AVERAGE OF THE MEAN CURVATURE INTEGRAL
IN COMPLEX SPACE FORMS

JUDIT ABARDIA

ABSTRACT. In real space forms, given a regular hypersurface 5, it
is known that the integral over the space of s-planes of the mean
curvature integral of intersections with S is a multiple of the mean
curvature integral of S. We study the corresponding expression in
a complex space form. The role of the s-planes is played by the
complex s-planes. We prove that the same property does not hold
but another term appears. We express this term as the integral of
the normal curvature in the direction obtained from applying the
complex structure to the normal direction. As an application, we
give the measure of the set of complex lines meeting a compact
domain in a complex space form, and we characterize the repro-
ductive continuous invariant valuations of degree 2n — 2 in the
standard Hermitian space.

1. INTRODUCTION

Let M"™(k) be the n-dimensional simply connected Riemannian man-
ifold of constant sectional curvature k. The space of s-dimensional
totally geodesic submanifolds of M™(k), L% is a homogeneous space
with a unique (up to a constant factor) measure dL, invariant under
the isometry group of M"(k). If S is a compact oriented hypersurface
of class C?, mean curvature integrals are defined as

M, (S) = (”;1> _I/Sar(ll)d:n

where o, (II) denotes the r-th symmetric elementary function of the
eigenvalues of the second fundamental form with respect to the normal
field giving the orientation. Santalé [San04] proved that on M" (k) the
mean curvature integrals satisfy the so-called reproductive property.
That is,

M (SN L,)dL, = cM,(S)
cE
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where ¢ is known and depends only on n, r and s and Mﬁs)(S N Ly)
denotes the r-th mean curvature integral of S N L, as a hypersurface
in L. The normal vector taken on S N Ly is the one making an acute
angle with the normal vector chosen on S.

In this paper we prove that this reproductive property is not satisfied
in complex space forms when r = 1. We denote (simply connected)
complex space forms with constant holomorphic sectional curvature
4e by CK"(e). A complex space form is isometric to the standard
Hermitian space, C", if € = 0, to a complex projective space, CP", if
e > 0 or to a complex hyperbolic space, CH", if ¢ < 0. (As usual, we
will denote by J the complex structure of the manifold.)

On CK"(¢e), we denote by L, the space of totally geodesic complex
submanifolds of complex dimension s. Each L, € L, is isometric to
CK®(e). The space L is a homogeneous space and admits a unique
(up to a constant factor) invariant measure dLs.

Notation 1.1. We denote the volume of the n-dimensional Euclidean
ball of radius 1 by w, and the volume of the n-dimensional Fuclidean
sphere of radius 1 by O,.

The main result of this paper gives an expression for the integral over
L of the mean curvature integral of the intersection with a compact
oriented hypersurface of class C2.

Theorem 1.2. Let S C CK"(¢) be a compact oriented hypersurface of
class C* (possibly with boundary) and let s € {1,...,n —1}. Then

W2n—2V01<GS—2,s—1> n\ "
2s(2s — 1) s

/ MU(SN L)L, =
Ls

2ns—n—sM1(S)+/

n—s S

: ((Qn 1) kn(JN)>

where N is a normal vector field to S and k,(JN) denotes the normal
curvature in the direction JN € T'S.

The main tool in the proof is the use of moving frames adapted to
SNLy, L,orS.

Theorem 1.2 shows that the reproductive property of the mean cur-
vature integral is not satisfied in complex space forms. The non-
reproduction can be explained by the theory of valuations (see Section
2.2 for definitions). Let us denote by K(V') the family of non-empty
compact convex subsets of a finite n-dimensional real vector space V.

Definition 1.3. A wvaluation on V is a scalar real valued functional
¢ : K(V) — R which satisfies

(AU B) = ¢(A) + ¢(B) — ¢(AN B)
whenever A, B,AU B € (V).
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In 1957 Hadwiger proved the following result concerning valuations.

Theorem ([Had57]). A basis of the space of continuous translation
and O(n) invariant valuations of R™ is

X, My, Ms, ..., M, o, area, vol

where M; denotes the continuous extension to IKC(R™) of the i-th mean
curvature integral of the boundary.

But, on the standard Hermitian space C" with its isometry group
IU(n) = C"xU(n) Alesker [Ale03] proved that there are more linearly
independent continuous invariant valuations than on R?".

