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Abstract

We show that gradient solitons, expanding, shrinking or steady, for the Ricci flow
have potentials leading to suitable reference probability measures on the manifold.
Under suitable conditions these reference measures satisfy sharp logarithmic Sobolev
inequalities with lower bounds charaterized by the geometry of the manifold. In the
proof various useful volume growth estimates are also established for gradient shrinking
and expanding solitons.

1 Introduction

A complete Riemannian manifold (M, g) is called a gradient shrinking soliton (shrinker) if
there exists a (smooth) function f such that its Hessian fij satisfies

(1.1) Rij + fij −
1
2
gij = 0.

Here Rij denotes the Ricci curvature. As shown in [CLN], Theorem 4.1, associated to the
metric and the potential function f , there exists a family of metrics g(η), a solution to Ricci
flow ∂

∂η g(η) = −2 Ric(g(η)), with the property that g(0) = g, the original metric, and a
family of diffeomorphisms φ(η), which is generated by the vector field X = 1

τ∇f , such that
φ(0) = id and g(η) = τ(η)φ∗(η)g with τ(η) = 1− η, as well as f(x, η) = φ∗(η)f(x). Namely
it gives a self-similar (shrinking) family of metrics which is a solution to the Ricci flow. The
metric g(η) and f(η) (sometimes also written as gτ and fτ , or simply g and f when the
meaning is clear) satisfy that

Rij + fij −
1
2τ
gij = 0.

Here S denotes the scalar curvature.

Gradient shrinking solitons arise as the singularity models of Ricci flow. The more inter-
esting cases are the noncompact ones. Trivial examples includes the Euclidean space Rn
and the cylinders Sk × Rn−k for k ≥ 2. Non-trivial noncompact examples can be found in,
for example [FIK]. There is also a more recent systematical way of constructing solitons
with symmetry in [DW]. The main purpose of this paper is to prove the following theorem,
which generalizes the sharp logarithmic Sobolev inequality (referred as Stam-Gross loga-
rithmic Sobolev inequality in [Vi1, Vi2], where one can also find detailed historic accounts
and more complete references) of the Euclidean space Rn [Gr].
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Theorem 1.1 Assume that (M, g, f) be a gradient shrinking soliton so that either |Ric| is
bounded or Ric ≥ 0. Then there exists a geometric invariant (under the isometry) µs which
depends only on the value of f and S at the minimum point of f under the normalization

1
(4πτ)n/2

∫
M
e−fdΓτ = 1, and is independent of τ , such that for τ > 0 and any compact

supported smooth function ρ = e−ψ

(4πτ)n/2
with

∫
M
ρ dΓτ = 1, where dΓτ is the volume element

of gτ , we have that ∫
M

(
τ(|∇ψ|2τ + S(·, τ)) + ψ − n

)
ρ dΓτ ≥ −µs.

Moreover, for this geometric constant µs the above inequality is sharp. In the case that
Ric ≥ 0 and bounded, µs ≥ 0.

The interested reader should consult Section 2 for the notations and the discussions on
how the invariant µs is defined. The proof of the inequality uses the Bakry-Emery criterion
for logarithmic Sobolev inequalities as obtain from the so-called HWI inequalities derived
by Villani and coauthors in different settings, see Section 4 and references therein. Here,
the main difficulty resides in showing the necessary bounds on the potential to be able to
apply these inequalities, which is done in Section 2.

An immediate consequence of the theorem is the (strong) non-collapsing result for the
gradient shrinking solitons. In the case that M has bounded nonnegative Ricci curvature
the sharp logarithmic Sobolev inequality of Theorem 1.1 implies the logarithmic Sobolev
inequality for all scales (may not necessarily with the sharp constant). In our analysis of
the gradient shrinking solitons we also proves a volume estimate which implies the following
statement on gradient shrinking solitons:

Corollary 1.1 Any non-flat gradient shrinking soliton with nonnegative Ricci curvature
must have zero asymptotic volume ratio.

The above result is also proved in Section 2, where one can find a quantified estimate on
the volume growth. This, in the case of gradient shrinking solitons, already generalizes a
previous important result of Perelman [P] on ancient solutions with bounded nonnegative
curvature operator. The result of Perelman, Proposition 11.4 of [P], draws the same conclu-
sion for any ancient solutions with bounded nonnegative curvature operator. (Perelman also
assumes the non-collapsing condition, which is not needed in his proof.) Gradient steady
solitons are special ancient solutions. However our result is more general than that of Perel-
man in two ways. First one can not derive the above result from the result of Perelman’s
since we do not assume that the curvature operator has any sign, nor put any bound on the
curvature. On the other hand, the result of Perelman can be derived out of the result above
on gradient steady solitons as a consequence via the limiting to the asymptotic solitons.

Gradient steady/expanding solitons (expanders) arise also in the singularity analysis of
Ricci flow [H1]. The technique employed here yields some sharp geometric inequalities for
steady/expanding solitons as well. The following is the sharp logarithmic Sobolev inequality
for the expanders.

Theorem 1.2 Assume that (M, g, f) is gradient expanding soliton with Ric ≥ 0. Then for
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any ρ(x) = e−ψ(x)

(4π)n/2
with

∫
M
ρ(x) dΓ(x) = 1, we have that

(1.2)
∫
M

(
|∇ψ|2 − 3S + ψ − n

)
ρ dΓ ≥ −µe.

Here µe is a geometric constant only depending on the value of f and S at the minimum
point of f . Moreover, the inequality is sharp for such µe. Moreover µe ≥ 0 with equality if
and only if (M, g) is isometric to Rn.

We refer the readers to Section 5 for the notaions involved. An equivalent expression of
the integrand also appeared in a recent interesting preprint of Cao and Hamilton [CH] on
pointwise differential estimates of Li-Yau-Hamilton type.

For the expanding solitons, we also obtain a volume estimate, which generalizes a recent
result of Hamilton [H2](see also [CLN]) asserting that the asymptotic volume ratio of gradient
expanding solitons with bounded positive Ricci curvature must be positive. The following is
one of our statements.

Corollary 1.2 Assume that (M, g, f) is a gradient expanding soltion with S(x) ≥ −β for
some constant β ≥ 0. Then for any o ∈M and r ≥ r0

V (o, r) ≥ V (o, r0)
(
r + a

r0 + a

)n−2β

with a = 2
√
f(o) + µe + β.

The above mentioned Hamilton’s result follows from the above statement applying to the
case β = 0. For general β, the growth rate in our estimate is sharp as shown by easy
examples. Detailed discussions can also be found in Section 5. A similar result can also be
found in a recent preprint [CT].

For gradient steady soliton we obtain a sharp weighted Poincaré inequality instead. The
proof is relatively easy without appealing the above mentioned theory involving the Bakry-
Emery criterion.

