VARIATION FOR THE RIESZ TRANSFORM
AND UNIFORM RECTIFIABILITY
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ABSTRACT. For 1 < n < d integers and p > 2, we prove that an n-dimensional Ahlfors-
David regular measure p in R? is uniformly n-rectifiable if and only if the p-variation for
the Riesz transform with respect to u is a bounded operator in L?(u). This result can
be considered as a partial solution to a well known open problem posed by G. David and
S. Semmes which relates the L?(u) boundedness of the Riesz transform to the uniform
rectifiability of .

1. INTRODUCTION

In this paper we characterize the notion of uniform rectifiability in the sense of David and
Semmes [DS2] in terms of the L? boundedness of the p-variation for the Riesz transform,
with p > 2.

Given 1 < n < d integers and a Radon measure g in R? one defines the n-dimensional
Riesz transform of a function f € L'(u) by RFf(x) = limeo RY f(z) (whenever the limit
exists), where

Rifw) = [l fw)dn), ek
|z—y|>e ‘x - yl
We will use the notation R¥ f(z) := {RE f () }eso. When d = 2 (i.e., p is a Radon measure in
C), one defines the Cauchy transform of f € L'(u) by C*f(x) = limen o CF f(z) (whenever
the limit exists), where

criw= [ Iy, sec
lz—y|>e T =Y

To avoid the problem of existence of the preceding limits, it is useful to consider the maximal
operators RY f(x) = sup.q |RE f(z)| and C¥ f(x) = sup.~ |C¥ f(x)|. Notice that the Cauchy
transform coincides with the 1-dimensional Riesz transform in R? modulo conjugation, since
1/z =7/|x|? for all z € C \ {0}.

The Cauchy and Riesz transforms are two very important examples of singular integral
operators with a Calderén-Zygmund kernel. Given d > 2, the kernels K : R\ {0} — R that
we consider in this paper satisfy

C C C
foralll <i,j <dandz = (2!,...,2%) € R4\ {0}, where 1 < n < d is some integer and C' > 0
is some constant; and moreover K(—xz) = —K(x) for all x # 0 (i.e. K is odd). Notice that
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the n-dimensional Riesz transform corresponds to the vector kernel (2!, ..., 2%)/|z|"*!, and
the Cauchy transform to (z*, —22)/|x|? (so, we may consider K to be any scalar component
of these vector kernels). For f € L'(u1) and = € RY, we set

THf(2) = To(f 1) (x) = / Kz — 9)f(y) du(y).

lz—y|>e
and we denote THf(z) = {T¢ f(x)}eso0-

Definition 1.1 (p-variation and oscillation). Let F := {F¢}es0 be a family of functions
defined on R%. Given p > 0, the p-variation of F at z € R% is defined by

1/p

VP i= 515 (3 s 0) = Fun )
fem} meZ

where the pointwise supremum is taken over all decreasing sequences {€m }mez C (0,00). Fiz

a decreasing sequence {Tm }mez C (0,00). The oscillation of F at x € R? is defined by

1/2

0@ = s (IR - FL@F)
{em}Aom} \, ez

where the pointwise supremum is taken over all sequences {€m}mez and {0m }mez such that

Pl < €m < O < 1 for all m € Z.

The p-variation and oscillation for martingales and some families of operators have been
studied in many recent papers on probability, ergodic theory, and harmonic analysis (see
[Lp], [Bol], [JKRW], [CJRW1], [JSW], [LT], and [OSTTW], for example). In this paper we
are interested in the p-variation and oscillation of the family 7#f. That is, given a Radon
measure p in R? and f € L' () we will deal with

(Voo TH)f(x) :=V,(THf)(x), (O oT")f(z) = O(T"f)(2).

We are specially interested in the case TH = RF . Notice, by the way, that TL f(z) <
(V, o TH) f(x) for any compactly supported function f € L'(x) and all x € R4

When p coincides with the Lebesgue measure in the real line and K(x) = 1/z is the
kernel of the Hilbert transform, Campbell, Jones, Reinhold and Wierdl [CJRW1] showed
that V,o0 7" and O o T# are bounded in L”(u), for 1 < p < oo, and of weak type (1,1). This
result was extended to other singular integral operators in higher dimensions in [CJTRW2].
The case of the Cauchy transform and other odd Calderén-Zygmund operators on Lipschitz
graphs was studied recently in [MT].

