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Abstract

We are concerned with the global well-posedness of a two-phase flow system arising
in the modelling of fluid-particle interactions. This system consists of the Vlasov-
Fokker-Planck equation for the dispersed phase (particles) coupled to the incom-
pressible Euler equations modelling a dense phase (fluid) through the friction forcing.
Global existence of classical solutions to the Cauchy problem in the whole space is
established when initial data is a small smooth perturbation of a constant equilibrium
state, and moreover an algebraic rate of convergence of solutions toward equilibrium
is obtained under additional conditions on initial data. The proof is based on the
macro-micro decomposition and Kawashima’s hyperbolic-parabolic dissipation argu-
ment. This result is generalized to the periodic case, when particles are in the torus,
improving the rate of convergence to exponential.

1 Introduction

Fluid-particle interaction systems have been proposed to describe the behavior of sprays,
aerosols or more generically two phase flows where one phase (disperse) can be considered
as a suspension of particles onto the other one (dense) thought as a fluid. In many of these
applications, the assumption that particles are solid non-deformable spheres suspended on
the fluid leads to simplified but meaningful models [2]. This kind of systems have been
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used in sedimentation of solid grain by external forces [1], for fuel-droplets in combustion
theory [28] and biosprays in medicine [3, 22] for instance.

The particles behavior is obtained via the evolution of the statistical distribution of
particles in phase space, where the only forces taken into account on particles are the
friction forces due to the fluid and an stochastic term of fluctuations around the fluid
velocity. This kinetic modelling of the particle phase, as in [6, 4, 7], leads to the Vlasov-
Fokker-Planck equation coupled with some fluid equation with a friction term due to
the action/reaction principle. Here, we will model the fluid by the incompressible Euler
system. The resulting system reads as

∂tF + ξ · ∇xF = ∇ξ · ((ξ − u)F +∇ξF ), (1.1)
∇x · u = 0, (1.2)

∂tu + u · ∇xu +∇xp =
∫

R3

(ξ − u)F dξ, (1.3)

with
F (0, x, ξ) = F0(x, ξ), u(0, x) = u0(x).

Here, the unknowns are F = F (t, x, ξ) ≥ 0 for t > 0, x ∈ R3, ξ ∈ R3, denoting the
density distribution function of particles in the phase space, and u = u(t, x) ∈ R3 and
p = p(t, x) ∈ R for t > 0, x ∈ R3, denoting respectively the velocity field and pressure of
the fluid. Initial data F0 = F0(x, ξ) and u0 = u0(x) for x ∈ R3, ξ ∈ R3 are given with the
compatible condition

∇x · u0(x) = 0. (1.4)

The above system describes the motion of the interactive particle and fluid subject to a
mutual friction forcing proportional to the relative velocity ξ − u; see [28, 6]. In what
follows, we shall call (1.1), (1.2) and (1.3) by the Vlasov-Euler-Fokker-Planck system
(VEFP for simplicity).

Previous work related to the mathematical analysis of coupled kinetic-fluid systems in
the sense above can be traced back to [17] where global existence and large time behavior
of solutions to the Vlasov-Stokes system was obtained. In [17], the fluid is assumed to be
viscous and incompressible and its velocity satisfies the Stokes equations with the same
friction forcing as in (1.3). When the motion of the fluid is described by the incompressible
Navier-Stokes equations, [14, 15] considered hydrodynamic limits of the Vlasov-Navier-
Stokes system in different regimes, [9, 12, 8] dealt with similar singular perturbation
problems, and [5] recently gave a proof of global existence of weak solutions on the periodic
domain. [21, 20] provided a detailed study of the global existence and asymptotic analysis
for the coupled system of the Vlasov-Fokker-Planck equation with the compressible Navier-
Stokes equations in R3, and [13] also proved global existence of classical solutions near
equilibrium for the incompressible model. In the framework of the inviscid compressible
flow under friction forces, existence of smooth solutions for short time was proved in [4]
when there is no Brownian effect in the kinetic equation, and stability and asymptotic
analysis were discussed in [7] when the velocity diffusion is considered.

The goal of this paper is to prove the global existence of classical solutions to the
Cauchy problem of the VEFP system for initial data which is a small perturbation around
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the following spatially homogeneous steady states F ≡ M, u ≡ 0, P ≡ 0, where

M = M(ξ) =
1

(2π)3/2
exp

(
−|ξ|2/2

)
,

which has been normalized to have zero bulk velocity and unit density and temperature.
Compared with some existing results, although the fluid is inviscid, solutions close to
equilibrium are shown to be asymptotically stable under smooth perturbations. From the
later proof, this essentially results from the coupling term friction forcing through which
the dissipation of the momentum component of the kinetic distribution can be transferred
to the damped fluid velocity field. For the above purpose, let us reformulate the Cauchy
problem in the framework of perturbations. Set

F = M + M1/2f,

so that the reformulated Cauchy problem reads

∂tf + ξ · ∇xf + u · ∇ξf −
1
2
u · ξf − u · ξM1/2 = Lf, (1.5)

∇x · u = 0, (1.6)
∂tu + u · ∇xu +∇xp + u(1 + a) = b, (1.7)

with initial data

f(0, x, ξ) = f0(x, ξ) ≡ M−1/2(F0 −M), u(0, x) = u0(x), (1.8)

where L is the linearized Fokker-Planck operator defined by

Lf =
1

M1/2
∇ξ ·

[
M∇ξ

(
f

M1/2

)]
,

and a = af , b = bf depending on f are the moments of f defined by

af (t, x) =
∫

R3

M1/2f(t, x, ξ) dξ, bf (t, x) =
∫

R3

ξM1/2f(t, x, ξ) dξ. (1.9)

Theorem 1.1. Let (1.4) and F0 = M+M1/2f0 ≥ 0 hold. Suppose that ‖f0‖L2
ξ(H3

x)+‖u0‖H3

is small enough. Then, the Cauchy problem (1.5)-(1.7) and (1.8) admits a unique global
classical solution (f(t, x, ξ), u(t, x)) satisfying

f ∈ C 0([0,∞); L2
ξ(H

3
x)), u ∈ C 0([0,∞); H3),

F = M + M1/2f ≥ 0,

sup
t≥0

(‖f(t)‖L2
ξ(H3

x) + ‖u(t)‖H3) ≤ C(‖f0‖L2
ξ(H3

x) + ‖u0‖H3).

Moreover, for any given ε > 0 which is close to zero, if ‖f0‖L2
ξ(H3

x∩L1
x) + ‖u0‖H3∩L1 is

sufficiently small, the solution (f, u) enjoys the time-decay:

‖f(t)‖L2
ξ(H3

x) + ‖u(t)‖H3 ≤ Cε(1 + t)−
3
4
+ε(‖f0‖L2

ξ(H3
x∩L1

x) + ‖u0‖H3∩L1) (1.10)

for any t ≥ 0, where Cε depends only on ε and Cε may blow up as ε tends to zero.
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The main novelty we develop in this paper is the use of a refined energy method
to take advantage of the damping of the velocity field in the Euler equation due to the
kinetic part. This is the reason why we do not need a viscosity term in the fluid equation
compared to [13], see remark 3.1 at the end of Section 3. Energy methods have been used
for collisional kinetic equations [16, 10] and for other nonlinearly coupled Fokker-Planck
equations and systems as in [19, 11]. The rest of this paper is organized as follows. In the
next section, we start by giving an elementary observation for computing the dissipation
of the linearized Fokker-Planck operator on the basis of a macro-micro decomposition, and
also we introduce some notations used in the later proof. The global existence and rate
of convergence of solutions are respectively obtained in the end of Section 2 and Section
3. We adapt our proof to the periodic in space case in Section 4 and eventually give a few
technical lemmas in Section 5.

2 Global existence

In what follows, our analysis is based on the reformulated Cauchy problem (1.5)-(1.8). To
obtain the global existence, the most important point is to obtain the uniform-in-time a
priori estimates. Then, we will construct an approximation scheme allowing use to show
short-time existence of the smooth solutions for which the a priori estimates become real
estimates, and finally we will show that due to the uniform-in-time estimates, we can
extend the solutions to all times. We now first introduce some notations and set some
basic properties of the operators involved.

2.1 Preliminaries

Let ν(ξ) = 1 + |ξ|2 and denote | · |ν by

|g|2ν =
∫

R3

[
|∇ξg(ξ)|2 + ν(ξ)|g(ξ)|2

]
dξ, g = g(ξ).

The operator L satisfies that there is a positive constant λ0 > 0 such that

−
∫

R3

gLg dξ ≥ λ0|{I−P0}g|2ν ,

for any g = g(ξ), where P0g = agM1/2. Generally, u or b are not integrable in time-space.
To control them in a smart way, an idea from the recent paper [11] can be employed. Let us
define the velocity orthogonal projection P : L2

ξ → Span{M1/2, ξ1M
1/2, ξ2M

1/2, ξ3M
1/2}

by

P := P0 + P1,

P0g := agM1/2,

P1g := bg · ξM1/2.

Decompose Lg as
Lg = L{I−P}g + LPg = L{I−P}g −P1g. (2.1)
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Notice that since L is self-adjoint,

〈−L{I−P}g, g〉 = 〈−{I−P}g,Lg〉 = 〈−{I−P}g,L{I−P}g −P1g〉
= 〈−L{I−P}g, {I−P}g〉 ≥ λ0|{I−P}g|2ν . (2.2)

Therefore,
〈−Lg, g〉 ≥ λ0|{I−P}g|2ν + |bg|2. (2.3)

We introduce some conventions for later use. C denotes some positive (generally large)
constant and λ denotes some positive (generally small) constant, where both C and λ may
take different values in different places. In addition, A ∼ B means λ1A ≤ B ≤ 1

λ1
A for

a generic constant λ1 > 0. For an integrable function g : R3 → R, its Fourier transform
ĝ = Fg is defined by

ĝ(k) = Fg(k) =
∫

R3

e−ix·kg(x) dx, x · k =:
3∑

j=1

xjkj ,

for k ∈ R3. For simplicity, we use ‖ · ‖ to denote L2 norm over L2
x or L2

x,ξ if no confusion
arises. We use 〈·, ·〉 to denote the inner product over the Hilbert space L2

ξ , i.e.

〈g, h〉 =
∫

R3

g(ξ)h(ξ) dξ, g, h ∈ L2
ξ .

Define

‖g‖2
ν =

∫∫
R3×R3

[
|∇ξg(x, ξ)|2 + ν(ξ)|g(x, ξ)|2

]
dξdx, g = g(x, ξ).

For q ≥ 1, we also define

Zq = L2
ξ(L

q
x) = L2(R3

ξ ; L
q(R3

x)), ‖g‖Zq =

(∫
R3

(∫
R3

|g(x, ξ)|q dx

)2/q

dξ

)1/2

.

For brevity, we introduce norms ‖(·, ·)‖Hm , ‖(·, ·)‖Zq with the integer m ≥ 0 and q ≥ 1 by

‖(f, u)‖2
Hm = ‖f‖2

L2
ξ(Hm

x )
+ ‖u‖2

Hm , ‖(f, u)‖Zq = ‖f‖Zq + ‖u‖L1 ,

for f = f(x, ξ) and u = u(x), and we set L2 = H0 as usual. Finally, for a multiple index
α = (α1, · · · , αn), we denote ∂α = ∂α

x = ∂α1
x1

∂α2
x2

∂α3
x3

. The length of α is |α| = α1 + · · ·+αn.
For simplicity, we also use ∂i to denote ∂xi for each i = 1, 2, 3.

