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Capacities associated with scalar signed
Riesz kernels, and analytic capacity

Joan Mateu, Laura Prat and Joan Verdera

Abstract

The real and imaginari parts of the Cauchy kernel in the plane are scalar
Riesz kernels of homogeneity -1. One can associate with each of them a
natural notion of capacity related to bounded potentials. The main result of
the paper asserts that these capacities are comparable to classical analytic
capacity, thus stressing the real variables nature of analytic capacity. Higher
dimensional versions of this result are also considered.

1 Introduction

The analytic capacity of a compact subset E of the plane is defined by

γ(E) = sup |f ′(∞)|

where the supremum is taken over those analytic functions on C \ E such that
|f(z)| ≤ 1, z ∈ C \ E. Sets of zero analytic capacity are exactly the removable sets
for bounded analytic functions, as it is easily seen, and thus γ(E) quantifies the
non-removability of E. Early work on analytic capacity used basically one complex
variable methods (see, e.g., [A], [G1] and [Vi]). Analytic capacity may be written as

γ(E) = sup |〈T, 1〉| (1)

where the supremum is taken over all complex distributions T supported on E
whose Cauchy potential f = 1/z ∗ T is in the closed unit ball of L∞(C). The

transition from f to T and viceversa is performed through the formulae T =
1

π
∂f

and f = 1/z ∗ T .
Expression (1) shows that analytic capacity is formally an analogue of classical

logarithmic capacity, in which the logarithmic kernel has been replaced by the com-
plex kernel 1/z. This suggests that real variables techniques could help in studying
analytic capacity, in spite of the fact that the Cauchy kernel is complex. In fact,
significant progress in the understanding of analytic capacity was achieved when real
variables methods, in particular the Calderón-Zygmund theory of the Cauchy singu-
lar integral, were systematically used ([C], [Da], [MaMeV], [MTV], [T2] and [T4]). A
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striking result of Tolsa [T2] asserts that analytic capacity is comparable to a smaller
quantity, called positive analytic capacity, which is defined on compact sets E by

γ+(E) = supµ(E)

where the supremum is taken over those positive measures supported on E whose
Cauchy potential 1/z ∗ µ is in the closed unit ball of L∞(C). In other words, there
exists a positive constant C such that

γ(E) ≤ C γ+(E), (2)

for each compact subset E of the plane. This implies, in particular, that analytic ca-
pacity is comparable to planar Lipschitz harmonic capacity. The Lipschitz harmonic
capacity of a compact subset of Rn is defined by

κ(E) = sup |〈T, 1〉| (3)

where the supremum is taken over those real distributions T supported on E such

that the vector field
x

|x|n
∗ T is in the unit ball of L∞(Rn,Rn). The terminology

stems from the fact that κ(E) vanishes if and only if E is removable for harmonic
functions on Rn \ E satisfying a global Lipschitz condition. Notice that the fact
that analytic capacity and Lipschitz harmonic capacity in the plane are comparable
cannot be deduced just by inspection from (1) and (3). The reason is that the
distributions involved in the supremum in (1) are complex.

In this paper we continue the study of the real variables nature of analytic
capacity. For a compact subset E of Rn and 1 ≤ i ≤ n set

κi(E) = sup |〈T, 1〉| (4)

where the supremum is taken over those real distributions T such that the scalar
signed i-th Riesz potential

xi

|x|n
∗ T (5)

is in the unit ball of L∞(Rn). Although there are obvious formal similarities between
the definitions of the set functions in (1) and (4), very little is known about κi. The
reader will find in section 6.3 a proof of the elementary fact that κi(E) is finite for
each compact subset E of Rn. The reason why κi is difficult to understand is that
boundedness of the potential (5) does not provide any linear growth condition on T .
Concretely, it is not true that boundedness of (5) implies that for each cube Q one
has

|〈T, ϕQ〉| ≤ C l(Q), (6)

for each test function ϕQ ∈ C∞0 (Q) satisfying ‖∂sϕQ‖∞ ≤ Cs l(Q)−|s| for all multi-
indexes s. Here l(Q) stands for the side length ofQ and we are adopting the standard
notation related to multi-indexes, that is, s = (s1, . . . , sn), where each coordinate sj
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is a non-negative integer and |s| = s1 + · · ·+sn. The reader will find in section 5 two
exemples of such phenomenon. On the other hand, recall that if T is a compactly
supported distribution with bounded Cauchy potential then

|〈T, ϕQ〉| =
∣∣∣∣〈T, 1

πz
∗ ∂ϕQ

〉∣∣∣∣ =

∣∣∣∣〈 1

πz
∗ T, ∂ϕQ

〉∣∣∣∣
≤ C

∥∥∥∥1

z
∗ T

∥∥∥∥
∞
‖∂ϕQ‖L1(Q) ≤ C l(Q).

(7)

We say that a distribution T has linear growth provided that

G(T ) = sup
ϕQ

|〈T, ϕQ〉|
l(Q)

<∞, (8)

where the supremum is taken over all ϕQ ∈ C∞0 (Q) satisfying the normalization
inequalities

‖∂sϕQ‖L1(Q) ≤ l(Q), |s| = n− 1. (9)

The above special normalization in the L1(Q) norm agrees with (7) and, in fact,
is the right condition to impose, as will become clear later on. For positive Radon
measures µ in Rn the preceding notion of linear growth is equivalent to the usual
one (see (15) below). In subsection 6.5 complete details on this fact are provided.

For a compact set E in Rn we define g(E) as the set of all distributions supported
on E having linear growth with constant G(T ) at most 1. For each coordinate k set

Γk(E) = sup

{
|〈T, 1〉| : T ∈ g(E) and

∥∥∥∥ xk

|x|2
∗ T

∥∥∥∥
∞
≤ 1

}
.

The requirement of the growth condition in the preceding definition is vital in obtain-
ing the localization result (19). In subsection 6.4 we show that a growth condition
is necessary for a localization estimate in L∞.

Our main result reads as follows.

Theorem 1. There exists a positive constant C such that for each compact set
E ⊂ R2 and k = 1, 2

C−1 Γk(E) ≤ γ(E) ≤ C Γk(E). (10)

Thus analytic capacity is the capacity associated with any component of the
Cauchy kernel in which a natural growth condition on the admissible distributions
is required. Observe that the second inequality in (10) follows readily from the
definitions of γ and Γk.

Our next result is a higher dimensional version of Theorem 1. For a compact
E ⊂ Rn set

Γ(E) = sup

{
|〈T, 1〉| : sptT ⊂ E and

∥∥∥∥ x

|x|2
∗ T

∥∥∥∥
∞
≤ 1

}
,
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so that Γ(E) = κ(E) for n = 2. Finally, for 1 ≤ k ≤ n, set

Γk̂(E) = sup

{
|〈T, 1〉| : T ∈ g(E) and

∥∥∥∥ xi

|x|2
∗ T

∥∥∥∥
∞
≤ 1, 1 ≤ i ≤ n, i 6= k

}
.

Thus we require the boundedness of n − 1 components of the vector valued poten-
tial x/|x|2 ∗ T with Riesz kernel of homogeneity −1.
Our extension of Theorem 1 to Rn is the following.

Theorem 2. There exists a positive constant C such that for each compact set E ⊂
Rn and 1 ≤ k ≤ n

C−1 Γk̂(E) ≤ Γ(E) ≤ C Γk̂(E). (11)

The second inequality in (11) follows immediately from the definitions of Γ
and Γk̂, because any distribution T with bounded vector valued Riesz potential
has linear growth (see Lemma 3.2 in [Pr1]) .

The paper is organized as follows. In section 2 we present a sketch of the proof of
Theorem 2. It becomes clear that the proof depends on two facts: the close relation-
ship between the quantities one obtains after symmetrization of the kernels x/|x|2
and xi/|x|2 and a localization L∞ estimate for the scalar kernels xi/|x|2. In section 3
we deal with the symmetrization issue and in section 4 with the localization esti-
mate. In section 5 we discuss two examples showing that boundedness of the scalar
signed Riesz potential xi/|x|2 ∗ T does not imply a linear growth estimate on T . In
section 6 we present various additional results and examples. We show that κi(E) is
finite for each compact E. We present counter-examples to two natural inequalities.
The first shows that the obvious extension of Theorem 2 to the vector valued Riesz
kernels x/|x|1+α and scalar kernels xi/|x|1+α of homogeneity α, 0 < α < 1, fails. The
second counter-example shows that the obvious extension of Theorem 2 to kernels
of homogeneity −d, where d is an integer greater than 1, also fails. Finally we point
out that a growth condition is necessary to have localization inequalities in L∞.

Our notation and terminology are standard. For instance, C∞0 (E) denotes the
set of all infinitely differentiable functions with compact support contained in the
set E. Cubes will always be supposed to have sides parallel to the coordinate axis,
l(Q) is the side length of the cube Q and |Q| = l(Q)n its volume.

We remind the reader that the convolution of two distributions T and S is well
defined if T has compact support. In this case the action of T ∗ S on the test
function ϕ is

〈T ∗ S, ϕ〉 = 〈T, S ∗ ϕ〉,
which makes sense because S ∗ ϕ is an infinitely differentiable function on Rn.

2 Sketch of the proof of Theorem 2

As we remarked before, one only has to prove that

Γk̂(E) ≤ C Γ(E). (12)
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Clearly Γ(E) is larger than or equal to

Γ+(E) = supµ(E) (13)

where the supremum is taken over those positive measures µ supported on E whose
vector valued Riesz potential x/|x|2 ∗ µ lies in the closed unit ball of L∞(Rn,Rn).
Now, Γ+(E) is comparable to yet another quantity Γop(E), that is, for some positive
constant C one has

C−1 Γop(E) ≤ Γ+(E) ≤ C Γop(E), (14)

for each compact set E ⊂ Rn (see [T1]). Before giving the definition of Γop(E) we
need to introduce the Riesz transform with respect to an underlying positive Radon
measure µ satisfying the linear growth condition

µ(B(x, r)) ≤ C r, x ∈ Rn, r ≥ 0. (15)

Given ε > 0 we define the truncated Riesz transform at level ε as

Rε(f µ)(x) =

∫
|y−x|>ε

x− y

|x− y|2
f(y) dµ(y), x ∈ Rn, (16)

for f ∈ L2(µ). The growth condition on µ insures that each Rε is a bounded operator
on L2(µ) with operator norm ‖Rε‖L2(µ) possibly depending on ε. We say that the
Riesz transform is bounded on L2(µ) when

‖R‖L2(µ) = sup
ε>0

‖Rε‖L2(µ) <∞,

or, in other words, when the truncated Riesz transforms are uniformly bounded
on L2(µ). Call L(E) the set of positive Radon measures supported on E which
satisfy (15) with C = 1 . One defines Γop(E) by

Γop(E) = sup{µ(E) : µ ∈ L(E) and ‖R‖L2(µ) ≤ 1}.