Let us turn our attention to uniform rectifiability now. Recall that a Radon measure p in
R? is called n-rectifiable if there exists a countable family of n-dimensional C' submanifolds
{M;}ien in R? such that p(E \ ey Mi) = 0. Moreover, p is said to be n-dimensional
Ahlfors-David regular, or simply AD regular, if there exists some constant C' > 0 such that
C~lrm < p(B(z,7)) < Cr" for all x € suppu and 0 < 7 < diam(suppu). One also says
that p is uniformly n-rectifiable if there exist 6, M > 0 so that, for each z € suppu and
r > 0, there is a Lipschitz mapping g from the n-dimensional ball B"(0,r) C R" into R?
such that Lip(g) < M and p(B(z,r) N g(B"(0,7))) > 6r", where Lip(g) stands for the
Lipschitz constant of g. In particular, uniform rectifiability implies rectifiability. Given a set
E C R4, we denote by ‘H’% the n-dimensional Hausdorff measure restricted to E. Then E is
called, respectively, n-rectifiable, AD regular, or uniformly n-rectifiable if H% is so. By the
Lebesgue differentiation theorem, any n-dimensional AD regular measure y is of the form
t= fHgppy With C~! < f(z) < C for some constant C > 0 and all x € suppu.
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G. David and S. Semmes asked more than twenty years ago the following question, which
is still open (see, for example, [Pa, Chapter 7]):

Question 1.2. Is it true that an n-dimensional AD regular measure p is uniformly n-
rectifiable if and only if RY is bounded in L?(u)?

Some comments are in order. By the results in [DS1], the “only if” implication of the
question above is already known to hold. Also in [DS1], G. David and S. Semmes gave
a positive answer to Question 1.2 if one replaces the L? boundedness of RY by the L?
boundedness of T} for a wide class of odd kernels K. In the case n = 1 (in particular, for
the Cauchy transform), the “if” implication was proved by P. Mattila, M. Melnikov and J.
Verdera in [MMYV] using the notion of curvature of measures. Later on, G. David and J. C.
Léger [Lé] proved that the L? boundedness C% implies that p is rectifiable, even without the
AD regularity assumption (with n = 1).

When p is the n-dimensional Hausdorff measure on a set £ C R? such that u(E) < oo,
the rectifiability of p is also related with the existence p-a.e. of the principal value of the
Riesz transform of p, that is, the existence of RF1(x) = lime\ o RE1(z) for p-ae. z € E. In
[MPr], P. Mattila and D. Preiss proved that, under the additional assumption that

(2) lim inf0 r"u(B(x,r)) >0  for p-a.e. x € E,
r—

the rectifiability of F is equivalent to the existence of R*1(x) p-a.e. = € E. Later on, in
[To3] X. Tolsa removed the assumption (2) and proved the result in full generality. Let us
mention that, for the case n = 1 and d = 2 (that is, for the Cauchy transform), the analogous
results had been obtained previously by [Ma2] under the assumption (2), and in [Tol], in
full generality, by using the notion of curvature of measures.

In this paper we prove the following:

Theorem 1.3. Let 1 <n < d and p > 2. An n-dimensional AD regular Radon measure p in
R? is uniformly n-rectifiable if and only if V,oR¥ is a bounded operator in L?(p). Moreover,
if p is n-uniformly rectifiable, then for any kernel K satisfying (1), the operator V, o TH is
bounded in L?(u).

Let us compare this result with the David-Semmes Question 1.2. Notice that the preceding
theorem asserts that if we replace the L?(x) boundedness of RY by the stronger assumption
that V, o R* is bounded in L?(y), then y must be uniformly rectifiable. On the other hand,
the theorem claims that the variation for odd singular integral operators with any kernel
satisfying (1), in particular for the n-dimensional Riesz transforms, is bounded in L?(p).