The part of the conclusion that µs ≥ 0 in the main theorem is finally proved in Section 7.
This is motivated by the c-theorem on the renormalization group flow. In view of the entropy
monotonicity formula of Perelman, its connection with the logarithmic Sobolev inequality, as
well as the fact that gradient shrinking solitons arise as the singularity models (at least for the
cases that the blow-up has nonnegative curvature), this result can be viewed as an analogue
of Zamolodchikov’s c-theorem [Z] for the re-normalization group flow. The proof makes use
a Li-Yau-Hamilton type inequality of Perelman [P] and the entropy formula/monotonicity
for the linear heat equation of [N2].
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2 Geometric estimates on gradient shrinking solitons

We shall follow the notations from the previous section. The following equations are simple
consequences of the soliton equation (see for example [H1] or [CLN] for a proof):

S + ∆f − n

2τ
= 0,(2.1)

S + |∇f |2 − f

τ
=

µs(τ)
τ

.(2.2)

where µ is a constant so chosen that

(2.3)
1

(4πτ)
n
2

∫
M

e−f dΓτ = 1.

Here S is the scalar curvature. The equations (2.1) and (2.2) imply that

(2.4) 2∆f − |∇f |2 + S +
f − n

τ
= −µs(τ)

τ
.

The integral
∫
M
e−f dΓτ is well-defined if we assume that |Ric | is bounded or Ric ≥ 0.

This is a consequence of the following lemma, together with the Bishop volume comparison
theorem which implies that for a fixed o ∈M the volume of B(o, r) is bounded from above
by C exp((n− 1)Kr) for some C > 0 if Ric ≥ −(n− 1)K2.

Lemma 2.1 Assume that either |Ric | ≤ C1 for some constant C1 > 0 or Ric ≥ 0. Let
r(x) be the distance function to a fixed point o ∈M with respect to g(η) metric. Then there
exists δ0 = δ0(M,f, τ) and positive constants C2, C3 depending on M,f, τ such that for any
δ ≤ δ0,

(2.5) f(x) ≥ δr2(x)

for r(x) ≥ C2 and

(2.6) f(x) ≤ C3r
2(x), |∇f |(x) ≤ C3(r(x) + 1)

for r(x) ≥ C2.

Proof. If we assume that |Ric | ≤ C1, by Hamilton [H1], Theorem 17.4, there exists C4 =
C4(M,C1) such that any minimizing geodesic γ from o ∈M to x = γ(s0) with s0 ≥ 2,∫ s0

0

Ric(γ′, γ′) ds ≤ C4(M).

Hence as in [P, N3] we have that

d

ds
f(γ(s)) = 〈∇f,∇r〉(γ(s)) ≥ 1

2τ
s− C4 − |∇f |(o).

for s ≥ 2, which implies the first claimed estimate. In fact one has that

f(x) ≥ 1
4τ
r2(x)− (C4 − |∇f |(o))r(x)− f(o).
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This implies (2.5) easily. From this we know that the minimum of f can be achieved at
some point, say o ∈ M and which is invariant for different η. The estimates of (2.6) follow
from the fact fij ≤ (C1 + 1)gij and (2.2).

In the case Ric ≥ 0, The first estimate of (2.6) on the upper bound of f again follows easily
from fij ≤ 1

2τ gij and the second one of (2.6) follows from the upper bound on f and (2.2).
In fact we have that for r(x) ≥ B, some positive constant B = B(M),

(2.7)
(
|∇f |2 + f

)
(x) ≤

(
1
2τ

+ 1
)2

r(x)2.

By the proof of Proposition 1.1 in [N3], for any minimizing geodesic joining o to x = γ(s0)
with s0 ≥ 2 and r0 ≥ 1, we have that

(2.8)
∫ s0−r0

0

Ric(γ′, γ′) ds ≤ C4(M) +
n− 1
r0

.

Now assume that the claimed estimate (2.5) fails at x = γ(s0). Namely we assume that

f(γ(s0)) ≤ δ0s
2
0.

Then for s0 sufficiently large, (2.2) implies that

S(γ(s0)) ≤
δ0
τ
s20 +

µs(τ)
τ

≤ 2δ0
τ
s20.

Now we employ the trick from [N3] to obtain upper bound of S(γ(s)) for s near s0. Using
the equation

∇iS = 2Rijfj

as in [N3] we have that for s0 and s1 satisfying s0 ≥ s1 ≥ B, for some B = B(M) > 0,

|∇ logS|(γ(s)) ≤ 2|∇f |(γ(s)) ≤ 2
(

1
2τ

+ 1
)
s

which implies that

log
S(γ(s1))
S(γ(s0))

≤ 2
(

1
2τ

+ 1
)
s0(s0 − s1)

for any s1 ≤ s0. Now choosing r0 = n−1
εs0

(with ε > 0 to be decided later) as in [N3] we have
that

S(γ(s)) ≤ 2δ0
τ
s20 exp

(
2
(

1
2τ + 1

)
(n− 1)

ε

)
for all s ≥ s0 − r0. Then∫ s0

s0−r0
Ric(γ′, γ′) ds ≤

∫ s0

s0−r0
S(γ(s)) ds

≤ r0
2δ0
τ
s20 exp

(
2
(

1
2τ + 1

)
(n− 1)

ε

)

=
2δ0(n− 1)

τε
exp

(
2
(

1
2τ + 1

)
(n− 1)

ε

)
s0.
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Together with (2.8), taking ε = 1
4τ , we have that∫ s0

0

Ric(γ′, γ′) ds ≤ 1
4τ
s0 + 8δ0(n− 1) exp

(
8
τ

(
1
2τ

+ 1
)

(n− 1)
)
s0 + C4(M).

But this would implies that, if δ0 is chosen to be sufficiently small such that

8δ0(n− 1) exp
(

8
τ

(
1
2τ

+ 1
)

(n− 1)
)
≤ 1

100τ
,

d

ds
f(γ(s)) =

∫ s

0

d2

ds2
f(γ(s)) +

d

ds
f(γ(0))

≥ s

2τ
−
∫ s0

0

Ric(γ′, γ′) ds− |∇f |(o)

≥ 1
5τ
s− C5

for any s0−1 ≤ s ≤ s0 with s0 sufficiently large and C5 = C(C4, δ0, |∇f |(o)). For s ≤ s0−1,
applying (2.8) with r0 = 1, we have that

d

ds
f(γ(s)) =

∫ s

0

d2

ds2
f(γ(s)) +

d

ds
f(γ(0))

=
s

2τ
−
∫ s

0

Ric(γ′, γ′) ds− |∇f |(o)

≥ s

2τ
− C4 − (n− 1)− |∇f |(o).(2.9)

Hence
f(γ(s0)) ≥

1
8τ
s20 − C5.

