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THE CORONA FACTORIZATION PROPERTY, STABILITY, AND
THE CUNTZ SEMIGROUP OF A C∗-ALGEBRA

EDUARD ORTEGA, FRANCESC PERERA, AND MIKAEL RØRDAM

Abstract. The Corona Factorization Property, originally invented to study exten-
sions of C∗-algebras, appears to convey essential information about the intrinsic struc-
ture of the C∗-algebra. We show that the Corona Factorization Property of a σ-unital
C∗-algebra A is completely captured by its Cuntz semigroup W (A) of equivalence
classes of positive elements in matrix algebras over A. The corresponding condition
in W (A) is a (weak) comparability property that is termed the Corona Factoriza-
tion Property (for the semigroup). Using this result one can for example show that
all unital C∗-algebras with finite decomposition rank have the Corona Factorization
Property.

Applying similar techniques we study the related question of when C∗-algebras are
stable. We give an intrinsic characterization, that we term property (S), of C∗-algebras
with the absence of non-zero unital quotients and non-zero bounded 2-quasitraces.
We then show that property (S) is equivalent to stability provided that the Cuntz
semigroup of the C∗-algebra satisfies another (also very weak) comparability property,
that we call the ω-comparison property.

1. Introduction

The Corona Factorization Property was defined and studied by Kucerovsky and Ng
in [10] building up on work by Elliott and Kucerovsky, [4], in which purely large C∗-
algebras were studied. Both concepts relate to the theory of extensions and in particular
to the important question on when extensions are automatically absorbing.

A C∗-algebra satisfies the Corona Factorization Property if every full projection in
the multiplier algebra of its stabilization is properly infinite (and hence equivalent to the
unit). The existence of non-properly infinite full projections in the multiplier algebra
of a stable C∗-algebra was noted (implicitly) in [17], and more explicitly in [18], in
connection with the construction of non-stable C∗-algebras that become stable when
being tensored with a matrix algebra. The existence of finite full projections in the
multiplier algebra of a stable C∗-algebra was also essential in the construction in [19]
of a simple C∗-algebra with a finite and an infinite projection. In the language of
Kucerovsky and Ng it is shown in [19] that the C∗-algebra C(

∏∞
n=1 S2) does not have

the Corona Factorization Property.
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Zhang proved a (partial) converse of these results, that a simple C∗-algebra of real
rank zero with the Corona Factorization Property is either stably finite or purely infinite.

It thus appears that failure to have the Corona Factorization Property is an “infinite
dimensional” property, and conversely that all C∗-algebras with “finite dimensional be-
havior” should have the Corona Factorization Property. (By finite and infinite dimensi-
nality we are, of course, not referring to the vector space dimension of the C∗-algebra,
but rather to its non-commutative dimension—perhaps best defined through Kirchberg
and Winter’s notion of decomposition rank.) Pimsner, Popa, and Voiculescu studied in
[14] extensions of C(X)⊗K, where X is a finite-dimensional compact metric space, and
developed an Ext(X,−) theory. It follows in particular from their work that C(X)⊗K
has the Corona Factorization Property when X has finite dimension. The assumption
that X is finite dimensional is crucial.

Using Kirchberg and Winter notion of decomposition rank, [9], mentioned above,
Kucerovsky and Ng, [11], studied extensions of type I C∗-algebras with finite decompo-
sition.

In this paper we show that a σ-unital C∗-algebra (simple or not) satisfies the Corona
Factorization Property if, and only if, its Cuntz semigroup W (A) satisfies a (weak)
comparison property that we call the Corona Factorization Property for semigroups
(also considered in [12]). We also introduce stronger notions of comparison for ordered
abelian semigroups, one of which is verified for the Cuntz semigroup of a unital C∗-
algebras with finite decomposition rank, whencefore the Corona Factorization Property
also holds for these algebras.

This parallels the property that the authors introduced and examined in the article
[12]. There it was shown, using entirely different techniques than those used here, that a
σ-unital C∗-algebras of real rank zero has the Corona Factorization Property if and only
if its monoid V (A) of Murray-von Neumann equivalence classes of projections in the
stabilization of a C∗-algebra A has the Corona Factorization Property (for monoids).

In outline the paper is as follows. In Section 2, we define a number of comparability
properties for ordered abelian semigroups, including n-comparison and ω-comparison
(and their weak counterparts), and the Corona Factorization Property for semigroups.
These properties can be viewed as weakened forms of the almost unperforation property
for semigroups (considered in [20]). In fact, an ordered abelian semigroup has the 0-
comparison property if and only if it is almost unperforated. It follows from a result of
Toms and Winter, [21], that the Cuntz semigroup of any unital simple C∗-algebra with
decomposition rank n has the n-comparison property (and hence also ω-comparison and
the Corona Factorization Property). It was this result by Toms and Winter that led us
to consider n-comparison.

In Section 3 we establish (using the before mentioned result of Toms and Winter) that
the Cuntz semigroup of (non-simple) unital C∗-algebras with finite decomposition rank
has the weak n-comparison property, and hence also the Corona Factorization property.

In Section 4 we consider an intrinsic property (that we call property (S)) of a C∗-
algebra defined in terms of Cuntz’ comparison theory for C∗-algebras, and we show
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that it is equivalent to the absence of unital quotients and bounded 2-quasitraces. It is
further shown that property (S) is equivalent to stability of a C∗-algebra if its Cuntz
semigroup has the ω-comparison property, thus generalizing a result from [6].

In Section 5 we prove our main result, that the Corona Factorization Property for a σ-
unital C∗-algebra can be read off from a comparability property of its Cuntz semigroup;
and we show that every ideal in a σ-unital C∗-algebra has the Corona Factorization
Property if and only if its Cuntz semigroup satisfies a comparability property, that we
call the strong Corona Factorization Property.

2. Comparability in ordered abelian semigroups

In this section we shall discuss a number of comparability properties of ordered abelian
semigroups.

Consider an ordered abelian semigroup (W, +,≤). We shall exclusively be interested
in positive semigroups, i.e., semigroups where x ≤ x + z for all x, z ∈ W . (However,
we do not assume that the order is the algebraic order, given by x ≤ y if and only if
y = x+z for some z in W .) We remind the reader of some commonly used terminology.
A state on W normalized at x ∈ W is an additive order preserving map from W into
R+∪{∞} that maps x to 1. The set of all states normalized at x is denoted by S(W, x).
Given two elements x, y ∈ W , one writes x ∝ y if there exists n ∈ N such that x ≤ ny.

The result below has appeared already in several versions in the literature, perhaps
first as the extension result of Goodearl and Handelman in [5, Lemma 4.1]. We wish to
emphasize the following formulation that will be essential for our paper.

Proposition 2.1. Let (W, +,≤) be an ordered abelian semigroup, and let x, y ∈ W .
Then the following statements are equivalent:

(i) There exists k ∈ N such that (k + 1)x ≤ ky.
(ii) There exists k0 ∈ N such that (k + 1)x ≤ ky for every k ≥ k0.
(iii) x ∝ y and f(x) < f(y) for every f ∈ S(W, y).

Proof. (iii) ⇒ (i). This is the heart of the proof, and is an easy consequence of the
extension result of Goodearl and Handelman from [5, Lemma 4.1] mentioned above, see
also [16, Proposition 3.1] and [20, Proposition 3.2].

(ii) ⇒ (iii). This is contained in the proof of [20, Proposition 3.2], but here it comes
again: First, if (k + 1)x ≤ ky, then x ≤ ky, so x ∝ y. Second, (k + 1)x ≤ ky implies
that f(x) ≤ k(k + 1)−1 < 1 = f(y) for every f ∈ S(W, y).

(i) ⇒ (ii). Suppose (m + 1)x ≤ my for some positive integer m. Put k0 = (m + 1)m.
For each k ≥ k0 write k = (m + 1)r + s, where r and s are non-negative integers with
s ≤ m. Note that necessarily r ≥ m. Therefore

(k + 1)x = (m + 1)rx + (s + 1)x ≤ (m + 1)rx + (m + 1)x ≤ mry + my ≤ ky.

�
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Definition 2.2. Given x, y in an ordered abelian semigroup W . Then we say that
x is stably dominated by y, written x <s y, if the equivalent conditions (i)–(iii) in
Proposition 2.1 hold.

Remark 2.3. Notice that the relation <s is transitive. Indeed, let x, y, z ∈ W be such
that x <s y and y <s z. Then by Proposition 2.1 (ii) there exists k ∈ N such that
(k + 1)x ≤ ky and (k + 1)y ≤ kz. But then (k + 1)x ≤ ky ≤ (k + 1)y ≤ kz, so x <s z.

Remark 2.4. The notion of almost unperforation from [20, Definition 3.3] can in terms
of stable domination be rephrased as follows. An ordered abelian semigroup W is almost
unperforated if and only if for all x, y in W , x <s y implies x ≤ y.

Let us briefly remind the reader about the ordered Cuntz semigroup W (A) associated
to a C∗-algebra. Let M∞(A)+ denote the disjoint union

⋃∞
n=1 Mn(A)+. For a ∈ Mn(A)+

and b ∈ Mm(A)+ set a ⊕ b = diag(a, b) ∈ Mn+m(A)+, and write a - b if there exists
a sequence {xk} in Mm,n(A) such that x∗kbxk → a. Write say that a and b are Cuntz
equivalent, in symbols a ≈ b, if a - b and b - a. Put W (A) = M∞(A)+/≈, and let
〈a〉 ∈ W (A) be the equivalence class containing a. The set W (A) becomes an ordered
abelian semigroup when equipped with addition and order inherited from ⊕ and -. See
[8, Section 2] for further properties of W (A).