2.2 Uniform-in-time a priori estimates

In this subsection, let us assume that (1.5)-(1.8) admits a solution (f, u) with enough
regularity and fast decaying at infinity over [0, T ] with T > 0. We begin with a technical
lemma useful in the subsequent estimates.
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Lemma 2.1. There exist positive constants C, such as for any f, g ∈ H3(R3) and any
multi-index γ ∈ N3 verifying 1 ≤ |γ| ≤ 3 we have

‖f‖L∞(R3) ≤ C‖∇xf‖1/2

L2(R3)
‖∇2

xf‖1/2

L2(R3)
, (2.4)

‖fg‖H2(R3) ≤ C‖f‖H2(R3)‖∇xg‖H2(R3), (2.5)

‖∂γ
x(fg)‖L2(R3) ≤ C‖∇xf‖H2(R3)‖∇xg‖H2(R3). (2.6)

Proof. We start with (2.4). For all R > 0, decomposing the frequency space in {|k ≤ R}
and {|k| > R} we have by Hölder’s inequality∫

R3

|f̂(k)| dk ≤ 4π

[
R‖kf̂‖L2(R3) +

1
R
‖k2f̂‖L2(R3)

]
.

Choosing R = ‖k2f̂‖1/2

L2(R3)
‖kf̂‖−1/2

L2(R3)
and applying then the inverse Fourier transform

concludes the proof of (2.4).

Now for (2.5), using Leibnitz formula, it is enough to bound the following terms ∂α−βf∂βg,
where α and β are multi-indices verifying |α| ≤ 2 and β ≤ α, (meaning βi ≤ αi for all
i ∈ {1, 2, 3}). We use (2.4) and Sobolev’s embeddings, in the two following cases

• |β| ≤ 1 and

‖∂α−βf∂βg‖L2(R3) ≤ ‖∂α−βf‖L2(R3)‖∂
βg‖L∞(R3) ≤ C‖f‖H2(R3)‖∇xg‖H2(R3),

• β = α and ‖f∂αg‖L2(R3) ≤ ‖f‖L∞(R3)‖∂αg‖L2(R3) ≤ C‖f‖H2(R3)‖∇xg‖H2(R3).

For the last inequality, let us work in Fourier variable again. We denote by |γ| = γ1+γ2+γ3

and for all k = (k1, k2, k3) ∈ R3, kγ := kγ1
1 kγ2

2 kγ3
3 . We have by Young’s inequality (|γ| 6= 0):

|kγ | ≤ γ1

|γ|
|k1||γ| +

γ2

|γ|
|k2||γ| +

γ3

|γ|
|k3||γ|.

Hence, we have for all k and η in R3

|kγ | ≤ C
3∑

i=1

{
|ki − ηi||γ| + |ηi||γ|

}
,

for some constant C. Hence :

1
C

∣∣f̂ ? ĝ(k)kγ
∣∣ ≤ 3∑

i=1

{∫
R3

|f̂(k − η)ĝ(η)(ki − ηi)|γ|| dη +
∫

R3

|f̂(k − η)ĝ(η)η|γ|i | dη

}

=
3∑

i=1

{Φi(f, g)(k) + Φi(g, f)(k)} ,
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where the last obvious notation is justified by a change of variable. We now observe that
up to a constant ‖f̂‖L1(R3) and ‖f‖L∞(R3) are equal. In our case they are both finite by
(2.4), hence by Hölder’s inequality

|Φi(g, f)|2(k) ≤ ‖f̂‖L1

∫
R3

|f̂(k − η)||ĝ(η)|2|ηi|2|γ| dη,

which implies integrating on k and by symmetry that,

‖Φi(g, f)‖L2(R3) + ‖Φ(g, f)‖L2(R3) ≤ ‖f̂‖L1(R3)‖k
|γ|
i ĝ‖L2(R3) + ‖ĝ‖L1(R3)‖k

|γ|
i f̂‖L2(R3),

to conclude

‖kγ f̂ ? ĝ‖L2(R3) ≤ D
3∑

i=1

[
‖ĝ‖L1(R3)‖k

|γ|
i f̂‖L2(R3) + ‖f̂‖L1(R3)‖k

|γ|
i ĝ‖L2(R3)

]
.

After applying inverse Fourier transform and using (2.4), (2.6) is proved.

The first step is to produce energy estimates for obtaining the dissipation of the kinetic
equation on the basis of the coercivity property (2.3) of −L.

Lemma 2.2. For smooth solutions of the system (1.5)-(1.7), we have

1
2

d

dt
(‖f‖2 + ‖u‖2) + λ0‖{I−P}f‖2

ν + ‖u− b‖2

≤ C‖u‖H2‖{I−P}f‖2
ν + C‖u‖H1‖u− b‖2 + C‖u‖H1‖∇x(a, b)‖2 (2.7)

for any 0 ≤ t ≤ T and any T > 0 with C and λ0 not depending on T .

Proof. By using (1.6) and (2.1), the direct energy integration of (1.5) and (1.7) and then
their summation give

1
2

d

dt
(‖f‖2 + ‖u‖2) +

∫
R3

〈−L{I−P}f, f〉 dx + ‖u− b‖2

=
∫

R3

1
2
u · 〈ξf, f〉 dx−

∫
R3

a|u|2 dx. (2.8)

Using the macro-micro decomposition f = Pf + {I−P}f , one can compute

〈ξf, f〉 = 〈ξ, |Pf |2〉+ 2〈ξPf, {I−P}f〉+ 〈ξ, |{I−P}f |2〉,

and further 〈ξ, |Pf |2〉 = 2ab. We deduce∫
R3

1
2
u · 〈ξf, f〉 dx−

∫
R3

a|u|2 dx

= −
∫

R3

au · (u− b) dx +
∫

R3

u · 〈ξPf, {I−P}f〉 dx

+
1
2

∫
R3

u · 〈ξ, |{I−P}f |2〉 dx.
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Then, using Young’s, Sobolev’s and Cauchy-Schwarz’s inequalities,∫
R3

1
2
u · 〈ξf, f〉 dx−

∫
R3

a|u|2 dx

≤ ‖a‖L6‖u‖L3‖u− b‖L2 + C‖u‖L3‖(a, b)‖L6‖{I−P}f‖
+C‖u‖L∞‖{I−P}f‖2

ν

≤ C(‖∇u‖H1 + ‖u‖H1)‖{I−P}f‖2
ν + C‖u‖H1‖u− b‖2

L2

+C‖u‖H1‖∇x(a, b)‖2
L2 .

By plugging the last inequality into (2.8), then (2.7) follows due to (2.2).

Lemma 2.3. For smooth solutions of the system (1.5)-(1.7), we have

1
2

d

dt

∑
1≤|α|≤3

(‖∂αf‖2 + ‖∂αu‖2) + λ0

∑
1≤|α|≤3

(‖{I−P}∂αf‖2
ν + ‖∂α(u− b)‖2)

≤ C‖∇xu‖H2(
∑

1≤|α|≤3

‖{I−P}∂αf‖2
ν + ‖∇x(a, b, u− b)‖2

H2) , (2.9)

for any 0 ≤ t ≤ T and any T > 0 with C and λ0 not depending on T .

Proof. Take α with 1 ≤ |α| ≤ 3. The energy integration of α-order for (1.5) and (1.7) and
their summation give

1
2

d

dt
(‖∂αf‖2 + ‖∂αu‖2) +

∫
R3

〈−L∂α{I−P}f, ∂αf〉 dx + ‖∂α(u− b)‖2

= −
∫

R3

〈[∂α, u · ∇ξ]f, ∂αf〉 dx +
1
2

∫
R3

〈∂α(u · ξf), ∂αf〉 dx

−
∫

R3

∂α(u · ∇xu) · ∂αu dx−
∫

R3

∂α(ua) · ∂αu dx =
4∑

i=1

Ii, (2.10)

where [A,B] means the commutator AB−BA for two operators, and Ii (1 ≤ i ≤ 4) denote
the corresponding terms on the r.h.s. of the above equation. We easily get the bounds

I1 = −
∫

R3

〈∂α[u · ∇ξf ], ∂αf〉 dx =
∫

R3

〈∂α[uf ],∇ξ∂
αf〉 dx ≤ ‖∂α(uf)‖ · ‖∇ξ∂

αf‖,

I2 =
1
2

∫
R3

〈∂α(u · ξf), ∂αf〉 dx =
1
2

∫
R3

〈∂α[uf ], ξ∂αf〉 dx ≤ 1
2
‖∂α(uf)‖ · ‖ξ∂αf‖,

I4 = −
∫

R3

∂α(ua) · ∂αu dx ≤ ‖∂α(ua)‖ · ‖∂αu‖.

Since 1 ≤ |α| ≤ 3 we may use inequality (2.6) of Lemma 2.1 successively to obtain :

I1 ≤ C‖∇xu‖H2‖∇xf‖L2
ξ(H2

x)‖∇ξ∂
αf‖,

I2 ≤ C‖∇xu‖H2‖∇xf‖L2
ξ(H2

x)‖ξ∂
αf‖,

I4 ≤ C‖∇xu‖H2‖∇xa‖H2‖∂αu‖.
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Due to (1.6), I3 is computed by

I3 = −
∑
β<α

Cα
β

∫
R3

(∂α−βu · ∇x∂βu) · ∂αu dx ≤ C‖∇xu‖2
H2‖∂αu‖, (2.11)

where the final inequality follows that for β < α,

∫
R3

(∂α−βu · ∇x∂βu) · ∂αu dx ≤


‖∂αu‖L2‖∇xu‖L∞‖∂αu‖L2 (|β| = 0)

‖∂α−βu‖L3‖∇x∂βu‖L6‖∂αu‖L2 (|β| = 1)

‖∂α−β‖L∞‖∇x∂βu‖L2‖∂αu‖L2 (|β| ≥ 2)

and Sobolev inequalities were further used. Putting estimates on Ii (1 ≤ i ≤ 4) into (2.10)
and taking summation over 1 ≤ |α| ≤ 3, then (2.9) follows.

Corollary 2.1. For smooth solutions of the system (1.5)-(1.7), it holds that

1
2

d

dt

∑
|α|≤3

(‖∂αf‖2 + ‖∂αu‖2) + λ0

∑
|α|≤3

(‖{I−P}∂αf‖2
ν + ‖∂α(u− b)‖2)

≤ C‖u‖H3

∑
|α|≤3

(‖{I−P}∂αf‖2
ν + ‖∂α(u− b)‖2) + ‖∇x(a, b)‖2

H2

 (2.12)

for any 0 ≤ t ≤ T and any T > 0 with C and λ0 not depending on T .

The goal of the second step in the energy estimates is to obtain the energy dissipation
rate ‖∇x(a, b)‖2

H2 . For this purpose, we shall firstly derive the following coupled hyperbolic-
parabolic system satisfied by a and b which are coefficient functions of Pf :

∂ta +∇x · b = 0, (2.13)

∂tbi + ∂ia +
∑

j

∂jΓij({I−P}f) = −bi + ui(1 + a), (2.14)

∂ibj + ∂jbi − (uibj + ujbi) = −∂tΓij({I−P}f) + Γij(` + r), (2.15)

for 1 ≤ i, j ≤ 3, where Γij is the moment functional defined by Γij(g) = 〈(ξiξj−1)M1/2, g〉,
for any g = g(ξ), and `, r denote

` = −ξ · ∇x{I−P}g + L{I−P}g,

r = −u · ∇ξ{I−P}g +
1
2
u · ξ{I−P}g.

