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Curvature and isoperimetric inequality

Julià Cuf́ı∗, Agust́ı Reventós†, Carlos J. Rodŕıguez

Abstract

We prove an inequality involving the length of a plane curve and
the integral of its radius of curvature, that has as a consequence the 2-
dimensional Ros’ inequality. We also study the corresponding inequality
for the case the curve is a polygon. For this we must introduce a new
concept of radius of curvature at the vertices of a polygon. Finally we
provide the link between the discrete and the continuous settings.

1 Introduction

The starting point of this note is the following inequality: if C = ∂K is
the boundary of a compact, convex set K of area A in R2, then

A ≤ 1

2

∫

C

ρ(s) ds, (1)

where ρ = ρ(s) < ∞ is the radius of curvature on C and ds signifies
arclength measure on C. Equality holds if and only if C is a circle. A
proof of (1) is given in [1].

On the other hand one has the isoperimetric inequality

A ≤ L2

4π
,

where L is the length of C, with equality if and only if C is a circle.
So it is natural to try to compare the two quantities L2/4π and

1
2

∫
C
ρ(s) ds.

In this paper we prove that

L2

4π
≤ 1

2

∫

C

ρ(s)ds,

with equality if and only if C is a circle (Theorem 1).
Next we study this inequality for the case the curve C is a polygon. For

this we need to introduce a notion of radius of curvature at the vertices of
a polygon (Definition 1). This radius of curvature is a good approximation

∗Partially supported by FEDER/Micinn MTM 2008-05561-C02-02.
†Partially supported by FEDER/Micinn MTM2009-0759.
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of the radius of curvature of a smooth curve (Theorem 2). We prove the
following result:

L2

4π
≤ 1

2

n∑

k=1

lk
ρk + ρk+1

2
,

where L is the length of the polygon, lk the length of its sides, and ρk
the curvature at its vertices. Equality holds if and only if the polygon is
umbilical (Theorem 3).

As a consequence we obtain a discrete proof of Theorem 1 (Theo-
rem 4) an a geometrical proof of an interesting analytical property stated
in Lemma 1.

Inequality (1) is the two-dimensional analogue of Ros’ inequality:

V ≤ 1

3

∫

S

1

H
dA,

where H > 0 is the mean curvature of the boundary S of a compact
domain of volume V in R3, and dA signifies area measure on S. Equality
holds if and only if S is a standard sphere (see [2] and [3]).

2 On the integral of the radius of curva-
ture

We begin with the following analytical result, suggested by the geometrical
problems we study here.

Lemma 1. Let p : R −→ R be a periodic function of class C2 with period
2π. Then

(∫ 2π

0

p(φ) dφ

)2

≤ 2π

∫ 2π

0

(p(φ) + p′′(φ))2 dφ.

Equality holds if and only if p(φ) + p′′(φ) is constant.

Proof. Note first that

2π

∫ 2π

0

(p+ p′′)2 dφ− (

∫ 2π

0

p dφ)2

= 2π

[∫ 2π

0

p2 dφ+

∫ 2π

0

(p′′)2 dφ− 2

∫ 2π

0

(p′)2 dφ

]
−(

∫ 2π

0

p dφ)2. (2)

By developing p = p(φ) in Fourier series expansion,

p(φ) = a0 +

∞∑

n=1

(an cosnφ+ bn sinnφ),

we have, by Parseval’s identity,

1

2π

∫ 2π

0

p2 dφ = a20 +
1

2

∞∑

n=1

(a2n + b2n),

and similar expressions for p′ and p′′.

2



Substituting in (2) we have

2π

∫ 2π

0

(p+ p′′)2 dφ− (

∫ 2π

0

p dφ)2

= 4π2

[
a20+

1

2

∞∑

n=1

(a2n+b2n)+
1

2

∞∑

n=1

n4(a2n + b2n)−
∞∑

n=1

n2(a2n+b2n)

]
−4π2a20

= 2π2
∞∑

n=2

(a2n + b2n)(n2 − 1)2 ≥ 0.