From the first inequality in (14) we get that, for some constant C and all compact
sets E,

Γop(E) ≤ C Γ(E).

We remind the reader that the first inequality in (14) depends on a simple but inge-
nious duality argument due to Davie and Oksendal (see [DO, p.139], [Ch, Theorem
23, p.107] and [V3, Lemma 4.2]). To prove (12) we have to estimate Γk̂(E) by a
constant times Γop(E). The natural way to perform that is to introduce the quantity
Γk̂,op(E) and try the two estimates

Γk̂(E) ≤ C Γk̂,op(E) (17)

and
Γk̂,op(E) ≤ C Γop(E). (18)

5



We define the truncated scalar Riesz transform Ri
ε(f µ)(x) associated with the

i-th coordinate as in (16) with the vector valued Riesz kernel replaced by the scalar

Riesz kernel
xi − yi

|x− y|2
. We also set

‖Ri‖L2(µ) = sup
ε>0

‖Ri
ε‖L2(µ),

and

Γk̂,op(E) = sup{µ(E) : µ ∈ L(E) and ‖Ri‖L2(µ) ≤ 1, 1 ≤ i ≤ n, i 6= k}.

One proves (18) by checking that symmetrization of a scalar Riesz kernel is
controlled by the symmetrization of the scalar Riesz kernels associated with all other
variables. Here the fact that we are dealing with kernels of homogeneity −1 plays a
key role, because, as it is well-known, they enjoy a special positivity property which
is missing in general. See section 3 for complete details. For other homogeneities,
either the corresponding statements are false or open (see section 6).

The proof of (17) depends on Tolsa’s approach to the proof of (2), which extends
without any significant change to the higher dimensional setting to give

Γ(E) ≤ C Γ+(E).

The main technical point missing in our setting is a localization result for scalar
Riesz potentials. This turns out to be a delicate issue, which we deal with in
section 4. Specifically, we prove that there exists a positive constant C such that,
for each compactly supported distribution T and for each coordinate i, we have∥∥∥∥ xi

|x|2
∗ ϕQT

∥∥∥∥
∞
≤ C

(∥∥∥∥ xi

|x|2
∗ T

∥∥∥∥
∞

+G(T )

)
(19)

for each cube Q and each ϕQ ∈ C∞0 (Q) satisfying ‖∂sϕQ‖∞ ≤ l(Q)−|s|, 0 ≤ |s| ≤
n− 1.

This improves significantly a previous localization result in [MPrVe], which, in
particular, yields ∥∥∥∥ x

|x|2
∗ ϕQT

∥∥∥∥
∞
≤ C

∥∥∥∥ x

|x|2
∗ T

∥∥∥∥
∞
, (20)

for ϕQ as above. Inequality (19) implies (20) because boudedness of the vector
valued potential x/|x|2 ∗ T provides a growth condition on T . Indeed one has (see
Lemma 3.2 in [Pr1])

G(T ) ≤ C

∥∥∥∥ x

|x|2
∗ T

∥∥∥∥
∞
.

Once (19) is at our disposition Tolsa’s machinery applies straightforwardly as
was already explained in [MPrVe, Section 2.2]. However we will again describe the
main steps in the proof of inequality (17) at the end of section 4.
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3 Proof of Γk̂,op(E) ≤ C Γop(E)

The symmetrization process for the Cauchy kernel introduced in [Me] has been
succesfully applied to many problems of analytic capacity and L2 boundedness of
the Cauchy integral operator (see [MeV], [MaMeV] and the book [P], for example)
and also to problems concerning the capacities, γα, 0 < α < 1, (which are related
to the vector valued Riesz kernels x/|x|1+α) and the L2 boundedness of the α-Riesz
transforms (see [Pr1], [MPrVe], [Pr2] and [Pr3]). Given 3 distinct points in the
plane, z1, z2 and z3, one finds out, by an elementary computation that

c(z1, z2, z3)
2 =

∑
σ

1

(zσ(1) − zσ(3))(zσ(2) − zσ(3))
(21)

where the sum is taken over the permutations of the set {1, 2, 3} and c(z1, z2, z3)
is Menger curvature, that is, the inverse of the radius of the circle through z1, z2

and z3. In particular (21) shows that the sum on the right hand side is a non-negative
quantity.

In Rn and for 1 ≤ i ≤ n the quantity∑
σ

xi
σ(2) − xi

σ(1)

|xσ(2) − xσ(1)|2
xi

σ(3) − xi
σ(1)

|xσ(3) − xσ(1)|2
(22)

where the sum is taken over the permutations of the set {1, 2, 3}, is the obvious ana-
logue of the right hand side of (21) for the i-th coordinate of the Riesz kernel x/|x|2.
Notice that (22) is exactly

2pi(x1, x2, x3),

where pi(x1, x2, x3) is defined as the sum in (22) taken only on the three permuta-
tions (1, 2, 3), (3, 1, 2) and (2, 1, 3).

In Lemma 3, we will show that, given three distinct points x1, x2, x3 ∈ Rn, the
quantity pi(x1, x2, x3), 1 ≤ i ≤ n, is also non-negative. We will use this remarkable
fact to study the L2 boundedness of the operators associated with the scalar Riesz
kernels xi/|x|2.

The relationship between the quantity pi(x1, x2, x3), 1 ≤ i ≤ n, and the L2 esti-
mates of the operator with kernel xi/|x|2 is as follows. Take a positive finite Radon
measure µ in Rn with linear growth. Given ε > 0 consider the truncated scalar
Riesz transform Ri

ε(µ). Then we have (see in [MeV] the argument for the Cauchy
integral operator) ∣∣∣∣∫ |Ri

ε(µ)(x)|2 dµ(x)− 1

3
pi,ε(µ)

∣∣∣∣ ≤ C‖µ‖, (23)

C being a positive constant depending only on n, and

pi,ε(µ) =

∫∫∫
Sε

pi(x, y, z) dµ(x) dµ(y) dµ(z),

7



with
Sε = {(x, y, z) : |x− y| > ε, |x− z| > ε and |y − z| > ε}.

Lemma 3. For 1 ≤ i ≤ n, and any three different points x1, x2, x3 ∈ Rn we have

pi(x1, x2, x3) ≥ 0.

Moreover,

1. If pi(x1, x2, x3) = 0 for n − 1 values of i ∈ {1, 2, . . . , n}, then x1, x2, x3 are
aligned.

2. If the three points x1, x2, x3 are aligned, then pi(x1, x2, x3) = 0 for 1 ≤ i ≤ n.

Proof. Write a = x2 − x1 and b = x3 − x2. Then

pi(x1, x2, x3) =
ai(ai + bi)|b|2 − biai|a+ b|2 + bi(ai + bi)|a|2

|a|2|b|2|a+ b|2

=
aibi

(
−2

∑n
j=1 ajbj

)
+

∑n
j=1 a

2
i b

2
j + b2i a

2
j

|a|2|b|2|a+ b|2

=

∑n
j=1(aibj − biaj)

2

|a|2|b|2|a+ b|2
=

∑
j 6=i(aibj − biaj)

2

|a|2|b|2|a+ b|2
≥ 0.

Therefore, given three pairwise different points x1, x2, x3, the permutations
pi(x1, x2, x3) ≡ 0 if and only if aibj = biaj for all 1 ≤ j ≤ n.

Without loss of generality, assume that pi(x1, x2, x3) = 0 for 1 ≤ i ≤ n−1. Then
the following n(n− 1)/2 conditions hold

aibj = ajbi 1 ≤ i ≤ n− 1, i+ 1 ≤ j ≤ n.

These conditions imply that a = λb, for some λ ∈ R, which means the three
points x1, x2, x3 lie on the same line.

Assume now that the three points are aligned. Without loss of generality set
x1 = 0, x2 = y and x3 = λy for some λ > 0, and y ∈ Rn. Then for i, j ∈ {1, 2, . . . , n},
we have

aibj = yi(λ− 1)yj = (λ− 1)yiyj = biaj,

hence pi(x1, x2, x3) = 0 for 1 ≤ i ≤ n.

If we are in the plane, then Menger curvature can be written as

c(x1, x2, x3) =
4A

|x1 − x2||x1 − x3||x3 − x2|
,

where A denotes the area of the triangle determined by the points x1, x2, x3. A
consequence of Lemma 3 and its proof is the following.
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Corollary 4. Given three different points x1, x2, x3 ∈ R2, we have

p1(x1, x2, x3) = p2(x1, x2, x3) =
1

4
c(x1, x2, x3)

2.

Hence, the quantities p1(x1, x2, x3) and p2(x1, x2, x3) are non-negative, and vanish if
and only if x1, x2, x3 are aligned.

In the plane the singular Cauchy transform C(µ) may be written as C(µ) =
R1(µ)−iR2(µ). By Corollary 4 and the T (1)-Theorem , we see that C(µ) is bounded
on L2(µ) if and only if one of its real components, no matter which one, is bounded
on L2(µ). We state this, for emphasis, as a corollary.

Corollary 5. If µ is a compactly supported positive measure in the plane having
linear growth, the Cauchy transform of µ is bounded on L2(µ) if and only if Ri(µ)
is bounded on L2(µ) for one i ∈ {1, 2}.

For a positive measure µ with linear growth we have, by (23),

‖Rε(µ)‖2
L2(µ) =

n∑
j=1

∫
|Rj

ε(µ)(x)|2 dµ(x)

=
1

3

n∑
j=1

∫∫∫
Sε

pj(x, y, z) dµ(x) dµ(y) dµ(z) +O(‖µ‖)

≤ 2

3

n∑
j=1
j 6=i

∫∫∫
Sε

pj(x, y, z) dµ(x) dµ(y) dµ(z) +O(‖µ‖),

where the last inequality follows easily from the formula

pi(x1, x2, x3) =

∑
j 6=i

(
(xi

2 − xi
1)(x

j
3 − xj

2)− (xj
2 − xj

1)(x
i
3 − xi

2)
)2

|x2 − x1|2|x3 − x2|2|x3 − x1|2
, 1 ≤ i ≤ n.

The above estimate can be localized replacing µ by χBµ for each ball B. Therefore,
appealing to the T (1)-Theorem for non necessarily doubling measures [NTV1], if
n−1 components Rj(µ) are bounded on L2(µ) (no matter which n−1 components),
then the whole vector valued operator R(µ) is bounded on L2(µ).