In fact, it is straightforward to get (2.13) and (2.14) by multiplying (1.5) by M1/2 and
ξiM

1/2 (1 ≤ i ≤ 3) and then taking velocity integration over R3. To obtain (2.15), let us
rewrite (1.5) as

∂tPf + ξ · ∇xPf + u · ∇ξPf − 1
2
u · ξPf − u · ξM1/2 + P1f = −∂t{I−P}f + ` + r,
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and then apply Γij to it so that (2.15) follows, where (2.13) was also used. Define a
temporal functional E0(f(t)) by

E0(f(t)) =
∑
|α|≤2

∑
ij

∫
R3

∂α(∂ibj + ∂jbi)∂αΓij({I−P}f) dx

−
∑
|α|≤2

∫
R3

∂αa∂α∇x · b dx, (2.16)

The following lemma is in the same spirit of Kawashima’s hyperbolic-parabolic dissipation
estimates [18]. At the level of linearization, it corresponds to the estimate (3.7) which we
shall prove later.

Lemma 2.4. For smooth solutions of the system (1.5)-(1.7), it holds that

d

dt
E0(f(t)) + λ‖∇x(a, b)‖2

H2 ≤ C(‖{I−P}f‖2
L2

ξ(H3
x)

+ ‖u− b‖2
H2)

+C‖u‖2
H2

[
‖∇x(a, b)‖2

H2 + ‖∇x{I−P}f‖2
L2

ξ(H2
x)

]
, (2.17)

for any 0 ≤ t ≤ T and any T > 0 with C and λ not depending on T .

Proof. Take α with |α| ≤ 2. Notice∑
ij

‖∂α(∂ibj + ∂jbi)‖2 = 2‖∇x∂αb‖2 + 2‖∇x · ∂αb‖2. (2.18)

On the other hand, it follows from (2.15) that∑
ij

‖∂α(∂ibj + ∂jbi)‖2

=
∑
ij

∫
R3

∂α(∂ibj + ∂jbi)∂α[(uibj + ujbi)− ∂tΓij({I−P}f) + Γij(` + r)] dx

= − d

dt

∑
ij

∫
R3

∂α(∂ibj + ∂jbi)∂αΓij({I−P}f) dx

+
∑
ij

∫
R3

∂α(∂i∂tbj + ∂j∂tbi)∂αΓij({I−P}f) dx

+
∑
ij

∫
R3

∂α(∂ibj + ∂jbi)∂α[(uibj + ujbi) + Γij(` + r)] dx. (2.19)

Using (2.14) to replace the time derivative of b, one has∑
ij

∫
R3

∂α(∂i∂tbj + ∂j∂tbi)∂αΓij({I−P}f) dx

= −2
∑
ij

∫
R3

∂α∂tbi∂
α∂jΓij({I−P}f) dx

= 2
∑
ij

∫
R3

∂α[∂ia +
∑
m

∂mΓim({I−P}f)− (ui − bi)− uia]∂α∂jΓij({I−P}f) dx.
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Hence, using Young’s inequality and inequality (2.5) of Lemma 2.1 one gets :∑
ij

∫
R3

∂α(∂i∂tbj + ∂j∂tbi)∂αΓij({I−P}f) dx

≤ ε‖∇xa‖2
H2 + Cε‖∇x{I−P}f‖2

L2
ξ(H2

x)
+ C(‖u− b‖2

H2 + ‖u‖2
H2‖∇xa‖2

H2),

where 0 < ε ≤ 1 is arbitrary to be chosen later. The final term on the r.h.s. of (2.19) is
estimated by∑

ij

∫
R3

∂α(∂ibj + ∂jbi)∂α[(uibj + ujbi) + Γij(` + r)] dx ≤ 1
2

∑
ij

‖∂α(∂ibj + ∂jbi)‖2

+C
∑
ij

(‖∂α(uibj + ujbi)‖2 + ‖∂αΓij(`)‖2 + ‖∂αΓij(r)‖2).

Using again (2.5) it further holds that∑
ij

‖∂α(uibj + ujbi)‖2 ≤ C‖u⊗ b‖2
H2 ≤ C‖u‖2

H2‖∇xb‖2
H2 ,

and since the moment functional appearing in Γij can absorb any velocity derivative and
any velocity weight we have also∑

ij

‖∂αΓij(`)‖2 ≤ C‖{I−P}f‖2
L2

ξ(H3
x)

,

∑
ij

‖∂αΓij(r)‖2 ≤ C‖u‖2
H2‖∇x{I−P}f‖2

L2
ξ(H2

x)
.

Putting all the above estimates into (2.19) and then taking summation over |α| ≤ 2, due
to (2.18), one has

d

dt

∑
|α|≤2

∑
ij

∫
R3

∂α(∂ibj + ∂jbi)∂αΓij({I−P}f) dx + 2‖∇xb‖2
H2 + 2‖∇x · b‖2

H2

≤ ε‖∇xa‖2
H2 + Cε‖∇x{I−P}f‖2

L2
ξ(H2

x)
+ C‖u− b‖2

H2 + ‖{I−P}f‖2
L2

ξ(H3
x)

+C‖u‖2
H2(‖∇x(a, b)‖2

H2 + ‖∇x{I−P}f‖2
L2

ξ(H2
x)

). (2.20)

On the other hand, take again α with |α| ≤ 2 and calculate

‖∂α∇xa‖2 =
∑

i

∫
R3

∂α∂ia∂α∂ia dx

=
∑

i

∫
R3

∂α∂ia∂α[−∂tbi + (ui − bi)−
∑

j

∂jΓij({I−P}f) + uia] dx

= − d

dt

∑
i

∫
R3

∂α∂ia∂αbi dx +
∑

i

∫
R3

∂α∂i∂ta∂αbi dx

+
∑

i

∫
R3

∂α∂ia∂α[(ui − bi)−
∑

j

∂jΓij({I−P}f) + uia] dx.
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So finally, we get

‖∂α∇xa‖2 =
d

dt

∑
i

∫
R3

∂αa∂α∇x · b dx +
∑

i

∫
R3

∂α∂i∂ta∂αbi dx

+
∑

i

∫
R3

∂α∂ia∂α[(ui − bi)−
∑

j

∂jΓij({I−P}f) + uia] dx. (2.21)

Here, ∂ta can be replaced by the mass conservation law (2.13) so as to obtain

∑
i

∫
R3

∂α∂i∂ta∂αbi dx = −
∫

R3

∂α∂ta∂α∇x · b dx = ‖∂α∇x · b‖2.

The last term is estimated by∑
i

∫
R3

∂α∂ia∂α
[
(ui − bi)−

∑
j

∂jΓij({I−P}f) + uia??
]
dx

≤ 1
2
‖∇x∂αa‖2 + C(‖u− b‖2

H2 + ‖∇x{I−P}f‖2
L2

ξ(H2
x)

+ ‖u‖2
H2‖∇xa‖2

H2),

where we used (2.5) another time. Then, after taking summation over |α| ≤ 2, it follows
from (2.21) that

− d

dt

∑
|α|≤2

∫
R3

∂αa∂α∇x · b dx +
1
2
‖∇xa‖2

H2

≤ ‖∇x · b‖2
H2 + C(‖u− b‖2

H2 + ‖∇x{I−P}f‖2
L2

ξ(H2
x)

+ ‖u‖2
H2‖∇xa‖2

H2). (2.22)

Now adding (2.20) to (2.22), we get :

d

dt
E0(f(t)) + 2‖∇xb‖2

H2 + ‖∇x · b‖2
H2 +

[
1
2
− ε

]
‖∇xa‖2

H2

≤ C(‖{I−P}f‖2
L2

ξ(H3
x)

+ ‖u− b‖2
H2)

+ C‖u‖2
H2

[
‖∇x(a, b)‖2

H2 + ‖∇x{I−P}f‖2
L2

ξ(H2
x)

]
.

Hence, (2.17) follows after taking ε = 1
4 for instance.

Combining estimates obtained in the above two steps, one can finish the proof of
uniform-in-time a priori estimates as follows. Define a total temporal energy functional
E(f, u) and corresponding dissipation rate D(f, u) by

E(f(t), u(t)) = ‖(f(t), u(t))‖2
H3 + κ1E0(f(t)), (2.23)

D(f(t), u(t)) =
∑
|α|≤3

(‖∂α{I−P}f‖2
ν + ‖∂α(u− b)‖2) + ‖∇x(a, b, u)‖2

H2 , (2.24)
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where κ1 > 0 is a small constant to be chosen later. For the sake of clarity, let us introduce
further notation:

K(f, u) :=
∑
|α|≤3

{
‖{I−P}∂αf‖2

ν + ‖∂α(u− b)‖2
}

+ ‖∇x(a, b)‖2
H2 ,

so that we can rewrite (2.12) as

1
2

d

dt
‖(f, u)‖2

H3+λ0

[
K(f, u)− ‖∇x(a, b)‖2

H2

]
≤ C‖u‖H3K(f, u) ≤ C‖u‖2

H3K(f, u) + κ2K(f, u), (2.25)

for a small constant κ2 to be fixed later. Obviously we have ‖ · ‖L2
ξ(L2

x) ≤ ‖ · ‖ν and
‖ · ‖H2

x
≤ ‖ · ‖H3

x
hence (2.17) implies

d

dt
E0(f(t)) + λ‖∇x(a, b)‖2

H2 ≤ C
[
K(f, u)− ‖∇x(a, b)‖2

H2

]
+ C‖u‖2

H3K(f, u). (2.26)

Finally, by adding 2×(2.25) to κ1×(2.26) we obtain

d

dt
E(f(t), u(t)) + min(2λ0 − Cκ1, κ1λ)K(f, u) ≤ 2κ2K(f, u) + C‖u‖2

H3K(f, u),

so picking first κ1 and then κ2 small enough we have E(f(t), u(t)) ∼ ‖(f(t), u(t))‖2
H3 and

d

dt
E(f(t), u(t)) + λK(f, u) ≤ C‖u‖2

H3K(f, u). (2.27)

Now notice
‖∇xu‖2

H2 ≤ 2‖∇x(u− b)‖2
H2 + 2‖∇xb‖2

H2 ≤ 2K(f, u),

and D(f, u) = K(f, u) + ‖∇xu‖2
H2 , so that by adding κ3‖∇xu‖2

H2 to both sides in (2.27)
with κ3 small enough we have

d

dt
E(f(t), u(t)) + κ3D(f(t), u(t)) ≤ C‖u(t)‖2

H3D(f(t), u(t)), (2.28)

for any 0 ≤ t ≤ T and any T > 0 with C and κ3 not depending on T , which is the desired
uniform-in-time estimate for the global existence.

