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Abstract. In this paper we are going to apply the invariant theory to give invariant
conditions on the coefficients of any non degenerate quadratic system in order to de-

termine if it has or not a polynomial first integral without using any normal form. We

obtain that the existence of polynomial first integral is directly related with the fact that
all the roots of a convenient cubic polynomial are rational and negative. The coefficients

of this cubic polynomial are invariants related with some geometric properties of the

system.

1. Introduction and the statement of the main result

Let R[x, y] be the ring of all polynomials in the variables x and y with coefficients in R.
In this paper we deal with quadratic polynomial differential systems in R2 of the form

(1)
dx

dt
= x′ = P (x, y),

dy

dt
= y′ = Q(x, y),

where P,Q ∈ R[x, y] and max{degP,degQ} = 2. In what follows such differential systems
will be called simply quadratic systems.

Quadratic systems have been investigated intensively, and more than one thousand pa-
pers have been published about these systems (see for instance [18], [30] and [31]). But
the problem of classifying the integrable quadratic systems remains open. For additional
information on integrable differential systems in dimension 2, see [5].

The search of first integrals is a classical tool for classifying all trajectories of a polynomial
system. Polynomial first integrals are a particular case of the Darbouxian first integrals. In
1878 Darboux [10] showed how the first integrals of planar polynomial systems possessing
sufficient invariant algebraic curves can be constructed. The best improvements to Dar-
boux’s results for planar polynomial systems are due to Poincaré [16] in 1897, Jouanolou
[12] in 1979, to Prelle and Singer [17] in 1983, and to Singer [27] in 1992. Some recent
interesting results related with Darboux theory of integrability have been made by several
authors, see for instance [7, 8, 9, 19], etc.

We say thatH∈R[x, y]\R is a polynomial first integral of system (1) on R2 ifH(x(t),y(t))=
is constant for all values of t such that (x(t), y(t)) is defined on R2. Obviously, H is a first
integral of system (1) if and only if

(2) P
∂H
∂x

+Q
∂H
∂y

= 0

on R2.
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Llibre and Xiang Zhang obtained in [14] all quadratic systems that have polynomial
first integrals of degree less than or equal to 4 and did the topological classification of the
quadratic phase portraits having such first integrals. But the complete study of all quadratic
systems having polynomial first integral was done by Chavarriga, Garcia, Llibre, Pérez and
Rodŕıguez in [6]. They provide the necessary and sufficient conditions in order that a
quadratic system has a polynomial first integral. They also give the explicit polynomial
first integral for all them in terms of the coefficients of a set of different normal forms. A
remarkable fact of such study is that quadratic systems may have polynomial first integrals
of any arbitrary degree. Finally, some of these authors characterize the phase portraits of
all quadratic systems having a polynomial first integral (see [11]). Another remarkable fact
is that no new phase portraits are possible beyond those which already are realizable by
the subclass of all Hamiltonian quadratic systems (see [1]).

On the other hand, the use of the invariant theory applied to the study of differential
polynomial systems (mainly quadratic ones) has allowed to extend the conditions for many
families of quadratic systems from the used normal forms to the general system in the
parameter space of 12 coefficients. In this direction, the works of the Sibirskii school have
provided the necessary tools for determining the algebraic conditions on general systems
to achieve most of the geometric properties of the problem. As example we can mention
the classification of quadratic systems having a center [28], the global classification of all
infinite singular points [23] and also finite [3], the classification of quadratic systems having
more than 3 invariant straight lines [24, 20, 21, 22, 25], or the classification of quadratic
systems having a rational first integral of degree up to 2 [4]. The invariant theory has also
been very useful when applied to the study of some complicated bifurcation diagrams like
the study of all the quadratic systems having a weak focus of second order [2].

In this paper we are going to apply the invariant theory to the work [6], that is we are
going to give invariant conditions on the coefficients of any non degenerate quadratic system
in order to determine if it has or not a polynomial first integral without using any normal
form. Our main conclusion is that the existence of a polynomial first integral is directly
related to the existence of negative rational roots of a convenient cubic polynomial Φ(z),
whose coefficients are invariants related with some geometric properties of the system.

It is important to note that up to now the invariant theory had been applied in terms
that some invariants must be zero, positive, negative or certain constants, but as far as we
know this is the first time in which a quotient of invariants must belong to a non continuous
set of numbers as the rationals.

Along the paper it becomes clear that the quadratic systems for which the roots of the
polynomial Φ(z) are rational but not negative, have rational first integrals which can be of
any degree like the polynomial ones. This will be stated as a corollary at the end of the
paper. Unfortunately this does not complete the study of the rational first integrals for
quadratic systems since some families of rational first integrals can be provided and proved
that they cannot come from this possibility.

In the following, we denote by N and Q− (Q+) the set of positive integers and the set of
negative (positive) rational numbers, respectively.

Our main result is the following one.

Main Theorem. A non-degenerate quadratic system has a polynomial first integral if and
only if either

A) it is Hamiltonian, or
it is not Hamiltonian but one of the following sets of conditions holds:

B) If θ = µ0 = 0, KM 6= 0 then R1 = 0 and, either
B1) R2 < 0, R3 = 0, B3 6= 0, F1 = −2k, k ∈ N, or
B2) R2 < 0, R3 = 0, B3 = 0, F1 ∈ Q−, or
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B3) R2 > 0, B3 6= 0, F1 = −p
q
∈ Q−, F2 =

r2

q2
∈ Q+,

p+ r

2q
∈ N, F2 < F2

1 , or

B4) R2 > 0, B3 = 0, F1 = −p
q
∈ Q−, F2 =

r2

s2
∈ Q+, F2 < F2

1 , or

B5) R2 = 0, R3 = 0, B3 6= 0, F1 ∈ Q−, F1 < −1.
C) If θ = µ0 = K = M = 0 then B3 = 0, R9 6= 0, F3 ∈ Q−.
D) If θµ0 6= 0 then B1 = R4 = 0, Φ(z) has three roots in Q− and, either

D1) R5 6= 0, B3 = 0, or
D2) R5 6= 0, B3 6= 0, R6 = 0, R7 = 0, or
D3) R5 = 0, R8 = 0.

Here the invariant polynomials are defined in (5) and (6).
In Section 2 we introduce the necessary invariants and we recall the main theorem from

[6].
In Section 3 we show the proof of our main result. We split it in several lemmas and

divide it according to some subsets to make it clearer.
In Section 4 we give some corollaries related with polynomial first integrals and also with

rational first integrals.

2. Preliminary

Consider real quadratic systems of the form:

(3)

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

We say that a quadratic system (3) is non-degenerate if gcd(P,Q) = 1.
Let a = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the coef-

ficients of system (3) and denote R[a, x, y] = R[a00, a10, a01, a20, a11, a02, b00, b10, b01, b20,
b11, b02, x, y].

In order to find affine invariant conditions for determining the class of quadratic sys-
tems possessing a polynomial first integral we shall construct the necessary affine invariant
polynomials as follows.

We consider the polynomials

(4)
Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2.

Using the so-called transvectant of index k (see [15]) of two polynomials f, g ∈ R[a, x, y]

(f, g)(k) =
k∑

h=0

(−1)h

(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
,

we construct the following GL—comitants of the second degree with the coefficients of the
initial system

T1 = (C0, C1)
(1)
, T2 = (C0, C2)

(1)
, T3 = (C0, D2)

(1)
,

T4 = (C1, C1)
(2)
, T5 = (C1, C2)

(1)
, T6 = (C1, C2)

(2)
,

T7 = (C1, D2)
(1)
, T8 = (C2, C2)

(2)
, T9 = (C2, D2)

(1)
.
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In order to be able to calculate the values of the needed invariant polynomials directly for
every canonical system we shall define here a family of T—comitants (see [23] for detailed
definitions) expressed through Ci (i = 0, 1, 2) and Dj (j = 1, 2):

Ã =
(
C1, T8 − 2T9 +D2

2

)(2)
/144,

D̃ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1) + 6D1(C1D2 − T5)− 9D2

1C2

]
/36,

Ẽ =
[
D1(2T9 − T8)− 3 (C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̃ =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ẽ

− 24
(
C2, D̃

)(2)

+120
(
D2, D̃

)(1)

−36C1 (D2, T7)
(1)+8D1 (D2, T5)

(1)
]
/144,

K̃ =(T8 + 4T9 + 4D2
2)/72,

H̃ =(−T8 + 8T9 + 2D2
2)/72.

