Theorem 6.3.3, there exists a
Cu-morphism -

7: Z @cu Lsc ([0,1],N) — Sp,
such that 7(z ® f) = 7(z, f) for each z € Z and f € Lsc ([0,1],N).
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Since 1(3/41] < 1(1/4,1) < 1in Lsc ([0,1],N), and & < § < 1jg1) in Z, we have
1O Le/a <301a2y <1® 10,
in Z ®cu Lsc ([0,1],N). Note that
a' =7 (;@Leay), a=7(3®1apmy), b=7(1®1py).
Thus, if there exists d € Z ®cy Lsc ([0, 1], N) such that
T1®Lleay+d<1@1py < 5®Lapy+d,

then the element ¢ := 7(d) would satisfy a’ + ¢ < b < a+ ¢, which is not possible by
the first part of the proof. Therefore, Z®cyLsc ([0, 1], N) does not satisfy (05). O

COROLLARY 6.4.5. We have that Lsc([0,1], Z) 2 Z ®@cy Lsc ([0,1],N).

PROOF. By Proposition 6.4.4, we have that Z®cyLsc ([0, 1], N) does not satisfy
axiom (O5). On the other hand, we have that

Lsc([0,1], Z) = Cu(C([0, 1], 2)),

by e.g. [APS11, Theorem 3.4], which in combination with Proposition 4.7 shows
that Lsc([0, 1], Z) satisfies (O5). O

For the next result, recall from Definition 5.5.10 that a Cu—aemlgroup is stmpli-
cial if it is isomorphic to to the algebraically ordered Cu-semigroup N’ for some r
in N. In Corollary 5.5.12, we have seen that a countably-based Cu-semigroup S is
an inductive limit of simplicial Cu-semigroups if and only if there exists a separable
AF-algebra A such that S = Cu(A).

PROPOSITION 6.4.6. Let S be an inductive limit of simplicial Cu-semigroups.
Then, taking the tensor product with S preserves (05), (06) and weak cancellation.

PRrROOF. Let (S;,¢;;) be an inductive system of simplicial Cu- semlgroupb in-
dexed over the a directed set I. Then there are numbers r; € N such that §; = N
for each i € I. Let T be a Cu-semigroup. For r € N, let 7" be the set of r- tuples
with entries in 7', equipped with pointwise addition and order. It is easily checked
that 7" is a Cu-semigroup and that there is a natural isomorphism S; ®c, T = T
for each i. It follows from Proposition 6.4.1 that S ®c, T = Cu- hg Tr.

Assume now that 7" satisfies (O5). It follows easily that T satisfies (O5) for
each r € N. Then, S ®c, T satisfies (O5) by Theorem 4.5. It is proved analogously
that weak cancellation and (O6) pass from T to S ®cy T d

For the next result, recall that for a positively ordered monoid M, we denote
by Cu(M) the Cu-completion of the PreW-semigroup (M, <), see Paragraph 5.5.3.

PROPOSITION 6.4.7. Let M and N be two positively ordered monoids. Then,
there is a canonical isomorphism

Cu(M) ®@cy Cu(N) = Cu(M Qpom N).

ProoF. We will write (M, <) and (N, <) for the W-semigroups associated to
M and N, see Proposition 5.5.4. It follows easily from the construction of the
tensor product in PreW that

(M, <) @prew (N, <) = (M ®@poum N, <).
Now the result follows from Theorem 6.3.5. g
COROLLARY 6.4.8. If S and T are algebraic Cu-semigroups, then so is S@cyT

COROLLARY 6.4.9. Let S and T be algebraic Cu-semigroups. If S and T satisfy
aziom (05), then so does S @cu T
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PROOF. Let S. and T, denote the positively ordered monoid of compact ele-
ments in S and T, respectively. By Proposition 5.5.4 and Proposition 6.4.7, there
are natural isomorphisms

S=Cu(S,), T=CWT.), S®cuT 2 Cu(S.@porTh).

Assume now that S and T satisfy (O5). By Proposition 5.5.8, this implies that
S. and T, are algebraically ordered. It follows that S. ®pom T is algebraically

ordered, see Proposition B.2.8. Using Proposition 5.5.8 again, we deduce that
S ®cu T satisfies (05). O

6.4.10. Let A and B be C*-algebras, and let A ®ax B be their maximal tensor
product. Given positive elements z € M, (A)+ and y € M (A)4, the simple tensor
x®1y is a positive element in Moo (A ®max B)+. This induces a W-bimorphism from
W(A) x W(B) to W(A ®@max B), which in turn induces a natural W-morphism

Similarly, there is a natural Cu-morphism
Tip s Cu(4) @cuy Cu(B) = Cu(A ®max B),

such that 7% ([z] @ [y]) = [z @ y] for every pair of positive elements z € (A® K)
andy € (B®K),.

The natural quotient *-homomorphism from A Qpax B t0 A Quin B induces a
surjective Cu-morphism

Cu(A ®max B) = Cu(A Qmin B).

By composing the map 7% with this Cu-morphism, we obtain a natural Cu-

morphism
Tip: Cu(4) @cy Cu(B) = Cu(A @uin B).

PROBLEM 6.4.11. Let A and B be two C*-algebras. When is the map TX% a
Cu-isomorphism? When is it surjective? When is it an order-embedding? Similarly,

when is the map T;lﬂig an isomorphism, surjective, an order-embedding?
)

6.4.12. Let A and B be C*-algebras. It is clear that 7% is an order-embedding
whenever TX‘}E is. Similarly, if 7% is surjective, then so is TA“}E.

If A or B is nuclear, then the natural map from A Q@pax B t0 A Quin B is an
isomorphism. In that case, the maps TK% and 7' are equal, and we simply write
Ta,p for this map.

It is easy to find examples of C*-algebras A and B for which the natural map
Ti5 is not surjective. For instance, this is the case for A = C([0,1]) and B = Z,
as shown in Proposition 6.4.4; see also Corollary 6.4.5.

Other (counter)examples can be found using K-theory. If A is a unital, simple,
stably finite C*-algebra, then K((A) is determined by the Cuntz semigroup of A

via the formula
(6.2) Ky(A) = Gr(Cu(4).),

where Cu(A). denotes the submonoid of compact elements in Cu(A), and where
Gr denotes the Grothendieck completion.

Now, let A and B be two unital, simple, stably finite C*-algebras. Assume
that A is nuclear, whence we can unambiguously write ® instead of ® ., for tensor
products with A. Then the tensor product A ® B is also a unital, simple, stably
finite C*-algebra. Assume that the map

Ta,8° Cu(4) ®cy Cu(B) - Cu(A® B)
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is surjective. Using that A, B and A ® B are simple and stably finite, it follows
that the natural map

Cu(A). ®pom Cu(B). — Cu(4A ® B),

is surjective as well. Passing to Grothendieck completions, and using (6.2) at the
second step, we obtain a surjective map

Gr(Cu(4). ®pom Cu(B).) = Gr(Cu(A ® B).) = Ko(A® B).

Since taking the Grothendieck completion commutes with tensor products (see
Proposition B.1.7), we have that

Ko(A) @ Ko(B) = Gr(Cu(A4).) @pom Gr(Cu(B).) = Gr(Cu(A),. @pom Cu(B).).
Thus, we have shown that the natural map

is surjective.

Let us further assume that A is a C*-algebra in the bootstrap class, see [Bla086,
V.1.5.4, p.437]. Then A and B satisfy the ‘Kiinneth formula for tensor products
in K-theory’, see [Bla06, Theorem V.1.5.10, p.440], which means that there is a
short exact sequence

0— P Ki(A) ® Ki(B) » Ko(A® B) = @) Tor{(Ki(A), K1_4(B)) = 0.

Since our assumptions on A and B imply that the natural map from Ko (A)® Ko (B)
to Ko(A ® B) is surjective, we deduce from the Kiinneth formula that

Ki(A)® K (B) =0, Tory(K;(A),K,_i(B))=0, fori=0,1.

In conclusion, we get that the map 74 p is not surjective whenever A and
B are unital, simple, stably finite C*-algebras in the bootstrap class for which
K1 (A) ® K1(B) # 0 or for which Tor?(K;(A), K;_i(B)) # 0 fori=0ori=1.

On the other hand, we have that 74, p is an isomorphism in the following cases:
(1) If Aor B is an AF-algebra, see Proposition 6.4.13.
(2) If A or B is nuclear and Oy -stable, see Proposition 7.2.11.

PROPOSITION 6.4.13. Let A and B be C*-algebras. Assume that at least one
of the algebras is an AF-algebra. Then, the natural map

a5 Cu(A) ®cy Cu(B) = Cu(A Omax B)
is an isomorphism.

PRrROOF. Without loss of generality, we may assume that A is an AF-algebra.
Then there is an inductive system of finite-dimensional C*-algebras A; such that
A = hglz A;. For each i, there is r; € N such that A; is isomorphic to a direct
sum of r; matrix algebras. Then A; ® K & K" and Cu(4;) & N". Moreover,
A; @ B K = (B®K)" and there are isomorphisms

Cu(4;) ®cy Cu(B) = N @ Cu(B) = Cu(B)™ = Cu(4; ® B),

for each i.
Since the maximal tensor product commutes with inductive limits of C*-alge-
bras, see [Bla06, 11.9.6.5, p.200], there is a natural isomorphism h_r)nl(Al ®max B) &
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A Rmax B. Using Corollary 3.2.9 at the first and last step, and using Proposi-
tion 6.4.1 at the second step, we obtain that

Cu(A) ®cy Cu(B) = <Cu-li%m Cu(A,-)> ®cu Cu(B)
= Cu-lig (Cu(4;) ®cu Cu(B))
= Cu-lim Cu(4; ® B) = Cu(A ® B),

as desired. O

6.4.14. Recall that the set of functionals on a Cu-semigroup S is defined as the
set of generalized Cu-morphisms S — [0, 0o], see Paragraph 5.2.1. Now, let S and
T be two Cu-semigroups. Then, there is a natural map

F(S) x F(T) = F(S ®cu T),

defined as follows: Given two functionals A € F(S) and p € F(T), consider the
map
f:9xT —1[0,00], (a,b)— ANa)u(d). (a€S,beT)

Here, the product of two elements x,y € [0,00) is defined as the usual product of
real numbers, and Oy = z0 = 0 for all z,y € [0,00], and coy = zoo = oo for all
x,y € (0,00]. (This is the Cu-product on [0, cc] when considered with its structure
as a Cu-semiring, see Example 7.1.7.) It is easily checked that f is a generalized
Cu-bimorphism. By Theorem 6.3.3, f induces a generalized Cu-morphism

f:8®cuT — [0, 0]

This means that f € F(S ®cy T), satisfying f(a ® b) = Ma)u(b) for every a € S
and beT.

The following is a version of [Rgr02, Theorem 4.1.10, p.69] for Cu-semigroups.

PROPOSITION 6.4.15. Let S and T be two simple, nonelementary Cu-semigroups
satisfying (05) and (06). Then:
(1) If S and T are stably finite, then so is S Q@cy T -
(2) If S or T is not stably finite, then S @cy T = {0, 00}.

PRrROOF. To show (1), assume that S and 7" are simple and stably finite. Set
R =5 ®cy T. There are nontrivial functionals A € F(S) and u € F(T), see Prop-
osition 5.2.5. By Paragraph 6.4.14, this induces a functional 6 € F(R) such that
d(a®b) = A(a)u(b) for every a € S and b € T. Tt is clear that ¢ is nontrivial, which
implies that R is stably finite.

To show (2), we may assume without loss of generality that T is not stably
finite. By Corollary 7.2.5, S ®cy T is simple. Thus, there is a unique element
00 € S ®cu T, such that co = sup,,cyne for every nonzero element x € S ®cy T
Let a € S and b € T be nonzero elements. We will show that a ® b = cc.

Let cor denote the infinite element of T. By Proposition 5.2.5, cor is compact.
Thus, there is n € N such that nb = cor. By [Rob13a, Proposition 5.2.1], see
Proposition 5.4.1, there is a nonzero element x € S such that nz < a. It follows
that

a®b>(nx)®b=1® (nb) = ® ocor = cc.
It is also clear that a ® b < oo, and therefore ¢ ® b = oo whenever a and b are
nonzero. This implies that S ®c, T =2 {0, 00}, as desired. O



CHAPTER 7

Cu-semirings and Cu-semimodules

In Section 7.1, we introduce the concepts of Cu-semirings and their semimod-
ules. Natural examples are given by Cuntz semigroups of C*-algebras that are
strongly self-absorbing and of C*-algebras that tensorially absorb such a C*-alge-
bra, respectively; see Proposition 7.1.4.

We say that a Cu-semiring R is solid if the multiplication map R x R — R

induces an isomorphism R ®cy R = R, see Definition 7.1.5. This is analogous
to the concept of solidity for rings as introduced in [BK72, Definition 2.1; 2.4].
This property can also be interpreted as an algebraic analog of being strongly self-
absorbing. The Cuntz semigroup of every known strongly self-absorbing C*-algebra
is a solid Cu-semiring, see Paragraph 7.6.1.

Given a solid Cu-semiring R, we say that a Cu-semigroup S has R-multipli-
cation if it is a semimodule over R, in a suitable sense, and it is very interesting
to study the class of such Cu-semigroups. We have that every generalized Cu-
morphism between two Cu-semigroups with R-multiplication is automatically R-
linear, see Proposition 7.1.6. We deduce that a Cu-semigroup S has at most one
R-multiplication. In other words, either there is no way to give S the structure of
a semimodule over R, or there is a unique such structure. This also means that,
as we have already remarked in the Introduction, being a semimodule over R is a
property of S, rather than extra structure, see Remark 7.1.9.

It may therefore seem that Cu-semigroups with R-multiplication are rare. How-
ever, we show in Lemma 7.1.10 that for every Cu-semiring S, the tensor product
R ®cy S has R-multiplication. We obtain that S has R-multiplication if and only
if S is naturally isomorphic to R ®cy S, see Theorem 7.1.12.

We refer to Chapter 8 for a detailed study of the structure of Cu-semirings,
including a complete classification of solid Cu-semirings in Section 8.3.

In Sections 7.2 through 7.5, we study Cu-semimodules over the following solid
Cu-semirings:

(1) If A is a purely infinite, strongly self-absorbing C*-algebra, e.g. the Cuntz
algebra O, then Cu(A) = {0,00}. In Section 7.2, we study Cu-semigroups that
have {0, co}-multiplication. This can be considered as a theory of ‘purely infinite
Cuntz semigroups’.

Indeed, it is clear that the Cuntz semigroup of every O..-stable C'*-algebra is a
{0, co}-semimodule. More generally, we show that a (not necessarily simple) C*-al-
gebra is purely infinite if and only if its Cuntz semigroup has {0, co}-multiplication.

(2) The Jiang-Su algebra Z is a strongly self-absorbing C*-algebra, whose
Cuntz semigroup is a solid Cu-semiring, denoted by Z. In Section 7.3, we study
Cu-semigroups that have Z-multiplication.

The analogy between Z-stable C*-algebras and Cuntz semigroups with Z-
multiplication is however not as close. In one direction, we clearly have that the
Cuntz semigroup of every Z-stable C*-algebra is a Z-semimodule. However, the
converse is not true in general. We show in Theorem 7.3.8 that a Cu-semigroup has
Z-multiplication if and only if it is almost unperforated and almost divisible. On

97
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the other hand, it seems that the Cuntz semigroup of every Z-stable C*-algebra is
nearly unperforated, see Conjecture 5.6.18.

(3) Every strongly self-absorbing UHF-algebra is of the form M, for some su-
pernatural number g satisfying ¢ = ¢? and ¢ # 1. We denote the Cuntz semigroup
of M, by Ry, which is a solid Cu-semiring. In Section 7.4, we study Cu-semigroups
that have R, -multiplication. This can be considered as a theory of ‘UHF-absorbing
Cuntz semigroups’. Given a Cu-semigroup S, we also think of R, ®c, S as the
‘rationalization’ of S.

(4) The Jacelon-Razak algebra R is a stably projectionless C*-algebra, whence
it does not satisfy the definition of a strongly self-absorbing C*-algebra (which are
required to be unital). However, the Cuntz semigroup of R is [0,00], which is a
solid Cu-semiring. Moreover, for every C*-algebra A we have that Cu(R ® A) =
[0,00] ®cu Cu(A). In particular, if a C*-algebra tensorially absorbs R, then its
Cuntz semigroup has [0, co]-multiplication.

In Section 7.4, we study Cu-semigroups that have [0, oo]-multiplication. This
can be considered as a theory of ‘R-absorbing Cuntz semigroups’. Given a Cu-
semigroup S, we also think of [0, 00] ®cy S as the ‘realification’ of S, a term that
was introduced by Robert.

In the following table, we summarize some results of this chapter. The middle
column contains the characterizations when a Cu-semigroup S has R-multiplication
for the solid Cu-semiring listed in the left column. The column on the right char-
acterizes the effect that ‘stabilizing’” with R has on the order-structure of the Cu-
semigroup.

Characterization when S is a For a,b € S, characterization
R Cu-semimodule over R. when 1®a <1®bin R®cy S.

a = 2a for each a € S,

{0, 00} || Theorem 7.2.2. a «* b; Theorem 7.2.6.

S is almost unperforated and
almost divisible; Unclear; Problem 7.3.10.

d Theorem 7.3.8.
. For each ¢’ < a, there exists n
§'is g-unperforated and dividing ¢ such that na’ < nb;
R, g-divisible; Theorem 7.4.10. Theorem 7411, =
S is unperforated, divisible N
and every element is soft; G < b in Lsc(F(5));
[0, o0 Theorem 7.5.11.

Theorem 7.5.4.

7.1. Strongly self-absorbing C*-algebras and solid Cu-semirings

DEFINITION 7.1.1. A Cu-semiring is a Cu-semigroup R together with a Cu-
bimorphism, (a,b) +— ab, and a distinguished element 1 in R such that for all
a,b,c € R we have

ab =ba, a(bc)= (ab)e, la=a=al.

The Cu-bimorphism R x R — R is also called the Cu-product of R.
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REMARKS 7.1.2. (1) A Cu-semiring is a commutative, unital semiring (see
Section B.4) with a compatible partial order turning it into a w-continuous w-dcpo
in the sense of lattice theory, see Remarks 3.1.3.

(2) Tt is natural to assume that a Cu-semiring has no zero divisors. Indeed, if
two elements a and b satisfy ab = 0, then st = 0 for all elements s and ¢ satisfying
s <oo-aandt < oo-b. Thus, if ab = 0, then the multiplication is trivial on the
ideals generated by a and b. In particular, a simple Cu-semiring with zero divisors
is isomorphic to {0}.

(3) Let R be a Cu-semiring. Recall from Paragraph 5.1.1 that an ideal I in R is
an order-hereditary submonoid that is closed under passing to suprema of increasing
sequences. This notion of ideal is a-priori not connected to the ring-theoretic notion
of an ideal, which means that ab € I for any a € I and b € R.

However, if the unit of R is full (that is, if it is also an order unit), then every
ideal is also a ring-theoretic ideal. Indeed, given a € I and b € R, we have b < co-1,
and therefore ab < a(co - 1) =supk(al) = co-a € I. Then ab € I, as desired.

It is unclear to the authors, whether the unit of a Cu-semiring is automatically
full. Possibly, this only holds under additional assumptions on the Cu-semiring.

The following definition is an adoption of the terminology introduced by Robert,
[Rob13a, Definition 3.1.2].

DEFINITION 7.1.3. Let S be a Cu-semigroup, and let R be a Cu-semiring. An
R-multiplication on S is a Cu-bimorphism R x S — S, (r, s) + rs such that for all
r1,72 € R and s € S, we have

(rire)s =ri(res), ls=s.
In this case we also say that S is a Cu-semimodule over R.

One motivation for the definition of a Cu-semiring comes from strongly self-
absorbing C*-algebras, as defined in [TWO07, Definition 1.3]. Every such algebra is
simple and nuclear, and either purely infinite or stably finite with a unique tracial
state, [TWO07, 1.6, 1.7]. The Cuntz semigroup of a simple, purely infinite C*-alge-
bra is isomorphic to {0, c0}. Thus, we will focus our attention on the stably finite
case.

PROPOSITION 7.1.4. Let D be a unital, separable, stably finite, strongly self-
absorbing C*-algebra. Then:

(1) The Cuntz semigroup Cu(D) has a natural Cu-product giving it the structure
of a countably-based, simple Cu-semiring satisfying (0O5) and (06), and with
a unique normalized functional.

(2) If Ais a D-absorbing C*-algebra (i.e., A= AR D), then Cu(A) has a natural
Cu(D)-multiplication.

PrROOF. We use the symbol ‘~’ to denote approximate unitary equivalence.
For positive elements in a C*-algebra, this is a stronger equivalence relation than
Cuntz equivalence.

(1) By definition, there is a *-isomorphism ¢: D — D ® D such that ¢ =
idp ®1p. Consider the natural Cu-bimorphism Cu(D) x Cu(D) — Cu(D ® D)
from Paragraph 6.4.10. Composed with Cu(w 1), this yields a Cu-bimorphism

¢: Cu(D) x Cu(D) — Cu(D).
We will show that ¢ together with 1 = [14] gives Cu(D) the structure of a Cu-
semiring.
We know from [TWO07, Corollary 1.11] that D has approximately inner flip.
Thus, for any positive elements x and y in A, we have r @y~ y®zin A® A. It
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follows that
p(la),[y]) =Wz y)] = (y® )] = o[y, []).

The analogous computation holds for Cuntz classes of positive elements in A ® K,
which implies that ¢ defines a commutative multiplication.

To show associativity of the product, consider positive elements x,y and z.
Using the approximately inner flip, we get t @y ® 2z = y ® 2z ® x. Applying
¥~ ®@idp, it follows that ™1 (z ® y) ® 2 ~ ¥~ 1(y ® z) ® z, and therefore

ele(a], ), [2]) = W (W™ (z @ y) ® 2)]
=W Wy ©2) @)
=W @@y (y®2))] = e([2], e(yl. [2])-
The analogous computation in A ® K imply that the product is associative.

Using that idp ®1p =~ 9 and ¥ ~ 1p®idp, we obtain for every positive element

x that
p(2, ) = (e@ )] = [2] = ¥ 1L ®2)] = (1, [2]).
This finishes the proof that Cu(D) is a Cu-semiring.

The Cuntz semigroup of every separable C*-algebra is countably-based and
satisfies (O5) and (O6), see Proposition 3.2.3 and Proposition 4.7. Moreover, since
D is simple and with unique (2-quasi)tracial state, we get that Cu(D) is simple and
has a unique normalized functional, see Corollary 5.1.12 and Corollary 5.2.17.

(2) By [TWO07, Theorem 2.3], there is a *-isomorphism ¢: A — D®A such that
to ¢ = 1p ®ida (note that the condition of D being K;i-injective is automatic by
[Winll, Theorem 3.1, Remark 3.3]). Arguing as in (1), the natural map D x A —
D ® A induces a Cu-bimorphism Cu(D) x Cu(A) — Cu(D ® A) and this, composed
with Cu(¢~!), yields a Cu-bimorphism ¢: Cu(D) x Cu(4) — Cu(A4).

Given z € Ay, we have ¢(z) = 1p ® x and therefore ¢([1p], [z]) = [z]. Given
also dy,dy € D4, we have

di®@dy®@P(z)=di ®dy®1pRrrd ®1p®dy @,
in D®D®D®A. Applying ¢~ Lo (1p™! ® ¢~!) to the above relation, we get
o (N @ dy) @)~ ¢ (T (dy @ 1p) © ¢ (d2 @ ).

Therefore, ¢([d1] - [de], [x]) = @([d1],¢([d2],[z])). The same computations hold
for positive elements in the stabilizations, which implies that ¢ defines a Cu(D)-
multiplication on Cu(A). O

A ring R is called solid if the multiplication map induces an isomorphism
R ® R = R; see [BK72, Definition 2.1; 2.4], where it is pointed out that solidity
of the ring R is equivalent to the requirement that e ® 1 = 1 ® a for every a € R.
Here, we use the usual tensor product of (discrete) groups and rings, and every ring
is understood to be unital and commutative. See Section B.4 for more details.

As pointed out in [Gut13], solid rings have also been called T-rings and Z-epi-
morphs; see [BS77, Definition 1.6] and [DS84]|. We define solid Cu-semirings in
analogy to the case for rings.

DEFINITION 7.1.5. A Cu-semiring R is solid if the Cu-bimorphism ¢: Rx R —
R defining the multiplication induces an isomorphism R ®cy, R = R.

The next result shows that for a Cu-semiring, there are many conditions equiv-
alent to being solid. This is analogous to the case for rings. Indeed, for a ring,
all of the conditions in Proposition 7.1.6, when suitably interpreted, are equivalent
to solidity of the ring. This is known, and most of it is shown in the references
mentioned at the beginning of the section.
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PROPOSITION 7.1.6. Let R be a Cu-semiring. Then, the following conditions

are equivalent:

(1) The Cu-semiring R is solid.

(2) Whenever S is a Cu-semimodule over R, then the R-multiplication on S
induces an isomorphism R ®cy S = S.

(8) Whenever Sy and Sa are Cu-semimodules over R, and 7: S; x So — T is
a generalized Cu-bimorphism, then 7(ray,az) = 7(a1,7a2) for all v € R and
a; € 5;.

(4) FEvery generalized Cu-morphism S1 — Sz between Cu-semimodules S1 and So
over R is automatically R-linear.