Moreover, equality holds if and only if an = bn = 0, for n ≥ 2. That
is, if and only if p(φ) = a0 + a1 cosφ+ b1 sinφ. Equivalently, p+ p′′ = a0.
�

Recall that the boundary of a plane compact convex set can be para-
metrized by its support function p(φ). The angle φ − π

2
is the angle

between the tangent line at a given point of the boundary and the x axis,
and p(φ) is the distance from this tangent line to the origin.

Theorem 1. If the boundary C = ∂K of a convex set K in the plane is
a C2-curve of length L, then

L2

4π
≤ 1

2

∫

C

ρ(s)ds,

where ρ(s) is the radius of curvature of C, and ds signifies arclength mea-
sure on C.

Equality holds if and only if C is a circle.

Proof. Let p(φ) be the support function of K. The following relations
are well known (see [4], p. 3):

L =

∫ 2π

0

p(φ) dφ

ρ(φ) = p(φ) + p′′(φ).

The relation between s and φ is given by ds = (p(φ) + p′′(φ))dφ. Now
the theorem follows directly by applying Lemma 1 to the support func-
tion p(φ). �

Note that, by the isoperimetric inequality, we have proved

A ≤ 1

2

∫

C

ρ(s)ds,

where A denotes the area of K. This is the 2-dimensional analogous of
Ros’ inequality and the difference 1

2

∫
C
ρ(s)ds−A was studied in [1].

We also have an estimation of the isoperimetric deficit:

Corollary 1. If the boundary C = ∂K of a plane convex set K of area A,
is a C2-curve of length L, then

0 ≤ L2

4π
−A ≤ −Ae

where Ae ≤ 0 is the (algebraic) area of the domain bounded by the evolute
of C. Equality holds if and only if C is a circle.
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Proof. It is a consequence of Theorem 1 and the fact that

∫

C

ρ(s)ds = 2(A−Ae)

(see Theorem 1, in [1]). �

3 Curvature for polygons

Given a plane convex polygon of vertices P1, P2, . . . Pn, we denote by lk =

|−−−−−→PkPk+1| the length of its sides and by αkπ the measure of its external
angles. Of course we have

∑n
k=1 αk = 2, with 0 < αk < 1, and

−−−−−→
Pk−1Pk ·

−−−−−→
PkPk+1 = lk−1 · lk · cos(αkπ)

P

k+1

k

!
! k+1

k-1

k "
"

P P

Definition 1. Given a plane convex polygon of vertices P1, P2, . . . Pn,
and sides of lengths l1, l2, . . . , ln, we define the radius of curvature at the
vertex Pk by

ρk =
lk−1 + lk

2αkπ
.

In particular, the curvature at the vertex Pk is given by

κk =
1

ρk
=

αkπ
lk−1

2
+
lk
2

,

an expression that essentially agrees with the classical definition of cur-
vature as the ratio of the angle to the length. Note also that l0 = ln.

Note 1. Another natural definition of radius of curvature of a polygon
(that we will not use in this note) is the following: If Pi−1PiPi+1 are
consecutive vertices of a polygon, the radius of curvature Ri at Pi is the
radius of the circumscribed circle around the triangle Pi−1PiPi+1 (see [5]).
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The relation between Ri and ρi is (with the notation of the figure)

ρi = Ri
sinα+ sinβ

α+ β
.

In particular, since Ω = α+ β, Ri tends to ρi when the external angles of
the polygon tend to zero.

Now we shall see (Theorem 2) that the radius of curvature, as defined
in Definition 1, converges to the ordinary radius of curvature of a smooth
curve when this curve is approximated by polygons. We shall consider
dyadic approximations only for convenience. To be precise we give the
following definition:

Definition 2. Let γ : [0, L] −→ R2 be the parametrization by the arc
length of a closed curve C of class C1. The n-th dyadic polygon Pn
associated to C is the polygon given by the consecutive vertices

P
(n)
k = γ(sk), sk = k

L

2n
∈ [0, L], k = 1, 2, 3, . . . , 2n.