Finally we construct the invariant polynomials:

(5)

M(a, x, y) = 2 Hess
(
C2(x, y)

)
= (C2, C2)(2),

η(a) = Discriminant
(
C2(x, y)

)
= (M,M)(2)/384,

D(a, x, y) = D̃(a, x, y),

K(a, x, y) = 4K̃(a, x, y) ≡ Jacob
(
p2(x, y), q2(x, y)

)
,

H(a, x, y) = −4H̃(a, x, y),

µ0(a) = Discriminant
(
K(x, y)

)
≡ Discriminant

(
H(x, y)

)
= −(K,K)(2)/32,

N(a, x, y) = K(a, x, y) +H(a, x, y),

θ(a) = Discriminant
(
N(a, x, y)

)
= −(N,N)(2)/2,

B3(a, x, y) = (C2, D̃)(1) = Jacob
(
C2, D̃

)
,

B2(a, x, y) = (B3, B3)
(2) − 6B3(C2, D̃)(3),

B1(a) = Res x

(
C2, D̃

)
/y9 = −2−93−8 (B2, B3)

(4)
,

R1(a) = −
(
(C2, C2)(2), C2)(1), D̃

)(3)
,

R2(a, x, y) = 8H
[
(C2, D̃)(2) + 8(D̃,D2)(1)

]
+ 3

[
(C1, 2H −N)(1) − 2D1N

]2
,

R3(a, x, y) = (C1, 2H −N)(1) − 2D1N,

R4(a) = (H, Ẽ)(2),

R5(a) =
(
((C2,H)(1),H)(2), D2

)(1)
,

R6(a, x, y) = Ẽ(a, x, y),

R7(a) = 5
[
(C2, D̃)(3)

]2 − 9
(
((D̃, D̃)(2), D2)(1), D2

)(1) − 63((D̃, F̃ )(2), D2)(1)+

+ 27((D̃, D̃)(2), H̃ − 4K̃)(2) − 18((C2, D̃)(2), F̃ )(2),

R8(a) = 2(C2, D̃)(3)(H̃, H̃ − K̃)(2) − 144Ã(Ẽ, H̃)(2) − 40Ã((C2, Ẽ)(2), D2)(1)−

− 18((F̃ , H̃)(1), K̃)(2) +
(
((C2, D̃)(2), K̃)(1), H̃

)(2)
,

R9(a, x, y) =
(
2D2

1 + (C1, C1)(2)
)
/8,
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as well as the following rational functions

(6)
F1(a, x, y) = −2H/K, F2(a, x, y) = 3F2

1R
2
3/R2, F3(a, x, y) = −D̃/(C2R9),

Φ(a, z) = z3 +
2
θ
(4µ0 − 4η − θ)z2 +

1
θ
(θ − 16µ0)z +

8µ0

θ
,

which will be responsible for the polynomial integrability of quadratic systems.
Some geometrical meaning of the T -comitants C2, M , η, µ0, K, H, B1, B2, B3, D, N ,

θ can be revealed (see [20]):

(i) The number and the type (complex or/and real) of infinite singularities of a system
(3) are completely determined by the invariant polynomials C2, M and η. More
precisely, if C2 6= 0 (i.e. the infinite line is not fulfilled with singularities) then there
exist three real distinct singularities (respectively one real and two complex; one
double and one simple; one triple) if and only if η > 0 (respectively η < 0; η = 0
and M 6= 0; η = M = 0). Here by double (triple) point we means only the number
of infinite singular points which can bifurcate from it.

(ii) gcd(p2(x, y), q2(x, y)) = constant (respectively bx+cy; (bx+cy)(dx+ey); (bx+cy)2)
if and only if µ0 6= 0 (respectively µ0 = 0 and K 6= 0; µ0 = K = 0 and H 6= 0;
µ0 = K = H = 0), where bx + cy, dx + ey ∈ C[x, y] are some linear forms with
be− cd 6= 0.

(iii) A necessary condition for the existence of one (respectively 2; 3) invariant straight
line(s) in one (respectively two; three distinct) direction(s) in the affine plane of a
system (3) is B1 = 0 (respectively B2 = 0; B3 = 0).

(iv) If ux+ vy + w = 0 is an invariant affine line of a system (3), then D(−v, u) = 0 =
C2(−v, u), i.e. the T -comitants D(a, x, y) and C2(a, x, y) capture the directions of
invariant affine straight lines of systems (3).

(v) A necessary condition for the existence of one pair (respectively, two pairs) of par-
allel invariant straight lines of a system (3) is θ = 0 (respectively, θ = N = 0).

(vi) If ux+ vy + wi = 0 (i = 1, 2) are two parallel invariant affine lines of a system (3)
then H(−v, u) = 0, i.e. the T -comitant H(a, x, y) captures the directions of parallel
invariant affine straight lines of systems (3).

Remark 1. We say that a comitant U(a, x, y) is of the type (r, g, d) if it is a homogeneous
polynomial of degree r in x and y, as well as homogeneous of degree d in the coefficients of
the systems and if its weight equals g (for detailed definitions of the polynomials which are
invariant under the action of the group of affine transformations see [26], [23]).

The proof of the Main Theorem is based on the classification of all non-degenerate qua-
dratic systems having a polynomial first integral [6], using the constructed explicit normal
form. We present here this result in the form as it is stated in [11].
Theorem PFI [Theorem 4 [11]]. A quadratic vector field without common factors has a
polynomial first integral H(x, y) if and only if there exists a change of the variables and of
the time such that the new vector field (P (x, y), a + bx + cy + dx2 + exy + fy2) is one of
the followings:

(i) P (x, y) = 1+xy , f = − 1
2 ∈ Q−, c = e = 0. Then H(x, y) = ax+ b

2x
2+ d

3x
3−xy2

2 −y.
(ii) P (x, y) = xy , f 6= 0 and furthermore one has one of the following conditions:

(a) f = −p
q ∈ Q−, c = e = 0 and a2 + b2 + d2 6= 0. Then

H(x, y) = x2p

(
a

2f
+

b

2f − 1
x+

d

2f − 2
x2 +

y2

2

)q

.
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(b) f = − s

p+ 2k
, with s, p, k ∈ N, e 6= 0, a =

b2f(f − 1)
d(1− 2f)2

, c =
ebf

d(2f − 1)
, and

d = −k(p+ k)e2

p2(f − 1)
. Then H = xsAkBp+k, where

A = −b(f − 1)2p2 + e(2f − 1)(k + p)(ekx− (f − 1)py),
B = −b(f − 1)2p2 + e(2f − 1)k(e(k + p)x+ (f − 1)py).

(c) f = −1, d =
k(p+ k)e2

2p2
, e 6= 0 and b = c = 0. Then H = Ak+pBk, where

A = 2p2a+ ekx(e(k + p)x− 2py) and B = 2p2a+ e(k + p)x(ekx+ 2py).
(iii) P (x, y) = y, f = c = e = 0 and d 6= 0. Then H(x, y) = 6ax+ 3bx2 − 3y2 + 2dx3.
(iv) P (x, y) = 1 + x2 and one of the following conditions holds:

(a) f = c = b = d = 0, e = −2k with k ∈ N and a = 1, then

H(x, y) = y(1 + x2)k −
k−1∑
j=0

(
k − 1
j

)
x2j+1

2j + 1
.

(b) f = a = c = b = d = 0, e = −p
q ∈ Q− , then

H(x, y) = (1 + x2)py2q.

(v) P (x, y) = −1 + x2 and one of the following conditions holds:
(a) f = a = d = b = 0, e = −p

q ∈ Q−, c = r
s ∈ (e,−e) ∩Q , then

H(x, y) = (x+ 1)sp+rq(x− 1)sp−rqy2sq;

(b) f = d = b = 0, e = −p
q
∈ Q−, c =

r

q
, with r ∈ Z, −p < r < p and p ≡ r (mod

2) and furthermore α =
p− r
2q

∈ N and a = 1. Then

H(x, y) = (x+ 1)p+r

y(x− 1)α −

α−1∑
j=0

(−2)α−1−j

(
α− 1
j

)
(x+ 1)j

β + j

2q

,

where β = (p+ r)/2q.
(c) f = d = b = 0, e = −p

q ∈ Q−, c =
r

q
with r ∈ Z, −p < r < p and p ≡ r (mod

2) and furthermore β =
p+ r

2q
∈ N and a = 1. Then

H(x, y) = (x− 1)p−r

y(x+ 1)β −

β−1∑
j=0

2β−1−j

(
β − 1
j

)
(x− 1)j

α+ j

2q

,

where α =
p− r
2q

.