Theorem 6. Let µ be a non-negative measure with compact support in Rn and linear
growth. Then the vector valued Riesz operator R(µ) is bounded on L2(µ) provided
any set of n− 1 components Rj(µ) of R(µ) are bounded on L2(µ).

The inequality (18) is an immediate consequence of Theorem 6.

9



4 Proof of Γk̂(E) ≤ C Γk̂,op(E)

The proof of the inequality Γk̂(E) ≤ C Γk̂,op(E) is based in two ingredients, the
localization of scalar Riesz potentials and the exterior regularity of Γk̂, which we
discuss below.

4.1 Localization of scalar Riesz potentials

When analyzing the argument for the proof of (2) (see Theorem 1.1 in [T2]) one
realizes that one of the technical tools used is the fact that the Cauchy kernel 1/z
localizes in the uniform norm. By this we mean that if T is a compactly supported
distribution such that 1/z ∗T is a bounded measurable function, then 1/z ∗ (ϕT ) is
also bounded measurable for each compactly supported C1 function ϕ. This is an old
result, which is simple to prove because 1/z is related to the differential operator ∂
(see [G1, Chapter V]). The same localization result can be proved easily in any
dimension for the kernel x/|x|n, which is, modulo a multiplicative constant, the
gradient of the fundamental solution of the Laplacian. Again the proof is reasonably
straightforward because the kernel is related to a differential operator (see [Pa]
and [V1]).

In [MPrVe, Lemma 3.1] we were concerned with the localization of the vector
valued α-Riesz kernel x/|x|1+α, 0 < α < n. For general values of α there is no differ-
ential operator in the background and consequently the corresponding localization
result becomes far from obvious (see Lemma 3.1 in [MPrVe]).

We now state the new localization lemma we need.

Lemma 7. Let T be a compactly supported distribution in Rn, with linear growth,
such that (xi/|x|2) ∗ T is in L∞(Rn) for some i, 1 ≤ i ≤ n. Let Q be a cube and
assume that ϕQ ∈ C∞0 (Q) satisfies ‖∂sϕQ‖∞ ≤ l(Q)−|s|, 0 ≤ |s| ≤ n − 1. Then
(xi/|x|2) ∗ ϕQT is in L∞(Rn) and∥∥∥∥ xi

|x|2
∗ ϕQT

∥∥∥∥
∞
≤ C

(∥∥∥∥ xi

|x|2
∗ T

∥∥∥∥
∞

+G(T )

)
,

for some positive constant C = C(n) depending only on n.

With analogous techniques and replacing G(T ) by Gα(T ) (see section 6 for a
definition) one can prove that the above lemma also holds in Rn for the scalar
α-Riesz potentials

xi

|x|1+α
∗ T, 0 < α < n, α ∈ Z.

For the proof of Lemma 7 we need the following.

Lemma 8. Let T be a compactly supported distribution in Rn with linear growth and
assume that Q is a cube and ϕQ ∈ C∞0 (Q) satisfies ‖∂sϕQ‖L1(Q) ≤ l(Q), |s| = n− 1.
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Then, for each coordinate i, the distribution (xi/|x|2) ∗ ϕQT is a locally integrable
function and there exists a point x0 ∈ 1

4
Q such that∣∣∣∣( xi

|x|2
∗ ϕQT

)
(x0)

∣∣∣∣ ≤ C G(T ),

where C = C(n) is a positive constant depending only on n.

Proof. Without loss of generality set i = 1 and write k1(x) = x1/|x|2. Since k1∗ϕQT
is infinitely differentiable off the closure of Q, we only need to show that k1 ∗ϕQT is
integrable on 2Q. We will actually prove a stronger statement, namely, that k1 ∗
ϕQT is in Lp(2Q) for each p in the interval 1 ≤ p < n. Indeed, fix any q satisfying
n/(n − 1) < q < ∞ and call p the dual exponent, so that 1 < p < n. We need to
estimate the action of k1 ∗ ϕQT on functions ψ ∈ C∞0 (2Q) in terms of ‖ψ‖q. We
clearly have

〈k1 ∗ ϕQT, ψ〉 = 〈T, ϕQ(k1 ∗ ψ)〉.

We claim that, for an appropriate dimensional constant C, the test function

ϕQ(k1 ∗ ψ)

C l(Q)
n
p
−1‖ψ‖q

satisfies the normalization inequalities (9) in the definition of G(T ). Once this is
proved, by the definition of G(T ) we get

|〈k1 ∗ ϕQT, ψ〉| ≤ C l(Q)
n
p ‖ψ‖q G(T ),

and so
‖k1 ∗ ϕQT‖Lp(2Q) ≤ C l(Q)

n
pG(T ).

Hence

1

|1
4
Q|

∫
1
4
Q

|(k1 ∗ ϕQT )(x)| dx ≤ 4n 1

|Q|

∫
Q

|(k1 ∗ ϕQT )(x)| dx

≤ 4n

(
1

|Q|

∫
Q

|(k1 ∗ ϕQT )(x)|p dx
) 1

p

≤ C G(T ),

which completes the proof of Lemma 8.
To prove the claim we have to show that

‖∂s
(
ϕQ (k1 ∗ ψ)

)
‖L1(Q) ≤ C l(Q)

n
p ‖ψ‖q, |s| = n− 1. (24)
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By Leibnitz formula

∂s
(
ϕQ (k1 ∗ ψ)

)
=

n−1∑
|r|=0

cs,r ∂
rϕQ ∂s−r(k1 ∗ ψ)

= ϕQ ∂
s(k1 ∗ ψ) +

n−1∑
|r|=1

cs,r ∂
rϕQ ∂s−r(k1 ∗ ψ)

≡ A+B,

where the last identity is a definition of A and B.
To estimate the function B we remark that, since |s| = n− 1,

|∂s−rk1(x)| ≤ C |x|−(n−|r|), 1 ≤ |r| ≤ n− 1,

and then, by Hölder, for each 1 ≤ |r| ≤ n− 1,∫
Q

|∂rϕQ||∂s−rk1 ∗ ψ|dx ≤ C ‖∂rϕQ‖L1(Q)‖ψ‖q

(∫
Q

dy

|x− y|p(n−|r|)

)1/p

≤ C l(Q)
n
p
−n+|r|‖∂rϕQ‖L1(Q)‖ψ‖q.

For |s| = n− 1 and 0 ≤ |r| ≤ n− 1, an inequality by Maz’ya (see [Mz, 1.1.4, p.
15] and [Mz, 1.2.2, p. 24]) tells us that

‖∂rϕQ‖ n
1+|r|

≤ C

∫
|∇n−1ϕQ|,

where ∇n−1ϕQ denotes the vector of all derivatives ∂sϕQ of order |s| = n− 1.
Thus using Hölder and the fact that ‖∂sϕQ‖L1(Q) ≤ l(Q) for |s| = n− 1 , we get

∫
|∂rϕQ| ≤ ‖∂rϕQ‖ n

1+|r|
l(Q)n−1−|r| ≤ Cl(Q)l(Q)n−1−|r| = Cl(Q)n−|r|.

We therefore conclude∫
Q

|B| ≤ C

n−1∑
|r|=1

∫
Q

|∂rϕQ||∂s−rk1 ∗ ψ|dx ≤ C l(Q)
n
p ‖ψ‖q

We turn now to the term A. We remark that, for |s| = n− 1,

∂sk1 ∗ ψ = c ψ + S(ψ), (25)

where S is a smooth homogeneous convolution Calderón-Zygmund operator and c
a constant depending on s. This can be seen by computing the Fourier transform
of ∂sk1 and then using that each homogeneous polynomial can be decomposed in

12



terms of homogeneous harmonic polynomials of lower degrees (see [St, 3.1.2 p. 69]).
Since Calderón-Zygmund operators preserve Lq(Rn), 1 < q <∞, we get, using again
Hölder, ∫

Q

|A| dx ≤ C ‖ϕQ‖p‖ψ‖q.

The Sobolev imbedding theorem, case p = 1 (see [St]), tells us that

‖ϕQ‖n ≤ C

∫
Q

|∇n−1ϕQ(x)|dx,

therefore, by Hölder,

‖ϕQ‖p ≤ C

(∫
Q

|ϕQ|n
) 1

n

l(Q)
n−p

p ≤ C l(Q)
n
p .

This finishes the estimate of term A and the proof of (24).

Proof of Lemma 7. Without loss of generality take i = 1. Since k1 ∗ ϕQT is a
harmonic function off the closure of Q, by the maximum principle we only need to
estimate |(k1 ∗ ϕQT )(x)| for x ∈ 3

2
Q. Since k1 ∗ T and ϕQ are bounded functions,

we can write

|(k1 ∗ ϕQT )(x)| ≤ |(k1 ∗ ϕQT )(x)− ϕQ(x)(k1 ∗ T )(x)|+ ‖ϕQ‖∞‖k1 ∗ T‖∞.

Let ψQ ∈ C∞0 (Rn) be such that ψQ ≡ 1 in 2Q, ψQ ≡ 0 in (4Q)c and ‖∂sψQ‖∞ ≤
Cs l(Q)−|s|, for each multi-index s. Then one is tempted to write

|(k1 ∗ ϕQT )(x)− ϕQ(x)(k1 ∗ T )(x)| ≤ |〈T, ψQ(y)(ϕQ(y)− ϕQ(x))k1(x− y)〉|

+ ‖ϕQ‖∞|〈T, (1− ψQ(y))k1(x− y)〉|.

The problem is that the first term in the right hand side above does not make any
sense because T is acting on a function of y which is not necessarily differentiable at
the point x. To overcome this difficulty one needs to use a standard regularization
process. Take χ ∈ C∞(B(0, 1)) such that

∫
χ(x) dx = 1 and set χε(x) = ε−n χ(x/ε).

The plan is to estimate, uniformly on x and ε,

|(χε ∗ k1 ∗ ϕQT )(x)− ϕQ(x)(χε ∗ k1 ∗ T )(x)|. (26)

Clearly (26) tends, as ε tends to zero, to

|(k1 ∗ ϕQT )(x)− ϕQ(x)(k1 ∗ T )(x)|,

13



for almost all x ∈ Rn, which allows the transfer of uniform estimates. We now have

|(χε ∗ k1 ∗ ϕQT )(x)− ϕQ(x)(χε ∗ k1 ∗ T )(x)|

≤ |〈T, ψQ(y)(ϕQ(y)− ϕQ(x))(χε ∗ k1)(x− y)〉|

+ ‖ϕQ‖∞|〈T, (1− ψQ(y))(χε ∗ k1)(x− y)〉|

= A1 + A2,

where the last identity is the definition of A1 and A2. To deal with term A1 set

k1,x
ε (y) = (χε ∗ k1)(x− y).