Given a ∈ A+ and n ∈ N we shall denote, as customary, by a⊗ 1n the n× n matrix
with a’s in the diagonal and zeroes elsewhere. Clearly, 〈a⊗ 1n〉 = n〈a〉 in W (A).

We shall occasionally also consider the following (stronger) equivalence relation.
Given two positive elements a, b ∈ A+, write a ∼ b if there exists x ∈ A+ such that
xx∗ = a and x∗x = b. Observe that a ∼ b implies a ≈ b.

Given a, b ∈ A+ we will write a ≺s b if 〈a〉 <s 〈b〉 in W (A). About this relation we
have the lemma below, which is similar to [16, Proposition 2.4].

Lemma 2.5. Let a and b be positive elements in a C∗-algebra A and suppose that a ≺s b.
Then, for each ε > 0 there exists δ > 0 such that (a− ε)+ ≺s (b− δ)+.

Proof. For c ∈ A+ note that ((c⊗ 1k)− η)+ = (c− η)+ ⊗ 1k.
There exists a positive integer k such that (k +1)〈a〉 ≤ k〈b〉. Hence a⊗ 1k+1 - b⊗ 1k

(in Mk+1(A)). Let ε > 0. It then follows from [16, Proposition 2.4] that there exists
δ > 0 such that

(a− δ)+ ⊗ 1k+1 = (a⊗ 1k+1 − δ)+ - (b⊗ 1k − ε)+ = (b− ε)+ ⊗ 1k.

This shows that (a− δ)+ ≺s (b− ε)+. �

Our first comparability property, given in Definition 2.7 below, is prompted by a result
of Toms and Winter, [21, Lemma 6.1]. Recall that if τ is a positive trace (or a 2-
quasitrace), then one can associate to it a dimension function dτ : W (A) → [0,∞] given
by

dτ (〈a〉) = lim
n→∞

τ(a1/n),
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where a is a positive element in A or in a matrix algebra over A (in the latter case we
must extend τ to the same matrix algebra over A). The trace property ensures that dτ

is well-defined. We can also view dτ as being a function on the positive elements in A
(and in matrix algebras over A). We shall not distinguish between the two situations.

Proposition 2.6 (Toms and Winter). Let A be a simple, separable, and unital C∗-
algebra of decomposition rank n < ∞. Let a, d0, d1, . . . , dn be positive elements in A
such that dτ (a) < dτ (dj) for j = 0, 1, . . . , n and for all tracial states τ on A (where dτ

is the dimension function on A associated with the trace τ). It follows that

〈a〉 ≤ 〈d0〉+ 〈d1〉+ · · ·+ 〈dn〉,
in the Cuntz semigroup W (A).

Definition 2.7 (The n-comparison property). Let (W, +,≤) be an ordered abelian
semigroup and let n be a natural number. Then W is said to have the n-comparison
property if whenever x, y0, . . . , yn are elements in W with x <s yj for all j, then x ≤
y0 + y1 + · · ·+ yn.

Note that W has the 0-comparison property if and only if W is almost unperforated,
cf. Remark 2.4. Note also, that if W has the n-comparison property for some n, then it
has the m-comparison property for all m ≥ n.

With Definition 2.7 at hand we can rephrase the proposition of Toms and Winter
above as follows:

Proposition 2.8. Let A be a simple, separable and unital C∗-algebra with decomposition
rank n < ∞. Then W (A) has n-comparison.

Proof. Let x, y0, . . . , yn ∈ W (A) be such that x <s yj for every j = 0, . . . , n. Upon
replacing A by a matrix algebra over A (which does not change the decomposition
rank) we may assume that there are positive elements a, d0, d1, . . . , dn in A such that
x = 〈a〉 and yj = 〈dj〉.

We know from Proposition 2.1 that f(x) < f(yj) for every dimension function f
on A normalized at yj. As A is simple and unital, every such f is a multiple of a
dimension function which is normalized at the unit: 〈1A〉. It follows that dτ (a) < dτ (dj)
for every tracial state τ on A (because dτ then is a dimension function on A normalized
at 1A) Thus, by [21, Lemma 6.1] (which in fact is Proposition 2.6), we get that a -
d0 ⊕ d1 ⊕ · · · ⊕ dn, which in turn implies that x ≤ y0 + y1 + · · ·+ yn, as desired. �

We do not know if the Cuntz semigroup of any (non-simple, non-unital) C∗-algebra
with decomposition rank equal to n < ∞ has the n-comparison property. It seems very
likely that it should be the case. In Proposition 3.2 we show that a weaker version of
n-comparison holds for all unital C∗-algebras with decomposition rank n. (That weaker
form implies the Corona Factorization Property of the C∗-algebra.)

We proceed to define a comparison property which is weaker than any n-comparison
property. First we remind the reader of the notion of compact containement formalized
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[2]: Given two elements x, y in an abelian ordered semigroup W , x is compactly contained
in y, or in other words, x is way below y, denoted by x � y, if whenever y1 ≤ y2 ≤ · · ·
is an increasing sequence with supremum greater than or equal to y, eventually x ≤ yn.

If A is a C∗-algebra and if a is a positive element in (a matrix algebra over) A, then
〈(a−ε)+〉 � 〈a〉 for every ε > 0. Let us note some properties that can be deduced from
[16, Proposition 2.4] and Lemma 2.5. If x, y ∈ W (A), then

(a) x ≤ y if and only if x0 ≤ y for every x0 ∈ W (A) with x0 � x;
(b) if x ≤ y and if x0 ∈ W (A) is such that x0 � x, then there is y0 ∈ W (A) with

y0 � y and x0 ≤ y0;
(c) if x <s y and if x0 ∈ W (A) is such that x0 � x, then there is y0 ∈ W (A) with

y0 � y and x0 <s y0.

Definition 2.9 (The ω-comparison property). An ordered abelian semigroup (W, +,≤)
is said to have the ω-comparison property if whenever x′, x, y0, y1, y2, . . . are elements
in W such that x <s yj for all j and x′ � x, then x′ ≤ y0 + y1 + · · · + yn for some n
(that may depend on the element x′).

It is clear that if W has the n-comparison property for some n, then W also has the
ω-comparison property.

We shall now (re-)define two even weaker comparison properties for an ordered abelian
semigroup, the strong Corona Factorization Property and the Corona Factorization
Property. These were also defined in our paper, [12], written in parallel with this paper.
In [12] we were only interested in the case where the ordering was the algebraic one,
and where all elements were compactly contained in themselves. In our more general
situation the definition below is more appropriate (and it extends the definition given
in [12]), see Remark 2.13.

Definition 2.10 (The strong Corona Factorization Property for semigroups). Let
(W, +,≤) be an ordered abelian semigroup. Then W is said to satisfy the strong Corona
Factorization Property if given any x′, x in W , any sequence {yn} in W , and any positive
integer m satisfying x′ � x and x ≤ myn for all n, then there exists a positive integer
k such that x′ ≤ y1 + y2 + · · ·+ yk.

Fullness, as defined below, was also considered in [12], and again we must extend this
definition so that it applies to general ordered (positive) semigroups.

Definition 2.11 (Full elements and sequences). Let (W, +,≤) be an ordered abelian
semigroup.

An element x in W is said to be full if for any y′, y ∈ W with y′ � y, one has y′ ∝ x.
A sequence {xn} in W is said to be full if it is increasing and for any y′, y ∈ W with

y′ � y, one has y′ ∝ xn for some (hence all sufficiently large) n.

Every order unit in W is full, but the reverse is not always true. The constant sequence
{xn}, with xn = x for all n, is full if and only if x is full.
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Suppose that A is a C∗-algebra and that {an} is a sequence of positive elements in
A. Then {〈an〉} is full in W (A) if and only if a1 - a2 - a3 - · · · and {an} is full in A
(in the sense of {an} not being contained in a proper closed two-sided ideal in A).

Definition 2.12 (Corona Factorization Property for semigroups). Let (W, +,≤) be an
ordered abelian semigroup. Then W is said to satisfy the Corona Factorization Property
if given any full sequence {xn} of W , any sequence {yn} of W , an element x′ in W ,
and a positive integer m satisfying x′ � x1 and xn ≤ myn for all n, then there exists a
positive integer k such that x′ ≤ y1 + y2 + · · ·+ yk.

It is clear that any semigroup that satisfies the strong Corona Factorization Property
also satisfies the Corona Factorization Property. It was shown in [12] that a conical
refinement monoid satisfies the strong Corona Factorization Property if and only if
every ideal of the monoid satisfies the Corona Factorization Property. It is not clear if
this remains true without assuming the refinement property, but we shall show (implicit
in Theorem 5.14) that this also holds for semigroups arising as the Cuntz semigroup
of a σ-unital C∗-algebra. We shall also see that, as in the case of C∗-algebras with
real rank zero, the Corona Factorization Property defined for semigroups matches the
corresponding property for the C∗-algebras (see Section 5).

It is also easily checked that, if W is an algebraically ordered semigroup where every
element is compactly contained in itself, then the definitions given above for the (strong)
Corona Factorization Property agree with the ones in [12]. The precise connection
between the two notions is found in the remark below.

Remark 2.13. Recall that an interval in an ordered abelian monoid V is a non-empty
subset I of V which is order-hereditary and upwards directed. An interval I is said to
be countably generated if there is a sequence {xn} of elements in I (that can be taken
to be increasing) such that I = {x ∈ V | x ≤ xn for some n}.