Theorem (Theorem 2.1.1 [Ale03]). Let Val”™(C") be the space of
continuous translation invariant valuations on C" invariant also under
U(n). Then

2
dim Val?™ (C") = ("; )

and the dimension of the subspace of ValU(")(C”) of homogeneous val-
min{k, 2n — k;}J
5 + 1.

uations of degree k is \‘

In [BF08], Bernig and Fu study further the space of continuous val-
uations on C" and give some new bases.

In the following, when we need a compact domain 2 and not just
its boundary, for simplicity we will restrict to compact domains with
smooth boundary and call them reqular domains.

On C" the function [, M (60N L,)dL, is a homogeneous valuation
of degree 2n — 2. By the last theorem the dimension of the space of
homogeneous invariant valuations of degree 2n — 2 is 2. On the other
hand, valuations M;(0S2) and [, k,(JN) are linearly independent.
Hence, the expression in Theorem 1.2 in C™ has all the possible terms.

As [, kn(JN) is an invariant valuation on CK"(e) linearly indepen-
dent from M;(0€2), it is also natural to study the integral over L, of
this valuation instead of the mean curvature integral.

Theorem 1.4. Let S C CK"(¢) be a compact oriented hypersurface of
class C* (possibly with boundary) and let s € {1,...,n —1}. Then

- . n_ovol(GC -1
/ / (IR )dpr, = S22l Craa) (n> :
s JSNLs 2s s

_ (M/gkn(JN)+(2n— 1)M1(S)).

n—s

where N denotes a normal wector field to SN Ly C Ls, N a normal
vector field to S C CK"(¢), k,(JN) the normal curvature of JN in Ly
and k,(JN) the normal curvature of JN in CK"(e).
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In this situation arise two natural questions: which are the invariant
valuations p(£2) of degree 2n — 2 satisfying the reproductive property?
Which valuation do we have to integrate to obtain the mean curvature
integral of the whole domain?

In this paper we prove the following result in CK"(¢).

Theorem 1.5. Let Q C CK"(¢) be a reqular domain, lets € {1,...,n—
1} and let

or(®) = 2000) = [ (IV)
09
and
©a(Q2) = (25 — 1)(2n — 1) M1(092) +/ kn,(JN).
o9
Then,

/ (N L)L, —

S

Wap_ovol(GE 05 1)(5=1)2n—1) /n -1
(2s —1)(n —s) (s> P18

and

IR

Thus, each of ©1(R), ©2(2) expands a 1-dimensional subspace of re-

productive valuations when we integrate over Ls. In C", ¢1 and @9 are

all the reproductive continuous invariant valuations of degree 2n — 2.
Moreover, if

n—s

N
2s — 1 /agkn(J )7

Oap— 3V01(Gn 2,5— )(2n=1)(s = 1) (n—1
(2s —1) (

©(Q) = (2ns —n — s)M;(09) —

then

/ o(OQNL,)dL, =

) M, (09).

S

In [Ale03], Alesker defined some bases of valuations, one of them is
given by the valuations {Uj,} which we define on Section 2.2. Alesker
also stated the following theorem:

Theorem 1.6 (Theorem 3.1.2 [Ale03]). Let 2 be a regular domain in
Cr. Let0<qg<n,0<2p<k<2q. Then

[k/2]+n—q

/ Urp(2N Ly) Z Yo - Ukraing)p(),
Ly€Ly

where the constants vy, depend only onn, q, and p.

The value of the constants 7, remains unknown. Using the results
in this paper we shall give the constants for all ¢ € {1,...,n — 1} and
k=2q—2.
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As another application of Theorems 1.2 and 1.4 we shall give the
measure of the set of complex lines meeting a regular domain in CK" (¢)
in terms of M;(09), [, kn(JN) and the volume (volume is necessary

if € #0).
Proposition 1.7. Let Q be a regular domain in CK"(e). Then

/ (N Ly)dL, = 222 ((2n — 1) M, (09) + / kn(JN)-l-Snevol(Q)) .
L1 201” o0

This proposition is a particular case of a general result, obtained
using a different approach, for the measure of the set of complex s-
planes meeting a regular domain given in [AGS09].
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2. PRELIMINARIES

2.1. Moving frames. Let U be manifold and p € U. In a complex
space form CK"(¢), a local orthonormal frame defined on U is a map
{g;e1,...,ea,} : U — (TCK"(€))*", such that {ej,...,es,} is an or-
thonormal basis of T, CK" (e).

Let U C CK"(€) be an open set containing p € CK"(¢). We consider
a local orthonormal frame {q;e;, ..., e9,} in U with ¢ = id. We define
the 1-forms {w;} as the dual forms of {e;} and the 2-forms {w;;} as the
connection forms of CK"(¢) with respect to the Levi-Civita connection.