(vi) P (x, y) = x2, f = c = b = d = 0, a = 1 and e = −p
q ∈ Q− ∩ (−∞,−1). Then

H(x, y) = xp−q

(
xy +

q

q − p

)q

.

(vii) P (x, y) = x, f = e = a = b = 0 and c = −p
q ∈ Q−. Then H(x, y)=xp

(
y − d

2−cx
2
)q

.

(viii) P (x, y) = 1, f = c = e = a = 0 and d 6= 0. Then H(x, y) = y − 1
2bx

2 − 1
3dx

3.

Remark 2. Note that statement (vi) sets that the first integral is H(x, y)=xp−q

(
xy+

q

q − p

)q

instead of H(x, y) = xp−q

(
xy +

q − p
q

)q

as it is given in [6] and [11]. Sure this is a typeset
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error in the original paper since it is clear that the formula does not fit and the repaired one
does.

3. Proof of the Main Theorem

We split the proof of the Main Theorem in four theorems respective to the cases A), B),
C) and D).

According to Theorem PFI the following proposition holds.

Proposition 3. If a quadratic system (3) possesses a polynomial first integral then either it
is A) Hamiltonian, or via a linear transformation its quadratic part (p2, q2) could be brought
to one of the form:

B) (x2, exy); C) (0, x2); D) (xy, dx2 + exy + fy2).

Lemma 4. The homogeneous parts (p2, q2) of a quadratic system (3) could be brought via
a linear transformation to the form B) with e(e− 1) 6= 0 (respectively, to the form C) if and
only if θ = µ0 = 0, KM 6= 0 (respectively, K = M = 0 and this implies θ = µ0 = 0).

Proof. Necessity. Assume that a system (3) has the quadratic parts of the form (p2, q2) =
(x2, exy). Then calculations yield

θ = µ0 = 0, K = 2ex2, M = −8(e− 1)2x2,

and clearly KM 6= 0 due to the condition e(e− 1) 6= 0.
If (p2, q2) = (0, x2) then we have θ = µ0 = K = M = 0.
Sufficiency. We consider the homogeneous quadratic systems

(7) ẋ = gx2 + 2hxy + ky2, ẏ = lx2 + 2mxy + ny2.

Without loss of generality we may assume k = 0 doing a rotation (if necessary). Then for
these systems we calculate

(8)

θ = −64h
[
l(n− h)2 + gm(n− h)−m2n

]
,

µ0 = n
[
4h(hl − gm) + g2n

]
, K = 4

[
(gm− hl)x2 + gnxy + hny2

]
,

M = −8
[
(g − 2m)2 + 3l(2h− n)

]
x2 − 8(g − 2m)(2h− n)xy − 8(2h− n)2y2

]
.

1) Assume first that for systems (7) the conditions θ = µ0 = 0 and KM 6= 0 hold.
a) If h = 0 then the conditions µ0 = g2n2 = 0 and K = 4gx(mx+ ny) 6= 0 imply g 6= 0,

n = 0 and we get the family of systems

ẋ = gx2, ẏ = lx2 + 2mxy,

for which M = −8(g− 2m)2x2 6= 0. Then applying the transformation (x, y) 7→
(
x/g, (lx+

gy)/(g(g − 2m))
)

we get the systems ẋ = x2, ẏ = exy, where e = 2m/g.
b) If h 6= 0 then n 6= 0, otherwise we get a contradiction. Indeed supposing n = 0 we

obtain θ = 64h2(gm − hl) = 0 and K = 4(gm − hl)x2 6= 0. So hn 6= 0 and considering
(8), the conditions θ = µ0 = 0 yield m = g(n − h)/(2h) and l = g2(n − 2h)/(4h2). In this
case applying the transformation (x, y) 7→

(
y, (2hx − gny)/(2hn)

)
we obtain the systems

ẋ = x2, ẏ = exy, where e = 2h/n.
2) Assume now that for systems (7) the conditions K = M = 0 hold. Then from (8)

it obviously follows n = h = g = m = 0 and then θ = µ0 = 0. Since the system must be
quadratic (i.e. l 6= 0) then due to the rescalling y → ly we get the system ẋ = 0, ẏ = x2

and this completes the proof of Lemma 4. �

Remark 5. According to Theorem PFI (see subcases (ii),(a)-(c)) in the case D) for the
existence of a polynomial first integral it is necessary f < 0. Then the conditions θ = µ0 = 0
yield d = e = 0, and then we have KM = −16f(f − 1)2y4 6= 0, i.e. we come to the case B)
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(with e = 1/f). So to obtain from D) the cases different from B), the condition θ2 +µ2
0 6= 0

must hold for this family.

We observe that for these four families of systems (i.e. systems A) and systems with
quadratic parts B), C) and D)) we have the following distribution of the subfamilies from
Theorem PFI:

A): ⇔ the cases: (i); (iii); (iv), (a) in the case k = 1; (viii);
B): ⇔ the cases: (iv), (a),(b); (v), (a)-(c); (vi); (ii), (a) in the case d = 0;
C): ⇔ the case (vii);
D): ⇔ the cases: (ii), (a)-(c).

3.1. Case A). In the case of Hamiltonian systems a more generic assertion can be done for
polynomial systems of degree n

(9)

dx

dt
= p0 + p1(x, y) + p2(x, y) + ...+ pn(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) + ...+ qn(x, y) ≡ Q(x, y).

More exactly we have the next result.

Theorem A. If a polynomial system (9) verifies the conditions

(10) Di(x, y) = 0 (i = 1, 2, ..., n) ⇔ ∂

∂x
P (x, y) +

∂

∂y
Q(x, y) ≡ 0,

i.e. it is Hamiltonian, then this system possesses the following polynomial first integral

(11) H(x, y) =
n∑

j=0

1
j + 1

Cj(x, y),

where
Ci(x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, ..., n,

Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y), i = 1, 2, ...n

are the GL-comitants of systems (9).

Proof. Assuming that the conditions (10) hold we shall show that polynomial H(x, y) of
the form (11) is a first integral of systems (9). Indeed considering (11) and applying the
Euler’s formula for homogeneous polynomials we have

∂H

∂x
=

n∑
j=0

1
j + 1

(
y
∂pj

∂x
− qj − x

∂qj
∂x

)
(10)
=

n∑
j=0

1
j + 1

(−jqj − qj) = −
n∑

j=0

qj = −Q(x, y);

∂H

∂y
=

n∑
j=0

1
j + 1

(
pj + y

∂pj

∂y
− x∂qj

∂y

)
(10)
=

n∑
j=0

1
j + 1

(pj + jpj) =
n∑

j=0

pj = P (x, y).

Therefore

Hx
dx

dt
+Hy

dy

dt
= −Q(x, y)P (x, y) + P (x, y)Q(x, y) = 0

and this proves the lemma. �
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3.2. Case B). In what follows we shall use the notation R =
∂

∂x
P (x, y)+

∂

∂y
Q(x, y) for the

divergence of system (3). Therefore in order that a quadratic system be non-Hamiltonian
it must satisfy the condition R 6= 0.

Theorem B. Assume that for a non-hamiltonian and non-degenerate quadratic system
(3) the conditions θ = µ0 = 0 and KM 6= 0 are fulfilled. Then this system possesses a
polynomial first integral if and only if R1 = 0 and one of the following sets of conditions
holds.

B1) R2 < 0, R3 = 0, B3 6= 0, F1 = −2k, k ∈ N; in this case the system can be brought
via an affine transformation and a time rescalling to the system

(12) ẋ = 1 + x2, ẏ = 1− 2kxy,

possessing the polynomial first integral

(13) H(x, y) = y(1 + x2)k −
k−1∑
j=0

(
k − 1
j

)
x2j+1

2j + 1
.