Given two intervals I and J in V , their addition is defined to be I + J = {x ∈ V |
x ≤ y + z with y ∈ I, z ∈ J}. Denote by Λ(V ) the monoid of all intervals in V , which is
naturally ordered by set inclusion, and denote by Λσ(V ) the submonoid of Λ(V ) whose
elements are the countably generated intervals in V .

Now assume that V is algebraically ordered and that all of its elements are compactly
contained in themselves. Then V satisfies the (strong) Corona Factorization Property
if, and only if, Λσ(V ) (ordered by inclusion) satisfies the (strong) Corona Factorization
Property. Let us sketch part of the arguments needed. Assume that V has the strong
Corona Factorization Property, let X, Y1, Y2, . . . be elements in Λσ(V ), and let m ∈ N
be such that X ⊆ mYn for all n. Let X ′ � X be given. Since X is countably generated
by a sequence, say {xn}, that without loss of generality can be assumed to be increasing,
there is i such that X ′ ⊆ [0, xi]. It suffices to check that [0, xi] ⊆ Y1 + · · ·+ Yl for some
l. As xi belongs to mYn for all n, and since each Yn is upwards directed, there is
yn ∈ Yn such that xi ≤ myn. By the assumption that V satisfies the strong Corona
Factorization Property, this implies that xi ≤ y1 + y2 + · · · + yn for some n. This
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again implies X ′ ⊆ Y1 + · · ·Yn, and thus proves that Λσ(V ) has the strong Corona
Factorization Property.

In [12], the authors proved that a C∗-algebra with real rank zero has the (strong)
Corona Factorization Property if and only if the projection semigroup V (A) has the
corresponding property (for monoids). Since V (A) is algebraically ordered and every
element is compactly contained in itself, the above applies to get that Λσ(V (A)) satisfies
the (strong) Corona Factorization Property if and only if V (A) does. In particular, since
for a C∗-algebra with real rank zero A, one has that W (A ⊗ K) is order-isomorphic
to Λσ(V (A))—see [13]—, our observations yield that, within this class, V (A) has the
(strong) Corona Factorization Property if and only if W (A ⊗ K) does, if and only if
A has the (strong) Corona Factorization Property—the latter equivalence follows from
the results in [12].

Proposition 2.14. Any abelian ordered semigroup, which satisfies the ω-comparison
property, also satisfies the Corona Factorization Property.

Proof. Let W be an abelian ordered semigroup with the ω-comparison property. Let
{xn} be a full sequence in W , let {yn} be another sequence in W , let x′ ∈ W , and let m
be a positive integer such that x′ � x1 and xn ≤ myn for all n. For each integer n ≥ 0
put

zn = yn(m+1)+1 + yn(m+1)+2 + · · ·+ yn(m+1)+m+1.

Then

(m + 1)x1 ≤ xn(m+1)+1 + xn(m+1)+2 + · · ·+ xn(m+1)+m+1

≤ m
(
yn(m+1)+1 + yn(m+1)+2 + · · ·+ yn(m+1)+m+1

)
= mzn,

whence x1 <s zn for all n. It follows that x′ ≤ z0 + z1 + · · · + zn for some n, which
entails that x′ ≤ y1 + y2 + · · ·+ y(n+1)(m+1). �

We shall finally consider the following notion of n-comparison that only involves full
elements of the semigroup. (This shall be appropriate for studying the Corona Factor-
ization Property for non-simple C∗-algebras of finite decomposition rank.)

Definition 2.15 (Weak n- and weak ω-comparison property). Let (W, +,≤) be an
ordered abelian semigroup. Say that W has the weak n-comparison property if whenever
y0, y1, . . . , yn are full elements in W and x ∈ W are such that x <s yi for all i, then
x ≤ y0 + y1 + · · ·+ yn.

We say that W has the weak ω-comparison property if whenever x, x′, y0, y1, . . . , are
elements in W such that y0, y1, . . . are full elements, x′ � x, and x <s yi for all i, then
x′ ≤ y0 + y1 + · · ·+ yn for some positive integer n.

The weak n- and the weak ω-comparison properties only makes sense for semigroups
that contain a full element (if they don’t, then they automatically posses this property).
It is clear that if W satisfies the weak n-comparison property for some n, then it satisfies
the weak m-comparison property for all m ≥ n and it satisfies the weak ω-comparison
property.
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Proposition 2.16. Any abelian ordered semigroup, which satisfies the weak ω-compa-
rison property and which contains a full element that is compactly contained in another
(full) element, also satisfies the Corona Factorization Property.

Proof. Let W be an abelian ordered semigroup with the weak ω-comparison property.
By assumption there are elements v � w in W such that v is full.

Let {xk} be a full sequence in W , let {yk} be another sequence in W , let x′ ∈ W ,
and let m be a positive integer such that x′ � x and xk ≤ myk for all k. By the
definition of a full sequence (applied to v � w) we have that v ∝ xk for all large enough
k. Hence v ∝ yk for all large enough k, whence yk is full whenever k is large enough.
Upon removing the first finitely many elements from the sequences {xk} and {yk} we
can assume that all yk are full.

Let now z0, z1, z2, . . . be as in the proof of Proposition 2.14 above. Then z0, z1, z2, . . .
are full and x1 <s zj for all j. It follows that

x′ ≤ z0 + z1 + · · ·+ zn = y1 + y2 + · · ·+ y(n+1)(m+1)

for some n, whence W has the Corona Factorization Property. �

In conclusion, we have defined the following comparability properties of an ordered
abelian semigroup, listed in decreasing strength: 0-comparison (which is the same as
being almost unperforated), 1-comparison, 2-comparison, . . . , ω-comparison, the strong
Corona Factorization Property, and the Corona Factorization Property for semigroups.
Moreover, we have defined weak n- and the weak ω-comparison properties. We show
below that the comparison properties above are in fact strictly decreasing in strength,
except that we do not have an example of an abelian ordered semigroup that has the
strong Corona Factorization Property but not the ω-comparison property. (That the
strong Corona Factorization Property is strictly stronger than the Corona Factorization
Property was already noted in [12].)

Example 2.17. Let n be a positive integer, let Wn be the subsemigroup of Z+ generated
by {0, n + 1, n + 2}, and equip Wn with the algebraic order. Notice that

(n + 1)(n + 2)− (n + 1)− (n + 2) = n2 + n− 1

is the largest natural number that does not belong to Wn. Suppose that x, y0, y1, . . . , yn

belong to Wn, that x <s yj for all j, and that x is non-zero. Then all yj’s are non-zero,
whence

y0 + y1 + · · ·+ yn − x ≥ y1 + y2 + · · ·+ yn ≥ n(n + 1),

(where the ordering above is the usual one in Z), which shows that x ≤ y0 +y1 + · · ·+yn

(with respect to the order given on Wn). Hence Wn has the n-comparison property.
On the other hand, if we take x = n + 1 and y0 = y1 = · · · = yn−1 = n + 2, then

x <s yj for all j, but

y0 + y1 + · · ·+ yn−1 − x = n(n + 2)− (n + 1) = n2 + n− 1,
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which does not belong to Wn. Hence x � y0 + y1 + · · · + yn−1 in Wn, whence Wn does
not have the (n− 1)-comparison property.

Next, put Wω =
⊕∞

n=1 Wn (as an ordered abelian semigroup). Then Wω has the
ω-comparison property, but does not have the n-comparison property for any finite
n. Indeed, suppose that x, y0, y1, . . . in Wω are such that x <s yj for all j. Write
x = (x1, x2, . . . ) and yj = (yj

1, y
j
2, . . . ), with xk and yj

k in Wk for all k. Then xk = 0 for
all k greater than some k0 ∈ N. Since Wk has k0-comparison when k ≤ k0, we have

xk ≤ y0
k + y1

k + · · ·+ yk0
k

(in Wk) for all k, whence x ≤ y0 + y1 + · · ·+ yk0 (in Wω).
Conversely, given a positive integer n, choose x′, y′0, y

′
1, . . . , y

′
n in Wn+1 such that

x′ <s y′j for all j, and such that x′ � y′0 + y′1 + · · ·+ y′n. (This is possible because Wn+1

does not have the n-comparison property.) Let x, y0, y1, . . . , yn in Wω be the elements
whose coordinates in the (n + 1) position are, respectively, x′, y′0, y

′
1, . . . , y

′
n, and whose

other coordinates are zero. Then x <s yj for all j while x � y0 + y1 + · · · + yn. Hence
Wω does not have the n-comparison property.

3. The Corona Factorization Property for C∗-algebras with finite
decomposition rank

We have already mentioned the result, [21, Lemma 6.1], of Toms and Winter which im-
plies that the Cuntz semigroup of a simple unital separable C∗-algebra has n-comparison
property. We wish to extend this result to the non-simple case, and state for this pur-
pose a lemma whose proof actually is contained in the proof of [21, Lemma 6.1] (follow
that proof from Equation (10) to its end) and therefore is omitted.

Lemma 3.1 (Toms and Winter). Let A be a separable C∗-algebra with finite decompo-
sition rank n. Suppose that a, d0, . . . , dn ∈ A+ and α > 0 satisfy

∀τ ∈ T (A) : dτ (a) < dτ (di)− α.

Then a - d0 ⊕ d1 ⊕ · · · ⊕ dn.

Proposition 3.2. Let A be a separable, unital C∗-algebra with decomposition rank n <
∞. Then W (A) has the weak n-comparison property.