Now, let U be an open set of L, the space of totally geodesic complex
submanifolds of complex dimension s. We shall use an expression for
the measure dL, of L, in terms of a moving frame defined on U C
Ls. We take a local orthonormal frame {q; ey, ..., e, } in U such that
q(Ls) = p and {ey,..., ez} are an orthonormal basis of T,L, with
Jegr_1 = ear, k € {1,...,s}. Then, the measure of L, is given by (cf.
[San52])

dLs = wasp1 Nwasya A+ Awap—1 Awa, A /\ Wok—1,5-
k=1,2,...;s

The chosen normalization of the measure dL, satisfies

(1) / dLs = VOl(GS—H,s—H)'

S

We will also consider the space L, of totally geodesic complex sub-
manifolds of complex dimension s containing a point p € CK"(e). If
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we define a local orthonormal frame in U C L) in the same way as
in L,, then the measure of Ly, is given by (cf. [San52])

Ly = J\ war-1y.

k=1,2,...;s

2.2. Valuations. See, for example, [KR97] or [Ale07] for a detailed
treatment and references.
A valuation ¢ is said to be homogeneous of degree k € R if

PAK) = No(K) for any A >0, K € K(V).

Let us denote by Val(V') the space of translation invariant contin-
uous (with respect to the Hausdorff topology) valuations. The Euler
characteristic and the volume are translation invariant continuous val-
uations on any real vector space. Mean curvature integrals are also
translation invariant continuous valuations on R™ and C".

In [Ale03], Alesker gives two different bases of Val’™ (C"), the space
of translation invariant continuous valuations invariant under U(n).
One of these two bases is defined as follows. Let k, p be two integers
such that 0 < 2p < k < 2n. Then {Uyp}kpy is a basis if

1

(2)  Uip(Q) = 2(n — Pl s Jr

My —41(020 Lyy_p)dLy_p.

The subscript £ in Uy, denotes the homogeneous degree of the valua-
tion.

3. AVERAGE OF THE MEAN CURVATURE INTEGRAL OVER COMPLEX
S-PLANES

3.1. Preliminary lemmas. In this section we state the lemmas we
shall use to prove Theorems 1.2 and 1.4.

Lemma 3.1. Let E be a complex vector space of dimension 2 endowed
with an inner product () and let {ey, ea, e3,e4} be an orthonormal basis
of E. Then (e, Jey)? = (e, Jeg)? with {a,b,c,d} = {1,2,3,4}.

Proof. We express Je, and Jey in terms of the orthonormal basis and
we use that (Jey, Jep) = (Jeq, Jeq) = 1, (Jep, Jeg) = 0 and (Jey, eq) =
—(Jeq, €p). ]

Lemma 3.2. If u € S?"73, then

/ (u,v)dv =0
S2n—3

and
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Proof. The first equality follows since the integral is over an odd func-
tion. For the second one, we decompose u = cosfv + sinfw with
w € (v)t, then using polar coordinates with u the first vector of the
polar coordinates system, we have

/ (u,v)?d S35 = O2n—4/ cos® 0sin®"* 0df) = OQn—4M
s 0 02049;,_4
O2n—3

= Wop—2 =

O]

Lemma 3.3. Suppose S is a hypersurface of class C* in a Riemannian
manifold M and L C T,M is a subspace such that exp, L is a (r +1)-
dimensional submanifold of M intersecting S at p, then o;(1l|,), the
i-th symmetric elementary function of S restricted to w = T,5 N L,
is related to &;(1l|c), the i-th symmetric elementary function of the
hypersurface C = S Nexp, L C exp, L by

o;(I1,) = cos’ 0;(11c)

where 6 denotes the angle between a normal vector of S and a normal
vector of u at p .

Proof. It A C B C M are submanifolds, then we denote the second
fundamental form of A as a submanifold of B by h§ : T,A x T,A —
(T,A)*. If B= M, we just put h, instead of hi.

Let N be a normal vector to S. Then for all X,Y € T,,C

he(X,Y) = h&(X,Y) + h(X,Y) = hE(X,Y)
since L is a totally geodesic submanifold of M, but also
ho(X,Y) = b3 (X,Y) + hs(X,Y),

Note that h2(X,Y) is a multiple of a normal vector to C' in S, so
(h2.(X,Y),N) =0 (for X,Y € T,C).
It X,Y € T,C, then

HS(X7Y) = <hS(X7Y)aN> = <hC(X7 Y) - hg(X7Y)7N>
= <hC(X7 Y)7N> = <hé(X7 Y)7N> = <Hé(X7 Y)nv N>

where n denotes a normal vector of C' in L. So,

(3) IE(X,Y) =

R Is(X,Y).