A natural question then arises. Given an arbitrary measure px on R?, without atoms
say, does the L?(;1) boundedness of R} implies the L?(u) boundedness of V, o R¥, for p >
2?7 By the results of [MMV] and Theorem 1.3, this is true in the case n = 1 if p is AD
regular 1-dimensional. Clearly, a positive answer in the general case n > 1 would solve the
David-Semmes problem in the affirmative. Nevertheless, such an approach to try to solve
this problem looks quite difficult. In fact, we recall that is not even known if the L?(yu)
boundedness of RL ensures the p-a.e. existence of the principal values of RM1, which is a
necessary condition for the L?(x) boundedness of 1V, o R

Concerning the proof of Theorem 1.3, in our previous paper [MT] we showed that, if p
stands for the n-dimensional Hausdorff-measure on an n-dimensional Lipschitz graph, then
the p-variation for Riesz transforms and odd Calderén-Zygmund operators with smooth
truncations are bounded in L?(x). This is a fundamental step to prove that V, o R* and,
more generally, V, o TH, are bounded in L?(u) if p is uniformly n-rectifiable. Another basic
tool in our arguments is the geometric corona decomposition of uniformly rectifiable measures
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introduced by David and Semmes in [DS1], which, roughly speaking, describes how supp(u)
can be approximated at different scales by n-dimensional Lipschitz graphs.

The proof of the fact that the L?(1) boundedness of V, o R* implies the uniform rectifia-
bility of u is not so laborious as the one of the converse implication. As remarked above, if
V, 0 R is bounded in L?(p), then the principal values of R¥1 exist p-a.e., which implies the
n-rectifiability of p, by the results of [MPr]| or [To3]. However, this is not enough to ensure
the uniform n-rectifiability of p. We will prove the uniform n-rectifiability by arguments
partially inspired by some of the techniques in [To4].

Finally, let us remark that Theorem 1.3 follows from a more general result, namely The-
orem 2.3 below, which also deals with the variation for Riesz transforms and odd Calderén-
Zygmund operators with smooth truncations.

As usual, in the paper the letter ‘C” stands for some constant which may change its value
at different occurrences, and which quite often only depends on n and d. The notation A < B
(A Z B) means that there is some fixed constant C' such that A < CB (A > CB), with C
as above. Also, A ~ B is equivalent to A < B < A.

2. PRELIMINARIES

2.1. The main theorem.

Definition 2.1 (families of truncations). Let xgr = X[1,00) and let g : [0, +00) — [0, +00)
be a non decreasing C? function with Xd,00) < PR < X[1/4,00)- Suppose moreover that loR| is
bounded below away from zero in [1/3,3], i.e., x[1/3,3 < Clyg| for some C > 0.

Given z € RY, and 0 < € < 6, we set

Xe(z) = xr(jal/e) and x2(z) = xe(z) — xo(2),
pe() = pr(l2]*/€?) and () = p(z) — ps(x).

Notice that, for any finite Radon measure p, Tep(x) = (Kxexp)(z). Givenx = (x!,... 2% €
)

RY, we denote T = (z!,...,2™,0,...,0) € RY, and we set 3(x) := ¢ (T) and P (z) := ©2(T).
Finally, for f € LM () we set T#f = T(fu) := {T¥ f} =0,

T} f(x) = T (fu)(x) == (Kpex p)(z) and TEf=To(fr) :={T fleso,
TZ f(a) = Tp (fu) (@) == (K@ex p)(x)  and  TLf =Ta(fu) = {T5 fleso-

Remark 2.2. In the definition, the choice of [4,00), [1/4,00), and [1/3, 3] is not specially
relevant, it is just for definiteness. One can replace the preceding intervals by other suitable
intervals, and all the proofs in the paper remain almost the same.

We will prove the following,.