B2) R2 < 0, R3 = 0, B3 = 0, F1 = −p
q
∈ Q−; in this case the system can be brought

via an affine transformation and a time rescalling to the system

(14) ẋ = 1 + x2, ẏ = −p
q
xy,

possessing the polynomial first integral

(15) H(x, y) = y2q
(
1 + x2

)p
;

B3) R2 > 0, B3 6= 0, F1 = −p
q
∈ Q−, F2 =

r2

q2
∈ Q+, F2 < F2

1 ; in this case the system

can be brought via an affine transformation and a time rescalling to the system

(16) ẋ = −1 + x2, ẏ = 1 +
r

q
y − p

q
xy, p, q, r ∈ N, p > r,

and if the additional condition
p+ r

2q
= β ∈ N holds, then this system possesses the

polynomial first integral (with α =
p− r
2q

)

(17) H(x, y) = (x− 1)p−r

y(x+ 1)β −

β−1∑
j=0

2β−1−j

(
β − 1
j

)
(x− 1)j

α+ j

2q

.

B4) R2 > 0, B3 = 0, F1 = −p
q
∈ Q−, F2 =

r2

s2
∈ Q+, F2 < F2

1 ; in this case the system

can be brought via an affine transformation and a time rescalling to the system

(18) ẋ = −1 + x2, ẏ =
r

s
y − p

q
xy, p, q, r, s ∈ N, ps− qr > 0,

possessing the polynomial first integral

(19) H(x, y) = (x+ 1)ps+qr(x− 1)ps−qry2qs;

B5) R2 = 0, R3 = 0, B3 6= 0, F1 = −p
q
∈ Q−, F1 < −1; in this case the system can be

brought via an affine transformation and a time rescalling to the system

(20) ẋ = x2, ẏ = 1− p

q
xy, p > q,
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possessing the polynomial first integral

(21) H(x, y) = xp−q

(
xy +

q

q − p

)q

.

Proof. As for a quadratic system the conditions θ = µ0 = 0 and KM 6= 0 hold, considering
Lemma 4 and applying an additional translation (excluding the linear terms in the variable x
from both polynomials P (x, y) and Q(x, y) we shall consider the following family of systems

(22) ẋ = a1 + c1y + x2, ẏ = a+ cy + exy.

We calculate

(23)
R = c+ (e+ 2)x, K = 2ex2, H = −e2x2,

M = −8(e− 1)2x2, R1 = 576c21(e− 1)3.

Since this family is not Hamiltonian the condition R 6= 0 is verified.

Remark 6. Since the polynomials K and H are both of the same type (2, 0, 2) (see Remark

1), we conclude that the rational function F1 = −2H
K

= e is an absolute invariant for the

family (22) with respect to the group Aff (2,R) of affine transformations as well as with
respect to the time rescalling.

According to Theorem PFI if a quadratic of system could be brought via an affine trans-
formation and time rescaling to the form (22) (i.e. its quadratic part (p2, q2) = (x2, exy))
then this system could possess a polynomial first integral only if c1 = 0. As M 6= 0 (i.e.
e − 1 6= 0) the last condition is equivalent to R1 = 0 in a continues way. Thus we get the
family of systems

(24) ẋ = a1 + x2, ẏ = a+ cy + exy,

for which

(25) R2 = −192a1e
4x4, R3 = −8cex2 6= 0, B3 = 3ae2(e− 1)x4.

Following Theorem PFI we shall consider the cases when a1 < 0, a1 > 0 and a1 = 0.
Taking into account (25) and K 6= 0 these conditions are equivalent with R2 > 0, R2 < 0
and R2 = 0, respectively.

1) Assume first R2 < 0. Then a1 > 0 and we may consider a1 = 1 due to the transfor-
mation (x, y, t) 7→ (a1/2x, a1/2y, a−1/2t). So we arrive to case (iv) of Theorem PFI and from
this theorem it follows, that systems (24) with a1 = 1 possess a polynomial first integral
only if c = 0. According to (25) the last condition is equivalent to R3 = 0. Thus we obtain
the systems

(26) ẋ = 1 + x2, ẏ = a+ exy

and following Theorem PFI we shall consider two subcases: a 6= 0 and a = 0. Considering
(25) these conditions are governed by the invariant polynomial B3.

a) If B3 6= 0 then a 6= 0 and we may consider a = 1 due to the change y 7→ ay. According
to Theorem PFI (see (iv),(a)) systems (26) (with a = 1) possess a polynomial first integral
if and only if e = −2k with k ∈ N. Since for these systems F1 = e we conclude that for
F1 = −2k we get the family of systems (12) possessing the polynomial first integral (13).
So we obtain the case B1) of the theorem.

b) Admit now B3 = 0, i.e. a = 0. According to Theorem PFI (see (iv),(b)) systems (26)
(with a = 0) possess a polynomial first integral if and only if e = −p/q ∈ Q−. Since for
these systems F1 = e we conclude that for F1 = −p/q ∈ Q+ we get the family of systems
(14) possessing the polynomial first integral (15). Thus we arrive to the case B2) of the
theorem.
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2) Assuming R2 > 0 from (25) we obtain a1 < 0 and we may consider a1 = −1 due to
the transformation (x, y, t) 7→ ((−a)1/2x, (−a)1/2y, (−a)−1/2t). So we arrive to the case (v)
of Theorem PFI and we shall consider the family of systems (24) with a1 = −1. We need
again to distinguish the subcases a 6= 0 and a = 0.

a) If B3 6= 0 by (25) we have a 6= 0 and we may consider a = 1 due to the change y 7→ ay.
Therefore we obtain the family of systems

(27) ẋ = −1 + x2, ẏ = 1 + cy + exy,

which according to Theorem PFI (see (v),(c)) possess a polynomial first integral if and only

if e = −p/q ∈ Q− and c = r/q with r ∈ Z, −p < r < p and
p+ r

2q
∈ N.

On the other hand for systems (27) calculations yield

(28) F1 = e, F2 = c2.

Remark 7. Since the polynomial R3 (respectively R2) is of type (2, 0, 3) (respectively
(4, 0, 6)) we obtain that the T -comitants R2

3 and R2 are both of the same type (4, 0, 6)
(see Remark 1). Therefore considering Remark 6 we conclude that the rational function

F2(a, x, y) = 3F2
1

R2
3

R2
is an absolute invariant for the family (27) with respect to the group

Aff (2,R) as well as with respect to the time rescalling.

In short we need to have F1 = −p
q

and F2 =
r2

q2
with r ∈ Z and

p+ r

2q
∈ N. Moreover

if the previous conditions hold then we have F2 − F2
1 =

r2 − p2

q2
and clearly, the condition

−p < r < p is equivalent to F2 < F2
1 . In other words we get the family of systems (16)

possessing the polynomial first integral (17). In such a way we obtain the case B3) of the
theorem.

b) Assume B3 = 0, i.e. a = 0. According to Theorem PFI (see (v),(a)) systems
(27) (with a = 0) possess a polynomial first integral if and only if e = −p/q ∈ Q− and
c = r/s ∈ (e,−e)

⋂
Q. As for systems (27) the relations (28) hold, we need to have

F1 = −p
q

and F2 =
r2

s2
. Moreover in this case we obtain F2 − F2

1 =
(r
s

)2

−
(
p

q

)2

and

clearly, the condition F2 < F2
1 is equivalent to e = −p/q < r/s < p/q = −e. So we get the

family of systems (18) possessing the polynomial first integral (19). This leads to the case
B4) of the theorem.

3) Assume finally R2 = 0. Then a1 = 0 and systems (24) become

(29) ẋ = x2, ẏ = a+ cy + exy,

and according to Theorem PFI (see (vi)) these systems possess a polynomial first integral
only if c = 0 and a 6= 0 (then we may assume a = 1 due to the change y 7→ ay). Considering
(25) and the relation KM 6= 0, the last conditions are equivalent to R3 = 0 and B3 6= 0,
respectively. Moreover according to Theorem PFI (see (vi) ) systems (29) (with c = 0 and
a = 1) possess a polynomial first integral if and only if e = −p/q ∈ Q− ⋂

(−∞,−1). As for
these systems we have F1 = e, we need to have F1 = −p

q
< −1. In in this case we arrive to

the family of systems (20) possessing the polynomial first integral (21). This leads to the
case B5) of the theorem. �

Remark 8. We note that the condition
p+ r

2q
∈ N (see case B3) of Theorem B) implies

p ≡ r(mod 2) (see Theorem PFI, (v), (b) and (c)). We remark also that in the case (v)
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of Theorem PFI the subcase (b) could be reduced to the subcase (c) via the transformation
(x, y, t) 7→ (−x,−y,−t).