Since 6, is the sum of the minors of order i of II%, by replacing by (3)
each entry of the second fundamental form, we obtain the result. [

The following lemma generalizes in complex space forms a result
given by Langevin and Shifrin [LS82] in real space forms.
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Lemma 3.4. Let E be a complex vector space of complex dimension
n and let II be a bilinear form defined on E. We denote by Ggs the
Grassmanian of s-dimensional complex planes on E. Then,

/ tr(Iy)dV = Mtr([[@).
G n

C
n,s

Proof. First, recall that
(4) Un—s) x U(s) — U(n) — Gy,

is a fibration for each s € {1,...,n — 1}.
We prove the case dim¢ V' < 5 by induction on the complex dimen-
sion of V. The case dimc V' > % can be proved using similar arguments.
Suppose dim¢ V' =1, that is, s = 1. Then,

1
/G tr(II]y)dV = RS ESIGIE) /U(n) tr(Il|y1)dU

C
n,l

since tr(Il]y,) is constant along the fibers. We denote by Vi' the
complex vector subspace generated by the first column of the matrix
U € U(n). In general, for U € U(n), we will denote by V? the complex
vector subspace generated by the columns b to b+a — 1. The subscript
a denotes the dimension of V!, or equivalently, the number of columns
we consider and the upperscript b denotes from which column we start
to consider them. Then

/U( )tr(H|V11)dU = %/U( )(tr(II|V11) + tr(I]yz) + - - + tr(Iljyp) )dU
1 vol(U(n))
= — r(Il|g)dU = ———=tr(1l|g).
s ) "D i1t
Thus,
B vol(U(n)) _% )
/G%1 tr(IHV)dV_nvol(U(’n — 1))V01<U(1>)tr<II’E)_ n t (II|E)

Suppose now that the result is true till dim¢V = r — 1. We shall
prove it for dim¢ V' = r < 3. If R denotes the remainder of 7, then
R < r and we can apply the induction hypothesis in R. Thus, using
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similar arguments as before, we obtain

La“m“*:mu<n—mmm U%Lm i)

= t II 1 N t II n—R—r+1
vol(U (n— )vol [J(n) fllv) o tr(lyponeres))

- vol(U(n—r)) VOI ( U(n) =)~ U(n)tr(mv’?_RH))

vol(U (n))tr(I1|g) — Vol U(n — R))vol(U(R)) fGiCL,R tr(I1]v,)
vol(U(n —r))vol(U(r))| %]

(vol(U(n)) — vol(U(n — R))vol(U(R))vol(GS ) &) tr(Il|g)
vol(U(n —r))vol(U(r)) [ %]

R
= vol(GE )" (11— =) te(11
vol(G5,) " (1) ity
= vol(GE ) “tr (11 )
n
and the result follows when 2s < n. OJ

3.2. Integral of the r-th mean curvature integral over complex
s-planes. The following proposition shall be essential to prove the
main results, since it gives a first expression of the integral we would
like to study in terms of an integral on the boundary of the domain.

Proposition 3.5. Let S € CK"(¢) be a compact oriented hypersurface
of class C* (possibly with boundary) and let r,s be integers such that
1<s<nand1l <r<2s—1. Then

/ M®(SNL,)dL, =

28_1 JN@S>2ST
r\D; €s dVde,dp,
( >//R]p2n2/Gc 1_ (JN, e,)2)5~ ~0,(p;es © V)dVdeydp

—2,5—

where N denotes a normal vector field at T,S, e € 1,5, V' denotes a
complex (s—1)-plane by p contained at {N, JN, e, Jes}*, and o, (p; es®
V') the r-th symmetric elementary function of the second fundamental
form of S restricted to the real subspace e; &V .

Proof. Let Ly be a complex s-plane such that S N Ly # (0 and let
p € SN L,. We denote by 7, the r-th symmetric elementary function
of the second fundamental form of SN Ly as a hypersurface of L,. Then,
by definition

25 — 1
/M(S (SN L, dL—(S ) / / s)dsdLs,.
SNLs#0 J SNLs
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We shall prove the result using moving frames adapted to S N Ly, L,
or S.