Theorem 2.3 (Main Theorem). Let 1 < n < d be integers. Let jv be an n-dimensional AD
regqular Radon measure on R, The following are equivalent:
(a) p is uniformly n-rectifiable.
(b) For any K satisfying (1) and any p > 2, the operator V, o TE' is bounded in LP(p)
for all 1 < p < oo, and from L*(p) into L1°(p).
(¢) For any K satisfying (1) and any p > 2, the operator V, o T* is bounded in L*(y).
(d) For some p > 0, the operator V, o R* is bounded in L*(y).
(e) For K(x) =z/|z|"" and some p > 0, the operator V, o TZ' is bounded in L?(p).

Clearly, Theorem 1.3 is a direct consequence of the preceding result.
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Remark 2.4. Let {rp}mez C (0,00) be a fixed decreasing sequence defining O. Then, the
implications (a) = (b),...,(e) in the theorem above still hold if one replaces V, by O. If
there exists C' > 0 such that C~'r,, < r,, —rmae1 < Crpy, for all m € Z, then the implications
(b),...,(e) = (a) also hold (so Theorem 2.3 remains true replacing V, by O), but we do not
know if they are still true without this additional assumption (see Remark 6.9).

Notice that, by Theorem 2.3, besides V, o R* and O o R*, the operators V, o T4 and
Oo Tl for K(x) = x/|z|"*! characterize completely the n-AD regular measures y which are
uniformly n-rectifiable.

One of the main ingredients for the proof of Theorem 2.3 is the following result, which
strengthens one of the endpoint estimates obtained in [MT]. Let M(RY) be the space of
finite real Radon measures on R%, with the norm induced by the variation of measures.

Theorem 2.5. Let p > 2 and let p be the n-dimensional Hausdorff measure restricted to an
n-dimensional Lipschitz graph. Then, V, 0T, is a bounded operator from M(Rd) to LY°(u).
In particular, V, o T} is of weak type (1,1). The bound of the norm of this operator only
depends on n, d, K, p, or, and the mazimal slope of T'.

By an n-dimensional Lipschitz graph I' € R% we mean any translation and rotation of a
set of the type {z € R? : = = (y, A(y)), y € R"}, where A : R® — R%" is some Lipschitz
function with Lipschitz constant Lip(A), which coincides with the maximal slope of T'.

Remark 2.6. The theorem above remains valid if one replaces V, by O. Moreover, the
norm of O o 7}" is bounded independently of the sequence that defines O.

The plan to prove Theorem 2.3 is the following: in Section 3 we deal with Theorem 2.5,
which is used in the subsequent Section 4 to obtain the implication (a) = (b) of Theorem
2.3. In Section 5 we prove (a) == (c) in Theorem 5.1, and in Section 6 we prove Theorem
6.8, which gives (d) = (a) and (¢) = (a), and finishes the proof of Theorem 2.3, taking
into account that the implications (b)) = (e) and (¢) = (d) are trivial.

Theorems 2.3 and 2.5 are stated in terms of V,, but they also hold for O, as remarked
above. However, we will only give the proof of these results for V,, because the case of O
follows by very similar arguments and computations.

2.2. Calderén-Zygmund decomposition for measures. Given a cube Q C R? and
a > 0, we denote by £(Q) the side length of @ and by aQ the cube concentric with @
with side length af(Q). The cubes that we consider in this paper have sides parallel to the
coordinate axes in R%.

A proof of the following result can be found in [To5, Chapter 2] or [M, Lemma 5.1.2].

Lemma 2.7 (Calderén-Zygmund decomposition). Assume that j := Hi~p, where I' is an
n-dimensional Lipschitz graph and B C R% is some fized ball. For any v € M(Rd) with
compact support and any X\ > 29T |v||/||ul|, the following holds:

(a) There exists a finite or countable collection of almost disjoint cubes {Q;}; C R (that
is, - XQ; < C) and a function f € L(11) such that
3) V(@) > 27 Au(2Q)),
(4) V(nQ) < 27 Au(2nQ;)  forn > 2,
(5) v=fuin Rd\Uij with |f| <X p-a.e.
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b) For each j, let R; := 6Q; and denote w; := X0, X - Then, there exists a
J J J Q; k XQk
amily of functions {b;}; with suppb; C R; and with constant sign satisfyin
Yy 3 1J j J g ying

(6) / by dp = / w; dv,

(7) 1051l Loy (Rj) < Clv|(Q5), and
(8) >_ilbjl < CoA  (where Co is some absolute constant).