3.3. Case C). Theorem C. Assume that for a non-Hamiltonian and non-degenerate qua-
dratic system (3) the conditions K = M = 0 (then θ = µ0 = 0) are fulfilled. Then this
system possesses a polynomial first integral if and only if the following conditions hold

B3 = 0, R9 6= 0, F3 = −p
q
∈ Q−.

Moreover in this case the system can be brought via an affine transformation and time
rescalling to the system

(30) ẋ = x, ẏ = −p
q
y + x2,

possessing the polynomial first integral

(31) H(x, y) = xp

(
y − q

p+ 2q
x2

)q

.

Proof. Assume that for a quadratic system the conditions K = 0 = M are satisfied (by
Lemma 4 this implies θ = µ0 = 0). Taking into account Lemma 4 and applying an additional
translation (excluding the linear terms with variable x from the polynomial Q(x, y), we shall
consider the following family of systems

(32) ẋ = a1 + b1x+ c1y, ẏ = a+ cy + x2.

For these systems we calculate

(33) R = b1 + c, B3 = 6c1x3(cx− c1y), R9 = b1c.

Since this family of systems is not Hamiltonian (i.e. R 6= 0), according to Theorem PFI
(see subcase (vii)) systems (33) could have a polynomial first integral only if c1 = 0 (i.e.
B3 = 0) and b1c 6= 0.

We note that in the case c1 = 0 the GL-invariant R9 keeps the value, indicated in (33),
after any translation (x, y) 7→ (x̃+ x0, ỹ + y0) with arbitrary (x0, y0) ∈ R2. Indeed, for any
system located in the orbit under the translation group action of a system (32) we have
R9 = b1c− 2c1x0. This means that the polynomial R9 is a CT -comitant [20] for the family
of systems (33) with c1 = 0 (i.e. B3 = 0), and it forces the condition b1c 6= 0. So in what
follows we assume B3 = 0 and R9 6= 0. Then c1 = 0 and we may assume b1 = 1 and a = 0
due to the transformation (x, y, t) 7→ (x, y/b1− a/c, t/b1). Thus we get the following family
of systems

(34) ẋ = a1 + x, ẏ = cy + x2,

for which we calculate: F3 = c.

Remark 9. We note that the invariant polynomials D and C2 are T -comitants of quadratic
systems (3), whereas R9 (as it was mentioned above) is a CT -comitant for the canonical
systems (34). Therefore since D and R9C2 are both invariant polynomials of the same type

(3,−1, 3) (see Remark 1), we conclude that the rational function F3 = − D

R9C2
= c is an

absolute invariant for the family (34) with respect to the group Aff (2,R) as well as with
respect to the time rescalling.

On the other hand in the case a1 = 0 the family (34) corresponds to the family (vii) of
the Theorem PFI. According to this theorem we conclude, that a system (34) will possess a
polynomial first integral only if c = −p

q
∈ Q− (i.e. if F3 = −p

q
) and this implies c(c−1) 6= 0.
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Then without loss of generality we may assume a1 = 0 due to the transformation (x, y) 7→
(x− a1, 2a1x/(c− 1) + y − a2

1/c).
Thus, we arrive to the family of systems (30) possessing the polynomial first integral (31)

and this completes the proof of the theorem. �

3.4. Case D). We first shall prove some results concerning the homogenous parts of qua-
dratic systems.

We consider the homogeneous quadratic systems

(35) ẋ = gx2 + hxy + ky2 = p2(x, y), ẏ = lx2 +mxy + ny2 = q2(x, y),

and the following equation

(36) Φ(z) = z3 + ϕ1z
2 + ϕ2z + ϕ3 = 0,

where according to (6) we have

ϕ1 =
8µ0 − 8η − 2θ

θ
, ϕ2 =

θ − 16µ0

θ
, ϕ3 =

8µ0

θ
.

As the polynomials µ0, η and θ are of the same type (0, 2, 4) (see Remark 1), we conclude
that in the case θ 6= 0 the quotients ϕi (i = 1, 2, 3) are absolute rational affine invariants of
these systems.

Considering Theorem PFI the next result could be obtained immediately.

Lemma 10. Assume that for a non-Hamiltonian and non-degenerate quadratic system (3)
the condition θ2 + µ2

0 6= 0 holds. Then this system possesses a polynomial first integral only
if θµ0 6= 0.

Proof. According to Theorem PFI and considering Theorems B and C we conclude that
for θ2 + µ2

0 6= 0 a non-Hamiltonian and non-degenerate quadratic system could possess a
polynomial first integral only if via a linear transformation it could be brought to the system
with quadratic parts (p2, q2) = (xy, dx2 + exy + fy2), i.e. to the families (ii), (a), (b), (c)
of Theorem PFI. Moreover for these families of systems we must have f < 0.

On the other hand for the class of systems with such quadratic parts we calculate

µ0 = df, θ = 8
[
e2f − d(2f − 1)2

]
.

Suppose the contrary that θµ0 = 0.
1) If µ0 = 0 then due to f < 0 we get d = 0, and then the condition θ = 8e2f 6= 0

yields e 6= 0 and this leads to the families (ii), (b) and (ii), (c). However for these families

according to Theorem PFI the condition d = − k(p+ k)
p2(f − 1)

holds, where f < 0 (in the case

(ii), (c) we have f = −1). So we get the contradiction d = 0 = k(p+ k) and p, k ∈ N.

2) Assume now θ = 0 and µ0 6= 0. Then d =
e2f

(2f − 1)2
, and as f < 0 we obtain d < 0.

On the other hand the condition d = − k(p+ k)
p2(f − 1)

implies d > 0 (due to f < 0), and the

obtained contradiction completes the proof of the lemma. �

According to Theorem PFI and considering Theorems B, C and Lemma 10 we conclude,
that for θµ0 6= 0 a non-Hamiltonian and non-degenerate quadratic system could possess a
polynomial first integral only if via a linear transformation it could be brought to the form
(ẋ, ẏ) = (xy,Q), i.e. if this system belongs to the families (ii), (a), (b), (c) of Theorem PFI.
The next assertion gives the respective affine invariant conditions.
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Lemma 11. Assume that for a non-Hamiltonian and non-degenerate quadratic system (3)
the conditions µ0θ 6= 0 and R4 = 0 hold. Then this system could be brought via an affine
transformation to the system

(37) ẋ = xy, ẏ = a+ bx+ cy + dx2 + exy + fy2,

if and only if the condition B1 = 0 is verified.

Proof. Consider a quadratic system such that its homogeneous part coincides with the one
of systems (35). Clearly we may assume k = 0 doing a rotation (if necessary), and for this
family of systems we calculate

θ = −8h
[
l(2n− h)2 + gm(2n− h)−m2n

]
.

Hence the condition θ 6= 0 implies h 6= 0, and therefore via the linear transformation
x1 = x, y1 = gx+ hy we get a quadratic system with homogeneous parts of the form (37).
Obviously applying an additional translation we can remove the linear terms from the first
equation and this leads to the family of systems

(38) ẋ = a1 + xy, ẏ = a+ bx+ cy + dx2 + exy + fy2.

For these systems we calculate

θ = −8[d(1− 2f)2 − e2f ], µ0 = df, R4 = 2[cd(2f − 1)− bef ], B1 = a1B̃1,

where B̃1(a1, a, b, c, d, e, f) is a polynomial. So the necessity of the condition B1 = 0 in
order to have a1 = 0 is evident.

Sufficiency. Assume now B1 = 0. As the condition R4 = 0 holds we shall consider two
cases f 6= 1/2 and f = 1/2.

1) The case f 6= 1/2. Then R4 = 0 yields c =
bef

d(2f − 1)
(d 6= 0 as µ0 6= 0), and

calculations yield
(39)

B1 =
a1θ

2

64d2(2f − 1)4
[
a2
1d

3(2f − 1)4 + a1de(2f − 1)2κ + (f − 1)κ2
]
≡ a1θ

2B̄1

64d2(2f − 1)4
,

where κ = ad(2f − 1)2 − b2f(f − 1) and we obtain

(40) DB = Discrim [B̄1, a1] = d2(2f − 1)4
[
4d(1− f) + e2

]
κ2.