(5) For all a,b € R, we havea®@b=>b® a in R Qcy R.

(6) For everya € R, we havea®1=1® a in R ®cy R.

PrOOF. The implications ‘(2) = (1) = (5) = (6)’ are clear.

Let us prove that (6) implies (2). So let S be a Cu-semimodule over R. Given
r € Rand s € S, we will show that r® s = 1®rs in R®c,S. To that end, consider
the map

Tt RXR— R®cy S, 75(a,b) =a®bs. (a,b€R)

It is straightforward to check that this is a generalized Cu-bimorphism, whence there
is a generalized Cu-morphism 7s: R®c, R — R®c, S such that 75(a,b) = 7s(a®b).
Using the assumption at the third step, we obtain that

res=71(rl)=7rel)=71er)=1(l,r)=1xrs.

Let ¢: R xS — S be the Cu-bimorphism defining the R-multiplication. This
induces a Cu-morphism ¢: R®cy, S — 5. Welet ¢: S — R® S be the generalized
Cu-morphism defined by ¥(s) = 1 ® s. We clearly have g o ¢ = idg. On the other
hand, for every r € R and s € S, using the formula of the previous paragraph at
the last step, we have

Pop(res)=9y(rs)=10rs=rQ®s.

It follows that ¥ o ¢ = idrge,s, and so R ®@cy S = S.

Next, we prove that (2) implies (3). It is enough to show that for every r € R
and s; € S and sy € So, we have that rs; ® so = 51 ® rsy in S1 ®cy S2. To
that end, we use the isomorphisms S; & S7 ®@cy R and R Qcy So = Sy given by
assumption, and the natural isomorphism of associativity of the tensor product
from Corollary 6.3.6, to obtain the identifications shown in the following diagram:

S1®cuS2 =2 (S1®cuR)®cuS2 = 51 Qcu(R®cuS2) = S1®cuS2
w W W w
(rs1®1) ® s9 L, 51® (1®rss)

rs1 ® sy «— = (5107) ® 52 5 ®(r® )

— 81 @ 1Sa,

as desired.
Next, we prove that (3) implies (4). So let S; and S; be Cu-semimodules over
R, and let a: S; — S be a generalized Cu-morphism. Consider he map

T: Rx 81 = S, 7(r,s)=ra(s), (re€R,s€SH)

which is easily seen to be a generalized Cu-bimorphism. We consider R with the
R-multiplication given by its Cu-semiring structure. Given » € R and s € S, we
use the assumption at the second step to obtain that

a(rs) =7(1,rs) = 7(r,s) = ra(s).

Thus, the map « is R-linear, as desired.
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Finally, let us show that (4) implies (6). We endow the Cu-semigroup R ®cy R
with two (a priori different) R-multiplications induced by

re(r1®ry) =rriQre, 1-(r1Q®ry)=111Q7172. (r,71,72 € R)

Now, we consider the identity Cu-morphism id: R®c, R — R®cy R, but we equip
the source and target with the two different R-multiplications. By assumption,
the map idg is R-linear. Then, given any r € R, we compute the product of the
element 1 ® 1 € R ®cy R with r using the different R-multiplications. This gives
rl®1=1®rl, as desired. a

ExAMPLE 7.1.7. Consider the Cu-semigroup [0, c0]. Given two finite elements
that are both not equal to co, we define their product as for real numbers. Moreover,
we set 00 -0 = 0 and oo - a = oo for every nonzero a € [0,00]. It is easy to check
that this defines a Cu-product on [0, oo].

Thus, [0, o] is a Cu-semiring. Let us show that it is solid. By Proposition 7.1.6,
it is enough to show that 1 ® a = a ® 1 for every a € [0,00]. Given k,n € N with
n # 0, we consider the element % € [0, 00] and we compute that

lpk=tgk_pn(loli=tgr=Ftg

n

Since rational elements are dense in [0, co|, we get that [0, co] is solid.

COROLLARY 7.1.8. Let R be a solid Cu-semiring, and let S be a Cu-semigroup.
Then, any two R-multiplications on S are equal.

Proor. Consider the identity morphism S — S, where the range and target
are equipped with the two R-multiplications in question. By Proposition 7.1.6, this
map is R-linear, which means exactly that the two R-multiplications are equal. [J

REMARK 7.1.9. Let R be a solid Cu-semiring, and let S be a Cu-semigroup. By
Corollary 7.1.8, S has at most one R-multiplication. Thus, having an R-multiplica-
tion is a property rather than an additional structure.

LEMMA 7.1.10. Let R be a Cu-semiring, and let S, T be Cu-semigroups. As-
sume that S has an R-multiplication. Then S @cy T also has an R-multiplication
that satisfies

r(s®t) = (rs) ®t,
forallre R,se S andteT.

PROOF. Given r € R, consider the map
a: SXT =S8R, T, (s,t)—=rs@t. (seSteT)

This is a generalized Cu-bimorphism. Therefore, it induces a generalized Cu-
morphism @,: S ®cy T — S ®cy T such that a,.(s ®t) = (rs) ® t. Using the
universal properties of the tensor product, see Theorem 6.3.3, one shows that the
map

Rx(S®cuT)— S®cuT, (r,z)—ar(z), (reRzeS®cT)

is a Cu-bimorphism defining an R-multiplication on S ® T a

LEMMA 7.1.11. Let R be a solid Cu-semiring, let S be a Cu-semigroup, and
let o: Rx S — S be a generalized Cu-bimorphism. Assume that p(1g,a) = a for
everya € S. Then ¢ defines an R-multiplication on S. Thus, ¢ is a Cu-bimorphism
satisfying

@(TIT27 CL) = SD(Th QD(T% a))a

for every ri,ro € R and a € S.
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PROOF. Let p: Rx S — S be a map as in the statement. Let ¢: RRcy S — 5
be the generalized Cu-morphism induced by ¢. We will show that ¢ is a Cu-
isomorphism. Consider the map

p:S—=>R®cy S, pla)=1p®a. (acb)

It is clear that p is a generalized Cu-morphism. Using the assumption on ¢ at the
third step, we deduce for each a € S that

popla) =@(lr ®a) = ¢(lg,a) = a.
Thus, ¢ o p = idg. For the converse, consider the generalized Cu-morphism p o
@: R®cy S = R®cy S. For each r € R and a € S we have that

pop(r®a)=1pr® ¢(r,a).
By Lemma 7.1.10, R ® S has an R-multiplication such that r1(re ® a) = (r172) @ a

for all r1,72 € R and a € S. It follows from Proposition 7.1.6 that po ¢ is R-linear.
Using this at the second step, we obtain for each r € R and a € S that

pop(r@a)=pog(r-(lg®a)) =r-(pop(lp®@a)) =r-(lr®a) =ra.

This shows that p o ¢ is the identity map on simple tensors in R ®cy S. It follows
that po p= idR®S.

In general, every PoM-isomorphism between Cu-semigroups automatically pre-
serves the way-below relation and suprema of increasing sequences, since these no-
tions are completely encoded in the order-structure. We clearly have that ¢ is an
isomorphism of positively ordered monoids. Therefore it is also a Cu-isomorphism.
It follows that ¢ is a Cu-bimorphism.

Let 1,79 € R and a € S. Since po ¢ = idrgs, we have that ro ® a =
1r ® ¢(ra,a). Using the R-multiplication of R ® S to multiply by r1, we deduce
that

(rrea)@a=r1-(re®a) =r1- (1 ® p(r2,a)) = r1 @ (re, a).
Applying ¢, we have that

p(rirz,a) = ¢((r1r2) ® a) = @(r1 @ p(re, a)) = @(r1, (2, a)),
as desired. O

THEOREM 7.1.12. Let R be a solid Cu-semiring, and let S be a Cu-semigroup.
Then the following are equivalent:

(1) The Cu-semigroup S has an R-multiplication.
(2) There exists a Cu-isomorphism between R ®c, S and S.
(3) The map S — R® S that sends a in S to 1g ® a is a Cu-isomorphism.

PRrROOF. It is clear that (3) implies (2). It follows from Lemma 7.1.10 that (2)
implies (1). To show that (1) implies (3), assume that S has an R-multiplication
@: R xS — S. By Proposition 7.1.6, the induced Cu-morphism ¢: R ®cy S — 5
is an isomorphism. It is straightforward to check that the inverse of ¢ sends a in S
to 1gp ® a. U

The following result should be compared with an analogous result for strongly
self-absorbing C*-algebras in [TWO07, Proposition 5.12].

PROPOSITION 7.1.13. Let R be a solid Cu-semiring, and let S be another Cu-
semiring. Then the following are equivalent:
(1) There is a Cu-isomorphism between R ®cy S and S.
(2) There exists a unital, multiplicative, generalized Cu-morphism R — S.
(8) There exists a unital, generalized Cu-morphism R — S.
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Moreover, if a map as in (3) exists, then it is unique (and therefore automatically
multiplicative). Furthermore, if 1g is a compact element, then any map as in (3)
is automatically a Cu-morphism.

PROOF. It is clear that (2) implies (3). Let a: R — S be a unital, generalized
Cu-morphism. This induces a map

Ya: RxS =S, (ra)—a(r)-a (reRacb)

It follows easily from the properties of « that ¢, is a generalized Cu-bimorphism
satisfying ¢ (1g,a) = a for every a € S. Then, it follows from Lemma 7.1.11 that
¢o is a Cu-bimorphism defining an R-multiplication on S.

Thus, using Theorem 7.1.12, we obtain that (3) implies (1). Moreover, by
Corollary 7.1.8, any two R-multiplications on S are equal. This implies that a map
satisfying (3) is unique (if it exists).

Let us show that (1) implies (2). By Lemma 7.1.10, the semigroup R ®cy S
has an R-multiplication. Therefore, by assumption, .S has an R-multiplication
p: Rx S — S. Consider the map

a:R— S, re—p(rls). (reR)

It is clear that « is a unital, generalized Cu-morphism. In order to show that « is
multiplicative, we consider the following map

Y: RxS—S8, (ra)— ¢(rlg)a. (r€ R,a€s)

It is easy to see that 9 is a generalized Cu-bimorphism satisfying ¢(1g,a) = a for
every a € S. By Lemma 7.1.11, we have that ¢ = . Using this at the third step,
we deduce that

a(rira) = p(rirz, 1s) = ¢(r1,¢(r2, 1s))
=1(r, (rz, 1s)) = @(r, 1s)p(rz, 1s) = a(ri)a(rz).
Thus, « is multiplicative, as desired.
Finally, if 1g is compact, then it is also clear from the definition that « is a
Cu-morphism. a

7.2. Cuntz semigroups of purely infinite C*-algebras

In this section, we study Cu-semigroups that are semimodules over the Cu-
semiring {0,00}. If A is a purely infinite, strongly self-absorbing C*-algebra (e.g.
03, O, or the tensor product of Oy with a UHF-algebra of infinite type), then
Cu(A) = {0, }.

In Theorem 7.2.2, we characterize the Cu-semimodules over {0, 00} as the Cu-
semigroups that are idempotent. We show that that tensor product of a given
Cu-semigroup S with {0, 00} is canonically isomorphic to Lat¢(.S), the semigroup
of singly-generated ideals in S; see Proposition 7.2.3.

In Proposition 7.2.8, we apply our results to Cuntz semigroups of C*-algebras
by showing that a (not necessarily simple) C*-algebra A is purely infinite if and
only if

Cu(A4) = {0,000} ®cu Cu(4).
We deduce that for every separable C*-algebra A, there are natural isomorphisms
of the following Cu-semigroups:

Cu(Oun ® A) 2 Lat(A) = Lat(Cu(A)) 2 {0, 00} @cu Cu(A),

see Corollary 7.2.13.
The following is easy to prove and hence we omit the details:
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LEMMA 7.2.1. The Cu-semiring {0, 00} is solid.

Recall that a commutative semigroup S is called idempotent if each of its ele-
ments is idempotent, that is, if 2a = a for every a € S. In the literature, an idempo-
tent, commutative semigroup S is also called a commutative band, or a semilattice
(with ‘join’ in the semilattice corresponding to addition in the semigroup).

THEOREM 7.2.2. Let S be a Cu-semigroup. Then, the following are equivalent:
(1) We have S = {0,000} ®cy S.
(2) The Cu-semigroup S has a {0, 00}-multiplication.
(3) The semigroup S is idempotent.

PRrROOF. Since {0,00} is a solid Cu-semiring, the equivalence of (1) and (2)
follows from Theorem 7.1.12. To show that (2) implies (3), let a be an element of
S. Since oo is the unit of the Cu-semiring {0, oo} and since 200 = oo in {0, 00}, we
obtain that

a=00-a=(20) a=2(c0-a)=2a,
as desired.

Next, let us show that (3) implies (2). So assume that S is an idempotent
Cu-semigroup. Consider the map

p:{0,00} xS =S5, (0,a) =0, (c0,a)a. (a€Sl)

We have that ¢ is a generalized Cu-morphism in the second variable. It is also
clear that ¢ preserves zero, order and suprema of increasing sequences (there are
no nontrivial ones) in the first variable. Using that S is idempotent, it follows that ¢
is additive in the first variable. By Lemma 6.3.2, we have that ¢ is a generalized Cu-
bimorphism. Then, we obtain from Lemma 7.1.11 that S has {0, co}-multiplication,
as desired. a

Recall that, for a given Cu-semigroup S, we denote by Lat¢(S) the Cu-semi-
group of singly-generated ideals in S, as considered in Proposition 5.1.7.

PROPOSITION 7.2.3. Let S be a Cu-semigroup. Then, there is a natural Cu-
isomorphism
{0, OO} Rcu S = Latf(S)
identifying oo ® a with 1d1(a).
Proor. Let S be a Cu-semigroup, and let ¢: S x {0,00} — S ®¢y {0,00}
denote the universal Cu-bimorphism. Consider the map

7: 8 x {0,00} = Lat¢(S), 7(a,0)=0, 7(a,00)=1Idl(a). (a€S).

It follows from Proposition 5.1.7 that 7 is Cu-bimorphism. Then, there is a Cu-
morphism
7: 8 ®cu {0,00} — Late(S),
such that 7 = 7 o . It is clear that 7 is a surjective Cu-morphism.
As shown in Paragraph 5.1.6, every ideal I in Lat¢(S) contains a largest element,
denoted by \/ I. We may therefore define a map

¢: Lat(S) — S ®cu {0,00}, I+ (\/I) ® 0.
It is easy to see that v is a Cu-morphism. Given a € S, we clearly have
Yo7 oy(a,0)=0=p(a,0).
We can also deduce that

P oTop(ac0)= (\/Idl(a)) ®oo=(00-a)®oco=a®occ=p(a0).
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Thus, we have shown that 1) o 7 o ¢ = ¢, which implies that ¢ o 7 is the identity
on S ®cy {0,00}. Therefore, the map 7 is an order-embedding, and therefore an
isomorphism. O

COROLLARY 7.2.4. Let S be a simple, nonzero Cu-semigroup. Then
{0,000} ®cu S = {0, 00}.

COROLLARY 7.2.5. Let S and T be two Cu-semigroups. Then there is a natural
isomorphism
Latf(S Xcu T) = Latf(S) Rcu Latf(T).

PRrROOF. It is clear that {0,00} = {0,00} ®cy, {0,00}. We then obtain, using
Proposition 7.2.3 at the first and last step, and using the associativity and symmetry
of the tensor product (see Corollary 6.3.6 and Paragraph 6.3.7) at the third step,
that

Lat¢(S ®@cu T) = (S @cu T') ®cy {0, 00}
= (S ®cy {0,00}) @cu (T'® {0, 00}) = Lat¢(S) ®cy Late (1),
as desired. O

THEOREM 7.2.6. Let S be a Cu-semigroup, and let a,b € S. Then, the following
are equivalent:
(1) We have 1®a <1®%b in {0,00} ®cy S, where 1 = oo is the unit of {0,00}.
(2) We have a oc* b.

PROOF. Let a,b € S. By Proposition 7.2.3, there is an isomorphism between
{0,00} ®¢cy S and Latg(S) that identifies the simple tensor 1 ® a with Idl(a). Then,
we have 1 ® a < 1® b in {0,00} ®c, S if and only if Idl(a) C Idl(b) in Lats(S),
which in turn happens if and only if a oc* b, as desired. a

PROPOSITION 7.2.7. Let S be a Cu-semigroup. Then {0,00} @cy S is unper-
forated, divisible and satisfies (0O5). Moreover, if S satisfies (06), then so does
{0,00} ®cu S.

ProoF. Set T = {0,00} ®cy S, which by Theorem 7.2.2 is an idempotent
Cu-semigroup. To show that it is unperforated, let a,b € T satisfy na < nb for
some n € N;. Since a = na and b = nb, we immediately get a < b. Similarly,
T is divisible. The statements about (O5) and (O6) follow directly by combining
Proposition 7.2.3 with Proposition 5.1.7. g

A not necessarily simple C*-algebra A is purely infinite if A has no characters
and if for any two positive elements x and y in A we have x 3 y whenever z is
contained in the ideal of A generated by y; see [KRO00, Definition 4.1], see also
[Bla06, p.450ff]. By [KRO00, Theorem 4.23], if A is purely infinite, then so is
A®K.

An nonzero element x in Ay is properly infinite if © @ z = x, considered in
Mjy(A). If we denote by [z] the class of x in Cu(A), then x is properly infinite if
and only if 2[z] = [z] and [z] # 0. By [KRO0O, Theorem 4.16], a C*-algebra is
purely infinite if and only each of its nonzero elements is properly infinite. Using
Theorem 7.2.2, we may reformulate the result of Kirchberg and Rgrdam as follows:

PROPOSITION 7.2.8. Let A be a C*-algebra. Then A is purely infinite if and
only if Cu(A) = {0,000} ®¢y, Cu(A).

It follows from Proposition 7.2.7 that the Cuntz semigroup of every purely
infinite C*-algebra is unperforated. This verifies Conjecture 5.6.18 for the class for
purely infinite C*-algebras.
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COROLLARY 7.2.9. Let A be a purely infinite C*-algebra. Then Cu(A) is nearly
unperforated.

Let A and B be two C*-algebras. In [KRO00, Question 5.12], Kirchberg and
Rgrdam ask if the minimal tensor product of A and B is purely infinite as soon
as one of A or B is purely infinite. Let us assume that A is purely infinite. By
Proposition 7.2.8, we have Cu(A) = {0,000} ®cy Cu(A). Using the associativity of
the tensor product in Cu, this implies that

Cu(A) ®cu Cu(B) = ({0,000} ®cu Cu(A)) ®@cy Cu(B)
= {0, 00} ®cu (Cu(4) ®cu Cu(B)) .
Recall from Paragraph 6.4.10 that there is a natural Cu-morphism
Ta,B: Cu(4) ®cuy Cu(B) = Cu(A Omax B).

If we compose with the Cu-morphism induced by the quotient *-homomorphism
from A ®pax B to A ®umin B, we obtain a natural Cu-bimorphism

T/_I{tigi Cu(4) ®cu Cu(B) = Cu(A Qmin B).
Then, we may reformulate [KR00, Question 5.12] as follows:
PROBLEM 7.2.10. Let A and B be two C*-algebras. Assuming that A or B is
purely infinite, does it follows that the Cu-bimorphism
TX%: Cu(4) ®cy Cu(B) = Cu(A Qmin B).
is an isomorphism?
Using the results in [KR0O], we obtain the following result, which is a partial
answer to Problem 6.4.11.
PROPOSITION 7.2.11. Let A and B be two C*-algebras. Assume that at least
one of the algebras is nuclear and O -stable. Then, the natural map
TAB: CU(A) ®Cu CU(B) — CU(A ®max B)
is an isomorphism.
COROLLARY 7.2.12. Let A be a C*-algebra and let B be a simple, nuclear,
purely infinite C*-algebra. Then, there are natural isomorphisms:
Cu(A® B) & Cu(4) ®cy Cu(B) = Cu(A) ®cy {0, 00}
COROLLARY 7.2.13. Let A be a separable C*-algebra. Then there are natural
isomorphisms between the following Cu-semigroups:
Cu(Oo ® A) = Lat(A) = Lat(Cu(A4)) =2 {0, 00} @cy Cu(A).

REMARKS 7.2.14. Note that it follows from our observations that a C*-algebra
A is purely infinite if and only if Cu(4) = Cu(4A ® O).

7.3. Almost unperforated and almost divisible Cu-semigroups

In this section, we study Cu-semigroups that are semimodules over the Cu-
semiring of the Jiang-Su algebra Z. We use Z to denote Cu(Z) and we begin by
showing that Z is a solid Cu-semiring, see Proposition 7.3.3. The main result of
this section is Theorem 7.3.8, where we characterize the Cu-semimodules over Z
as the Cu-semigroups that are almost unperforated and almost divisible. This can
be interpreted as a verification of the Cu-semigroup version of the Toms-Winter
conjecture, see Remark 7.3.9.
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Let A be a C*-algebra. Recall that V(A) denotes the Murray-von Neumann
semigroup of equivalence classes of projections in matrices over A. We use QT (A)
to denote the set of 2-quasitraces on A, see Section 5.2. By a famous result of
Haagerup, [Haald4], every 2-quasitrace on a unital, exact C*-algebra is a trace.
We let Lsc(QT5(A)) denote the set of lower-semicontinuous linear functions from
the cone QT5(A) to [0,00]. The Cu-semigroup L(QT5(A)) is defined as a certain
subset of Lsc(QT5(A)), see Paragraph 5.2.1; see [ERS11] for more details. If A is
simple and unital, then L,(QT4(A)) is defined as the elements in L(QT4(A)) that
are bounded by a finite multiple of the function 1 € L(QT,(A)) associated to the
unit of A.

The following result is the combination of work of many people and has ap-
peared in several (partial) versions in the literature. In the formulation presented
here, it can be found as Corollary 6.8 and Remark 6.9 in [ERS11]. Equivalent re-
sults and previous partial results can be found in Theorems 4.4 and 6.5 in [PTO07],
Theorem 2.6 in [BT07], Theorems 6.2 and 6.3 in [ABP11], Theorem 5.27 in
[APT11], and Theorem 5.5 in [BPTO08|.

PROPOSITION 7.3.1 (A number of people). Let A be a unital, separable, simple,
finite, Z-stable C*-algebra. Then the (pre)completed Cuntz semigroup of A can be
computed as:

W(A) = V(A)" U Ly(QTy(A4)), Cu(A) =V(A)*UL(QT,(A)).
In particular, if A is exact and has a unique tracial state, then
W(A) = V(A)U(0,00), Cu(A)=V(A)U(0,00].

7.3.2. Now let Z be the (completed) Cuntz semigroup of the Jiang-Su algebra
Z. Using Proposition 7.3.1, we can compute Z as

Z =NU (0, ],

where the elements of N C Z are compact and the elements of (0,00] C Z are
soft; for the concrete case of the Cuntz semigroup of the Jiang-Su algebra, this
computation has also appeared in [PTO07, Theorem 3.1]. (We are assuming here
that the set N contains 0.)

Using this decomposition into two parts, the addition, multiplication and order
on Z are defined as usual in each of the parts; see also Example 7.1.7. Given a
compact, nonzero element n € N C Z, we let n’ € (0, 00| denote the associated soft
element with the same number. Then, given n € N and a € (0, 00, we define n+a =
n' +a and na = n’a. Thus, the soft part of Z is additively and multiplicatively
absorbing. For a compact element n € Z and a soft element a € Z we have n < a
if and only if n’ < a; and we have a < n if and only if a < n’.

PROPOSITION 7.3.3. The Cu-semiring Z = N U (0, c0] is solid.

PRrOOF. By Proposition 7.1.6, it is enough to show that 1®a = a® 1 for every
a € Z. This follows easily for compact elements in Z, since they are multiples of
the unit. In the other case, if a € Z is a soft element, we can use the same argument
that was used in Example 7.1.7 to show that [0, oo] is solid. O

DEFINITION 7.3.4. Let S be a positively ordered monoid, let a € S, and let
k € Ny. We say that a is almost k-divisible if there exists x € S such that
kx < a < (k+1)z. We say that a is almost divisible if it is almost n-divisible for
every n € N;. We say that S is almost divisible if each of its elements is.

Recall from Definition 5.2.11 that a Cu-semigroup S is almost unperforated if
for all a,b € S, a < b whenever (n + 1)a < nb for some n € N. It is easily checked
that Z is almost unperforated and almost divisible. It then follows from the next
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result that every Cu-semigroup with Z-multiplication is almost divisible and almost
unperforated. The converse is shown in Theorem 7.3.8. The following lemma is
also used in the proof of Theorem 8.1.6, which is why we formulate it more general
than needed in this section.

LEMMA 7.3.5. Let S be a Cu-semimodule over the Cu-semiring R. Assume
that the unit element of R is almost divisible. Then S is almost unperforated and
almost divisible. In particular, R itself is almost unperforated and almost divisible.

PrOOF. Let n € N. Since 1g is almost divisible, there exists z € R such that
nz <1< (n+1)z. Then, for any a € S, we have

n(za) < a < (n+1)(za),

which shows that S is almost divisible.
To show that S is almost unperforated, let a,b € S be two elements satisfying
(n+ 1)a < nb for some n € N. Choose z € R such that nz <1 < (n+ 1)z. Then

a<z(n+1l)a<znb<b,
as desired. O

To prepare the proof of Theorem 7.3.8, we first provide some results that are
also of interest in themselves. We need to introduce some notation. Given a € S
and k,n € Ny, we set

w((k,n),a) ={x €S |nx<ka<(n+1l)z}.