Proof. Let x, y0, . . . , yn ∈ W (A) with yi full and x <s yi be given for every i. Then, by
Proposition 2.1, there exists k such that (k + 1)x ≤ kyi for all i.

As y0, . . . , yn are full, there is a natural number N such that 〈1A〉 ≤ Nyi for all i.
Choose 0 < α′ < (k + 1)−1 and let α = α′/N . Let now f ∈ S(W (A), 〈1A〉). We then
have that 1 ≤ Nf(yi) for all i, whence α < f(yi)/(k + 1). Therefore:

f(x) ≤ k

k + 1
f(yi) = f(yi)−

f(yi)

k + 1
< f(yi)− α ,

for all i.
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In particular, with dτ denoting the (lower semicontinuous) dimension function asso-
ciated to a tracial state τ on A, we have dτ (x) < dτ (yi)−α for all i and for every tracial
state τ on A

Finite decomposition rank passes to matrices, so upon replacing A with a matrix
algebra over A, we can suppose that there exist positive elements a and d0, d1, . . . , dn in
A, with di full, such that x = 〈a〉 and yi = 〈di〉 for all i. Then dτ (a) < dτ (di)−α for all
i and for all tracial states τ on A. Lemma 3.1 then implies that a - d0 ⊕ d1 ⊕ · · · ⊕ dn,
which again implies that x ≤ y0 + y1 + · · ·+ yn as desired. �

Combining Proposition 2.16 and Proposition 3.2 we get:

Corollary 3.3. Let A be a separable, unital C∗-algebra with finite decomposition rank.
Then W (A) has the Corona Factorization Property.

4. Stability of C∗-algebras

We show in this section a C∗-algebra whose Cuntz semigroup has the ω-comparison
property is stable if and only if it has no unital quotient and no bounded 2-quasitrace.
We introduce a property (S) of a C∗-algebra that we show is equivalent to having no
non-zero unital quotients and no bounded 2-quasitraces.

Recall from [7] that F (A) is the set of compactly supported positive elements, that is,

F (A) = {a ∈ A+ | there exists e ∈ A+ with ea = a} .

It was shown in [7] that a separable C∗-algebra A is stable if and only if to every
a ∈ F (A) there exists b ∈ A+ such that a ⊥ b and a - b. We shall here consider a
weaker version of this condition, where we replace the relation a - b with the relation
a ≺s b considered in Section 2.

Definition 4.1. A C∗-algebra A is said to have property (S) if for every a ∈ F (A) there
exists b ∈ A+ such that a ⊥ b and a ≺s b.

It follows immediately from the definition, the results from [7] quoted above, and from
Remark 2.4, that if A is a separable C∗-algebra for which W (A) is almost unperforated,
then A has property (S) if and only if A is stable. It is easy to see that every stable
C∗-algebra has property (S).

Lemma 4.2. Let A be a separable C∗-algebra with property (S). Then A has no non-zero
unital quotients.

Proof. Let I be an ideal of A such that A/I is unital. Let e + I be the unit of A/I,
with e ∈ A+. Upon replacing e with g(e), where g : R+ → [0, 1] is a continuous function
which vanishes on, say [0, 1/2], and with g(1) = 1, we can assume that e ∈ F (A). By
the assumption that A has property (S) there exists b ∈ A+ such that e ⊥ b and e ≺s b.
Now, 0 = eb + I = b + I, so b belongs to I. The relation e ≺s b implies that e belongs
to the closed two-sided ideal generated by b, and hence to I. Thus, e + I = 0 and
A/I = 0. �
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We say that d is strictly full if (d−ε)+ is full for some ε > 0, and hence for all sufficiently
small ε > 0.

Lemma 4.3. Let A be a C∗-algebra such that A ⊗ K contains a full projection. Then
every full positive element in A is strictly full.

Proof. We can view A as a full hereditary sub-C∗-algebra of its stabilization A ⊗ K.
Let p be a full projection in A⊗K, and let d be a full positive element in A. For each
ε > 0 consider the closed two-sided ideal Iε of A⊗K generated by (d−ε)+. The closure
of

⋃
ε>0 Iε is a closed two-sided ideal in A ⊗ K which contains d and hence is equal to

A ⊗ K. It follows that
⋃

ε>0 Iε is a dense (algebraic) ideal in A ⊗ K. Being a dense
ideal,

⋃
ε>0 Iε contains every projection of A⊗K. Hence p belongs to Iε for some ε > 0,

whence Iε = A ⊗ K, which again implies that (d − ε)+ is full (in A ⊗ K and hence in
A). �

Lemma 4.4. Let A be a separable C∗-algebra with property (S). Then given any a ∈
F (A) there exists b ∈ F (A) such that

a ⊥ b, a ≺s b, a + b ∈ F (A).

If, moreover, A⊗K is assumed to contain a full projection, then b above can be chosen
to be strictly full in A.

Proof. Let a ∈ F (A), and choose d in A+ with da = ad = a. Let g : R+ → [0, 1] be a
continuous function which is zero on [0, 1/2] and with g(1) = 1, and put e = g(d). Then

e ∈ F (A), ea = ae = a, a - (e− 1/2)+, ‖e‖ = 1.

Since A has property (S) there exists b0 ∈ A+ such that e ⊥ b0 and e ≺s b0. It follows
from Lemma 2.5 that there exists δ > 0 such that (e − 1/2)+ ≺s (b0 − δ)+. Put
b = (b0 − δ)+ ∈ F (A), and set f = h(b0) where h : R+ → [0, 1] is a continuous function
such that h(0) = 0 and h(t) = 1 for t ≥ δ. Then a ⊥ b, a ≺s b, and

(e + f)(a + b) = ea + fb = a + b.

The latter shows that a + b belongs to F (A).
Assume now that there exists a full projection in A ⊗ K. Let B be the hereditary

sub-C∗-algebra of A consisting of all elements which are orthogonal to e. Then B is
full in A. Indeed, because e belongs to F (A) there exists a positive element e′ in A
such that e′e = ee′ = e. Let I be the closed two-sided ideal in A generated by B, and
assume, to reach a contradiction, that I were proper. Then e′ + I would be a unit for
A/I, thus contradicting Lemma 4.2.

It follows from Brown’s theorem that B ⊗ K is isomorphic to A ⊗ K, and so B ⊗ K
contains a full projection. Hence, by Lemma 4.3, any full element in B is strictly full.
Upon adding onto b0 a positive full element in B we can assume that b0 is full. It
follows that b = (b0 − δ)+ is full (and hence strictly full) if δ0 > 0 is chosen sufficiently
small. �
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Lemma 4.5. Let A be a separable C∗-algebra with property (S). Then for every a ∈
F (A) there is a sequence b0, b1, b2, . . . of elements in F (A) such that the elements
a, b0, b1, b2, . . . are pairwise orthogonal, a + b0 + b1 + · · ·+ bn belongs to F (A) for all n,
and such that a ≺s b0 ≺s b1 ≺s · · · .

If, moreover, A ⊗ K is assumed to contain a full projection, then b0, b1, b2, . . . above
can be chosen to be strictly full in A.

Proof. The existence of b0 such that a ⊥ b0, a ≺s b0, and a + b0 belongs to F (A)
follows from Lemma 4.4. Suppose that n ≥ 0 and that b0, b1, . . . , bn have been found
such that a, b0, b1, . . . , bn are pairwise orthogonal, a ≺s b0 ≺s b1 ≺s · · · ≺s bn, and
a+ b0 + b1 + · · ·+ bn belongs to F (A). Then, by Lemma 4.4, there is bn+1 in F (A) which
is orthogonal to the sum a+b0 +b1 + · · ·+bn (and hence to each of the summands), such
that a+b0+b1+· · ·+bn ≺s bn+1 (and hence bn ≺s bn+1) and such that a+b0+b1+· · ·+bn+1

belongs to F (A).
Finally, use Lemma 4.4 to see that each of the positive elements bj above can be

chosen to be strictly full if A⊗K contains a full projection. �

We will now give an algebraic characterization of property (S) for a C∗-algebra. The
characterization is very similar to, but sharpens, [6, Theorem 3.6]. The reader is referred
to [1] for the definition and properties of 2-quasitraces. Let us just here remind the
reader than any 2-quasitrace on an exact C∗-algebra is a trace, and that the short-
coming of a quasitrace (compared with a trace) is that it only is assumed to be additive
on commuting elements.

Proposition 4.6. Let A be a separable C∗-algebra. Then A has property (S) if and
only if A has no non-zero bounded 2-quasitrace and no non-zero unital quotient.

Proof. The “if” part is contained in the proof of [6, Theorem 3.6].
To prove the “only if” part, suppose that A has property (S). By Lemma 4.2, A

has no non-zero unital quotients. Suppose, to reach a contradiction, that τ is a non-
zero bounded 2-quasitrace on A, and let dτ be the associated lower semicontinuous
dimension function on W (A). Since τ is non-zero there is a positive element a in A
such that dτ (〈a〉) > 0, and since dτ is lower semicontinuous, dτ (〈(a− ε)+〉) > 0 for some
ε > 0. We can now use Lemma 4.5 to find a sequence b0 = (a−ε)+, b1, b2, . . . of pairwise
orthogonal elements in F (A) such that b0 ≺s b1 ≺s b2 ≺s · · · . By Proposition 2.1 we
have 0 < dτ (〈b0〉) < dτ (〈b1〉) < dτ (〈b2〉) < · · · , and in particular

dτ (〈b0 + b1 + b2 + · · ·+ bn〉) ≥ (n + 1)dτ (〈(a− ε)+〉).
On the other hand, one has dτ (〈c〉) ≤ ‖τ‖ for all c in A+, and so the inequality above
is in contradiction with the assumed boundedness of τ . �

It is well-known that stability is not a stable property (see [17]). Property (S), however,
is a stable property, as easily follows from Proposition 4.6 above:

Corollary 4.7. Let A be a separable C∗-algebra. Then the following conditions are
equivalent:
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(i) A has property (S).
(ii) Mn(A) has property (S) for some natural number n.
(iii) Mn(A) has property (S) for all natural numbers n.