We claim that, for an appropriate dimensional constant C, the test function

f(y) = Cl(Q)ψQ(y)(ϕQ(y)− ϕQ(x))k1,x
ε (y),

satisfies the normalization inequalities (9) in the definition of G(T ), with ϕQ replaced
by f and Q by 4Q. If this is the case, then

A1 ≤ Cl(Q)−1|〈T, f〉| ≤ C G(T ).

To prove the claim we first notice that the regularized kernel χε ∗ k1 satisfies the
inequalities

|(χε ∗ ∂s k1)(x)| ≤ C

|x|1+|s|
, x ∈ Rn \ {0} and 0 ≤ |s| < n− 1, (27)

where C is a dimensional constant, which, in particular, is independent of ε. This
can be proved by standard estimates which we omit. For |s| = n − 1 the situation
is a little bit more complicated. By (25) we have

(χε ∗ ∂s k1)(x) = c χε(x) + (χε ∗ S)(x),

where S is a smooth homogeneous convolution Calderón-Zygmund operator. As
such, its kernel H satisfies the usual growth condition |H(x)| ≤ C/|x|n. From this
is not difficult to show that

|(χε ∗ S)(x)| ≤ C

|x|n
, x ∈ Rn \ {0}, (28)

for a dimensional constant C.
By Leibnitz formula, for |s| = n− 1,

∂s
(
ψQ(ϕQ − ϕQ(x))k1,x

ε

)
= ψQ (ϕQ − ϕQ(x))∂s k1,x

ε

+
n−1∑
|r|=1

cr,s ∂
r(ψQ(ϕQ − ϕQ(x))) ∂s−r k1,x

ε ,
(29)

14



and so

‖∂sf‖L1(4Q) ≤ Cl(Q)

∫
4Q

|ψQ(y) (ϕQ(y)− ϕQ(x)) ∂sk1,x
ε (y)| dy

+ Cl(Q)
n−1∑
|r|=1

∫
4Q

|∂r
(
ψQ(ϕQ − ϕQ(x)) ∂s−rk1,x

ε

)
(y)| dy = A11 + A12.

Making use of (27) one obtains

A12 ≤ Cl(Q)
n−1∑
|r|=1

1

l(Q)|r|

∫
4Q

|(∂s−rk1,x
ε )(y)| dy

≤ Cl(Q).

To estimate A11 we resort to (28), which yields

A11 = Cl(Q)

∫
4Q

|ψQ(y)(ϕQ(y)− ϕQ(x))∂sk1,x
ε (y)| dy

≤ Cl(Q)

(∫
χε(y − x) dy + ‖∂ϕQ‖∞

∫
4Q

dy

|y − x|n−1
dy

)
≤ Cl(Q).

We now turn to A2. By Lemma 8, there exists a point x0 ∈ Q such that
|(k1 ∗ ψQT )(x0)| ≤ C G(T ). Then

|(k1 ∗ (1− ψQ)T )(x0)| ≤ C (‖k1 ∗ T‖∞ +G(T )).

The analogous inequality holds as well for the regularized potentials appearing in
A2, uniformly in ε, and therefore

A2 ≤ C |〈T, (1− ψQ)(k1,x
ε − k1,x0

ε )〉|+ C (‖k1 ∗ T‖∞ +G(T )).

To estimate |〈T, (1− ψQ)(k1,x
ε − k1,x0

ε )〉|, we decompose Rn \ {x} into a union of
rings

Rj = {z ∈ Rn : 2j l(Q) ≤ |z − x| ≤ 2j+1 l(Q)}, j ∈ Z,

and consider functions ϕj in C∞0 (Rn), with support contained in 3
2
Rj, such that

‖∂sϕj‖∞ ≤ C (2j l(Q))−|s|, |s| ≥ 0, and
∑

j ϕj = 1 on Rn \ {x}. Then, since x ∈ 3
2
Q

and 1−ψQ ≡ 0 in 2Q, the smallest ring Rj that may intersect (2Q)c is R−2. Therefore
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we have

|〈T, (1− ψQ)(k1,x
ε − k1,x0

ε )〉| =

∣∣∣∣∣
〈
T,

∑
j≥−2

ϕj(1− ψQ)(k1,x
ε − k1,x0

ε )

〉∣∣∣∣∣
≤

∣∣∣∣∣
〈
T,

∑
j∈I

ϕj(1− ψQ)(k1,x
ε − k1,x0

ε )

〉∣∣∣∣∣
+

∑
j∈J

|〈T, ϕj(k
1,x
ε − k1,x0

ε )〉|,

where I denotes the set of indices j ≥ −2 such that the support of ϕj intersects 4Q
and J the remaining indices, namely those j ≥ −2 such that the support of ϕj is
contained in the complement of 4Q. Notice that the cardinality of I is bounded by
a dimensional constant.

Set
g = C l(Q)

∑
j∈I

ϕj(1− ψQ) (k1,x
ε − k1,x0

ε ),

and for j ∈ J
gj = C 22j l(Q)ϕj (k1,x

ε − k1,x0
ε ).

We show now that the test functions g and gj, j ∈ J , satisfy the normalization
inequalities (9) in the definition of G(T ). Once this is available, using the linear
growth condition of T we obtain

|〈T, (1− ψQ)(k1,x
ε − k1,x0

ε )〉| ≤ Cl(Q)−1|〈T, g〉|

+ C
∑
j∈J

(22jl(Q))−1|〈T, gj〉|

≤ C G(T ) + C
∑
j≥2

2−j G(T ) ≤ C G(T ),

which completes the proof of Lemma 7.
Checking the normalization inequalities for g and gj is easy. For g one uses that

‖∂s(1 − ψQ)‖∞ ≤ Cl(Q)−|s|, ‖∂sϕj‖∞ ≤ C (2j l(Q))−|s|, 0 ≤ |s| ≤ n − 1, (27), the
fact that x, x0 ∈ 3

2
Q, y ∈ (2Q)c, and a gradient estimate. For gj we use in addition

Leibnitz formula and a gradient estimate to conclude that, for j ∈ J and |s| = n−1,

‖∂sgj‖∞ ≤ C 22j l(Q)
n−1∑
|r|=0

1

(2j l(Q))|r|
l(Q)

(2j l(Q))n+1−|r| ≤ C (2j l(Q))−(n−1).
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4.2 A continuity property for the capacity Γk̂

In this section we prove a continuity property for the capacity Γk̂, 1 ≤ k ≤ n, which
will be used in the proof of inequality (17). Although we state the result only for
the capacities Γk̂, 1 ≤ k ≤ n, Lemma 9 below holds for the capacities κi, 1 ≤ i ≤ n,
defined in the Introduction, because the proof does not use any growth condition
on distributions with bounded scalar Riesz potential.

Lemma 9. Let {Ej}j be a decreasing sequence of compact sets, with intersection
the compact set E ⊂ Rn. Then, for 1 ≤ k ≤ n,

Γk̂(E) = lim
j→∞

Γk̂(Ej).

Proof. Since, by definition, the set function Γk̂ in non-decreasing

lim
j→∞

Γk̂(Ej) ≥ Γk̂(E),

and the limit clearly exists. For each j ≥ 1, let Tj be a distribution such that the
potentials xi/|x|2 ∗ Tj are in the unit ball of L∞(Rn), i 6= k, and

Γk̂(Ej)−
1

j
< |〈Tj, 1〉| ≤ Γk̂(Ej).

We want to show that for each test function ϕ,

〈Tj, ϕ〉 −→
j→∞

〈T, ϕ〉, (30)

for some distribution T whose potentials xi/|x|2 ∗ T are in the unit ball of L∞(Rn)
for i 6= k. If (30) holds and ϕ is a test function satisfying ϕ ≡ 1 in a neighbourhood
of E, then

lim
j→∞

Γk̂(Ej) = lim
j→∞

|〈Tj, 1〉| = lim
j→∞

|〈Tj, ϕ〉| = |〈T, ϕ〉| ≤ Γk̂(E).

To show (30), fix i 6= k and assume, without loss of generality, that i = 1. Set
k1(x) = x1/|x|2 and fj = k1 ∗ Tj. Write a point x ∈ Rn as x = (x1, x2), with x1 ∈ R
and x2 ∈ Rn−1. Finally notice that c k1 = ∂1E where E is the fundamental solution
of the Laplacian in Rn and c is a constant. Therefore, for each test function ϕ,

(Tj ∗ ϕ)(x1, x2) =

∫ x1

−∞
∂1(Tj ∗ ϕ)(t, x2) dt = c

∫ x1

−∞
∆(ϕ ∗ fj)(t, x2) dt.

Setting ϕ(x) = ϕ(−x) we get

〈Tj, ϕ〉 = (Tj ∗ ϕ)(0, 0) = c

∫ 0

−∞
∆(ϕ ∗ fj)(t, 0) dt. (31)
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We remark, incidentally, that the above formula tells us how to recover a distribution
from one of its scalar Riesz potentials.

Passing to a subsequence, we can assume that fj −→ f in the weak ∗ topology
of L∞(Rn). But then (fj ∗ ∆ϕ)(x) −→ (f ∗ ∆ϕ)(x), x ∈ Rn. This pointwise
convergence is bounded because |(fj ∗∆ϕ)(x)| ≤ ‖∆ϕ‖1‖fj‖∞ ≤ ‖∆ϕ‖1. Hence the
dominated convergence theorem yields

lim
j→∞

〈Tj, ϕ〉 = c lim
j→∞

∫ 0

−∞
∆(ϕ ∗ fj)(t, 0) dt = c

∫ 0

−∞
∆(ϕ ∗ f)(t, 0) dt.

Define the distribution T by

〈T, ϕ〉 = c

∫ 0

−∞
∆(ϕ ∗ f)(t, 0) dt.

Now we want to show that f = k1 ∗ T . For that we regularize fj and Tj. Take
χ ∈ C∞0 (B(0, 1)) with

∫
χ(x) dx = 1 and set χε(x) = ε−nχ(x/ε). Then we have, as

j →∞, (
χε ∗ k1 ∗ Tj

)
(x) = (χε ∗ fj) (x) −→ (χε ∗ f) (x), x ∈ Rn,

because fj converges to f weak ∗ in L∞(Rn). On the other hand, since χε ∗ k1 ∈
C∞(Rn) and Tj tends to T in the weak topology of distributions, with controlled
supports, we have(

χε ∗ k1 ∗ Tj

)
(x) −→

(
χε ∗ k1 ∗ T

)
(x), x ∈ Rn.