We shall need the following lemma:

Lemma 2 (Cauchy’s mean value theorem). Let f, g : [a, b] −→ R be
continuous functions, differentiable on the open interval (a, b) and let ξ ∈
(a, b), such that

(f(b)− f(a))g′(ξ) = (g(b)− g(a))f ′(ξ). (3)

If the curve (f(t), g(t)) has curvature k > 0, and we put

ξ = a+ θh, h = b− a, 0 < θ < 1

then

lim
h→0

θ =
1

2
.
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Proof. Note that

f(b)− f(a) = f ′(a)h+
f ′′(η1)

2
h2, a < η1 < b,

f ′(ξ) = f ′(a) + f ′′(η2)θh, a < η2 < ξ,

and similar expressions for g, with corresponding η3, η4. Substituting
these expressions in Cauchy’s equality (3) we get

θ(f ′(a)g′′(a)− g′(a)f ′′(a)) =
1

2
(f ′(a)g′′(η3))− f ′′(η1)g′(a)) + o(1), h→ 0.

Taking limits we obtain the result. �
Theorem 2. Let γ : [0, L] −→ R2 be the parametrization by the arc

length s of a closed strictly convex curve C of class C2. Let ρ
(n)
k be the

radius of curvature at the vertex P
(n)
k of the n-th dyadic polygon Pn. Then,

for all ε > 0, there exists nε ∈ N such that for all n > nε,

|ρ(n)k − ρ(s
(n)
k )| < ε, k = 1, 2, . . . , 2n.

Proof. Since ρ
(n)
k can be approximated by

l
(n)
k−1 + l

(n)
k

2 sin Ω
(n)
k

(the sine ap-

proximation for small angles), it is sufficient to prove that, given ε > 0,
and for n big enough, we have

∣∣∣∣∣
l
(n)
k−1 + l

(n)
k

2 sin Ω
(n)
k

− ρ(s
(n)
k )

∣∣∣∣∣ < ε, k = 1, 2, . . . , 2n (4)

where Ω
(n)
k = α

(n)
k π is the exterior angle of the polygon Pn at vertex P

(n)
k .

The angle Ω
(n)
k can be computed using Cauchy’s mean value theorem.

In fact, there are points ηk−1 ∈ [s
(n)
k−1, s

(n)
k ], ηk ∈ [s

(n)
k , s

(n)
k+1], such that

y
(n)
k − y(n)k−1

x
(n)
k − x(n)k−1

=
y′(ηk−1)

x′(ηk−1)
,

y
(n)
k+1 − y

(n)
k

x
(n)
k+1 − x

(n)
k

=
y′(ηk)

x′(ηk)
.

In particular, we have

γ′(ηk−1) · γ′(ηk) = cos Ωk.

Equivalently

sin Ωk = x′(ηk−1)y′(ηk)− y′(ηk−1)x′(ηk)

= x′(ηk−1) · (y′(ηk)− y′(ηk−1))− y′(ηk−1) · (x′(ηk)− x′(ηk−1))

= (ηk − ηk−1) · [x′(ηk−1)y′′(τk−1)− y′(ηk−1)x′′(νk−1)],

where τk−1, νk−1 ∈ [ηk−1, ηk].

On the other hand it is clear that the sum l
(n)
k−1 + l

(n)
k can be written

as

l
(n)
k−1 + l

(n)
k = L(n)

(√
x′(ak−1)2 + y′(bk−1)2 +

√
x′(ak)2 + y′(bk)2

)

where ak−1, bk−1 ∈ [s
(n)
k−1, s

(n)
k ], ak, bk ∈ [s

(n)
k , s

(n)
k+1].
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Hence

l
(n)
k−1+l

(n)
k

2 sin Ω
(n)
k

=

√
x′(ak−1)2+y′(bk−1)2+

√
x′(ak)2+y′(bk)2

2(x′(ηk−1)y′′(τk−1)− y′(ηk−1)x′′(νk−1))
· L(n)

ηk−ηk−1
.

Let us denote

B(k, n) =

√
x′(ak−1)2 + y′(bk−1)2 +

√
x′(ak)2 + y′(bk)2

2(x′(ηk−1)y′′(τk−1)− y′(ηk−1)x′′(νk−1))
.

Since C is strictly convex, its curvature is a strictly positive contin-
uous function on a compact set (the interval [0, L]). Hence, there is a
constant M such that 0 < ρ(s) < M .