Proof. By Proposition 4.6 it suffices to check that each of the two properties: having a
non-zero unital quotient, and having a non-zero bounded 2-quasitrace, passes to matrix
algebras and back again. This is trivial for the first. It is a theorem (see [1]) that
2-quasitraces extend to all matrix algebras (and vice versa). �

The result, [6, Theorem 3.6], that we have used extensively in the proof of Propo-
sition 4.6 above, actually says that a separable C∗-algebra with almost unperforated
Cuntz semigroup is stable if and only if it has no non-zero unital quotient and no non-
zero bounded 2-quasitrace. Reminding the reader that almost unperforation is the same
as the “0-comparison” property, we can extend [6, Theorem 3.6] as in the proposition
below.

Recall that every element in W (A⊗K) is represented by a positive element in A⊗K
(we do not need to take matrix algebras), and every element in W (A) is represented by
a positive element in M∞(A). If a belongs to F (A ⊗ K), then a is equivalent (in the
sense of Cuntz comparison) to an element in M∞(A)+, whence 〈a〉 belongs to W (A).
Suppose that B is a hereditary sub-C∗-algebra of A⊗K. Then W (B) is a sub-semigroup
of W (A⊗K); and if a belongs to F (B), then 〈a〉 belongs to W (A).

Proposition 4.8. Let A be a separable C∗-algebra such that W (A) satisfies the ω-
comparison property (cf. Definition 2.9). Let B be a hereditary sub-C∗-algebra of A⊗K.
Then the following conditions are equivalent:

(i) B is stable
(ii) B has no non-zero unital quotient and no non-zero bounded 2-quasitrace.
(iii) B has property (S).

Proof. Conditions (ii) and (iii) are equivalent for all separable C∗-algebras by Proposi-
tion 4.6, and (i) clearly implies (ii) (again for all C∗-algebras) (see eg. [7]).

(iii) ⇒ (i). By [7, Proposition 2.2] it is enough to show that for every a ∈ B+

and every ε > 0 there exists b ∈ B+ such that (a − ε)+ - b and (a − ε)+ ⊥ b.
(Indeed, if such an element b exists, then (a − 2ε)+ = x∗bx for some x ∈ B; whence
(a− 2ε)+ ∼ b1/2xx∗b1/2 := b0 ⊥ (a− 2ε)+, and ‖a− (a− 2ε)+‖ ≤ 2ε.)

Since (a − ε/2)+ belongs to F (B) we can apply Lemma 4.5 to get a sequence of
positive elements b0, b1, b2, . . . in F (B) such that (a−ε/2)+ ≺s b0 ≺s b1 ≺s b2 ≺s · · · and
for which (a − ε/2)+, b0, b1, b2, . . . are mutually orthogonal. By the remarks preceding
this proposition, the elements 〈(a − ε/2)+〉, 〈bj〉 ∈ W (B) belong to W (A); so by the
assumption that W (A) satisfies the ω-comparison property there is a natural number n
such that

〈((a− ε/2)+ − ε/2)+〉 = 〈(a− ε)+〉 ≤ 〈b0〉+ · · ·+ 〈bn〉
= 〈b0 ⊕ · · · ⊕ bn〉 = 〈b0 + · · ·+ bn〉
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in W (A) (and hence in W (B)). Thus, (a−ε)+ - b0+ · · ·+bn and (a−ε)+ ⊥ b0+ · · ·+bn

as desired. �

We have the following analog of Proposition 4.8, where the assumption on the compari-
son property of the Cuntz semigroup is weakened, but where we instead have to assume
the existence of a full projection:

Proposition 4.9. Let A be a separable C∗-algebra such that W (A) satisfies the weak
ω-comparison property and such that A ⊗ K contains a full projection. Let B be a full
hereditary sub-C∗-algebra of A⊗K. Then the following conditions are equivalent:

(i) B is stable
(ii) B has no non-zero unital quotient and no non-zero bounded 2-quasitrace.
(iii) B has property (S).

Proof. Proceeding as in the proof of Proposition 4.8, we only need to prove (iii) ⇒ (i);
and to prove that (i) holds it suffices to show that for every a ∈ B+ and every ε > 0
there exists b ∈ B+ such that (a− ε)+ - b and (a− ε)+⊥b.

Since (a− ε)+ belongs to F (B) we can apply Lemma 4.5 to get full positive elements
b0, b1, b2, . . . in F (B) such that (a − ε)+ ≺s b0 ≺s b1 ≺s b2 ≺s · · · and such that
(a− ε)+, b0, b1, b2 . . . are mutually orthogonal. As remarked above Proposition 4.8, the
elements 〈(a− ε)+〉, 〈bj〉 ∈ W (B) actually belong to W (A). Moreover, each 〈bj〉 is full
in W (A) (because B is full in A ⊗ K), so by the assumption that W (A) has the weak
ω-comparison property it follows that

〈(a− ε)+〉 ≤ 〈b0〉+ · · ·+ 〈bn〉 = 〈b0 ⊕ · · · ⊕ bn〉 = 〈b0 + · · ·+ bn〉

for some natural number n (the order is relatively to W (A) and hence also in W (B)).
We conclude that (a− ε)+ - b0 + · · ·+ bn and (a− ε)+⊥b0 + · · ·+ bn. �

We end this section by describing when separable C∗-algebras with finite decomposition
rank are stable (under the assumption that their stabilization contains a full projection):

Corollary 4.10. Let A be a separable C∗-algebra with finite decomposition rank, and
assume that A⊗K contains a full projection. Then the following conditions are equiv-
alent:

(i) A is stable.
(ii) A has no non-zero unital quotients and no non-zero bounded positive traces.
(iii) A has property (S).

Proof. Let p be a full projection in A⊗K and put B = p(A⊗K)p. Then B has the same
decomposition rank as A, say n; and B is unital. It follows from Proposition 3.2 that
W (B) has weak n-comparison and therefore also weak ω-comparison property. As A is
(isomorphic to) a full hereditary sub-C∗-algebra of B ⊗ K the result now follows from
Proposition 4.9. (In (ii) we have used that any 2-quasitrace on a nuclear C∗-algebra is
a trace.) �
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5. The Corona Factorization Property and the Cuntz semigroup

Recall that a C∗-algebra A is said to have the Corona Factorization Property if every
full projection in the multiplier algebra of A⊗K is properly infinite. The fact that the
Corona Factorization Property is equivalent to a statement regarding stability of full
hereditary sub-C∗-algebras of the stabilized C∗-algebra was observed by Kucerovsky
and Ng in [10]. Our aim here is to characterize the Corona Factorization Property for
C∗-algebras in terms of a certain comparison property of the Cuntz semigroup.

For each ε > 0 define the continuous function gε : R+ −→ R+ by

gε(t) =

 0 if 0 ≤ t ≤ ε
ε−1t− 1 if ε ≤ t ≤ 2ε
1 if 2ε ≤ t

.

Lemma 5.1. Let A be a σ-unital C∗-algebra and suppose that {ek} is an increasing
approximate unit for A consisting of positive contractions. Then:

(i) For every positive a in A and for every ε > 0 one has (a−ε)+ - ek for all large
enough k.

(ii) {〈ek〉} is a full sequence in W (A).

Proof. (i). We have ‖a1/2eka
1/2 − a‖ < ε for k large enough, whence (a − ε)+ -

a1/2eka
1/2 - ek.

(ii). The sequence {〈ek〉} is clearly increasing. The fullness property of this sequence
follows from (i) and from the fact that {ek⊗1n}∞k=1 is an approximate unit for Mn(A). �

Recall from Section 4 the definition of the set F (A) of compactly supported elements
in a C∗-algebra A. Suppose that A is σ-unital. Then, to any strictly positive element c
in A one can associate the set

Fc(A) := {b ∈ A+ | gε(c)b = b for some ε > 0} ,

cf. [7]. It is easy to see that Fc(A) is a dense subset of F (A), which—unlike F (A)—is
closed under addition.

We shall use below that whenever c ∈ A is a strictly positive element of A, then c⊗1n

is a strictly positive element of Mn(A).

Lemma 5.2. Let c be a strictly positive element of a C∗-algebra A, and let a = (aij)
be a positive element in Mn(A)+. Let d =

∑n
j=1 ajj ∈ A+ be the sum of the diagonal

elements of a. Then 〈a〉 ≤ n〈d〉; and d belongs to Fc(A) if a belongs to Fc⊗1n(Mn(A)).

Proof. Let ε > 0. For each i = 1, 2, . . . , n, let {e(i)
k }∞k=1 be an approximate unit for

aiiAaii, and put ek = diag(e
(1)
k , . . . , e

(n)
k ). Then e

(i)
k - aii - d for all k. Also, {ek} is

an approximate unit for aMn(A)a, whence (a − ε)+ - ek for all large enough k, cf.
Lemma 5.1. We therefore conclude that

〈(a− ε)+〉 ≤ 〈ek〉 =
n∑

i=1

〈e(i)
k 〉 ≤ n〈d〉.
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This proves the claim because ε > 0 was arbitrary.
Suppose that a belongs to Fc⊗1n(Mn(A)). Then there is ε > 0 with gε(c⊗ 1n)a = a.

