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SMOOTHENING CONE POINTS WITH RICCI FLOW

DANIEL RAMOS

SEPTEMBER 26, 2011

Abstract. We consider Ricci flow on a closed surface with cone points. The main result is:
given a (nonsmooth) cone metric g0 over a closed surface there is a smooth Ricci flow g(t) defined

for (0, T ], with curvature unbounded above, such that g(t) tends to g0 as t → 0. This result
means that Ricci flow provides a way for instantaneously smoothening cone points. We follow
the argument of P. Topping in [9] modifying his reasoning for cusps of negative curvature; in

that sense we can consider cusps as a limiting zero-angle cone, and we generalize to any angle
between 0 and 2π.

1. Introduction

Ricci flow on closed surfaces was studied first by R. Hamilton [7] and B. Chow [3], proving
that any smooth closed riemannian surface (M, g0) admits a volume-normalized Ricci flow g(t),
t ∈ [0, T ], with uniformly bounded curvature, having g0 as initial condition, g(0) = g0. This
flow is unique and well defined and converges to a constant curvature metric, [1] (See also [4]).
The unnormalized flow may develop finite-time singularities in the case of a sphere, when the
curvature tends globaly to infinity as well as the diameter tends to zero. Some analogous results
were obtained for Ricci flow on orbifold surfaces by L-F. Wu and Chow [10], [5], [2]. They assume
an equivariant definition of the Ricci flow under the action of the isotropy group of the cone points.
Therefore, the only nontrivial case are bad orbifolds, which do not admit a smooth manifold as
global branched covering space, so the Ricci flow cannot be lifted there. They prove that bad
orbifolds (the teardrop and the football) admit a (normalized) Ricci flow converging to a soliton
solution.

The alternative consideration of the Ricci flow just acting on the smooth part of the orbifold leads
to consider the Ricci flow on an open, noncomplete manifold, which does not fit in the classical
theory of Hamilton, so existence and uniqueness might be lost. H. Yin obtained, however, an
existence theorem for Ricci flow on cone surfaces [11], with uniformly bounded curvature, defined
on the smooth part of the surface, and preserving the conical structure of each singular point. This
is the analogous to the classical and orbifold Ricci flow. On a different approach, Topping and
G. Giesen [6] obtained an existence theorem for Ricci flow on incomplete surfaces, which becomes
instantaneously complete and has uniformly bounded curvature, which exposes the nonuniquenes
of solutions.

In another work, Topping [9] considered a complete open surface with cusps of negative curvature
and proved the existence of a instantaneously smooth Ricci flow with unbounded curvature, a
“smoothening flow” which erases instantaneously the cusps. This requires a generalized notion of
initial metric for a flow, that we will use thorough the paper:

Definition 1 (Cf. [9] Definition 1.1). LetM be a smooth manifold, and p1, . . . , pn ∈M. Let g0 be
a riemannian metric on M\{p1, . . . , pn} and let g(t) be a smooth Ricci flow on M for t ∈ (0, T ].
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We say that g(t) has initial condition g0 if

g(t) −→ g0 as t→ 0

smoothly locally on M\ {p1, . . . , pn}.
The technique for this result consists in capping the cusps of the original metric g0 with a

smooth part near the cusp point, in an increasing sequence of metrics, each term with a further
and smaller capping. This sequence of smooth metrics gives rise to a sequence of (classical) Ricci
flows, and the work consists in proving that this sequence has a limiting Ricci flow on M which
has g0 as initial condition in the sense of Definition 1. Our work proves that this technique works
equally well on cone surfaces, using truncated or “blunt” cones as approximations for a cone point.
In our setting, cusps would be seen as a limiting case of a zero-angle cone. This provides an
instantaneously smooth Ricci flow that smooths out the cone points of a cone surface.

The paper is organized as follows: in sections 2 and 3 we review the notions of cone surface
and Ricci flow on cone surfaces, and state the two main theorems of the paper (existence and
uniqueness of the smoothening flow). In section 4 we build the truncated cones that will serve
us as approximations of a cone point and in section 5 we build upper barriers that, applied to
our truncated cones, will give us control on the convergence of the sequence. In section 6 we put
together the preceding lemmas to prove the existence theorem; and finally in section 7 we prove
the uniqueness theorem.