This is a contradiction to the assumption that f(γ(s0)) ≤ δ0s
2
0, for s0 sufficiently large and

δ0 ≤ 1
10τ . �

Corollary 2.1 Under the same assumptions as in the lemma, the minimum of f can be
achieved somewhere, say o ∈ M . Hence f(o) and S(o) are fixed for different η and the
constant µs(τ) in (2.2) is a constant independent of τ . Therefore µs + µs(τ) is an invariant
of the soliton. Moreover, both S and ∆f either are bounded (in the case |Ric | is bounded)
or grow at most quadratically (in the case Ric ≥ 0).

Proof. The first part of the corollary is evident since o is the fixed point of φ(η). The change
of S is compensated by the factor τ . The second part follows from the equations (2.1) and
(2.2). �

Note that by Theorem 4.1 of [CLN], e−f

(4πτ)n/2
satisfies the conjugate heat equation(

∂

∂τ
−∆ + S

)(
e−f

(4πτ)n/2

)
= 0.

Hence the total mass of e−f (namely the equation (2.3)) is preserved. In other words, if
it holds at τ = 1 (which corresponds to η = 0), it holds for all τ > 0. Also note that
µs(M, g) = µs(M ′, g′) if (M, g) is isometric to (M ′, g′) by the virtue of Lemma 1.2 of [Na].
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The next result concerns the behavior of the volume V (o, r) of balls B(o, r), especially as
r →∞. We start with an easier version with Ricci curvature being bounded.

Corollary 2.2 Let (M, g) be a nonflat gradient shrinking soliton with Ric ≥ 0. Assume
further that Ric ≤ C1. Then there exists a constant δ = δ(M,f) > 0 with the property that
for any o ∈M , there exists a = a(M,f,C1) such that for any r ≥ r0 ≥ a

(2.10) V (o, r) ≤ V (o, r0)
(
r − a

r0 − a

)n−δ
.

Proof. Without the loss of generality we may assume that τ = 1. By Proposition 1.1 of
[N3], we have δ = δ(M,f) > 0 such that S ≥ δ

2 . On the other hand, the argument from the
proof of the previous lemma, more precisely (2.9), implies that

∂f

∂r
(x) ≥ r(x)

2
− C6(M,f, o).

Now integration by part (on equation (2.1)) over B(o, r) yields that

n− δ

2
V (o, r) ≥

∫
B(o,r)

(n
2
− S

)
dΓ

=
∫
∂B(o,r)

∂f

∂r
dA

≥ A(o, r)
(r

2
− C6

)
.

Here A(o, r) is the surface area of ∂B(o, r). The result follows from integrating the above
estimate on [r0, r]. �

Note that the above result, if can be shown under no upper bound on the Ricci curvature,
can be used to prove Proposition 11.4 of [P], which concludes that any nonflat ancient
solution of Ricci flow with bounded nonnegative curvature operator must have the asymptotic
volume ratio limr→∞

V (o,r)
rn = 0. In fact one can prove it by the contradiction. Assuming

that the claim is not true, one can obtain an asymptotic soliton by Proposition 11.2 of
[P], which is nonflat, also have maximum volume growth since it is easy to show that the
asymptotic volume ratio for an ancient solution with bounded nonnegative curvature is
monotone non-increasing in t, hence the asymptotic soliton must has positive asymptotic
volume ratio. This is a contradiction with the estimate (2.10). With some extra effort,
we can indeed prove a such desired volume estimate without assuming the Ricci curvature
upper bound.

Proposition 2.1 Let (M, g) be a nonflat gradient shrinking soliton with Ric ≥ 0. Then
there exists δ = δ(M,f) with the property that for any o ∈M , there exists a = a(M,f, o) > 1
and C = C(n, δ) such that for any R ≥ R0 ≥ a,

(2.11) V (o,R+ 1) ≤ V (o,R0 + 1)e
C(n,δ)
R0

(
R− a

R0 − a

)n−δ
.

Proof. First we introduce some notations. Let C(r) be the subset of the unit tangent sphere
at o such that for all θ ∈ C(r) the geodesic γ(s) = expo(sθ) is minimizing up to s = r (and
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not beyond). Clearly C(r2) ⊂ C(r1) if r1 ≤ r2. Let J(r, θ)dr ∧ dθ be the volume element
with respect to this polar coordinate (r, θ). Then the surface area of the sphere ∂B(o, r),
A(r) =

∫
C(r) J(r, θ) dθ. Also we assume that τ = 1 without the loss of the generality. As

before

V (o, r)
(
n− δ

2

)
≥

∫
B(o,r)

(n
2
− S

)
dΓ

=
∫
∂B(o,r)

∂f

∂r
dA.

Now observe that from the proof of the previous lemma, precisely (2.9), it is evident that
for any θ ∈ C(r + 1), and at s = r, on the geodesic γ(s) = expo(sθ),

∂f
∂r ≥

r
2 − C6. Hence∫

∂B(o,r)

∂f

∂r
(r) dA =

∫
C(r)

∂f

∂r
(r)J(r, θ) dθ

≥
∫
C(r+1)

(r
2
− C6

)
J(r, θ) dθ

≥
(r

2
− C6

)( r

r + 1

)n−1 ∫
C(r+1)

J(r + 1, θ) dθ

=
(r

2
− C6

)( r

r + 1

)n−1

A(o, r + 1).

In the second inequality we have used the volume comparison fact that J(r,θ)
rn−1 is monotone

non-increasing. Putting together we have that

V (o, r + 1)
(
n− δ

2

)
≥
(r

2
− C6

)( r

r + 1

)n−1

A(o, r + 1).

For r ≥ 2,

A(o, r + 1)
V (o, r + 1)

≤ n− δ

2
1

r/2− C6

(
1 +

1
r

)n−1

≤ (n− δ)
1

r − 2C6

(
1 +

C(n)
r

)
.

Let 2a = 4C6, then for r ≥ 2a, r − 2C6 ≥ r
2 . Thus

A(o, r + 1)
V (o, r + 1)

≤ n− δ

r − a
+
C(n, δ)
r2

.

Finally the claimed result follows from integrating the above on [R0, R]. �

Corollary 2.3 Let (M, g) be a nonflat gradient shrinking soliton with Ric ≥ 0. Then
V(M) = 0, where V(M) + limr→∞

V (o,r)
rn .

Note that the above result generalizes Proposition 11.4 of [P] in the case of the gradient
shrinking solitons by replacing the nonnegativity of the curvature operator with nonnegativ-
ity of Ricci. Also the assumption on the curvature bound has been removed. It is interesting
to find out if the same estimate as in Proposition 2.1 can be shown for any ancient solutions
with nonnegative Ricci curvature.
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3 Optimal Transport and LSIs

In this section, we will work with Riemannian manifolds (M, g) endowed with a reference
probability measure e−V dΓ where the potential V ∈ C2(M) verifies a curvature-dimension
bound of the type C(K,∞) with K ∈ R, i.e.,

Rij + Vij ≥ Kgij .