As gε(c⊗ 1n) = gε(c)⊗ 1n, this is easily seen to imply that gε(c)aii = aii for all i, hence
aii ∈ Fc(A). Thus d belongs to Fc(A). �

Lemma 5.3. Let A be a σ-unital C∗-algebra, and fix a strictly positive element c in A.
Suppose that Mn(A) is stable for some positive integer n. Then for all elements a, b in
Fc(A) there exists an element d in Fc(A) with a ⊥ d and b⊗ 1n - d⊗ 1n.

Proof. Let a, b ∈ Fc(A). Then there exists δ > 0 such that a, b ∈ c0Ac0, where c0 = gδ(c).
Clearly, a, b - c0 and also c0 ⊗ 1n ∈ Fc⊗1n(Mn(A)). Using that Mn(A) is stable, we
find an element b′ ∈ Fc⊗1n(Mn(A)) such that b′ ⊥ c0 ⊗ 1n and c0 ⊗ 1n - b′, cf. [7,
Lemma 2.6 (i)]. Let d ∈ A be the sum of the diagonal elements in b′. By Lemma 5.2,
we get that d ∈ Fc(A) and b′ - d⊗ 1n. This shows that

b⊗ 1n - c0 ⊗ 1n - b′ - d⊗ 1n.

Since b′ ⊥ c0 ⊗ 1n, it follows that d ⊥ c0, whence d ⊥ a. �

The lemma below is a reformulation of the characterization of stability from [7].

Lemma 5.4. Let A be a σ-unital C∗-algebra with a strictly positive element c. Then A
is stable if and only if for every ε > 0 there exists b ∈ A+ such that b ⊥ (c − ε)+ and
(c− ε)+ - b.

Proof. The “only if” part follows from [7, Theorem 2.1]. To prove the “if” part, we
verify that condition (b) of [7, Proposition 2.2] is satisfied. To this end, let a ∈ F (A)
and ε > 0 be given. Choose δ > 0 such that ‖a − gδ(c)agδ(c)‖ < ε. Then find d ∈ A+

such that (c− δ)+ ⊥ d and (c− δ)+ - d. Then

gδ(c)agδ(c) ⊥ d, a - gδ(c)agδ(c) - gδ(c) - d.

Hence there exists t in A such that b′ := (a − ε)+ = t∗dt. Put c′ = d1/2tt∗d1/2. Then
‖a− b′‖ ≤ ε, b′ ⊥ c′, and b′ ∼ c′. �

Proposition 5.5. Let A be a σ-unital C∗-algebra whose Cuntz semigroup W (A) satisfies
the Corona Factorization Property for monoids. Then A is stable if Mm(A) is stable
for some m ∈ N.

Proof. Suppose that Mm(A) is stable for some natural number m. Let c be a strictly
positive element in A+, and let ε > 0 be given. Choose a decreasing sequence {εn}
of strictly positive real numbers that converges to zero, and such that ε1 < ε. Let
an = (c − εn)+. Since an ≈ gεn(c) and {gεn(c)} is an increasing approximate unit for
cAc = A, it follows from Lemma 5.1 that {〈an〉} is a full sequence in W (A).

We use Lemma 5.3 to construct a sequence d1, d2, d3 . . . of positive elements in Fc(A)
such that a1, d1, d2, . . . are pairwise orthogonal and an - dn ⊗ 1m for all n. Indeed, at
stage n, since a1, d1, . . . , dn−1 belong to Fc(A), so does their sum, and so we can find
dn ∈ Fc(A) orthogonal to a1 + d1 + · · ·+ dn−1 satisfying an - dn ⊗ 1m.
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Now, apply the Corona Factorization Property for W (A) to {〈an〉} and {〈dn〉} (that
satisfies 〈an〉 ≤ m〈dn〉 for all n). Thus, for our ε > 0, there is a natural number k such
that

〈(c− ε)+〉 ≤ 〈(c− ε1)+〉 = 〈a1〉 ≤ 〈d1〉+ 〈d2〉+ · · ·+ 〈dk〉 = 〈d1 + d2 + · · ·+ dk〉 ,
which implies that A is stable (by virtue of Lemma 5.4). �

If A is a non-unital C∗-algebra, then we shall denote the unit of its multiplier algebra
M(A) by 1.

Lemma 5.6. Let A be a σ-unital stable C∗-algebra and let a be a positive contraction
in A. Then 1− a is a properly infinite, full, positive element in M(A).

Proof. It follows from [7, Corollary 4.3] that (1− a)A(1− a) is stable. Hence 1 − a is
properly infinite, cf. [8, Proposition 3.7]. We proceed to prove that 1−a is full in M(A).

Take positive functions f, g : [0, 1] → [0, 1] such that f is zero on [0, 1/2], f + g = 1,

and g(1) = 0. Then g(a) belongs to (1− a)A(1− a). Since A is stable and σ-unital we
can find a positive element b in A such that b ⊥ (a− 1/2)+ and (a− 1/2)+ - b. Then
f(a) ⊥ b, whence

b =
(
f(a) + g(a)

)
b
(
f(a) + g(a)

)
= g(a)bg(a) ∈ (1− a)A(1− a).

As f(a) - (a − 1/2)+ - b, we see that f(a) belongs to the closed two-sided ideal in

M(A) generated by 1 − a. As g(a) belongs to (1− a)M(A)(1− a), we conclude that
the closed two-sided ideal generated by 1 − a contains 1 = f(a) + g(a), and hence is
equal to M(A). �

Lemma 5.7. Let A be a σ-unital stable C∗-algebra and let T be a positive element in
M(A) such that 1 - T (or, equivalently, such that T is full and properly infinite). Then
TAT is stable.

Proof. Put B = TAT . Since A is σ-unital, then so is B.
There is δ > 0 such that 1 - (T − 2δ)+, whence 1 = R∗(T − δ)+R for some element

R in M(A). Put V = (T − δ)
1/2
+ R and put T ′ = g(T ), where g : R+ → [0, 1] is

a continuous function such that g(0) = 0, g(t) = 1 for t ≥ δ, and g is linear on
[0, δ]. Then T ′AT ′ = TAT = B, and V is an isometry whose range projection satisfies
V V ∗T ′ = V V ∗.

To show that B is stable, we use [7], by which it suffices to show that for each
a ∈ F (A) there is b ∈ A+ such that a ⊥ b and a ∼ b. Take a ∈ F (B), and let e be a
positive contraction in B such that ae = ea = a. Put T0 = (1 − e)T ′(1 − e), and note
that T0AT0 ⊆ B. Now,

V ∗T0V = V ∗T ′V − V ∗(eT ′ + T ′e− eT ′e)V = 1− c,

with c = V ∗(eT ′+T ′e− eT ′e)V ∈ A. As V ∗T0V is a positive contraction, the element c
is also a positive contraction. We can therefore use Lemma 5.6 to conclude that V ∗T0V
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is properly infinite and full. As V ∗T0V - T0 we also have that T0 is properly infinite
and full. This again entails that 1 - T0, and so there is an isometry W in M(A)

whose range projection, WW ∗, belongs to T0M(A)T0. In particular, WW ∗ ⊥ a. Put
b = WaW ∗. Then b is a positive element in B, b ⊥ a, and b ∼ a as desired. �

Let A be a stable C∗-algebra. Then there exists a sequence {Sn} of isometries in
M(A) with orthogonal range projections and such that

∑∞
n=1 SnS

∗
n = 1 (the sum being

convergent in the strict topology). Let {an} be any bounded sequence of elements in
A (or in M(A)). Then

∑∞
n=1 SnanS

∗
n is strictly convergent to an element in M(A).

We shall denote this element by
⊕∞

n=1 an. If {Tn} is another sequence of isometries in
M(A) with range projections adding up to 1 in the strict topology, then

∑∞
n=1 TnS

∗
n is

strictly convergent to a unitary U in M(A) and U
( ∑∞

n=1 SnanS
∗
n

)
U∗ =

∑∞
n=1 TnanT

∗
n .

This shows that the element
⊕∞

n=1 an is independent on the choice of the sequence {Sn}
of isometries, up to unitary equivalence.

Lemma 5.8. Let A be a stable σ-unital C∗-algebra which satisfies the Corona Factor-
ization Property. Let T be a full, positive element in M(A). Then a - T for every
positive element a in A.

Proof. Put B = TAT . Then B is a full hereditary sub-C∗-algebra of A because T is
full in M(A).

Again using that T is a full element in the properly infinite C∗-algebra M(A), there
is a positive integer n such that T ⊗ 1n is properly infinite. As,

Mn(B) = (T ⊗ 1n)Mn(A)(T ⊗ 1n),

we conclude from Lemma 5.7 that Mn(B) is stable. Because A is assumed to satisfy
the Corona Factorization Property, we can now conclude from [10, Theorem 4.2] that
B is stable.

Let a be a positive element in A and let ε > 0 be given. As B is full in A we can
find a positive integer n, positive elements b1, . . . , bn in B, and elements x1, . . . , xn in A
such that (a − ε)+ =

∑n
j=1 x∗jbjxj. Because B is stable there are isometries S1, . . . , Sn

in M(B) with orthogonal range projections. We now get

(a− ε)+ - b1 ⊕ b2 ⊕ · · · ⊕ bn ≈ S1b1S
∗
1 + S2b2S

∗
2 + · · ·+ SnbnS

∗
n - T.