Hence
χε ∗ k1 ∗ T = χε ∗ f, ε > 0,

and so, letting ε→ 0, k1 ∗ T = f .

4.3 End of the proof of the inequality Γk̂ ≤ C Γk̂,op

We claim that the inequality in the title of this subsection can be proved by adapting
the scheme of the proof of Theorems 1.1 in [T2] and 7.1 in [T3]. As Lemma 9 shows,
the capacities Γk̂, 1 ≤ k ≤ n, enjoy the exterior regularity property. This is also
true for the capacities Γk̂,+, 1 ≤ k ≤ n, defined by

Γk̂,+(E) = sup

{
µ(E) : µ ∈ L(E),

∥∥∥∥ xj

|x|2
∗ µ

∥∥∥∥
∞
≤ 1, 1 ≤ j ≤ n, j 6= k

}
,

just by the weak ? compactness of the set of positive measures with total variation
not exceeding 1. We can approximate a general compact set E by sets which are
finite unions of cubes of the same side length in such a way that the capacities Γk̂
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and Γk̂,+ of the approximating sets are as close as we wish to those of E. As in (14),
one has, using the Davie-Oksendal Lemma for several operators [MaPa, Lemma 4.2],

C−1 Γk̂,op(E) ≤ Γk̂,+(E) ≤ C Γk̂,op(E). (32)

Thus we can assume, without loss of generality, that E is a finite union of cubes
of the same size. This will allow to implement an induction argument on the size
of certain (n-dimensional) rectangles. The first step involves rectangles of diameter
comparable to the side length of the cubes whose union is E.

The starting point of the general inductive step in the proof of Tolsa’s Theorem
in [T2] (and [T3]) consists in the construction of a positive Radon measure µ sup-
ported on a compact set F which approximates E in an appropriate sense. The con-
struction of F and µ gives readily that Γk̂(E) ≤ C µ(F ), and Γk̂,+(F ) ≤ C Γk̂,+(E),
which tells us that F is not too small but also not too big. However, one cannot
expect, in the context of [T2] and [T3], the Cauchy singular integral to be bounded
on L2(µ). In our case one cannot expect the operators Rj(µ) to be bounded on L2(µ),
for 1 ≤ j ≤ n, j 6= k. One has to carefully look for a compact subset G of F such
that µ(F ) ≤ C µ(G), the restriction µG of µ to G has linear growth and the opera-
tors Rj(µG), 1 ≤ j ≤ n, j 6= k , are bounded on L2(µG) with dimensional constants.
This completes the proof because then

Γk̂(E) ≤ C µ(F ) ≤ C µ(G) ≤ C Γk̂,op(G) ≤ C Γk̂,op(F )

≤ C Γk̂,+(F ) ≤ C Γk̂,+(E) ≤ C Γk̂,op(E).

In [T2] and [T3] the set F is defined as the union of a special family of cubes
{Qi}N

i=1 that cover the set E and approximate E at an appropriate intermediate
scale. One then sets

F =
N⋃

i=1

Qi.

This part of the proof extends without any obstruction to our case because of the
positivity properties of the symmetrization of the scalar Riesz kernels (see section 3).
As in Lemma 7.2 in [T3], just by how the approximating set F is constructed, one
gets Γk̂,+(F ) ≤ C Γk̂,+(E). By the definition of Γk̂(E) it follows that there exists a
real distribution T0 supported on E such that

1. Γk̂(E) ≤ 2|〈T0, 1〉|.

2. T0 has linear growth and G(T0) ≤ 1.

3. ‖ xj

|x|2
∗ T0‖∞ ≤ 1, 1 ≤ j ≤ n, j 6= k.

Consider now functions ϕi ∈ C∞0 (2Qi), 0 ≤ ϕi ≤ 1, ‖∂sϕi‖∞ ≤ C l(Qi)
−|s|, 0 ≤

|s| ≤ n− 1 and
∑N

i=1 ϕi = 1 on
⋃

iQi. We define now simultaneously the measure µ
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and an auxiliary measure ν, which should be viewed as a model for T0 adapted to
the family of squares {Qi}N

i=1. For each cube Qi take a concentric segment Σi of
length a small fixed fraction of Γk̂(E ∩Qi) and set

µ =
N∑

i=1

H1
|Σi

and

ν =
N∑

i=1

〈T0, ϕi〉
H1(Σi)

H1
|Σi
.

We have dν = bdµ, with b =
〈ϕi, ν0〉
H1(Σi)

on Σi. At this point we need to show that our

function b is bounded, to apply later a suitable T (b) Theorem. To estimate ‖b‖∞
we use the localization inequalities∥∥∥∥ xj

|x|2
∗ ϕiT0

∥∥∥∥
∞
≤ C, 1 ≤ j ≤ n, j 6= k, 1 ≤ i ≤ N.

This was proved in Lemma 7 of Section 4.1. Since it is easily seen that ϕiT0 has
linear growth and G(ϕiT0) ≤ C, we obtain, by the definition of Γk̂,

|〈T0, ϕi〉| ≤ C Γk̂(2Qi ∩ E), for 1 ≤ i ≤ N. (33)

It is now easy to see why Γk̂(E) ≤ C µ(F ):

Γk̂(E) ≤ 2 |〈T0, 1〉| = 2

∣∣∣∣∣
N∑

i=1

〈T0, ϕi〉

∣∣∣∣∣
≤ C

N∑
i=1

Γk̂(2Qi ∩ E) = C µ(F ).

(34)

We do not insist in summarizing the intricate details, which can be found in [T2]
and [T3], of the definition of the set G and of the application of the T (b) Theorem
of [NTV2].

5 Counter-examples to the growth estimate

As it was shown in , Let T be a compactly supported distribution whose Riesz
potential x/|x|1+α ∗T is in L∞(Rn,Rn). The proof of lemma 3.2 in [Pr1] shows that
T satisfies the growth condition

|〈T, ϕQ〉| ≤ C l(Q)α,
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for each cube Q and each ϕQ ∈ C∞0 (Q) satisfying the normalization condition
‖∂sϕQ‖L1(Q) ≤ l(Q)[α], |s| = n − [α]. Here α is any number, not necessarily in-
teger, with 0 < α < n, and [α] is its integer part. A similar result does not hold
in the context of this paper. In R2, boundedness of one scalar Riesz potential of a
distribution does not imply G(T ) <∞ (see (8) for the definition of G(T )).

Proposition 10. There exist a compactly supported real Radon measure µ in the
plane, such that x1/|x|2 ∗ µ is in L∞(R2) and G(µ) = ∞.

Proof. The idea of the proof is that there is no relation, in general, between the
derivative with respect to the first variable and the derivative with respect to the
second variable. Set z = (x, y) ∈ R2 and let h(z) = f(x)g(y) with

f(x) =

{
x+ 1 if − 1 ≤ x ≤ 0

−x+ 1 if 0 ≤ x ≤ 1
.

To define g on In = [2−n−1, 2−n], n ≥ 0, let µn = 3/2n+2 be the center of In and set

g(y) =


2n+2

n2

(
y − 1

2n+1

)
, if 1

2n+1 ≤ y ≤ µn

−2n+2

n2

(
y − 1

2n

)
, if µn ≤ y ≤ 1

2n

.

Define µ = ∆h , the Laplacian of h. Then

µ = (δ−1 − 2δ0 + δ1) (x)g(y) + f(x)
∞∑

n=1

2n+2

n2

(
δ 1

2n
− 2δµn + δ 1

2n+1

)
(y).

Write k1(z) = x/|z|2 and k2(z) = y/|z|2. Notice that k1 = c ∂1E, where E is the
fundamental solution of the Laplacian and c a constant. Then

‖k1 ∗ T‖∞ = ‖k1 ∗∆h‖∞ = ‖c ∂1(∆h ∗ E)‖∞ = ‖∂1h‖∞ = ‖f ′g‖∞ ≤ 1.

Since

g′(y) =


2n+2

n2 , if 1
2n+1 ≤ y ≤ µn

−2n+2

n2 , if µn ≤ y ≤ 1
2n

we have

‖k2 ∗ T‖∞ = ‖k2 ∗∆h‖∞ = ‖c ∂2(∆h ∗ E)‖∞ = ‖∂2h‖∞ = ‖fg′‖∞ = ∞.

In fact g′ ∈ L1(R) \ L∞(R).
For n ≥ 0, consider the square Qn = In × In. Then, since f is a linear function

on In,

〈µ, χQn〉 = −2
2n+2

n2

∫
In

f(x) dx = −2
2n+2

n2
l(In)f(µn).
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Thus
|〈µ, χQn〉|
l(Qn)

= 2
2n+2

n2
(1− µn) −→

n→∞
∞.

Now we need to regularize χQn . Take a non-negative χ ∈ C∞(B(0, 1)) such that∫
χ(x) dx = 1 and set χε(x) = ε−n χ(x/ε). Then, for ε small enough, χQn ∗ χε is

supported in 2Qn and satisfies, |〈µ, χQn ∗χε〉| ≥ |〈µ, χQn〉|− 1
2
. Also ‖χQn ∗χε‖∞ ≤ 1

and ‖∇(χQn ∗ χε)‖L1(R2) does not exceed the total variation of the measure ∇χQn ,
which is less than or equal to C l(Qn). Therefore G(T ) = ∞.

We do also have a counterexample in the setting of positive measures, based on
a completely different idea.

Proposition 11. There exists a positive Radon measure µ such that x1/|x|2 ∗ µ is
in L∞(R2) and G(µ) = ∞.

Proof. Consider the function f(t) = log+ 1

|t|
, t ∈ R. Then f ∈ BMO(R) \ L∞(R)

and f is supported on the interval [−1, 1]. Then write(
i

πz
∗ f

)
(x, y) =

1

π
(k2 ∗ f)(x, y) +

i

π
(k1 ∗ f)(x, y)

=
1

π

∫
R

y

(x− t)2 + y2
f(t) dt+

i

π

∫
R

x− t

(x− t)2 + y2
f(t) dt

= (Pyf)(x) + i(Qyf)(x),

where Pyf(x) and Qyf(x) are the Poisson transform and the conjugate Poisson
transform of f respectively.

Therefore, if Hf =
1

π
p.v.

1

x
∗ f is the Hilbert transform of f ,

(k1 ∗ fdt)(x, y) = (Qyf)(x) = Py(Hf)(x).