2.3 Approximating Scheme & Global Existence

We are now going to prove first the existence of local regular solutions for which all
the previous computations will be rigorous. These estimates will allow us to prove
that the solution is in fact global at the end of this subsection. Let us introduce X =
W1,∞([0, T ]; H2(R3)

)
∩ L∞

(
[0, T ]; H3(R3)

)
and

ST =

(f, u, p)

∣∣∣∣∣∣∣∣
f ∈ L∞

(
[0, T ]; L2

ξ(H
3
x)
)
∩ C 1

x,t ∩ C 2
ξ , af , bf ∈ X

u ∈ X ∩ C 1([0, T ]× R3)

∇x · u = 0, f ≥ 0, p ∈ C 0
(
[0, T ]; H3(R3)

)
 .
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Let us consider the iterative Cauchy problem, initialized by (u0, F 0) = (u0,M + M1/2f0):

∂tF
n+1 + ξ · ∇xFn+1 = ∇ξ · (ξFn+1 +∇ξF

n+1)− γn[un ? τn] · ∇ξF̃n,

F̃n := M + M1/2
[
ρn ? (M−1/2(Fn −M))

]
,

∇x · un+1 = 0,

∂tu
n+1 + un · ∇xun+1 +∇xpn+1 =

∫
R3

(ξ − un+1)Fn dξ,

un+1(0) = u0, Fn+1(0) = M + M1/2(ρn ? f0)γn,

where γn is some tensorial cut-off function γn(x, ξ) := θ
(

x
n

)
θ
(

ξ
n

)
= σnµn, θ being a

smooth function with support in the unit ball and τn(x) and ρn(x, ξ) are standard molli-
fiers. In particular, (γn)n, (σn)n, (µn)n are bounded in the Schwartz class S (R3). Con-
sidering un

? := un ? τn and fn
? := fn ? ρn, it reads in terms of perturbations as:

∂tf
n+1 + ξ · ∇xfn+1 + γnun

? · ∇ξf
n
? −

1
2
γnun

? · ξfn
? − γnun

? · ξM1/2 = Lfn+1, (2.29)

∇x · un+1 = 0, (2.30)

∂tu
n+1 + un · ∇xun+1 +∇xpn+1 + un+1(1 + an) = bn, (2.31)

un+1(0) = u0, fn+1(0) = (ρn ? f0)γn, (2.32)

Lemma 2.5. There exists δ0 > 0 and T0 > 0 such as for ‖(f0, u0)‖H3 ≤ δ0, the previous
sequence (fn, un) is well-defined and bounded in L∞

(
[0, T0];H3

)
. (un) is furthermore

bounded in W1,∞
(
[0, T0]; H2(R3)

)
.

Proof. Some parts of the proof have been placed in the Appendix for the sake of clarity.
Let us verify by induction that there exist, for all n, global classical solutions to the system
(2.29)-(2.32), all belonging to ST (but the kinetic part is not necessarily positive at this
stage). Take (fn, un, pn) ∈ ST (except the positivity condition). The existence of fn+1 ∈
L2

ξ(H
3
x) is a direct consequence of Lemma 5.5 in Appendix and then afn+1

, bfn+1 ∈ X is
straightforward. As for un+1 and pn+1, Lemma 5.3 of the Appendix applies directly. Since
all the equations are verified strongly and given the regularity of the solution, we are now
able to compute several estimates in a rigorous way. As done in (2.10) but including this
time the case α = 0, the energy integration of α-order (2.29), (2.30) and (2.31), and their
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summation give

1
2

d

dt
(‖∂αfn+1‖2 + ‖∂αun+1‖2) +

∫
R3

〈−L∂αfn+1, ∂αfn+1〉 dx + ‖∂αun+1‖2

=

I1,n︷ ︸︸ ︷
−
∫

R3

〈∂α
[
σnun

? ·
[
∇ξ(fn

? µn)− fn
? ∇ξµ

n
]]

, ∂αfn+1〉 dx

I2,n︷ ︸︸ ︷
−
∫

R3

∂α(un+1an) · ∂αun+1 dx

I3,n︷ ︸︸ ︷
−
∫

R3

∂α(un · ∇xun+1) · ∂αun+1 dx +

I4,n︷ ︸︸ ︷
1
2

∫
R3

〈∂α(γnun
? · ξfn

? ), ∂αfn+1〉 dx

+
∫

R3

∂αbn · ∂αun+1 dx +
∫

R3×R3

∂αfn+1µnM1/2ξ · ∂α(σnun
? (x)) dξ dx.

Using (2.3) we hence have

1
2

d

dt
(‖∂αfn+1‖2 + ‖∂αun+1‖2) + λ0‖{I−P}∂αfn+1‖2

ν + ‖∂αun+1‖2 + ‖∂αbn+1‖2

≤
4∑

i=1

Ii,n +
∫

R3

∂αbn · ∂αun+1 dx +
∫

R3

|∂αbn+1||∂α[σnun
? ]| dx,

and since for any function g(x, ξ), ‖Pg‖ν , ‖bg‖ and ‖ag‖ are all smaller than C‖g‖ for some
constant C, σn is bounded in S (R3) and ‖∂βun

?‖ ≤ ‖∂αun‖ for all β ∈ N3, we deduce

1
2

d

dt
(‖∂αfn+1‖2 + ‖∂αun+1‖2) + λ0‖∂αfn+1‖2

ν + ‖∂αun+1‖2

≤
4∑

i=1

Ii,n + C(‖∂αun+1‖2 + ‖un‖2
H3 + ‖∂αfn‖2 + ‖∂αfn+1‖2).

Now for I1,n, I4,n put (if necessary use integration by parts) operators ∇ξ and ξ· on fn+1

(except for the term fn
? ∇ξµ

n) and apply Young to obtain

|I1,n|+ |I2,n|+ |I4,n| ≤ C‖∂α(γnun
?fn

? )‖2 + C‖∂α(σnun
? · fn

? ∇ξµ
n)‖2 +

λ0

2
‖∂αfn+1‖2

ν

+ C‖∂α(un+1an)‖2 + ‖∂αun+1‖2.

Since (γn)n, (σn)n and (µn)n are all bounded in S (R3), and ‖∂βg?‖ ≤ ‖∂βg‖ for any
convolution operation and any β, we have, using Lemma 2.1,

|I1,n|+ |I2,n|+ |I4,n| ≤C‖un‖2
H3‖fn‖2

L2
ξ(H3

x))
+

λ0

2
‖∂αfn+1‖ν

+ C
{
1 + ‖fn‖2

L2
ξ(H3

x)

}
‖un+1‖2

H3 .

Finally I3,n is equal to zero whenever α = 0, so that we can use directly what we have
done in (2.11) (notice that the term [un ·∇x∂αun+1] ·∂αun+1 in the expansion is still zero)
and get

|I3,n| ≤ C‖un‖H3‖un+1‖2
H3 .
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We have finally, summing over α

d

dt
‖(fn+1, un+1)‖2

H3 + min(λ0, 2)
∑
|α|≤3

{
‖∂αfn+1‖2

ν + ‖∂αun+1‖2
}

≤ C1(1 + ‖(fn, un)‖2
H3)‖(fn+1, un+1)‖2

H3 + C2(1 + ‖(fn, un)‖2
H3)‖(fn, un)‖2

H3 .

Denote

An(t) := ‖(fn, un)‖2
H3 ,

Bn(t) :=
∑
|α|≤3

{
‖∂αfn+1‖2

ν + ‖∂αun+1‖2
}

.

We have obviously An(t) ≤ Bn(t) and furthermore from the previous inequality

An+1(t) + λ

∫ t

0
Bn+1(s)ds ≤An+1(0) + C1

∫ t

0
(1 + An(s))An+1(s)ds

+ C2

∫ t

0
(1 + An(s))An(s)ds, (2.33)

where An+1(0) = ‖(f0, u0)‖2
H3 is independent of n. Define successively

K := C1/λ, δ0 := K/3,

T0 := min
{

1
2C1

,
K − 2δ0

2C2K(1 + K)

}
> 0.

Let us prove the following property by induction on n: if ‖(f0, u0)‖H3 ≤ δ0, then:[
P (p) : Mp := sup

t∈[0,T0]
Ap(t) ≤ K

]
holds for all p ∈ N. P (0) is obviously satisfied, let us suppose P (n) is true. We have then
by (2.33), for t ∈ [0, T0]:

An+1(t) + λ

∫ t

0
Bn+1(s)ds ≤ δ0 + C1T0Mn+1 + C1T0MnMn+1 + C2T0Mn(1 + Mn)

≤ δ0 + C1T0Mn+1 + C1T0KMn+1 + C2T0K(1 + K)

since C1K = λ, for t ∈ [0, T0], we have also

An+1(t) + λ

∫ t

0
[Bn+1(s)−An+1(s)] ds ≤ δ0 + CT0Mn+1 + C(Mn + M2

n)T0 ,

and noting that Bn+1(s)−An+1(s) ≥ 0, we conclude

Mn+1 ≤ δ0 + C1T0Mn+1 + C2K(1 + K)T0,
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and since 2C1T0 ≤ 1, we have:

Mn+1 ≤ 2δ0 + 2C2K(1 + K)T0 ≤ K,

because of the definition of T0.
Finally the bound of (un) in W1,∞

(
[0, T0]; H2(R3)

)
is a direct consequence of the

previous bound, using the fluid equation, after applying the Leray projection (see the
appendix section for the precise definition) to get rid of the pressure function.

Lemma 2.6. There exists a subsequence (uσ(n))n strongly converging in L∞
(
[0, T0]; H2

loc(R3)
)

to an element of C 0
(
[0, T0]; H2(R3)

)
.

Proof. Consider, an exhaustive family of increasing balls centered in 0, of radius m ∈ N∗:
(Bm)m. Given m, the injection H3(Bm) ↪→ H2(Bm) is compact. We know from Lemma
2.5 that (un)n is bounded in W1,∞

(
[0, T0]; H2(Bm)

)
and L∞

(
[0, T0]; H3(Bm)

)
, hence the

family (un)n is equicontinuous in C 0
(
[0, T0]; H2(Bm)

)
and pointwisely (in time) relatively

compact. We may hence apply Ascoli’s theorem to obtain the convergence of a subsequence
in C 0

(
[0, T0]; H2(Bm)

)
. We also extract to have almost everywhere convergence. Since the

previous extractions are countable, we may extract diagonally a subsequence following the
exhaustive sequence of balls. In such a way, for a fixed ball Bm the sequence (still) denoted
(un)n converges to some um in C 0

(
[0, T0]; H2(Bm)

)
. All the functions are continuous hence

all the um are equal in their domain of definition and we may define pointwisely a limit
function u on Bm as the common value of all the (uk)k≥m on this ball, for all m ∈ N∗. By
construction u ∈ C 0

(
[0, T ]; H2(Bm)

)
for all m and the sequence of corresponding norms

is bounded: u ∈ C 0
(
[0, T0]; H2(R3)

)
. Since the sequence is exhaustive, we have strong

convergence in L∞
(
[0, T0]; H2

loc(R3)
)
.

Lemma 2.7. There exists δ1 > 0 such as if ‖(f0, u0)‖H3 ≤ δ1 then the Cauchy problem
(1.5)-(1.7) with initial data verifying (1.8) has a unique global and classical solution defined
on R+, belonging to (f, u, p) ∈ St for all t > 0.

Proof. With ‖(f0, u0)‖H3 ≤ δ0, by Lemma 2.5 we now that (fn, un) is (up to a subse-
quence) weakly-? convergent in L∞([0, T0];H3) and so is (un) in W1,∞

(
[0, T0]; H2(R3)

)
.

Let us note (f, u) the limit. Together with the strong convergence given by Lemma 2.6
we can pass to the limit and prove that (f, u) is a weak solution of (1.5)-(1.7) and (1.8).
Using Lemma 5.2 of the appendix we obtain that u is in fact a strong regular solution.
Using then the uniqueness of solutions for the Vlasov-Fokker-Planck [23], we finally have
that f is also regular and strong solution of the equation. Until now we have just obtained
local solution on some interval [0, T0] but since it is regular we may use all the a priori
estimates that we performed earlier. In particular, we have (2.28), i.e.

d

dt
E(f(t), u(t)) + κ3D(f(t), u(t)) ≤ C‖u(t)‖2

H3D(f(t), u(t)),
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with C and κ3 independent of T0. Now, define

ε = min{δ0,
√

κ3/(2C)},

and let initial data (f0, u0) be small enough such that

E(f0, u0) ≤ δ1 :=
ε

2(1 + C)
.