As this holds for all ε > 0, we have a - T as desired. �

The lemma below is similar to [15, Corollary 2.7], but we do not assume below that A
is unital. If a and b are positive elements in a C∗-algebra and if m is a positive integer,
then we shall write a -m b to denote that a - b⊗ 1m.

Lemma 5.9. Let A be a σ-unital stable C∗-algebra, and let c be a strictly positive
contraction in A.

Let {an} be a bounded sequence of positive elements in A. Then
⊕∞

n=1 an defines a
full element in M(A) if there exist δ > 0 and a positive integer m such that for every
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ε > 0 and for every positive integer k there is an integer ` > k such that

(c− ε)+ -m (ak − δ)+ ⊕ (ak+1 − δ)+ ⊕ · · · ⊕ (a` − δ)+.

Proof. We show that 1 -m

⊕∞
n=1 an, which of course will imply that

⊕∞
n=1 an is full.

By assumption we can find integers 1 = k1 < k2 < k3 < · · · such that

(c− 1
n
)+ -m (akn − δ)+ ⊕ (akn+1 − δ)+ ⊕ · · · ⊕ (akn+1−1 − δ)+

for all n.
Choose isometries T1, T2, . . . , Tm in M(A) with range projections adding up to 1.

Then we can identify
( ⊕∞

n=1 an

)
⊗ 1m with

m∑
j=1

Tj

( ∞⊕
n=1

an

)
T ∗j =

∞∑
n=1

m∑
j=1

TjSnanS
∗
nT

∗
j ∼

∞∑
n=1

Sn

( m∑
j=1

TjanT
∗
j

)
S∗n.

(We have here used that the range projections of the two families of isometries, {SnTj}
and {TjSn}, sum to 1 in the strict topology.) Put

bn =

kn+1−1∑
k=kn

Sk

( m∑
j=1

TjanT
∗
j

)
S∗k ∼

(
akn ⊕ akn+1 ⊕ · · · ⊕ akn+1−1

)
⊗ 1m.

Then
( ⊕∞

n=1 an

)
⊗ 1m ∼

∑∞
n=1 bn, the latter sum is strictly convergent, and (c− 1

n
)+ -

(bn − δ)+ for all n. We must show that 1 -
∑∞

n=1 bn.
Choose a strictly decreasing sequence {δn} of positive real numbers such that δ2 = 1

and δn+2 > 1/n for all n. Define gn : [0, 1] → [0, 1] to be the continuous function which
is zero on [0, δn+2] ∪ [δn, 1] (note that [δ1, 1] = ∅), gn(δn+1) = 1, and gn is linear on
[δn+2, δn+1] and on [δn+1, δn]. Then 1 =

∑∞
n=1 gn(c) and the sum is strictly convergent.

Moreover, since δn+2 > 1/n, we have gn(c) = x∗n(bn − δ)+xn for some element xn in A.
Let h : [0, 1] → R+ be the continuous function which satisfies h(0) = 0, h(t) = t−1/2

for t ≥ δ, and h is linear on [0, δ]. Put yn = h(bn)(bn − δ)
1/2
+ xn. Then ‖yn‖ ≤ δ−1/2

(because ‖(bn − δ)
1/2
+ xn‖ = ‖gn(c)‖1/2 = 1 and ‖h(bn)‖ ≤ δ−1/2), and y∗nbnyn = gn(c).

Notice that yn belongs to the set bnAgn(c). Put Y =
∑∞

n=1 yn ∈ M(A) (the sum is
strictly convergent). Then,

Y ∗
( ∞∑

n=1

bn

)
Y =

∞∑
n=1

Y ∗bnY =
∞∑

n=1

y∗nbnyn =
∞∑

n=1

gn(c) = 1,

which shows that 1 -
∑∞

n=1 bn. �

Lemma 5.10. Let A be a stable σ-unital C∗-algebra which satisfies the Corona Fac-
torization Property. Let a1, a2, . . . , b1, b2, . . . be positive elements in A, and let m be a
positive integer such that a1 - a2 - a3 - · · · , such that the set {an} is full in A, and
such that an - bn⊗1m for all n. It follows that for each η > 0 there is a natural number
k such that

(a1 − η)+ - b1 ⊕ b2 ⊕ · · · ⊕ bk.
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Proof. We note first that we can choose δn > 0 such that

(a1 − δ1)+ - (a2 − δ2)+ - (a3 − δ3) - · · · ,

and such that {(an − δn)+}∞n=1 is full in A. (Let us prove this fact: As aj - an

whenever 1 ≤ j < n there is ηn > 0 such that (aj − 1/n)+ - (an − ηn)+ for j =
1, 2, . . . , n − 1. We choose now δn inductively such that 0 < δn ≤ ηn and such that
(an−1 − δn−1)+ - (an − δn)+. For n = 1 we can take δ1 = η1. For n ≥ 2, since
an−1 - an, there is δn ∈ (0, ηn] such that (an−1 − δn−1)+ - (an − δn)+. To see that the
sequence {(an − δn)+}∞n=1 is full in A, let I be the closed two-sided ideal generated by
this sequence. Since (aj − 1/n)+ - (an − ηn)+ - (an − δn)+ ∈ I whenever 1 ≤ j < n,
we see that (aj − 1/n)+ belongs to I whenever n > j. It follows that aj belongs to I
for all j, whence I = A, because the sequence {an} was assumed to be full.)

Next we choose δ′n > 0 such that (an − δn)+ -m (bn − δ′n)+ for all n. Let gn : [0, 1] →
[0, 1] be the continuous function given by gn(0) = 0, gn(t) = 1 for t ≥ δ′n, and gn is
linear on [0, δ′n]. Put b′n = gn(bn). Then bn is Cuntz equivalent to b′n, and (bn − δ′n)+ -
(b′n − 1/2)+.

We claim that T :=
⊕∞

n=1 b′n is full in M(A). To this end, take a strictly positive
contraction c in A. Let k ∈ N and ε > 0 be given. Note that the tail {(an − δn)+}∞n=k

is full in A (because the sequence {(an − δn)+}∞n=1 is Cuntz increasing). It follows that
c belongs to the closed two-sided ideal generated by {(an − δn)+}∞n=k, whence (c− ε)+

belongs to the algebraic ideal generated by this sequence, and hence to the algebraic
ideal generated by {(an − δn)+}k′

n=k for some k′ > k. This entails that

(c− ε)+ -p (ak − δk)+ ⊕ (ak+1 − δk+1)+ ⊕ · · · ⊕ (ak′ − δk′)+,

for some positive integer p. Using again the sequence {(an−δn)+}∞n=1 is Cuntz increasing,
we get that

(c− ε)+ - (ak − δk)+ ⊕ (ak+1 − δk+1)+ ⊕ · · · ⊕ (a` − δ`)+

-m (b′k − 1/2)+ ⊕ (b′k+1 − 1/2)+ ⊕ · · · ⊕ (b′` − 1/2)+,

when ` ≥ k + p(k′ − k + 1). Lemma 5.9 now yields that T is full in M(A).
Since A is assumed to have the Corona Factorization Property we can use Lemma 5.8

to conclude that a1 - T . Hence (a1 − η/2)+ = R∗TR for some R in M(A). Take
a positive contraction e in A such that e(a1 − η/2)+ = (a1 − η/2)+ = (a1 − η/2)+e.

Put r = Re ∈ A. As
⊕k

n=1 b′n → T in the strict topology as k → ∞, it follows that

r∗
( ⊕k

n=1 b′n
)
r → r∗Tr = (a1 − η/2)+ in the norm topology (on A) as k → ∞. Take k

such that ∥∥r∗
(
b′1 ⊕ b′2 ⊕ · · · ⊕ b′k

)
r − (a1 − η/2)+

∥∥ < η/2.

Then

(a1 − η)+ - r∗
(
b′1 ⊕ b′2 ⊕ · · · ⊕ b′k

)
r - b′1 ⊕ b′2 ⊕ · · · ⊕ b′k ≈ b1 ⊕ b2 ⊕ · · · ⊕ bk

as desired. �
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We wish to apply the result above to the stabilization of a C∗-algebra A with the Corona
Factorization Property. Let us for this purpose consider the Cuntz semigroup of A, and
compare it with the Cuntz semigroup of its stabilization. Identifying A and matrix
algebras over A with corners of A⊗K we can write A ⊂ M∞(A) ⊂ A⊗K. In this way
we can view W (A) as a sub-semigroup (in fact an ideal) of W (A⊗K). Every element
in W (A ⊗ K) is represented by a positive element in A ⊗ K (we do not need to take
matrix algebras), and every element in W (A) is represented by a positive element in
M∞(A). Every element in W (A⊗K) which is compactly supported by another element
in W (A⊗K) belongs to W (A) (see the remarks above Proposition 4.8).

Lemma 5.11. Let A be a σ-unital C∗-algebra and let B be a full herditary sub-C∗-
algebra of A. Then W (A) has the Corona Factorization Property if and only if W (B)
has this property.

Proof. By Browns theorem it suffices to consider the case where A = B⊗K. If W (B⊗K)
has the Corona Factorization Property, then so does W (B), because W (B) is a sub-
semigroup of W (B ⊗K), and any full sequence in W (B) is also full in W (B ⊗K).