Note that an element a € S is almost divisible if and only if u((k,n), a) is nonempty
for every k,n € N;. We think of u((k,n), a) as the set of those elements obtained by
‘approximately multiplying’ a by % With this idea in mind, the following Lemma
asserts that for almost unperforated semigroups this ‘approximate multiplication’
is ‘approximately ordered’.

LEMMA 7.3.6. Let S be an almost unperforated Cu-semigroup, let a,b € S, and

let k1,n1,ka,na € Ny such that % < nfil

(1) Ifa<b, then x <y for every x € u((k1,n1),a) and y € u((ka,n2),b).
(2) Ifa<b, then x K y for every x € p((k1,m1),a) and y € p((ka,n2),b).
)

PROOF. Let k1,n1, ks, o be as in the statement, and let « € u((k1,n1),a) and
RS M((kjg,nz),b). Then

nma < kia, kab < (na+1)y.
Multiplying the first equations by ko and the second by ki, we obtain that
k2n1I S k‘lea, klkzb S kl(n2 + 1)y

If a < b, then it follows that koniz < ki(ng + 1)y. Since ki(ng +1) < konq and S
is almost unperforated, we obtain that = < y.

In the second case, assuming a < b, it follows that koniz < ki(ng + 1)y.
Choose y’ such that ¢y < y and kenjz < ki(n2 + 1)y’. As in the first case, we
obtain that z < 3’. Then = < y, as desired. O

PROPOSITION 7.3.7. Let S be an almost unperforated Cu-semigroup, and let
a € S. Then, there exists a generalized Cu-morphism oy : Z — S with a,(1) = a if
and only if a is almost divisible.

If the map o exists, then it is unique. Moreover, it is a Cu-morphism if and
only if a is compact.
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PROOF. If there exists a generalized Cu-morphism a,: Z — S with a,(1) = a,
then for each n € N1 we have that

n.aa(l) = aa(l’) < Oéa(l) —a< aa(n-H) _ (n+ 1)0&1(%),

n n

which shows that a is almost divisible.

For the converse, let a € S be an almost divisible element. We define a map
aq: Z — S by considering the decomposition Z = NU (0,00]. For n € N C Z, we
set ag(n) =na = a+ .7. +a. For t € (0,00] C Z, we set

aq(t) = sup {z € p((k,n),a) | % <t}.

We first prove that this supremum exists, by finding an increasing cofinal sequence.
Choose numbers kq,nq € N for d € Ny such that

kq Kat1
nd ng+1+17

and sup e =¢.
a "

Since a is almost divisible, for each d we can choose an element x4 € p((k4,n4), a).
By Lemma 7.3.6, the sequence (z4)q C S is increasing. Moreover, it is easily
checked that for every £ € Q with £ < ¢ and for every z € u((k,n), a) there is an
index d such that < z4. It follows that a,(t) = sup, 24, which exists by (O1).

To show uniqueness, let 5: Z — S be a generalized Cu-morphism with (1) =
a. It is clear that B(n) = a(n) for all elements n € N C Z. Consider now
t € (0,00] C Z. As above, for each d € N; choose numbers k4,n4 € N; and an
element x4 such that

k kay1 kg _
s <o and stip pr=t, and zgq€ w((kq,nq),a).

It is easy to see that B(Z—j) € u((ka,nq),a) for each d € N;. By Lemma 7.3.6, we
deduce for each d that

k
zqg < B(55) < Tare.

Using this at the second step, and that /5 preserves suprema of increasing sequences
at the first step, it follows that

B(t) = sup B( 1) = supzg = a(t).
d d

It is left to the reader to check that «, preserves the zero element, the order, and
suprema of increasing sequences. It remains to prove that «, is additive. This is
clear for sums of two elements in N C Z. So let ¢1,t2 € (0,00] C Z.

For each d € Ny, choose numbers kfll), k:flg), ng € Ny such that for i =1,2:
£
ng

i (4)
kS kaiy

ng ngy1+17

For each d and i = 1,2, choose z.) € u((kl(j),nd),a). Then o, (t;) = sup, 3:((;) for

i =1,2. Moreover, we get that

and  sup = ;.
d

(1) (2) (1) (2) (1) (2)
kg kg Fapathary and  sup e Fa
> p

ng nag+1+1 d

=11+ to.

nd

Thus, for any sequence of elements (y4)q with yg € ,u((k((il) + kl(il), ng),a) we will
get a,(t1 + t2) = sup, ya. However, it is easily seen that .13((11) + ﬂcf) € ,u((kfil) +
k((i?),nd)7 a). Using (O4) at the second step, we obtain that

ag(ty +t2) = stcllp(xgl) + x&Q)) = Sl;p xfil) + sgp x((f) = ag(t1) + ag(ta).

It is left to the reader to show that «, preserves the sum of an element in N C Z
with an element in (0, c0] C Z.
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Finally, let us show that «, is a Cu-morphism if and only if a is compact.
Assume first that «, preserves the way-below relation. Since the unit element of Z
is compact, it follows easily that

a=aq(l) < ag(l) =a.

For the converse, assume that a is a compact element. We need to show that for
any two elements x,y € Z, we have that & < y implies that a,(z) < aq(y). This
is clear if  or y is an element in N C Z. So assume that z,y € (0,00] C Z.

Without loss of generality we may assume that x < y. Choose % € Q4 and
elements u, v such that

v < §<b wep((kn+2)a), vep((kn)a).

Since a < a, it follows from Lemma 7.3.6 that u < v. It also follows from
Lemma 7.3.6 and the definition of a, that a,(z) < wu and v < a4(y). Therefore

ag(z) <u << v < ag(y),
as desired. O

THEOREM 7.3.8. Let S be a Cu-semigroup. Then, the following are equivalent:

(1) We have S =2 Z ®@cy S.
(2) The semigroup S has Z-multiplication.
(8) The semigroup S is almost unperforated and almost divisible.

ProOF. By Proposition 7.3.3, the Cu-semiring Z is solid. Therefore, the equiv-
alence between (1) and (2) follows from Theorem 7.1.12. Since the unit of Z is
almost divisible, we obtain from Lemma 7.3.5 that every Cu-semigroup with Z-
multiplication is almost unperforated and almost divisible. This shows that (2)
implies (3).

To show that (3) implies (2), suppose that S is almost unperforated and almost
divisible. Using Proposition 7.3.7, we define a: Z x S — S by a(z,a) = a,(z) for
each a € S and z € Z. We claim that « is a Cu-bimorphism.

By Proposition 7.3.7, a(_, a) is a generalized Cu-morphism for each a € S. For
the other variable, it is also clear that «(n, -) is a Cu-morphism for eachn € N C Z.
So let t € (0,00] C Z. To show that a(t,_) preserves order, let a,b € S satisfy
a < b. By definition, we have

a(t,a) = sup {z € pu((k,n),a) | % <t}.

Thus, given any k,n € N satisfying % < t and given any element z € u((k,n),a),
we need to show that z < a(t,b). Choose k’,n’ € N; and an element y such that

.
Eo KK

n n'4+1’ n’

<t, yeu((k',n)b).
By Lemma 7.3.6, we have x < y. Therefore
x <sup{z € p((c,d),b) | 5 <t} =a(t,b),

from which we deduce that a(t,a) < «(t,b), as desired.
To show additivity in the second variable, let z € Z and let a,b € S. Consider
the following two maps from Z to S given by

Qaip = (2= a(z,a+ D)), ag+ay = (2 a(z,a) + a(zb)).

It is clear that both maps are generalized Cu-morphisms that send the unit of Z to
the element a + b. By Proposition 7.3.7, the map with this property is unique, and
therefore a(z, a+b) = a(z,a)+a(z,b). Analogously, one proves that a(z, sup,, a,) =
sup,, (z, ay,) for every z € Z and every increasing sequence (an,), C S.
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Thus, a: Zx S — S is a generalized Cu-bimorphism. It is clear that a(1,a) = a
for every a € S and it is straightforward to check that

(*) a(z122,a) = a(z1, (z2,a)),

for every z1,20 € Z and a € S.

It remains to show that for any ¢1,t5 € Z with ¢t; < t5 and for any a,b € S
with @ < b, we have that a(t1,a) < a(te,b). This is clear if t; or ¢2 is an element
in N C Z. Thus, we consider the case that t1,¢3 € (0,00], and without loss of
generality we may assume t1 < to. Then ¢; is necessarily finite, and 1z < tl_ltz in
Z. In order to show a(t1,a) < «a(ta,b), let (x,), C S be an increasing sequence
with a(tg,b) < sup,, . Using this at the fifth step, and using (*) at the third step,
we obtain that

a<b=a(lz,b) < a(t] ta,b)
(tl_laa(t27b))

(tl_l, sup x,) = sup(a(tl_l, Tn)).
n n

o
<o

Therefore, there exists an index ng such that a < Oz(tfl7 Zney). Then
alty,a) < alty, aty, o)) = a1, 2,,) < a(l,20,) = Tn,-

Hence «(tj,a) < a(ts,b), as desired. This finishes the proof that S has Z-
multiplication. (|

REMARK 7.3.9. The Toms-Winter conjecture, see [TWO09, Remarks 3.5] and
[Win12, Conjecture 0.1], predicts that for every unital, separable, simple, nonele-
mentary, nuclear C*-algebra A, the following conditions are equivalent:

(1) The algebra A is Z-stable, that is, we have A =2 Z ® A.
(2) The Cuntz semigroup Cu(A) is almost unperforated.
(3) The algebra A has finite nuclear dimension.

We can interpret Theorem 7.3.8 as the verification of the Cu-semigroup version
of the Toms-Winter conjecture. The analog of ‘Z-stability’ for a Cu-semigroup S
is the property that S = Z ®c¢, S, which is (1) of Theorem 7.3.8. The second
condition of the Toms-Winter conjecture is already formulated for Cu-semigroups.
However, in Theorem 7.3.8(3) we not only require that the Cu-semigroup be almost
unperforated but also almost divisible. We remark that not every Cuntz semigroup
of a simple C*-algebra is almost divisible, see [DHTWO09]. On the other hand, it
seems possible that the Cuntz semigroup of a simple C*-algebra is automatically
almost divisible whenever it is almost unperforated. Indeed, if the Toms-Winter
conjecture holds true, then this would be a consequence for at least the class of
nuclear C*-algebras.

It is not clear what the analog of condition (3) of the Toms-Winter conjecture
for Cu-semigroups should be. This would entail to define nuclearity and dimension
concepts for Cu-semigroups, which is not pursued here.

The following problem asks if there is an analog of Theorems 7.2.6, 7.4.11 and
7.5.11 for tensor products with Z.

PROBLEM 7.3.10. Let S be a Cu-semigroup, and let a,b € S. Characterize
when 1®a<1®bin Z ®cy S.

PROBLEM 7.3.11. When does axiom (O5), (O6) or weak cancellation pass from
a Cu-semigroup S to the tensor product Z ®@cy S?
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7.3.12. In general, axiom (O5) does not pass to tensor products with Z, see
Proposition 6.4.4. We have that Z satisfies (05), (O6) and weak cancellation itself.
Therefore, if S is inductive limit of simplicial Cu-semigroups, then Z ®c, S satisfies
the three axioms as well, seeProposition 6.4.6.

It seems likely that Problem 7.3.11 has a positive answer if S is assumed to be
algebraic.

We end this section with some structure results about Cu-semigroups with
Z-multiplication. For the next result, recall that 1’ € Z denotes the soft ‘one’.

PROPOSITION 7.3.13. Let S be a Cu-semigroup with Z-multiplication. Then:
(1) An element a € S is soft if and only if a = 1'a.
(2) For every functional A € F(S) and every a € S, we have A(a) = A\(1'a).

PROOF. Let us first show (1). So let a € S. To prove that 1'a is soft, let a’ € S
satisfy a’ < a. We need to show that a’ <, 1’a. Consider the increasing sequence
(%) of noncompact elements in (0,00] C Z. Since 1’ = sup, % in Z, we get
that

d < 1'a =sup 2 la.
k

Thus, there exists n € N such that a’ < "T’la, It is easy to verify that ”T’la <s la.
It follows that a’ <4 1'a, as desired

Conversely, assume that a € S is a soft element. It is clear that 1'a < a. To
show the converse inequality, it is enough to show that a’ < 1’a for every o’ € S
satisfying a’ < a. Given such d/, it follows from softness of a that there exists
k € N such that (k + 1)a’ < ka. Using this at the third step, we obtain that

d <ELd = L((k+1)d') < £(ka) = 1'a,
as desired.
To show (2), let A € F(S) and @ € S. The Cu-semigroup [0,c0] has a Z-
multiplication. Since A is a generalized Cu-morphism from S to [0, o0], it follows

from Proposition 7.1.6 that A is Z-linear. Using this at the first step, and using
that every element of [0, o] is soft, we deduce that

AM1's) = 1"A(s) = A(s),
as desired. |
The following result provides a partial answer to Problem 5.3.14.

PROPOSITION 7.3.14. Let S be a Cu-semigroup with Z-multiplication. Then the
subsemigroup Ssofy of soft elements is a Cu-semigroup. If S satisfies (05) ((06),
weak cancellation), then so does Ssoft -

PrOOF. By Theorem 5.3.11, Sgof is a subsemigroup of S that is closed under
suprema of increasing sequences. This show that Ssof satisfies (O1).

Claim 1: For every a € Ssof there exists an increasing sequence (ag)r C Ssof
such that a = sup, a; and such that ar < agy1 in S for each k.

To show this claim, let a € Sgor. Since S satisfies (02), there exists a rapidly
increasing sequence (sg)r C S such that a = supy, si. For each k € N, set

k=1
ap = Tsk.

It is easy to check that 1’ar, = ay, which by Proposition 7.3.13 implies that aj €
Ssoft- Moreover, for each & we have that % < kiﬂ in Z and that s; < sg4+1 in
S. Since the Z-multiplication on S is given by a Cu-bimorphism, we obtain that

_ k-1 ko —
g = 35k K 77 5k+1 = Gk+41,

for each k. It is clear that a = supy, a, which finished the proof of the claim.
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The same argument which showed claim 3 in the proof of Proposition 5.3.18
implies the following: For every two elements a,b € Ssof satisfying a < bin S, we
have that a < b in Ssor;. Together with claim 1, this verifies (02) for Sgog. Then,
axioms (03) and (04) for S follow from their counterparts in S.

Next, let us show that S satisfies (O5), assuming that S does. Solet a’,a,b’,b
and c¢ be elements in Sgog that satisfy

a+b<c, d<a, b Kb
Using that S satisfies (O5), there exists « € S such that
d+r<c<a+z, UV <z

Set y = 1'z, which by Proposition 7.3.13 is an element in Sgof. We claim that y
has the desired properties to verify (O5) for Seof. Indeed, using Proposition 7.3.13
again, we have that «’ = 1'a’, a = 1'a, c = 1'c and b’ = 1'l/. Therefore

d+y=1(@+z)<Ve=c<lV(a+a)=a+y, V=10)<1(z)=y,

as desired.
In the same way, one shows that S inherits (O6) from S. Finally, it is
straightforward to check that Syog is weakly cancellative whenever S is. O

7.4. The rationalization of a semigroup

In this section, we study Cu-semigroups that are semimodules over the Cu-
semiring of a strongly self-absorbing UHF-algebra. Given a supernatural number
q satisfying ¢> = ¢ and ¢ # 1, we let M, be the associated UHF-algebra, see
Paragraph 7.4.2. We use R, to denote Cu(M,). In Proposition 7.4.4, we show that
R, is a solid Cu-semiring.

In Definition 7.4.6, we recall the natural notions of g-unperforation and g¢-
divisibility for semigroups. The main result of this section is Theorem 7.4.10,
where we characterize the Cu-semimodules over R, as the Cu-semigroups that are
g-unperforated and g-divisible.

In Proposition 7.4.14, we apply the results to the Cuntz semigroup of a C*-al-
gebra A. In particular, we obtain that Cu(M,; ® A) = Cu(A) if and only if Cu(A)
is g-divisible and ¢-unperforated. We also deduce that the Cuntz semigroup of
a C*-algebra A is nearly unperforated whenever A tensorially absorbs a strongly
self-absorbing UHF-algebra, see Corollary 7.4.15. This verifies Conjecture 5.6.18 in
that case.

7.4.1. A supernatural number ¢ is a formal product

q=[I»
keN

where pg, p1, P2, ... is an enumeration of all prime numbers and where each ny is
a number in {0,1,2,...,00} that denotes the multiplicity with which the prime py,
occurs in g. By definition, zero is not a supernatural number. Given supernatural
numbers ¢ = [], pi"™* and r = [], pp*, their (formal) product is given by ¢r =
[1, pi* ™. Analogously one can naturally define the product of infinitely many
(super)natural numbers [, .y ¢n in the obvious way. If ¢ = ¢?, then each ny is
either 0 or oo.

We identify the nonzero natural numbers with the supernatural numbers of
the form [T, ypp* where >7, cnr < co. In particular, the number ‘one’ is the
supernatural number [], pp.* where each ny is zero.
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Let g be a supernatural number satisfying ¢ = ¢°>. We write Z [ﬂ for the ring
obtained by inverting in Z all primes that divide ¢, that is:
Z [5] =Z H% |p primemqu :
Then, we let K, denote the subsemiring of nonnegative numbers in Z [ﬂ, that is:
K,=Q:NZ [5] .
For example, we have
Ki=N={0,1,2,...}, Ky~=Q,NZ[3]=N[1].

Then K| is a unital subsemiring of Q, and all unital subsemirings of Q4 arise this
way.

For the rest of the paragraph, we fix a supernatural number ¢ satisfying ¢ = ¢>
and ¢ # 1. We equip K, with the natural algebraic order. Recall that, for a
positively ordered monoid M, we denote by Cu(M) the Cu-completion of the PreW-
semigroup (M, <), see Paragraph 5.5.3. Then, we define

R, = Cu(K,).

It follows from the results about algebraic Cu-semigroups in Section 5.5 that R, is a
weakly cancellative Cu-semigroup satisfying (O5) and (O6), and whose submonoid
of compact elements is canonically identified with K. It is then straightforward to
check that there is a decomposition of R, as

R, = K,U(0, 0],

where K, C R, are the compact elements in R,, and where (0,00] C Ry is the
submonoid of nonzero soft elements in R,.

Using that K is a semiring, we can define a product on R,. In Paragraph 8.2.1,
this construction will be carried out in greater generality. Here, we only consider
the concrete case of R,.

The order and semiring-structure of R, are so that the inclusion of K, in R, and
the inclusion of (0,00] in R, are order-embeddings and semiring-homomorphisms.
We let v: K; — [0,00] be the natural inclusion map. Let a € K, and ¢t € (0, c0].
Then their sum in Ry is given as a+t = ¢(a)+t € (0,00]. If a = 0, then at = 0 € K.
If a is nonzero, then the product of a and ¢ in R, is given as at = v(a)t € (0, c0].
Moreover, we have a < t in R, if and only if «(a) < ¢, and we have ¢ < @ in R, if
and only if t < i(a).

Thus, the submonoid of soft elements in R, is additively and multiplicatively
absorbing. It is straightforward to check directly that the product on R, is a Cu-
bimorphism and that the unit element of K, is also a unit for R,. This gives R,
the structure of a Cu-semiring.

7.4.2. Given a nonzero supernatural number ¢, one associates a UHF-algebra
M, as follows: If g is finite, then M, denotes the C'*-algebra of ¢ by ¢ matrices. If
q is infinite, then we choose a sequence ng, ni, ng, ... of prime numbers such that ¢
is equal to the product [],~,nk. Then, we set

My =) M,
k=0

The isomorphism type of M, does not depend on the choice of sequence (ny)g.
Let ¢1 and g2 be two nonzero supernatural numbers. Then ¢; = ¢» if and only
if My, = M,,. Moreover,
MQ1 ® qu = Mthqz'
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The UHF-algebra M, is said to be of infinite type if M, = M &M, and M, # C.
Equivalently, we have ¢ = ¢% and ¢ # 1. It is known that every UHF-algebra of
infinite type is strongly self-absorbing, see [TWO07].

PROPOSITION 7.4.3. Let q be a supernatural number satisfying ¢ = ¢*> and
q# 1. Then
R, = Cu(My).

Proor. It is well-known that M, is a unital, separable, simple, Z-stable C*-
algebra with stable rank one and unique tracial state. The Ky-group of M, is

isomorphic to Z [ﬂ . Since M, has stable rank one, the positive part of the ordered
Ky-group is naturally isomorphic with V' (M,). We therefore have that V(M) =
Qirnz [ﬂ = K. Then it follows from Proposition 7.3.1 that

Cu(M,) = V(M) U (0,00] = K, U(0,00] = Ry,
as desired. O

PROPOSITION 7.4.4. Let q be a supernatural number satisfying ¢ = ¢> and
g # 1. Then Ry is a solid Cu-semiring.

PrOOF. By Proposition 7.1.6, it is enough to show that 1 ®a = a®1 for every
a € R,. If a is a nonzero, compact element in R, then there are k,n € N such
that n|q and a = % Then, using only compact elements, we have

_ E _ 1 o1 _k _
Ia=r@ =0k, @ =20t =a®1.
For a soft element in R,, one can apply the same argument that was used in
Example 7.1.7 to show that [0, c0] is solid. O

We remark that a more general result will be proved in Theorem 8.3.13.
The following result follows by combining the observations in Paragraph 7.4.2
with Proposition 7.4.3 and Proposition 6.4.13.

PROPOSITION 7.4.5. Let q and r be supernatural numbers satisfying q = ¢> # 1
and r =12 #£1. Then R, ®cu Ry = Ry,

The concepts of n-unperforation and n-divisibility of a positively ordered mo-
noid are well-known for a natural number n. The following definition is a straight-
forward generalization to supernatural numbers.

DEFINITION 7.4.6. Let S be a positively ordered monoid, and let ¢ be a nonzero
supernatural number. We say that S is g-unperforated if for every finite number n
dividing ¢, and for every two elements a,b € S we have a < b whenever na < nb.

We say that S is g-divisible if for every finite number n dividing ¢, and for
every a € S, there exists z € S such that a = nz.

REMARKS 7.4.7. Let S be a positively ordered monoid, and let n be a nonzero
natural number. We let p,: S — S be the map that multiplies each element in S
by n.

(1) We have that S is n-divisible if and only if yu, is surjective.

(2) We have that S is n-unperforated if and only if p,, is an order-embedding.

(3) Let ¢ be an nonzero supernatural number, and let ¢°° denote its infinite
product with itself. Then S is ¢-divisible if and only if S is ¢*°-divisible. Similarly,
S is g-unperforated if and only if S is ¢*°-unperforated.

(4) Let ¢oo be the largest supernatural number, for which each prime has infinite
multiplicity. A positively ordered monoid S is divisible if it is n-divisible for every
n € Ny, which is equivalent to being ¢~-divisible. Similarly, S is unperforated if it
is n-unperforated for every n € N, or, equivalently, if if is g.o-unperforated.
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LEMMA 7.4.8. Let S be a positively ordered monoid, and let q be a supernatural
number with q # 1.

(1) If S is g-divisible, then S is almost divisible.

(2) If S is q-unperforated, then S is nearly unperforated and therefore also
almost unperforated.

ProOOF. To show the first statement, assume that S is a g-divisible, positively
ordered monoid. Let ¢ € S and let n € N;. We need to find x € S such that
nr<a<(n+1)z.

Choose a number d > 2 that divides g. Since the set {d% |k e N+} is dense

1

in Q4, we can find r and k in Ny such that -5 < 7z < % Since S is d-divisible,

there exists « € S such that d*z = a. Then
n(rz) < dz =a < (n+1)(rz),

which shows that the element rx has the desired properties to verify that S is
almost divisible.

To prove the second statement, assume that S is a g-unperforated, positively
ordered monoid. Choose a number d > 2 that divides ¢. To show that S is nearly
unperforated, let a and b be two elements in S satisfying a <, b. This means that
there exists ng € N such that na < nb for all n € N with n > ng. Choose k € N
such that d®* > ng. Then d*a < d*b. As observed in Remarks 7.4.7, we have that
S is dF-unperforated. Thus, we obtain that a < b, as desired.

We have seen in Proposition 5.6.3 that near unperforation implies almost un-
perforation in general. g

LEMMA 7.4.9. Let S be a Cu-semimodule over the Cu-semiring R, and let ¢ be
a supernatural number with ¢ # 1. Assume that the unit element of R is q-divisible.
Then S is q-unperforated and q-divisible. In particular, R itself is q-unperforated
and q-divisible.

PrOOF. The proof is analogous to that of Lemma 7.3.5 and is left to the
reader. ]

THEOREM 7.4.10. Let S be a Cu-semigroup, and let q be an supernatural num-
ber satisfying ¢ = q> and q # 1. Then, the following are equivalent:
(1) We have S = Ry, ®cy S.
(2) The Cu-semigroup S has Ry-multiplication.
(38) The Cu-semigroup S is q-divisible and g-unperforated.

Proor. By Proposition 7.4.4, the Cu-semiring R, is solid. Therefore, the
equivalence between (1) and (2) follows from Theorem 7.1.12. The unit of Ry is
clearly g-divisible. Therefore, it follows from Lemma 7.4.9 that (2) implies (3).