We claim that
H(f) ∈ L∞(R). (35)

If (35) holds, then the positive measure µ = f(t) dt satisfies

(k1 ∗ µ)(x, y) = Py(Hf)(x) ∈ L∞(R2) (36)

and µ has not linear growth, just because f is unbounded.
To show (35), we distinguish two cases.
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• Case |x| > 1. Since our function H(f) is odd, without loss of generality we
can assume that x > 1. Then an integration by parts together with the fact
that the principal value integral of 1/t on [−1, 1] is zero, yield

πHf(x) = p.v.

∫ 1

−1

log
1

|t|
dt

x− t

= p.v.

∫ 1

−1

(
log

1

x− t
+ log x

)
dt

t

= p.v.

∫ 1

−1

log
x

x− t

dt

t
= p.v.

∫ 1/x

−1/x

log
1

1− u

du

u
.

Since x > 1, then 0 < 1/x < 1. Therefore

|πHf(x)| ≤
∫ 1

−1

∣∣∣∣log
1

1− u

∣∣∣∣ du|u| < +∞.

• Case |x| < 1. Since for x = 0, Hf(0) = 0, we can assume that 0 < |x| < 1.

πHf(x) = p.v.

∫ 1

−1

log
1

|t|
dt

x− t

= p.v.

∫ ∞

−∞
log

1

|t|
dt

x− t
− p.v.

∫
|t|>1

log
1

|t|
dt

x− t

= A+B.

Notice that since H2 = −I and log |x| = H(π sgn)(x), then

H

(
log

1

|t|

)
(x) = H2(−π sgn)(x) = π sgn(x).

Therefore we only need to estimate B. Making the change of variable u = 1/t
we get

B = p.v.

∫
|t|>1

log
1

|t|
dt

x− t
= p.v.

∫ 1

−1

log
1

|u|

1
x

u− 1
x

du

u

= p.v.

∫ 1

−1

log
1

|u|
du

u− 1
x

−
∫ 1

−1

log
1

|u|
du

u

= p.v.

∫ 1

−1

log
1

|u|
du

u− 1
x

< +∞,

as in case 1.
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6 Miscellaneous related results

As we have seen in the previous sections, the fact that the Cauchy kernel is complex
is not as relevant as the fact that it is odd and has homogeneity −1. Indeed,
Theorem 1 shows that one recovers the theory of analytic capacity by replacing
the Cauchy kernel 1/z by any of the real kernels Re(1/z) or Im(1/z) and adding
appropriate growth conditions on the admissible distributions.

A natural question is how one can extend this kind of results to the higher
dimensional real variable setting in which the kernel x/|x|2 is replaced by the vector
valued Riesz kernels

kα(x) =
x

|x|1+α
, x ∈ Rn, 0 < α < n,

and the capacity associated with this kernel is defined by (see [Pr1])

Γα(E) = sup

{
|〈T, 1〉| : spt(T ) ⊂ E,

∥∥∥∥ x

|x|1+α
∗ T

∥∥∥∥
∞
≤ 1

}
.

The case α = n − 1, n ≥ 2, is especially interesting, because it gives Lipschitz
harmonic capacity (see (3)).

Unfortunately, as we show in subsections 6.1 and 6.2 below, the most obvious
analogues of Theorems 1 and 2 in higher dimensions fail.

6.1 Capacities associated with scalar α-Riesz potentials

Let T be a compactly supported distribution in Rn and 0 < α < n. We say that the
distribution T has growth α provided that

Gα(T ) = sup
ϕQ

|〈T, ϕQ〉|
l(Q)α

<∞, (37)

where the supremum is taken over all ϕQ ∈ C∞0 (Q) satisfying the normalization
inequalities

‖∂sϕQ‖L1(Q) ≤ l(Q)[α], |s| = n− [α].

Here [α] stands for the integer part of α. For a compact set E in Rn we define gα(E)
as the set of all distributions T supported on E having growth α with constant
Gα(T ) at most 1. For each coordinate k set

Γα,k̂(E) = sup{|〈T, 1〉|},

where the supremum is taken over those distributions T ∈ gα(E), such that the j-th
component of the α-Riesz potential xj/|x|1+α∗T is in the unit closed ball of L∞(Rn),
for 1 ≤ j ≤ n, j 6= k.

The proof of Lemma 3.2 in [Pr1] tells us that if kα ∗ T is in the unit ball
L∞(Rn,Rn), then the distribution T has α-growth and Gα(T ) ≤ C. Hence Γα(E) ≤
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C Γα, k̂(E). In this section we will show that for 0 < α < 1, there exists a set E ⊂ Rn

with Γα(E) = 0 and Γα,k̂(E) > 0. Therefore Γα and Γα,k̂ are not comparable and
thus the direct analogue of Theorem 2 fails in this setting.

We proceed now to symmetrize the scalar α-Riesz kernels in order to get a better
understanding of the capacities Γα,k̂, for 1 ≤ k ≤ n and 0 < α < 1.

For 0 < α < n and 1 ≤ i ≤ n the quantity

∑
σ

xi
σ(2) − xi

σ(1)

|xσ(2) − xσ(1)|1+α

xi
σ(3) − xi

σ(1)

|xσ(3) − xσ(1)|1+α
(38)

where the sum is taken over the permutations of the set {1, 2, 3}, is the analogue
of the right hand side of (22) for the i-th coordinate of the Riesz kernel kα. Notice
that (38) is exactly

2pα,i(x1, x2, x3),

where pα,i(x1, x2, x3) is defined as the sum in (38) only taken on the three permuta-
tions (1, 2, 3), (2, 3, 1) and (3, 1, 2).

We will now show that given three distinct points x1, x2, x3 ∈ Rn, for 1 ≤ i ≤ n
and 0 < α ≤ 1, the quantity pα,i(x1, x2, x3) is non-negative. We will use this to
study the L2 boundedness of the scalar Riesz integral operator of homogeneity −α.

The relationship between the quantity pα,i(x, y, z), 0 < α ≤ 1, 1 ≤ i ≤ n, and
the L2 estimates of the operator with kernel ki

α = xi/|x|1+α is as in (23). That is, if
µ is a positive finite Radon measure in Rn with α-growth, ε > 0 and we set

Ri
α,ε(µ)(x) =

∫
|y−x|>ε

ki
α(y − x) dµ(y),

then (see in [MeV] the argument for the Cauchy singular integral operator)∣∣∣∣∫ |Ri
α,ε(µ)(x)|2 dµ(x)− 1

3
pα,i,ε(µ)

∣∣∣∣ ≤ C‖µ‖, (39)

C being a positive constant depending only on n and α, and

pα,i,ε(µ) =

∫∫∫
Sε

pα,i(x, y, z) dµ(x) dµ(y) dµ(z),

with
Sε = {(x, y, z) : |x− y| > ε, |x− z| > ε and |y − z| > ε}.
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Lemma 12. Let 0 < α < 1 and x1, x2, x3 three different points in Rn. For 1 ≤ i ≤ n
we have

(2− 2α)m2

L(x1, x2, x3)2+2α
≤ pα,i(x1, x2, x3) ≤

3m2

L(x1, x2, x3)2+2α
, (40)

where m = max(|xi
2 − xi

1|, |xi
3 − xi

2|, |xi
3 − xi

1|) and L(x1, x2, x3) is the length of the
largest side of the triangle determined by the three points x1, x2, x3.

Moreover, pα,i(x1, x2, x3) = 0 if and only if the three points lie on a (n − 1)-hyper-
surface perpendicular to the i axis, i.e. xi

1 = xi
2 = xi

3.

Proof. Without loss of generality fix i = 1. Write a = x2− x1 and b = x3− x2, then
a+ b = x3 − x1. A simple computation yields

pα,1(x1, x2, x3) =
a2

1|b|1+α + b21|a|1+α + a1b1 (|b|1+α + |a|1+α − |a+ b|1+α)

|a|1+α|b|1+α|a+ b|1+α
, (41)

which makes the second inequality in (40) obvious. To prove the first inequality
in (40), assume without loss of generality, that 1 = |a| ≤ |b| ≤ |a+ b|. Then

pα,1(x1, x2, x3) =
1

|b|1+α|a+ b|1+α

(
a2

1|b|1+α + b21 + a1b1(1 + |b|1+α − |a+ b|1+α)
)
.

We distinguish now two cases,

• Case a1b1 ≤ 0. Notice that since |b| ≤ |a+ b|,

a1b1(1 + |b|1+α − |a+ b|1+α) ≥ a1b1.

Then, since |b| ≥ 1,

pα,1(x1, x2, x3) =
1

|b|1+α|a+ b|1+α

(
a2

1|b|1+α+b21+a1b1(1+|b|1+α−|a+ b|1+α)
)

≥ a2
1|b|1+α + b21 + a1b1
|b|1+α|a+ b|1+α

≥ a2
1 + b21 + a1b1

|b|1+α|a+ b|1+α

=
1

2

(a1 + b1)
2 + a2

1 + b21
|b|1+α|a+ b|1+α

.

• Case a1b1 > 0. Then max{a2
1, b

2
1, (a1 + b1)

2} = (a1 + b1)
2. Write t = |b| ≥ 1

and
f(t) = a2

1t
1+α + b21 + a1b1

(
1 + t1+α − (1 + t)1+α

)
.

By the triangle inequality,

pα,1(x1, x2, x3) ≥
f(t)

|b|1+α|a+ b|1+α
≥ mint≥1 f(t)

|b|1+α|a+ b|1+α
.

Our function f has a minimum at the point t∗ =

((
a1

b1
+ 1

)1/α

− 1

)−1

.
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1. If a1/b1 ≥ 2α − 1, then t∗ ≤ 1. Therefore

pα,1(x1, x2, x3) ≥
f(1)

|b|1+α|a+ b|1+α

=
a2

1 + b21 + 2a1b1(1− 2α)

|b|1+α|a+ b|1+α

= (2α − 1)
(a1 − b1)

2

|b|1+α|a+ b|1+α
+ (2− 2α)

a2
1 + b21

|b|1+α|a+ b|1+α

≥ 2− 2α

2

(a1 + b1)
2

|b|1+α|a+ b|1+α
.

2. If a1/b1 < 2α − 1, then t∗ > 1. Hence,

pα,1(x1, x2, x3) ≥
f(t∗)

|b|1+α|a+ b|1+α
.