Here dΓ is the volume measure associated to (M, g). This section is devoted to collect several
results present in the literature in the present context [Vi2]. A Riemannian manifold in this
section refers to a smooth, complete connected finite-dimensional Riemannian manifold
distinct from a point, equipped with a smooth metric tensor. Let us assume that the
reference measure is normalized by ∫

M

e−V dΓ = 1.

Consider the positive solution ρ to the Fokker-Planck equation

(3.1)
∂ρ

∂t
− div (ρ∇(log ρ+ V )) = 0.

Let ξ = log ρ+ V . It is easy to see that(
∂

∂t
−∆

)
ξ = 〈∇ξ,∇ log ρ〉.

Let us define the Boltzmann relative entropy functional, called also Nash entropy, as

HV (ρ) +
∫
M

ρξ dΓ.

We have immediately the following dissipation of the Boltzmann relative entropy functional,

(3.2)
d

dt
HV (ρ(t)) = −

∫
M

|∇ξ|2ρ dΓ + −IV (ρ(t)),

where computations have been made for smooth fast-decaying at infinity solutions on the
manifold M . This computation show us that these two quantities, the relative Boltzmann
entropy HV (ρ) and the relative Fisher information IV (ρ) are intimately related at least
for solutions of (3.1). However, as it was discovered in the case of Rn or in the case of a
manifold in [BE, AMTU] for linear diffussions or in [CT, O, DoPi] for nonlinear diffusions,
this relation is really through functional inequalities, see also [OV].

Related to these functionals, there is another quantity that is involved in these inequalities:
the Euclidean Wasserstein distance between any two probability measures ν0, ν1 on the
manifold M , i.e.,

(3.3) W2(ν0, ν1) = inf
{∫

M×M
d(x, y)2 dθ(x, y); θ ∈ Θ(ν0, ν1)

}1/2

;

where Θ(ν0, ν1) is the set of probability measures on M × M having marginals ν0 and
ν1. This distance is well defined for probability measures ν0 and ν1 with second moment
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bounded, P2(M), and metrizes the weak convergence of measures in the sense of [Vi2,
Definition 6.7, Theorem 6.8]. The expression ”second moment bounded” refers to the fact
that r(x)2 is integrable against the measures ν0 and ν1. It is worthy to mention that the
curvature-dimension bound C(K,∞) with K > 0 implies that the second moment of the
reference measure (actually, all moments) e−V are bounded, see [Vi2, Theorem 18.11].

Recently, several authors [S, LV] based on early works [Mc, CMS], see [Vi2, Chapter 17]
for a whole account of the history, have characterized curvature-dimension bounds in terms
of the displacement convexity of the Boltzmann relative entropy functional. The notion
of displacement convexity refers to convexity along pathes of minimal transport distance
W2 in the set of probability measures P2(M). An expression of the convexity of these
functionals are the so called HWI inequalities, named in this way since they involved the
three functionals HV (ρ), IV (ρ) and W2. In the following, we will work with measures
absolutely continuous against volume measure and we identify the measures with their
densities for notational convenience. The main results we need are the following:

Theorem 3.1 [Vi2, Corollary 20.13] and [BE] Let M be a Riemannian manifold equipped
with a reference measure e−V dΓ where the potential V ∈ C2(M) verifies a curvature-
dimension bound of the type C(K,∞) with K ∈ R. Then, for any given ν ∈ P2(M)
absolutely continuous with respect to volume measure dΓ with density ρ, it holds the HWI
inequality:

HV (ρ) ≤W2(ρ, e−V )
√
IV (ρ)− K

2
W2(ρ, e−V )2.

As a consequence, we have that whenever K > 0, the following Logarithmic Sobolev Inequal-
ity (LSI) follows

HV (ρ) ≤ 1
2K

IV (ρ).

The HWI inequalities were originally introduced in [OV] and used in other models in
nonlinear PDEs in [CMV]. Later, they were generalized to compact manifolds in [LV] and
in this generality in [Vi2]. To see that the LSI inequality follows from the HWI inequality
it suffices to consider the right-hand side of the HWI inequality as a function of W2 and
maximize that function.

Let us remark that some proofs of the LSI inequality use the Fokker-Planck dynamics
(3.1), called the Bakry-Emery stragegy, but the referred functional proof through the HWI
inequalities allows to overcome discussions on integrability issues and decay to infinity of
solutions to (3.1). In fact, a direct application of the LSI on (3.2) gives the exponential
decay of the Boltzmann relative entropy functional for solutions of (3.1) with initial density
in P2(M) in case C(K,∞) with K > 0 holds, i.e., given a solution ρ(t) of (3.1) then

HV (ρ(t)) ≤ HV (ρ(0)) e−2Kt for all t ≥ 0.

Nevertheless, let us remind the reader that assuming all integrability and behavior at ∞ are
met for the integration by parts below, we can obtain the evolution of the relative Fisher
information, see [BE, AMTU, Vi1, Vi2] for these computations. To take the time derivative
of IV (ρ(t)) note the Bochner type formula

(3.4)
(
∂

∂t
−∆

)
|∇ξ|2 = −2ξ2ij + 2〈∇(〈∇ξ,∇ log ρ〉),∇ξ〉 − 2Rijξiξj .
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Using the above formula we have that

d

dt
IV (ρ(t)) =

∫
M

(∆|∇ξ|2)ρ+ |∇ξ|2 div(∇ρ+ ρ∇V ) dΓ

+
∫
M

(
−2ξ2ij + 2〈∇(〈∇ξ,∇ log ρ〉),∇ξ〉 − 2Rijξiξj

)
ρ dΓ.

Since ∫
M

〈∇(〈∇ξ,∇ log ρ〉),∇ξ〉ρ dΓ =
∫
M

〈∇(|∇ξ|2 − 〈∇V,∇ξ〉),∇ξ〉ρ dΓ

=
∫
M

〈〈∇|∇ξ|2,∇ρ〉+ 〈∇|∇ξ|2,∇V 〉ρ dΓ

−
∫
M

〈∇〈∇V,∇ξ〉,∇ξ〉ρ dΓ

we arrive at

d

dt
IV (ρ(t)) =

∫
M

(
−2ξ2ij − 2Rijξiξj

)
ρ dΓ

+
∫
M

〈∇|∇ξ|2,∇V 〉ρ− 2〈∇〈∇V,∇ξ〉,∇ξ〉ρ dΓ

=
∫
M

(
−2ξ2ij − 2(Rij + Vij)ξiξj

)
ρ dΓ.(3.5)

As a consequence, due to the curvature dimension bound C(K,∞), we have

d

dt
IV (ρ(t)) ≤ −2K

∫
M

|ξ|2ρ dΓ,

and thus,
IV (ρ(t)) ≤ IV (ρ(0)) e−2Kt for all t ≥ 0.