Finally, let us show that (3) implies (2). So suppose that S is n-divisible and
n-unperforated for every n € N that divides ¢. It follows from Lemma 7.4.8 and
Theorem 7.3.8 that S has Z-multiplication. By Lemma 7.1.11, it is enough to define
a generalized Cu-bimorphism

p:Ryx S =8
such that ¢(1,a) = a for each a € S. Recall that Ry = K, LI (0, 00], where K, is a
unital subsemiring of Q. For r € (0, 00] C R, we use the Z-multiplication on S to
define ¢(r,_). So let r € K,. Then there exist unique coprime integers n,k € N4
such that r = % and n divides ¢q. Consider the map p,: S — S that multiplies
each element in S by n. Since S is n-divisible and n-unperforated, the map ., is
an PoM-isomorphism and therefore a Cu-isomorphism. Given a € S, we set

p(r,a) = k' (a).
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It is now straightforward to check that ¢ is a Cu-bimorphism. It is also clear that
©(1,a) = a for each a € S. Therefore, we may apply Lemma 7.1.11 to deduce that
S has Rg-multiplication. a

THEOREM 7.4.11. Let S be a Cu-semigroup, let a,b € S, and let q be a super-
natural number satisfying ¢ = ¢°> and q # 1. Then, the following are equivalent:

(1) Wehave 1®a<1®b in Ry ®cy S.
(2) For each o' € S satisfying a’ < a, there exists n € N dividing q such that
na’ < nbin S.

PRrOOF. First, let us show that (1) implies (2). By definition, R, is the Cu-
completion of the (algebraically ordered) W-semigroup (K4, <). By Theorem 6.3.5,
we have that

Rq Qcu S = Y (Kq QPrew S) .

Let a: K ®prew S — Rq ®cu S denote the universal Cu-morphism of the Cu-
completion. The underlying positively ordered monoid of K; ®prew S is

Ky ®pom S =N {ﬂ ®poM S.

Then, given two elements x,y € S, it is easy to see that 1@z < 1®y in K;®pom S
if and only if there exists a natural number n dividing ¢ such that nz < ny in S.
Now, let a,b € S satisfy 1 ® a <1®b in R; Qcy S, and let o’ € S satisfy o’ < a.
Using at the second step that the unit of R, is a compact element, it follows that

a(l®d)=10d <1®b=ca(l1®Db)

in Ry ®cy S. By properties of the Cu-completion, we deduce that 1 ®a’ < 1®0b in
K, ®prew S. Hence, 1 ® @’ <1®bin K, ®pom S. As observed above, this implies
that there exists n € N dividing ¢ such that na’ < nbin S. This verifies (2).

Next, let us show that (2) implies (1). Choose a rapidly increasing sequence
(ar)r C S such that a = supy, ar. By assumption, for each k there exists ny € N
that divides ¢ and such that niay < ngb. Since ny is divisible in R4, we deduce
that

1®a, = (nkn%c)(@ak:n*lk@(nkak)S,%,C@(nkb): (nk,%k)®b=1®b.

Since this holds for each k, and since 1 ® a = sup,, (1 ® ax) in Ry ®cy S, we obtain
that 1 ® a < 1® b, as desired. O

PROPOSITION 7.4.12. Let q be a supernatural number satisfying ¢ = ¢° and

q # 1. Let (dp)ren be a sequence of natural numbers such that q¢ = [],cydk.
Then Ry is isomorphic to the limit of the following inductive system of simplicial
Cu-semigroups:

< do. = d1. = do

N—N—=N-—=....
Consequently, if we have given a Cu-semigroup S, then Ry ®cy S is isomorphic to
the limit of the inductive system

d d d
e

PRrROOF. Consider the following inductive system, where the map at the k-th
step is multiplication by dj:

d d d
NSNS N2 L

It is straightforward to check that the inductive limit of this system in PoM is

N [ﬂ If we endow N and N [ﬂ with auxiliary relations equal to their partial
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order, then we also have that

N (L] = Weoling (N N2 N2 )
Applying the reflection functor v: PreW — Cu, and using also Corollary 3.1.11, we
obtain that

RqEW(N[%})%V(W-@(N&N$N$...))
gcu-@(ﬁﬂﬁﬂN%...y

as desired. The result for Ry ®cy S follows from the limit presentation for R, in
combination with Proposition 6.4.1. g

COROLLARY 7.4.13. Let S be a Cu-semigroup, and let q be a supernatural num-
ber satisfying q = q*> and q # 1. If S satisfies (05) (resp. (06), weak cancellation),
then so does S ® Ry.

Proor. By Proposition 6.4.6, each of the axioms (05), (O6) and weak can-
cellation is preserved by taking the tensor product with a Cu-semigroup that is
an inductive limit of simplicial Cu-semigroups. Therefore, the result follows from
Proposition 7.4.12. O

PROPOSITION 7.4.14. Let A be a C*-algebra, and let q be a supernatural number
satisfying ¢ = ¢*> and ¢ # 1. Then there are natural isomorphisms

Cu(M,; ® A) = Cu(My) ®cy Cu(4) = Ry ®cu Cu(4).

In particular, we have Cu(A® M,) = Cu(A) if and only if Cu(A) is g-unperforated
and q-divisible.

PROOF. The isomorphism on the left follows from Proposition 6.4.13 since M,
is an AF-algebra. By Proposition 7.4.3, we have Cu(M,) = R,, which gives the
isomorphism on the right. O

COROLLARY 7.4.15. Let A be a C*-algebra. If A tensorially absorbs a UHF
algebra of infinite type, then Cu(A) is nearly unperforated.

PROOF. Let ¢ be a supernatural number such that ¢> = ¢ and ¢ # 1 and
A= M,® A. By Proposition 7.4.14, we have that Cu(A) is g-unperforated. Then,
it follows from Lemma 7.4.8 that Cu(A) is nearly unperforated. O

7.5. The realification of a semigroup

In this section, we study Cu-semigroups that are semimodules over the Cu-
semiring [0,00]. We have already shown in Example 7.1.7 that [0,00] is a solid
Cu-semiring. It is also known that [0, 00] is the Cuntz semigroup of a C*-algebra,
called the Jacelon-Razak algebra R, see Remark 7.5.1.

In Theorem 7.5.4, we characterize the Cu-semimodules over [0, cc] as the Cu-
semigroups that are unperforated, divisible and that contain only soft elements.
We observe in Remark 7.5.2 that a Cu-semigroup has [0, oo]-multiplication if and
only if it has ‘real multiplication’ in the sense of Robert, [Rob13a]. Given a Cu-
semigroup S, Robert defines a ‘realification’ Sg, which is a Cu-semigroup with real
multiplication satisfying a natural universal property. In [Rob13a, Remark 3.1.5],
Robert suggests that the realification of a Cu-semigroup can be considered as the
tensor product of S with [0, c0]. We verify this in Proposition 7.5.9.
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REMARK 7.5.1. The Cu-semiring [0, oc] is the Cuntz semigroup of the stably
projectionless C*-algebra known as the Jacelon-Razak algebra. This algebra has
been studied in [Jacl3], where it is denoted by W. Following Robert, we denote
the Jacelon-Razak algebra by R, see [Rob13a].

Using the result in [Jac13], the Cuntz semigroup of R was computed by Robert,
[Rob13a, § 5] as

Cu(R) [0, 0]

REMARK 7.5.2. Let S be a Cu-semigroup. In [Rob13a, Definition 3.1.2],
Robert defines S to have real multiplication if there exists a map

(0,00] x S — S, (t,a)—t-a, (te€(0,00],a€S)

that preserves addition, order and suprema of increasing sequences in each variable,
and such that 1-a = a for every a € S. It is clear that such a map extends uniquely
to a generalized Cu-bimorphism

w:[0,00] x S =S,

satisfying ¢(1,a) = a for each a € S. As observed in Example 7.1.7, we have that
[0, 00] is a solid Cu-semiring. Thus, we may apply Lemma 7.1.11 to deduce that S
has a [0, co]-multiplication in the sense of Definition 7.1.3.

To summarize, a Cu-semigroup has real multiplication in the sense of Robert
if and only if it is a Cu-semimodule over the solid Cu-semiring [0, oo].

LEMMA 7.5.3. Let S be a Cu-semigroup with Z-multiplication. Then the map
w: 0,00l xS =S, (t,a)—t-a, (t€]0,00],a€S5)
is a Cu-bimorphism that induces an isomorphism
@ [0,00] @cu S = Seofe-

PROOF. The map ¢ is a restriction of the Cu-bimorphism defining the Z-
multiplication. Therefore, ¢ is a Cu-bimorphism. By Proposition 7.3.14, we have
that the submonoid Sy of soft elements in S is a Cu-semigroup. Moreover, by
Proposition 7.3.13, an element a in S is soft if and only if 1’a = a, where 1’ denotes
the ‘one’ in the submonoid [0, 00] = Zgot C Z of soft elements in Z. Therefore, ¢
maps into Ssorr. We define a map, which will turn out to be the inverse of @, as
follows:

¥ Ssoft = [0,00] ®cu S, a1 ®a. (a € Ssom)
It is easy to see that v is a generalized Cu-morphism and that ¢ o is the identity
on Ssoft- Let t € [0,00] and a € S. Using that [0, 00] and S have Z-multiplication,

it follows from Lemma 7.1.10 (and also Corollary 7.1.8) that 1’ ® (t-a) =t ® a in
[0,00] ®cu S. Using this at the third step, we deduce that

Yop(ta)=9(t-a)=1"®(t a)=t®a.

This implies that 1o is the identity on [0, 00]®cy.S, and hence @ is an isomorphism,
as desired. O

THEOREM 7.5.4. Let S be a Cu-semigroup. Then, the following are equivalent:
(1) We have S = [0,00] Qcy S.
(2) The semigroup S has [0, oo]-multiplication.
(8) The semigroup S is almost unperforated and almost divisible, and every ele-
ment of S is soft.
(4) The semigroup S is unperforated and divisible, and every element of S is soft.
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PROOF. Since [0, 0] is a solid Cu-semiring, the equivalence between (1) and
(2) follows from Theorem 7.1.12. It is clear that (4) implies (3). Let us show that
(2) implies (4). To show that S is unperforated, let a,b € S such that na < nb for
some n € Ny. Since in [0, 00] we have 1 = 1n, we obtain that

a=(in)-a=121 (na)< L. (nb)=0o.

It is also clear that S is divisible.

Next, let us show that (3) implies (1). By Theorem 7.3.8, we have that S has
Z-multiplication. Using Lemma 7.5.3 to obtain the first isomorphism, and using
the assumption for the second equality, we obtain that

[Oa OO] @cu S = Ssoft = Sa
as desired. O

LEMMA 7.5.5. Let S be a Cu-semigroup. Then there is a natural isomorphism
[07 OO} ®Cu S = (R2°° ®Cu S)soft-

PROOF. Since Rse has Z-multiplication, it follows from Lemma 7.1.10 that
Rox ®cy S has Z-multiplication. Then, using Lemma 7.5.3 to obtain the last

isomorphism, and using that [0,00] = [0,00] ®cy Ro~ at the first step (which
follows from a second usage of Lemma 7.5.3), we obtain that

[07 OO} ®CU S = ([07 OO] ®Cu R2°°) ®Cu S
= [0,00} Qdcu (R2°° Qdcu S) = (R2°° Rcu S)softa
as desired. g

PROPOSITION 7.5.6. Let S be a Cu-semigroup. If S satisfies (O5) (resp. (06),
weak cancellation), then so does [0, 00] @cy S.

PROOF. Assume that S is a Cu-semigroup satisfying (O5). By Corollary 7.4.13,
the tensor product R~ ®@cy, S satisfies (0O5). Since Ry~ ®¢y S has Z-multiplication,
it follows from Proposition 7.3.14 that the subsemigroup of soft elements in the
tensor product R ®cy S is a Cu-semigroup satisfying (O5). Now the desired
result follows from Lemma 7.5.5. It is proved analogously that axiom (O6) and
weak cancellation pass from S to [0, c0] ®cy S. O

7.5.7. Let S be a Cu-semigroup. Recall from Paragraph 5.2.1, that there is a
natural map
S — Lsc(F(S)), awra, (a€S)

where F'(S) is the cone of functionals on S.

In [Rob13a, § 3.1], Robert defines the realification of S as the smallest subsemi-
group of Lsc(F'(S)) that is closed under passing to suprema of increasing sequences,
and which contains all elements of the form %d for some n € N1 and some a € S.
We denote the realification of S by Sg. In [Rob13a, Proposition 3.1.1], it is shown
that Sg is a Cu-semigroup. Moreover, if S satisfies (O5’), the original version of the
almost algebraic order axiom, then so does Si. In Proposition 7.5.9, we show that
S is naturally isomorphic to [0,00] ®cy S. Then, it follows from Proposition 7.5.6
that Sg satisfies (O5) whenever S does.

LEMMA 7.5.8. Let S be a Cu-semigroup. Consider the map ¢: S — [0, 00]®cuS
that sends a in S to 1 @ a. Then, given a functional A € F([0,00] @cy S), the
composition A o9 is a functional in F(S). Moreover, the assignment

0: F([0,00] ®cu S) = F(S), A+ Ao,

is an isomorphism of topological cones.
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PROOF. We first define a map that will turn out to be the inverse of §. Given

a functional p in F(S), consider the map
[0,00] X § = [0,00], (t,a) > t-pula).
It is straightforward to check that this is a generalized Cu-bimorphism, which there-
fore induces a generalized Cu-morphism
fi: [0,00] ®cy S — [0, 00].
This means that & is a functional in F([0, 00] ®cy S) such that a(t ® a) =t - u(a)
for each ¢ € [0,00] and a € S. This defines a map
i F(S) > F(0,00) ©cu S), g i (1€ F(S))

Given p in F(S) and a € S, we deduce that

00 (u)(a) =0(i)(a) = p(1 ®a) =1 p(a) = p(a).
Thus, 6o is the identity on F(S). Conversely, let A be a functional in F ([0, 00] ®cy
S). Since [0, 00] is solid, it follows from Proposition 7.1.6 that A is automatically
[0, 0o]-linear. Using this at the last step, we deduce for each ¢t € [0,00] and a € S
that

Yo N)(t®a)=1t-0N)(a) =tA1®a) = At ®a).
It follows that ¢ o @ is the identity on F(]0,00] ®cy S). It is straightforward to
check that # and i are continuous and linear, which shows the desired result. [

PROPOSITION 7.5.9. Let S be a Cu-semigroup. Then the natural map
p:[0,00] x S — Sg C Lsc(F(S)), (t,a)—~t-a, (t€][0,00],a€S)
is a Cu-bimorphism that induces an isomorphism
@: 0,00 ®cu S = Sg.

PROOF. It is straightforward to check that ¢ is a generalized Cu-bimorphism.
By universal properties of the tensor product, the induced map ¢ is a generalized
Cu-morphism. It follows easily from the definition of Sk that ¢ is surjective.

Next, we show that ¢ is an order-embedding. Consider the isomorphism
0: F([0,0] ®cy S) — F(S) from Lemma 7.5.8. It induces an isomorphism of
positively ordered monoids

0% : Lsc(F(S)) — Lsc(F([0,00] ®cu S)), fr> fob.

We let

I': [0,00] ®cy S — Lsc(F([0, 0] ®cy S)),
denote the canonical map that sends z € [0,00] ®cy S to Z. Then, for ¢ € [0, o0]
and a € S and A € F([0,00] ®cy S), we have that

Ft®a)(A) =At®@a)=t-0(\)(a) = p(t,a)(0(N) = (6" 0 p)(t ®a)(N).

This implies that T' = 6* o ¢. The situation is shown in the following commutative
diagram:

[0, 00] @y S —— = Lsc(F(S))

r

o~ g*

Lsc(F([0,00] ®cy S))

It follows from Theorem 7.5.4 that the Cu-semigroup [0, 00] ®¢y, S is almost unper-
forated and that each of its elements is soft. Then Theorem 5.3.12 implies that the
map [ is an order-embedding. Since 6* is an order-isomorphism, it follows that @
is an order-embedding. Thus, ¢ is an isomorphism of positively ordered monoids,
and consequently a Cu-isomorphism. g
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COROLLARY 7.5.10. Let S be a Cu-semigroup. Then, there are canonical iso-
morphisms
[O, OO] ®cu S = SR = (Z ®cu S)soft-
In particular, if S has Z-multiplication, then there are isomorphisms

[0,00} Qcu S = SR = Ssoft~

ProOF. This follows by combining Lemma 7.5.3 with Proposition 7.5.9. (No-
tice that [0, 00] ®cy Z = Zsorr = [0, 00].) a

THEOREM 7.5.11. Let S be a Cu-semigroup, let a,b € S. Then, the following
are equivalent:
(1) We have 1®a <1®b in [0,00] ®cy S.
(2) We have i < b in Lsc(F(S)).
(8) For every a’ € S satisfying o’ < a, and every € > 0, there exist k,n € N
such that (1 —¢) < £ and ka’ <nb in S.

PROOF. As shown in Proposition 7.5.9, there is an isomorphism between the
tensor product [0, 00]®cy, S and Sg that identifies 1®a with @ and 1®b with b. This
shows the equivalence between (1) and (2). The equivalence between statement (2)
and (3) is shown in Proposition 5.2.14. O

Let A be a C*-algebra. It is shown in [Rob13a, Theorem 5.1.2] there there is
a natural isomorphism between Cu(A ® R) and Cu(A)g. Using Proposition 7.5.9
we can rephrase the result of Robert as follows:

PROPOSITION 7.5.12. Let A be a C*-algebra. Then there are natural isomor-
phisms
Cu(A®R) = Cu(A) ®cy Cu(R) = Cu(A) ®cy [0, 0]

In particular, we have Cu(4A @ R) & Cu(A) if and only if Cu(A) is unperforated,
divisible and each element in Cu(A) is soft (or equivalently, purely noncompact).

7.6. Examples and Applications

7.6.1. Let D be a unital, separable, strongly self-absorbing C*-algebra. As
mentioned before in Proposition 7.1.4, it is known that D is nuclear and simple and
that D is either purely infinite, in which case we have Cu(D) = {0, 00}, or that
D is stably finite with unique tracial state. The only known examples of purely
infinite, strongly self-absorbing C*-algebras are the Cuntz algebras O, and Os,
and the tensor products of Oy with a UHF-algebra of infinite type. It follows from
the Kirchberg-Phillips classification theorem that these are the only purely infinite,
strongly self-absorbing C*-algebras satisfying the the Universal coefficient theorem
(UCT).

Let us assume that D is stably finite. In that case, the only known exam-
ples are the Jiang-Su algebra Z and the UHF-algebras of infinite type M, see
Paragraph 7.4.2. Each of these algebras satisfies the UCT. We also have that D
is Z-stable, by [Winl1, Theorem 3.1], see also Proposition 8.1.8. Therefore, it
follows from Proposition 7.3.1 that the Cuntz semigroup of D can be computed as

Cu(D) =2 V(D) U (0, o0].

By [Rgr04, Theorem 6.7], D has stable rank one. Therefore, V(D) is a cancellative,
algebraically ordered monoid that is isomorphic to the positive part of Ko(D).
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We conclude that the only known Cuntz semigroups realized by stably finite,

strongly self-absorbing C*-algebras are the following:

Z=NU(0,00] = Cu(Z), R,=N H L1 (0, 0] = Cu(M,).
It follows from the K-theory computations in [TWO07, Proposition 5.1] that the
Cuntz semigroups Z and R, are the only Cuntz semigroups of stably finite, strongly
self-absorbing C'*-algebras that satisfy the UCT.

We have seen that Z and R, (and also {0,00}) are solid Cu-semiring; see e.g.
Proposition 7.3.3 and Proposition 7.4.4. Therefore, the Cuntz semigroup of every
strongly self-absorbing C*-algebras satisfying the UCT is a solid Cu-semiring.

It is an open problem whether every nuclear C*-algebra satisfies the UCT. It
is also unclear if there exist strongly self-absorbing C*-algebras that do not satisfy
the UCT. More modestly, we ask the following question:

PROBLEM 7.6.2. Given a strongly self-absorbing C*-algebra D, is the Cuntz
semiring Cu(D) a solid Cu-semiring?

As noted in Paragraph 7.6.1, the answer is ‘yes’ for every strongly self-absorbing
C*-algebra satisfying the UCT. In Section 8.3, we provide a complete classification
of solid Cu-semirings. We remark that even when excluding Cu-semirings that are
elementary or have noncompact unit, there exist solid Cu-semirings that are not
the Cuntz semigroup of any known strongly self-absorbing C*-algebra, see Theo-
rem 8.3.13.

We can summarize Corollary 7.2.13, Proposition 7.4.14 and Proposition 7.5.12
as follows:

PROPOSITION 7.6.3. Let A and D be two C*-algebras. Assume that either D =
R or that D is a (unital) separable, strongly self-absorbing C*-algebra satisfying the
UCT but not equal to Z. Then, there is a natural isomorphism

Cu(A® D) = Cu(A) ®c, Cu(D).

7.6.4. Recall that a C*-algebra A is said to have strict comparison of positive
elements if for any two positive elements z,y € My, (A) the following holds: If z
is contained in AyA, the closed two-sided ideal generated by y, and if d(z) < d(y)
for every dimension function d on A satisfying d(y) = 1, then z Z y (z is Cuntz
subequivalent to y). It was shown by Regrdam that a C*-algebra A has strict com-
parison of positive elements if and only if its pre-completed Cuntz semigroup W (A)
is almost unperforated, [Rgr04, Proposition 3.2]; see also [APT11, Lemma 5.7].
It is easy to see that W(A) is almost unperforated if and only if Cu(A) is.

For a unital, simple C*-algebra A, and positive elements z,y € My, (A), the
condition x € AyA is automatically satisfied whenever y is nonzero, and it is
moreover enough to consider lower-semicontinuous dimension functions. In this
form, the notion of strict comparison of positive elements in simple C*-algebras was
introduced by Blackadar as the ‘Fundamental Comparability Question (FCQ4)’ in
[Bla88, § 6.4.7].

In [RW10, Question 5.3], Rerdam and Winter ask whether the Jiang-Su alge-
bra unitally embeds into any unital C*-algebra A such that the class of the unit is
almost divisible in W(A). It is easy to see that the class of the unit is almost divis-
ible in W(A) if and only if it is in Cu(A). Thus, the implication ‘(2)=(4)’ of the
following Proposition 7.6.5 provides a positive answer to the question of Rgrdam
and Winter for C*-algebras that have stable rank one and strict comparison of
positive elements.
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PROPOSITION 7.6.5. Let A be a unital C*-algebra with stable rank one and
with strict comparison of positive elements. Then, the following statements are
equivalent:

(1) For each n € N, there exists a unital *-homomorphism Z, ,11 — A, where
Znn+1 15 the dimension drop algebra.

(2) The element [14] is almost divisible in Cu(A).

(8) There exists a Cu-morphism Z — Cu(A) that sends 1z to [14].

(4) There exists a unital *-homomorphism Z — A.

PRrROOF. The equivalence between (1) and (2) is shown in [RW10, Proposi-
tion 5.1]. The equivalence between (2) and (3) follows from Proposition 7.3.7.
Finally, it is clear that (4) implies (3). The converse follows from Theorems 1.0.1
and 3.2.2 in [Rob12]. O

Let S be a simple, stably finite Cu-semigroup satisfying (O5). Recall that we
denote by S. (resp. SX) the subsemigroup of (nonzero) compact elements in S. As
shown in Proposition 5.3.16, an element a € S is soft whenever it is not compact.
The only element that is both compact and soft is the zero element. Thus, there is
a natural decomposition

S = SCX (] Ssoft-

If we additionally assume that .S has Z-multiplication, then we can apply Corol-

lary 7.5.10 to compute Ssofr as Sg, the realification of S. We obtain

S = 8XUSk.

Since S also satisfies (05), it follows from [Rob13a, Theorem 3.2.1] that Sg is
isomorphic to L(F(S)). The point is that the semigroup L(F(S)) only depends on
F(S), the cone of functionals on S. On the other hand, it is not clear if Sg only
depends on F'(S), see Problem 7.6.7.

We summarize our representation result for simple Cu-semigroups with Z-mul-
tiplication in the following Theorem. For Cuntz semigroups of C*-algebras, the
analogous result has appeared in [BT07, Theorem 2.6] and [ABP11, Theorem 6.3].

THEOREM 7.6.6. Let S be a simple, stably finite Cu-semigroup satisfying (05)
and with Z-multiplication. Then, the soft part of S is isomorphic to L(F(S)).
Thus, there is a natural isomorphism

S 2 SX U L(F(S)).

Let S be a Cu-semigroup. By definition, S and L(F(S)) are submonoids of
Lsc(F(S)). It follows from [Robl3a, Proposition 3.1.6] that Sk is a subset of
L(F(S)). (The implicit assumption of (O5) in [Rob13a] is not needed in the proof
of [Rob13a, Proposition 3.1.6].)

It is natural to ask whether Sg is in fact equal to L(F'(S)). Under the assump-
tion of (O5) this is indeed the case, see [Rob13a, Theorem 3.2.1]. Thus, we ask if
the result of Robert holds without the assumption of (O5).

PROBLEM 7.6.7. Let S be a Cu-semigroup. Is it true that Sp = L(F(S))?






CHAPTER 8

Structure of Cu-semirings

In this chapter, we study the structure of certain classes of Cu-semirings that
satisfy (O5). The main result is Theorem 8.1.6, where we show that every simple,
nonelementary Cu-semiring is automatically almost unperforated and almost di-
visible. Together with Theorem 7.3.8, we obtain that every simple, nonelementary
Cu-semiring has Z-multiplication, which can be interpreted as the Cu-semiring ver-
sion of Winter’s result that every strongly self-absorbing C*-algebra is Z-stable, see
Corollary 8.1.7. We also use our findings to give an alternative proof of Winter’s
result, see Proposition 8.1.8.