Since

f(t∗) = b21

(
1 +

a1

b1

) 1− a1(
(a1 + b1)1/α − b

1/α
1

)α

 ,

then

f(t∗) ≥ b21 min
a1<b1(2α−1)

1− a1(
(a1 + b1)1/α − b

1/α
1

)α


= b21(2− 2α) ≥ 2− 2α

22α
(a1 + b1)

2,

since the function

g(x) = 1− x(
(x+ b1)1/α − b

1/α
1

)α

is decreasing and (a1 + b1)
2 ≤ (2αb1)

2.

Now, If x1
1 = x1

2 = x1
3, then a1 = b1 = 0. Hence (41) gives us pα,1(x1, x2, x3) = 0. On

the other hand, if pα,1(x1, x2, x3) = 0, inequality (40) gives us max((xi
2 − xi

1)
2, (xi

3 −
xi

2)
2, (xi

3−xi
1)

2) = 0, hence a2
1 = b21 = (a1+b1)

2 = 0, which implies x1
1 = x1

2 = x1
3.

We are now ready to prove the existence of a compact set E ⊂ Rn with Γα(E) = 0
but Γα,1̂(E) > 0. Take a compact subset E of the x1-axis with positive finite
α-dimensional Hausdorff measure. Then by [Pr1, Theorem 1.1], Γα(E) = 0. It
remains to show that Γα,1̂(E) > 0. For this let µ be α-dimensional Hausdorff
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measure restricted to E. It is enough to show that the singular integral operator Ri
α

associated with the scalar kernel ki
α = xi/|x|1+α, i 6= 1, is bounded on L2(µ). This

is so by a lemma of Davie and Oksendal (see [DO, p.139], [Ch, Theorem 23] or [V3,
Lemma 4.2]). By Lemma 12 we have pα,i(x1, x2, x3) = 0 for x1, x2 and x3 in E and
i 6= 1 and thus (39) yields∫

|Ri
α,ε(µ)(x)|2 dµ(x) ≤ C ‖µ‖, ε > 0.

Replacing in the above inequality µ by χB µ where B is any ball we get∫
B

|Ri
α,ε(χB µ)(x)|2 dµ(x) ≤ C µ(B), ε > 0.

By the non-doubling T (1)-Theorem of [NTV1] we conclude that Ri
α is bounded

on L2(µ).

6.2 Lipschitz harmonic capacity is not comparable to the
capacity associated with a scalar Riesz-potential

Theorem 1 says that in the plane, analytic capacity can be characterized in terms
of either capacity Γi, i = 1, 2. In particular this implies a weaker qualitative state-
ment, namely, that if E is a compact set in the plane and there exists a non-zero
distribution T supported on E with linear growth and bounded potential xi/|x|2∗T ,
for i = 1 or i = 2, then there exists another non-zero distribution S supported on E
with bounded potentials xi/|x|2 ∗ S, i = 1, 2.

In Rn Lipschitz harmonic capacity is an excellent replacement for analytic ca-
pacity. Thus one may ask whether Lipschitz harmonic capacity can be described in
terms of one of the capacities associated with a component of the kernel x/|x|n in
which the growth condition n − 1 has been required on the distributions involved.
In a qualitative way we ask the following question. Assume that E is a compact set
in Rn and that there exists a non-zero distribution T supported on E with growth
n−1 and bounded potential xn/|x|n∗T . Is it true that there exists another non-zero
distribution S supported on E with bounded vector valued potential x/|x|n ∗ T ?
The answer is no for n ≥ 3. We describe the example in R3. We thank X. Tolsa for
the right suggestion.

Proposition 13. There exists a compact set E ⊂ R3 which supports a non-zero
distribution T with growth 2 and bounded scalar Riesz potential x3/|x|3 ∗T , but does
not support any non-zero distribution S with bounded vector valued Riesz potential
x/|x|3 ∗ S.

Proof. Let K ⊂ H = {(x1, x2, x3) ∈ R3 : x3 = 0} be the classical 1-dimensional
planar Cantor defined by taking the “corner quarters” at each generation. Then
K has finite positive length but zero analytic capacity (see [G1], [G2] or [I]). In
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particular, K has zero Lipschitz harmonic capacity and by [MaPa] the same happens
to E = K×[−1, 1]. Thus E does not support any distribution S with bounded vector
valued Riesz potential x/|x|3 ∗ S.

Let µ denote 2-dimensional Hausdorff measure restricted to K ×R ⊂ R3 and let
ν denote the restriction of µ to E. It is a simple matter to check that µ satisfies the
growth condition

µ(B(x, r)) ≤ C r2, x ∈ K × R, 0 < r.

Although the reverse inequality does not hold for large r, µ is a doubling measure.
Indeed, µ(B(x, r)) is comparable to r2 for 0 < r ≤ 1 and to r for 1 ≤ r. Our goal is to
show that the scalar Riesz singular integral operator R3 with kernel k3(x) = x3/|x|3
is bounded on L2(ν). Once this is established the Davie-Oksendal lemma (see [Ch,
Theorem 33 ] or [V3, Lemma 4.2]) provides a non-negative function b ∈ L∞(ν) such
that x3/|x|3 ∗ bν is in L∞(R3) , which completes the proof.

We claim that, indeed, R3 is bounded on L2(µ). To show this we check that
R3(1) = 0 and then we apply the standard T (1)-Theorem for doubling measures.
The computation of R3(1) is performed as follows. Set K(x, ε) = {(y1, y2) ∈ K :
|x1 − y1| > ε and |x2 − y2| > ε}, Then

R3(1)(x) = lim
ε→0

∫
|y−x|>ε

x3 − y3

|x− y|3
dν(y)

= lim
ε→0

∫
K(x,ε)

(∫
|y3−x3|>ε

x3 − y3

|x− y|3
dy3

)
dH1(y1, y2) = 0,

for each x ∈ K × R.

Remarks

• Notice that in the above example one obtains that R3(ν) is bounded on L2(ν),
while the whole vector R(ν) is not bounded on L2(ν). Therefore, the above
example shows that corollary 5 does not hold if n ≥ 3, namely, we cannot get
L2(ν) boundedness of the vector valued Riesz operator Rn−1(ν) from L2(ν)
boundedness of only one component Ri

n−1(ν).

• It is an open question to decide whether, for n ≥ 3, Lipschitz harmonic capac-
ity is comparable to the capacities associated with (n− 1)-components of the
vector valued Riesz potential x/|x|n ∗ T .

6.3 Finiteness of the capacities κi

Indeed, we give a proof of a more general result, stating that for compact sets
E ⊂ Rn, 0 < α < n and 1 ≤ i ≤ n, the capacities

κα,i(E) = sup

{
|〈T, 1〉| : spt(T ) ⊂ E,

∥∥∥∥ xi

|x|1+α
∗ T

∥∥∥∥
∞
≤ 1

}
,
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are finite.

Lemma 14. For any cube Q ⊂ Rn, 0 < α < n and 1 ≤ i ≤ n, we have

κα,i(Q) ≤ Cl(Q)α.

Proof. Without loss of generality assume i = 1. Assume also momentarily that the
dimension n is odd, say n = 2k + 1. Our argument uses a reproduction formula for
test functions involving the kernel ki(y) = yi/|y|1+α, 1 ≤ i ≤ n, [Pr1, Lemma 3.1].
For a test function g, the formula reads

g(x) = cn,α

n∑
j=1

(
∆k∂jg ∗

1

|y|n−α
∗ kj

)
(x), (42)

for some constant cn,α depending only on the dimension n and on α. For n =
2k, there is an analogous reproduction formula that settles the even case [Pr1,
Lemma 3.1].

Let T be a real distribution supported on Q such that k1 ∗ T ∈ L∞(Rn). Write
the cube Q as Q = I1×Q′, with I1 being an interval in R and Q′ an n−1 dimensional
cube in Rn−1, and let ϕQ ∈ C∞0 (2Q) be such that ‖∂sϕQ‖∞ ≤ Csl(Q)−|s| and

ϕQ(x) = ϕ1(x1)ϕ2(x2, . . . , xn)

with ϕ1(x1) = 1 on I1, ϕ1(x1) = 0 on (2I1)
c and

∫∞
−∞ ϕ1 = 0, and ϕ2 ≥ 0, ϕ2 ≡ 1

on Q′ and ϕ2 ≡ 0 on (2Q′)c. Then, since our distribution T is supported on Q, using
the reproduction formula (42),

|〈T, 1〉| = |〈T, ϕQ〉| ≤ C

n∑
j=1

∣∣∣∣〈T,∆k∂jϕQ ∗
1

|y|n−α
∗ kj

〉∣∣∣∣
= C

∣∣∣∣〈k1 ∗ T,∆k∂1ϕQ ∗
1

|y|n−α

〉∣∣∣∣ + C

n∑
j=2

∣∣∣∣〈T,∆k∂jϕQ ∗
1

|y|n−α
∗ kj

〉∣∣∣∣
= A+B.

We first estimate the term A. We have∫
(k1 ∗ T )(x) ∆k∂1ϕQ ∗

1

|y|n−α
(x) dx =

∫
3Q

(k1 ∗ T )(x) (∆k∂1ϕQ ∗
1

|y|n−α
)(x) dx

+

∫
Rn\3Q

(k1 ∗ T )(x) (ϕQ ∗∆k∂1(
1

|y|n−α
))(x) dx.
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Let Q0 be the unit cube centered at 0. Dilating to bring the integrals on 3Q0 and
2Q0, and using |∂sϕQ| ≤ Csl(Q)−|s|, we get

A ≤ ‖k1 ∗ T‖∞
(∫

3Q

∫
2Q

|∆k∂1ϕQ(y)|
|x− y|n−α

dy dx+

∫
Rn\3Q

∫
2Q

|ϕQ(y)|
|x− y|2n−α

dy dx

)

≤ Cl(Q)α

(∫
3Q0

∫
2Q0

dy dx

|x− y|n−α
+

∫
Rn\3Q0

∫
2Q0

dy dx

|x− y|2n−α

)
≤ Cl(Q)α.

We turn now to the estimate of B . The homogeneous differential operator ∆k

can be written as ∆k =
∑

|s|=2k as ∂
s, for certain constants as. Divide the set of

multi-indexes s of length 2k into two classes I and J according to whether s1 ≥ 1
or s1 = 0. In other words, s ∈ I if ∂s contains at least one partial derivative with
respect to first variable. Thus ∆k =

∑
s∈I as ∂

s +
∑

s∈J as ∂
s, and so B = B1 + B2

where

B1 = C

n∑
j=2

∣∣∣∣∣
〈
T,

∑
s∈I

as ∂
s∂jϕQ ∗

1

|y|n−α
∗ kj

〉∣∣∣∣∣
and

B2 = C

n∑
j=2

∣∣∣∣∣
〈
T,

∑
s∈J

as ∂
s∂jϕQ ∗

1

|y|n−α
∗ kj

〉∣∣∣∣∣ .
To estimate B1 we bring in each term of the sum in s ∈ I one derivative with respect
to the first variable into the kernel kj and use ∂1k

j = ∂jk
1 to take back a derivative

with respect to j into ϕQ. The effect of these moves is to replace kj by k1. Therefore

B1 = C

n∑
j=2

∣∣∣∣∣∣
〈
k1 ∗ T,

∑
|s|=2k

bs ∂
s∂jϕQ ∗

1

|y|n−α

〉∣∣∣∣∣∣ ,
for some numbers bs. This expression can be estimated as we did before with A.