4 Main Result and Applications

Now, let us come back to the precise situation we have, the case of a shriking soliton and
prove the main Theorem 1.1. Let us define the potential V = f − n

2 log(2πτ) for the fixed
time slice of the shrinking Riemannian manifold soliton (M, g) at time τ . Lemma 2.1 and
Corollary 2.1 implies that e−V is a well defined probability measure. Moreover, we deduce
from the soliton definition (1.1) that this reference measure verifies the C( 1

2τ ,∞) condition.
Therefore, Theorem 3.1 implies that for any probability density of the form

ρ(x) =
e−ψ(x)

(4πτ)
n
2

with second moment bounded then

HV (ρ) ≤ τIV (ρ).

11



Using now the soliton equation (2.4), we deduce:

IV (ρ) =
∫
M

(
|∇ψ|2ρ+ 2〈∇f,∇ρ〉+ |∇f |2ρ

)
dΓ

=
∫
M

(
|∇ψ|2ρ+ (−2∆f + |∇f |2)ρ

)
dΓ

=
∫
M

(|∇ψ|2 + S +
f + µs − n

τ
)ρ dΓ.

Thus, the LSI inequality is equivalent to

(4.1)
∫
M

(
τ(|∇ψ|2 + S) + ψ − n

)
ρ dΓ ≥ −µs,

for all densities ρ with bounded second moment for the shriking soliton, with µs characterized
by Corollary 2.1. This finishes the proof of Theorem 1.1.

Finally, recall Perelman’s entropy functional

W(gτ , u, τ) +
∫
M

(
τ(|∇ψ|2 + S) + ψ − n

)
u dΓτ

is defined for u = e−ψ

(4πτ)n/2
with

∫
M
u dΓτ = 1. Theorem 1.1 implies that for (M, gτ ),

W (gτ , u, τ) ≥ −µs. Namely Perelman’s µ-invariant

µ(gτ , τ) + infR
M
u=1

W(gτ , u, τ)

is bounded from below by −µs. From (2.4) it is easy to see that

τ(2∆f − |∇f |2 + S) + f − n = −µs.

Hence u = e−f

(4πτ)n/2
is the minimizer for Perelman’s µ(g, τ) (cf. Remark 3.2 of [P]). This

shows that the inequality of Theorem 1.1 is sharp. Summarizing above we have that

Corollary 4.1 Let (M, g, f) be a gradient shrinking soliton satisfying (1.1) with either |Ric |
being bounded or Ric ≥ 0. Then

µ(g, 1) = −µs.

When f = constant, (M, g) is a Einstein manifold with RicM = 1
2gM . In this case we

obtain a log-Sobolev inequality for S = n
2 and

µs =
n

2
− log(V (M)) +

n

2
log(4π)

where V (M) is the volume of (M, gM ). The µ-invariant was computed in [CHI] for many
examples of four manifolds.

When M = Rn with f = 1
4 |x|

2, direct calculation shows that µs = 0. Hence we have the
classical logarithmic Sobolev inequality of Sham-Gross.

Recall here that a solution of Ricci flow is called κ non-collapsed, if for any (x0, t0) and r ≥
0, such that on P (x0, t0, r) = Bg(t0)(x0, r)×[t0−r2, t0], |Rm|(x, t) ≤ r−2, then Vg(t0)(x0, r) ≥
κrn. Here Vg(t0)(x0, r) is the volume of Bg(t0)(x0, r) with respect to g(t0). By the virtue of
Perelman [P], Theorem 1.1 implies the following volume non-collapsing result for gradient
shrinking solitons.

12



Corollary 4.2 Let (M, g, f) be a gradient shrinking soliton satisfying (1.1) with either |Ric |
being bounded or Ric ≥ 0. Then there exists a κ = κ(µs) > 0 such that if in a ball B(x0, 1),
|Ric | ≤ 1, then V (x0, 1) ≥ κ.

Proof. Follows from Theorem 1.1 and Section 4 of [P]. See also [CLN, To]. �

In [Na] there stated a related result asserting the κ-noncollapsing of gradient shrinking soli-
tions with bounded curvature, in the sense defined right above the corollary. The conclusion
in above corollary is stronger.

When Ric(M, gτ=1) ≥ 0 with bounded curvature, one can derive the logarithmic Sobolev
inequality for all scales. This is done in the following two propositions.

Proposition 4.1 (Scale ≥ 1) Let (M, g) be a gradient shrinking soliton satisfying (1.1).
Assume that Ric ≥ 0. Then, there exists positive δ = δ(M) < 1 such that for any σ ≥ 1,∫

M

(
σ(|∇ψ̃|2 + S) + ψ̃ − n

) e−ψ̃

(4πσ)
n
2
dΓ ≥ −µs +

n

2
− δ − n

2
log(

n

2δ
)

for any ψ̃ satisfying that
∫
M

e−ψ̃

(4πσ)
n
2
dΓ = 1.

Proof. Clearly only the nonflat case worths the proof (since the flat one is isometric to
Rn). By Proposition 1.1 of [N3], for a nonflat gradient shrinking soliton, there exists δ =
δ(M,f) > 0 such that S(x) ≥ δ for any x ∈M . Let ψ = ψ̃ + n

2 log σ. Then it is easy to see
that∫
M

(
σ(|∇ψ̃|2 + S) + ψ̃ − n

) e−ψ̃

(4πσ)
n
2
dΓ =

∫
M

(
|∇ψ|2 + S) + ψ − n

) e−ψ

(4π)
n
2
dΓ

+(σ − 1)
∫
M

(|∇ψ|2 + S)
e−ψ

(4π)
n
2
dΓ− n

2
log σ

≥ −µs + δ(σ − 1)− n

2
log σ.

Here we have used Theorem 1.1 in the last estimate. Since −δ(σ − 1) − n
2 log σ ≥ n

2 − δ −
n
2 log( n2δ ), the claimed result follows. �

Proposition 4.2 (Scale ≤ 1) Assume that 0 ≤ Ric ≤ A. Then for any 0 ≤ σ ≤ 1,∫
M

(
σ(|∇ψ̃|2 + S) + ψ̃ − n

) e−ψ̃

(4πσ)
n
2
dΓ ≥ −µs − nA

for any ψ̃ satisfying that
∫
M

e−ψ̃

(4πσ)
n
2
dΓ = 1.

Proof. Define
µ0(g, σ) + infR

M
u0=1

∫
M

(
σ|∇ψ̃|2 + ψ̃ − n

)
u0

with u0 = e−ψ̃

(4πσ)
n
2

. Theorem 1.1 implies that µ0(g, 1) ≥ −µs − nA. Now for any u0 which is

compactly supported, let u(x, t) be the heat equation solution with u(x, 0) = u0. Then by

13



the entropy monotonicity result in [N2], for σ ≤ 1,∫
M

(
σ|∇ψ̃|2 + ψ̃ − n

) e−ψ̃

(4πσ)
n
2

≥
∫
M

(
|∇ϕ|2 + ϕ− n

)
u(y, 1− σ) dΓ(y)

≥ µ0(g, 1)

where u(y, 1− σ) = e−ϕ(y)

(4π(1−σ))
n
2

. This implies the claimed result. �

The above two proposition implies ν(M, g) >∞, hence a the strong κ-non-collapsing result
for gradient shrinking solitons with bounded and nonnegative Ricci curvature as in [P] (see
also [To] [Chow, et al1]).