2.3. Dyadic lattices. For the study of the uniformly rectifiable measures we will use the
“dyadic cubes” built by G. David in [Da, Appendix 1] (see also [DS2, Chapter 3 of Part
I]). These dyadic cubes are not true cubes, but they play this role with respect to a given
n-dimenasional AD regular Radon measure p, in a sense. To distinguish them from the usual
cubes, we will call them p-cubes.

Let us explain which are the precise results and properties about the lattice of dyadic
p-cubes. Given an n-dimensional AD regular Radon measure p in R? (for simplicity, we may
assume diam(suppp) = 00), for each j € 7Z there exists a family D; of Borel subsets of supppu
(the dyadic p-cubes of the j-th generation) such that:

(a) each Dj is a partition of suppp, i.e. suppy = Uerj Q and Q N Q" = ) whenever
Q,Q € Dj and Q # Q'
(b) if @ € D;j and Q' € Dy, with k < j, then either @ C Q" or QN Q" = 0;
(¢) for all j € Z and @ € Dj, we have 277 < diam(Q) < 277 and p(Q) ~ 2797
(d) there exists C' > 0 such that, for all j € Z, Q € D;j,and 0 < 7 < 1,

p({z € Q :dist(z, suppp \ Q) < 7277})
+ u({m € suppp \ Q : dist(z, Q) < T27j}) < Corl/Coin,

This property is usually called the small boundaries condition. From (9), it follows
that there is a point 2 € @ (the center of Q) such that dist(zq, suppu \ Q) = 277
(see [DS2, Lemma 3.5 of Part I}).

We denote D := J;cz Dj. For Q € Dj, we define the side length of Q as £(Q) = 277,
Notice that £(Q) < diam(Q) < ¢(Q). Actually it may happen that a u-cube @ belongs to
D; N Dy, with j # k. In this case, £(Q) is not well defined. However, this problem can be
solved in many ways. For example, the reader may think that a p-cube is not only a subset
of suppy, but a couple (Q, j), where @ is a subset of suppu and j € Z is such that @ € D;.

Given a > 1 and Q € D, we set a() := {1: € suppp : dist(z, Q) < (a — l)K(Q)} Observe
that diam(aQ) < diam(Q) + 2(a — 1)4(Q) < (2a — 1)(Q).

9)

2.4. Corona decomposition. Given an n-dimensional AD regular Radon measure  on RY,
let D:={Q € D; : j € Z} be the dyadic lattice associated to p introduced in Subsection
2.3. Following [DS2, Definitions 3.13 and 3.19 of Part I], one says that u admits a corona
decomposition if, for each 7 > 0 and 6 > 0, one can find a triple (B, G, Trs), where B and
G are two subsets of D (the “bad p-cubes” and the “good p-cubes”) and Trs is a family of
subsets S C G (that we will call trees), which satisfy the following conditions::
() D=BUG and Bng=0.

(b) B satisfies a Carleson packing condition, i.e., > ncp ocr H(Q) S p(R) for all R € D.
) G = Wgems S, ie., any Q € G belongs to only one S € Trs.

) Each S € Trs is coherent. This means that each S € Trs has a unique maximal

element Qg which contains all other elements of S as subsets, that Q' € S as soon
as Q' € D satisfies Q C Q' C Qg for some Q € S, and that if Q € S then either all of

(c
(d
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the children of @ lie in S or none of them do (if @ € Dy, the children of @Q is defined
as the collection of p-cubes Q' € Dj41 such that Q' C Q).

(e) The maximal u-cubes Qg, for S € Trs, satisfy a Carleson packing condition. That
8, D sems: 0scr H(@s) S p(R) for all R € D.

