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THE CUNTZ SEMIGROUP OF CONTINUOUS FIELDS

RAMON ANTOINE, JOAN BOSA, AND FRANCESC PERERA

ABSTRACT. In this paper we describe the Cuntz semigroup of continuous fields of C∗-
algebras over one dimensional spaces whose fibers have stable rank one and trivial K1 for
each closed, two-sided ideal. This is done in terms of the semigroup of global sections on a
certain topological space built out of the Cuntz semigroups of the fibers of the continuous
field. When the fibers have furthermore real rank zero, and taking into account the action of
the space, our description yields that the Cuntz semigroup is a classifying invariant if and
only if so is the sheaf induced by the Murray-von Neumann semigroup.

INTRODUCTION

The Cuntz semigroup has become a popular object in recent years, mainly due to its
connection with the classification program of unital, simple, separable and nuclear C∗-
algebras by means of the Elliott invariant. It can be thought of as a functorial invariant
Cu( ) from the category of C∗-algebras to a category of semigroups, termed Cu, that has
certain continuity properties. The Elliott invariant is also functorial and consists of ordered
topological K-Theory, the trace simplex and the pairing between K-Theory and traces; it is
customarily denoted by Ell( ). The Elliott conjecture asserts that an isomorphism between
the invariants Ell(A) and Ell(B) of C∗-algebras A and B may be lifted to a ∗-isomorphism
between A and B. Although the conjecture fails in general (see [26], [29]), it has been
verified for large classes of C∗-algebras, all of which happen to absorb the Jiang-Su algebra
Z tensorially. For these algebras, the Cuntz semigroup can be recovered functorially from
the Elliott invariant (see [7]). More recently, it was shown further in [2] (see also [28]) that
the Elliott invariant can be recovered from the Cuntz semigroup after tensoring with C(T),
and thus Ell( ) and Cu(C(T, )) define equivalent functors.

In the non-simple case, the Cuntz semigroup has already been used successfully to clas-
sify certain classes of C∗-algebras, such as AI algebras ([9]), inductive limits of one dimen-
sional non commutative CW-complexes with trivial K1 ([23]) or inductive limits of certain
continuous-trace C∗-algebras ([10]), among others. Another class of (non-simple) algebras
for which classification results have been obtained are continuous fields over [0, 1] of either
Kirchberg algebras (with certain torsion freeness assumptions on their K-Theory) or AF al-
gebras ([13, 14]). In this situation, the classifying invariant consists of the sheaf of groups
naturally induced by K-Theory. In the stably finite case, it is natural to ask whether the
Cuntz semigroup of the continuous field captures, on its own, all the information of the
K-Theory sheaf. This is one of the main objectives pursued in this article, and we are able
to settle the question positively for a wide class of continuous fields.

In order to achieve our aim, we need techniques that allow to compute the Cuntz semi-
group of continuous fields. In the case of algebras of the form C0(X,A), for a locally
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compact Hausdorff space X , this was carried out in [28] whenever A is a simple, unital,
non-type I ASH-algebra with slow dimension growth. For a not necessarily simple algebra
A of stable rank one with vanishing K1 for each closed, two-sided ideal, and for a one di-
mensional locally compact Hausdorff space, one of the main results in [3] proves that there
is an isomorphism between Cu(C0(X,A)) and Lsc(X,Cu(A)). The latter is a semigroup of
Cu(A)-valued lower semicontinuous functions (see below for the precise definitions), and
the isomorphism is given by point evaluation of (representatives of) Cuntz classes. The
more general situation of C(X)-algebras was also a theme developed in [3], where spaces
of dimension at most one and C(X)-algebras whose fibers have stable rank one and van-
ishing K1 for each closed, two-sided ideal were considered. In this paper, we shall refer to
this class as C(X)-algebras without K1 obstructions. For such spaces, the Cuntz semigroup
of a C(X)-algebra A with no K1 obstructions embeds into the product

∏
x∈X Cu(Ax). (This

was shown in [3] for X = [0, 1], and we prove the one dimensional case here, based on the
pullback construction carried out also in [3].)

The remaining problem of identifying the image of Cu(A) in
∏

x∈X Cu(Ax) for C(X)-
algebrasA in the said class leads to the analysis of the natural mapFCu(A) := tx∈XCu(Ax)→
X and its sections. This is motivated by the fact that the Cu functor induces a presheaf CuA
on X that assigns, to each closed set U of X , the semigroup Cu(A(U)). Hence we may ex-
pect to relate the Cuntz semigroup with the semigroup of continuous sections of an étale
bundle. In the case of the presheaf defined by K-Theory, and for some continuous fields
over [0, 1], this was considered in [13]. We show that, for a one dimensional space X and
a C(X)-algebra with no K1 obstructions, the presheaf CuA is in fact a sheaf. In order to re-
cover CuA from the sheaf of continuous sections of the map FCu(A) → X , we need to break
away from the standard approach (of, e.g. [30]) and consider a topological structure on
FCu(A) that takes into account continuity properties of the objects in the category Cu. Thus
we develop a more abstract analysis of Cu-valued sheaves that follows, in part, the spirit
of [3]. This culminates in Theorem 3.12, which allows to recover the Cuntz semigroup of a
C(X)-algebraAwith noK1 obstructions over a one dimensional spaceX as the semigroup
of global sections on FCu(A).

To conclude the paper, we apply the previous result in a crucial way to prove that, for
one dimensional spaces and C(X)-algebras with no K1 obstructions whose fibers have
real rank zero, the Cuntz semigroup and the K-theoretical sheaf defined by the Murray-
von Neumann semigroup carry the same information. (This sheaf is defined, for a C(X)-
algebraA, as VA(U) = V (A(U)) whenever U is a closed subset ofX .) A key ingredient here
is that the natural module structure of a C(X)-algebra A equips Cu(A) with an enriched
structure via an action of Cu(C(X)). Thus, more precisely, we show that ifA andB are two
such C(X)-algebras, then there is an action preserving semigroup isomorphism Cu(A) ∼=
Cu(B) if, and only if, the sheaves VA( ) and VB( ) are isomorphic (Theorem 4.9).

1. PRELIMINARIES

1.1. Cuntz Semigroup. Let A be a C∗-algebra, and let a, b ∈ A+. We say that a is Cuntz
subequivalent to b, in symbols a � b, provided there is a sequence (xn) in A such that xnbx∗n
converges to a in norm. We say that a and b are Cuntz equivalent if a � b and b � a, and in
this case we write a ∼ b.
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The Cuntz semigroup is defined as the quotient set Cu(A) = (A ⊗ K)+/∼, and its el-
ements are denoted by [a], for a ∈ (A ⊗ K)+. This set becomes an ordered semigroup,
with order induced by Cuntz subequivalence and addition given by [a] + [b] = [Θ ( a 0

0 b )],
where Θ: M2(A⊗K)→ A⊗K is any inner isomorphism. The following summarizes some
technical properties of Cuntz subequivalence that will be used in the sequel.

Proposition 1.1. ([25], [16]) Let A be a C*-algebra, and a, b ∈ A+. The following are equivalent:
(i) a � b.

(ii) For all ε > 0, (a− ε)+ � b.
(iii) For all ε > 0, there exists δ > 0 such that (a− ε)+ � (b− δ)+.

Furthermore, if A is stable, these conditions are equivalent to
(iv) For every ε > 0 there is a unitary u ∈ U(Ã) such that u(a− ε)+u

∗ ∈ Her(b).

The structure of the Cuntz semigroup is richer than just being an ordered semigroup,
as it belongs to a category with certain continuity properties. Recall that, in an ordered
semigroup S, an element s is said to be compactly contained in t, denoted s� t, if whenever
t ≤ supn zn for some increasing sequence (zn) with supremum in S, there existsm such that
s ≤ zm. An element s is said to be compact if s� s. A sequence (sn) such that sn � sn+1 is
termed rapidly increasing. The following theorem summarizes some structural properties
of the Cuntz semigroup.

Theorem 1.2. ([8]) Let A be a C∗-algebra. Then:
(i) Every increasing sequence in Cu(A) has a supremum in Cu(A).

(ii) Every element in Cu(A) is the supremum of a rapidly increasing sequence.
(iii) The operation of taking suprema and� are compatible with addition.

This allows to define a category Cu whose objects are ordered semigroups of positive
elements satisfying conditions (i)-(iii) above. (Morphisms in this category are those semi-
group maps that preserve all the structure.) We say that a semigroup S in the category Cu
is countably based if there exists a countable subset X that is dense in S, meaning that every
element of S is the supremum of a rapidly increasing sequence of elements in X . It was
observed in [3] (see also [22]) that Cu(A) is countably based for any separable C∗-algebra
A.

As shown in [8], the category Cu is closed under countable inductive limits (in fact, it
was also shown that Cu defines a sequentially continuous functor from the category of
C∗-algebras to Cu). A useful description of the inductive limit is available below.

Proposition 1.3. ([8], cf. [5]) Let (Si, αi,j)i,j∈N be an inductive system in the category Cu. Then
(S, αi,∞) is the inductive limit of this system if

(i) The set
⋃
i αi,∞(Si) is dense in S.