Denote

T? = sup

t ∈ R∗
+

∣∣∣∣∣∣
∃(f, u, p) ∈ St verifying (1.5)− (1.7) and (1.8) on [0, t]

and sup
0≤s≤t

E(f(s), u(s)) ≤ ε

 .

Note first that the uniqueness on any interval is a direct consequence of the previous
estimates since the solutions are regular, therefore in what follow (f(t), u(t)) is well-defined.
Since ‖(f0, u0)‖H3 ≤ ε/2 ≤ δ0, it follows from the previous study that T? is well-defined
(since E(·) and ‖ · ‖H3 are equivalent). Furthermore by definition of ε, E(f(t), u(t)) is a
decreasing function of time on [0, T?[: the right hand side term of (2.28) can be absorbed
due to

C‖u(t)‖2
H3 ≤ C‖(f(t), u(t))‖2

H3 ≤ Cε2 ≤ κ3

2
,

hence, for t ∈ [0, T?[, E(f(t), u(t)) ≤ ε/2. Let us check that if T? < ∞, then by local
existence our solution is in fact defined at least on some interval [0, T? + η]. Indeed, the
time of existence T0 is granted as soon as the initial data is in the ball B(0, δ0) of H3,
which is the case for (f(t), u(t)) for t < T?. Then, one could take the couple (f(t), u(t)) (t
sufficiently close to T?) as admissible initial condition and obtain local existence from t to
some t + T0 > T?. Pasting this extension with the previous solution defined on [0, T?], we
get some (at least) weak solution on the whole interval [0, T? + η]. We may then use the
positive fundamental solution of the Fokker-Planck equation with a field given in [23] to
have all the regularity that we need. We are in position to use the previous result since
the only assumption required in [23] is to have a field in L∞

(
[0, T ];W1,∞(R3)

)
, and this

is still the case here, even after the “pasting operation”. In that way we can prove first
that the kinetic part f is regular in time and positive, then we treat the fluid equation as
before to finally extend the global strong solution on [0, T? + η] by uniqueness.

By continuity E(f(T?), u(T?)) ≤ ε/2 so that E(f(t), u(t)) remains strictly less than ε on
some interval [T?, T? + η′]. This contradicts the definition of T? which is therefore infinite.
This shows the global-in-time existence in our main Theorem 1.1.

Corollary 2.2. Take δ1 as in Lemma 2.7 and (f0, u0) verifying ‖(f0, u0)‖H3 ≤ δ1. Then
the unique solution to the system (1.5)-(1.8) verifies

d

dt
E(f(t), u(t)) + λD(f(t), u(t)) ≤ 0,

for some fixed constant λ > 0. In particular the energy E(f(t), u(t)) is a non-increasing
function.



Global Classical Solutions to VEFP System 19

3 Rate of convergence

In order to study the time-decay of solutions obtained in last section, we firstly consider
the linearized Cauchy problem

∂tf + ξ · ∇xf − u · ξM1/2 = Lf + Sf ,

∇x · u = 0,

∂tu +∇xp + (u− b) = 0,

f |t=0 = f0, u|t=0 = u0.

(3.1)

Here, the non-homogeneous source Sf takes the form

Sf = ∇ξ ·G− 1
2
ξ ·G + h,

for G = (Gi), Gi = Gi(t, x, ξ) ∈ R, (1 ≤ i ≤ 3) and h = h(t, x, ξ) ∈ R, where it is supposed
that

P0Gi ≡ 0 (1 ≤ i ≤ 3), Ph ≡ 0

for all t ≥ 0 and x ∈ R3. We first note that this coupled linearized problem is well-posed
in L2.

Proposition 3.1. There is a well-defined linear semigroup Et : L2 −→ L2, t ≥ 0, such
that for any given (f0, u0) ∈ L2 with ∇x ·u0 = 0, then Et(f0, u0) is the unique distributional
solution to (3.1) with Sf = 0. Moreover, for any given (f0, u0) ∈ L2 with ∇x · u0 = 0, the
unique distributional solution to (3.1) satisfies

(f(t), u(t)) = Et(f0, u0) +
∫ t

0
Et−s(Sf (s), 0) ds. (3.2)

Proof. The well-posedness part follows the same guidelines as in the local existence the-
orem in the previous section but simpler due to its linearity. We do not repeat here the
whole argument, but one needs to define smooth approximations by regularizing the ini-
tial data and splitting the coupling term as in the system (2.29)-(2.32). The passing to
the limit is trivial in this case, moreover the solutions are strong for initial smooth com-
pactly supported data. Due to standard regularization procedures, it is enough to show
the propagation of the L2-norm for smooth compactly supported initial data. Taking
(f ε(t), uε(t)) = Et(f ε

0, u
ε
0), a direct computation shows

1
2

d

dt
(‖f ε‖2 + ‖uε‖2) +

∫
R3

〈−L{I−P}f ε, f ε〉 dx + ‖uε − bε‖2 = 0 ,

implying
‖Et(f ε

0, u
ε
0)‖L2 ≤ ‖(f ε

0, u
ε
0)‖L2

for all t ≥ 0 and all ε > 0. Passing to the limit in the regularization parameter ε leads
trivially to the stated propagation. Finally, the variation-of-constants formula (3.2) for
problem (3.1) is again direct by approximation procedures.
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We can now show the following uniform estimates on solutions of (3.1).

Theorem 3.1. Let 1 ≤ q ≤ 2 and (f0, u0) ∈ L2 with ∇x · u0 = 0. For any α, α′ with
α′ ≤ α and m = |α− α′|,

‖∂αEt(f0, u0)‖L2 ≤ C(1 + t)−σq,m(‖∂α′(f0, u0)‖Zq + ‖∂α(f0, u0)‖L2), (3.3)

and∥∥∥∥∂α

∫ t

0
Et−s(Sf (s), 0)ds

∥∥∥∥2

L2

≤C

∫ t

0
(1 + t− s)−2σq,m (3.4)

× (‖∂α′(G(s), ν−1/2h(s))‖2
Zq

+ ‖∂α(G(s), ν−1/2h(s))‖2
L2)ds,

hold for t ≥ 0, where C is a positive constant depending only on m, q and

σq,m =
3
2

(
1
q
− 1

2

)
+

m

2
.

Proof. By Fourier transforming (3.1) in x, one has
∂tf̂ + iξ · kf̂ − û · ξM1/2 = Lf̂ +∇ξ · Ĝ− 1

2
ξ · Ĝ + ĥ,

ik · û = 0,

∂tû + ikp̂ + û− b̂ = 0.

(3.5)

By taking the inner product of the first equation in (3.5) with the conjugate of f̂ and
integrating in ξ, its real part gives

1
2
∂t‖f̂‖2

L2
ξ

+ Re
∫

R3

(−L{I−P}f̂ |{I−P}f̂) dξ + |̂b|2 − Re (û|̂b)

= Re
∫

R3

(∇ξ · Ĝ− 1
2
ξ · Ĝ|{I−P}f̂) dξ + Re

∫
R3

(ĥ|{I−P}f̂) dξ,

where we used the observation

∇ξ ·G− 1
2
ξ ·G ⊥ RangP

due to P0G = 0. Then, the coercivity of −L, integration by parts in ξ and Cauchy-Schwarz
inequality further imply

1
2
∂t‖f̂‖2

L2
ξ
+ λ0|{I−P}f̂ |2ν + |̂b|2 − Re(û|̂b) ≤ C(‖Ĝ‖2 + ‖ν−1/2ĥ‖2).

Similarly, from the last two equations in (3.5) we infer 1
2∂t|û|2 + |û|2 − Re(̂b|û) = 0, that

together in the previous estimate shows

1
2
∂t(‖f̂‖2

L2
ξ
+ |û|2) + λ0|{I−P}f̂ |2ν + |û− b̂|2 ≤ C(‖Ĝ‖2 + ‖ν−1/2ĥ‖2). (3.6)
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Next, we consider the estimates on a, b. Since PSf = 0, then similar to get (2.13)-
(2.15), corresponding to the system (3.1), one has

∂ta +∇x · b = 0,

∂tbi + ∂ia +
∑

j

∂jΓij({I−P}f) = ui − bi,

∂ibj + ∂jbi = −∂tΓij({I−P}f) + Γij(` + Sf ),

where ` still denotes
` = −ξ · ∇x{I−P}f + L{I−P}f.

Taking the Fourier transform in x gives
∂tâ + ik · b̂ = 0,

∂tb̂i + ikiâ +
∑

j

ikjΓij({I−P}f) = ûi − b̂i,

ikib̂j + ikj b̂i = −∂tΓij({I−P}f̂) + Γij(̂̀+ Ŝf ).

By using the same proof as in Lemma 2.4, we conclude that there exist λ > 0 and C > 0
such that

∂tRe{
∑
ij

(ikib̂j+ikj b̂i|Γij({I−P}f̂))− (â|ik · b̂)}+ λ|k|2(|â|2 + |̂b|2)

≤ C((1 + |k|2)‖{I−P}f̂‖2
L2

ξ
+ |û− b̂|2) + C(‖Ĝ‖2 + ‖ν−1/2ĥ‖2).

By setting

E1(f̂) =
1

1 + |k|2
∑
ij

(ikib̂j + ikj b̂i|Γij({I−P}f̂))− 1
1 + |k|2

(â|ik · b̂),

it follows that

∂t ReE1(f̂)+
λ|k|2

1 + |k|2
|(â, b̂, û)|2 ≤ C(‖{I−P}f̂‖2

L2
ξ
+|û− b̂|2)+C(‖Ĝ‖2+‖ν−1/2ĥ‖2). (3.7)

Now, given t ≥ 0 and k ∈ R3, define the functional EF (f̂ , û) by

EF (f̂ , û) = (‖f̂‖2
L2

ξ
+ |û|2) + κ4Re E1(f̂)

for a small constant κ4 > 0 to be chosen later. Firstly, let κ4 > 0 be small enough such
that EF (f̂ , û) ∼ ‖f̂‖2

L2
ξ
+ |û|2 since

|E1(f̂)| ≤ C(‖f̂‖2
L2

ξ
+ |û|2)

holds for all t ≥ 0 and k ∈ R3. By making κ4 > 0 further small enough, the linear
combination 2×(3.6) + κ4×(3.7) gives

∂t EF (f̂ , û) + λ(|{I−P}f̂ |2ν + |û− b̂|2) +
λ|k|2

1 + |k|2
|(â, b̂, û)|2 ≤ C(‖Ĝ‖2 + ‖ν−1/2ĥ‖2),
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which also implies

∂tEF (f̂ , û) +
λ|k|2

1 + |k|2
EF (f̂ , û) ≤ C(‖Ĝ‖2 + ‖ν−1/2ĥ‖2).

It follows from Gronwall’s inequality that

EF (f̂ , û) ≤ e
− λ|k|2

1+|k|2
tEF (f̂0, û0) +

∫ t

0
e
− λ|k|2

1+|k|2
(t−s)

(‖Ĝ(s)‖2 + ‖ν−1/2ĥ(s)‖2) ds.

As in [18] or [11, Theorem 3.1], the further k-integration yields the desired time-decay
estimates (3.3) and (3.4) by setting homogeneous source Sf = 0 and zero initial data
(f0, u0) = 0, respectively.