(f) For each S € Trs, there exists an n-dimensional Lipschitz graph I's with constant
smaller than 1 such that dist(z,I's) < 0 diam(Q) whenever z € 2Q) and Q € S (one
can replace “x € 2Q” by “x € Ce,Q” for any constant C.,- > 2 given in advance,
by [DS2, Lemma 3.31 of Part I]).

It is shown in [DS1] (see also [DS2]) that if p is uniformly rectifiable then it admits a
corona decomposition for all parameters k > 2 and 7,6 > 0. Conversely, the existence of
a corona decomposition for a single set of parameters k£ > 2 and 7,6 > 0 implies that u is
uniformly rectifiable.

2.5. The o and f coefficients. Let p be an n-dimensional AD regular Radon measure in
R? and D as in Subsection 2.3. Given 1 < p < oo and a p-cube @ € D, one sets (see [DS2])

Bpu(Q) = iILlf{ E(é)n /2 ) (dis;((g,) L) )pdu(y)}l/p,

where the infimum is taken over all n-planes L in R%. For p = co one replaces the LP norm by
the supremum norm. The B, coefficients were first introduced by P. Jones in his celebrated
work on rectifiability [Jn], while the S, ,’s for 1 < p < oo were introduced by G. David and
S. Semmes in their pioneering work on uniform rectifiability (see [DS1] for example).

Other coefficients that have been proved useful in the study of uniform rectifiability and
boundedness of Calderén-Zygmund operators are the « coefficients introduced in [To4]. Let
F c R% be the closure of an open set. Given two finite Radon measures o, v on R?, one
sets distp(o,v) := sup{’ffda — ffdy‘ : Lip(f) < 1, suppf C F}. Finally, given a p-cube
@ € D, consider the closed ball By := B(zq, 6v/d0(Q)), where 2@ denotes the center of Q.
Then one defines

O‘u(Q) =

iI(l)f:L dist g, (11, cHT),

1
LRt e
where the infimum is taken over all constants ¢ > 0 and all n-planes L in R?.

The following result characterizes the uniform rectifiability of x4 in terms of the a and
coefficients (see [DS1] for (a) <= (b) and [To4] for (a) < (¢)).

Theorem 2.8. Let p € [1,2] and let p be an n-dimensional AD regular Radon measure in
R?. The following are equivalent:

(a) w is uniformly n-rectifiable.
() Y gem: gen o QPUQ)" S (R for all p-cubes R € D.
(¢) Xgep-ocr au(Q)2(Q)™ S U(R)™ for all p-cubes R € D.

For the case i = H} for some Lipschitz graph I' = {z € R? : x = (y,A(y)), y € R"},
one can take D = {Q x R NT : Q € D(R")}, where D(R™) denotes the standard dyadic
lattice of R™. For Q = (Q x R¥")NT € D, we set

,(Q) = —

1Oy iy Ustegumen (b HLE)

where the infimum is taken over all constants ¢ > 0 and all n-planes L in R%. Then, it is
easy to show that a,(Q) ~ o, (Q) for all @ € D.
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One can also define EW(Q) in an analogous manner. By Theorem 2.8,

(10) Y (Brul@P +3,(QNUQ)" < CUR)"

QeD: QCR
for all R € D, with C independent of R. Moreover, one can also show that this last inequality
also holds replacing ) and R by k1Q and kaR for any ki,k2 > 1 given in advance, where
kQ := (kQ x R&™)NT for k > 0.

3. Ir I' IS AN n-DIMENSIONAL LIPSCHITZ GRAPH, THEN
V,0T,: M(RY) — LY°(HR) 1S A BOUNDED OPERATOR

The following result is contained in [MT, Theorem 1.1] (see also [M, Main Theorem 3.0.1]).

Theorem 3.1. Let p > 2 and let p be the n-dimensional Hausdorff measure restricted to an
n-dimensional Lipschitz graph. Then, the operator V, o 7}; is bounded in L*(u1). The bound
of the norm only depends on n, d, K, p, pr, and the slope of the graph.

By very similar techniques to the ones used in the proof of the theorem above, one can
prove the following.