(ii) For any x, y ∈ Si such that αi,∞(x) ≤ αi,∞(y) and x′ � x there is j such that αi,j(x′) ≤
αi,j(y).

If S is a semigroup in Cu, an order-ideal I of S is a subsemigroup which is order-hereditary
(that is, x ∈ I whenever x ≤ y and y ∈ I) and that further contains all suprema of increas-
ing sequences in I . For example, ifA is a C∗-algebra and I is a closed, two-sided ideal, then
Cu(I) is naturally an order-ideal of Cu(A). Given an order-ideal I of S as before, define
a congruence relation on S by s ∼ t if s ≤ t + z and t ≤ s + w for some z, w ∈ I , and
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put S/I = S/∼, which is an ordered semigroup with addition [s] + [t] = [s + t] and order
given by [s] ≤ [t] if s ≤ t + z for some z ∈ I . It is not hard to verify that S/I ∈ Cu. For
a C∗-algebra A and a closed ideal I , it was proved in [11] that Cu(A/I) ∼= Cu(A)/Cu(I)
(where the isomorphism is induced by the natural quotient map).

1.2. C(X)-algebras. Let X be a compact Hausdorff space. A C(X)-algebra is a C∗-algebra
A together with a unital ∗-homomorphism θ : C(X)→ Z(M(A)), whereM(A) is the mul-
tiplier algebra of A. The map θ is usually referred to as the structure map. We write fa
instead of θ(f)a where f ∈ C(X) and a ∈ A.

If Y ⊆ X is a closed set, let A(Y ) = A/C0(XrY )A, which also becomes a C(X)-algebra.
The quotient map is denoted by πY : A→ A(Y ), and if Z is a closed subset of Y we have a
natural restriction map πYZ : A(Y )→ A(Z). Notice that πZ = πYZ ◦πY . If Y reduces to a point
x, we write Ax instead of A({x}) and we denote by πx the quotient map. The C∗-algebra
Ax is called the fiber of A at x and the image of πx(a) ∈ Ax will be denoted by a(x).

Given a C(X)-algebra A and a ∈ A, the map x 7→ ‖a(x)‖ is upper semicontinuous (see
[6]). If this map is actually continuous for every a ∈ A, then we say that A is a continuous
field (or also a C∗-bundle, see [17, 6]). For a continuous field A, a useful criterion to deter-
mine when an element (ax) ∈

∏
x∈X Ax comes from an element of A is the following: given

ε > 0 and x ∈ X , if there is b ∈ A and a neighborhood V of x such that ‖b(y)− ay‖ < ε for
y ∈ V , then there is a ∈ A such that a(x) = ax for all x (see [15, Definition 10.3.1]).

It was proved in [3, Lemma 1.5] that, if A is a C(X)-algebra, then this is also the case for
A⊗K and, in fact, for any closed set Y of X , there is a ∗-isomorphism

ϕY : (A⊗K)(Y )→ A(Y )⊗K
such that ϕY ◦ π′Y = πY ⊗ 1K, where πY : A → A(Y ) and π′Y : A ⊗ K → (A ⊗ K)(Y ). This
yields, in particular, that (A⊗K)(x) ∼= Ax ⊗K for any x ∈ X , with (a⊗ k)(x) 7→ a(x)⊗ k.

Using this observation, the map induced at the level of Cuntz semigroups Cu(A) →
Cu(Ax) can be viewed as [a] 7→ [πx(a)]. Similarly, if Y is closed in X , the map πY induces
Cu(A) → Cu(A(Y )), that can be thought of as [a] 7→ [πY (a)]. Thus, when computing the
Cuntz semigroup of a C(X)-algebra A, we may and will assume that A, Ax and A(Y ) are
stable.

2. SHEAVES OF SEMIGROUPS AND CONTINUOUS SECTIONS

Our aim in this section is to relate the Cuntz semigroup of a C(X)-algebra A with the
semigroup of continuous sections of a certain topological space, which is built out of the
information on the fibers. We will first define what is meant by a presheaf of semigroups
on a topological space, along the lines of [30], with some modifications.

Let X be a topological space. As a blanket assumption, we shall assume that X is al-
ways compact, Hausdorff and second countable, therefore metrizable. Denote by VX the
category of all closed subsets of X with non-empty interior, with the morphisms given by
inclusion.

A presheaf over X is a contravariant functor

S : VX → C
where C is a subcategory of the category of sets which is closed under sequential inductive
limits. Thus, it consists of an assignment, for each V ∈ VX of an object S(V ) in C and a
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collection of maps (referred to as restriction homomorphisms) πV ′
V : S(V ′)→ S(V ) whenever

V ⊆ V ′ in VX . We of course require that these maps satisfy πVV = idV and πUW = πVWπ
U
V if

W ⊆ V ⊆ U .
Let V, V ′ ∈ VX be such that V ∩ V ′ ∈ VX . A presheaf is called a sheaf if the map

πV ∪V
′

V × πV ∪V ′
V ′ : S(V ∪ V ′)→ {(f, g) ∈ S(V )× S(V ′) | πVV ∩V ′(f) = πV

′
V ∩V (g)},

is bijective.
A presheaf (respectively a sheaf) is continuous if for any decreasing sequence of closed

subsets (Vi)
∞
i=1 whose intersection ∩∞i=1Vi = V belongs to VX , the limit limS(Vi) is isomor-

phic to S(V ).
Consider a presheaf S over X . For any x ∈ X , define the fiber (or also stalk) of S at x as

Sx := lim
x∈V̊
S(V ) ,

with respect to the restriction maps.
We shall be exclusively concerned with continuous presheaves (or sheaves) S with tar-

get values in the category Sg of semigroups, in which case we will say that S is a (pre)sheaf
of semigroups. As a general notation, we will use S to denote the semigroup S(X). We will
also denote πx : S → Sx the natural map from S to the fiber Sx, as well as πU : S → S(U)
rather than πXU .

Our main motivation for considering presheaves of semigroups stems from the study of
C(X)-algebras. Indeed, as it is easy to verify, given a C(X)-algebra A, the assignments

CuA : VX → Cu
U 7→ Cu(A(U))

and VA : VX → Sg
U 7→ V (A(U))

define continuous presheaves of semigroups. If U ⊆ V , the restriction maps πUV : A(U) →
A(V ) and the limit maps πx : A → Ax define, by functoriality, semigroup maps Cu(πUV )
and Cu(πx) in the case of the Cuntz semigroup, and likewise in the case for the semigroup
of projections. For ease of notation, and unless confusion may arise, we shall still denote
these maps by πUV and πx.

We will say that a (pre)sheaf is surjective provided all the restriction maps are surjective.
This is clearly the case for the presheaf CuA for a general C(X)-algebra A, and also for VA

if A has real rank zero (which is a rather restrictive hypothesis, see e.g. [18] and [19]). As
we shall see in the sequel, CuA and VA determine each other under milder assumptions.

Most of the discussion in this and the subsequent section will consider surjective (pre)
sheaves of semigroups S : VX → Cu, and we will need to develop a somewhat abstract
approach on how to recover the information of the sheaf from the sheaf of sections of a
bundle FS → X , where FS stands for the disjoint union of all the fibers (see[30]). This is
classically done by endowing FS with a topological structure that glues together the fibers
(which are computed as algebraic limits in the category of sets). One of the main difficul-
ties here resides in the fact that the inductive limit in Cu is not the algebraic inductive limit,
even in the case of the fiber of a surjective presheaf. We illustrate this situation below with
an easy example. For a semigroup S in Cu and a compact Hausdorff space X , we shall
denote by Lsc(X,S) the set of those functions f : X → S such that {t ∈ X | f(t) � s} is
open in X for all s ∈ S. If X is finite dimensional, it was shown in [3] that Lsc(X,S) ∈ Cu.
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Example 2.1. Let A = C([0, 1],Mn(C)), where n ≥ 2. We know that Cu(A) ∼= Lsc([0, 1],N),
where N = N ∪ {∞} (see, e.g. [21]).

Now, let {Um = [1
2
− 1

m
, 1

2
+ 1

m
]}m≥2, which is a sequence of decreasing closed subsets of

[0, 1] whose intersection is {1/2}. It is easy to verify that, in Cu,

lim
→

Cu(A(Un)) = lim
→

Lsc(Un,N) = Cu(A(1/2)) = N.

However, the computation of the direct limit above in the category of semigroups yields
{(a, b, c) ∈ N3 | b ≤ a, c}.

For a surjective continuous presheaf S : VX → Cu, let FS := tx∈XSx, where Sx =
limx∈V̊ S(V ), and define π : FS → X by π(s) = x if s ∈ Sx.

We define a section of FS as a function f : X → FS such that f(x) ∈ Sx. We equip the
set of sections with pointwise addition and order, so this set becomes an ordered semi-
group. Notice also that the set of sections is closed under pointwise suprema of increasing
sequences.

Any element s ∈ S induces a section ŝ, which is defined by ŝ(x) = πx(s) ∈ Sx and will
be referred to as the section induced by s.