So since B1 = 0 and θ 6= 0 we have either a1 = 0, or B̄1 = 0, and this implies DB ≥ 0.
Supposing a1 6= 0 we get the second relation and we consider two subcases 4d(1−f)+e2 ≥ 0
and 4d(1− f) + e2 < 0.

a) Assume first 4d(1 − f) + e2 ≥ 0. As for systems (38) we have C2 = −x
[
dx2 +

exy + (f − 1)y2
]

and this leads to the following factorization over R of the binary form
dx2 + exy + (f − 1)y2 = (px+ qy)(rx+ sy). Thus we obtain the relations

d = pr, e = qr + ps, f = 1 + qs

and in this case for system (38) we calculate

(41) B̄1 = Z1Z2, µ0 = pr(1 + qs), θ = −8(p+ pqs− q2r)(r + qrs− ps2),

where
Z1 = (a1p+ aq)pr(1 + 2qs)2 − b2q2s(1 + qs),

Z2 = (a1r + as)pr(1 + 2qs)2 − b2qs2(1 + qs),

Therefore the condition B1 = 0 yields Z1Z2 = 0, and without loss of generality we may
assume Z1 = 0 due to the change p ↔ r, q ↔ s. Therefore since µ0 6= 0 and 2f − 1 =
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1 + 2qs 6= 0 the relation Z1 = 0 yields

a1 =
b2q2s(1 + qs)
p2r(1 + 2qs)2

− aq/p.

Then via the affine transformation

χ : x1 = px+ qy +
bqs

r(1 + 2qs)
, y1 = qrx+ (1 + qs)y +

bq(1 + qs)
p(1 + 2qs)

with det(χ) = (p + pqs − q2r) 6= 0 (due to θ 6= 0) systems (38) will be written as systems
(37).

b) Assume now 4d(1 − f) + e2 < 0. Then the condition DB ≥ 0 implies κ = 0, and

this yields a =
b2(f − 1)
d(2f − 1)2

. Then for systems (38) we obtain B1 = a3
1dθ

2/64 = 0, and this

yields a1 = 0, and hence in the case f 6= 1/2 lemma is proved.
2) The case f = 1/2. Then R4 = −be = 0 and θ = 4e2 6= 0 and this implies b = 0. So

we get the family of systems

(42) ẋ = a1 + xy, ẏ = a+ cy + dx2 + exy + y2/2,

for which calculations yield

B1 =
a1

8
[
2a2

1de
4 + 2a1e

3(c2d+ ae2)− (c2d+ ae2)2
]
≡ a1

8
B∗

1 .

As a1 6= 0 we get B∗
1 = 0 and this implies

Discrim [B∗
1 , a1] = 4e4(c2d+ ae2)2(2d+ e2) ≥ 0.

a) If 2d+ e2 ≥ 0 then we may assume 2d+ e2 = u2 ≥ 0 and hence, we get the relation
d = (u2 − e2)/2. So in this case we obtain

B∗
1 =−1

4
[
2e2(e− u)a1 − 2ae2+c2(e2 − u2)

][
2e2(e+ u)a1 − 2ae2 + c2(e2 − u2)

]
≡−1

4
Z̃1Z̃2,

µ0 = (u− e)(u+ e)/4, θ = 4e2,

and the condition B∗
1 = 0 yields Z̃1Z̃2 = 0. Then without loss of generality we may assume

Z1 = 0 due to the change u 7→ −u, and since µ0θ 6= 0 the relation Z1 = 0 gives

a1 =
1

2e2(e− u)
[
2ae2 − c2(e2 − u2)

]
.

Then via the affine transformation

χ1 : x1 = (e− u)x− y +
c(u− e)

e
, y1 =

(e+ u)
2

x+
1
2
y +

c(u+ e)
2e

, det(χ1) = e 6= 0,

systems (42) will be written as systems (37).
b) Assume finally 2d+ e2 < 0. Then Discrim [B∗

1 , a1] ≥ 0 due to e 6= 0 (because θ 6= 0).
This implies c2d+ae2 = 0, i.e. a = −c2d/e2. Therefore for (42) we obtain B1 = a3

1de
4/4 = 0

and due to µ0θ 6= 0 (i.e. de 6= 0) we get again a1 = 0. This completes the proof of the
lemma. �

Lemma 12. Assume that for a non-Hamiltonian and non-degenerate quadratic system (3)
the conditions µ0θ 6= 0 and R4 = R5 = 0 = B3 hold. Then this system could be written via
an affine transformation as the system

(43) ẋ = xy, ẏ = a+ bx+ dx2 + fy2.
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Proof. Since the condition B3 = 0 implies B1 = 0 (see (5)), taking into consideration
Lemma 11 due to the conditions µ0θ 6= 0 and R4 = 0 we may consider the family of systems
(37), for which calculations yield

R5 = 48e
[
e2f(f + 1)− d(f − 1)(2f + 1)2

]
≡ eU, R4 = 2[cd(2f − 1)− bef ].

Then the condition R5 = 0 implies either e = 0, or U = 0. If e = 0 then the conditions
R4 = 2cd(2f − 1)0 and θµ0 6= 0 (i.e. d(2f − 1) 6= 0) yield c = 0, and the lemma follows.

We assume e 6= 0. In this case the condition U = 0 implies (f − 1)(2f + 1) 6= 0, and

then d =
e2f(f + 1)

(f − 1)(2f + 1)2
. Therefore for systems (37) the condition R4 = 2[cd(2f − 1)−

bef ] = 0 yields b = ce(1 + f)(2f − 1)/
[
(f − 1)(2f + 1)2

]
, and then

B3 =
−3e

[
a(2f+1)2−c2(f+1)

]
(f−1)(2f + 1)4

[
ex+ (2f−1)y

][
e(2f2+ f +1)x+ (f−1)(2f + 1)2y

]
x2.

So the condition B3 = 0 yields a =
c2(f + 1)
(2f + 1)2

, and then via the affine transformation

χ : x1 = e(f + 1)x+ (f − 1)(2f + 1)y +
c(f2 − 1)

f
, y1 =

ef

2f + 1
x+ fy +

cf

2f + 1
,

with det(χ) = 2ef 6= 0 (due to θ 6= 0) we arrive to systems (43). �

Theorem D. Assume that for a non-Hamiltonian and non-degenerate quadratic system (3)
the condition θµ0 6= 0 holds. Then this system possesses a polynomial first integral if and
only if B1 = 0 = R4, Φ(z) has three roots in Q− and one of the following sets of conditions
holds.

D1) R5 6= 0, B3 = 0; in this case the system can be brought via an affine transformation
and a time rescalling to the system

(44) ẋ = xy, ẏ = a+ bx+ cy + dx2 + xy + fy2,

where f = − s

p+ 2k
∈ Q−, Φ(f) = 0, c =

bf

d(2f − 1)
, a =

b2f(f − 1)
d(2f − 1)2

,

d =
k(p+ k)
p2(1− f)

∈ Q+, and it possesses the polynomial first integral

(45)

H(x, y) = xsAkBk+p, s, k, p+ k ∈ N, where

A = −b(f − 1)2 + (2f − 1)(k + p)
[
kx− (f − 1)py)

]
,

B = −b(f − 1)2 + (2f − 1)k
[
(k + p)x+ (f − 1)py)

]
.

D2) R5 6= 0, B3 6= 0, R6 = 0, R7 = 0; in this case the system can be brought via an
affine transformation and a time rescalling to the system

(46) ẋ = xy, ẏ = a+ dx2 + xy − y2,

with d =
k(p+ k)

2p2
∈ Q+, and it possesses the polynomial first integral

(47)
H(x, y) = Ak+pBk, k, p+ k ∈ N, where

A = 2ap2 + kx
[
(k + p)x− 2py)

]
, B = 2ap2 + (k + p)x(kx+ 2py).

D3) R5 = 0, R8 = 0; in this case the system can be brought via an affine transformation
and a time rescalling to the system

(48) ẋ = xy, ẏ = a+ bx+ dx2 + fy2,
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f = −p
q
∈ Q− p, q ∈ N, Φ(f) = 0, and it possesses the polynomial first integral

(49) H(x, y) = x2p

(
a

2f
+

b

2f − 1
x+

d

2f − 2
x2 +

y2

2

)q

.

Proof. We consider a non-Hamiltonian and non-degenerate quadratic system (3) for which
the conditions θµ0 6= 0 and B1 = 0R4 = hold. According to Lemma 11 via an affine
transformation this system could be written in the form

(50) ẋ = xy, ẏ = a+ bx+ cy + dx2 + exy + fy2,

for which we calculate

(51)

R4 = 2[cd(2f − 1)− bef ] = 0, θ = −8[d(1− 2f)2 − e2f ], µ0 = df,

η = (f − 1)2(4d+ e2 − 4df), R5 = 48e
[
e2f(f + 1)− d(f − 1)(2f + 1)2

]
,

Φ(z) = (z − f)
[
z2 − 8

θ
(2d+ e2 − 4df)z − 8d

θ

]
≡ (z − f)ψ(z).