5 Expanding solitons

Let us proceed in a similar way with expanding solitons. Recall that (M, g) is called a
gradient expanding soliton if there exists f such that

(5.1) Rij +
1
2
gij = fij .

It is easy to show that

∆f = S +
n

2
(5.2)

S + |∇f |2 − f = µe(5.3)

for some constant µe. As before one can normalize µe so that
∫
M

e−f

(4π)n/2
dΓ = 1. This will

make µe a geometric invariant of (M, g).

Our first concern is about the behavior of the volume of balls B(o, r) in M for any given
o ∈M . Along this direction, Hamilton [H2] proved the following result:

Theorem 5.1 (Hamilton) Let (M, g) be a gradient expanding soliton has bounded non-
negative Ricci curvature. Then (M, g) has maximum volume growth. Namely

lim inf
r→∞

V (o, r)
rn

> 0.

For the exposition of this result please see [CLN], Proposition 9.46. (The uniform bound of
the Ricci curvature is used in the proof to bound

∫
γ

Ric(γ′γ′) as in Section 2.) Here the limit
always exists due to the Bishop-Gromov volume comparison. This limit is called asymptotic
volume ratio. This compares sharply with the gradient shrinking solitons (cf. Corollary
2.3) and a result of Perelman [P] asserting that any non-flat ancient solution with bounded
nonnegative curvature operator its asymptotic volume ratio must be zero. The result below
is a generalization of the above result of Hamilton.

Proposition 5.1 Let (M, g, f) be an gradient expanding soliton.

(1) If S(x) ≥ 0 for any x ∈M , without assuming any curvature bound, then for any o ∈M ,
r ≥ r0.

V (o, r) ≥ V (o, r0)
(
r + a

r0 + a

)n
14



with a = 2
√
f(o) + µe.

(2) Assume that S(x) ≥ −β for some constant β > 0. Then for any o ∈M and r ≥ r0

V (o, r) ≥ V (o, r0)
(
r + a

r0 + a

)n−2β

with a = 2
√
f(o) + µe + β.

Proof. In the case (1), from the assumption and (5.3) we have that f + µe ≥ 0. Consider
any minimizing geodesic γ(s) from o ∈ M a fixed point of M . Then (5.3) implies that for
any s ∣∣∣∣ ddsf(γ(s))

∣∣∣∣2 ≤ f + µe.

This implies, by the ODE comparison, that(
2
√
f + µe

)
(γ(s)) ≤ s+ a

where a = 2
√
f(o) + µe, which then implies that

(5.4)
∣∣∣∣∂f∂r

∣∣∣∣ (γ(s)) ≤ s

2
+
a

2
.

Now we integrate (5.2) on B(o, r) and have that

n

2
V (o, r) ≤ n

2
V (o, r) +

∫
B(o,r)

S dΓ

=
∫
B(o,r)

∆f dΓ

≤
∫
∂B(o,r)

∣∣∣∣∂f∂r
∣∣∣∣ (y) dA(y).

Using (5.4) we have that
n

2
V (o, r) ≤ A(o, r)(

r

2
+
a

2
).

The result follows by dividing the both side of the above by V (o, r) and then integrating
the resulting estimate on the interval [r0, r]. The proof for the case (2) is similar. �

Remark 5.2 The estimates in both cases have the sharp power. To see this consider M =
Nk × Rn−k where N is a compact Einstein manifold with RicN = − 1

2gN , Rn−k is the
Gaussian expanding soliton.

Now we derive the logarithmic Sobolev inequality for the expanders. To make sure that
the integral

∫
M
e−f dΓ is finite we have to make an assumption that there exists some ε > 0,

(5.5) fij =
1
2
gij +Rij ≥ εgij .

15



Under this assumption, it is easy to see that

f(x) ≥ ε

4
r2(x)− C

for some C = C(M,f). Since Rij ≥ − 1
2gij , the volume V (o, r) ≤ exp(A(r + 1)) for

some A = A(n). This together with the lower estimate above ensures that the integral∫
M

e−f

(4π)n/2
dΓ is finite. (For this fact, one may also use the result of [WW].) Notice that

under our assumption (5.5), as in the proof of Proposition 5.1 we have that

f(x) ≤
(
r(x)
2

+ b

)2

for some b = b(M,f). This ensures the finiteness of the integral∫
M

(
|∇f |2 + |∆f |+ |S|

) e−f

(4π)n/2
dΓ.

Note that (5.2) and (5.3) implies that

(5.6) 2∆f − |∇f |2 − 3S + f − n = −µe.

Integrating (5.6), we have that∫
M

(
|∇f |2 − 3S + f − n

) e−f

(4π)n/2
dΓ = −µe.

It is clear that assumption (5.5) is trivially satisfied for non-negative Ricci tensor.

Assume in the rest of this section that Ric ≥ 0, let us define the potential V = f−n
2 log(4π).

Previous arguments imply that the reference measure e−V is a well defined probability
measure. Moreover, we deduce from the soliton definition (5.1) and being Ric ≥ 0 that this
reference measure verifies the C( 1

2 ,∞) condition. Therefore, Theorem 3.1, together with a
similar calculation as before, implies the following LSI inequality.

Theorem 5.3 Assume that (M, g, f) is gradient expanding soliton with Ric ≥ 0. Then for
any ρ(x) = e−ψ(x)

(4π)n/2
with

∫
M
ρ(x) dΓ(x) = 1, we have that

(5.7)
∫
M

(
|∇ψ|2 − 3S + ψ − n

)
ρ dΓ ≥ −µe.

Here µe, as before, is a geometric invariant (in the sense of Section 2), which is the same
for two isometric metrics. One can write in the dynamic form by considering the family of
metrics g(τ) (in this case with g(1) being the original metric, and 0 < τ <∞) generated by
the diffeomorphisms as for the shrinking case. Since it is the same inequality by re-scaling
we omit it. Note that in the left hand side of (5.7) an equivalent integrand is

τ
(
2∆ψ − |∇ψ|2 − 3S

)
+ ψ − n.

This expression also showed itself up in a differential Harnack (or Li-Yau-Hamilton) type
calculation, in a recent preprint of Cao and Hamilton [CH] (where however the nonnegativity
of the curvature operator is required). It is certainly interesting to explore the connections
between the log-Sobolev inequality here and the Li-Yau-Hamilton type estimate for Ricci
flow solution.
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6 Gradient steady solitons

Now we consider the gradient steady solitons. Recall that a steady gradient soliton (M, g)
has a potential function f satisfying that

(6.1) Rij = fij .