Lemma 2.2. Let S : VX → Cu be a presheaf on X , and let s, r ∈ S.
(i) If ŝ(x) ≤ r̂(x) for some x ∈ X then, for each s′ � s in S there is a closed set V with x ∈ V̊

such that πV (s′) ≤ πV (r). In particular, ŝ′(y) ≤ r̂(y) for all y ∈ V .
(ii) If, further, S is a sheaf, U is a closed subset of X , and ŝ(x) ≤ r̂(x) for all x ∈ U , then for each

s′ � s there is a closed set W of X with U ⊂ W̊ and πW (s′) ≤ πW (r).

Proof. (i): Recall that Sx = limS(Vn), where (Vn) is a decreasing sequence of closed sets
whose intersection is x (we may take V1 = X , and x ∈ V̊n for all n). Then, by Proposition
1.3, two elements s, r satisfy ŝ(x) = πx(s) ≤ πx(r) = r̂(x) in Sx if and only if for all s′ � s

there exists j ≥ 1 such that πVj(s
′) ≤ πVj(r), and in particular ŝ′(y) ≤ r̂(y) for all y in Vj .

(ii): Assume now that S is a sheaf, and take s′ � s. Apply (i) to each x ∈ U , so that
we can find Ux with x ∈ Ůx such that πUx(s′) ≤ πUx(r). By compactness of U , there are a
finite number Ux1 , . . . , Uxn whose interiors cover U . Put W = ∪iUxi . As S is a sheaf and
πUxi (s

′) ≤ πUxi (r) for all i, it follows that πW (s′) ≤ πW (r). �
Following Lemma 2.2, our aim is to define a topology in FS for which the induced sec-

tions will be continuous. Instead of abstractly considering the final topology generated by
the induced sections, we define a particular topology which will satisfy our needs. Given
U an open set in X and s ∈ S, put

U�s = {ax ∈ FS | ŝ′(x)� ax for some x ∈ U and some s� s′} ,
and equip FS with the topology generated by these sets.

Now consider an induced section ŝ for some s ∈ S, and an open set of the form U�r for
some r ∈ S and U ⊆ X . Suppose x ∈ ŝ−1(U�r ). Note that x ∈ U and that ŝ(x) � ŝ′(x) for
some s′ � r. Using that s′ = sup(s′n) for a rapidly increasing sequence (s′n), there exists n0

such that r � s′n0
� s′. Hence, by Lemma 2.2, there is a closed set V such that x ∈ V̊ and

ŝ′n0(y) � ŝ(y) for all y in V . Thus, x ∈ U ∩ V̊ ⊆ ŝ−1(U�r ), proving that ŝ−1(U�r ) is open in
X , from which it easily follows that ŝ is continuous with this topology.
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Remark 2.3. Notice that if S is a surjective presheaf, then any element a ∈ Sx can be
written as a = sup(ŝn(x)), where sn is a rapidly increasing sequence in S. This is possible
as the map S → Sx is surjective, hence a = πx(s) for some s ∈ S, and s = sup sn for such a
sequence.

The following result gives another characterization of continuity that will prove useful
in the sequel.

Proposition 2.4. Let X be a compact Hausdorff space and S be a continuous surjective presheaf
on Cu. Then, for a section f : X → FS , the following conditions are equivalent:

(i) f is continuous.
(ii) For all x ∈ X and ax ∈ Sx such that ax � f(x), there exist a closed set V with x ∈ V̊ and

s ∈ S such that ŝ(x)� ax and ŝ(y)� f(y) for all y ∈ V .

Proof. Let f : X → FS be a section satisfying (ii) and consider an open set of the form U�r
for some open set U ⊆ X and r ∈ S. Then

f−1(U�r ) = {y ∈ X | f(y)� r̂′(y) for some y ∈ U and for some r′ � r}
= {y ∈ U | f(y)� r̂′(y) for some r′ � r}.

For each y in the above set there exists r′ � r such that r̂′(y) � f(y). Using property
(ii) there exists s ∈ S such that r̂′(y) � ŝ(y) � f(y) and ŝ(x) � f(x) for all x ∈ V̊ where
V is a closed set of X . Furthermore, we can find r′′ ∈ S such that r � r′′ � r′, and use
Lemma 2.2 to conclude that r̂′′(z) � ŝ(z) � f(z) for all z in an open set W ⊆ X , proving
that f−1(U�r ) is open. Therefore f is continuous.

Now, let f : X → FS be continuous, x ∈ X and ax � f(x). Using Remark 2.3, we can
write f(x) = sup(ŝn(x)) where (sn) is a rapidly increasing sequence in S, and hence we can
find s� s′ ∈ S such that

ax � ŝ(x)� ŝ′(x)� f(x),

where s, s′ ∈ S.
Let U be any open neighborhood of x, and consider the open set f−1(U�s ). Note that it

contains x and that for any z ∈ f−1(U�s ), we have f(z) � t̂(z) for some t � s. Hence, for
any closed set V contained in f−1(U�s ) such that x ∈ V̊ , we have f(z)� ŝ(z) for all z ∈ V .
Thus, condition (ii) holds. �

Let X be a compact Hausdorff space and let S be a continuous presheaf on Cu. We will
denote the set of continuous sections of the space FS by Γ(X,FS), which is equipped with
pointwise order and addition. Notice that there is an order-embedding

Γ(X,FS)→
∏

x∈X
Sx

(given by f 7→ (f(x))x∈X).

Definition 2.5. Let X be a compact Hausdorff space. We say that a C(X)-algebra A has no K1

obstructions provided that, for all x ∈ X , the fiber Ax has stable rank one and K1(I) = 0 for any
closed two-sided ideal of Ax.
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The class just defined was already considered, although not quite with this terminology,
in [3], where various aspects of the Cuntz semigroup of these algebras were examined.
We combine some of the ideas from [3] to prove the results below, which are a first step
towards the computation of the Cuntz semigroup of C(X)-algebras without K1 obstruc-
tions.

Theorem 2.6. Let X be a one dimensional compact Hausdorff space and A be a C(X)-algebra
without K1 obstructions. Then, the map

α : Cu(A)→
∏

x∈X
Cu(Ax),

given by α[a] = ([a(x)])x∈X is an order embedding. In particular, α defines an order embedding

Cu(A)→ Γ(X,FCu(A)) .

Proof. By our assumptions on A and its fibers, we may assume that A is stable.
Let 0 < ε < 1 be fixed, and let us suppose that a, b ∈ A are positive contractions such

that a(x) � b(x) for all x ∈ X . Then, by the definition of the Cuntz order, since Ax is a
quotient of A for each x ∈ X , there exists dx ∈ A such that

‖a(x)− dx(x)b(x)d∗x(x)‖ < ε.

By upper semicontinuity of the norm, the above inequality also holds in a neighborhood
of x. Hence, since X is a compact set, there exists a finite cover of X , say {Ui}ni=1, and
elements (di)

n
i=1 ∈ A such that ‖a(x)− di(x)b(x)d∗i (x)‖ < ε, for all x ∈ Ui and 1 ≤ i ≤ n. As

X is one dimensional, we may assume that {Ui} and {Ui} have multiplicity at most two.
Choose, by Urysohn’s Lemma, functions λi that are 1 in the closed sets Ui \(

⋃
j 6=i Uj) and

0 in U c
i . Using these functions we define d(x) =

∑n
i=1 λi(x)di(x). Set V = X \(⋃i 6=j(Ui∩Uj))

which is a closed set, and it is easy to check that d satisfies

(1) ‖a(x)− d(x)b(x)d∗(x)‖ < ε

for all x ∈ V .
Again, choose for i < j functions αi,j such that αi,j is one on Ui ∩ Uj and zero on Uk ∩ Ul

whenever {k, l} 6= {i, j}. We define c(x) =
∑

i<j αi,j(x)di(x), put U = (
⋃
i 6=j(Ui ∩ Uj)) = V c

and notice that c satisfies

(2) ‖a(x)− c(x)b(x)c∗(x)‖ < ε

for all x ∈ U .
Now, by [16, Lemma 2.2], equations (1) and (2), and taking into account that the norm

of an element is computed fiberwise ([6]), we have that

πV ((a− ε)+) � πV (b) and πU((a− ε)+) � πU(b) .

Therefore
([πV (a− ε)+)], [πU(a− ε)+)]) ≤ ([πV (b)], [πU(b)])

in the pullback semigroup Cu(A(V )) ⊕Cu(A(U∩V ) Cu(A(U)). Since A can also be written as
the pullback A = A(V ) ⊕A(U∩V ) A(U) along the natural restriction maps (see [12, Lemma
2.4], and also [15, Proposition 10.1.13]), we can apply [3, Theorem 3.2], to conclude that
(a− ε)+ � b. Thus a � b, and the result follows. �
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Corollary 2.7. Let X be a one dimensional compact Hausdorff space, and let A be a C(X)-algebra
without K1 obstructions. Then, CuA : VX → Cu, U 7→ Cu(A(U)), is a surjective continuous
sheaf.