In Section 8.2, we study algebraic Cu-semirings. We establish an equivalence
between the category of weakly cancellative, algebraic Cu-semirings and the cate-
gory of directed, partially ordered rings; see Proposition 8.2.2. We also give several
characterizations when a simple Cu-semiring with unique normalized functional is
algebraic; see Proposition 8.2.11.

In Section 8.3, we analyse the structure of solid Cu-semirings. The main re-
sult is Theorem 8.3.13, where we classify all solid, nonelementary Cu-semirings
satisfying (O5).

8.1. Simple Cu-semirings

Recall that a simple Cu-semigroup is elementary if it contains a minimal
nonzero element, see Paragraph 5.1.16.

LEMMA 8.1.1. Let R be a simple Cu-semiring satisfying (0O5). Then:

(1) If R is nonelementary, then there exist nonzero elements ¢ and d in R such
that c+d < 1.

(2) Assume that R # {0}. Then R is elementary if and only if the unit 1g is a
minimal nonzero element.

(8) If 1R is properly infinite (i.e., 2-1g = 1), then R = {0,00} or R = {0}.

PROOF. We first assume that 1r # O and that 1 is not a minimal nonzero
element. Then there exists a nonzero element z in R such that z <1 and = # 1.
Choose a nonzero element ¢ in R satisfying ¢ < x. Using that R satisfies (O5),
there exists d € R such that

c+d<1<z+d.

Since x # 1, we have that d is nonzero. This immediately implies statement (1).

To show (2), note that the assumption R # {0} implies that 15 # Ogr. It
follows that R has no zero divisors, see Remarks 7.1.2. If 1g is a minimal, nonzero
element, then R is elementary by definition. Conversely, assume 1g is not minimal.
As shown at the beginning of the proof, there exist nonzero elements ¢ and d such
that ¢+ d < 1. We have to prove that R is nonelementary.

So assume « is a nonzero element in R. Consider the elements ca and da, which
are nonzero since R has no zero divisors. Moreover, we have that ca + da < a. If
ca # a or da # a, then a is not a minimal, nonzero element. Otherwise, we can
deduce that a = 2a and hence a = oco. Since 1 < oo and 1 is assumed not to be a

127
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minimal, nonzero element, we obtain that a is not a minimal, nonzero element in
either case. Thus, R is nonelementary.
Finally, statement (3) is easily verified. g

EXAMPLE 8.1.2. The elementary Cu-semigroups N and Ej, = {0,1,2,...,k, 00}
have natural (and unique) Cu-products giving them the structure of solid Cu-
semirings. These are the only simple, elementary Cu-semirings satisfying (O5) and
(O6); see Paragraph 5.1.16.

Without (O6), there are other examples of simple, elementary Cu-semirings:
Consider S ={0,1,1’,2,3,4,...,00}, with addition and multiplication among the
un-apostrophized elements as usual and such that 1’ +k =1+ k and k-1’ = k for
each k € N. The elements 1 and 1’ are incomparable.

For proving Theorem 8.1.6, we need several lemmas. Given a positively ordered
monoid S and k € Ny, recall that an element a in S is almost k-divisible if there
exists € S such that kx < a < (k + 1)z, see Definition 7.3.4. If this holds for
every k € N, we say that the element is almost divisible. Moreover, S is almost
divisible if each of its elements is.

LEMMA 8.1.3. Let R be a simple Cu-semiring. Let ¢ and d be nonzero elements
in R such that ¢+ d < 1. Then, for every x in R satisfying x < oo there exists
n € N such that xc™ < 1.

PrOOF. We inductively show that
(8.1) (k4 1)d)c* <1,
for every k € N. For k = 0 this is clear. For the induction step, assume that (8.1)
is satisfied for some k& € N. Multiplying both sides of (8.1) by ¢, we obtain that
[(k+1)d)c"! < e
Using this at the second step, we deduce
[(k+2)d]" ™ < [(k+ D)d|FT +d<ec+d<1.
Since R is simple, and since d # 0 and « < oo, there is n € N such that z < (n+1)d.
Then zc™ < [(n + 1)d]c™ < 1, as desired. O

LEMMA 8.1.4. Let R be a simple Cu-semiring, and let k € Ni. Assume that
there exist nonzero elements ¢ and d in R such that ¢+ d < 1. Then there exists a
nonzero element a in R such that ka < (k+ 1)a < 1.

PROOF. Let ¢,d and k be as in the statement. We may assume that ¢ < oo
(by replacing it by some nonzero element ¢’ € R satisfying ¢’ < ¢, if necessary).
We construct the element a in two steps.

Step 1: Let ¢; be a nonzero element in R satisfying ¢; < ¢. Since ¢ < 0o, there
exists n € N such that ¢ < necy. By Lemma 8.1.3, there exists m € N such that

[k(k+ 1)n?c™ < 1.
Choose elements ¢; in R for i = 2,...,m such that
KL K. ... LK K e

Set b = cica- ¢y (the product). We compute, using at the second step that
compact containment is preserved under multiplication:

b=[c1c2 cmo1]em < [cacg - em]e < [eacs -+ - em|ner = nb.

Moreover, we have b < ¢™, and therefore k(k 4+ 1)n%b < 1.
Step 2: Choose elements b; in R for ¢ = 1,..., kn such that

b<<b1<<b2<<...<<bkn<<nb.
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Set @ = by + ... + br,. We compute, using at the second step that compact
containment is preserved under addition:

a=1[b1+ba+ ...+ bgn-1]+bpn K [b2+b3+ ...+ bgn] +nb < a+nbd.

Multiplying this inequality by k, and using that knb < a at the last step, we obtain
that

ka < ka+ knb < (k+ 1)a.
Moreover, we have a < kn(nb), and thus (k+1)a < (k+1)kn?b < 1, as desired. O
LEMMA 8.1.5. Let R be a simple Cu-semiring satisfying (05), and let k € N.

Suppose that there exists a nonzero element a in R such that ka < (k+ 1)a < 1.
Then the unit element 1 in R is almost k-divisible.

ProoF. Using that R satisfies (O5), there exists ¢ in R such that
2%ka+t <1< (2k+ 1)a+t.

We think of this inequality as 2ka < (1 —¢) < (2k + 1)a’. Then, we want to
multiply by (1 —#)~!, which we think of as (1 +¢+ 2+ ...). Let us make this
precise, set

z=1+t+2+.  =sup(l+t+2+.. +t").
neN

We show that 1 is almost k-divisible in two steps.
Step 1: We show that 2kaz < 1. To obtain this, we first show that if x and y
are two elements in R satisfying = + y < 1, then

x <Z y”) <1
n=0
Indeed, multiplying the inequality = +v < 1 by y, we obtain that zy + 4> < v.
Using this at the second step, we deduce that
v(l+y)+y’ =a+(ey+y’) <z+y<l
Inductively, we obtain for all n € N that
r(1+y+y>+.. +y") +y"H <1,

and therefore x (ZZO:O y™) <1, as desired. Applying this to 2ka+t < 1, we obtain
2kaz < 1.

Step 2: We show that 1 < (2k + 2)az. Choose a rapidly increasing sequence
(w)ren C R such that 1 = sup, w,.. (If the unit element is compact, the following
argument can be simplified.) For each fixed r € N, since w, < 1 < (2k + 1)a + ¢,
there exists ¢, in R such that

t, <t, w,<2k+1)a+t,.

We have that 1 < (2k + 1)a + ¢t. Multiplying this inequality by ¢,, we obtain that

t, < (2k + Dat, + tt, < (2k + 1)at + tt,.
Since w, < (2k 4+ 1)a + ¢, it follows that

wr < 2k + 1)a(l +¢) + ti,.

Inductively, we obtain for all n € N that

wy < 2k +Da(l+1t+ ... +17) + ",
Since t, < oo and a # 0, there exists m,. € N such that ¢, < (m, + 1)a. Then

"t <t (my+1)a=a(t™ + ...+ t7) <a(l4 -+,
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This implies that

wy < (2k+ Da(l+t+... ") + ™,
< (2k42)a(l 4t +---+1"™)
< (2k+2)a(l4+t+-+t" +..)
= (2k + 2)az.

Since this holds for all » € N and since 1 = sup, w,, we obtain that 1 < (2k +2)az.
Thus, k(2a2z) <1 < (k+ 1)(2az), which finishes the proof. O

The following theorem is the main structure result for simple Cu-semirings.

THEOREM 8.1.6. Let R be a simple, nonelementary Cu-semiring satisfying
(05). Then R is almost unperforated and almost divisible.

PRrROOF. By Lemma 7.3.5, it is enough to show that the unit of R is almost
divisible. So let k£ be a natural number with £ > 1. By Lemma 8.1.1, there exist
nonzero elements ¢, d € R such that ¢+ d < 1. Thus, we may apply Lemma 8.1.4
(for 2k) to obtain a nonzero element a such that 2ka < (2k + 1)a < 1. Now it
follows from Lemma 8.1.5 that the unit of R is almost k-divisible. O

Combining the above result with Theorem 7.3.8, we obtain the Cu-semigroup
version of Winter’s result that strongly self-absorbing C*-algebras are Z-stable,
[Win11, Theorem 3.1].

COROLLARY 8.1.7. Let R be a simple, nonelementary Cu-semiring satisfying
aziom (05). Then R has Z-multiplication and is therefore ‘Z-stable’ in the sense
that R~ Z @cy R.

Using Corollary 8.1.7, we obtain an alternative proof of [Win11, Theorem 3.1],
as follows.

PROPOSITION 8.1.8 (Winter). Let D be a unital, separable, strongly self-ab-
sorbing C*-algebra. Then D is Z-stable, that is, D 2 Z ® D.

PRrROOF. The famous O,-absorption theorem states that every unital, separa-
ble, nuclear, purely infinite, simple C*-algebra A satisfies O, ® A = A, see [KPO0O,
Theorem 3.15]. Thus, if D is purely infinite, then it is O -stable and therefore also
Z-stable.

Assume now that D is stably finite. Let R be the Cuntz semigroup of D.
By Proposition 7.1.4, R is a simple Cu-semiring satisfying (O5). Since R is also
nonelementary, we obtain from Theorem 8.1.6 that R is almost unperforated and
almost divisible.

Almost unperforation of R means that D has has strict comparison of positive
elements. We also have that D has a (unique) tracial state. Given k € N, we have
that the unit of D is almost k-divisible. We can now apply [DT10, Theorem 3.6] to
deduce that there exists a unital *~-homomorphism from the dimension drop algebra
Zy k+1 to D. Since the Jiang-Su algebra Z is an inductive limit of dimension drop
algebras Zj 41, it follows from [TWO8, Proposition 2.2] that D is Z-stable, as
desired. g

COROLLARY 8.1.9. Let R be a simple Cu-semiring satisfying (05). Then:

(1) If R is nonelementary, then R is stably finite.
(2) Either, the unit 1g is a compact element, or R contains no nonzero compact
elements.
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PRrROOF. To show (1), let R be a simple, nonelementary Cu-semiring satisfying
(O5). By Theorem 8.1.6, we have that R is almost divisible. The rest of the proof
is similar to that of Proposition 6.4.15.

Assume that R is not stably finite. As shown in Proposition 5.2.5, it follows
that oo is a compact element. Since R is nonelementary, we have that 1z is nonzero,
which implies that there exists k € N such that k1r = co. Given a nonzero element
a in R, let us show that a = co. Since R is almost divisible, there exists an element
t in R such that kt < a < (k4 1)¢t. This implies that ¢ is nonzero. Then

o= -t=klgp-t<a<o.

Thus, we have shown that a = oo for every nonzero element a € R. This implies
that R = {0, oo}, which is a contradiction since R was assumed to be nonelementary.
Let us show (2). The statement is clearly true if R = {0} or if 15 is a compact
element. So we may assume from now on that R # {0} and that 1 is not compact.
Let us show that R is nonelementary. To reach a contradiction, assume the
opposite. Then, by Lemma 8.1.1, we have that 1z is a minimal, nonzero element.
This implies that 1z is compact, a contradiction.

Hence R is nonelementary, and therefore stably finite by statement (1). Then,
by Proposition 5.3.16, every nonzero element of R is either soft or compact. Thus,
the unit element 1p is soft. It follows from Corollary 8.1.7 that R has Z-multiplica-
tion. By Proposition 7.3.13, an element a in R is soft if and only if a = 1%,a, where
17, is the ‘soft’ unit of Z. We deduce that 1z = 1%,1. Given a nonzero element a
in R, we obtain that

a=1pa=1,1ra = 15a.

Using Proposition 5.3.16 again, it follows that a is noncompact, as desired. |

Next, we study simple Cu-semirings that have a unique functional normalized
at the unit. As we will see in Section 8.3, in particular Theorem 8.3.1, this class
includes all solid Cu-semirings. It also includes the Cuntz semigroups of stably
finite, strongly self-absorbing C*-algebras, see Proposition 7.1.4.

We first study the multiplicativity of functionals. The result is inspired by
[Han13, Corollary 3]. The requirement that the function 1 € Lsc(F(R)) be contin-
uous is not very restrictive. It is automatically satisfied if 1 is a compact element
or if R has only finitely many extremal functionals. This will for instance be used
in Corollary 8.1.11.

PROPOSITION 8.1.10. Let R be simple, nonelementary Cu-semiring satisfying
(05). Assume that 1 is continuous. Let Fy(R) denote the functionals of R that are
normalized at 1. Then:

(1) A functional X € Fy(R) is multiplicative if and only if it is an extreme point
Of F1 (R) .

(2) The space F1(R) is a Bauer simplex, i.e., a Choquet simplex with closed ex-
treme boundary.

(3) Every functional A\ € Fi(R) satisfies A(ab)? < A(a®)A(b?) for all a,b € R. In
particular, we have A(a)? < M(a?) for every a € R.

PROOF. The assumption that 1 is continuous implies that Fi(R) is a closed
subset of F(R). (In fact, this is equivalent to 1 being continuous.) Since F(R) is
compact, it follows that F;(R) is a compact, convex set. We denote the subset of
its extreme points by dF; (R).

We note that Fi(R) is a Choquet simplex. This follows for instance from
[Rob13a, Proposition 3.2.3, Theorem 4.1.2]. Note first that F;(R) is a basis for

Fo(R)={A e F(R) | Ma) < oo for all a < oo} .
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Let V(Fo(R)) denote the vector space of linear, real-valued, continuous functions
on Fy(R). Then Fy(R) is a lattice-ordered, strict, convex cone in the vector space
of linear functionals on V(Fy(R)).

Let A be an extreme point in Fj(R). We show that X is multiplicative. To reach
a contradiction, assume that A(ab) # A(a)A(b) for some a,b € R. By Corollar-
ies 8.1.9 and 8.1.7, we know that R is stably finite and that R has Z-multiplication.
By Proposition 7.3.13, we have A(xz) = A(1'x) for every x € R. Thus, we may
assume that a and b are soft elements, by replacing a with 1’a and by replacing b
with 1’0, if necessary.

Since a is the supremum of a rapidly increasing sequence and since functionals
preserve suprema of increasing sequences, we may also assume that a < co. Then
there is n € N such that a < nl’.

Since R satisfies (O5), we may apply [Rob13a, Theorem 3.2.1] to deduce that
Reory = L(F(R)). By the definition of L(F(R)), there exists a sequence (z) in
L(F(R)) such that xy < x4 for each k € N and such that a = sup, x5. Since

Sup A(zb) = Aab) # A(a)A(b) = sup A(zr)A(D),

we can choose k € N such that A(zib) # A(zk)A(b). Set x = x.

We have that x < zx+1 < nl’. By [Robl3a, Lemma 3.3.2], there exists y €
L(F(R)) & Ryop, such that z +y = nl’. Without loss of generality, we may assume
that z,y # 0. Then we can consider the maps A;: R — [0, 00| given by

Xo(s) = Ma) "' A(ws), Ai(s) = My) " A(ys),
for s € R. Tt is easy to check that Ao and A; are functionals on R and that
Ao(b) # A1(b). Since
— A=) Alw)
A= S50+ S5

we have shown that A is not an extreme point of Fj(R), as desired.

Let us show (3). Since F(R) is a Choquet simplex, there is a measure £ on its
extreme boundary 0F;(R) such that

(3.2) A@)zlguﬂ@wwm¢»

for every element z in R for which Z is continuous.

We claim that (8.2) holds for every element x in R. This is clear if x is compact,
since then Z is continuous. If z is soft, then it follows from [Robl3a, Proposi-
tion 3.1.6] that there is an increasing sequence (zx)r in R such that z = sup, zx
and 7y, is continuous for each k € N. Using the theorem of monotone convergence
at the third step, we obtain that

Az) = sup M) = sup /BF - e(@r)dp(p)

=/ swwwmm:/ o(@)du(p),
OF\(R) k oF (R)
which verifies (8.2).

Now, given two elements a and b in R, we use the Cauchy-Schwarz inequality
at the second step to deduce that

Aab)? = ( /6 . SD(a)<,o(z))cm(gp)>
= /BFI(R) p(a)*du(p) / o(b)*du(p) = Aa?)A(b?).

oC
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Let us show (1). We have already seen that every functional in 0F;(R) is
multiplicative. To show the converse, assume that A = (Ao + A1) for two different
functionals Ag and A;. Choose a in R such that Ao(a) # Ai(a). By switching the
role of A\g and Ay, if necessary, we may assume that there is € > 0 such that

Ao(a) = Aa) —e, Ai(a) = Aa) +¢.
Then, using (3) at the second step, it follows that

A@?) = 3 (@) + Ma(0?) > 5 0(a)? + (@) = Aa)? + 2,

which shows that A(a?) # A(a)? and so A is not multiplicative.
Finally, it follows easily from (1) that 0F;(R) is closed in Fj(R). This verifies
(2). O

COROLLARY 8.1.11. Let R be simple, nonelementary Cu-semiring satisfying
(05). Assume that R has a unique functional \ that is normalized at 1. Then X is
multiplicative.

PROOF. This follows directly from Proposition 8.1.10, since 1 is automatically
continuous. O

COROLLARY 8.1.12. Let R be a simple Cu-semiring satisfying (05). Assume
that R has a unique functional normalized at 1. Then R = [0,00] if and only if
1R is not compact.

PROOF. It is clear that the unit element of [0, c0] is not compact. Conversely,
assume that R satisfies the conditions of the statement and that 1g is not compact.
By Corollary 8.1.9, this means that 0 is the only compact element of R, that is,
R. = {0}. Using Lemma 8.1.1, this also implies that R is nonelementary. Therefore,
R is almost unperforated and almost divisible by Theorem 8.1.6. Now, the result
follows from Theorem 7.6.6. a

8.2. Algebraic Cu-semirings

Recall from Definition 5.5.1 that a Cu-semigroup S is algebraic if every element
in S is the supremum of an increasing sequence of compact elements.

8.2.1. Let K be a cancellative, conical semiring. We equip K with the algebraic
order. Then K is a positively ordered monoid and we may apply the construction of
Section 5.5 to the underlying additive monoid of K. We denote by S the resulting
Cu-completion of K. Then S is an algebraic Cu-semigroup whose compact elements
can be identified with K. We therefore think of K as a submonoid of S.

The multiplication on K can be extended to S as follows: First, we define the
product of an element in K with an element in S. So let a € K and b € S. Choose
an increasing sequence (by)r C K with b = supy, bi. Then, the sequence (aby)r C K
is increasing and we may set ab = supy(abg). It is straightforward to check that
this is independent of the choice of the sequence (bg)r. Moreover, if two elements
a’ and a in K satisfy @’ < a, then a'b < ab for every b € S.

Now we can define the product of two arbitrary elements a and b in S as
follows. Choose an increasing sequence (ay)r C K with a = sup, a. For each
k, the product aib is already defined. Moreover, the resulting sequence (agb)y is
increasing and we may set ab = sup,(aib). It is easy to check that this defines a
Cu-product on S. We denote the resulting Cu-semiring by Cu(K).

By Proposition 5.5.8, Cu(K) is a weakly cancellative, algebraic Cu-semiring
satisfying (O5). Moreover, there is a natural isomorphism between K and the
semiring of compact elements in Cu(XK).
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Given two cancellative, conical semirings K and L, it is clear that every semiring
homomorphism f: K — L induces a multiplicative Cu-morphism from Cu(K) to
Cu(L). This defines a functor from the category ConSrg..,, . of cancellative, conical
semirings to the category of algebraic Cu-semirings.

Conversely, for every Cu-semiring S with compact unit, the compact elements
in S form a subsemiring. The assignment S +— S, can be extended to a functor
from the category of algebraic Cu-semirings to the category of conical semirings.

Let S be a weakly cancellative, algebraic Cu-semiring satisfying (O5). By Prop-
osition 5.5.8, the subset S. is a cancellative, conical, algebraically ordered semiring.
Moreover, the Cu-semiring S is naturally isomorphic to Cu(S,).

PROPOSITION 8.2.2. The functors from Paragraphs 8.2.1 and B.4.3 establish
equivalences between the following categories:

(1) Directed, partially ordered rings, together with ring homomorphisms.

(2) Cancellative, conical semirings, together with semiring homomorphisms.

(8) Weakly cancellative, algebraic Cu-semirings satisfying (05), together with
multiplicative Cu-morphisms.

The following notion of weak divisibility was introduced in [OPR11, Defini-
tion 2.2] (see also [PRO4] and [AGPS10]). This property has also been called
quasi-divisible in [Weh98, Definition 3.2].

DEFINITION 8.2.3. A monoid M is weakly divisible if for every s € M, there
are a,b € M such that s = 2a + 3b.

DEFINITION 8.2.4. A conical semiring R is nonelementary if there exist nonzero
elements s and ¢ in R such that 1 = s +¢.

REMARKS 8.2.5. (1) Let S be a conical semiring. Then the underlying additive
monoid of S is weakly divisible if and only if there exist elements s and ¢ in S such
that 1 = 2s + 3t.

(2) Let S be a conical semiring. If we equip S with its algebraic pre-order, then
S is nonelementary if and only if S # {0} and the unit is not a minimal nonzero
element.

It is easily seen that every (nonzero) weakly divisible, conical semiring is nonele-
mentary. In the next result, we show that the converse holds for simple, conical
semirings. Part of the argument in the proof of the next result is inspired by
[DRO9].

PROPOSITION 8.2.6. Let R be a nonelementary, conical semiring that is simple
for its algebraic pre-order. Then R is weakly divisible.

PRrROOF. In this proof, we will write < for the algebraic pre-order on R. Then,
simplicity of R means that for every two elements z,y € R with y # 0, there exists
n € N such that x < ny.

We first observe that R contains no zero divisors. Indeed, assume two nonzero
elements x,y € R satisfy zy = 0. Since R is simple, there exist 2/,3’ € R and
positive numbers n,m € N such that 1 + 2’ = nz and 1+ ¢’ = my. This implies
1+2'+%y' +2'y = 0. Since R is conical, it follows that the unit of R is zero, whence
R = {0}, which contradicts that R is nonelementary.

To prove weak divisibility of R, it is enough to show that there are elements a
and b in R such that 1 = 2a + 3b. Since R is nonelementary, there exist nonzero
elements s,t € R such that 1 = s +¢. Then 1 = s> 4 ¢> + 2st. Set

f=s>+12, e=st.
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Note that both e and f are nonzero elements. Then 1 = f + 2e, which implies that
f = f*+2ef. Tt follows that 1 = f2 + 2¢(1 + f). Inductively, we obtain for each
m € N that

I1=fm4+2(l+f+---+fmh).
By simplicity of R, there is m in Ny such that f < me. Then

Jr<mefm Tt <e(L4 fA 4 fmh).

Set b= fm™and a’ =e(1+ f+---+ f™1), so that 1 = b+ 2a’. Since b < @/, there
exists an element a in R such that b 4+ a = a/. Then

1=>b+2a" =b+2b+ 2a = 2a + 3b,
as desired. O

LEMMA 8.2.7. Let R be a weakly divisible semiring. Let M be a positively
ordered monoid that is a semimodule over R. Then M is nearly unperforated.

In particular, if R has a compatible positive order, then it is nearly unperforated
itself.

PROOF. By Lemma 5.6.2, it is enough to show that 2a < 2b and 3a < 3b imply
a < b, for any a,b € M. Let such a and b be given. By weak divisibility of R, there
are elements s,t € R such that 1 = 2s 4 3t. Then

a=(2s+3t)a = s(2a) + t(3a) < s(2b) +t(3b) = (2s + 3t)b = b,
as desired. O

PROPOSITION 8.2.8. Let R be a nonelementary, conical semiring that is simple
and stably finite for its algebraic (pre)order. Then R is cancellative.

PROOF. The assumptions imply that the algebraic pre-order of R is antisym-
metric, see Remarks 5.6.6. Thus, the underlying monoid of R is a simple, stably
finite, partially ordered monoid (with its algebraic order). By Proposition 8.2.6
and Lemma 8.2.7, the semiring R is nearly unperforated. Then we may apply
Proposition 5.6.11 to deduce that R is cancellative. a

LEMMA 8.2.9. Let R be a simple algebraic Cu-semiring satisfying (05). Then,
the following conditions are equivalent:

(1) R is nonelementary as a Cu-semiring.
(2) R is stably finite, 1g is compact and R. is a nonelementary semiring.
(8) Re is stably finite, 1g is compact and not minimal.