Let g = {ey, Jey, ea, Jea, ... €5, Ws, €541, J€si1 ..., €,, N} be a mov-
ing frame adapted to SN Ly and S. That is, {e1, Je,...,es} is an
orthonormal basis of T,,(S N L), {€st1, Jest1,...,e,} is an orthonor-

mal basis of T,,(S N LL), N is a normal vector field to T'S and w,
completes to an orthonormal basis of T,CK"(¢). We denote by

{wi, Wi, . .o Wso1, WeTT, W, Ws, We1, Wag s - - -, W, Wi }
the dual basis of the vectors in ¢ and by {w;;} the connection forms.

! ! !/ / _ / _ / —

Let ¢ = {e] = e, e = Jey,...,eh, | = es,eh, = Jeg,€h =

horo = J : = hn = Jen} be a moving fram

o1 Cog o €st1y- -y Chn 1 €n, €5, e,} be a moving frame

adapted to S N Ly and Lg. That is, {ey, Jey,...,es Jes}t is an or-
thonormal basis of T),Ls. We denote by

{wi,wi, ..., wy, Wi}
the dual basis of the vectors in g’ and by {w;;} the connection forms.
The relation between ¢’ and g is given by
ey, = Je, = (Jeg, ws)ws + (Jeg, N)N,
ey, = Jep, = (Jen, ws)ws + (Je,, NYN

and ey, =ej, ep;, = Jesif je{l,...,s—1,s+1,...,n—1}.
Then

(5) w; =wj, if j#3,m,
wr = (Jen, ws)ws + (Jen, N)wp
and
W = (Jes, ws)wis + (Jes, Nwiz
(6) wi— = (Jen, ws)wiz + (Jen, Nwia,
Wi = wj;, otherwise.

ij
The expression of ds (the density of SN L), dLs and d L) in terms
of W is
ds =W N Aw,

o / / / /
dL, = Wiy AWl A AWl A A\ W,
i=1,2,...,s

j=s+1,s+1,....n,n

dLyy =\ W}
i=1,2,...,

j=s+1,s+1,...,nn

and the expression of dp (the density of S) in terms of w is dp =
w1 ANwg A -+ A wp.
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On the other hand, by Lemma 3.1 it is satisfied
(7) [(Jen, ws)| = [(Jes, N)|.

Indeed, vectors {es, ws, €,,n} are an orthonormal basis of a 2-dimensio-
nal complex plane, the orthogonal complement of the space generated
by {e1, Je1,...,es-1,J€s 1,501, J€si1, .-, €n_1,J€n 1}, SO We can ap-
ply Lemma 3.1.

By relations (5) and (7) we get

|ds A\ dLs| = |(Jen, ws)d Ly A dp| = |(JN, es)dLgy A dp|

since wj vanishes on T'S.
Then, by Lemma 3.3,

(SN L,)dL, = (28_1) // (JN, e,)|6,(p)dLyydp

2s — 1\ ! |(JN, es
[] 5

Now, we shall express d L, in terms of dGS?Zsi1 AdSs,_o. For every
generic complex s-plane Ly containing p € S, the submanifold SN L,
is a hypersurface of L,. If N is a normal vector field of SN L, as a
hypersurface in L, then JN € T(SN Ly). Thus, J N is a well defined
vector in T'S for every generic Ly and we can define the map

SNLs ;é@

¢ . *Cs[p] B S2n~_2 X~GS—~2,5—1
Ls[p] — (JN,{N, JN}J‘ ﬂLS[p])

which has inverse

Tl ST G, — Ly
(%L(s—n[p}) = expp{v,JU,L(S_l)[p]}'

The expression of dSs, 5 in terms of w and the expression of dGS_Q’S_l
in terms of w' are

dSon—o = /\ Wsj
j=1,1,...,s—1,5—1,5,s+1,54+1,....n
C !
<8) dGn 2,s—1 — /\ wzg
i=1,...,s—1
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By (6) and (8) we have

_ /
Jj=s+1,s+1,....n,n

= dG° o5 1 N /\ Win A /\ Wi A /\ Wsj,

i=1,..,s—1 i=1,...,s j=s+1,5+1,....n—1,n

dSQn_Q = /\ Wsj AN /\ W

and also using that wy, = wy; since w;, = (de;, e,) = (dJe;, Jen) = wiy
we obtain

In order to study

we use ez = Je, = (Jeg, ws)ws + (Jes, N)wy; and we obtain

A wl= A wl=l A sl

i=1,T1,...,5—1,5—1 i=1,1,....5—1,5—1 i=1,1,...,5—1,5—1

= (Jeg, wg )27V /\ Wiz

Thus,

and
<<]en7 ws>2571
<J€S’ws>2(s 1)

Using |(Jen, ws)| = [(JN, es)| and (Je,, ws)2 =1 — (JN, es)? we get
the result. O

dLyp = dGY_y oy N dSan_s.
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3.3. Proof of the main results.