Proof. We know already that CuA is a surjective continuous presheaf. Let U and V ∈ VX
be such that U ∩ V ∈ VX . Let W = U ∪ V . We know then that A(W ) is isomorphic to
the pullback A(U) ⊕A(U∩V ) A(V ). Since A(W ) is a C(W )-algebra without K1 obstructions,
we may apply Theorem 2.6 to conclude that the map Cu(A(W )) → ∏

x∈W Cu(Ax) (given
by [a] 7→ ([a(x)])) is an order-embedding. Then [3, Theorem 3.3] implies that the natural
map Cu(A(W )) → Cu(A(U)) ⊕Cu(A(U∩V )) Cu(A(V )) is surjective. Since it is also an order-
embedding, by [3, Theorem 3.2], we obtain that it is an isomorphism.

�

3. PIECEWISE CHARACTERISTIC SECTIONS

In this section we will show that, under additional assumptions, the map in Theorem
2.6 is also surjective, proving that there exists an isomorphism in the category Cu between
Cu(A) and Γ(X,FCu(A)).

Recall that, if s� r ∈ S, then πx(s) = ŝ(x)� r̂(x) = πx(r) for all x. This comes from the
fact that the induced maps belong to the category Cu, and so they preserve the compact
containment relation. We continue to assume throughout that X is a compact Hausdorff
space, which is also second countable. We shall use below ∂(U) to denote the boundary of
a set U , that is, ∂(U) = U \ Ů .

Lemma 3.1. Let S : VX → Cu be a surjective presheaf of semigroups on X .
(i) Let f , g ∈ Γ(X,FS), and V a closed subset of X such that f(y)� g(y) for all y ∈ V . Put

gV,f (x) =

{
g(x) if x /∈ V
f(x) if x ∈ V

Then gV,f ∈ Γ(X,FS).
(ii) If g ∈ Γ(X,FS) and x ∈ X , there exist a decreasing sequence (Vn) of closed sets (with x ∈ V̊n

for all n) and a rapidly increasing sequence (sn) in S such that g = supn gVn,sn .

Proof. (i): Using the fact that both f and g are continuous, it is enough to check that condi-
tion (ii) in Proposition 2.4 is verified for x ∈ ∂(V ). Thus, let ax be such that ax � gV,f (x) =

f(x) � g(x). By continuity of f , there is a closed subset U with x ∈ Ů and s ∈ S such
that ax � ŝ(x) and ŝ(y) � f(y) for all y ∈ U . As s is a supremum of a rapidly increasing
sequence, we may find s′ � s with ax � ŝ′(x).

Next, as g is also continuous, there are t ∈ S and a closed set U ′ with x ∈ Ů ′ such that
f(x) � t̂(x) and t̂(y) � g(y) for all y ∈ U ′. Since ŝ(x) � t̂(x) and s′ � s, we now use
Lemma 2.2 to find W with ŝ′(y)� t̂(y) for all y ∈ W . Now condition (ii) in Proposition 2.4
is verified using the induced section s′ and the closed set U ∩ U ′ ∩W .

(ii): Write g(x) = supn ŝn(x), where (sn) is a rapidly increasing sequence in S (see Remark
2.3).

Since s1 � s2 and g is continuous, condition (ii) of Proposition 2.4 applied to ŝ2(x) �
g(x) yields t ∈ S and a closed set U1 whose interior contains x such that ŝ2(x) � t̂(x) and
t̂(y)� g(y) for all y ∈ V1. We now apply Lemma 2.2, so that there is another closed set U ′1
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(with x ∈ Ů ′1) so that ŝ1(y)� t̂(y) for any y ∈ U ′1. Let V1 = U1 ∩ U ′1 and for each y ∈ V1, we
have ŝ1(y) � t̂(y) � g(y). Continue in this way with the rest of the sn’s, and notice that
we can choose the sequence (Vn) in such a way that ∩Vn = {x}. �

Using the previous lemma we can describe compact containment in Γ(X,FCu(A)).

Proposition 3.2. Let S : VX → Cu be a surjective presheaf of semigroups on X . For f, g in
Γ(X,FCu(A)), the following statements are equivalent:

(i) f � g.
(ii) For all x ∈ X there exists ax with f(x) � ax � g(x) and such that if s ∈ S satisfies

ax � ŝ(x) and ŝ(y) � g(y) for y in a closed set U whose interior contains x, then there
exists a closed set V ⊆ U with x ∈ V̊ and f(y) ≤ ŝ(y) ≤ g(y) for all y ∈ V .

Proof. (i) =⇒ (ii): Given x ∈ X , use Lemma 3.1 to write g = supn gVn,sn , where (sn) is
rapidly increasing in S and (Vn) is a decreasing sequence of closed sets whose interior
contain x. Since f � g, there is n such that

f ≤ gVn,sn ≤ gVn+1,sn+1 ≤ g .

Let ax = gVn+1,sn+1(x) = ŝn+1(x), which clearly satisfies f(x) ≤ ŝn(x) � ŝn+1(x) � g(x).
Assume now that s ∈ S and U is a closed set with x ∈ Ů such that ax � ŝ(x) and ŝ(y) �
g(y) for all y ∈ U . Since sn � sn+1 and ŝn+1(x) � ŝ(x), there is by Lemma 2.2 a closed set
V with x ∈ V̊ (and we may assume V ⊂ Vn+1 ∩ U ) such that ŝn(y) ≤ ŝ(y) for all y ∈ V .
Thus f(y) ≤ ŝn(y) ≤ ŝ(y) ≤ g(y) for all y ∈ V .

(ii) =⇒ (i): Suppose now that g ≤ sup(gn), where (gn) is an increasing sequence in
Γ(X,FS). Let x ∈ X , and write g = sup gVn,sn as in Lemma 3.1, where (sn) is a rapidly
increasing sequence in S. Our assumption provides us first with ax such that f(x)� ax �
g(x). In particular, there is m such that ax � ŝm(x) � ŝm+1(x) � ŝm+2(x) � g(x), and
hence there exists k with ŝm+1(x)� gk(x).

As gk is continuous, condition (ii) in Proposition 2.4 implies that we may find s ∈ S and
a closed set U with x ∈ Ů such that ŝm+1(x) � ŝ(x) and ŝ(y) � gk(y) for all y ∈ U . Now,
as sm � sm+1, there exists a closed subset V with x ∈ V̊ and ŝm(y) ≤ ŝ(y) for all y ∈ V ,
whence ŝm(y) ≤ g(y) for all y ∈ U ∩ V .

Since also ŝm(y) � g(y) for all y ∈ Vm, there is by assumption a closed set W ⊆ Vm ∩ V
(whose interior contains x) such that f(y) ≤ ŝm(y) ≤ gk(y) for all y ∈ W . Now, by a
standard compactness argument we may choose l such that f ≤ gl. �
Lemma 3.3. Let S : VX → Cu be a surjective presheaf of semigroups Then, the morphism

α : S → Γ(X,FS)
s 7→ ŝ

preserves compact containment and suprema.

Proof. Using condition (ii) of Proposition 2.4 it is easy to verify that, if (fn) is an increasing
sequence in Γ(X,FS), then its pointwise supremum is also a continuous section.

Assume now that s � r in S. Write r = sup(rn), where (rn) is a rapidly increasing
sequence in S. We may find m such that

s� rm � r .
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Take ax = r̂m(x). Suppose that t ∈ S satisfies ax � t̂(x) and t̂(y)� r̂(y) for y in a closed
subset U whose interior contains x. By Lemma 2.2, applied to r̂m(x) ≤ t̂(x) and s � rm,
there is a closed set V such that x ∈ V̊ and ŝ(y) ≤ t̂(y) for y ∈ V . Thus, for any y ∈ V ∩ U ,
we have ŝ(y) ≤ t̂(y) ≤ r̂(y). This verifies condition (ii) in Proposition 3.2, whence ŝ� r̂.

�
Corollary 3.4. Let S : VX → Cu be a surjective sheaf of semigroups on X , f ∈ Γ(X,FS), s ∈ S,
and let V be a closed subset of X . If ŝ(x) ≤ f(x) for all x ∈ V and s′ � s, then there is a closed
subset W of X with V ⊂ W̊ such that πW (s′)� f|W .

Proof. Let s′ � t′ � t � s in S. For each x ∈ V , there is by Proposition 2.4 a closed set
Ux whose interior contains x, and rx ∈ S such that t̂(x) � r̂x(x), and r̂x(y) ≤ f(y) for all
y ∈ Ux. Now apply condition (i) of Lemma 2.2 to t′ � t in order to find another closed set
Vx such that x ∈ V̊x and t̂′(y) ≤ r̂x(y) for y ∈ Vx. Letting Wx = Ux∩Vx, we have t̂′(y)� f(y)

for all y ∈ Wx. Since V ⊆ ⋃x W̊x, and V is closed, we may find a finite number of Wx’s that
cover V , whose union is the closed set W we are after. Since S is a sheaf, it follows that
πW (t′) ≤ f|W , and by Lemma 3.3 we see that πW (s′)� πW (t′) ≤ f|W , as desired. �

We now proceed to define a class of continuous sections that will play an important
role. This will be a version, for presheaves on spaces of dimension one, of the notion of
piecewise characteristic function given in [3, Definitions 2.4 and 5.9]. We show below that,
for a surjective sheaf of semigroups S : VX → Cu on a one dimensional space X , every
element in Γ(X,FS) can be written as the supremum of a rapidly increasing sequence of
piecewise characteristic sections. From this, we can conclude that Γ(X,FS) is an object in
Cu. Just as in [3], we could define piecewise characteristic sections for spaces of arbitrary
(finite) dimension and make the case that Γ(X,FS) belongs to Cu as well. This is however
technically much more involved and beyond the scope of this paper, whence it will be
pursued elsewhere.