PrOOF. To see this, assume condition (1). Then R. # {0} as R is algebraic,
and so by Corollary 8.1.9 we see that 1g is compact, and also that R (hence also
R.) is stably finite. Thus R, is a (conical) semiring. Since R is nonelementary and
algebraic, there exists a compact element a € R such that a < 1g, and by (O5) we
obtain a nonzero (compact) element b with 1z = a + b. Assume now (2). Then
1r = a + b for nonzero compact elements a and b. If now ¢ is a minimal nonzero
element in R, then ¢ € R. and we have that ¢ = ca + ¢b, with both ca and cb
nonzero as R does not have zero divisors. Note that ca < ¢ because R, is stably
finite, and this contradicts the minimality of c. Finally, it is clear that (2) and (3)
are equivalent. O

COROLLARY 8.2.10. Let R be a simple, nonelementary, algebraic Cu-semiring
satisfying (05). Then R is weakly divisible and weakly cancellative.
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PROOF. Let K denote the subsemiring of compact elements in R. Notice that
K is conical. By Lemma 8.2.9, K is a nonelementary semiring (with unit 1) whose
underlying additive monoid is stably finite.

Since R satisfies (O5), we may apply Proposition 5.5.8 to deduce that the
partial order on R induces the algebraic order on K.

Using that R is simple and algebraic, it is straightforward to check that K is
simple. Then, by Proposition 8.2.6, we have that K is weakly divisible. It follows
easily that R is weakly divisible as well. (Indeed, write 1z = 2a + 3b for a and b in
K, and then for any ¢ € R, we have ¢ = 2ac+ 3bc.) Moreover, by Proposition 8.2.8,
we have that K is cancellative. Using Proposition 5.5.8 again, we obtain that R is
weakly cancellative. d

The following proposition is a Cu-semigroup version of results for C*-algebras
that have appeared in [TWO07, Proposition 5.8] and [DR09, Theorem 2.5].

PROPOSITION 8.2.11. Let R be a simple, nonelementary Cu-semiring satisfy-
ing (05) and with a unigque normalized functional A. Then, the following conditions
are equivalent:

(1) There exists a compact element p € R with 0 < p < 1j.
(2) There exists a compact element p € R with \(p) ¢ N.
(8) The set A(R.) is dense in R,..

(4) The Cu-semiring R is weakly divisible.

(5) The Cu-semiring R is algebraic.

ProOOF. By Theorem 8.1.6, we have that R is almost unperforated. Then, by
Proposition 5.2.15, for any two elements a and b in R we have that a < b if and
only if A(a) < A(b).

The implications ‘(4) = (3) = (2)’ are clear. By Corollary 8.2.10, we have
that (5) implies (4). To show that (2) implies (1), choose a compact element a € R
satisfying A(a) ¢ N. Let n € N such that n < A(a) < n+ 1. Then

Anlg)=n<Xa) <n+1=A(n+1)1g).

As explained at the beginning of the proof, it follows that nlg < a < (n + 1)1g.
Since R satisfies (O5), there exists a compact element p in S such that a +p =
(n+1)1g. Then 0 < A(p) < 1, which implies that 0 < p < 1g, as desired.

Next, we show that (3) implies (5). Let a € R be an element. We need to
show that a is the supremum of an increasing sequence of compact elements. This
is clear if a is compact itself.

Thus, we may assume that a is noncompact. By Proposition 5.3.16, we get that
a is soft. By assumption, there is a sequence (by) of compact elements such that
A(bg)k 1s strictly increasing with A(a) = sup, A(bg). As observed at the beginning
of the proof, it follows that the sequence (by )y is increasing.

Set b := supy, by. Then A(b) = A(a). Since R is stably finite, the element b is
noncompact and therefore soft. Then Theorem 5.3.12 implies that a = b. Thus, a
is the supremum of the increasing sequence (by )y of compact elements, as desired.

Finally, let us show that (1) implies (3). Since A is multiplicative, we have
that A(R.) is a subsemiring of [0, co], which must be dense as it contains arbitrarily
small elements.

d

COROLLARY 8.2.12 (Dadarlat-Rgrdam, [DR0O9, Theorem 2.5]). Let D be a
strongly self-absorbing C*-algebra. Then, D has real rank zero if, and only if, it
contains a nontrivial projection.
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8.3. Classification of solid Cu-semirings

We now study the structure of general solid Cu-semirings. The goal is the
classification result in Theorem 8.3.13.

THEOREM 8.3.1. Let R be a solid Cu-semiring. Then R is simple. Moreover,
if R is stably finite, then it has a unique functional X that is normalized at the unit
element 1. This functional is moreover multiplicative.

PrOOF. We first show that R is simple. Given an ideal I in R, consider the
map

0, ifaelorb=0

. (a,b € R)
oo, otherwise,

77: R x R — {0,00}, T[(a,b)_{

which is easily checked to be a generalized Cu-bimorphism. Since R is solid, the

map 77 factors through multiplication in R. This means that there exists a gener-

alized Cu-morphism 77: R — {0, 00} such that 77(ab) = 77(a,b) for all a,b € R.
Consider the case that I is the ideal generated by 1. Then

0=m/(1,a) =77(a) = 71(a, 1),

for all a € R. This implies that I = R and so 1 is a full element.
Now let J be an ideal in R satisfying J # R. Since 1 is full, this implies 1 ¢ J.
Let a € J. We deduce that

O = TJ(G, 1) = 7?]((1) = T‘](L(J,)‘

This implies that a = 0, and so J = {0}. Thus, we have shown that R is simple.
To show that R has a unique normalized functional, let A\; and A2 be two
functionals on R such that A;(1) = Ay(1) = 1. Consider the map

T:Rx R —[0,00], 7(a,b) = A1(a)r2(b). (a,b€ R)

It is clear that 7 is a generalized Cu-bimorphism. Since R is solid, there exists
a generalized Cu-morphism 7: R — [0,00] such that 7(ab) = Ai(a)A2(b) for all
a,b € R. Then, we obtain for all ¢ in R that

Ai(a) = 7(a,1) =7(al) = 7(1la) = 7(1,a) = A2(a).

Thus, Ay = Az, which shows that R has at most one normalized functional.

Let us now assume that R is stably finite. It follows from Lemma 5.2.3 that
there is a functional A on R such that A(1) = 1. Thus, the set Fy(R) of functionals
that are normalized at 1 is nonempty. By the argument above, we obtain that
F1(R) = {\}. Hence, the functional A is an extreme point of F}(R) and therefore
multiplicative, by Proposition 8.1.10.

O

COROLLARY 8.3.2. Let R be a nonelementary, solid Cu-semiring satisfying
aziom (05). Then R = Z ®cy R.

PrOOF. By Theorem 8.3.1, we have that R is a simple Cu-semiring. Then, it
follows from Corollary 8.1.7 that R satisfies R = Z Qcy R. a

8.3.3. Let us recall the classification of solid rings from [BK 72, Proposition 3.5]
and [BS77, Proposition 1.10]. Every unital subring of the rational numbers Q is a
(torsion-free) solid ring. Conversely, every torsion-free, solid ring is isomorphic to
a unital subring of Q.
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Given a set of primes J, we let Z [J _1] denote the subring of Q generated by
Z and the numbers £ for every p € J. We associate to J the supernatural number
q; = Hper“’. Then, using the notation from Paragraph 7.4.1, we have that

zli ) =z[{iipes}|=z|L].

Every unital subring of Q is of the form Z [J *1} for some set of primes J.

Given a ring R, we let t(R) denote the torsion part of R. If R is a solid ring,
then R/t(R) is a torsion-free, solid ring. It is possible that R/t(R) = {0}, which
happens precisely when the unit of R is a torsion element.

Let us now assume that R is a solid ring whose unit is not torsion. Then R/t(R)
is a unital subring of @, and consequently there is a set of primes J such that

R/t(R) = Z[J'].

Furthermore, it is known that the order of every torsion element in R is divides
R/t(R). More precisely, one can prove that there is a subset K C J and integers

e(p) for p € K such that
t(R) = @ Zpe(p).

peEK
If R is a solid ring whose unit is not torsion and R/t(R) = Z, then ¢(R) = {0} and
hence R = 7Z. Indeed, if R has nonzero p-torsion elements for a prime p, then p
becomes invertible in R/t(R), which is impossible.

DEFINITION 8.3.4. Let R be a solid ring whose unit is not torsion. As explained
in Paragraph 8.3.3, there exists a canonical embedding of R/t(R) into Q. Let
A: R — Q be the ring homomorphism obtained by composing the quotient map
R — R/t(R) with the embedding R/t(R) C Q. We define R, as the set

Ry :={reR | A(r)>o0}uU{0}.

DEFINITION 8.3.5. A semiring R is solid if for every a € R we have that the
equality
a®l1=1®a
holds in R ®g,g 1.

LEMMA 8.3.6. (1) Let S be a solid semiring. Then the Grothendieck-completion
Gr(S) is a solid ring.

(2) Let R be a solid ring whose unit is not a torsion element. Then the subset
Ry from Definition 8.3.4 is a unital, conical subsemiring of R. Moreover, the
semiring Ry is cancellative, and solid in the sense of Definition 8.3.5, and the
algebraic order of Ry is almost unperforated.

PrOOF. To show the first part of the statement, let S be a solid semiring. Let
R denote the Grothendieck-completion of S, and let

0: S = R=Gr(S)
denote the natural map. To show that R is solid, let a be an element in R. We
need to show that a® 1 =1®a in R® R.
By properties of the Grothendieck-completion, there exist elements x and y in

S such that a = 6(z) — §(y). Using that S is solid at the second step, we deduce
that

a®l=(0®0)(z®l)-(ei)yel)=00)(ler)-(ei)(ley) =1xa,

as desired.
To show the second part of the statement, let R be a solid ring with non-
torsion unit. It is straightforward to check that Ry is a unital, conical subsemiring
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of R. Let us show that Ry is a solid semiring. If R = Z, then R, = N, which is
obviously a solid semiring. Therefore, we may assume that R 2 Z. Let us denote
the inclusion of R4 into R by ¢:: Ry — R. Let A: R — Q denote the canonical
ring homomorphism associated to R, as introduced in Paragraph 8.3.3. By abuse
of notation, we denote the composition Ao ¢: Ry — Q also by A.

We endow R, with the algebraic order. Then, for any a,b € R, we have

a<b ifandonlyif A(a) < A(D).

Note that for every nonzero element a in Ry, we have A(a) > 0. It follows easily
that Ry is a simple semiring. This implies that R4 ®srs Ry is a simple semiring,
as well. It is easy to see that A is a state when considering it as a map A\: Ry — R.
This induces a state A ® A on R} ®grg Ry, such that (A ® A)(z) > 0 for every
nonzero element x € Ry ®s;g R4. It follows that R ®sye 4 is conical and stably
finite.

Since R 2 Z, then R/t(R) = Z[J ] for some, non-empty set of primes .J. Then
it is easy to see that R, contains two nonzero elements c and d such that 1 = c+d.
Note that the elements 1 ® ¢c and 1 ® d in R4 ®srg R4 are nonzero. Thus, the unit
of Ry ®srg R+ is equal to 1®c+1®d, the sum of two nonzero elements. By Prop-
osition 8.2.8, the semiring R, ®s;s Ry is cancellative. The following commutative
diagram shows the (semi)rings and maps to be considered.

R+ ®Srg R+ = R+ ®Mon R+C% GI‘(R+ @Mon RJr)
l//,@/, i/%
R®R = R®uon R = Gr(Ry)®mon Gr(Ry)

The tensor product of two (semi)rings is just the tensor product of the underlying
monoids, equipped with a natural multiplication; see Section B.4. We want to show
that the map ¢ ® ¢ is injective. This does not follow directly from the injectivity
of «, since in general the tensor product of two injective morphisms need not be
injective again. However, we have shown above that R, ®s;s Ry is cancellative.
Therefore, the map to the Grothendieck-completion is injective, as indicated by the
upper-right horizontal arrow in the diagram.

In general, given two monoids M and N, there is a natural isomorphism be-
tween Gr(M ®mon V), the Grothendieck-completion of their tensor product, and
Gr(M) ®mon Gr(N), the tensor product of their respective Grothendieck-comple-
tions; see [Ful70, Proposition 17], see also Proposition B.1.7.

It is clear that R is canonically isomorphic to the Grothendieck-completion
of Ry. It follows from the commutativity of the above diagram that the map ¢ ® ¢
is injective.

Now let a € R4 be given. Using that R is a solid ring at the second step, we
deduce that

(t@@®l)=ua)®@l=11®ua) = (t®)(1®a),
in R® R. Since the map ¢ ® ¢ is injective, this implies that
a®1l=1®a,

in Ry ®srg R4, as desired. It is left to the reader to check that the algebraic order
of Ry is almost unperforated. O

REMARK 8.3.7. Let R be a solid ring whose unit is not a torsion element. By
Lemma 8.3.6, the subset Ry of R is a unital, conical, subsemiring. It follows that
R has the structure of a partially ordered ring such that the positive cone is given
by R4, see Paragraph B.4.3. It is clear that R is directed. This means that every
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solid ring with non-torsion unit has a canonical structure as a directed, partially
ordered ring.

LEMMA 8.3.8. Let R be a solid ring whose unit is not a torsion element, and
let a be an element in Ry. Then there exist k and n in N such that na = k1.

PRrROOF. We may assume that a is nonzero. Let A: R — Q be the canonical
ring homomorphism introduced in Definition 8.3.4 such that

Ri={reR | Ar)>0}uU{0}.
Choose positive ko, ng € N such that A(a) = Z—‘; Then
A(noa — kol) = 0.
Therefore, nga — kgl is a torsion element of R. Let m be its order. Then
(mng)a = (mko)1,

which shows that n := mng and k := mkg are numbers with the desired properties.
a

PROPOSITION 8.3.9. There is a natural one-to-one correspondence between the
following classes:

(1) Solid rings whose unit is not a torsion element.
(2) Solid, cancellative, conical semirings for which the algebraic order is almost
unperforated.

The correspondence is given by associating to a solid ring R with non-torsion unit
the solid semiring Ry from Definition 8.3.4, and conversely by associating to a
solid semiring S its Grothendieck-completion Gr(S).

ProOF. It follows easily from Lemma 8.3.6 that the assignments of the state-
ment are well-defined. Thus, it remains to show that the assignments are inverse
to each other. Given a solid ring R with non-torsion unit, it is easy to check that
the Grothendieck-completion of R, is (canonically) isomorphic to R.

Conversely, let S be a solid, cancellative, conical semiring for which the alge-
braic order is almost unperforated. Let R be the Grothendieck-completion of S.
Since S is cancellative, we can consider S as a unital subsemiring of R. We need
to show that S = R.

Let A: R — Q be the ring homomorphism such that

Ry ={reR | Xr)>0}uU{0}.

We first show that S C Ry. Since S is conical, it contains no torsion element.
Thus, every element a of S satisfies either A(a) # 0 or a = 0.

Assume that an element a € S satisfies A(a) < 0. Choose k,n € N such that

Ma) = —£. Then

Ana+ k1) = 0.
Since 1 is an element of S, we have that na + k1 is an element of S, and therefore
na+ k1 = 0. This contradicts conicality of S. Thus, we have that A(a) > 0 for each
a € S. It follows that S C R, as desired.

To show that Ry C S, let a be an element in R,. We may assume that a is
nonzero. Since R is the Grothendieck-completion of S, there exist x,y € S such
that a + = y. Then y is nonzero, and we may clearly assume that x is also
nonzero. Let us show that z <, y. It follows from the proof of Lemma 8.3.8, that
there are n, k1 and ko in N such that

nr =ki1, ny=kyl.
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Since a is nonzero, we have k1 < ko. Then konz = kiksl = kiny, with kyn < kon,
and thus x <s y. Since S is almost unperforated (with the algebraic order), we
have that < y. Using that the order of S is algebraic and that S is cancellative,
we deduce that a belongs to S, as desired. d

REMARK 8.3.10. In Proposition B.4.4, we recall the natural one-to-one corre-
spondence between directed, partially ordered rings and cancellative, conical semir-
ings, given by assigning to a partially ordered ring its positive cone, and conversely
by associating to a conical semiring its Grothendieck-completion. Every solid ring
whose unit is not a torsion element has a canonical structure as a directed partially
ordered ring, see Remark 8.3.7. Then, Proposition 8.3.9 shows that the above cor-
respondence restricts to a natural identification between directed, partially ordered
rings coming from solid rings and cancellative, conical semirings that are solid and
whose algebraic order is almost unperforated.

LEMMA 8.3.11. (1) Let K be a solid, cancellative, conical semiring. Then its
Cu-completion Cu(K) as constructed in Paragraph 8.2.1 is a solid Cu-semiring.

(2) Let R be a solid, nonelementary, algebraic Cu-semiring satisfying (05).
Then the subsemiring of compact elements R, is a solid, nonelementary, cancella-
tive, conical semiring for which the algebraic order is almost unperforated.

PrOOF. Let K be a cancellative, conical semiring. Consider the tensor square
K Qmon K of K in the category Mon of monoids. Equipped with the natural
multiplication, the monoid K ®uon K becomes a semiring, denoted by K ®gg
K, which is the tensor square of K in the category Srg of (unital, commutative)
semirings, see Paragraph B.4.1.

As explained in Paragraph 5.5.3, we obtain a W-semigroup (K, <) if we equip
the monoid K with the auxiliary relation that is equal to its partial order. As
shown in Paragraph 8.2.1, it follows that the Cu-completion of (K, <) is a Cu-
semiring which we denote by Cu(K). We denote the universal W-morphism to the
Cu-completion by

a: K — Cu(K).
Considering K and Cu(K) as semirings, the map « is a semiring homomorphism
and an order-embedding that identifies K with the compact elements of Cu(K),
see Remarks 3.1.9 and Proposition 5.5.4. We therefore think of K as as subset
of Cu(K) and identify a with a(a).
The map

K x K — Cu(K) ®cuy Cu(K), (a,b)—>a®bd, (a,beK)
is a monoid bimorphism and therefore induces a monoid homomorphism
©: K @mon K — Cu(K) ®cu Cu(K)

such that p(a ® b) = a ® b for each a,b € K.

To show the first part of the statements, assume that K is a solid, cancellative,
conical semiring. Let a be an element of Cu(K). In order to prove that Cu(K) is
a solid Cu-semiring, we need to show by Proposition 7.1.6 that 1 @ a = a® 1 in
Cu(K) ®cy Cu(K). Assume first that a is a compact element. Then a is an element
of K. Using that K is solid at the second step, we obtain that

1ea=9p(l®a)=¢pla®l)=a®1.

If @ is a not necessarily compact element, then there exists an increasing sequence
(ak)k of compact elements in Cu(K) such that a = supy, ai. Then

1®a=1Q (supay) =sup(l @ a;) =sup(ar ®1) =a® 1.
k k k
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Next, let us show the second part of the statement. So let R be a solid,
nonelementary, algebraic Cu-semiring satisfying (O5). By Theorem 8.3.1, R is
simple. Then, it follows from Corollary 8.2.10 that R is weakly divisible and weakly
cancellative.

We set K = R, the subsemiring of compact elements, and we identify R
with Cu(K). It follows from Proposition 5.5.8 that K is a conical, cancellative
semiring such that the order on K induced by R is the algebraic order. We know
from Lemma 8.2.9 that K is a stably finite nonelementary semiring. Moreover, by
Theorem 8.3.1, R has a unique normalized functional, which we denote by A\. We
have that A(a) > 0 for every nonzero element of R. The map X is a state on K,
which induces a state A® A on K ®g,s K with the property that (A® A)(z) > 0 for
every nonzero element x of K ®g,¢ K. It follows that K ®s.q K is stably finite. Since
K is a nonelementary semiring we see, as in the proof of Lemma 8.3.6, that K ®g,s K
is also nonelementary. It is also straightforward to deduce that K ®s,s K is simple
and weakly divisible. Therefore, by Proposition 8.2.8, the semiring K ®g,¢ K is
cancellative. It follows that its algebraic pre-order is partial. Thus, we have shown
that the natural quotient map

K ®Mon K— K @PoM K

is an isomorphism.

We obtain a W-semigroup by equipping K ®nion K with the auxiliary relation
that is equal to its partial order. The tensor square of (K, <) in the category PreW
is given as the tensor square in PoM of the underlying monoids together with a
naturally defined auxiliary relation, see Definition 6.2.9. It follows that there is a
natural isomorphism

(K ®Mon K7 S) = (K7 S) ®PreW (K» S)

Applying Cu-completions to both sides and using Theorem 6.3.5, we deduce that
there is a natural isomorphism

Cu(K ®grg K) = Cu(K) ®cu Cu(K).
We denote the universal W-morphism to the Cu-completion of K ®g,, K by
ﬁ: K®Srg K — Cu(K ®Srg K)

By Remarks 3.1.9, the map f is an order-embedding. In conclusion, we have that
the map ¢ from the beginning of the proof is an order-embedding.
Then, if a is an element of K, we have

Bla)=1®ala) =ala)®1=7Fa®1).

Since [ is an oder-embedding, we obtain that 1 ®a =a® 1 in K ®g;z K. Thus, K
is a solid semiring. It is easy to check that K is almost unperforated. g

THEOREM 8.3.12. There is a natural one-to-one correspondence between each
of the following classes:

(1) Solid rings whose unit is not a torsion element and that are not isomorphic
to 7.

(2) Solid, nonelementary, cancellative, conical semirings for which the algebraic
order is almost unperforated.

(8) Solid, nonelementary, algebraic Cu-semirings satisfying (05).

The correspondence between (1) and (2) is given by associating to a solid ring R
with non-torsion unit the solid semiring Ry from Definition 8.3.4, and conversely
by associating to a solid semiring S its Grothendieck-completion Gr(S).
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The correspondence between (2) and (3) is given by associating to a solid semir-
ing K the Cu-semiring Cu(K) as constructed in Paragraph 8.2.1, and conversely by
associating to a solid, algebraic Cu-semiring S its subsemiring of compact elements.

PROOF. The correspondence between the classes (1) and (2) follows directly
from Proposition 8.3.9. Let us show the correspondence between the classes (2)
and (3), It follows easily from Lemma 8.3.11 that the assignments of the statement
are well-defined. Thus, it remains to show that the assignments are inverse to each
other. This follows directly from Proposition 5.5.4. d

THEOREM 8.3.13. Let S be a solid Cu-semiring satisfying (05). If S is nonele-

mentary, then exactly one of the following statements holds:

(1) We have S = [0, c].

(2) We have S = Z.

(8) There is a solid ring R with non-torsion unit such that R 2 Z and such that

S = Cu(Ry).

If S is elementary and satisfies (06), then exactly one of the following conditions
holds:

(4) We have S = N.
(5) Thereis k € N such that S =2 Ey, = {0,1,2,...,k,00}.
The Cu-semiring S is algebraic if and only if it satisfies (3), (4) or (5).

ProOF. We have observed that all Cu-semirings in statements (1)-(5) are solid.
It is also clear that a solid ring can satisfy at most one of the statements.

So let S be a solid Cu-semiring. We will show that S satisfies one of the
statements.

Case 1: Assume S is nonelementary. By Theorem 8.3.1, we obtain that S is
simple. Therefore, by Theorem 8.1.6 and Corollary 8.1.9, S is almost unperforated,
almost divisible and stably finite. Then, using Theorem 8.3.1 again, we have that
S has a unique normalized functional. We obtain from Theorem 7.6.6 that there is
a canonical decomposition

S =5.U(0,00].
If S contains no nonzero compact element, then S = [0,00] by Corollary 8.1.12.
Otherwise, by Corollary 8.1.9, the unit of S is compact.

Let A: S — [0,00] denote the unique normalized functional on S. It follows
from Proposition 8.2.11 that either A(S.) C N or that S is algebraic. In the latter
case, S satisfies (3), see Theorem 8.3.12. Thus, let us assume that A\(S.) C N. Then
we consider the map

a: S=5.U(0,00] = Z =NU (0,0,

which maps a compact element r in S to the compact element A(r) € N C Z,
and which maps a soft element in Ssorr = (0,00] to the same in Zgi = (0, 00].
It is straightforward to check that « is a unital, multiplicative Cu-morphism. It
follows from Proposition 7.1.13 that Z ®cy S = Z. By Corollary 8.3.2, we also have
S S®cy Z. It follows that S = Z, which shows that S satisfies (2).

Case 2: Assume that R is elementary and satisfies (O6). Then S satisfies (4)
or (5), see Example 8.1.2. O

REMARK 8.3.14. We remark that, if S is a nonelementary solid Cu-semiring
satisfying (O5), then by the classification above, we see that (O6) is also satisfied.
Indeed, only the case where S = Cu(R4) for a solid ring R with nontorsion unit
needs verification. In this situation, by Proposition 5.5.8, it is enough to show that
R, endowed with the algebraic order, is a Riesz semigroup. This is easy to check
once we note that R/t(R) = Z[J~!] for a nonemtpy set of primes .J.
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ExaMPLE 8.3.15. Let Q be the solid ring of rational numbers. We obtain a
corresponding solid Cu-semiring, which we denote by @. Thus

@ = Cu(Q) = Q4 U (0,00].
In Proposition 8.3.17, we will see that @ is the terminal object in a suitable category.