To estimate B2 we need to replace in some way the kernel kj by k1. We do this
by showing that, for each j there exists a function ψj

Q ∈ C∞0 (2Q) satisfying

kj ∗ ϕQ = k1 ∗ ψj
Q, 1 ≤ j ≤ n, (43)

and ‖∂sψj
Q‖∞ ≤ Csl(Q)−|s|. Before proving (43) we show how to estimate B2.
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By (43)

B2 = C
n∑

j=2

∣∣∣∣∣
〈
T,

∑
s∈J

as ∂
s∂jϕQ ∗

1

|y|n−α
∗ kj

〉∣∣∣∣∣
= C

n∑
j=2

∣∣∣∣∣
〈
T,

∑
s∈J

as ∂
s∂jψ

j
Q ∗

1

|y|n−α
∗ k1

〉∣∣∣∣∣
= C

n∑
j=2

∣∣∣∣∣
〈
k1 ∗ T,

∑
s∈J

as ∂
s∂jψ

j
Q ∗

1

|y|n−α

〉∣∣∣∣∣ ,
which can be estimated as the term A.

We are left with proving (43). Taking Fourier transforms in (43) we obtain for
some constant a,

a ϕ̂Q(ξ)ξj = ψ̂j
Q(ξ)ξ1,

which becomes
a ∂jϕQ = ∂1ψ

j
Q.

Hence, for the non-trivial case 2 ≤ j ≤ n,

ψj
Q(x) = a

∫ x1

−∞
∂jϕQ(t, x2, . . . , xn) dt = a ∂jϕ2(x2, . . . , xn)

∫ x1

−∞
ϕ1(t) dt,

and the key remark is that the function above has compact support because the
integral of ϕ1 on the real line vanishes.

We conclude with the following corollary.

Corollary 15. For any compact set E ⊂ Rn, 0 < α < n and 1 ≤ i ≤ n, we have
κα,i(E) ≤ C diam(E)α.

We do not know whether in the preceding inequality the diameter of E can be
replaced by the Hausdorff content of E.

6.4 Localization and growth

The growth assumption on the distribution T in the localization lemma (Lemma 7)
cannot be completely dispensed with. Indeed, if for the i-th coordinate one has the
inequality ∥∥∥∥ xi

|x|2
∗ ϕQT

∥∥∥∥
∞
≤ C

∥∥∥∥ xi

|x|2
∗ T

∥∥∥∥
∞
, (44)

for all ϕQ satisfying the normalization conditions (9), then necessarily T has linear
growth. This can be shown by an argument very close to that of the previous
subsection. We only deal with the details of the case n = 2. The case of even
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dimensions is very similar, while the case of odd dimensions needs some additional
care. We also assume i = 1.

Let Q be square and ϕQ a function in C∞0 (Q) satisfying the normalization con-
ditions (9). Set Q = I1 × I2 and ψ(x1, x2) = ψ1(x1)ψ(x2), where, for j = 1, 2,
ψj ∈ C∞0 (Ij), ψj = 1 on Ij,

∫∞
−∞ ψ(x1) dx1 = 0 and ‖dkψj/(dxj)

k‖∞ ≤ C l(Ij)
−k,

0 ≤ k ≤ 2. We then have

〈T, ϕQ〉 = 〈ϕQ T, 1〉 = 〈ϕQ T, ψ〉.

We want now to find a function χ such that ψ = k1 ∗χ, where k1 = x1/|x|2. Taking
the Fourier transform we get ψ̂(ξ) = a(ξ1/|ξ|2) χ̂(ξ) for some constant a . Hence
∂1χ = b∆ψ, for some other constant b. Thus

χ = b

∫ x1

−∞
∆ψ(t, x2) dt

= b

(
∂1ψ1(x1)ψ2(x2) +

(∫ x1

−∞
ψ1(t) dt

)
∂2

2ψ2(x2)

)
.

Notice that χ is supported on Q and ‖χ‖∞ ≤ C l(Q)−1. Therefore by Lemma 8

|〈T, ϕQ〉| = |〈k1 ∗ ϕQT, χ〉| ≤ C ‖k1 ∗ ϕQT‖L1(Q) ‖χ‖∞ ≤ C l(Q).

6.5 The growth condition for positive measures

We start by showing that the usual linear growth condition for a positive Radon
measure is equivalent to the linear growth condition for distributions as defined in
(8). Later on we treat also the case of the α-growth condition for 0 < α < n.

Given a positive Radon measure µ set

L(µ) = sup
Q

µ(Q)

l(Q)
,

where the supremum is taken over all squares Q with sides parallel to the coordinate
axis.

If ϕ ∈ C∞0 (Rn), then by an inequality of Mazya [Mz, 1.2.2, p. 24]

|〈µ, ϕ〉| = |
∫
ϕdµ| ≤

∫
|ϕ| dµ ≤ C L(µ)

∫
|∇n−1ϕ(x)| dx,

where ∇n−1ϕ denotes the vector of all derivatives ∂sϕ of order |s| = n− 1. Thus

G(µ) ≤ C L(µ).

The reverse inequality is immediate. Indeed, given a square Q let ϕQ be a function
in C∞0 (2Q) such that 1 ≤ ϕQ on Q and ‖∂sϕQ‖∞ ≤ Cs l(Q)−|s|, |s| ≥ 0. Then

µ(Q) ≤
∫
ϕQ dµ = |〈µ, ϕQ〉| ≤ C G(µ) l(Q),
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because
∫
|∇n−1ϕQ(x) dx| ≤ C l(Q).

We proceed now to treat the case of a general α-growth condition, 0 < α < n.
Set

Lα(µ) = sup
Q

µ(Q)

l(Q)α
,

where the supremum is taken over all squares Q with sides parallel to the coordinate
axis. The inequality Lα(µ) ≤ C Gα(µ) is proven exactly as above. The definition of
Gα is in (37).

For the reverse inequality is convenient to distinguish several cases.

• α is integer. The argument is exactly as in the case α = 1. If ϕ ∈ C∞0 (Rn),
then by an inequality of Mazya [Mz, 1.2.2, p. 24]

|〈µ, ϕ〉| = |
∫
ϕdµ| ≤

∫
|ϕ| dµ ≤ C Lα(µ)

∫
|∇n−[α]ϕ(x)| dx,

where ∇n−[α]ϕ denotes the vector of all derivatives ∂sϕ of order |s| = n− [α].

• α is not integer and n− [α] is odd. Set n− [α] = 2m+1. Then , for a constant
c, we have

ϕ = c

n∑
i=1

∆m∂iϕ ∗
xi

|x|[α]+1
, (45)

for each test function ϕ. This can be easily checked by taking the Fourier
transform. Let ϕQ ∈ C∞0 (Q) satisfy the normalization condition ‖∂sϕQ‖L1(Q) ≤
l(Q)[α], |s| = n− [α]. Then

|〈µ, ϕQ〉| ≤
∫
|ϕQ| dµ ≤ C

∫
Q

∣∣∣∣∣
n∑

i=1

∆m∂iϕQ ∗
xi

|x|[α]+1

∣∣∣∣∣ dµ
≤ C

n∑
i=1

∫
Q

∫
|∆m∂iϕQ(y)|
|x− y|[α]

dy dµ(x)

= C

n∑
i=1

∫
|∆m∂iϕQ(y)|

(∫
Q

dµ(x)

|x− y|[α]

)
dy

≤ C

n∑
i=1

‖∆m∂iϕQ‖L1(Q)‖χQµ ∗
1

|x|[α]
‖L∞(Q).

The estimate of the L∞(Q) norm of χQµ ∗ (1/|x|[α]) is standard. If x ∈ Q and
we set µ(r) ≡ µx(r) = µ(B(x, r)), then we get (d(Q) stands for the diameter
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of Q) ∫
Q

dµ(y)

|x− y|[α]
≤

∫ d(Q)

0

dµ(r)

r[α]

=

[
µ(r)

r[α]

]d(Q)

0

+ [α]

∫ d(Q)

0

µ(r)

r[α]+1
dr

≤ C Lα(µ) l(Q)α−[α],

and therefore Gα(µ) ≤ CLα(µ).

• α is not integer and n− [α] is even. We still need too distinguish two subcases:
[α] = 0 and [α] ≥ 1. If [α] = 0, take a cube Q and ϕQ ∈ C∞0 (Q) satisfying the
normalization condition ‖∂sϕQ‖L1(Q) ≤ 1, |s| = n. Then by [AH, 7.6.10, p.
212]

‖ϕQ‖∞ ≤ C ‖∇nϕQ‖L1(Q),

and so

|〈µ, ϕQ〉| ≤
∫
|ϕQ| dµ ≤ C ‖∇nϕQ‖L1(Q)µ(Q) ,

which yields Gα(µ) ≤ CLα(µ).

Assume now that [α] ≥ 1. Set n− [α] = 2m for some integer m. For each test
function ϕ we have the identity

ϕ = c∆mϕ ∗ 1

|x|[α]
,

where c is an appropriate constant. Let ϕQ ∈ C∞0 (Q) satisfy the normalization
condition ‖∂sϕQ‖L1(Q) ≤ l(Q)[α], |s| = n− [α]. Then

|〈µ, ϕQ〉| ≤
∫
|ϕQ| dµ ≤ C

∫
Q

∣∣∣∣∆mϕQ ∗
1

|x|[α]

∣∣∣∣ dµ
≤ C

∫
Q

∫
|∆mϕQ(y)|
|x− y|[α]

dy dµ(x)

= C

∫
|∆mϕQ(y)|

(∫
Q

dµ(x)

|x− y|[α]

)
dy

≤ C ‖∆mϕQ‖L1(Q) ‖χQµ ∗
1

|x|[α]
‖L∞(Q).

As it was shown above ‖χQµ ∗ 1
|x|[α]‖L∞(Q) ≤ C Lα(µ)l(Q)α−[α], which yields

Gα(µ) ≤ CLα(µ).
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