Definition 3.5. (Piecewise characteristic sections) Let X be a one dimensional compact Hausdorff
space. Let {Ui}i=1...n be an open cover of X such that the multiplicity of {Ui} and {Ūi} is at most
two. Assume also that dim(∂(Ui)) = 0 for all i.

Let S : VX → Cu be a presheaf of semigroups on X . For i ∈ {1, . . . , n}, choose elements si ∈ S
and s{i,j} ∈ S whenever i 6= j, such that

ŝi(x) ≤ ŝ{i,j}(x) for all x in ∂(Ui ∩ Uj) ∩ Ui .
We define a piecewise characteristic section as

g(x) =

{
ŝi(x) if x ∈ Ui \ (

⋃
j 6=i Uj)

ŝ{i,j}(x) if x ∈ Ui ∩ Uj .

By an argument similar to the one in Lemma 3.1, it follows that piecewise characteristic
sections are continuous.

Remark 3.6. In the case of zero dimensional spaces, piecewise characteristic sections are
much easier to define. Given an open cover {Ui}i=1,...,n consisting of pairwise disjoint
clopen sets, a presheaf of semigroups S on Cu and elements s1, . . . , sn ∈ S, a piecewise
characteristic section in this setting is an element g ∈ Γ(X,FS) such that g(x) = ŝi(x),
whenever x ∈ Ui.
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If f ∈ Γ(X,FS) and g is a piecewise characteristic section such that g � f , then we say
that g is a piecewise characteristic section of f and we will denote the set of these sections
by χ(f).

Lemma 3.7. Let X be a one dimensional compact Hausdorff space, and S : VX → Cu a surjective
presheaf of semigroups. If f ∈ Γ(X,FS), then

f = sup{g | g ∈ χ(f)} .
Proof. Let x ∈ X . By Lemma 3.1, we may write f = sup fVn,sn , where (Vn) is a decreas-
ing sequence of closed sets with x ∈ V̊n and (sn) is rapidly increasing. By construction,
fVn,sn(y) = ŝn(y)� f(y) for all y ∈ Vn.

Now define

hn(y) =

{
ŝn(y) if y ∈ V̊n

0 otherwise .

It is easy to verify, using Proposition 3.2, that hn � f , and also that each hn is a piecewise
characteristic section for f . Using this fact for all x ∈ X , we conclude that f = sup{g | g ∈
χ(f)}. �
Proposition 3.8. Let X be a compact Hausdorff space with dim(X) ≤ 1, and let S : VX → Cu be
a surjective sheaf of semigroups. Suppose h1, h2, f ∈ Γ(X,FS) such that h1, h2 � f . Then, there
exists g ∈ χ(f) such that h1, h2 � g. In particular, χ(f) is an upwards directed set.

Proof. Assume first that X has dimension 0. Writing f as in condition (ii) of Lemma 3.1 we
can find, for each x ∈ X , an open set Vx that contains x, and elements s′x � sx � s′′x ∈ S
such that

(3) h1(y), h2(y)� ŝ′x(y)� ŝx(y)� ŝ′′x(y)� f(y) for all y ∈ Vx.
Using compactness and the fact that X is zero dimensional, there are x1, . . . , xn ∈ X and
(pairwise disjoint) clopen sets {Vi}i=1,...,n with Vi ⊆ Vxi and such thatX = ∪iVi. Put si = sxi ,
s′i = s′xi and s′′i = s′′xi . Define, using this cover, a piecewise characteristic section g as
g(x) = ŝi(x) if x ∈ Vi. It now follows from (3) that h1, h2 � g � f (the elements s′i, s′′i are
used here to obtain compact containment).

We turn now to the case where X has dimension 1, and start as in the previous para-
graph, with some additional care. Choose, for each x, a δx-ball V ′′x (where δx > 0) centered
at x and elements s′x � sx � s′′x such that condition (3) is satisfied (for all y ∈ V ′′x ). Denote
by V ′x ⊆ V ′′x the cover consisting of δx/2-balls. By compactness we obtain a finite cover
{V ′x1 , . . . , V ′xn}. Using [20, Lemma 8.1.1] together with the fact that X has dimension 1, this
cover has a refinement {Vi}ni=1 such that {Vi} and {V i} have both multiplicity at most 2
and such that ∂(Vi) has dimension 0 for each i. As before, set si = sxi , s

′
i = s′xi and s′′i = s′′xi .

Let Y be the closed set ∪i∂(Vi), which also has dimension 0. Put δ = min{δxi/3}. By
construction, there is a δ-neighborhood V δ

i such that V δ
i ⊆ V ′′i . As in the proof of Lemma

3.7, we see that the sections

gi(y) =

{
ŝ′′i (y) if y ∈ V δ

i

0 otherwise

satisfy gi � f . We now restrict to Y and proceed as in the argument of the zero di-
mensional case above. In this way, we obtain piecewise characteristic sections gY , g′Y ,
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g′′Y ∈ Γ(Y, FS), defined by some open cover {Wi}mi=1 (of pairwise disjoint clopen sets of
Y ) and elements ti � t′i � t′′i ∈ S in such a way that gY (y) = t̂i(y), g′Y (y) = t̂′i(y) and
g′′Y (y) = t̂′′i (y) whenever y ∈ Wi, and such that

(4) πY (gi)� gY � g′Y � g′′Y � πY (f) for all i = 1, . . . , n .

Observe that we can choose the Wi of arbitrarily small size, thus in particular we may
assume that each one is contained in a δ/6-ball. In this way, whenever W i ∩ V j 6= ∅, we
have Wi ⊆ V δ

j . Therefore, if x ∈ Wi, it follows from (4) that

ŝ′′j (x) = gj(x) ≤ gY (x) = t̂i(x) .

By condition (ii) in Lemma 2.2, applied to the previous inequality, there is ε > 0 such
that ŝj(x) ≤ t̂i(x) for all x ∈ W ε

i . Since the Wi are pairwise disjoint clopen sets, we can
choose ε such that the sets W ε

i are still pairwise disjoint. Further, since also t̂′′i (y) ≤ f(y)
for y ∈ Wi and t′i � t′′i , we may apply Corollary 3.4 to obtain πW ε

i
(t′i) � πW ε

i
(f) (further

decreasing ε if necessary). As for each i, we can find Ui with W
ε/2
i ⊆ Ui ⊆ W ε

i with zero
dimensional boundary, after a slight abuse of notation we shall assume that W ε

i itself has
zero dimensional boundary. Put Y ε = ∪mi=1W

ε
i . Notice now that, for i, k < l, the closed sets

Vi \ (Y ε ∪∪j 6=iVj) and (Vk ∩ Vl) \ Y ε are also pairwise disjoint, whence they admit pairwise
disjoint ε′-neighborhoods (for a sufficiently small ε′). As before, we shall also assume these
neighborhoods have zero dimensional boundary.

Now consider the cover that consists of the sets

{W ε
i , i = 1, . . . ,m , (Vi \ (Y ε ∪ ∪j 6=iVj))ε

′
, i = 1, . . . , n , (Vk ∩ Vl \ (Y ε))ε

′
, k < l} ,

and define a piecewise characteristic section g as follows

g(x) =





t̂i(x) if x ∈ W ε
i

ŝi(x) if x ∈ (Vi \ (Y ε ∪ ∪j 6=iVj))ε′ \ Y ε

ŝk(x) if x ∈ (Vk ∩ Vl \ (Y ε))ε
′ \ Y ε for k < l .

That h1, h2 ≤ g follows by construction of g. It remains to show that g � f . This also
follows from our construction, using condition (ii) of Proposition 3.2. For example, given
x ∈ W ε

i , we have
g(x) = t̂i(x)� t̂′i(x)� f(x) .

If now s ∈ S satisfies that t̂′i(x)� ŝ(x) and ŝ(y)� f(y) for y in a closed set (whose interior
contains x) then, since ti � t′i, we may find (again by Lemma 2.2) a smaller closed set
(contained in W ε

i and with interior containing x) such that g(y) = t̂i(y) ≤ ŝ(y) ≤ f(y) for y
in that set. �
Proposition 3.9. Let X be a one dimensional compact Hausdorff space, and let S : VX → Cu be
a surjective sheaf of semigroups with S countably based. If f ∈ Γ(X,FS), then f is the supremum
of a rapidly increasing sequence of elements from χ(f).

Proof. Let us define a new topology on FS . Let s ∈ S and let U be an open set in X .
Consider the topology generated by the sets

U�s = {y ∈ FS | ŝ(x)� y for some x ∈ U} .
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We claim that, under this topology, FS is second countable. Let {Un} be a basis of X , and
{sn}n∈N be a dense subset of S. Therefore the collections of sets {(Un)�si }n,i∈N is a countable
basis for FS . Indeed, given an open set U of X and s ∈ S, find sequences (Uni) and (smj)
such that U = ∪Uni and s = sup smj . Then

U�s = ∪(Uni)
�
smj

.