As in the families of systems (ii) (a),(b) and (c) from Theorem PFI the parameter f is
negative and, on the other hand, f is the root of the function Φ(z), then during the proof
of this theorem without loss of generality we can consider f < 0 in both directions of the
proof.

The case D1) Assume that for systems (50) the following conditions are fulfilled

(52) µ0θR5 6= 0, R4 = B3 = 0.

Since d 6= 0 (as µ0 6= 0) and 2f−1 6= 0 (as f < 0) the condition R4 = 0 yields c =
bef

d(2f − 1)
.

In this case for systems (50) we calculate

B3 =
−3

d(2f − 1)2
[
ad(2f − 1)2 − b2f(f − 1)

]
x2

[
(4df − 2d− e2)x+ ey

][
ex+ (2f − 1)y

]
.

Obviously the condition B3 = 0 implies a =
b2f(f − 1)
d(2f − 1)2

and we arrive to the subfamily (ii)

(b) of Theorem PFI, which possesses a polynomial first integral if and only if the following
additional conditions hold

(53) f = − s

p+ 2k
∈ Q−, d = −k(p+ k)e2

p2(f − 1)
∈ Q+, s, p, k ∈ N.

Now we claim that given (52) the set (53) is equivalent to Φ(z) = 0 having three roots in
Q−.

Indeed assume first that zi ∈ Q−, Φ(zi) = 0, i = 1, 2, 3. Then considering (51) we
have Discrim (ψ(z)) = 64e2(4d+ e2 − 4df)/θ2 ≥ 0 and we could not have the equality (i.e.
4d+ e2− 4df = 0), because the double root will be z2 = z3 = 1 > 0. So the condition η > 0
holds, and as e 6= 0 we may set a new parameter u as follows: 4d+ e2 − 4df = u2e2. Thus
we obtain d = e2(u2 − 1)/(4(1− f)) and then for systems (50) we calculate

F (z) = (z − f)
(
z − 1− u

1 + u− 2fu
)(
z − 1 + u

1− u+ 2fu
)

= (z − z1)(z − z2)(z − z3).

Assuming z1 = −p/q ∈ Q− and z2 = −r/s ∈ Q− we get u = −q(r + s)/(2pr + qr − qs),
then z3 = (pr − qs)/(2pr + qr + ps), and hence the condition pr − qs < 0 has to be
satisfied in order to have z3 ∈ Q−. On the other hand for this value of the parameter u we

obtain d = − e2r(p+ q)(qs− pr)
(2pr + qr − qs)2(f − 1)

. Then setting s̃ = p(r + s) and either k̃ = r(p + q),
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p̃ = qs− qr − 2pr if q(s− r) > 2pr, or k̃ = qs− pr, p̃ = qr − qs+ 2pr if q(s− r) < 2pr we

obtain f = − s̃

p̃+ 2k̃
and d = − k̃(p̃+ k̃)e2

p̃2(f − 1)
with s̃, k̃, p̃ ∈ N.

Conversely assuming now the conditions (53) we shall show that the function Φ(z) has
three roots in Q−.

Indeed for these values of the parameters f and d taking into consideration the above
expressions for c and a, we determine the following three roots of the function Φ(z)

z1 = − s

p+ 2k
, z2 = −k + p

k + s
, z3 = − k

k + p+ s
.

So all three roots are in Q−. We observe that since e 6= 0 we can assume e = 1 due to the
change x 7→ x/e and then we get the family of systems (44) possessing the first integral
(45). This completes the proof of the theorem in the case D1).

The case D2) For systems (50) calculations yield

R = c+ ex+ (2f + 1)y, R6 =
[
(2cd− be)x2 + (b+ 2bf − ce)xy + cy2

]
/4.

Since R 6= 0 (these systems are not Hamiltonian) the condition R6 = 0 implies b = c = 0.
Then for systems (50) we have

B3 = −3a
[
(4df − 2d− e2)x+ ey

][
ex+ (2f − 1)y

]
x2, R7 = 162a2θ(f + 1),

and as B3 6= 0 (i.e. a 6= 0) the condition R7 = 0 yields f = −1. So we obtain the family of
systems

(54) ẋ = xy, ẏ = a+ dx2 + exy − y2.

According to Theorem PFI (see subfamily ii) (c)) systems (54) posses a polynomial first

integral if and only if the condition d =
k(p+ k)e2

2p2
(k, p ∈ N) holds. We claim that this

condition is equivalent to the existence of three roots in Q− of the function Φ(z).
Indeed assume first that all three roots of the function Φ(z) are in Q−. Then repeating

the same arguments as in the case D1, we conclude that the condition η > 0 must hold.
Hence considering (51) and f = −1 we get 8d + e2 > 0, and as e 6= 0 we may set a new
parameter u as follows: 8d + e2 = u2e2. Thus we obtain d = e2(u2 − 1)/8 and then for
systems (54) we calculate the roots of the function Φ(z)

z1 = −1, z2 =
1 + u

1− 3u
, z3 =

1− u
1 + 3u

.

Assuming z2 = −r/s ∈ Q− we get u = (r + s)/(3r − s), and then z3 = (r − s)/(3r + s).
Hence the condition r < s has to be satisfied. On the other hand for this value of the

parameter u we obtain d =
2e2r(s− r)
2(3r − s)2

and setting either k = 2r, p = s − 3r if s > 3r, or

k = s− r, p = 3r − s if s < 3r we obtain d =
k(p+ k)e2

2p2
with k, p ∈ N.

Conversely assume that for systems (54) the condition d =
k(p+ k)e2

2p2
is fulfilled. Then

considering (51) we calculate the roots of the function Φ(z)

z1 = −1, z2 = − k + p

3k + p
, z3 = − k

3k + 2p

and as k, p ∈ N we get all three roots are in Q−. So our claim is proved.
As e 6= 0 we can assume e = 1 due to the change x 7→ x/e and we obtain the family of

systems (46) possessing the first integral (47).
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The case D3) Now the conditions R5 = R8 = 0 hold and we claim, that in this case
any such system (50) could be written doing an affine transformation and a time rescaling
in the form

(55) ẋ = xy, ẏ = a+ bx+ dx2 + fy2.

Indeed if B3 = 0 then, since the conditions θµ0 6= 0 and R4 = 0 hold, by Lemma 12 this
follows immediately, and we observe that for the systems (55) we have R8 = 0.

Assume now that for systems (50) the condition B3 6= 0 holds and we calculate

R8 =10e
[
b2(f2 − 1)(2f + 1)− 2cef(f + 1)b+ e2(f + 1)

(
c2 − 2af

)
+

+ d(2f + 1)
(
−fc2 + c2 + 4af2 + 2a− 2af

)
.

We shall show that when R5 = R4 = 0 and B3 6= 0 the condition R8 = 0 is equivalent
to e = 0. Indeed suppose the contrary that e 6= 0. Then considering (51) the conditions
R5 = R4 = 0 yield

d =
e2f(f + 1)

(f − 1)(2f + 1)2
, b =

ce(1 + f)(2f − 1)
(f − 1)(2f + 1)2

,

and therefore we obtain

R8 =
40e3f(f + 1)

(f − 1)(2f + 1)3
[
a(2f + 1)2 − c2(f + 1)

]
, µ0 =

e2f2(f + 1)
(f − 1)(2f + 1)2

,

B3 =
−3e

(f − 1)(2f + 1)4
[
a(2f + 1)2 − c2(f + 1)

]
x2[

ex+ (2f − 1)y
][
e(f + 1 + 2f2)x+ (f − 1)(2f + 1)2y

]
.

Since µ0B3 6= 0 we get R8 6= 0 and hence, the contradiction obtained says that the condition
R8 = 0 is equivalent to e = 0. So for R8 = 0 we get e = 0, and then the conditions
R4 = 2cd(2f − 1) and θµ0 6= 0 (i.e. d(2f − 1) 6= 0) yield c = 0.

Thus our claim is proved and in what follows we shall consider the family of systems (55)
which contains the subfamily (ii), (a) of Theorem PFI. According to this theorem systems
(55) possess a polynomial first integral if and only if f ∈ Q−. We shall show that this
condition is equivalent to the existence of three roots in Q− of the function Φ(z).