Theorem 3.2. Let p > 2 and let p be the n-dimensional Hausdorff measure restricted to an
n-dimensional Lipschitz graph. Then, the operator V, o T4 is bounded in L?(p). The bound
of the norm only depends on n, d, K, p, pr, and the slope of the graph.

Sketch of the proof. The first step consists in obtaining the following basic estimate: Fix
acube P C R Set T := {z € R : z = (y,A(y)), y € R"}, where A : R" — R ig
a Lipschitz function supported in ]3, and set P := (13 X ]Rdfn) NI. Set p:= fH{, where
f(@)=1forallz € T\ P and Cy' < f(x) < O for all z € P, for some constant Cp > 0.

For each z € ', define
(11) Wp(x)? =Y |(K@g-m % 1) (@) — (K@y-m * ) ().
meZ
and

(12) Sp(x)? := sup Y S (Kl xp) (@),
{em} JEZ MEZL: €m em+1€1;

where I; = [27971277) and the supremum is taken over all decreasing sequences of positive
numbers {€,, }mez. Then, we claim that

(13) Wil + 1SHllL2g) S D (@x(C1Q)* + B2u(@)% ) Q)"

QeD
where C; > 0 only depends on Cy, n, d, K, ¢r, and Lip(A), and where D denotes the dyadic
lattice associated to Hp: defined below Theorem 2.8.

Let us prove the claim. If we define g,u like S but replacing @™ by @ . in the proof

€m+1 €m+1"

of Theorem 3.1 in [MT] it is shown that ||S 12 (i) 18 bounded above by the right hand side
of (13). The proof for HS/LH%Q(H) is almost the same.

Let us deal now with Wy. Fix D := (D x RN T € D with £(D) = 2™ and = € D.
Let Lp be an n-plane that minimizes &H(ClD), where C7 > 0 is some constant big enough

which will be fixed later, and let op := cD’H%D be a minimizing measure for a,,(C1D). Let
L7 be the n-plane parallel to Lp which contains x, and set of) := CD”H”% .
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Since x € D and (D) =27, (pg-m(x —-) — Py-m(z —-)) K (x — ) is a function supported
in C;D x R (for some constant Cy big enough) and with Lipschitz constant smaller than
C2m(+1) | Moreover, by the antisymmetry of the function (gg-m (z—-)—@g-m(z—-)) K (x—-),
and since o7, is a multiple of the n-dimensional Hausdorff measure on an n-plane which
contains z, we have (K@g-m * 0f))(x) — (K@o-m * 0f,)(x) = 0. Therefore,

(Kpg-m x p)(x) = (Kpg-m x p)(x) = (K(pg-m — Pp-m) * p)(x)

= (K(p2-m — @a-m) x (= 0p))(x) + (K(pa-m — Pa-m) * (0p — 0p))().
Using the definition of &, we get
(15) [(K (¢pg-m — Pa-m) x (u—0p)) ()| S 2m(n+1)diStclf)de—n(N7 op) S au(C1D).
Since L7, is a translation of Lp, by standard estimates it is not hard to show that
(16) (K (pg-m — @g-m) * (cp — o)) (x)| < 2™dist(z, Lp) = dist(x, Lp)/4(D).
Let disty(E, F') denote the Hausdorff distance of two given sets E, F C R?, and set ED =
6D x R4 If L} and L?, denote a minimizing n-plane for £y ,(D) and B2, (D), respectively,
one can show that disty(Lp N Bp, LL N Bp) < a,(D)¢(D) and that disty (L} N Bp, L% N

Bp) < Bgyu(D)E(D). This easily implies that dist(x, Lp) < dist(z, L%)) + 527M(D)£(D) +
a,(D){(D) for all x € D. Applying this to (16), and using also (15) and (14), we obtain

Wil = [ 3 10 2an = Fan) # )@ dilz)

mEZL

=Y Y [ g @) P

meZ DeD:¢(D)=2—m

~DUEDY /D (dist(z, L})/U(D) + Bau(D) + Gu(C1 D)) dpu()

meZ DeD: 4(D)=2-"

<) (@u(C1D)? + B2u(D)?) (D)™,
DeD

(14)

which proves (13).