Now, for f ∈ Γ(X,FS), put Uf = {ax ∈ FS | ax � f(x) for x ∈ U}. This set is open in the
topology we just have defined. To see this, let ax ∈ Uf , and invoke Proposition 2.4 to find
an open set V and s ∈ S such that ax � ŝ(x) and ŝ(y)� f(y) for all y ∈ V . It then follows
that ax ∈ V �s ⊆ Uf .

Using Lemma 3.7, we see that Uf = ∪g∈χ(f)Ug. Since FS is second countable, it has the
Lindelöf property, whence we may find a sequence (gn) in χ(f) such that Uf = ∪nUgn .
This sequence may be taken to be increasing by Proposition 3.8. Translating this back to
Γ(X,FS), we get f = sup(gn). �

Assembling our observations we obtain the following:

Theorem 3.10. Let X be a one dimensional compact Hausdorff space, and let S : VX → Cu be
a surjective sheaf of semigroups such that S is countably based. Then, the semigroup Γ(X,FS) of
continuous sections belongs to the category Cu.

The next result shows, in a particular case, the existence of an induced section between
any two compactly contained piecewise characteristic sections.

Proposition 3.11. Let X be a one dimensional compact Hausdorff space and let A be a stable
continuous field over X with no K1 obstructions. Let f � g be elements in Γ(X,FCu(A)) such
that g is a piecewise characteristic section. Then there exists an element h ∈ A which satisfies
f(x) ≤ [πx(h)] ≤ g(x) for all x ∈ X .

Proof. Since g is a piecewise characteristic section there is a cover {Ui}ni=1 of X such that
both {Ui} and {U i} have multiplicity at most 2, and there are elements [ai], [a{i,j}] in Cu(A)
which are the values that g takes (according to Definition 3.5).

For ε > 0, let gε be the section defined on the same cover as g and that takes values
[(ai − ε)+], [a{i,j}]. As g = supε gε and f � g, we may choose ε > 0 such that f ≤ gε, and in
particular

f(x) ≤ πx([(ai − ε)+])� πx([ai]) for all x in Ui \ (∪j 6=iUj) .
Notice now that the closed sets ∂(Ui ∩ Uj) ∩ Ui and ∂(Uk ∩ Ul) ∩ Ul are pairwise disjoint
whenever (i, j) 6= (k, l). (This follows from elementary arguments together with the as-
sumption that the cover {U i} has multiplicity at most 2.)

Furthermore, by definition of g we have πx([ai]) ≤ πx([a{i,j}]) for all x ∈ ∂(Ui ∩ Uj) ∩ Ui.
Therefore, there exists by Corollary 3.4 a neighborhood Wi,j of ∂(Ui ∩ Uj) ∩ Ui for which

πW i,j
([ai]) ≤ πW i,j

([a{i,j}]) .

We may assume without loss of generality that the closures W i,j are pairwise disjoint sets.
Since also ∂(Ui ∩ Uj) ∩ Ui ∩ Uk = ∅ whenever k 6= i, j, we may furthermore assume that
Wi,j ∩ Uk = ∅ for k 6= i, j.
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By Proposition 1.1 there exist unitaries ui,j ∈ U(A(W i,j)
∼) such that

ui,jπW i,j
((ai − ε)+)u∗i,j ∈ Her(πW i,j

(a{i,j})) .

Now, as A and A(W i,j) are stable, the unitary groups of their multiplier algebras are
connected in the norm topology (see, e.g. [31, Corollary 16.7]). Furthermore, since the
natural map πW i,j

: A→ A(W i,j) induces a surjective morphismM(A)→M(A(W i,j)) (by,
e.g. [31, Theorem 2.3.9]), we can find, for each unitary ui,j , a unitary lift ũi,j inM(A).

We now have continuous paths of unitaries wi,j : [0, 1]→ U(M(A)) such that wi,j(0) = 1
and wi,j(1) = ũi,j . Put γ = min{dist(W i,j,W k,l | (i, j) 6= (k, l)}. Note that γ > 0 as the sets
W i,j are pairwise disjoint. For x ∈ X , define a unitary inM(A) by

wxi,j = wi,j

(
(γ − dist(x,Wi,j))+

γ

)
.

Observe that, if x ∈ Wk,l, then wxi,j = ũi,j if (k, l) = (i, j) and equals 1 otherwise. Now put

wxi =
∏

j

wxi,j .

Since each πx is norm decreasing and the wxi are defined by products and compositions of
continuous functions, we obtain, using [15, Definition 10.3.1], that for each c ∈ A, the tuple
(πx(w

x
i c))x∈X ∈

∏
x∈X Ax defines fiberwise an element in A which we denote by wic.

Now let {λi}i be continuous positive real-valued functions on [0, 1] whose respective
supports are {(Ui \ (∪j 6=iUj)) ∪ (∪jWi,j)}i and {λ{i,j}}i,j with supports {Ui ∩ Uj}i,j . Define
the following element in A

h =
∑

i

λiwi(ai − ε)+w
∗
i +

∑

i 6=j
λ{i,j}a{i,j}.

We now check that [πx(h)] = gε(x), and this will yield the desired conclusion.
If x ∈ Ui \ (∪j 6=iUj), then πx(h) = λi(x)πx(wi(ai − ε)+w

∗
i ) where λi(x) 6= 0, and this is

equivalent to πx((ai − ε)+). Hence [πx(h)] = gε(x).
On the other hand, if x ∈ Ui ∩ Uj for some i, j then λ{i,j}(x) 6= 0, and

πx(h) =





λi(x)πx(ũi,j(ai − ε)+ũ
∗
i,j) + λ{i,j}(x)πx(a{i,j}) if x ∈ Ui ∩ Uj ∩Wi,j

λj(x)πx(ũj,i(aj − ε)+ũ
∗
j,i) + λ{i,j}(x)πx(a{i,j}) if x ∈ Ui ∩ Uj ∩Wj,i

λ{i,j}(x)πx(a{i,j}) if x ∈ Ui ∩ Uj \ (Wi,j ∪Wj,i) .

If, for example, x ∈ Ui∩Uj∩Wi,j , then πx(ũi,j(ai−ε)+ũ
∗
i,j) ∈ Her(πx(a{i,j})), and we conclude

that [πx(h)] = [πx(a{i,j})] = gε(x). The other cases are treated similarly.
�

This last result (together with Proposition 3.9) proves that, with some restrictions on X
and A, the set of induced sections is a dense subset of Γ(X,FCu(A)), that is, every element
in Γ(X,FCu(A)) is a supremum of a rapidly increasing sequence of induced sections.

Theorem 3.12. Let X be a one dimensional compact Hausdorff space and let A be a continuous
field over X without K1 obstructions. Then, the map

α : Cu(A) → Γ(X,FCu(A))
s 7→ ŝ
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is an order isomorphism in Cu.

Proof. Let f be a continuous section in Γ(X,FCu(A)) and use Propositions 3.9 and 3.11 to
write f as the supremum of a rapidly increasing sequence of induced sections f = supn ŝn.
Since α is an order embedding (by Theorem 2.6) and α(sn) = ŝn, the sequence sn is also
increasing in Cu(A) and thus we can define s = supn sn ∈ Cu(A). The result now follows
using Lemma 3.3. �

Since the conditions on the fibers in the previous Theorem are satisfied by simple AI-
algebras we obtain the following.

Corollary 3.13. Let X be a one dimensional compact Hausdorff space and let A be a continuous
field over X such that Ax is a simple AI-algebra for all x ∈ X . Then Cu(A) ∼= Γ(X,FCu(A)).

4. THE SHEAF CuA( )

For a compact Hausdorff space X , denote by CX the category whose objects are the
C(X)-algebras, and the morphisms between objects are those ∗-homomorphisms such that
commute with the (respective) structure maps.

Denote by SCu the category which as objects has the presheaves CuA( ) on X , where
A belongs to CX , and the maps are presheaf homomorphisms. The following holds by
definition:

Lemma 4.1. The assignment
Cu( ) : CX → SCu

A 7→ CuA( )

is a covariant functor.

Theorem 4.2. LetX be a one dimensional compact Hausdorff space and letA be a continuous field
over X without K1 obstructions. Consider the functors

CuA( ) : VX → Cu and Γ( , FCuA( )
) : VX → Cu

V 7→ Cu(A(V )) V 7→ Γ(V, FCuA(V )
) .

Then, CuA( ) and Γ( , FCuA( )
) are isomorphic sheaves.