We end this section with a result about initial and terminal objects among
solid Cu-semirings. This can be considered as a Cu-semigroups version of [Winll,
Corollary 3.2], which characterizes the Jiang-Su algebra Z as the initial object in
the category of unital, strongly self-absorbing C*-algebras with *-homomorphisms
up to approximate unitary equivalence.

LEMMA 8.3.16. Let S be a solid, stably finite, Cu-semiring satisfying (05), and
let \ be its unique normalized functional. Then, A(S.) C Q4.

Proor. If S is elementary (and stably finite), then clearly A\(S.) = N. Oth-
erwise, if S is nonelementary, then by Proposition 8.2.11 either A(S.) C N or S is
algebraic. Finally, if S is algebraic, by Lemma 8.3.11 S, is a conical, cancellative,
solid semiring for which the algebraic order is almost unperforated. Now the result
follows from Proposition 8.3.9 and Lemma 8.3.8. |

We remark that for every simple, nonelementary Cu-semiring S that satisfies
(O5) and has a compact unit, there exists a multiplicative Cu-morphism from Z to
S. This follows from Corollary 8.1.7. If S has a unique normalized functional, then
the map is unique.

PROPOSITION 8.3.17. Let S be a solid, nonelementary Cu-semiring satisfy-
ing (O5) and for which the unit is a compact element. Let Q) be the solid Cu-
semiring from Ezample 8.3.15. Then, there are unique unital, multiplicative Cu-
morphisms

Z—=8—=Q.
Thus, Z @cu S =S and S ®cu Q = Q.

This means that Z and Q are the initial and final objects of the category of

considered Cu-semirings with unital, multiplicative Cu-morphisms.

PROOF. The existence and uniqueness of the map Z — S is observed in the
paragraph before this proposition. Let S be as in the statement. As in the beginning
of the proof of Theorem 8.3.13, we obtain that there is a natural decomposition

S =8, U(0,00).

By Theorem 8.3.1 and Lemma 8.3.16, S has a unique normalized functional A and
A(S¢) € Q4. By Proposition 8.1.10, A is multiplicative. Thus, we may consider the
map
a:S=5.U(0,00] = Q=Q4 U (0,00],

which maps a compact element r in S, to the compact element A(r) € Q4 C Q,
and which maps a soft element in Ssoe = (0, 00] to the same in Qgsope = (0,00]. It
is easy to see that « is a unital, multiplicative Cu-morphism, as desired.

It is left to the reader to show uniqueness of the maps Z — S and S — Q. The
results about tensorial absorption follow from Proposition 7.1.13. g



CHAPTER 9

Concluding remarks and Open Problems

In this chapter we list some problems that we believe to be open and that have
appeared in the course of our investigations.

(1)

Problem 6.4.11: Let A and B be two C*-algebras. When are the natural
Cu-morphisms

Ti{"i{:}: Cu(4) ®cy Cu(B) = Cu(A @min B),
i Cu(A) ®cy Cu(B) = Cu(A @max B),

from Paragraph 6.4.10 surjective, or order-embeddings, or isomorphisms?
More generally, what is the relation between Cu(A)®¢, Cu(B) and Cu(A®
B)?

In Paragraph 6.4.12, we mention some partial result concerning this
problem. This problem asks for a more general formula of a Kiinneth type
flavor. It looks plausible that such a formula will have to take the K-
groups of the involved C*-algebras into account. One possible invariant is
Cur(—), as introduced in [ADPS14], which for a C*-algebra A is defined
as

Cu(C(T) ® A).

In significant cases, this invariant records both the Cuntz semigroups of
A and the K;-group of A.

Is Cu a closed category?

This is a natural question given that Cu is a symmetric, monoidal
category. A positive answer to this problem would provide additional
structure to the morphism sets in Cu, and this is a potentially useful tool
in connection with the current development of a bivariant version of the
Cuntz semigroup (see [BTZ14]).

Problem 6.4.2: Given Cu-semigroups S and T that satisfy (O5) (respec-
tively (O6), weak cancellation). When does S ®cy, T satisfy (O5) (respec-
tively (O6), weak cancellation)?

In Paragraph 6.4.3, we mention some partial result concerning this
problem. A particular variant of this problem is:

Problem 7.3.11: When does axiom (05), (O6) or weak cancellation pass
from a Cu-semigroup S to the tensor product Z ®cy, S?

Let X be a finite-dimensional, compact, Hausdorff space, and let S be
a Cu-semigroup. It was proved in [APS11, Theorem 5.15] that the
semigroup of lower semicontinuous functions from X to S, denoted by
Lsc(X, S), is a Cu-semigroup. Under which conditions on S and X does
Lsc(X, S) satisfy (O5) (respectively (O6), weak cancellation)?

We remark that if Lsc(X,S) satisfies (O5) (respectively (O6), weak
cancellation), then so does S. The natural test case is X = [0,1]. A
positive answer seems likely if S is algebraic.

145
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Let X be a finite-dimensional, compact, Hausdorff space, and let S be a
Cu-semigroup. When does it hold that Lsc(X, S) = Lsc(X,N) ®cy S?

We showed in Corollary 6.4.5 that this question has a negative answer
for X = [0,1] and S = Z. On the other hand, a positive answer seems
likely if S is algebraic.

Range problem: Under which conditions can a Cu-semigroup S be realized
as the Cuntz semigroup Cu(A) of a C*-algebra A?

Necessarily, such a Cu-semigroup satisfies (O5) and (O6). Thus, we
are asking for additional conditions on Cu-semigroups beyond these two
axioms which would guarantee that a Cu-semigrouip is realized by a C*-
algebra.

As we have already mentioned, L. Robert showed in [Rob13b] that
if X is a compact Hausdorff space whose covering dimension is at least
3, then there is no C*-algebra A such that Cu(A) = Lsc(X,N). It was
shown by J. Bosa (private communication), that none of the elementary
semigroups E}, as described in Paragraph 5.1.16 for k£ > 1 are realized as
the Cuntz semigroup of a C*-algebra. (The Cu-semigroup Ey = {0, 00} is
of course the Cuntz semigroup of any purely infinite simple C*-algebra.)

Consider the Cu-semigroup Z’ defined as follows:
7' ={0,1,1',2,3,4,...} U (0,00,

with addition as in Z, except that k+1' = k+1 for any k € N. It is easy
to check that Z’ is a simple, stably finite Cu-semigroup satisfying (O5)
and (O6), but it is not weakly cancellative as 1+1' = 1"+1"but 1 £ 1. Tt
is also easy to prove that Z’ has Z-multiplication, so that Z’' & Z ®q, Z’.

A particularly interesting instance of the range problem is the follow-
ing: Does there exist a (separable, unital, simple, stably finite) C*-algebra
A such that Cu(A) = Z'?

Note that if such a C*-algebra A exists, then it is necessarily simple,
not Z-stable, and not nuclear. For if A is Z-stable, then it has stable rank
one and hence its Cuntz semigroup has weak cancellation. Similarly, if A
is nuclear, then as Z’ has only one normalized functional, we would get
that A is monotracial. In that situation, the solution of the Toms-Winter
conjecture (see [MS12]) would imply that A is Z-stable, a contradiction.

The Cu-semigroup Z' seems to be the simplest example that is not
weakly cancellative and has Z-multiplication. A more general question is
then:

Does there exist a finite, simple C*-algebra A, such that Cu(A) has Z-
multiplication, but is not weakly cancellative?

Let A be such a C*-algebra. If A is nuclear, then we could deduce
as above that A is not Z-stable although Cu(A) is almost unperforated.
Therefore, the Toms-Winter Conjecture predicts that A cannot be nuclear.

It is natural to seek for additional axioms that allow us to rule out
Z' as a semigroup in a future reformulation of the category Cu. We make
this explicit with the following question.

Under what additional axioms (besides (O5) and (06)) is a simple Cu-
semigroup with Z-multiplication necessarily weakly cancellative?

This question also refers to structural properties of Cu-semigroups.
In this direction, Conjecture 5.6.18 bears repeating. Let us recall from
Definition 5.6.1 that a Cu-semigroup S is nearly unperforated if and only if



(15)

(18)

9. CONCLUDING REMARKS AND OPEN PROBLEMS 147

a < b whenever a <, b for any pair of elements a and b in S. Equivalently,
by Lemma 5.6.2, we have a < b whenever 2a < 2b and 3a < 3b.

Conjecture 5.6.18: Let A be a Z-stable C*-algebra. Then Cu(A) is nearly
unperforated.

Problem 5.1.5: Let S be a Cu-semigroup, and let I be an ideal in S.
Assume that I and S/T satisfy (O5) (resp. (O6), weak cancellation). Un-
der what assumptions does this imply that S itself satisfies the respective
axiom?

Problem 5.3.14: Given a Cu-semigroup S, is the subsemigroup Sgof; of
soft elements again a Cu-semigroup? Does this hold under the additional
assumption that S satisfies (05)7 If so, does then Ssof satisfy (O5) as
well?

Problem 5.6.13: Let S be an almost unperforated Cu-semigroup. Which
conditions are necessary and sufficient for S to be nearly unperforated?
In particular, is it sufficient to assume that S satisfies weak cancellation
and (05)?

Problem 7.2.10: Let A and B be two C*-algebras. Assuming that A or B
is purely infinite, does it follows that the C*-bimorphism

Tgfg: Cu(A4) ®cy Cu(B) = Cu(A Qmuin B).
is an isomorphism?

Problem 7.3.10: Let S be a Cu-semigroup, and let a,b € S. Characterize
when 1®a<1®bin Z ®cy S.

Problem 7.6.2: Given a strongly self-absorbing C*-algebra D, is the Cuntz
semiring Cu(D) a solid Cu-semiring?

Should the answer to this problem be positive, our Theorem 8.3.13
(see also Remark 8.3.14) would yield a complete list of the possible Cuntz
semigroups for stably finite, strongly self-absorbing C*-algebras, and this
would be valuable information towards finding a possible non-UCT exam-
ple, if such exists.

Problem 7.6.7: Let S be a Cu-semigroup. Is it true that Sg = L(F(S))?






APPENDIX A

Monoidal and enriched categories

In this appendix, we will recall the basic theory of monoidal and enriched
categories. For details we refer the reader to [Kel05] and [Mac71].

A.0.1 (Monoidal categories). A monoidal category V cousists of the following
data: An underlying category Vp; and a bifunctor

®: Vo X Vo — Vo;
and a unit object I in Vy; and for each triple of objects X, Y and Z in V a natural
isomorphism
(XeY)0Z=X® (Y ®Z);
and for each object X in V, two natural isomorphisms
IoX~X, XolzX.

Moreover, certain coherence axioms need to be satisfied.

By an object in V we mean an object of the underlying category, and similarly
for V-morphisms. Given objects X and Y of V, we let V(X,Y") denote the collection
of V-morphisms from X to Y, and we will always assume that it is a set. (This
means that V is locally small.)

The monoidal category V is symmetric if for each pair of objects X and Y in
Vo there is a natural isomorphism

XY Y ® X.

A.0.2 (Concrete monoidal categories). Let V be a monoidal category with unit
object I. Since V is assumed to be locally small, the representable functor V(I, _)
is a functor from V), to the category of sets. We denote this functor by

ViVy— Set.

We say that C is a concrete monoidal category if V' is faithful. In that case
we can think of objects in V as sets with additional structure, and we can think of
morphisms in V as maps preserving that structure.

Let X be an object in V. Then, an element x of X is an element in V(X), that
is, a V-morphism z: I — X. We write x € X to denote that x is an element of X.
This terminology is even used when V' is not necessarily faithful.

Let X and Y be a pair of objects in V, and let x € X and y € Y. Then, the
composed morphism

151012 X0y,

is an element of X ® Y, which we will also denote by = ® y.
ExaMPLE A.0.3. The category Top of topological spaces is a concrete, symmet-

ric monoidal category. The tensor product of two spaces is their Cartesian product
with the product topology. The unit object is the one-element space.

A.0.4 (Enriched categories). Let V be a monoidal category. A V-category C
(also called a category enriched over V) consists of the following data: A collection
of objects in C; and for each pair of objects X and Y in C an object C(X,Y) in V,
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playing the role of the collection of morphisms from X to Y; and for each object
X in C an element idx in C(X, X), called the identity on X and playing the role
of the identity morphism on X; and for each triple of objects X,Y and Z in C a
V-morphism

M)Qyﬁzl C(Y, Z) ®C(X, Y) — C(X, Z),

implementing the composition of morphisms. This structure is required to sat-
isfy certain conditions expressing for example the associativity of composition of
morphisms.

Recall that the element idy in C(X, X) is, by definition, a V-morphism

idy: T — C(X,X).

Given two V-categories C and D, a V-functor F from C to D consists of the
following data: an assignment F' from the objects of C to the objects of D; and for
each pair of objects X and Y in C a V-morphism

Fxy:C(X,Y) =D (F(X),F(Y)).

It is required that certain diagrams, which for instance express compatibility with
composition of morphisms, commute. (Again, we refer to [Kel05] for details.)
Given two V-functors F' and G from C to D, a V-natural transformation from
F to G, denoted by F = G, is a collection of elements ax € D(F(X),G(X)),
indexed by the objects X in C, such that certain natural conditions are satisfied.

A.0.5 (Concrete enriched categories). Let C be a category that is enriched over
the concrete monoidal category V. We can use the faithful functor V' to associate
to C an ordinary underlying category Cy as follows: The objects of Cy are the same
as the objects of C; and the Cp-morphisms between two objects X and Y in Cy are
given as

Co(X,Y) =V (C(X,Y)) =V (LC(X,Y));
and for each object X in Cp, the identity morphism id x in Cy is just the V-morphism
idy: I — C(X,X),
considered as an element of Cy(X,X); and for each pair of Cyp-morphisms f €
Co(X,Y) and g € Co(Y, Z), which by definition are V-morphisms
fI-CX)Y), g:I—-CY,2),

we consider the composed V-morphism

1990 ey, 2y 0(x,Y) 2XY2, (X, 2),

which is an element of Co(X,Z) defining the composition g o f in Cyp. Using the
coherence axioms for monoidal and enriched structures, one can show that the laws
of a category are fulfilled for Cy.

We can then think of C(X,Y") as the set of morphisms Cy(X,Y") endowed with
additional structure making it into an object in V.

A.0.6 (Closed Categories). A monoidal category V is closed if, for each object

Y in V), the functor
_RY: V-V

has a right adjoint, which we will denote by (_)Y. Thus, in a closed, monoidal
category V, for any three objects X,Y and Z, there is a bijection (natural in X
and Z) between the following hom-sets:

(A1) VXY, Z)=2V(X,2Y).
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Given V-morphisms f: Y, — Y7 and g: Z; — Z5, there is an induced V-morphism
(f*,9): Z1* — Z)*. This defines a bifunctor

(L) VP XY 5y,

called the internal hom-bifunctor of V.
Let Z and Y be two objects in V. The evaluation morphism
2: 72V Y - Z,
is defined as the V-morphism that corresponds to the identity morphism under the
natural identification
V(Z¥eY,z)=v(Z2¥,27).

Let V be a closed, symmetric, monoidal category. Then V is enriched over
itself. For each pair of objects X and Y in V, we use the internal hom-bifunctor
to obtain an object Y in V playing the role of morphisms from X to Y; and for
each object X in V, the identity morphism idx € XX is defined as the V-morphism
idy: I — XX corresponding to the identity morphism from X to X under the
identification

VLX) =2 V(I e X, X)=2V(X,X);
and for each triple of objects X,Y and Z in V, the map
Mxyz: Z¥ @Y™ = 72X,

implementing the composition of morphisms is the V-morphism that under the
identification
V(Z2¥ oYX, Z2¥) =2V ((2¥eYY)® X, 2)
corresponds to the composition
. Y zZ
(2 ov¥)eXx 22" (YXoX) 222, 2V gy &, 7.

ExaMPLES A.0.7. (1) We will see in Paragraphs B.1.5 and B.2.6 that the
category Mon of monoids and the category PoM of positively ordered monoids are
both closed, symmetric, monoidal categories.

(2) The category Top is not closed. However, it contains several full, symmetric,
monoidal subcategories that are closed.

A Hausdorff, topological space X is compactly generated if a subset M C X is
closed whenever M N K is closed for every compact subset K of X. The class of
compactly generated, Hausdorff spaces contains for example all metric space and all
locally compact, Hausdorff spaces. We let CGHTop denote the full subcategory of
Top consisting of compactly generated, Hausdorff spaces. It is known that CGHTop
is a reflective subcategory of Top. Given a topological space X, we let X} denote
its reflection in CGHTop.

Let X and Y be two compactly generated, Hausdorff spaces. Their Cartesian
product need not be compactly generated. Therefore, the ‘correct’ tensor product
of X and Y in the category CGHTop is (X x Y),. Consider the set C(X,Y) of
continuous maps from X to Y equipped with the compact open topology. Again,
C(X,Y) need not be compactly generated. Nevertheless, CGHTop is a closed
category with internal hom-bifunctor given by

CGHTop(X,Y) = (C(X,Y)).
Then, for every three spaces X,Y and Z in CGHTop, we have a natural isomorphism
(i.e. homeomorphism) between the following spaces:
CGHTop((X x Y)i, Z) = CGHTop(X,CGHTop(Y, 2)).

(3) It is shown in [DP71] that the category C* of C*-algebras is enriched over
CGHTop. For any pair of C*-algebras A and B, the set of *~homomorphisms from
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A to B is denoted by C*(A, B) and it is endowed with the topology of pointwise
convergence. This means that a net (y;); in C*(A, B) converges to a *-homomor-
phism ¢: A — B if and only if lim, llpi(z) — ¢(x)]] = 0 for each x € A. With this
topology, C*(A, B) is a compactly generated, Hausdorff space.



APPENDIX B

Partially ordered monoids, groups and rings

In this appendix we will only consider commutative structures. Therefore,
every monoid, semigroup and group is written with operation of addition, and
multiplication in every semiring and ring is commutative.

In Section B.1, we study the category Mon of (abelian) monoids, and the full,
reflective subcategories Gp of groups, and Con of conical monoids. We recall the
construction of tensor products in Mon and we show that Mon is a closed, sym-
metric, monoidal category.

In Section B.2, we study the category PrePoM of positively pre-ordered monoids
and its full subcategory PoM of positively ordered monoids. We show that PoM is
a reflective subcategory of PrePoM. Both categories have a tensor product giving
them a closed, symmetric, monoidal structure.

We also show that Con can be identified with the full (and reflective) subcate-
gory of PrePoM consisting of algebraically pre-ordered monoids.

In Section B.3, we study the category PoGp of partially ordered groups. In
particular, we recall the equivalence between the categories of directed, partially
ordered groups and the category of cancellative, conical monoids.

Finally, in Section B.4, we study semirings and (partially ordered) rings.

For further details, the reader is referred to, e.g. [Ful70], [Gol99], [Goo86],
[Gri69], [Weh96].

B.1. The category Mon of monoids

B.1.1. In this paper, by a monoid we always mean an abelian monoid, written
additively and with zero element denoted by 0.

Let M, N and R be monoids. A monoid homomorphism from M to R is a map
f+ M — R that preserves addition and the zero element. We denote the collection
of such maps by Mon(M, R). We let Mon denote the category whose objects are
all monoids and whose morphisms are monoid homomorphisms.

We can endow the set Mon(M, R) with a natural monoid structure as follows.
Given f,g € Mon(M, R), we define their sum f + g by pointwise addition, that is,
we have (f + ¢)(a) = f(a) + g(a) for each a € M. The zero element in Mon(M, R)
is given by the zero map that sends every a in M to the zero element in R.

It is easy to see that the homomorphism-monoid Mon(M, R) is functorial in
both variables. Therefore, we obtain a bifunctor

Mon(-,_): Mon“? x Mon — Mon,

called the internal hom-bifunctor of Mon.

A monoid bimorphism from M x N to Ris a map f: M x N — R which is a
monoid homomorphism in each variable, i.e., for fixed a € M and b € N the two
maps

M — R, zw~ f(z,b), N—R, yw— fla,y), (r€M,yeN)
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are monoid homomorphism. We denote the set of these monoid bimorphisms
by BiMon(M x N, R). It becomes a monoid when endowed with pointwise addition.
As for the monoid morphisms, it is easy to see that the monoid bimorphisms are
functorial in all three entries. We therefore have a multifunctor

BiMon(- x _,_-): Mon®® x Mon®” x Mon — Mon.

Next, we recall the construction of tensor products in the category Mon. The
construction is based on the tensor product of abelian semigroups as studied by
Grillet, [Gri69]. The tensor product in Mon has also been studied in [Ful70],
where it is denoted by ®g.

B.1.2. Let M and N be two monoids. Consider the free abelian monoid F :=
N[M x N] whose basis is the cartesian product M x N. Fora € M and b € N
we let a ® b denote the element in F' that takes value 1 at (a,b) and that takes
value 0 elsewhere. Then, for every element f € F there exist a finite index set I
and elements a; € M and b; € N for ¢ € I such that

iel
We do not require that a; # a; for distinct indices ¢ and j. Moreover, the pre-
sentation of f in this way is essentially unique (up to permutation of the index
set).
Following the notation in [Weh96, Section 2], we define two binary relations
—0% and — on F. We also define a binary relation 22 on F. Let f and g be two
elements in F'. Then:
(1) We set f —° g if and only if there exists a pair (a,b) € M x N, and
nonempty finite index sets I and J, and elements a; € M for i € I and
bj € N for j € J such that

a=> a, b= b, f=a0b g= Y aOb.
iel jeJ iel,jeJ

(2) Weset f — gif and only if f = g = 0 or if there are n € N and fi,gr € F
for k =0,...,n such that

f:Zflm g:ng, and  fr =0 gi, for each k.
k=0 k=0

(3) For any a € M and b€ N, weset 025 a®0 and 02, 0©b.

A binary relation R on M is called additive if for any four elements a, b, ¢, d € M
we have (a + ¢,b+ d) € R whenever (a,b) € R and (¢,d) € R. It follows easily
from [Weh96, Lemma 2.1] that the relation — is reflexive and additive.

A congruence relation on a monoid is an additive equivalence relation. We
let = be the congruence relation on F' generated by —, and <, and 2%,. We set

M &N = Fja,

which is the set of =-congruence classes in F. It is easy to check that M @ N is a
monoid, see [Ful70].

Given (a,b) € M x N, we write a®b for the congruence class of a®b in M @ N.
In particular, we have a ® 0 = 0 and 0 ® b = 0 for every a € M and b € N. We
define a map

wi:MxN-—->M®N w(ab=a®b, (aeM,beN)

which is easily seen to be a monoid bimorphism.
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REMARK B.1.3. We denote the tensor product in Mon by ®. If we need to
specify the category in which the tensor product is taken, we will also write ®ion-

As we will see below, the tensor product in Mon restricts to the tensor product
in the categories of conical monoids, groups, semirings and rings. Therefore, the
tensor product in Mon seems most universal and that is why we will usually drop
the subscript to shorten notation.

ProrosiTION B.1.4. Let M and N be two monoids. Then, the monoid M ® N
and the monoid bimorphism

w: MxN—-MN

constructed in Paragraph B.1.2 have the following universal property:
For every monoid R and for every monoid bimorphism f: M x N — R, there
exists a unique monoid homomorphism f: M ® N — R such that fow = f.
Thus, the assignment g — g o w defines a map

Mon(M & N, R) = BiMon(M x N, R),
which is a monoid isomorphism when considering the (bi)morphism sets as monoids.

PrOOF. Let M and N be monoids. To check the universal property of w, let
R and f be as in the statement. Since F' = N[M x N] is the free abelian monoid
on the set M x N, there is a unique monoid homomorphism f’: F' — R such that
f'(a®b) = f(a,b) for every (a,b) € M x N. It is easy to check that f’ is constant
on the congruence classes of 2. Therefore, f’ induces a map

ftM®N =F~—R.

It is clear that f is a monoid homomorphism. The rest of the statement is easy to
check. ]

B.1.5. Using that the monoid bimorphisms are functorial in the first two entries,
the tensor product in Mon induces a bifunctor

®: Mon x Mon — Mon.

In Paragraph 6.1.8, we explain this in more detail in the setting of enriched cate-
gories.

We remark that the category Mon is enriched over the symmetric, closed,
monoidal category of sets. With this viewpoint, the tensor product in Mon fits
into the framework developed in Section 6.1.

Let M, N and R be three monoids. It is easy to verify that there is a natural
isomorphism

M@N=N®M,
identifying the simple tensor a ® b with b ® a, for any a € M and b € N. Similarly,
there is a natural isomorphism

(M®N)®@ R~M® (N®R),

identifying the simple tensor (¢ ® b) ® ¢ with a ® (b ® ¢) for a € M, b € N and
ce R

The monoid N acts as a unit for the tensor product, that is, there are natural
isomorphisms

NoM=M=M®@N.

One can show that this gives Mon the structure of a symmetric, monoidal category.

For each pair of monoids M and N, we have seen that Mon(M, N) has a natural
structure as a monoid. Thus, we can consider Mon(M, N) as an object in Mon. It
follows that the category Mon has an internal hom-bifunctor, which is equal to the
(given) hom-bifunctor Mon(_,_).
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Moreover, the category Mon is closed. This means that, given a monoid N, the
internal hom-bifunctor Mon(N, _) is right adjoint to the functor - ®pon N. Indeed,
given two more monoids M and R, there are natural isomorphisms between the
following monoids:

BiMon(M x N, R) = Mon(M ® N, R) = Mon(M, Mon(N, R)).

Next, we consider two important subcategories of Mon: The category Gp of
(abelian) groups, and the category Con of conical monoids.