We now need two technical lemmas for the later proof.

Lemma 3.1. Given any 0 < β1 6= 1 and β2 > 1,∫ t

0
(1 + t− s)−β1(1 + s)−β2 ds ≤ C(1 + t)−min{β1,β2}

for all t ≥ 0.

Proof. Denote

J(t) =
∫ t

0
(1 + t− s)−β1(1 + s)−β2 ds.

Let us divide the time integral into two parts s ∈ (0, t/2) and s ∈ (t/2, t), then it is easy
to check that

J(t) ≤
(

1 +
t

2

)−β1
∫ t/2

0
(1 + s)−β2 ds +

(
1 +

t

2

)−β2
∫ t

t/2
(1 + t− s)−β1 ds

=
(

1 +
t

2

)−β1
∫ t/2

0
(1 + s)−β2 ds +

(
1 +

t

2

)−β2
∫ t/2

0
(1 + s)−β1 ds .

If β1 > 1, we use that (1 + s)−βi , i = 1, 2, are integrable on (0,∞) to conclude. If
0 < β1 < 1, we again use that (1 + s)−β2 is integrable in (0,∞) to infer∫ t

0
(1 + t− s)−β1(1 + s)−β2 ds ≤ C

[
(1 + t)−β1 + (1 + t)−β1+1−β2

]
yielding the desired estimate.

Lemma 3.2. Let γ > 1 and g1, g2 ∈ C 0(R+, R+) with g1(0) = 0. For A ∈ R+, define
BA := {y ∈ C 0(R+, R+)

∣∣ y ≤ A + g1(A)y + g2(A)yγ , y(0) ≤ A}. Then, there exists a
constant A0 ∈ (0,min{A1, A2}) such that for any 0 < A ≤ A0,

y ∈ BA =⇒ sup
t≥0

y(t) ≤ 2A.
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Proof. One can fix A0 ∈ (0,min{A1, A2}) such that

sup
0≤A≤A0

[
g1(A) + g2(A)(2A)γ−1

]
≤ 1

3

due to γ > 1 and assumptions on functions gi(·), i = 1, 2. Take 0 < A ≤ A0. Define

t? = sup
{

t ≥ 0 such that sup
0≤s≤t

y(t) ≤ 2A

}
.

Notice t? > 0 since y(0) ≤ A and y(t) is continuous. We claim t? = ∞. Otherwise, t? > 0
is finite. Thus, from the definition of t?, y(t?) = 2A and y(t) ≤ 2A for any 0 ≤ t ≤ t?.
The latter implies that for 0 ≤ t ≤ t?,

y(t) ≤ A + g1(A)y(t) + g2(A)[y(t)]γ ≤ A + sup
0≤A≤A0

[
g1(A) + g2(A)(2A)γ−1

]
y(t)

which by the choice of A0, further gives

sup
0≤t≤t?

y(t) ≤ 1
1− sup

0≤A≤A0

[
g1(A) + g2(A)(2A)γ−1

]A ≤ 3
2
A < 2A.

This is a contradiction to y(t?) = 2A. Therefore, t? = ∞ follows.

Proof of the rate of convergence part in the main Theorem 1.1: By definition
of E0 in (2.16), we have

E0(f(t)) ≤ C(‖∇xb‖2
H2 + ‖{I−P}f‖2

H2 + ‖a‖2
H2),

which implies the following by the definitions of E(f(t), u(t)) and D(f(t), u(t)) in (2.23)
and (2.24)

E(f(t), u(t)) ≤ C(‖{I−P}f‖2
H3 + ‖a‖2

H3 + ‖b‖2
H3 + ‖u‖2

H2)

≤ C(D(f(t), u(t)) + ‖(f(t), u(t))‖2
L2).

From Corollary 2.2, we have the existence of λ such as

d

dt
E(f(t), u(t)) + λD(f(t), u(t)) ≤ 0,

so that we finally infer the existence of λ and C such as

d

dt
E(f(t), u(t)) + λE(f(t), u(t)) ≤ C‖(f(t), u(t))‖2

L2 .

Gronwall’s inequality gives

E(f(t), u(t)) ≤ e−λtE(f0, u0) + C

∫ t

0
e−λ(t−s)‖(f(s), u(s))‖2

L2ds. (3.8)
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Next, we use the mild form of the system (1.5)-(1.7) to estimate the above zero-order
energy. Indeed, the system (1.5)-(1.7) can written as

(f(t), u(t)) = Et(f0, u0) +
∫ t

0
Et−s(Sf (s), Su(s))ds,

where
Sf = −u · ∇ξf −

1
2
u · ξf, Su = −P {u · ∇xu + au} .

Here, P is the Leray projector given in (5.1) in the Appendix. One can decompose Sf as

Sf = −u · ∇ξ{I−P0}f −
1
2
u · ξ{I−P0}f − u · ∇ξP0f −

1
2
u · ξP0f

= ∇ξ ·G− 1
2
ξ ·G + u · aξM1/2,

with G =: −u{I−P0}f . So, (f(t), u(t)) can be rewritten as the sum of three terms

(f(t), u(t)) = Et(f0, u0) +
∫ t

0
Et−s(∇ξ ·G(s)− 1

2
ξ ·G(s), 0) ds

+
∫ t

0
Et−s(u · aξM1/2, 0) ds +

∫ t

0
Et−s(0,−P {u · ∇xu + au}) ds

= I1(t) + I2(t) + I3(t) + I4(t).

By applying (3.3) to I1(t) and I3(t), one has

‖I1(t)‖L2 ≤ C(1 + t)−
3
4 ‖(f0, u0)‖Z1∩L2 ,

and

‖I3(t)‖L2 ≤ C

∫ t

0
(1 + t− s)−

3
4 ‖u · aξM1/2‖Z1∩L2 ds ≤ C

∫ t

0
(1 + t− s)−

3
4E(f(s), u(s)) ds,

where Hölder and Sobolev inequalities were used. For I2(t), since P0G = 0, one can apply
(3.4) to it to compute

‖I2(t)‖2
L2 ≤ C

∫ t

0
(1 + t− s)−

3
2 ‖u{I−P0}f‖2

Z1∩L2ds

≤ C

∫ t

0
(1 + t− s)−

3
2 [E(f(s), u(s))]2ds,

where again Hölder and Sobolev inequalities were used. Now, for any given 0 < ε < 1
4

using (3.3) with q = 3/(3− 2ε), we deduce

‖I4(t)‖L2 ≤ C

∫ t

0
(1 + t− s)−

3
4
+ε‖P {u · ∇xu + au} ‖Lq∩L2 ds .
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Using the Calderon-Zygmund Theorem for Riesz transforms [26], the Leray projection
operator in (5.1) is continuous on Lq for all 1 < q < ∞, and thus there exists Cε such that

‖P {u · ∇xu + au} ‖Lq∩L2 ≤ Cε‖u · ∇xu + au‖Lq∩L2 ≤ Cε‖u · ∇xu + au‖L1∩L2

where interpolation inequality was used. We remark finally that

‖u · ∇xu + au‖L1∩L2 ≤ CE(f, u),

and thus

‖I4(t)‖L2 ≤ Cε

∫ t

0
(1 + t− s)−

3
4
+εE(f(s), u(s)) ds .

Therefore, it holds

‖(f(t), u(t))‖2
L2 ≤ 2

4∑
i=1

‖Ii(t)‖2
L2

≤ C(1 + t)−
3
2 ‖(f0, u0)‖2

Z1∩L2 + C

∫ t

0
(1 + t− s)−

3
2 [E(f(s), u(s))]2ds

+C

[∫ t

0
(1 + t− s)−

3
4E(f(s), u(s))ds

]2

+Cε

[∫ t

0
(1 + t− s)−

3
4
+εE(f(s), u(s)) ds

]2

. (3.9)

Define
E∞(t) = sup

0≤s≤t
(1 + s)

3
2
−2εE(f(s), u(s)). (3.10)

Fix a constant δ < 1/3 close enough to 1/3. Using (3.10) and that E(f(t), u(t)) and E∞(t)
are non-increasing in time, we get∫ t

0
(1 + t− s)−

3
4
+εE(f(s), u(s)) ds

=
∫ t

0
(1 + t− s)−

3
4
+ε[E(f(s), u(s))]

2
3
+δ[E(f(s), u(s))]

1
3
−δ ds

≤ [E∞(t)](
2
3
+δ)[E(f0, u0)](

1
3
−δ)

∫ t

0
(1 + t− s)−

3
4
+ε(1 + s)−( 3

2
−2ε)( 2

3
+δ) ds.

Since δ < 1/3 is close to 1/3, we deduce from Lemma 3.1 that∫ t

0
(1 + t− s)−

3
4
+εE(f(s), u(s)) ds ≤ C(1 + t)−

3
4
+ε[E∞(t)](

2
3
+δ)[E(f0, u0)](

1
3
−δ).

Let us also remark that the third term in the r.h.s. of (3.9) is also trivially estimated by
the above quantity. Similarly, using Lemma 3.1 it holds that∫ t

0
(1 + t− s)−

3
2 [E(f(s), u(s))]2ds ≤ E∞(t)E(f0, u0)

∫ t

0
(1 + t− s)−

3
2 (1 + s)−

3
2
+2εds

≤ CE∞(t)E(f0, u0)(1 + t)−
3
2
+2ε.
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Thus, one has from (3.9) that

‖(f(t), u(t))‖2
L2 ≤ Cε(1 + t)−

3
2
+2ε
{
‖(f0, u0)‖2

Z1∩L2

+ E(f0, u0)E∞(t) + [E(f0, u0)]2(
1
3
−δ)[E∞(t)]2(

2
3
+δ)
}

.

Plugging this into the r.h.s. of (3.8), multiplying the resulting inequality by (1 + t)
3
2
−2ε

and using again Lemma 3.1 replacing e−λ(t−s) by (1 + t− s)−β1 with β1 > 3
2 − 2ε and the

fact that E∞(t) is non-increasing in time, we conclude

(1 + t)
3
2
−2εE(f(t), u(t)) ≤ Cε

{
‖(f0, u0)‖2

Z1∩H3 + E(f0, u0)E∞(t)

+ [E(f0, u0)]2( 1
3
−δ)[E∞(t)]2(

2
3
+δ)
}

for any t ≥ 0, which implies that

E∞(t) ≤ Cε{‖(f0, u0)‖2
Z1∩H3 + E(f0, u0)E∞(t) + [E(f0, u0)]2(

1
3
−δ)[E∞(t)]2(

2
3
+δ)}.

Since ‖(f0, u0)‖2
Z1∩H3 and E(f0, u0) ∼ ‖(f0, u0)‖2

H3 are small enough and 1 < 2(2
3 + δ) < 2,

then

y(t) ≤ A [1 + y(t)] + C
1−2( 1

3
−δ)

ε A2( 1
3
−δ)y(t)2

for all t ≥ 0, with y(t) = E∞(t) and A = Cε‖(f0, u0)‖2
Z1∩H3 . A direct application of

Lemma 3.2 implies

E∞(t) ≤ 2A = 2Cε‖(f0, u0)‖2
Z1∩H3

holds uniformly in time. Recalling the definition (3.10) of E∞(t), (1.10) follows and the
proof of Theorem 1.1 is completed.