Proof. That CuA( ) is a sheaf follows from Corollary 2.7. Let (hV )V ∈VX be the collection of
isomorphisms hV : Cu(A(V ))→ Γ(V, FCuA(V )

) described in Theorem 3.12. Since, whenever
V ⊂ U , the following diagram

Cu(A(V )) // Γ(V, FCuA(V )
)

Cu(A(U))

(CuA( ))UV

OO

// Γ(U, FCuA(U)
)

(Γ( ,FCuA( )
))UV

OO

clearly commutes, (hV )V ∈VX defines an isomorphism of sheafs h : CuA( ) → Γ( , FCuA( )
).
�

In order to relate the Cuntz semigroup Cu(A) and the sheaf CuA( ), we now show that
there exists an action of Cu(C(X)) on Cu(A) when A is a C(X)-algebra, which is naturally
induced from the C(X)-module structure on A.
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Definition 4.3. Let S, T , R be semigroups in Cu. A �-bimorphism is a map ϕ : S × T → R
such that the map ϕ(s, ) : T → R, s ∈ S (respectively, ϕ( , t) : S → R, t ∈ T ), preserves order,
addition, suprema of increasing sequences, and moreover ϕ(s′, t′)� ϕ(s, t) whenever s′ � s in S
and t′ � t in T .

Remark 4.4. We remark that if A is a C∗-algebra and a, b are commuting elements, then for
ε > 0 we have (a− ε)+(b− ε)+ � (ab− ε2)+. Indeed, since the C∗-subalgebra generated by
a and b is commutative, Cuntz comparison is given by the support of the given elements,
viewed as continuous functions on the spectrum of the algebra. It is then a simple matter
to check that supp((a− ε)+(b− ε)+) ⊆ supp((ab− ε2)+).

Proposition 4.5. Let A and B be stable and nuclear C∗-algebras. Then, the natural bilinear map
A×B → A⊗B given by (a, b) 7→ a⊗ b induces a�-bimorphism

Cu(A)× Cu(B) → Cu(A⊗B)
([a], [b]) 7→ [a⊗ b]

Proof. Since A is stable, we may think of Cu(A) as equivalence classes of positive elements
from A. We also have an isomorphism Θ: M2(A)→ A given by isometries w1, w2 inM(A)
with orthogonal ranges, so that Θ(aij) =

∑
i,j wiaijw

∗
j . Thus, in the Cuntz semigroup,

[a] + [b] = [Θ ( a 0
0 b )].

The map Cu(A) × Cu(B) → Cu(A ⊗ B) given by ([a], [b]) 7→ [a ⊗ b] is well defined and
order-preserving in each argument, by virtue of [27, Lemma 4.2]. Let a, a′ ∈ A+, b ∈ B+.
As

[(w1aw
∗
1 + w2a

′w∗2)⊗ b] = [w1aw
∗
1 ⊗ b] + [w2a

′w∗2 ⊗ b] = [a⊗ b] + [a′ ⊗ b] ,

we see that it is additive in the first entry (and analogously in the second entry).
Next, observe that if ‖a‖, ‖b‖ ≤ 1, ε > 0,

‖a⊗ b− (a− ε)+⊗ (b− ε)+‖ ≤ ‖a⊗ b− (a− ε)+⊗ b‖+ ‖(a− ε)+⊗ b− (a− ε)+⊗ (b− ε)+‖ ≤

ε‖b‖+ ‖(a− ε)+‖ε ≤ 2ε ,

and this implies [a⊗ b] = sup([(a− ε)+ ⊗ (b− ε)+]). If now [a] = supn[an] for an increasing
sequence ([an]), then for any [b] we have [an ⊗ b] ≤ [a ⊗ b]. Given ε > 0, find n with
[(a − ε)+] ≤ [an], hence [(a − ε)+ ⊗ (b − ε)+] ≤ [an ⊗ b] ≤ sup[an ⊗ b]. Taking supremum
when ε goes to zero we obtain [a⊗ b] = sup[an ⊗ b].

Finally, assume that [a′] � [a] in Cu(A), and [b′] � [b] in Cu(B). Find ε > 0 such that
[a′] ≤ [(a− ε)+] and [b′] ≤ [(b− ε)+]. Then [a′ ⊗ b′] ≤ [(a− ε)+ ⊗ (b− ε)+].

Note that (a−ε)+⊗(b−ε)+ ∈ A⊗B ⊆M(A)⊗M(B) and, viewed in the tensor product of
the multiplier algebras, we have (a−ε)+⊗(b−ε)+ = ((a−ε)+⊗1)(1⊗(b−ε)+). SinceM(A)→
M(A) ⊗M(B), c 7→ c ⊗ 1 is a ∗-homomorphism, it induces a semigroup homomorphism
Cu(M(A))→ Cu(M(A)⊗M(B)) in the category Cu and, in particular, since [(a−ε)+]� [a]
in Cu(M(A)), it follows that [(a − ε)+ ⊗ 1] � [a ⊗ 1] in Cu(M(A) ⊗M(B)). Likewise,
[1 ⊗ (b − ε)+] � [1 ⊗ b], hence we may find ε′ > 0 such that [(a − ε)+ ⊗ 1] ≤ [(a ⊗ 1 − ε′)+]
and [1⊗ (b− ε)+] ≤ [(1⊗ b− ε′)+]. Since the elements (a− ε)+⊗ 1, (a⊗ 1− ε′)+, 1⊗ (b− ε)+
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and (1⊗ b− ε′)+ all commute (and using Remark 4.4), it follows that

[(a− ε)+ ⊗ (b− ε)+] = [((a− ε)+ ⊗ 1)(1⊗ (b− ε)+)]

≤ [(a⊗ 1− ε′)+(1⊗ b− ε′)+]

≤ [(a⊗ b− ε′2)+]� [a⊗ b] ,
whence [a′ ⊗ b′]� [a⊗ b]. �
Corollary 4.6. Let X be a compact Hausdorff space, and let A be a stable C(X)-algebra (with
structure map θ). Then the natural map C(X) × A → A, given by (f, a) → θ(f)a induces a
�-bimorphism

γA : Cu(C(X))× Cu(A)→ Cu(A)

such that maps ([f ], [a]) to [θ(f)a], for f ∈ C(X)+ and a ∈ A+.

Proof. Since Cu(C(X)) = Cu(C(X)⊗K), Proposition 4.5 tells us that the map

Cu(C(X)⊗K)× Cu(A) → Cu(C(X)⊗K ⊗ A)
([f ], [a]) 7→ [f ⊗ a]

is a �-bimorphism. Now the result follows after composing this map with the isomor-
phism Cu(C(X)⊗K⊗A) ∼= Cu(C(X)⊗A), followed by the map Cu(θ) : Cu(C(X)⊗A)→
Cu(A). �

In what follows, we shall refer to the�-bimorphism γA above as the action of Cu(C(X))
on Cu(A). If A and B are C(X)-algebras, we will say then that a morphism ϕ : Cu(A) →
Cu(B) preserves the action provided ϕ(γA(x, y)) = γB(x, ϕ(y)). Notice that this is always the
case if ϕ is induced by a ∗-homomorphism of C(X)-algebras. We will write γ instead of
γA, and we will moreover use the notation xy for γ(x, y).

As noticed above, VA( ) defines a continuous presheaf, and we show below that it be-
comes a sheaf when A does not have K1 obstructions. For this we need a lemma (see
[3]).

Lemma 4.7. LetX be a one dimensional compact Hausdorff space and let Y , Z ⊆ X be closed sub-
sets ofX . Let A be a continuous field overX withoutK1 obstructions, and denote by πZY : A(Y )→
A(Y ∩ Z) and πYZ : A(Z)→ A(Y ∩ Z) the quotient maps (given by restriction). Then, the map

β : V (A(Y )⊕A(Y ∩Z) A(Z))→ V (A(Y ))⊕V (A(Y ∩Z)) V (A(Z))

defined by β([(a, b)]) = ([a], [b]) is an isomorphism.

Proof. We know from Corollary 2.7 that CuA is a sheaf in this case. Thus the map

Cu(A(Y )⊕A(Y ∩Z) A(Z))→ Cu(A(Y ))⊕Cu(A(Y ∩Z)) Cu(A(Z)) ,

given by [(a, b)] 7→ ([a], [b]), is an isomorphism in Cu, whence it maps compact elements to
compact elements. Since A(Y ) ⊕A(Y ∩Z) A(Z) is isomorphic to A(Y ∪ Z) and this algebra
is stably finite (because all of its fibers have stable rank one), we have that the compact
elements of Cu(A(Y )⊕A(Y ∩Z) A(Z)) can be identified with V (A(Y )⊕A(Y ∩Z) A(Z)).

Using this identification, we have that [(a, b)] in Cu(A(Y )⊕A(Y ∩Z)A(Z)) is compact if and
only if [a] and [b] are compact. On the other hand, if [a] and [b] are compact (in Cu(A(Y ))
and Cu(A(Z)) respectively) and [a] = [b] in Cu(A(Y ∩ Z), then the pair ([a], [b]) belongs to
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V (A(Y ))⊕V (A(Y ∩Z))V (A(Z)), and every element of this pullback is obtained in this manner.
The conclusion now follows easily. �
Proposition 4.8. Let X be a one dimensional compact Hausdorff space and let A be a continuous
field over X without K1 obstructions. Then,

VA( ) : VX → Sg
U 7→ V (A(U))

is a sheaf and the natural transformation VA( )→ Γ( , FV (A( ))) is an isomorphism of sheaves.