It is clear that B(k, n) converges to the radius of curvature. In fact
we have, for all ε > 0, and for n big enough,

|B(k, n)− ρ(s
(n)
k )| < ε/2, k = 1, 2, . . . , 2n. (5)

Moreover, since ρ(s) is bounded, there exists N > 0 such that |B(k, n)| <
N .

On the other hand, the fraction
L(n)

ηk − ηk−1
converges uniformly to 1.

In fact, by Lemma 2 applied to the functions x(t), y(t), over the intervals
[sk−1, sk] and [sk, sk+1], and putting

ηk−1 = sk−1 + θk−1L
(n), 0 < θk−1 < 1,

ηk = sk + θkL
(n), 0 < θk < 1,

we have
∣∣∣∣

L(n)

ηk−ηk−1
− 1

∣∣∣∣=
∣∣∣∣

L(n)

L(n)+L(n)(θk−1−θk)
− 1

∣∣∣∣<ε, k=1, 2, . . . , 2n. (6)

From inequalities (5) and (6) we get easily inequality (4), and theorem
is proved. �

4 A discrete version of Theorem 1

In this section we shall give a discrete version of Theorem 1. For this, we
shall need the following result.

Lemma 3. Let a1, . . . , an ∈ R+ and let f : (R+)n −→ R be the function
given by

f(x1, . . . , xn) =
a21
x1

+ · · ·+ a2n
xn
.

If x1 + · · ·+ xn = 2, then

f(x1, . . . , xn) ≥ 1

2

(
n∑

i=1

ai

)2

.

7



Proof. Following the method of Lagrange multipliers, we find the
critical points of the function

g(x1, . . . , xn) = f(x1, . . . , xn) + λ(x1 + · · ·+ xn − 2).

We obtain

xk =
2ak∑n
i=1 ai

, k = 1, . . . , n.

The value of f(x) at this point is

f(x1, . . . , xn)=
a21
x1

+· · ·+a2n
xn

=(

n∑

i=1

ai)
a1
2

+· · ·+(

n∑

i=1

ai)
an
2

=
1

2

(
n∑

i=1

ai

)2

.

Since f(x1, . . . , xn) > 0, and it is not bounded above, the point

(
2a1∑n
i=1 ai

, . . . ,
2an∑n
i=1 ai

)

is a minimum. This completes the proof of the lemma. �
Definition 3. A convex polygon is called umbilical if the radius of cur-
vature at its vertices is constant.

Note that, in this case, this constant must be equal to L/2π, where L
is the length of the polygon. This fact is easily demonstrated by simply
adding the equalities

lk−1 + lk = 2αkπρ, k = 1, . . . , n,

where ρ is the constant radius of curvature.

Theorem 3. Let L be the length of a convex polygon. Then we have

L2

4π
≤ 1

2

n∑

k=1

lk
ρk + ρk+1

2
.

Equality holds if and only if the polygon is umbilical.

Proof. By definition of ρk, the second term of this inequality is

1

2

n∑

k=1

lk
ρk + ρk+1

2
=

1

8π

n∑

k=1

lk

(
lk−1 + lk

αk
+
lk + lk+1

αk+1

)

=
1

8π

n∑

k=1

(lk + lk+1)2

αk
.

Since α1 + · · ·+ αn = 2, we can apply Lemma 3 and we obtain

1

8π

n∑

k=1

(lk + lk+1)2

αk
≥ 1

8π

1

2
(2L)2.

Hence
1

2

n∑

k=1

lk
ρk + ρk+1

2
≥ 1

4π
L2,

and the inequality of the theorem is proved.

8



By Lemma 3, equality is attained when

αk =
2(lk + lk+1)∑n
i=1(li + li+1)

=
lk + lk+1

L
=

2αkπρk
L

.

Hence

ρk =
L

2π
, k = 1, . . . , n

and the polygon is umbilical. �
Corollary 2. Let A be the area of a convex polygon. Then we have

A ≤ 1

2

n∑

k=1

lk
ρk + ρk+1

2
.