Acknowledgements: The author was partially supported by Feder/Micinn through the Grant
MTM2009-0759 and by the Fundació Ferran Sunyer i Balaguer. He also wishes to thank his advisor,
Joan Porti, for all his guidance.

2. Cone points

Cone surfaces are topological surfaces equipped with a riemannian metric which is smooth
everywhere except on some discrete set of points (cone points) that look like the vertex of a cone.
Typical examples include orbifolds, where a group acting by isometries leads to identification of
different directions as seen from a fixed point. In the case of two dimensions, orientable orbifolds
consist locally in the quotient of a smooth manifold by perhaps the action of a cyclic group acting
by rotations, leading to the rise of singular points at the center of the rotations. The space of
directions is no longer a metric circle of length 2π but a metric circle of length 2π

n (this is the
cone angle). General 2-dimensional cone points include all angles, not only submultiples of 2π,
although we will restrict our attention to cone angles less than 2π. A useful fact in the case of
two dimensions is that an isolated cone point p has a neighbourhood U which admits a chart with
coordinates on the unit disc D. Precisely, there is a diffeomorphism U \ {p} → D \ {0} that allows
us to define a metric tensor on the coordinates of D (which will be undefined on the origin). We
may even take isothermal coordinates (x, y) (or in polar coordinates (r, θ), or in complex notation
z = x+ iy), that is, a local chart where the metric can be written as

g = e2u(dx2 + dy2) = e2u(dr2 + r2dθ2) = e2u|dz|2

with u a real-valued function of the coordinates (possibly undefined in z = 0). The main example
is the metric of the euclidean cone. Consider R2 and trace two half-lines from the origin, meeting
at angle α. Consider the metric space resulting of identification of the two half lines, and let us
bring it a riemannian metric. Using polar coordinates, assume that there exist a riemannian metric
of the form

g = φ2(r) (dr2 + r2dθ2)

where φ should depend also on θ, but we try just depending on r due to symmetry. We look for
a function φ that produces a flat metric (zero curvature) and a cone angle at the origin. Let us
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consider a parallel curve r = x = const. On the one hand, its length is the angle times the radius
(since it is a region of the plane),

L = α

∫ x

0

φ(r)dr.

On the other hand, the length of the curve measured on the metric is

L =

∫ 2π

0

xφ(x)dθ = 2πxφ(x).

So

α

∫ x

0

φ(r)dr = 2πxφ(x)

and denoting Φ′(r) = φ(r) we obtain

αΦ(x) = 2πxΦ′(x)

and solving this ODE,

φ(r) = Φ′(r) =
α

2π
r
α
2π−1

Renaming β = α
2π − 1, with −1 < β ≤ 0, the cone metric of the euclidean cone is

g = (β + 1)2r2β(dr2 + r2dθ2)

Having seen the prototype of cone point, the following definition is justified:

Definition 2. A cone surface (M, (p1, . . . , pn), g) is a topological surface M and p1, . . . , pn ∈ M
equipped with a smooth riemannian metric g onM\{p1, . . . , pn}, such that every point pi admits an
open neighbourhood Ui, and diffeomorphism Ui\{pi} → D\{0} where the metric on the coordinates
of D \ {0} is written as

g = e2(ai+βi ln r)|dz|2
where ai : D → R is a bounded and continuous function on the whole disc, and −1 < βi ≤ 0.

The cone angle at pi is αi := 2π(βi + 1). We say that M has bounded curvature if it has
bounded riemannian curvature on the smooth part of M, although it has +∞ curvature in the
sense of Alexandrov at the cone points (provided the angle is less than 2π).