Proof of Theorem 1.4. If {ey, Jey, ..., es, Jes}is a moving frame adapted
to T,5 N Ly and L, then Jey is a normal vector of S N Ly in L, thus
we can take JN = e;.

7 ¥ kn s
By Proposition 3.5 and the relation k,(JN) = (€s)

UN.e (cf. (3)) we

obtain

I:/ / k,
s JSNLs
(JN,e)>  kples)
dVdSd
//]Pﬂn 2/Gcc P 1— JN 68> )S 1<JN, s> b

JN es>23 1
9 = vol( kn s)dSdp.
() VO TL2S].//IRP2R2 JN€>) (6) 14

In order to compute the integral over RP?" 2 we use polar coordi-
nates and express the normal curvature of e, in terms of the principal
curvatures of 7),S.

That is, if {f1,..., fon—1} is an orthonormal basis of principal direc-
tions of 7,S then es = E?Zl<es, fifi, and
on—1 on—1
kn(es) = Z <687fj>2kn(fj) = Z <687fj>2k
j=1 j=1

On the other hand, we consider JN to be the first vector of a polar
coordinates system and we denote

(JN,es) = cosb.
Using spherical trigonometry we have
(€s, fj) = —cos By cos(JN, f;) + sin by sin(JN, f;) cos(es, JN, f;)
= —cos 0 cos aj + sin ¢ sin a; cos 0y

where cos(es, JN, f;) denotes the cosine of the spherical angle with
vertex JN. Note that «; are constants when the point is fixed. Then,

<JN es>2571

fo s T (s

2n—1 26—1

5710

= k; </ / COSQS 5 91 cos? 0y cos? a; sin®=3 0,dh,dSsy,_5+

]:1 S2n 3

w/2 2s—1 g

+/ / cos? By sin® % 0 d02/ C?SQS—_zl sin? ; sin? a; sin® 3 0,db, +0>

S2n—4,/( 0 S1n 91

wgn 9 _12n ! 2sn—n—s
——~cos"a; +1).
n—=s
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Integrating over S and using

2n—1
Fn(JN) =) ki (N, f;)7
j=1
we obtain the stated result. O

Proof of Theorem 1.2. By Proposition 3.5 and Lemma 3.4 we have

M(S (SN Ly)dL,

(JN, eq)?t
28 -1 / /PQn 2/G(C 1 — JN es> ) 01(p7 es V)dVdesdp

n—2,s

JN68>231
trll|y +11(es, es))dV deyd,
25—1/Apgn21_JNes>)s1LC (trlI]y +1L(es, €5))dV desdp

n—2,s—1

VO] n 2,5—1 ']N es>28 ! s—1
= trll| g +kn(es)) desdp,
2s —1 //szn 2(1—(JN,e5)?)*~1 \n—2 ]+ ka(es)) devdp

where E = (N, JN, e, Jeg)t.
Note that if s=1, then dim V' =0. Although the integral [.c tr(II]y)dV
has s=LrT| = 0.
If s=n—1,then dmV =n—2and e, @V = {N,JN, Jes}*+. As
Joo tr(II\V)dV = tr(II|g), the above equality also remains true.
We Shall study the following integrals:

vol(Gy_y, 1) s — 1 (JN,eg)?1
- trTT| pdedp,
e 25 — 1 n—2//P2n2 JNe))51r|Eep

VOl n—2,s—1 JN es>28 !
Jg=—-"— k:n s)degdp.
25 —1 //R]PMQ JN@)) (e)ep

The second integral is the same as the integral (9). Thus, we already
know its expression.

In order to study the integral Jg, we shall use polar coordinates in
the same way and with the same notation as in the proof of Theo-
rem 1.4. Let {e, Jey,...,es_1,Jes—1} be vectors in 7,5 N Ly and let
{esi1, Jesits -y en_1,Jen 1} be vectorsin T,SNLE. Ifae {1,...,s—
I,s+1,...,n—1}, then {(e,, JN) = (Je,, N) = 0 and also (e,, N) = 0.
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We denote, following the notation in the proof of Theorem 1.4,
cos ¢y; = cos(e;, JN, f;) and cos ¢;; = cos(Je;, JN, f;). Then,

/% cog? L 01 . 5 - 9n-3
——5-—5— sin” o sin 0,
s2n-3 Jo 1

o ajF(s)F(n —s)

2I'(n)

/ (cos2 Q1+ - +cos? O — +cos? Gst1,5+ - +cos? ¢m’j)dS2n_3.
52n73

Now, denote by S2*! the subset of S~ consisting of all points not
in span{/N, JN}. Then, the map

m: St {N,JN}+
proj syt (V)

v -
Hpro.]{N,JN}L (U)H

is well-defined.