B.1.6. We let Gp denote the category of (abelian) groups. A map between
two groups is a group homomorphism if and only if it is a monoid homomorphism.
Therefore, by considering a group as a monoid, we think of Gp as a full subcategory
of Mon.

There are two important observations:

(1) The category Gp is reflective in Mon.
(2) The category Gp is closed under the tensor product in Mon.

Indeed, given a monoid M, its reflection in Gp is the Grothendieck-completion
Gr(M) of M. This induces a reflection functor

Gr: Mon — Gp.

Given two groups G and H, it is easy to see that their tensor product as
monoids, G @won H, is in fact a group. For a pair (a,b) € M x N, the inverse of
the simple tensor a ® b is equal to (—a) ® b.

In general, the tensor product of a monoidal category induces a tensor product
in every reflective subcategory. Given two objects in the subcategory, their tensor
product in the subcategory is the reflection of their tensor product in the containing
monoidal category.

In the concrete case of Gp and Mon, this agrees with the tensor product of
Gp constructed above. Indeed, given two groups G and H, their (abstract) tensor
product is defined as

GI‘(G AMon H),

the Grothendieck-completion of their tensor product as monoids. However, as ob-
served above, the monoid G ®pon H is automatically a group and therefore

G ®Gp H= GI"(G SMon H) =G ®Mon H.

Therefore, it is unambiguous to write G ® H for the tensor product of G and H.

More generally, given two monoids M and IV, there is a natural isomorphism be-
tween Gr(M ®@ N), the Grothendieck-completion of their tensor product as monoids,
and Gr(M) ® Gr(NN), the tensor product of their respective Grothendieck-comple-
tions.

ProposiTION B.1.7 (Fulp, [Ful70, Proposition 17]). Let M and N be two
monoids. Then
Gr(M ® N) = Gr(M) ® Gr(N).

B.1.8. A monoid M is conical if for any two elements a and b in M we have that
a + b =0 implies a = b = 0. Equivalently, the subset M * of nonzero elements is a
subsemigroup. This property has appeared in the literature under many different
names, see [Weh96, p.268].

We let Con denote the full subcategory of Mon consisting of conical (abelian)
monoids. Analogous to the category of groups, we have the following facts:

(1) The category Con is reflective in Mon.
(2) The category Con is closed under the tensor product in Mon.
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Given a monoid M, we let U(M) denote the subgroup of units, that is
UM)={aeM | a+b=0 for somebe M}.

Then M is conical if and only if U(M) = {0}.

We define a binary relation ~ on M by setting a ~ b if and only if there exist
x,y € U(M) such that a +x = b+ y, for any pair a,b € M. It is easy to check that
~ is a congruence relation on M. We set

Mcon = ]\/[/~7

the set of congruence classes in M. Then Mg, is a conical monoid, which is the
reflection of M in Mon. This induces a reflection functor from Mon to Con.
Given two monoids M and N, it is shown in [Ful70, Corollary 8] that

UM ® N) = U(M) @ U(N).

Thus, given two conical monoids M and N, their tensor product in Mon is conical.
Therefore, it is unambiguous to write M ® N for the tensor product of M and N.

B.1.9. Let us recall a different construction of the tensor product of conical
monoids, as considered by Wehrung in [Weh96]. Let M and N be two conical
monoids. Set M* = M \ {0}. Since M is conical, we have that M * is a subsemi-
group of M. Analogously, N* := N \ {0} is a subsemigroup of N.

In Paragraph B.1.2, we considered the binary relations —° and — on the free
monoid N[M x N]. Now, we consider the free monoid

F=N[M* x N*].
We can define binary relations —° and — on F as in Paragraph B.1.2, and this is
in fact the original definition of —° and — as in [Weh96, Section 2].
We let = be the congruence relation on F' generated by — and <. Thus, for
two elements f and g in F we have f = ¢ if and only if there are n € N and

elements fy, fj, € F for k = 0,...,n such that f = fo and f,, = g and such that
i = fi. < frg1 for each k < n:

f=h—=foch—=fie..fa>fi=g
We set
M ®con N = F/%-
It is clear that M ®con N is an abelian semigroup. Using that F' is conical, it follows
easily from the definition of +— and — that f — 0 or 0 — f implies f = 0, for any
f € F. Therefore, the congruence class of the element 0 contains only 0 itself. It
follows that F'\ {0} is a subsemigroup of F' that is closed under the congruence

relation. Thus, M ®cen NV is a conical monoid.
The natural map from N[M* x N*] to N[M x N] induces a map

M ®con N :N[MX X NX}/«;’A,) —)N[M X N}/<<;74)7go> =M®N,

which is easily checked to be an isomorphism.

B.2. The categories PrePoM and PoM of positively (pre)ordered
monoids

B.2.1. A partially ordered monoid is a monoid M with a partial order < such
that a < b implies a + ¢ < b+ ¢, for any a,b,c € M. If, in addition, we have 0 < a
for every a € M, then we call M a positively ordered monoid.

If the order is not necessarily antisymmetric, we speak of a (positively) pre-
ordered monoid. This terminology follows Wehrung, [Weh92]. Note, however,
that in [Weh92] a ‘positively ordered monoid’ (abbreviated by P.O.M. there) is
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only assumed to be pre-ordered. We include the assumption of antisymmetry in
our definition of ‘positively ordered monoid’ since our focus is on partially ordered
structures.

A PoM-morphism is an order-preserving monoid homomorphism. Let PrePoM
denote the category of positively pre-ordered monoids together with PoM-mor-
phisms. We let PoM be the full subcategory of positively ordered monoids.

Let M, N and R be positively pre-ordered monoids. Given two PoM-morphisms
frg: M — R, we set f < g if and only if f(a) < g(a) for each a € M. This defines
a positive pre-order on M. Together with pointwise addition, this endows the
set PoM(M, R) of PoM-morphisms with the structure of a positively pre-ordered
monoid. If the order of R is antisymmetric, then so is the order of PoM(M, R).
One can extend the assignment R — PoM(M, R) to the following two functors

PoM(M, _): PrePoM — PrePoM, PoM(M,_): PoM — PoM.

The functor on the left is the internal hom-bifunctor of PrePoM. If M is in PoM,
then the functor on the right is the internal hom-bifunctor of PoM.

A PoM-bimorphism from M x N to Risamap f: M x N — R that is a PoM-
morphism in each variable. We denote the set of such bimorphisms by BiPoM (M x
N, R). Tt is a positively pre-ordered monoid when endowed with pointwise order
and addition. If the order of R is antisymmetric, then so is the order of BiPoM (M x
N, R). One can extend the assignment R — BiPoM(M x N, R) to the following
two functors

BiPoM(M x N,_): PrePoM — PrePoM, BiPoM(M x N,_): PoM — PoM.

Since our focus is on the category PoM, we denote the (bi)morphisms in both
PoM and PrePoM as PoM-(bi)morphisms.

B.2.2. Let M be a positively pre-ordered monoid. We define a relation on M
by setting a = b if and only if a < b and b < a, for any a,b € M. Then = is a
congruence relation. We set (M) = M,= and we let 3: M — p(M) denote the
quotient map. The pre-order on M induces a partial order on pu(M). It is easy to
check that this gives u(M) the structure of a positively ordered monoid and that
[ is a PoM-morphism.

The assignment M +— (M) extends to a functor

w: PrePoM — PoM.

It is straightforward to check that this is a left adjoint to the inclusion of PoM
in PrePoM. More precisely, for any positively ordered monoid R, the following
universal properties hold:
(1) For every PoM-morphism f: M — R, there is a unique PoM-morphism
f: (M) — R such that fofS = f.
(2) If g1,92: (M) — R are two PoM-morphisms, then g; < g¢o if and only if
g1ofB < gaop.
Thus, the assignment g — g o 8 defines a map
PoM(pu(M), R) =» PoM(M, R),

which is a PoM-isomorphism when considering the (bi)morphism sets as positively
ordered monoids.

ProprosiTION B.2.3. The category PoM is a full, reflective subcategory of the
category PrePoM.

B.2.4 (Tensor product in PrePoM). Let M and N be positively pre-ordered
monoids. We first consider the tensor product of the underlying monoids as con-
structed in Paragraph B.1.2. Set F' = N[M x N].



B.2. THE CATEGORIES PrePoM AND PoM 159

We define binary relations on F' as follows:
(1) We set f <9 g if and only if there are (a,b) and (@, b) in M x N such that

a<a, b§l~), f=a®b, g:d@l;.

(2) We set f <’ g if and only if f = 0 or if there are n € N and fy, g, € F for
k=0,...,n and such that

n n
F=) fe 9= g and fi <° g for each k.
k=0 k=0

Recall that 2 is the congruence relation on F' generated by <, — and =5. We let
< be the transitive relation on F generated by = and <’. Thus, for two elements
f,g9 € F we have f < g if and only if there are n € N and elements fy, f; € F such
that f = fo and f,, = ¢ and for each k < n:

fe < fo & frgre

It is easy to see that < is a positive pre-order on F. This induces a positive pre-
order on M ®@wyon N = F)~. We denote the resulting positively pre-ordered monoid
by M @PrePoM N.

By construction, the universal monoid-bimorphism

w:MxN-—->MxN

is order-preserving in each variable. We may therefore consider w as a PoM-
bimorphism from M X N to M ®prepom V-

PropoOSITION B.2.5. Let M and N be two positively pre-ordered monoids.
Then, the positively pre-ordered monoid M ®prepom N and the PoM-bimorphism

w: M x N — M Qprepom V.

constructed in Paragraph B.2.4 satisfy the following universal properties for each
positively pre-ordered monoid R:

(1) For every PoM-bimorphism f: M x N — R, there exists a unique PoM-
morphism f: M @prepom N — R such that fow =f.

(2) If g1,92: M ®prepor N — R are two PoM-morphisms, then g1 < g2 if and
only if g1 ow < g o w.

Thus, the assignment g — g ow defines a map
PoM(M ®prepom N, R) — BiPoM(M x N, R),

which is a PoM-isomorphism when considering the (bi)morphism sets as positively
pre-ordered monoids.

Moreover, the reflection p: PrePoM — PoM induces a tensor product in PoM.
More precisely, given two positively ordered monoids M and N, we set

M ®pom N = p(M ®prepom N).

The composition fow: M X N = M ®pom N is a PoM-bimorphism which has the
analogous universal properties of the tensor product in PoM.

Proor. Let M and N be positively pre-ordered monoids. To check the uni-
versal property of w, let R and f be as in the statement. Since the underlying
monoid of M ®prepom N is the tensor product in Mon, there is a unique monoid
homomorphism f : M @mon N — R. It follows easily from the definition of the
pre-order on M @yjon N that f is order-preserving. This proves (1). The proof of
statement (2) is left to the reader.



160 B. PARTIALLY ORDERED MONOIDS, GROUPS AND RINGS

Now, let M and N be positively ordered monoids. Define M Qpom N as the
reflection of M ®prepomt N in PoM. To show that this has the analogous uni-
versal properties, let R be a positively ordered monoid. Given a PoM-morphism
f: M ®pom N — R, we consider the maps f o and f o o w, which are shown in
the following commutative diagram:

M ®poyt N == (M ®prcpom N) <5 M ®prepom N <—— M x N

f
\ lf%

R

It follows from Paragraph B.2.2 and the universal property of the tensor product
in PrePoM that this induces bijective maps

PoM(M @pont N, R) — PoM(M ®prepor N, R) — BiPoM(M x N, R),

which are PoM-isomorphism when considering the (bi)morphism sets as positively
ordered monoids. O

B.2.6. Analogous to Paragraph B.1.5, we obtain that PrePoM and PoM are
closed, symmetric, monoidal categories.

B.2.7. Let us clarify the connection between the four categories Mon, Con,
PrePoM and PoM. We have already observed that Con is a full, reflective subcat-
egory of Mon and that PoM is a full, reflective subcategory of PrePoM.

To every positively pre-ordered monoid, we may associate its underlying addi-
tive monoid. This induces the forgetful functor

§: PrePoM — Mon.

Conversely, let M be a monoid. The algebraic pre-order on M is defined as follows:
For two elements a,b € M, we set a <, b if and only if there exists x € M such that
a+2x =b. It is clear that <, is a positive pre-order on M. Given two monoids M
and N, every monoid homomorphism f: M — N becomes a PoM-morphism when
M and N are equipped with their respective algebraic pre-orders. This defines a
functor

2A: Mon — PrePoM,

which assigns to a monoid M the positively pre-ordered monoid (M, <a).

We say that a positively pre-ordered monoid M is algebraically pre-ordered, or
we simply say that M is an algebraically pre-ordered monoid, if it is equipped with
the algebraic pre-order of the underlying monoid. It is easy to check that 21 is
a fully faithful functor. Thus, we may identify Mon with the full subcategory of
PrePoM consisting of algebraically pre-ordered monoids.

Moreover, we have the following:

(1) The category Mon is reflective in PrePoM.

(2) The property of being algebraically pre-ordered is closed under tensor prod-
ucts in PrePoM, see Proposition B.2.8. Thus, the category Mon considered
as a subcategory of PrePoM is closed under the tensor product in PrePoM.

To see that Mon is a reflective subcategory of PrePoM, let us show that the
forgetful functor § is a left adjoint to the inclusion 2. Indeed, given a monoid
M and a positively pre-ordered monoid R, it is easy to check that every monoid
homomorphism f: M — F(R) is automatically order-preserving as a map from
M (with the algebraic pre-order) to R. Thus, we have a natural bijection of the
following morphism-sets:

Mon(M, FR) = PoM(A(M), R).
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ProroOSITION B.2.8. Let M and N be algebraically pre-ordered monoids. Then
M Rprepom N is algebraically pre-ordered.

PRrROOF. We use the notation that was introduced in Paragraph B.1.2 and Para-
graph B.2.4. Thus, we consider the monoid F = N[M x N] and the congruence
relation 2 on F' generated by <, — and 2.

Claim 1: If f, g € F satisfy f <" g, then there exists h € F such that f+h = g.
To prove the claim, assume that f, g € F satisfying f <% g are given. By definition,
there are (a,b) and (a,b) in M x N such that

a<a, bgl} f=a®b, gz&@g.

Since M and N are algebraically pre-ordered, it follows that there exist x € M and
y € N such that
a+xr=a, b+y=0.

Set
h=xz0b+a0®y.
Then
f+h=a0b+z0b+acy=acb+acy=acb=yg,
as desired.

Claim 2: If f, g € F satisfy f <’ g, then there exists h € F such that f+h = g.
This follows easily from claim 1, since <’ is defined as the additive closure of <y,
and since 2 is an additive relation.

Next, let us show that the pre-order of M ®Rprepom IV is algebraic. The un-
derlying monoid of M ®prepom N is equal to M @non N = F/~. The pre-order
< of F is defined as the transitive relation generated by <’ and =2. This induces
the pre-order of M ®prepom IV, which by abuse of notation is also denoted by <.
Now, let 2,y € M ®Qprepom N satisfy z < y. Choose representatives f and g in F
such that z = [f] and y = [g]. Then f < g. This means that there are n € N and
elements fy, f;, € F for k < n such that

f=h<fhzh< iz 2L =0
For each k < n, we have f <’ fi. By claim 2, there exists hy € F such that
fre +he & f]/c Then
Jro+hi & frp,
for each £ <n. Set h = hg + ...+ h,,. It follows that

f+h:f0+zhkgf1+zhkgf2+2hk%.“%g.
k=0 k=1 k=2

Thus, f + h = ¢, which implies that « + [h] =y in M ®prepom N, as desired. 0O

B.2.9. The underlying monoid of a positively ordered monoid is conical. There-
fore, the forgetful functor §: PrePoM — Mon considered in Paragraph B.2.7 re-
stricts to a functor

§: PoM — Con,

which by abuse of notation is also denoted by §.

However, the algebraic pre-order on a conical monoid is not necessarily anti-
symmetric. Therefore, the functor 2A: Mon — PrePoM from Paragraph B.2.7 does
not restrict to a functor from Mon to PoM.

We say that a positively ordered monoid M is algebraically ordered, or we
simply say that M is an algebraically ordered monoid, if it is equipped with the
algebraic partial order of the underlying monoid.
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B.3. The category PoGp of partially ordered groups

B.3.1. A partially ordered group is an (abelian) group with a partial order <
such that a < bimplies a+c < b+c for any group elements a, b and ¢. Given partially
ordered groups G and R, a PoGp-morphism from G to R is an order-preserving
group homomorphism. We denote the collection of such maps by PoGp(G, R). We
let PoGp denote the category of partially ordered groups and PoGp-morphisms.

Given another partially ordered group H, a PoGp-bimorphism from G x H to
R is a map f: G x H — R that is a group homomorphism in each variable and
such that f(a1,b1) < f(ag,b2) whenever aj,a9 € G and by,by € H are elements
satisfying a1 < as and b; < by. We denote the collection of such bimorphisms by
BiPoGp(G x H, R).

Note that for a PoGp-bimorphism f: G x H — R and a fixed a € G, the map

H— R, b~ f(a,b), (b€ H)
is not necessarily order-preserving, unless a > 0.

B.3.2. To clarify the connection between PoGp and Mon, we need to recall the
following notion. We say that a positively ordered monoid M has cancellation (or
that M is cancellative) if for any a,b,x € M we have that a + = < b+ x implies
a < b. Let Mong,,. denote the full subcategory of Mon of cancellative monoids.
Similarly, we let Coneane be the full subcategory of Con of cancellative, conical
monoids.

Let G be a partially ordered group. The positive cone of G is defined as

Gy={aecG|0<a}.
It is easy to check that G satisfies
GiN(-G;)={0}, G4++Gy CGy.

Therefore, G4 is a conical submonoid of G. Moreover, the order of G induces the
algebraic order on G. Thus, considering G as an algebraically ordered monoid,
the inclusion of G in G is an order-embedding.
Now, let G be a group and let P be a conical submonoid of G. This defines

a partial order on G by setting a < b if and only if there exists x € P such that
a+x = b, for any a,b € G. For every group G, this establishes a natural one-to-one
correspondence between:

(1) Partial orders on G such that (G, <) is a partially ordered group.

(2) Conical submonoids of G.

Since the positive cone of a partially ordered group is automatically cancellative,
there is a functor

PB: PoGp — Coneanc,
that assigns to a partially ordered group G its positive cone G .

Recall that a partially ordered group G is directed, if G = G+ — G+. We
let PoGpy;, denote the full subcategory of PoGp consisting of directed, partially
ordered groups.

Now, let M be a monoid. Consider the Grothendieck completion Gr(M) to-
gether with the universal map

0: M — Gr(M).

We have that § is injective if and only if M is cancellative. The image of § is a
submonoid of Gr(M). If M is conical, then so is §(M), whence it gives Gr(M)
the structure of a partially ordered group whose positive cone is §(M). Moreover,
Gr(M) is directed. This induces a functor

Gr: Con — PoGpy;,-
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A partially ordered group G is in the image of the functor Gr if and only if it
is directed, in which case G = Gr(G4). Conversely, a conical monoid M is in the
image of the functor 8 if and only if it is cancellative, in which case M = Gr(M).
We summarize this as follows:

ProPOSITION B.3.3. The functors B and Gr from Paragraph B.3.2 establish
an equivalence between the following categories:
(1) The category PoGpy,, of directed, partially ordered groups.
(2) The category Con e of cancellative, conical monoids.

B.3.4. Let G and H be partially ordered groups. Consider the tensor product
G ® H of the underlying groups. The map

G+><H+—)G®H, (a,b)|—>a®b, (a€G+,b€H+)
is a monoid bimorphism. It therefore induces a monoid homomorphism
(51 G+®H+ —>G®H

Since Gy and H are conical, so is G4 ® H, see Paragraph B.1.8.

The image of the map ¢ is a conical submonoid of G ® H. As explained in
Paragraph B.3.2, this induces a partial order on G ® H whose positive cone is the
image of 6. We denote the resulting partially ordered group by G ®pocp H, which is
the tensor product of G and H in the category PoGp, see [Weh96, Proposition 1.1].

In Proposition B.3.3, we have seen that the full subcategory PoGpy;, of di-
rected, partially ordered groups is equivalent to Conean.. This equivalence is also
compatible with the tensor product. Thus, given two directed partially ordered
groups G and H, we have

G ®pocp H = Gr(G4 ® Hy).
Conversely, if M and N are two cancellative, conical monoids, then the monoid
(Gr(M) ®pocp Gr(N)) .

is isomorphic to the reflection of M ® N in the subcategory of cancellative, conical
monoids. A proof of these statements can be found in [Weh96, Proposition 1.2].

It is natural to ask whether the tensor product of two cancellative, conical
monoids is again cancellative. As it turns out, the answer to this question is nega-
tive. We thank Fred Wehrung for showing us a counterexample.

In [Weh96, Examples 1.4 and 1.5], examples of partially ordered abelian groups
with Riesz interpolation G and H such that G ®@pogp H does not have interpolation
are given. If we let M = G4 and N = H, then M and N are conical, cancellative,
monoids that satisfy the Riesz refinement property. It then follows from [Weh96,
Theorem 2.9] that M ® N also satisfies the Riesz refinement property. Since

G Qpogp H = Gr(M) ®pocp Gr(N) = Gr(M @ N)

we conclude that Gr(M ® N), does not satisfy the Riesz refinement property, and
hence M ® N is not a cancellative monoid (as otherwise would be isomorphic to
the positive cone of its Grothendieck completion).

B.4. The category PoRg of partially ordered rings

B.4.1. A semiring is a monoid R together with a commutative multiplication
satisfying distributivity and such that there is a unit element, denoted by 1. A
semiring homomorphism is a multiplicative monoid homomorphism preserving the
unit element. We let Srg denote the category of semirings together with semiring
homomorphisms.
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Let R and S be two semirings. Consider the tensor product R ® S of the
underlying monoids. Given r1,79 € R and s1,s9 € S, we define the product of
simple tensors as

(11 ® s1)(r2 ® 82) = (r172) ® (5152).
This extends to a well-defined, commutative multiplication on R ® S. The element
1®1 is a unit element. It follows that R ® S has a natural structure as a semiring.
If we want to stress that R ® S has a semiring-structure, we write R ®g;¢ S. This
is the tensor product of R and S in the category of semirings.

All rings will be unital and commutative. Equivalently, a ring will be a semiring
such that the underlying additive monoid is a group. Given two rings R and S, the
tensor product R ® S of the underlying groups has a natural multiplication such
that R® S is a ring. This is the tensor product of R and S in the category of rings.

B.4.2. A partially ordered ring is a ring R together with a partial order < such
that 0 < 1 and such that
(i) Ifa<b,thena+c<b+ec, for any a,b,c € R.
(i) Ifa <band 0 < ¢, then ac < be, for any a,b,c € R.
In particular, the underlying group of R together with < is a partially ordered
group. This induces a forgetful functor

§: PoRg — PoGp.

Let R be a partially ordered ring. As for partially ordered groups, we define the
positive cone of R as
R, ={a€R|0<a}.

As in the group case, we have Ry + Ry C Ry and Ry N (—R4) = {0}. Moreover,
we have R, - R, C R4. Thus, the positive cone is a cancellative, conical semiring.

Now let R and S be partially ordered rings. Consider the tensor product R® S
of the underlying rings. As for partially ordered groups, there is a natural partial
order on R ® S with positive cone given as the image of Ry ® Sy in R® S. This
partial order is compatible with the multiplication, and we denote the resulting
partially ordered ring by R ®porg 5. This is the tensor product of R and S in the
category PoRg.

Equivalently, we can consider R®porg S as the tensor product R®pocp S of the
underlying partially ordered groups equipped with a product as in Paragraph B.4.1.

B.4.3. Recall that Srg denotes the category of semirings. We let ConSrg denote
the full subcategory of conical semirings. Further, we let Srg,, . (resp. ConSrg,,..)
denote the full subcategories of cancellative (conical) semirings. We have a functor

PB: PoRg — ConSrg,,,,

which assigns to a partially ordered ring R its positive cone R, .

Conversely, it is easy to see that the Grothendieck completion of a semiring
S has a natural multiplication giving it the structure of a ring. If S is conical,
the image of S in Gr(S) defines a partial order on Gr(S). Let PoRgg;, be the
full subcategory of PoRg consisting of directed partially ordered rings. Then, the
Grothendieck-completion induces a functor

Gr: ConSrg — PoRgg;,-

The situation is completely analogous to the connection between (cancellative) con-
ical monoids and (directed) partially ordered groups that was discussed in Para-
graph B.3.2. Therefore, we have the following analog of Proposition B.3.3:

PrOPOSITION B.4.4. The functors B and Gr from Paragraph B.4.3 establish
an equivalence between the following categories:



B.4. THE CATEGORY PoRg OF PARTIALLY ORDERED RINGS 165

(1) The category PoRg,, of directed partially ordered rings.
(2) The category ConSrg,,,. of cancellative, conical semirings.

B.4.5. In Proposition B.4.4, we have seen that the full subcategory PoRgg;, of
directed, partially ordered rings is equivalent to ConSrg.,,. of cancellative, coni-
cal semirings. This equivalence is also compatible with the tensor product in the
following sense: Given two directed partially ordered rings R and S, we have

R ®P0Rg S = GI‘(R+ ® S+)
Conversely, if M and N are two cancellative, conical semirings, then the semiring
(Gr(M) @pocp Gr(N)),,

is isomorphic to the reflection of M ® N in the subcategory of cancellative, conical
semirings.
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