3. Ricci flow on cone surfaces

A Ricci flow is an evolution equation for the metric tensor of a manifold, ∂
∂tg = −2Ric. In the

2-dimensional case, the equation is
∂

∂t
g = −2Kg

where K is the Gauss curvature of the surface. We may take a chart with isothermal coordinates
g = e2u|dz|2 and on that setting the Ricci flow equation turns

∂

∂t
u = e−2u∆u = −K

where ∆ is the usual euclidean laplacian.
The existence of solutions for this equation (at least for a short time) is given by the classical

theorems on Ricci flow when the initial metric is smooth over a closed surface. However, cone
surfaces do not fit on these theorems since the flow is defined on an open noncomplete manifold
and the cone point (the origin of the coordinate chart) acts as a sort of boundary of the domain.
We will appeal to a theorem by H. Yin ([11] Theorem 1.1) that ensures the existence for a short
time of at least one solution for the Ricci flow on cone surfaces, and such flow preserves the cone
angles of each cone point of the surface. J. Isenberg, R. Mazzeo, and N. Sesum [8] have annonced
another approach to the existence of the flow with cone singularities. What we are constructing
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on this paper is a different solution to the same equation: a Ricci flow which is instantaneously
smooth for any t > 0, that satisfies the Ricci equation for any t ∈ (0, T ], and that converges to the
initial nonsmooth cone metric as t → 0. Despite the nonuniquenes shown by this result, there is
certain uniqueness provided we restrict to certain class of flows.

Now we state the two main theorems of the paper:

Theorem 3.1. Let (M, (p1 . . . pn), g0) be a closed cone surface; with bounded curvature. There
exists a Ricci flow g(t) smooth on the whole M, defined for t ∈ (0, T ] for some T , and such that

g(t) −→
t→0

g0.

Furthermore, this Ricci flow has curvature unbounded above and uniformly bounded below over
time.

Theorem 3.2. Let g̃(t) be a Ricci flow on M, defined for t ∈ (0, δ] for some δ < T , such that

g̃(t) −→
t→0

g0

and assume that its Gauss curvature is uniformly bounded below. Then g̃(t) agrees with the flow
g(t) constructed in Theorem 3.1 for t ∈ (0, δ].

4. Truncating cones

This section is analogous to section 3.3 of [9], where we substitute the cusp points with cone
points. Let D denote the unit disc, and r = |z|. An appropriate elimination of the asymptote of
the conformal factor at r = 0 gives rise to a metric which smooth, and no longer singular at the
origin.

Lemma 1. Let g0 = e2(a0+β ln r)|dz|2 be a cone metric on the punctured disc D\{0} with curvature
bounded below, K[g0] ≥ −Λ. There exists an increasing sequence of smooth metrics gk = e2uk |dz|2
on D such that

(1) gk = g0 on D \D1/k,
(2) gk ≤ g0 on D \ {0},
(3) infD1/k

uk → +∞ as k −→ +∞, and

(4) K[gk] ≥ min{e2K[g0], 0}.
Proof. The conformal factor u0 = a0 + β ln r of the cone metric tends to +∞ as r → 0, so for each
k ∈ N we pick the minimum of u0 and k to obtain an increasing sequence of bounded functions
tending to u0. This has to be done in a way such that the functions remain smooth.

Choose a smooth function ψ : R→ R such that

• ψ(s) = s for s ≤ −1,
• ψ(s) = 0 for s ≥ 1,
• ψ′ ≥ 0 and ψ′′ ≤ 0.

The smoothed minimum of u0 and k is

uk = ψ(u0 − k) + k

and satisfies

• If u0 ≥ k + 1 then uk = k and therefore K[gk] = 0.
• If u0 ≤ k − 1 then uk = u0 and therefore K[gk] = K[g0].
• If k − 1 < u0 < k + 1 then

• uk ≤ u0,
• uk ≤ k,
• uk ≥ u0 − 1.
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So

uk ≤ min{u0, k}
and then (2) and (3) are satisfied. We can compute

∆uk = ψ′′(u0 − k)|∇u0|2 + ψ′(u0 − k)∆u0 ≤ ψ′(u0 − k)∆u0

Now, since ψ′ ≥ 0, we can distinguish

∆uk ≤ ∆(u0) if ∆u0 > 0

or

∆uk ≤ 0 if ∆u0 ≤ 0

So

∆uk ≤ max{∆u0, 0}
and then

K[gk] = −e−2uk∆uk ≥ min{e2K[g0], 0}
so (4) is satisfied. Finally (1) is satisfied after passing to a subsequence, since the region of points
{z : u0(z) > k} shrinks to a point when k →∞. �

5. Upper barriers

The conformal factor of a cone surface possesses asymptotes at the coordinates of the cone points,
whereas the truncated approximations have a finite but probably big value on that coordinates.
This section provides a ratio of how fast the maximum value of this conformal factors decay as the
Ricci flow evolves.