It was shown in [H1] that

(6.2) |∇f |2 + S = λ

for some λ. Similar as before there is a solution to Ricci flow g(τ) associated with the gradient
steady soliton (M, g, f) [CLN]. We first need the following lemma to ensure the finiteness
of
∫
M
e−f dΓ and other integrals later involved, under some geometric assumptions.

Lemma 6.1 Let (M, g, f) be a gradient steady soliton. Assume that there exists a point
o ∈M such that S(o) = maxM S and either Ric(x) > 0 for all x ∈M , or Ric ≥ 0 and

lim sup
x→∞

S(x) < max
M

S.

Then o is a minimum of f and there exists δ > 0 and C = C(M,f) so that

(6.3) f(x) ≥ δr(x)− C.

Here r(x) is the distance function to o.

Proof. For the first case, it was shown in [H1], Theorem 20.1 (the argument there actually
requires Ric > 0 even though it was not stated; it is also necessary shown by easy examples)
that o is the unique minimum of f . Note that for any geodesic γ(s) from o, we have that

d2

ds2
(f(γ(s)) = Ric(γ′, γ′) > 0.

Hence we have for any s0 > 0, d
ds (f(γ(s0))) > 0. Then f(γ(s)) ≥ d

ds (f(γ(s0)))(s − s0) +
f(γ(s0)), which implies the desired lower estimate.

For the second case, the assumption already excludes the Ricci flat situation, on which
clearly (6.3) fails for f being a constant. We first claim that under the assumption on
the behavior of S at the infinity, S(o) = λ. Suppose it is not true, then maxM S < λ
and |∇f |2 ≥ λ − maxM S. Let σ(u) be an integral curve of ∇f passing o with σ(0) = o.
Direct calculation shows that d

du

(
|∇f |2(σ(u))

)
= 2 Ric(∇f,∇f)(σ(u)) ≥ 0. This shows

that |∇f |2(σ(u)) = |∇f |2(σ(0)) for u ≤ 0 since |∇f |2 has its minimum at o. Hence we have
that S(σ(u)) = maxM S for all u ≤ 0. However since −f(σ(u)) = −f(σ(0))+

∫ 0

u
|∇f |2 du =

−f(σ(0)) − u|∇f |2(σ(0)) → +∞ as u → −∞ we can conclude that σ(u) → ∞. This is a
contradiction with the assumption that lim supx→∞ S(x) < maxM S. Hence we have that
λ = maxM S which implies ∇f = 0 at o and

lim inf
x→∞

|∇f |2 ≥ 2η2 + λ− lim sup
x→∞

S(x) > 0.

By considering any minimizing geodesic γ(s) emitting from o and the fact d
ds (f(γ(0))) = 0

and d2

ds2 (f(γ(s))) ≥ 0, it is clear that o is the minimal point of f and 〈∇f,∇r〉(x) ≥ 0 for

17



any x ∈ M \ {o}. Let R0 be such that |∇f |2(x) ≥ η2 for all x ∈ M \ B(o,R0). Consider
again a integral curve σ(u) passing x. Since |∇f | is bounded and M is complete, the curve
is defined for all −∞ < u < +∞. Notice that σ(u) ∈ B(o, r(x)) for all u ≤ 0 and

f(σ(0))− f(σ(u)) =
∫ 0

u

|∇f |2 du ≥ (−u)η2

as along as σ(u) ∈ M \ B(o,R0). From this we infer that there exist some u0 such that
σ(u0) ∈ B(o,R0). On the other hand

f(x) = f(σ(u0)) +
∫ 0

u0

|∇f |2 du

≥ f(σ(u0)) + η

∫ 0

u0

|σ′(u)| du

≥ f(σ(u0)) + ηd(x, σ(u0)).

This implies the desired lower estimate. �

Remark 6.1 If the sectional curvature of (M, g) is nonnegative, one can show that the
claim of the lemma holds under the assumption that S(o) = maxM S, as far as M does not
admit any flat factor Rk. The reason is the following. First if the claimed result fails, one
can conclude that fij has an eigenvector corresponding to the zero eigenvalue somewhere.
Note that for the associated Ricci flow, the function f(x, τ), defined as the pull back via
the diffeomorphism generated by ∇f , satisfies the heat equation (cf. [CLN] for details).
Then the result follows from the strong tensor maximum principle and splitting theorem on
noncompact manifolds proved in [N1].

In the both cases o is a minimum point of f and λ is a geometric invariant, namely
maxx∈M S(x). Also we have seen that both |∇f | and |∆f | are bounded. We normalize f so
that

∫
M
e−f dΓ = 1. Integration by parts gives the following weighted Poincaré inequality.

Proposition 6.1 Let (M, g, f) be a gradient steady soliton. Then for any compact supported
smooth function u = e−ψ with

∫
M
u dΓ = 1, we have that∫

M

(
|∇ψ|2 − 3S

)
u dΓ ≥ −λ.

Proof. The proof follows from the following simple calculation:∫
M

(
|∇ψ|2 − 3S

)
u =

∫
M

(
|∇ψ|2 − 2〈∇ψ,∇f〉+ |∇f |2 + 2∆f − |∇f |2 − 3S

)
u

≥
∫
M

(
2∆f − |∇f |2 − 3S

)
u = −λ.

�

This is a sharp inequality, at least it is so under the assumption of Lemma 6.1, since for
this case the equality holds when u = e−f . An equivalent form is that∫

M

(
4|∇ϕ|2 − 3Sϕ2

)
dΓ ≥ −λ

∫
M

ϕ2 dΓ
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for any ϕ ∈ L2(M).

The weighted Poincaré inequality and its geometric meanings have been studied recently
by, for example Li and Wang [LW].

7 An analogue of the c-theorem

For the re-normalization group flow, there exists the so-called central charge c(t) invariant
[Z] for the flow such that it is monotone non-increasing along the flow. Moreover it is
always nonnegative. For Ricci flow, there are Perelman’s monotonic quantities such as the
W(g, σ, f)-entropy, defined as

W(g, σ, ϕ) +
∫
M

(
σ(|∇ϕ|2 + S) + ϕ− n

)
u dΓ

for any u = e−ϕ

(4πσ)
n
2

with
∫
M
u = 1, and associated µ(g, σ) + infR

M
u=1W(g, σ, ϕ), ν(g) +

infσ>0 µ(g, σ) invariants, as well as the so-called reduced volume. (The quantity W(g, σ, ϕ),
µ(g, σ) and ν(g) may not be finite when M is not compact. Proposition 4.1 and Proposition
4.2 ensures that is the case for the shrinkers with bounded nonnegative Ricci curvature.)
The reduced volume is always nonnegative by the definition. However, it is monotone non-
decreasing in stead of non-increasing along the flow. Utilizing the sharp logarithmic Sobolev
inequalities proved for the shrinkers and expanders we shall show in this section that the
logarithmic Sobolev constants µs and µe are nonnegative, at least for the gradient shrink-
ing/expanding solitons with bounded nonnegative Ricci curvature (this amounts to say that
the reduced volume is always less than 1). In view of the monotonicity of the entropy, and
the fact that the gradient shrinking solitons almost always arises at the singularity, one can
view the monotonicity of the entropy together with the result proved here as an analogue
of the c-theorem. Namely, for the solution to the Ricci flow, one can view −µ(g, τ) as
the analogue of the c(t)-invariant. Perelman’s entropy formula concludes that it is mono-
tone non-increasing. Our result concludes that −µ(g, 1) = µs and it is nonnegative for the
shrinkers with bounded curvature tensor and nonnegative Ricci.