We also denote by f; a principal direction at p as in the proof of
Theorem 1.4.

As cos(¢q;) = cos(eq, JN, f;) denotes the cosine of the spherical angle
with vertex JN and points in e, and f;, by definition, it coincides with

(I(ea), TI(£5))-
On the other hand, vectors {II(ey),..., JII(e,_1)} constitute an or-
thonormal basis of {N,JN}+. Since II(f;) is a unitary vector in

(N, TN}, e e S (T ea), TI(f7))? + (JT1(eq), TI(£;))2) = 1 and
we obtaln

/ (cos®Pij+ -+ +€0S°Py(s-1),j+COS Psr1 i+ + +  +COS° D (n—2) ;) dS2n—3
s

= [ = ) T = (T, ) ) S
Now, using polar coordinates such that
<H(€S>> H(f]>> = costh, 0p € <0>7T)7
we obtain

(JT(es), 11(f5)) = sin(II(es), TI(f;)) cos(T(es), 11(f;), JTL(f;))
= sinfy cos b3, 63 € (0,7)
By Lemma 3.2 and the relation

T
n—2

O2n—3 - OQn—57



16 JUDIT ABARDIA

we have
/ / / (1—cos? By —sin? B, cos? O3) sin®*~* O sin®" > G3d03d0ydS,
SQn 5

== Ogn_g - / / COS2 02 Siﬂ2n_4 92d92d5'2n_4
S2n—4

— / / cos? O3 sin®~° 05d0l / sin®"=2 0,d0,
s2n=5 Jo 0

Om-s 5 HVTl(n—2) V7l(n = 3)

2n 52

— OZn—3 -

2n—2 7T AT(n -1y T(n)
02n73
=——"-(n—2) =ws_o(n—2).
2(n_1) (n ) Wan 2(” )
Thus,
vol(GS , . | )wan_on(s —1) -l
Jg = Dt in? ok (p)d
g 2(2s —1)(n — s)s (s) /S Z sin ;b (p)dp
7j=1
w2n QVOI( n—2,5— 1)”(8_ 1) -
= 2n — V)M (S)— | k.(JN
25(2s — 1)(n — s) s (2n = DM (5) /S (JN)
and adding the expression of both Jg and J; we get the result. 0J

4. APPLICATIONS

4.1. Reproductive valuations.

Proof of Theorem 1.5. It was proved in [Ale03] that every continuous
invariant valuation of degree 2n — 2 in C" has the form

v(Q) = aM;(09Q) + b/ kn(JN).

o0

We look for relations between a and b to be v a reproductive valuation,
that is,

/ v(QN Lg)dLs = A\v(2).

By Theorems 1.2 and 1.4 we have

/5 v(QN Ly)dL, = / <aM1<aQ N L)+ b/amLs kn(JN)>
_ Wan- vol(GS 5, 1) (n> —1(<a N b(2s — 1)(2sn — n — s)>/8Q 5 (N4

25(2s — 1) s n—s
a(2ns —n —s
L )

+b(2s — 1)) (2n — 1)M1(8§2)).

n—s
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Thus, v is reproductive if and only if for some A € R

(Zn—l)(

a(2ns —n —s)

+b(2s — 1)> = \a,

n—s
N b(2s —1)(2sm —n — s) _
n—s
2s(s —1)(2n —1
Solving this system we get two solutions, a = —b, A = s(s )(2n ) :
n—s
2n(n —1)

da=b2s—1)2n—1), A=
and @ = b(2s — 1)(2n — 1), A = ="

In CK"(€) the results follow straightforward using Theorems 1.2 and
1.4. O

4.2. Computation of some constants of Theorem 3.1.2 in [Ale03].
First, we express [, kn(Jn) (a translation invariant continuous valua-
tion) in terms of valuations {Uy ,} defined in (2).

Proposition 4.1. Let Q2 be a regular domain in C™. Then

/ i (Jn) = (2n — 3)(2n — 2)*nws Unn1(9)
00

Won—2

—2n(2n — 1)(2n* — 4n + D)wyUsy_20(9).