Remark 3.1. [Adding Viscosity] The same theorem applies directly by adding viscosity
to the system (1.1)-(1.3). More precisely, if we consider the Navier-Stokes-Vlasov-Fokker-
Planck system as in [13]:

∂tF + ξ · ∇xF = ∇ξ · ((ξ − u)F +∇ξF ),
∇x · u = 0,

∂tu + u · ∇xu +∇xp = µ∆xu +
∫

R3

(ξ − u)Fdξ,

where the constant µ > 0 is the viscosity of the fluid, then all estimates in Sections 2 and
3 can be made independently on µ > 0. Therefore, Theorem 1.1 holds for the Navier-
Stokes-Vlasov-Fokker-Planck system for any µ > 0. Moreover, the constructed solutions
in Theorem 1.1 are their weak limits as µ → 0.
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4 The periodic case

In this section, we are concerned with the case when the spatial domain is periodic.
Precisely, consider the Cauchy problem over the Torus T3:

∂tF + ξ · ∇xF = ∇ξ · ((ξ − u)F +∇ξF ),

∇x · u = 0,

∂tu + u · ∇xu +∇xp =
∫

R3

(ξ − u)F dξ, t > 0, x ∈ T3, ξ ∈ R3

with F (0, x, ξ) = F0(x, ξ), u(0, x) = u0(x), x ∈ T3, ξ ∈ R3. Here, ∇x · u0 = 0. Similarly
as before, set F (t, x, ξ) = M + M1/2f(t, x, ξ) to obtain

∂tf + ξ · ∇xf + u · ∇ξf −
1
2
u · ξf − u · ξM1/2 = Lf,

∇x · u = 0,

∂tu + u · ∇xu +∇xp + u(1 + a) = b,

(4.1)

with initial data

f(0, x, ξ) = f0(x, ξ) ≡ M−1/2(F0 −M), u(0, x) = u0(x). (4.2)

Here, the moment functions a, b are defined in (1.9).

Theorem 4.1. Let ∇x · u0 = 0 and F0 ≡ M + M1/2f0 ≥ 0. Assume that
‖f0‖L2

ξ(R3;H3
x(T3)) + ‖u0‖H3(T3) is small enough and∫

T3

a0dx = 0,

∫
T3

(u0 + b0) dx = 0.

Then, the Cauchy problem (4.1)-(4.2) admits a unique global solution (f(t, x, ξ), u(t, x))
satisfying

f ∈ C 0([0,∞); L2
ξ(R3; H3

x(T3))), u ∈ C 0([0,∞); H3(T3)),

F = M + M1/2f ≥ 0,

‖f(t)‖L2
ξ(R3;H3

x(T3)) + ‖u(t)‖H3(T3) ≤ Ce−λt(‖f0‖L2
ξ(R3;H3

x(T3)) + ‖u0‖H3(T3))

for any t ≥ 0, where C > 0 and λ > 0 are some constants.

Proof. Let us only sketch the proof of uniform-in-time a priori estimates as follows. First
of all, the estimate (2.12) in Corollary 2.1 can be modified for the periodic case as

1
2

d

dt

∑
|α|≤3

(‖∂αf‖2 + ‖∂αu‖2) + λ0

∑
|α|≤3

(‖{I−P}∂αf‖2
ν + ‖∂α(u− b)‖2)

≤ C‖u‖H3

∑
|α|≤3

(‖{I−P}∂αf‖2
ν + ‖∂α(u− b)‖2) + ‖(a, b)‖2

H3

 . (4.3)
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This is obtained by changing the estimates whenever pure Sobolev inequalities were used
by adding the zero-order terms in the energy. For instance, in the end of proof of Lemma
2.2, we rewrite that bound by∫

T3

1
2
u · 〈ξf, f〉 dx−

∫
T3

a|u|2 dx

≤ ‖a‖L6‖u‖L3‖u− b‖L2 + C‖u‖L3‖(a, b)‖L6‖{I−P}f‖
+‖u‖L∞‖{I−P}f‖2

ν

≤ C‖u‖H2‖{I−P}f‖2
ν + C‖u‖H1‖u− b‖2

L2 + C‖u‖H1‖(a, b)‖2
H1 .

Analogously, it is done for the proof of Lemma 2.3. In a similar way, the estimate (2.17)
in Lemma 2.4 can be modified for the torus case as

d

dt
E0(f(t)) + λ‖∇x(a, b)‖2

H2 ≤C(‖{I−P}f‖2
L2

ξ(H3
x)

+ ‖u− b‖2
H3)

+ C‖u‖2
H3

[
‖(a, b)‖2

H3 + ‖∇x{I−P}f‖2
L2

ξ(H3
x)

]
, (4.4)

where E0(f(t)) is the same as in (2.16), with R3 replaced by T3. Now, we also define
E(f(t), u(t)) in the same way as in (2.23). Therefore, for properly chosen κ1 > 0 in (2.23),
from (4.3) and (4.4), one has E(f(t), u(t)) ∼ ‖(f, u)‖2

H3 and

d

dt
E(f(t), u(t)) + λD(f(t), u(t))

≤ C(‖u‖H3 + ‖u‖2
H3)

∑
|α|≤3

‖{I−P}∂αf‖2
ν + ‖u− b‖2

H3 + ‖(a, b)‖2
H3

 , (4.5)

where D(f(t), u(t)) is the same as in (2.24). Using the conservation laws in the case of
Torus

d

dt

∫
T3

adx = 0,
d

dt

∫
T3

(u + b) dx = 0

due to the system (4.1), ∫
T3

adx = 0,

∫
T3

(u + b) dx = 0

hold for any t > 0 since they hold initially by the assumptions in Theorem 4.1. Thus,
from the Poincaré inequality, one has

‖a‖L2 ≤ C‖∇xa‖L2 , ‖u + b‖L2 ≤ C‖∇x(u + b)‖L2 .

It further holds that

‖u‖L2 + ‖b‖L2 ≤ C(‖u + b‖L2 + ‖u− b‖L2)
≤ C(‖∇x(u + b)‖L2 + ‖u− b‖L2)
≤ C(‖∇x(b, u)‖L2 + ‖u− b‖L2).
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Applying the above estimates to the inequality (4.5), one has

d

dt
E(f(t), u(t)) + λDT(f(t), u(t)) ≤ C(‖u‖H3 + ‖u‖2

H3)DT(f(t), u(t)) (4.6)

with the definition

DT(f(t), u(t)) = D(f(t), u(t)) + ‖(a, b, u)‖2
L2 .

Therefore, using the similar proof as in the case of R3, the global existence of solu-
tions to the Cauchy problem (4.1)-(4.2) stated as in Theorem 4.1 follows. Finally, since
E(f(t), u(t)) is small enough uniformly in time, (4.6) gives

d

dt
E(f(t), u(t)) + λDT(f(t), u(t)) ≤ 0.

Noticing E(f(t), u(t)) ≤ CDT(f(t), u(t)) in the torus case, it follows

d

dt
E(f(t), u(t)) + λE(f(t), u(t)) ≤ 0.

This implies the exponential decay of E(f(t), u(t)) ∼ ‖(f(t), u(t))‖2
H3 in time.

5 Appendix

In the sequel 〈·, ·〉 will denote the distribution bracket of D ′(R3)3 over D(R3)3. Let us
introduce the sets

V :=
{
ϕ ∈ D(]0, T [×R3)3 |divx(ϕ) = 0

}
,

Λ :=
{
h ∈ D ′(]0, T [×R3)3 |ϕ ∈ V ⇒ 〈h, ϕ〉 = 0

}
.

Here and in the sequel, for clearness, we add a superscript in vector fields to show the
dimension of their ranges. Consider X = W1,∞([0, T ]; H2(R3)3

)
∩L∞

(
[0, T ]; H3(R3)3

)
and

Y =:= W1,∞([0, T ]; H2(R3)
)
∩ L∞

(
[0, T ]; H3(R3)

)
. Then,

Π : X3 × Y −→ L∞
(
[0, T ]; H2(R3)

)
(v, w, s, r) 7−→ ∂tv + w · ∇xv + v(r + 1)− s,

is a well-defined map since:

1. by Rademacher’s theorem v is a.e. differentiable, ∂tv ∈ L∞
(
[0, T ]; H2(R3)3

)
and we

have the corresponding integration formula.

2. H2(R3) is stable by product, hence all the other terms belong to L∞
(
[0, T ]; H2(R3)3

)
.

In the sequel P is the Leray projector on the closed space of L2(R3)3 formed by the
divergence-free functions. Recall its definition via Fourier transform

P(v) := F−1

(
v̂ − k · v̂

|k|2
k

)
. (5.1)
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From now on we will only consider elements (v, w, s, r) of X3 × Y, with v and w
divergence-free vector flows. In such conditions we will say that v is a weak solution of
the system

∂tv + P{w · ∇xv + v(r + 1)− s} = 0 (5.2)
divx(v) = 0, (5.3)

if and only if Π(v, w, s, r) ∈ Λ, which is equivalent to satisfy (5.2)–(5.3) a.e. as elements of
L2(R3)3. We will say that v is a strong solution of (5.2)–(5.3) when v is C 1([0, T0]×R3)3

and verifies the equalities for all (t, x) ∈]0, T [×R3. We may now state the first result

Lemma 5.1. 1. If v ∈ C 0
(
[0, T ]; H3(R3)3

)
is a weak solution of (5.2)–(5.3) then it is

a strong solution.

2. For every strong solution there exists a real valued function q ∈ C 0
(
[0, T ]; H3(R3

loc)
3
)

such that the following equation holds pointwisely in ]0, T [×R3:

∂tv + w · ∇xv + v(r + 1) +∇xq = s,

Proof.

1. P clearly maps continuously H2(R3)3 into itself. Since H3(R3) is a topological al-
gebra, the assumptions made on v, w, s and r insure us that w · ∇xv + rv − s lies
in C 0

(
[0, T ]; H2(R3)3

)
. Thus, ∂tv is continuous in time with value in H2(R3)3 ↪→

C 0(R3)3. Furthermore, v is continuous in time with values in H3(R3) ↪→ C 1(R3)3.
Eventually v ∈ C 1([0, T ]× R3)3 and since it verifies the weak form of the equation,
it verifies it pointwisely.

2. In this case Π(v, w, s, r) ∈ C 0
(
[0, T ]; H2(R3)3

)
∩Λ, so we may directly use Lemma 5.4

below to get the existence of q ∈ C 0
(
]0, T [; H3(R3

loc)
3) such as Π(v, w, s, r) = ∇xq,

first as distributions and then as functions since both are continuous. So we have
for (t, x) ∈]0, T [×R3 that ∂tv + w · ∇xv + v(r + 1) +∇xq = s.

Weak and strong solutions finally becomes one by the following lemma.

Lemma 5.2. Any weak solution v of (5.2)–(5.3) is in C 0
(
[0, T ]; H3(R3)3

)
.

Proof. We refer to [27], p.364, Proposition 1.4 for a complete proof (in a more general
framework), we will only give the main steps here. By interpolation v ∈ C 0

w

(
I; H3(R3)3

)
(weak topology). So one just need to prove that ‖v(t)‖H3(R3)3 is continuous. For that
apply a mollifier ρn on the equation and use the usual estimates (using the divergence-free
property of w) to obtain∣∣∣‖ρn ? v(t2)‖2

H3(R3)3
− ‖ρn ? v(t1)‖2

H3(R3)3

∣∣∣ ≤ C

∫ t2

t1

‖v(τ)‖2
H3(R3)3

dτ + C(t2 − t1),

for some constant C independent of n. ‖v(t)‖2
H3 is hence Lipschitz continuous and the

lemma is proved.
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Lemma 5.3. Given v0 ∈ H3
div(R3)3, there exists a strong global solution to (5.2)–(5.3)

verifying v(0) = v0.