We shall show two results on the sign of the invariants µs and µe. The case of µe is an
easy application of an early rigidity result in [N2].

Proposition 7.1 Let (M, g, f) be a gradient expanding soliton with Ric ≥ 0. Then µe ≥ 0.
If µe = 0 then (M, g) must be isometric to Rn.

Proof. Assuming that µe ≤ 0, Theorem 5.3 then implies that∫
M

(
|∇ψ|2 + ψ − n

)
ρ dΓ ≥ 0.

Then by the proof of Theorem 1.4 of [N2] (one can see a detailed account in [Chow, et al1],
pages 314–333), we can conclude that (M, g) is isometric to Rn, on which µe = 0. �

Similar result holds for gradient shrinking solitons. For that we have to assume that the
curvature tensor of (M, g) is uniformly bounded.

Theorem 7.1 Let (M, g) be a gradient shrinking soliton with bounded curvature and non-
negative Ricci curvature. Let f be the normalized potential function as above. Then µs ≥ 0.
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Proof. Recall from the introduction that there is an associated solution g(t) (with −∞ <
t < 0, t = η− 1) to Ricci flow generated by pulling back the metric via the diffeomorphisms
generated by the vector field ∇f . The original metric g corresponds to the one g(−1)
(meaning t = −1). Proposition 4.1 and Proposition 4.2 imply that µ(g(−1), σ) and ν(g(−1))
are finite. Since g(t) is just the re-scale of g(−1), we have that for any −∞ < t < 0,
µ(g(t), σ), ν(g(t), σ) are also finite. Now let H(y, t;x, t0) (with t < t0 < 0) be the (minimal)
positive fundamental solution to the conjugate heat equation:(

− ∂

∂t
−∆y + S(y, t)

)
H(y, t;x, t0) = 0

being the δx(y) at t = t0. By a result of Perelman, Corollary 9.3 of [P] (see also [CTY] and
[N4]), we know that

vH(y, t) + (t0 − t)
(
2∆ϕ− |∇ϕ|2 + S

)
+ ϕ− n ≤ 0

with H(y, t;x, t0) = e−ϕ(y,t)

(4π(t0−t))
n
2

. This would implies in particular

µ(g(−1), t0 + 1) ≤
∫
M

vH(y,−1)H(y,−1) dΓg(−1) ≤ 0.

On the other hand Theorem 1.1 asserts that µ(g(−1), 1) ≥ −µs. The result would follow
if we show that µ(g(−1), t0 + 1) → µ(g(−1), 1) as t0 → 0. For t0,i → 0, consider the the
minimizer ϕi for W(g(−1), 1 + t0,i, ϕ) (for simplicity we write g(−1) back to g from now
on). Let σi = 1 + t0,i → 1. We assume that 1

2 ≤ σi ≤ 1. By Proposition 4.2 and the above
we have that

0 ≥ µ(g, σi) ≥ −µs − nA.

Write wi = e−ϕi/2. wi ∈W 1,2(M). The Euler-Lagrangian equation is

(7.1) −4σi∆wi + σiSwi − nwi − 2wi logwi = µ(g, σi)wi

for
∫
M
w2
i = (4πσi)

n
2 ≤ (4π)

n
2 . Integrating over M we have that

4σi
∫
M

|∇wi|2 = µ(g, σi)(4πσi)
n
2 +

∫
M

(
w2
i logw2

i + nw2
i − σiSw

2
i

)
which implies

(7.2) 4σi
∫
M

|∇wi|2 ≤
∫
M

w2
i logw2

i + n(4π)
n
2

On the other hand, writing w2
i

(4πσ0)
n
2

= e−ψ̃

π
n
2

and using that W(g, 1
4 , ψ̃) ≥ µ(g, 1

4 ),∫
M

|∇wi|2 ≥ (4πσi)
n
2 µ(g,

1
4
)− nA

4
(4πσi)

n
2 +

∫
M

w2
i logw2

i .

Combining with (7.2), one can find C = C(A,n) such that∫
M

|∇wi|2 ≤ C(A,n)
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which implies that ‖wi‖W 1,2(M) is uniformly bounded, which implies that wi → w∞ in
the the dual norm of W 1,2(M) and strongly in L2(M), for some wi ∈ W 1,2(M). Due to
the bound µ(g, σi) we may also assume that µ(g, σi) → µ∞(g). Clearly µ∞(g) ≤ 0. It is
evident that

∫
M
w2
∞ = (4π)

n
2 . We shall show that on every compact subset K, after passing

to subsequences, wi converges to some w∞, say in C0-fashion. This will imply that w∞
satisfies the equation

−4∆w∞ + Sw∞ − nw∞ − 2w∞ logw∞ = µ∞(g)w∞.

Integration by parts, one can then have that∫
M

(
4|∇w∞|2 + Sw2

∞ − 2w2
∞ logw∞ − nw2

∞
)

= µ∞(g)(4π)
n
2 .

This implies that µ∞(g) ≥ µ(g, 1). This however is enough to conclude that µs ≥ 0 since 0 ≥
µ∞(g) ≥ µ(g, 1) ≥ −µs. The claim that wi → w∞ in C0 norm can be proved using Sobolev
embedding theorem (over compact region K), interior Lp-estimates, and the compactness
of the Sobolev embedding. We leave the details to the interested reader. One can also find
this in the forthcoming book [Chow, et al2]. �

When f = constant, (M, g) is a compact Einstein manifold with RicM = 1
2gM . The

theorem concludes that

µs =
n

2
− log(V (M)) +

n

2
log(4π) ≥ 0

where V (M) is the volume of (M, gM ). Among all such manifolds the sphere Sn has the
smallest µs. In this case µs has the limit 1

2 log e
2 as n → ∞, at least for the case that n is

even.

Remark 7.2 We believe that the similar result holds without assuming that Ricci curvature
is nonnegative and shall return to this in a future study. One should also consult [T] for
the definition of an ‘entropy’ for the renormalization group flow motivated by Perelman’s
entropy and its formula for Ricci flow. For the steady gradient soliton, it is clear that λ ≥ 0
for any steady solitons with S ≥ 0.
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José A. Carrillo, ICREA and Departament de Matemàtiques, Universitat Autònoma
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