Proof. It is a direct consequence of the isoperimetric inequality

4πA− L2 ≤ 0. �

Note 2. Note that the term 1
2

∑n
k=1 lk

ρk+ρk+1

2
can be interpreted as the

area of a rosette composed by isosceles triangles of sides ρk and angles
αkπ.

k

k
!

"

k+1kl  + l     

In particular, equality in Theorem 3 holds if and only if the rosette is a
circle. The defect

1

2

n∑

k=1

lk
ρk + ρk+1

2
− L2

4π

coincides with the difference between the area of the rosette and the area
of a circle of radius L/2π.
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5 Approximation by polygons

In this section we justify why Theorem 3 can be viewed as a discrete
version of Theorem 1.

Lemma 4. Let C be a closed convex curve of class C1 in the plane. Let
l
(n)
k be the length of the side P

(n)
k P

(n)
k+1 of the n-th dyadic polygon Pn

associated to C. Then, for all ε > 0, there exists n0 ∈ N, such that for all
n > n0, and for all k = 1, 2, . . . , 2n we have

∣∣∣∣∣2
n · l

(n)
k

L
− 1

∣∣∣∣∣ < ε. (7)

Proof. The proof is standard, using the mean value theorem. �
Theorem 4. Let γ : [0, L] −→ R2 be the parametrization by the arc length

s of a closed strictly convex curve C of class C1. Let l
(n)
k be the length

of the side P
(n)
k P

(n)
k+1 of the n-th dyadic polygon Pn, and let ρ

(n)
k be the

radius of curvature at the vertex P
(n)
k .

Denoting by

ρ̃k
(n) =

ρ
(n)
k + ρ

(n)
k+1

2
the arithmetic mean of two consecutive radius of curvature, we have

lim
n→∞

(
2n∑

k=1

l
(n)
k ρ̃k

(n)

)
=

∫

C

ρ(s) ds. (8)

Proof. By definition of Riemann integral, in order to prove equality (8)
we must only prove

lim
n→∞

2n∑

k=1

(
l
(n)
k ρ̃k

(n) − ρ(s
(n)
k )L(n)

)
= 0.

Equivalently

lim
n→∞

2n∑

k=1

L(n)

(
l
(n)
k

L(n)
ρ̃k

(n) − ρ(s
(n)
k )

)
= 0.

Since

|ρ̃k(n)−ρ(s
(n)
k )|= 1

2

∣∣∣(ρ(n)k −ρ(s
(n)
k ))+(ρ

(n)
k+1−ρ(s

(n)
k+1))+(ρ(s

(n)
k+1)−ρ(s

(n)
k ))

∣∣∣

and ρ(s) is continuous, we can assume, by Theorem 2, that for all ε > 0,
there exists nε ∈ N such that for all n > nε,

|ρ̃k(n) − ρ(s
(n)
k )| < ε/2, k = 1, 2, . . . , 2n.

Note that the radii of curvature ρ
(n)
k are uniformly bounded. In fact,

since the given curve C is strictly convex, there is a constant M such that
0 < ρ(s) < M . So it is clear that, for n big enough, there exists N > 0

such that ρ
(n)
k < N .

10



By Lemma 4, given ε > 0, and for n big enough, we have

1− ε

2N
<

l
(n)
k

L(n)
< 1 +

ε

2N
.

From this it follows easily that

−ε < l
(n)
k

L(n)
· ρ̃k(n) − ρ(s

(n)
k ) < ε,

and hence ∣∣∣∣∣
2n∑

k=1

L(n)

(
l
(n)
k

L(n)
ρ̃k

(n) − ρ(s
(n)
k )

)∣∣∣∣∣ < Lε,

and theorem is proved. �

Applying Theorem 3 to a sequence of dyadic polygons associated to a
closed convex curve, and taking limits (the length of the polygons converge
to the length of the curve) we obtain, by Theorem 4, a discrete proof of
Theorem 1.

As this proof does not use Lemma 1, and each 2π-periodic function
p(φ) with p + p′′ > 0 is the support function of a convex set, we have
given in fact a geometrical proof of this lemma. Note that the condition
p + p′′ > 0 is not a restriction since the addition of a constant to p(φ)
leaves invariant the inequality of Lemma 1.
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