Suppose that W (B) has the Corona Factorization Property. Let {xn} be a full se-
quence in W (B ⊗K), let {yn} be a sequence in W (B ⊗K), let x′ ∈ W (B ⊗K), and let
m be a positive integer such that x′ � x1 and xn ≤ myn for all n. Arguing as in the
proof of Lemma 5.10 we can find a full sequence {x′n} in W (B ⊗K) such that x′n � xn

for all n and such that x′ � x′1. Next, using item (b) above Definition 2.9, we find
y′n � yn such that x′n ≤ my′n. By the remark above, the elements x′, x′n, y

′
n all belong

to W (B), and {x′n} is full in W (B). Hence

x′ ≤ y′1 + y′2 + · · ·+ y′n ≤ y1 + y2 + · · ·+ yn

for some n. This shows that W (B ⊗K) has the Corona Factorization Property. �

Theorem 5.12. Let A be a σ-unital C∗-algebra. Then A has the Corona Factoriza-
tion Property if and only if its Cuntz semigroup, W (A), has the Corona Factorization
Property (for monoids).

Proof. Assume first that A has the Corona Factorization Property. By Lemma 5.11
above we can assume that A is stable. Let {xn} be a full sequence in W (A), let {yn}
be another sequence in W (A), let x′ ∈ W (A), and let m ∈ N be such that xn ≤ myn

for all n and x′ � x1. Take positive elements an and bn in A such that xn = 〈an〉
and yn = 〈bn〉, and take η > 0 such that x′ ≤ 〈(a1 − η)+〉. Then {an} is full in A,
a1 - a2 - · · · , and an -m bn for all n. Hence, by Lemma 5.10, we get that

(a1 − η)+ - b1 ⊕ b2 ⊕ · · · ⊕ bk

for some k. Thus

x′ ≤ 〈(a1 − η)+〉 ≤ 〈b1〉+ 〈b2〉+ · · ·+ 〈bk〉 = y1 + y2 + · · ·+ yk.

This shows that W (A) has the Corona Factorization Property.
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To prove the converse direction, let B be a full hereditary subalgebra of A. We are
going to show that, if Mn(B) is stable for some n, then B is itself stable. Then A will
have the Corona Factorization Property by virtue of [10, Theorem 4.2]

Since W (B) inherits the Corona Factorization Property (for monoids), it will suffice
to show that if a C∗-algebra A is such that W (A) has the Corona Factorization Property
and Mm(A) is stable for some m, then A is stable. But this follows from Proposition 5.5.

�

Corollary 5.13. Let A be a separable, unital C∗-algebra with finite decomposition rank.
Then A has the Corona Factorization Property.

Proof. Combine Theorem 5.12 above with Corollary 3.3. �

The corollary above extends the result of Pimsner, Popa and Voiculescu, [14], and
Kucerovsky and Ng, [11], that the C∗-algebra C(X) ⊗ K is absorbing, or equivalently,
that it satisfies the Corona Factorization Property, when X has finite covering dimension
(as the decomposition rank of C(X) ⊗ K coincides with the covering dimension of the
space X).

We end this paper by describing for which C∗-algebras the Cuntz semigroup has the
strong Corona Factorization Property.

Theorem 5.14. Let A be a σ-unital C∗-algebra. Then W (A) has the strong Corona
Factorization Property if and only if every ideal in A has the Corona Factorization
Property.

Proof. Assume that W (A) has the strong Corona Factorization Property, and let I be
a closed two-sided ideal in A. Then W (I) is an ideal in W (A). As the strong Corona
Factorization Property trivially passes to ideals, we conclude that W (I) satisfies the
(strong) Corona Factorization Property. It therefore follows from Theorem 5.12 that I
has the Corona Factorization Property (for C∗-algebras).

Suppose now that all ideals in A have the Corona Factorization Property. To show
that W (A) has the strong Corona Factorization Property, it suffices to show that when-
ever a, b1, b2, . . . are positive elements in M∞(A), ε > 0, and m is a positive integer
such that a - bn ⊗ 1m, then (a − ε)+ - b1 ⊕ b2 ⊕ · · · ⊕ bk for some positive integer k.
Upon replacing A by a matrix algebra over A, we can assume that a belongs to A. Each
bn belongs to some matrix algebra over A, say bn ∈ Mrn(A). There are rectangular
matrices tn ∈ Mmrn,1(A) such that t∗n(bn ⊗ 1m)tn = (a− ε/3n)+.

Let I be the closed two-sided ideal in A generated by a. Then a is full in I, and 〈a〉
is full in W (I); however, the elements bn may not belong to (a matrix algebra over)
I. To fix this problem, take a quasi-central increasing approximate unit {ek}∞k=1 for I
consisting of positive contractions. For each n find k such that

‖t∗n(ek ⊗ 1mrn)(bn ⊗ 1m)(ek ⊗ 1mrn)tn − (a− ε/3n)+‖ < ε/3n,

and put an = (a− 2ε/3n)+ and cn = (ek⊗ 1rn)bn(ek⊗ 1rn). Then cn belongs to Mrn(I),
cn - bn, an - cn ⊗ 1m (relatively to A, and hence also relatively to I), (a − ε)+ =
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(a1 − ε/3)+, and {〈an〉} is a full sequence in W (I). Since W (I) is assumed to satisfy
the Corona Factorization Property we conclude that

(a− ε)+ - c1 ⊕ c2 ⊕ · · · ⊕ ck - b1 ⊕ b2 ⊕ · · · ⊕ bk

for some k as desired. �

Acknowledgements

The first and second named authors were partially supported by a MEC-DGESIC
grant (Spain) through Project MTM2008-0621-C02-01/MTM, and by the Comissionat
per Universitats i Recerca de la Generalitat de Catalunya. The third named author
was supported by a grant from the Danish Natural Science Research Council (FNU).
Part of this research was carried out during visits of the first and third named authors
to UAB (Barcelona), of the second named author to SDU (Odense), and of the two
first mentioned authors to Copenhagen. We wish to thank all parties involved for the
hospitality extended to us.

References

[1] Blackadar, B. and Handelman, D., Dimension functions and traces on C∗-algebras, J. Funct.
Anal. 45 (1982), no. 3, 297–340.

[2] Coward, K.T., Elliott, G.A., Ivanescu, C,, The Cuntz semigroup as an invariant for C∗-
algebras, J. Reine Angew. Math. 623 (2008), 161–193.

[3] Cuntz, J., Dimension Functions on Simple C∗-algebras, Math. Ann. 233 (1978), 145–153.
[4] Elliott, G.A. and Kucerovsky, D., An abstract Voiculescu-Brown-Douglas-Fillmore absorp-

tion theorem. Pacific J. Math. 198 (2001), no. 2, 385–409.
[5] Goodearl, K. R and Handelman, D., Rank functions and K0 of regular rings, J. Pure Appl.

Algebra, 7 (1976), 195–216.
[6] Hirshberg, I., Rørdam, M. and Winter, W., C0(X)-algebras, stability and strongly self-

absorbing C∗-algebras, Math. Ann. 339 (2007), no. 3, 695–732.
[7] Hjelmborg, J. and Rørdam, M., On stability of C∗-algebras, J. Funct. Anal. 155 (1998), no.

1, 153–170.
[8] Kirchberg, E. and Rørdam, M., Non-simple purely infinite C∗-algebras, Amer. J. Math. 122

(2000), no. 3, 637–666.
[9] Kirchberg, E. and Winter, W., Covering dimension and quasidiagonality, International J.

Math. 15 (2004), 63–85.
[10] Kucerovsky, D. and Ng, P. W., S-regularity and the corona factorization property, Math.

Scand. 99 (2006), no. 2, 204–216.
[11] Kucerovsky, D. and Ng, P. W., Decomposition rank and absorbing extensions of type I

algebras, J. Funct. Anal. 221 (2005), no. 1, 25–36.
[12] Ortega, E., Perera, F. and Rørdam, M., The Corona Factorization Property and Refinement

Monoids. Preprint, 2009.
[13] Perera, F., The structure of positive elements for C∗-algebra with real rank zero, Int. J. Math.

8 (1997), 383–405.
[14] Pimsner, M., Popa, S. and Voiculescu, D., Homogeneous C∗-extensions of C(X) ⊗K(H).

I, J. Operator Theory 1 (1979), no. 1, 55–108.
[15] Rørdam, M., Ideals in the Multiplier Algebra of a Stable C∗-algebra, J. Operator. Theory 25

(1991), no. 2, 283–298.



THE CORONA FACTORIZATION PROPERTY AND STABILITY 25

[16] Rørdam, M., On the Structure of Simple C∗-algebras Tensored with a UHF-Algebra, II, J. Funct.
Anal. 107 (1992), 255–269.

[17] Rørdam, M., Stability of C∗-algebras is not a stable property, Doc. Math. 2 (1997), 375–386
[18] Rørdam, M., On sums of finite projections, in “Operator algebras and operator theory (Shanghai,

1997)” Amer. Math. Soc., Providence, RI. (1998), 327–340.
[19] Rørdam, M., A simple C∗-algebra with a finite and an infinite projection, Acta Math. 191 (2003),

no. 1, 109–142.
[20] Rørdam, M., The Stable and the Real Rank of Z-absorbing C∗-algebras, International J. Math.

15 (2004), no. 10, 1065–1084.
[21] Toms, A. and Winter, W., The Elliott Conjecture for Villadsen Algebras of first type, Preprint.
[22] Winter, W., On Topological finite-dimensional simple C∗-algebras, Math. Ann. 332 (2005) 843–

878.
[23] Winter, W., Decomposition rank and Z-stability, Preprint, 2008.

Department of Mathematics and Computer Science, University of Southern Den-
mark, Campusvej 55, DK-5230, Odense M, Denmark

E-mail address: ortega@imada.sdu.dk
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