Indeed for systems (54) we calculate

Φ(z) = (z − f)
(
z − 1

2f − 1

)2

.

It obviously can be seen that f = −p/q ∈ Q− (p, q ∈ N) if and only if all three roots of the
function Φ(z) (two of them coincide) are in Q−. It remains to observe that in the canonical
form (54) f is a simple root of Φ(z). Therefore we get the family of systems (48) possessing
the first integral (49). This completes the proof of the theorem. �

4. Some corollaries from Theorems B, C and D

First we shall prove a result on the rational first integrals in invariant form for a class of
quadratic systems.

Lemma 13. Assume that for a non-degenerate quadratic system (3) the conditions µ0θ 6=0,
R4 = 0 = B3 and η > 0 hold. Then this system has three invariant straight lines Li(x, y) =
uix+ viy + wi = 0 in three distinct directions and a first integral of the Darboux form

(56) H(x, y) = L1(x, y)
z1

z1−1 L2(x, y)
z2

z2−1 L3(x, y)
z3

z3−1 ,

where zi are the real roots of the function Φ(z), satisfying

(57)
z1

z1 − 1
+

z2
z2 − 1

+
z3

z3 − 1
= 1.
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Proof. As η > 0 is the discriminant of the cubic form C2(x, y), the quadratic system pos-
sesses three distinct real infinite singular points. So due to a linear transformation we may
consider without loss of generality that these three points (in the projective plane) are
N1(1, 0, 0), N2(1, 1, 0) and N3(0, 1, 0). Then clearly we get the following family of systems

(58) ẋ = a1 + b1x+ c1y + ex2 + (f − 1)xy, ẏ = a+ bx+ cy + (e− 1)xy + fy2,

for which C2(x, y) = xy(x− y), θ = −8(e−1)(f −1)(e+ f) and since θ 6= 0 we can consider
c1 = b = 0 doing a translation (if necessary). Considering these conditions for systems (58)
we calculate: Coefficient[B3, x

4] = −3a(e− 1)2, Coefficient[B3, y
4] = 3a1(f − 1)2 and since

θ 6= 0 (i.e. (e− 1)(f − 1) 6= 0) the condition B3 = 0 implies a = a1 = 0. Then we obtain

B3 = 3(b1 − c)(b1f + ce)x2y2, R4 = −2(e− 1)(f − 1)(b1f + ce), µ0 = ef(e+ f − 1),

and therefore the condition b1f + ce = 0 has to be fulfilled. As µ0 6= 0 (i.e. e 6= 0) we may
assume b1 = ue and then we obtain c = −uf . Thus we arrive to the family of systems

(59) ẋ = eux+ ex2 + (f − 1)xy, ẏ = −fuy + (e− 1)xy + fy2,

possessing three invariant lines x = 0, y = 0 and x− y + u = 0. Considering (36) for these
systems calculations yield

Φ(z) =
(
z − e

e− 1

)(
z − f

f − 1

)(
z − e+ f − 1

e+ f

)
= (z − z1)(z − z2)(z − z3),

and hence
z1

z1 − 1
= e,

z2
z2 − 1

= f,
z3

z3 − 1
= 1− e− f.

On the other hand a straightforward calculation gives that the function

H(x, y) = xfye(x− y + u)1−e−f

is a first integral of systems (59). As the values zi (and as a consequence, the values zi

zi−1 ),
i = 1, 2, 3 are absolute invariant constants with respect to the group Aff (2,R) of affine
transformations as well as with respect to time rescalling.

We note that the identity (57) follows immediately from the the form of the first inte-
gral expressed through parameters of systems (59). However it could be proved directly
considering the form of the function Φ(z), as the identity (57) is equivalent to

1 = z1z2 + z1z3 + z2z3 − 2z1z2z3 = ϕ2 + 2ϕ3 =
θ − 16µ0

θ
+ 2

8µ0

θ
= 1

according to Viète’s relations between the roots of a polynomial and its coefficients. �

Corollary B∗. Assume that for a non-degenerate quadratic system (3) the conditions
θ = µ0 = 0 and KM 6= 0 are fulfilled. Then this system possesses a rational first integral if
R1 = 0 and one of the following sets of conditions holds.

B∗2) R2 < 0, R3 = 0, B3 = 0, F1 =
p

q
∈ Q+, p, q ∈ N; in this case the system can be

brought via an affine transformation and a time rescalling to the system
ẋ = 1+x2, ẏ =

p

q
xy, possessing the rational first integral H(x, y) = y2q

(
1 + x2

)−p
.

B∗4a) R2 > 0, B3 = 0, F1 = −p
q
∈ Q−, F2 =

r2

s2
∈ Q+, F2 > F2

1 ; in this case the system

can be brought via an affine transformation and a time rescalling to the system

ẋ = −1 + x2, ẏ =
r

s
y − p

q
xy, p, q, r, s ∈ N, ps− qr < 0,

possessing the rational first integral H(x, y) = (x+ 1)ps+qr(x− 1)ps−qry2qs.
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B∗4b) R2 > 0, B3 = 0, F1 =
p

q
∈ Q+, F2 =

r2

s2
∈ Q+; in this case the system can be

brought via an affine transformation and a time rescalling to the system

ẋ = −1 + x2, ẏ =
r

s
y +

p

q
xy, p, q, r, s ∈ N,

possessing the rational first integral H(x, y) = (x+ 1)ps+qr(x− 1)ps−qry−2qs.

B∗5a) R2 = 0, R3 = 0, B3 6= 0, F1 = −p
q
∈ Q−, p, q ∈ N, F1 > −1; in this case

the system can be brought via an affine transformation and a time rescalling to the
system

ẋ = x2, ẏ = 1− p

q
xy, p < q

possessing the rational first integral H(x, y) = xp−q
(
xy + q

q−p

)q

.

B∗5b) R2 = 0, R3 = 0, B3 6= 0, F1 =
p

q
∈ Q+, p, q ∈ N; in this case the system can be

brought via an affine transformation and a time rescalling to the system

ẋ = x2, ẏ = 1 +
p

q
xy,

possessing the rational first integral H(x, y) = xp+q
(
xy − q

q+p

)−q

.

Corollary C∗. Assume that for a non-Hamiltonian and non-degenerate quadratic system
(3) the conditions K = M = 0 (then θ = µ0 = 0) are fulfilled. Then this system possesses
a rational first integral if the following conditions hold

B3 = 0, R9 6= 0, F3 =
p

q
∈ Q+, p, q ∈ N, F3 6= 2.

Moreover in this case the system can be brought via an affine transformation and a time
rescalling to the system ẋ = x, ẏ =

p

q
y + x2, p − 2q 6= 0, possessing the rational first

integral H(x, y) = xp

(
y +

q

p− 2q
x2

)−q

.

Corollary D∗. Assume that for a non-Hamiltonian and non-degenerate quadratic system
(3) the condition θµ0 6= 0 holds. Then this system possesses a rational first integral if
B1 = 0 = R4, Φ(z) has three rational roots, among which at least one is in Q+, and one of
the following sets of conditions holds.

D∗
1) R5 6= 0, B3 = 0; in this case the system can be brought via an affine transformation

and a time rescalling to the system

ẋ = eux+ c1y + ex2 + (f − 1)xy, ẏ = fuy + (e− 1)xy + fy2,

possessing the rational first integral H(x, y) = xfye(x−y+u)1−e−f , where e, f, 1−
e− f ∈ Z not all have the same sign.

D∗
2) R5 6= 0, B3 6= 0, R6 = 0, R7 = 0; in this case the system can be brought via an

affine transformation and a time rescalling to the system

ẋ = xy, ẏ = a+
k(p+ k)

2p2
x2 + xy − y2,

possessing the rational first integral H(x, y) = Ak+pBk, where k, p + k ∈ Z, k(p +
k) < 0 and

A = 2ap2 + kx
[
(k + p)x− 2py)

]
, B = 2ap2 + (k + p)x

[
kx+ 2py)

]
.
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D3) R5 = 0, R8 = 0; in this case the system can be brought via an affine transformation
and a time rescalling to the system

ẋ = xy, ẏ = a+ bx+ dx2 +
p

q
y2, p, q ∈ N,

possessing the rational first integral

H(x, y) = x2p

(
a

2f
+

b

2f − 1
x+

d

2f − 2
x2 +

y2

2

)−q

.
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