Lemma 2. Let g(t) = e2u(t)|dz|2 be a smooth Ricci flow on D and t ∈ [0, δ], and assume that

u(0) ≤ A+ β ln r

for some A ∈ R. Then

u(t) < B +
β

2(β + 1)
ln t

for some B depending only on A and β.

Proof. We will consider the conformal factor of several different surfaces. The function

s(r) := ln

(
2

1 + r2

)

is the conformal factor of a sphere, and the functions

v0(r) := ln(2(β + 1)) + β ln r

v1(r) := ln(2(β + 1)) + β ln r − ln
(

1− r2(β+1)
)

are the conformal factors of euclidean and hyperbolic cones (curvature 0 and −1) respectively.
Note that the euclidean and hyperbolic cones become indistinguishable as r → 0.

Considering the Ricci flow (∂u∂t = e−2u∆u = −K) on the hyperbolic cone, it evolves as

V1(t) = v1 + c(t)

with c(t) an increasing function, so comparing with say t = 1, we have

V1(t) < v1 + C

for some constant C and for all 0 < t < 1.
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The function s
(
r
c1

)
+ c2 is the conformal factor of a rescaled sphere (in parameter and in

metric). We define

U(r, t) :=

{
S(r, λ(t)) := s

(
r
λ

)
+ v1(λ) + C if 0 < r ≤ λ

v1(r) + C if λ < r < 1

where λ = λ(t) is a function of t to be determined. Geometrically, U is the conformal factor of a
piecewise smooth metric, a hemisphere near the origin and a cone with constant negative curvature
away from it. It is a kind of “blunt cone”, the transition being at coordinate r = λ(t). We still
have to determine λ(t), but we will require it to tend to 0 as t→ 0. In order to prove the lemma

we will see (a) u ≤ U and (b) supU(·, t) ≤ B + β
2(β+1) ln t.

We prove (a). We can assume that u(0) < v1 + C, and we know that at r = 0 the value of u is
finite. Since the capping of S(r, λ) occurs at arbitrarily big values, it is also true that u(0) < U(0).
Indeed, for 0 < r ≤ λ, we have S(r, λ) ≥ v1(λ) + C → +∞ as t → 0 since λ → 0. So u < U for
small positive t.

Suppose that for some t0 there is a 0 < r0 < 1 such that u(r0, t0) = U(r0, t0). We can assume
t < 1. Note that the asymptote of U at r = 1 avoids the case of r0 = 1. If the point occurs at
λ ≤ r0 < 1, then u would be touching the upper barrier of V1(t), which is impossible since by the
maximum principle u cannot pass over V1.

Assume then that 0 < r0 < λ. We have U − u ≥ 0 for 0 ≥ t ≥ t0 and

u(r0, t0) = U(r0, t0),
∂

∂t
(U − u)

∣∣∣∣
r0,t0

≤ 0, ∆(U − u)

∣∣∣∣
r0,t0

≥ 0

so at (r0, t0)

0 ≥ ∂U

∂t
− ∂u

∂t
=
∂U

∂t
− e−2u∆u =

∂U

∂t
+ e−2U (∆(U − u)−∆U) ≥ ∂U

∂t
− e−2U∆U

so
∂U

∂t
≤ e−2U∆U.

We now choose λ(t) properly to contradict this assertion. On the one hand, at (r0, t0)

∂U

∂t
=
∂S

∂t
=

(
−s′

( r
λ

) r

λ2
+
β

λ
+

2(β + 1)λ2(β+1)

(1− λ2(β+1))λ

)
∂λ

∂t
≥ β

λ

∂λ

∂t

since s′(r) < 0. On the other hand, one can compute

e−2U∆U = e−2S∆S = −λ
−2(β+1)

(β + 1)2

e−2C

4
(1− λ2(β+1))2.