Proof. By the two previous lemmas we just need to build a weak solution. Consider the
Banach space H3

div(R3)3, closure of V in H3(R3)3. The Leray projector is again a continuous
endomorphism of H3

div(R3)3. Consider a sequence (ρn)n of mollifiers (in space). Then, the
Cauchy problem

∂tvn + P
{

ρn ?
[
w · ∇x[ρn ? vn]

]
+ vn(r + 1)− s

}
= 0, (5.4)

vn(0) = v0, (5.5)

has clearly a unique, global, strong solution on [0, T ]. Indeed, since we have

‖ρn ?
[
w · ∇x[ρn ? vn]

]
‖H3(R3)3 ≤ ‖ρn‖L1(R3)3‖w‖H3(R3)3‖∇xρn ? vn‖H3(R3)3

≤ ‖ρn‖L1(R3)3‖w‖H3(R3)3‖∇xρn‖L1(R3)3‖vn‖H3(R3)3 ,

we see that the problem is just solving an affine ordinary differential equation

v̇n(t) = An(t)vn(t) + P(s),

for some continuous linear map of continuous operators An(t) which is known to have
global solutions. The rest of the proof is close to what is done in [27] (p.360-363, theorem
1.2) but a bit simpler (linear), let us sketch briefly what will happen :

• The sequence (vn)n is bounded in L∞
(
[0, T0]; H3

div(R3)3
)
.

Since the weak derivatives ∂α commutes with the strong one ∂t and with the operator
P which is continuous from H3

div(R3)3 to itself and self-adjoint, usual estimates (using
the divergence-free property of w) infer

‖vn(t)‖2
H3

div(R3)3
≤ ‖v0‖2

H3
div(R3)3

+ A0

∫ t

0
‖vn(τ)‖2

H3
div(R3)3

dτ,

for some constant A0 independent of n. Grönwall’s lemma then insures that (vn)n

is bounded in the desired space and the associated weak−? convergence (of a subse-
quence) follows from Banach-Alaoglu’s theorem.

• The sequence (vn)n is bounded in W1,∞([0, T0]; H2(R3)3
)
.

The previous item and the equation itself give us an estimate in C 1
(
[0, T0]; H2

div(R3)3
)
,

which as previously gives weak−? compactness in W1,∞([0, T0]; H2(R3)3
)
.

• The limit is solution.
The strong equations (5.4)–(5.5) implies clearly for all n ∈ N∗, Π(vn, w, r, s) ∈ Λ,
which is kept at the limit n →∞.

The following lemma proves the classical existence of the pressure in our simple case,
see [24] for related results.
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Lemma 5.4. Let h ∈ C 0
(
[0, T ]; H2(R3)3

)
∩ Λ. Then there exists q ∈ C 0

(
]0, T [; H3(R3

loc))
such as h = ∇xq.

Proof. Consider first the case where g ∈ L2(R3)3 verifies 〈g, ϕ〉 = 0 for all divergence-free
function ϕ, and let us prove g = ∇xq for some L2

loc(R3) scalar function. A straightforward
density argument implies P(g) = 0 and hence by the definition of P (5.1)

ĝ =
k · ĝ
|k|2

k,

so one just need to prove that
k · ĝ
|k|2

∈ F(L2
loc(R3)) (in the tempered sense). But we have

ĝ · k
|k|2

=
ĝ · k
|k|2

1|k|≤1 +
ĝ · k
|k|2

1|k|>1 ∈ L11/10(R3) + L2(R3),

where we used the Hölder inequality and the integrability of |k| 7→ |k|−22/91|k|≤1 in R3.
Now L2(R3) = F(L2(R3)) by isometry and L11/10(R3) ⊂ F(L11(R3)) by Riesz-Thorin’s
interpolation. So we indeed get the existence of q ∈ L11(R3) ⊂ L2

loc(R3) such as g = ∇xq
and since the previous inclusions are continuous we have the estimate, for some constant
C

‖q‖L2
loc(R3) ≤ C‖g‖L2(R3)3 .

Now take h as in the lemma and ϕ ∈ D(R3)3, with div(ϕ) = 0. ϕ is not really an admissible
test function for h ∈ Λ since it does not depend on time. But,

Ψ(t) :=
∫

R3

h(t, x) · ϕ(x) dx

is a continuous function of t ∈ [0, T ], since h ∈ C 0
(
[0, T ]; L2(R3)3

)
. And since h ∈ Λ, we

get by Fubini’s theorem that Ψ = 0 in D ′(]0, T [), hence Ψ(t) = 0 for all t ∈ [0, T ].
We can hence apply the previous study with g := h(t) to obtain the existence of

q(t) ∈ L2
loc(R3), for all t ∈ [0, T ], such as h(t) = ∇xq(t). Furthermore q depends linearly

on h, so for s, t ∈ [0, T ] we have

‖q(t)− q(s)‖L2
loc(R3) ≤ C‖h(t)− h(s)‖L2(R3)3 ,

and since h ∈ C 0
(
[0, T ]; H2(R3)3

)
we eventually have q ∈ C 0

(
[0, T ]; H3(R3

loc)).

Lemma 5.5. Consider the Fokker-Planck equation

∂tF + ξ · ∇xF −∇ξ · (ξF )−∆ξF = A, (5.6)
F (0, x, ξ) = F0(x, ξ), (5.7)

where A ∈ L∞
(
[0, T ];C∞(R3 × R3)

)
∩ C 0

t,x,ξ and F0 −M ∈ C∞(R3 × R3) are both com-
pactly supported in space and velocity. Then the Cauchy problem (5.6)–(5.7) has a unique
classical solution belonging to C 1

(
[0, T ];C 0(R3×R3)

)
. For each t0 > 0, M−1/2(F −M) ∈

C 0
(
[t0, T ];S (R3 × R3)

)
, and furthermore M−1/2(F −M) belongs to L∞

(
[0, T ]; L2

ξ(H
3
x)
)
.
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Proof. By following directly the computations made in [25] (same notations), we first
describe the characteristics

Φt(x, ξ) := [Xt(x, ξ), Ẋt(x, ξ)] = [x + ξ(1− e−t), ξe−t].

We have then (see [25]) an explicit formula describing the solution F of (5.6)–(5.7)

F (t, Φt(x, ξ)) = e3tH(t) ? F0(x, ξ) +
∫ t

0
e3(t−s)[H(t− s) ? A(s)]

(
Φs(x, ξ)

)
ds,

where the convolutions are acting on both variables x and ξ. Of course since M solves the
homogenous equation, we have also :

(F −M)(t, Φt(x, ξ)) = e3tH(t) ? (F0 −M)(x, ξ)

+
∫ t

0
e3(t−s)[H(t− s) ? A(s)]

(
Φs(x, ξ)

)
ds, (5.8)

The function H is the fundamental solution of some partial differential equations with
constant (in space and velocity) coefficients and in our case it takes the form (directly
taken from [25] again)

H(t, x, ξ) =
exp

(
− ν(t)|x|2+λ(t)|ξ|2+µ(t)(x·ξ)

4λ(t)ν(t)−µ2(t)

)
(2π)3(4λ(t)ν(t)− µ2(t))3/2

,

where

λ(t) = t + 2(1− et) +
1
2
(e2t − 1), ν(t) =

1
2
(e2t − 1), µ(t) = (1− et)2.

A straightforward computation gives the ellipticity condition

4ν(t)λ(t)− µ2(t) = (et − 1)[(et + 1)2t + 4(1− et)] ≥ 0,

so that (5.8) is clearly defined. For t0 > 0, F belongs to C 1
(
[t0, T ];S (R3 × R3)

)
is

a consequence of (5.8), as noticed in [25] (our source term is smooth and compactly
supported). To prove that it is still the case for M−1/2F , given (5.8), it is clearly sufficient
to prove that

• G : (t, x, ξ) 7→ exp
[
|ξ|2
4 e−2t

][
H(t) ? (F0 −M)

]
(x, ξ) ∈ C 0

(
[t0, T ];S (R3 × R3)

)
,

• Bs : (t, x, ξ) 7→ exp
[
|ξ|2
4 e−2t

]
[H(t − s) ? A(s)]

(
Φs(x, ξ)

)
∈ C 0

(
[t0, T ];S (R3 × R3)

)
,

for t > s.

The fundamental solution can also be written in a simpler form

H(t, x, ξ) = K(t)e−α(t)|x|2e−β(t)|ξ|2e−γ(t)x·ξ,
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so that for all t > 0, x, y, ξ, ζ ∈ R3

H(t, x− y, ξ − ζ) = K(t)e−α(t)|x|2−β(t)|ξ|2−α(t)|y|2−β(t)|ζ|2e2α(t)x·ye2β(t)ξ·ζe−γ(t)(x−y)·(ξ−ζ),

and hence for any multi-indices `, p ∈ N3, we deduce

∂`
x∂p

ξ H(t, x− y, ξ − ζ) = P t
`,p(x, ξ, y, ζ)H(t, x− y, ξ − ζ),

for some polynomial function P t
`,p. Now, by the basic property of the fundamental solution,

and since F0 is compactly supported in space and velocity, the fact that G(t) is C∞(R3×
R3) for any fixed time is obvious, and

∂`
x∂p

ξ G(t) =
∑

0≤k≤p

Qt
k(|ξ|) exp

[ |ξ|2
4

e−2t
]
[∂`

x∂k
ξ H(t)] ? (F0 −M)(x, ξ),

where Qt
k is a polynomial. And since F0 has its support in space and velocity included in,

say, Bx(0, R)× Bξ(0, R), we have

|[∂`
x∂k

ξ H(t)] ? (F0 −M)(x, ξ)|

≤ CF0R
t
`,p(x, ξ)K(t)e−α(t)|x|2−β(t)|ξ|2e(2α(t)+γ(t))|x|Re(2β(t)+γ(t))|ξ|Re−γ(t)x·ξ,

where Rt
`,p(x, ξ) is another polynomial (actually the one obtained by letting x = ξ =

(1, 1, 1) in P t
`,p). Eventually we see that a sufficient condition to have G(t) in S (R3×R3)

is that the quadratic form

qt(x, ξ) :=
ν(t)|x|2 + λ(t)|ξ|2 + µ(t)(x · ξ)

4λ(t)ν(t)− µ2(t)
− 1

4
|ξ|2e−2t

is positive definite. This is equivalent to

λ(t)(e2t − ν(t)) > −1
4
µ2(t),

which is obviously true with the definition of ν(t), so the eigenvalue keep its sign. Fur-
thermore, the determinant is still strictly positive because

1
4
e−2t <

1
ν(t)

.

The regularity in time for t > 0 is obvious. As for Bs, the same study applies since
Bs(t) ∈ S (R3 × R3) is equivalent to Bs(t) ◦ Φ−s ∈ S (R3 × R3) and all the previous
inequalities are true if we substitue t by t − s. The end of the lemma is proved in the
following way : since F0 is smooth, ∂tM

−1/2(F − M)(t, x, ξ) has a limit as t goes to 0,
and it is equal to M−1/2[−ξ · ∇xF0 + ∇ξ · (ξF0) + ∆ξF0 + A(0)] ∈ L2

ξ(H
3
x) and hence

M−1/2F ∈ L∞
(
[0, ε]; L2

ξ(H
3
x))
)
, and hence for the whole interval [0, T ].
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