Proof. The homogeneous degree of [, k,(Jn) is 2n — 2. By Theorem
2.1.1 in [Ale03], we know that Us,_20 and Us,_2 constitute a basis for
the continuous invariant valuations of degree 2n — 2. Since

1

10 Usp_20(2) = M (09
(10) n-20(©) = 5 M1 (0%)
and
1
Usp21(Q) = ———— M(0Q N L, _1)dL, 1,
2 () @n_2MLA%1 . DL
Theorem 1.2 with s =n — 1 gives the result. 0]
In the following theorem we give the constants for all ¢ € {1,...,n—

1} and k = 2g — 2 for Theorem 3.1.2 in [Ale03] (Theorem 1.6 in the
introduction).

Theorem 4.2. Let 2 be a reqular domain i C". Let 0 < q < n,
0<2p<k=2q9—2. Then

WQq_QCUQn_QVOl(Ggilqil)VO](Gg:iQ’qipil)
/ U2q—2,p(Q N LCI)qu = ( - )(2 — 9 — 1) (n72)( q—2 ) )

.((271 —3)(n—-1)(n—-q+p)

Wan—2

Usn2a(8)= (20— Dl = 4+ p = D0n-20().
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Proof. From equation (2) and Theorem 1.2 we get the following rela-
tion:

1
UQq—27p(Q N Lq) == m L M1(<aQ N Lq) N Lq—p)qu—p

B O2q—3V01(G§—2,q—p—l) ( q )_1_
8(¢ —p)*q—1)(2¢ —2p — L)wa \q — p

.<(2q_1>2q(q_p2_ 2q+p/£ Ml(aQﬂLq)Jr/E kn(JN)>

where N denotes a normal vector to 99 N L, as a hypersurface in L,.
Using again Theorems 1.2 and 1.4, we express the integrals over £, as
an integral over 0f). Finally, from the relation in Proposition 4.1 and
(10) we get the result. O

4.3. Measure of the set of complex lines meeting a compact
domain in C".

Proposition 4.3. Let Q2 be a regular domain in C™. Then

/ﬁ1 QN Ly)dL, = 2222 ((Qn — 1)M;(09) +/ kn(Jn)> ‘

201” a0

Proof. As a complex line in C" is isometric to R?, from Gauss-Bonnet-
Chern formula in R? and Theorem 1.2 with s = 1 we obtain

1
L1 Ol L1 JOONL,
1 wop—s

= oo ((Qn—1)M1(aQ>+Aan(Jn)>-
O

Remark 4.4. The method of the previous proposition cannot be used to
study the integral f - X(QNL,)dL, since it is not known an expression

of fcs My 1(092N Lg)dL in terms of a basis of degree 2n — 2s.

4.4. Measure of the set of complex lines meeting a compact
domain in CP" and CH". A complex line in CP" (or CH") is iso-
metric to CP' (or CH' = H?(—4)). Gauss-Bonnet-Chern theorem is
also known in these spaces but it involves the volume of the domain.
We study first the integral |, £, VOlas(§2N Ls)dLs, although we just need
it when s = 1.

The following result is stated in [APFO07].

Proposition (Theorem 6.4 [APFO7]). Let 2 be a regular domain in
CK"(€). Then

(11) / volas (2N Ly)dLy = C, svol(Q)

S
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with Cy, s a constant depending only on dimensions n, s (and the nor-
malization of the measure dL;).

The constant C,, 5, which is not computed explicitly in [APF07], is
independent of the holomorphic curvature of the manifold. We are
interested in its value to obtain the measure of the set of complex lines
meeting a domain in CP" or CH".

In order to obtain the value of C' we shall use the so-called template
method. That is, we apply both sides of the equality to CP". As C,, s
is independent of the holomorphic curvature we get this constant for
all e.

Proposition 4.5. Let CK"(¢) be a complex space form with holomor-
phic sectional curvature 4e # 0 and let Q@ C CK"(e) be a reqular do-
main. Then

/ volys (2N Ly)dL, = vol(GE, _)vol(9).

n,n—s
S

Proof. Let us take 0 = CP". Using the normalization of the measure
dLs given in (1), we obtain, for the left hand side of the equality (11)

/ volos (CP" N Lg)dLs = / volys(CP*)dL, = vol(CP*)vol(GS, ).
Ls

. n,n—s
Using that
1
’ vol(U(n — s))vol(U(s))
and that CP" = GS,I, we get the value of the constant C, ;. O

Proof of Proposition 1.7. By Gauss-Bonnet-Chern formula in M?(4e)
we have

1 4
/ XQN L)AL = — [ M0 L)Ly + — [ volo(Q N L1)dL:.
L1 27T L1 27T L1

The result follows from Proposition 4.5 with s = 1 and Theorem 1.2.
O
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