Proof. Note that VA( ) is a sheaf thanks to Lemma 4.7. On the other hand, the fact that
VA( ) is isomorphic to the sheaf of continuous sections Γ( , FV (A( ))) follows from Theorem
2.2 in [30]. �
Theorem 4.9. Let X be a compact Hausdorff space and let A and B be C(X)-algebras such that
all fibers have stable rank one. Consider the following conditions:

(i) Cu(A) ∼= Cu(B) preserving the action of Cu(C(X)),
(ii) CuA( ) ∼= CuB( ),

(iii) VA( ) ∼= VB( ).
Then (i) =⇒ (ii) =⇒ (iii). If X is one dimensional, then also (ii) =⇒ (i). If, furthermore, A
and B are continuous fields without K1 obstructions such that for all x ∈ X the fibers Ax, Bx have
real rank zero, then (iii) =⇒ (ii) and so all three conditions are equivalent.

Proof. We may assume that both A and B are stable.
(i) =⇒ (ii): Let ϕ : Cu(A)→ Cu(B) be an isomorphism such that ϕ(xy) = xϕ(y), for any

x ∈ Cu(C(X)) and y ∈ Cu(A). We need to verify that ϕ(Cu(C0(X\V )A) ⊆ Cu(C0(X\V )B),
whenever V is a closed subset of X . This will entail that ϕ induces a semigroup map
ϕV : Cu(A(V ))→ Cu(B(V )), which is an isomorphism as ϕ is.

Let [fa] ∈ Cu(C0(X \ V )A), for f ∈ C0(X \ V )+ and a ∈ A+. Then, if ϕ([a]) = [b] for
some b ∈ B+, we have that ϕ([fa]) = [f ]ϕ([a]) = [f ][b] = [fb], and fb ∈ C0(X \ V )B. Thus
ϕ(Cu(C0(X \ V )A) ⊆ ϕ(C0(X \ V )B). The rest of the argument is routine.

(ii) =⇒ (iii): Note that, as all fibers have stable rank one, Cu(A(U)) (respectively,
Cu(B(U))) is a stably finite algebra for each closed subset U . In this case, V (A(U)) can be
identified with the subset of compact elements of Cu(A(U)). Therefore, the given isomor-
phism CuA(U) ∼= CuB(U) maps VA(U) = V (A(U)) injectively onto VB(U) = V (B(U)).

Now assume that X is one dimensional, and let us prove that (ii) =⇒ (i): The isomor-
phism of sheaves gives, in particular, an isomorphism ϕ : Cu(A) → Cu(B). We need to
verify that ϕ respects the action of Cu(C(X)). By [21], Cu(C(X)) ∼= Lsc(X,N). In this case,
any f ∈ Lsc(X,N) may be written as:

f =
∞∑

i=1

1Ui where Ui = f−1((i,∞]).

Thus, in order to check that ϕ(f [a]) = fϕ([a]), it is enough to verify it when f = 1U ,
where U is an open set of X .

Notice that 1U [a] = [ga] where g ∈ C(X)+ has supp(g) = U . Given [a] ∈ Cu(A) we
denote by supp([a]) = {x ∈ X | πx([a]) 6= 0}. Observe that suppϕ([a]) = supp([a]), and that
supp(1Uϕ([a])) = U ∩ supp([a]). Let K ⊆ supp(1Uϕ([a])) = supp(ϕ(1U [a])) be a closed set.
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Then πK(1Uϕ([a])) = πK(ϕ(1U [a])), where πK : A → A(K) is the quotient map. Indeed, it
follows from the commutative diagram

Cu(A)
ϕ

//

πK
��

Cu(B)

πK
��

Cu(A(K))
ϕK

// Cu(B(K)) ,

that πK(1U [a]) = πK([ga]) = πK [a], since g becomes invertible in A(K). Therefore,

πK(ϕ(1U [a])) = πK(ϕ([ga])) = ϕKπK([ga]) = ϕKπK([a]) .

On the other hand, πK(1Uϕ([a])) = πKϕ([a]) = ϕKπK([a]).
Now write [a] = sup[an], where ([an]) is a rapidly increasing sequence in Cu(A), and

1U = sup1Vn , where (Vn) is a rapidly increasing sequence of open sets. Then (1Vn [an]) is a
rapidly increasing sequence with 1U [a] = sup1Vn [an] and 1Uϕ([a]) = sup1Vnϕ([a]). By [2,
Lemma 2.5] choose, for each n, a compact set Kn such that

supp(1Vn [an]) ⊆ Kn ⊆ supp(1Vn+1 [an+1]) .

Then Kn ⊆ Vn+1 ∩ supp([an+1]) ⊆ Vn+1.
By the above, πKn(1Vn+1ϕ([an+1])) = πKnϕ(1Vn+1 [an+1]), and thus:

πKn(1Vnϕ([an])) ≤ πKn(1Vn+1ϕ([an+1])) = πKn(ϕ(1Vn+1 [an+1])) ≤ πKn(ϕ(1U [a])),

and

πKn(ϕ(1Vn [an])) ≤ πKn(ϕ(1Vn+1 [an+1])) = πKn(1Vn+1ϕ([an+1])) ≤ πKn(1Uϕ([a])).

Since supp(1Vk [ak]) = supp(ϕ(1Vk [ak])) = supp(1Vkϕ([ak])), we may apply Lemma 2.4 in [2]
to obtain that 1Vnϕ([an]) ≤ ϕ(1U [a])) and ϕ(1Vn [an]) ≤ 1Uϕ([a])). Taking suprema in both
inequalities we obtain 1Uϕ([a]) = ϕ(1U([a])).

(iii) =⇒ (ii): We assume now that both A and B are continuous fields without K1

obstructions such that Ax and Bx have real rank zero for all x. Let ϕ : VA( ) → VB( ) be a
sheaf isomorphism. This induces a semigroup isomorphism ϕx : V (Ax)→ V (Bx) for each
x ∈ X . As A(U) is a stably finite algebra for any closed subset U of X , we will identify
V (A(U)) with its image in Cu(A(U)) whenever convenient.

Since Ax has real rank zero, V (Ax) forms a dense subset of Cu(Ax) so we can uniquely
define an isomorphism Cu(Ax)→ Cu(Bx) in Cu which we will still denote by ϕx. This map
is defined by ϕx(z) = supn ϕx(zn) where z = sup zn and zn ∈ V (Ax) for all n ≥ 0 (see, e.g.
[1], [8] for further details). Let us prove that the induced bijective map ϕ̃ : FCu(A) → FCu(B)

is continuous, and hence an homeomorphism. This will define an isomorphism of sheaves
Γ(−, FCuA(−)) ∼= Γ(−, FCuB(−)) and then, using Theorem 4.2, it follows that CuA( ) and
CuB( ) are isomorphic.

Denote by πA : FCu(A) → X and πB : FCu(B) → X the natural maps. Let U be an open set
of X and s ∈ Cu(B). We are to show that ϕ̃−1(U�s ) is open in FCu(A). Let z ∈ ϕ̃−1(U�s ), and
put x = πA(z), so that z ∈ Cu(Ax) for some x ∈ U . Since ϕ̃(z) = ϕx(z) ∈ U�s , there exists
s′′ � s such that ŝ′′(x)� ϕx(z). Choose s′ such that s� s′ � s′′.

As ŝ′′(x) � ϕx(z) there exists z′ � z′ ∈ V (Ax) such that ŝ′′(x) � ϕx(z
′). Now we can

find a closed subset W ′ whose interior contains x, and an element v ∈ V (A(W ′)) such that
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πx(v) = z′. Note that πxϕW ′(v) = ϕx(z
′). Also, since ŝ′(x) � ŝ′′(x) � ϕx(z

′) = ϕ̂W ′(v)(x),
we may use Lemma 2.2 to find W ⊆ W ′ such that x ∈ W̊ and

ŝ′(y)� ϕ̂W ′(v)(y) for all y ∈ W .

Let t ∈ Cu(A) be such that πW (t) = πW
′

W (v). We now claim that W̊�
t ⊆ ϕ̃−1(U�s ). Let

w ∈ W̊�
t , and put y = πA(w) ∈ W . There exists t′ � t such that t̂′(y) � w, whence,

applying ϕ̃ it follows that

ϕ̃(w)� ϕ̃(t̂′(y))� ϕ̃(t̂(y)) = ϕ̃(πW
′

W (v)(y)) = ϕ̃(πy(v)) = πy(ϕW (v)) = ϕ̂W ′(v)(y)� ŝ′(y) ,

and this shows that w ∈ ϕ̃−1(U�s ).
�

Remark 4.10. We remark that the implication (ii) =⇒ (i) in Theorem 4.9 above holds
whenever Cu(C(X)) ∼= Lsc(X,N). This is the case for spaces more general than being just
one dimensional, see [21].

Remark 4.11. Our Theorem 4.9 above allows us to rephrase the classification result ob-
tained in [14], by using a single invariant. Namely, let A,B be separable unital continuous
fields of AF -algebras over [0, 1], and let φ̃ : Cu(A) → Cu(B) be an isomorphism that
preserves the action by Lsc([0, 1],N) and such that φ̃([1A]) = [1B]. Then φ̃ lifts to an isomor-
phism φ : A→ B of continuous fields of C∗-algebras.
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