Ignoring the negligible term tending to zero (geometrically, assuming a flat cone), one can guess a
critical value of λ by solving

β

λ

∂λ

∂t
= −λ

−2(β+1)

(β + 1)2

e−2C

4

e.g. with the solution

λ(t) =

( −te−2C

2β(β + 1)

) 1
2(β+1)

.

A slight modification, say

λ̄(t) =

( −te−2C

4β(β + 1)

) 1
2(β+1)

,
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gives

∂S

∂t
(r, λ̄) ≥ β

λ̄

∂λ̄

∂t
=

1

2

β

(β + 1)t
>

β

(β + 1)t

(
1 +

te−2C

4β(β + 1)

)
= e−2S(r,λ̄)∆S(r, λ̄),

giving a contradiction as long as C is big enough. Therefore there is no such time t0 and so u ≤ U .
Now we prove (b). We use the λ = λ̄ just found. It is easy to check that S(r, t) is nonincreasing

and has a maximum at r = 0. Its value is

S(0, λ̄(t)) = ln(4(β + 1)) + β ln

(( −t
4(β + 1)β

) 1
2(β+1)

)
− ln

(
1 +

te−2C

4β(β + 1)

)
≤ B +

β

2(β + 1)
ln t.

�

6. Proof of the existence Theorem

We now prove the theorem 3.1

Proof. For simplicity assume there is just one cone point p. We take isothermal coordinates z on a
neighbourhood of p such that p corresponds to z = 0, and z ∈ D the unit disc (rescaling parameter
and metric if necessary), so the metric on this chart has the form

g0 = ea+β ln r|dz|2

with a : D → R a bounded continuous function.
We truncate the metric g0 as in Lemma 1 and we obtain an increasing sequence of smooth

metrics gk on M such that:

(1) gk = g0 on D \D1/k,
(2) gk ≤ g0 on D \ {0},
(3) infD1/k

uk → +∞ as k −→ +∞,

(4) K[gk] ≥ min{e2K[g0], 0} and
(5) gk ≤ gk+1.

We apply Ricci flow to each initial metric gk and obtain a sequence of flows gk(t). There exist a
uniform T > 0 such that all flows gk(t) are defined for t ∈ [0, T ]. Indeed, by [4] in dimension 2, if

χ(M) < 2 the flow is defined for t ∈ [0,∞), and if χ(M) = 2 the flow is defined for t ∈ [0, Area(M)
8π ),

and as gk ≤ gk+1, then Areak ≤ Areak+1. So in any case the area does not tend to zero.
By the maximum principle, the initial gk(0) ≤ gk+1(0) implies gk(t) ≤ gk+1(t) and again by the

maximum principle, K[gk(0)] ≥ −Λ implies K[gk(t)] ≥ −Λ.
There exists also gs(t), the Yin’s Ricci flow on M\ {p}, and since gk(0) ≤ g0 = gs(0), by the

maximum principle we have

gk(t) ≤ gk+1(t) ≤ gs(t),
so we can define the limit flow

G(t) = lim
k→∞

gk(t).

On any chart not containing p, the flow G(t) is smooth by the uniform bounds of gk and the
parabolic regularity theory. We need to ensure that G(t) extends smoothly to p. It is enough to
show that the conformal factor of G(t) in a neighbourhood of p does not tend to ∞ for t > 0. We
use the Lemma 2. Say G(t) = e2v(t)|dz|2, then

v(t) = lim
k→∞

uk(t) ≤ C +
β

2(β + 1)
ln t

so v(t) < +∞ for all t > 0. Furthermore, the uniform lower bound of the curvature on the
approximant terms gk(t) also passes to the limit, so K[G(t)] > −Λ. �



8 DANIEL RAMOS

7. Uniqueness

The uniqueness issue is parallel to Topping’s cusps, so we will sketch the proof and refer to
[9] for a detailed completion. Although there are two Ricci flows with a cone surface as initial
metric, say Yin’s flow and our constructed smoothening flow, Yin’s flow is unique amongst the
bounded curvature, cone-singular flows; and our flow is unique amongst the lower-bounded curva-
ture, instantaneously-smooth flows.

Proof. (Theorem 3.2) Recall that g̃(t) is a Ricci flow defined on M for t ∈ (0, δ], with curvature
uniformly bounded below, and such that g̃(t) → g0 as t → 0. We want to show that it is unique.
The proof consists in 4 steps:

Step 1. There exists a neighbourhood Ω of pi, where the metric is written g̃(t) = e2u|dz|2, and
there exists m ∈ R such that

u ≥ m
in Ω for t ∈ (0, δ2 ].

This step makes use of the lower curvature bound. Since ∂u
∂t = e−2u∆u = −K[g̃] < Λ, we have

u(z, t) ≥ u(z,
δ

2
)− Λ

(
δ

2
− t
)
≥ inf

Ω
u(·, δ

2
)− Λ

δ

2
=: m.

Step 2. Actually, for every M <∞, there is a small enough neighbourhood Ω1 and a small enough
time δ1 such that

u ≥M
in Ω1 for t ∈ (0, δ1).

This bound is obviously true for the conformal factor u0 of the metric g0, since u0 = a+ β ln r
has an asymptote on r = 0. However, it is not clear that the factors u(t) of the metrics g̃(t) remain
bounded by an arbitrary constant on a small neighbourhood for small t. It might happen that the
functions u(t)→ u0 as t→ 0 with u(t) fixed at r = 0 (that is, non-uniform convergence); but this
case would contradict the uniform bounded below curvature. The sketch of the proof is as follows.

Define the family of functions h(t) = max{M − u(t), 0}, and the goal is proving that h(t) ≡ 0
for all t < δ1. We do that by showing that its L1 norm on some small disc, ||h(t)|| =

∫
Dε
|h(t)|dµ,

vanishes. For, on the one hand ||h(t)|| → 0 as t→ 0, since

||h(t)|| = max{M − u(t), 0} → max{M − u(0), 0} = 0

because u0 > M . On the other hand, we claim that d
dt ||h(t)|| ≤ 0, what proves the result. In order

to prove that claim, we change the functions h(t) by a smoothed version of the maximum, in a

similar fashion we did in the proof of Lemma 1, that is ĥρ(t) = Ψρ(M − u)→ h(t) as ρ→ 0. This

allows us to compute d
dt ||ĥρ(t)|| in terms of the derivatives of the controlled function Ψρ, the lower

bound on u(t) given by the previous step, and the lower curvature bound. See [9] for the details.

Step 3. With the lower bound of u, we can compare the flow g̃(t) (which is conical at t → 0)
with any Ricci flow smooth at t = 0. Let σ(t) be a smooth Ricci flow on M and t ∈ [0, δ]. If
σ(0) < g0 on M\ {p1, . . . , pn}, then σ(t) ≤ g̃(t) on M ∀t ∈ (0, δ].

This step is essentially an application of the maximum principle. Let s be the conformal factor
of σ(0). Since it is bounded, there exists an M and (by the previous step) a neighbourhood Ω
of the cone points such that s ≤ M ≤ u for a small time t < t1 on Ω. But since g̃(t) → g0 and
σ(0) < g0, for an even smaller time t < t2 we have σ ≤ g̃ on the whole M. Having stablished the
inequality for a positive time the maximum principle gives it for any time t ∈ (0, δ).
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Step 4. Comparing two smoothening Ricci flows g̃1(t), g̃2(t) on t ∈ (0, δ] with initial metric g0

and curvature uniformly bounded below, a parabolic rescaling of one of them makes it a smooth
Ricci flow even at t = 0, so it is smaller or equal than the other. By symmetry, also the other is
smaller or equal than the one, so they are identical.

The point is picking a small t0 > 0 and the bound K[g̃1(t)] ≥ −Λ. We define a rescaling of g̃1(t)
as

σ(t) := e−2Λt0 g̃1(e2Λt0 t+ t0)

for t ∈ [0, (δ − t0)e−2Λt0). This is a smooth Ricci flow even at t = 0, and by the lower curvature
bound it satisfies σ(0) < g0, so by the previous step σ(t) ≤ g̃2(t). But moving t0 → 0 one gets
g̃1(t) ≤ g̃2(t) and by symmetry, also g̃2(t) ≤ g̃1(t).

�
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