Let now p be as in Theorem 3.2. Using (13) and Theorem 3.1, one can show that there
exists C' > 0 such that, for any cube D C R" and any g € L*>°(u) supported in D (where
D := D x R&™),

/D (V) 0 T2)9)* dis < Clgl2oa(D).

This yields the endpoint estimates V,07%" : H'(u) — L'(n) and V0TS : L*(u) — BMO(p),
where H' (1) denotes the atomic Hardy space related to . Then, by interpolation, one finally
deduces that V, o 7' is bounded in L?(p). Since this part of the proof is analogous to the
one in the proof of Theorem 3.1 (see [MT, Theorem 1.1]), we omit it. O

3.1. Proof of Theorem 2.5. The proof of Theorem 2.5 uses the Calderén-Zygmund de-
composition of Lemma 2.7 and rather standard arguments. Set p := Hp~ 5, where is some
fixed ball B ¢ R?. Let v € M (Rd) be a finite Radon measure with compact support and
A > 28w/l We will show that

(a7 p({ € B (0 Tow(a) > A}) < I,
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where C' > 0 depends on n, d, K, p and I', but not on B. Let us check that this implies
that V, o T, is bounded from M (R?) into L1°°(HE). First, we show that (17) also holds for
v without compact support. Set vy = xp(o,n) ¥ and let Ny be such that suppu C B(0, Ny).
Then it is not hard to show that, for x € suppy,

v|(R\ B(0,N))
N — Ny ’

thus (V, 0 T,)vn(x) = (V, 0 T,)v(z) for all x € suppp, and since the estimate (17) holds by
assumption for vy, letting N — oo, we deduce that it also holds for v. Now, by increasing
the size of the ball B and by monotone convergence, we deduce that H{i({x e R? . (V0
To)v(z) > A}) < CA7Y|v||, as desired.

To prove (17) for v € M(R?) with compact support, let {Q;}; be the almost disjoint
family of cubes of Lemma 2.7, and set  := [J;Q; and R; := 6Q;. Then we can write
v = gu + v, with

gp = XRd\QV—O—Zb],u and v, = Zub '—Z (wjv —bjp) ,
J

(Vp o To)v(z) = (V0 To)un ()| < C©

where the functions b; satisfy (6), (7), (8) and w; = xq, (>_x XQk)fl.
By the subadditivity of V, o 7T, we have

,u({x eR?: (VpoTo)v(x) > /\})
<pu({z e R? : (Voo T)g(x) > A2} +p({xe R (V, 0Ty mp(z) > A/2}).

Since V, o 7:0%? is bounded in L?*(H}) by Theorem 3.2, it is easy to show that V, o T} is
bounded in L?(y), with a bound independent of B. Notice that |g| < CA by (5) and (8).
Then, using (7),

p({z e R : (V,0TH)g(x) > A/2}) NA2/| (Voo T%) Q‘QdMNA2/|9|2dN

9 ST A(|u|<Rd\Q>+;/Rj ldn)
s3(mEo)+ ) vi@)) < L

Let ) := [J;2Q;. By (3), we have u(Q) < ¥, 1(2Q;) S ALY IW(Q)) S Awl|. We
are going to show now that

(18)

(20) p({r € BN\D : (v, 0 Tomla) > M/2}) < S Il

and then (17) is a direct consequence of (18), (19), (20) and the estimate u(Q) < A7y
Since V, o 7, is sublinear,

w({z € RN D (V0 Tom(e) > A/2)) NAZ/R T dy

d\ﬂ

_AZ/RMR (V, 0 To)v d,u—i—)\Z/ (V, 0 To)Vi dp.

Ri\2Q;

(21)

We are going to estimate the two terms on the right of (21) separately. Let us start with
the first one. Given j and x € supppu \ 2R;, let {€, }mez be a decreasing sequence of positive
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numbers (which depends on j and z, i.e. €, = €,(j,z)) such that

, 1/p
(22) (V, 0 o)W () < 2( > IEeE *yg)(x)v’) .

meZ
If we set I := [27%71,27F), we can decompose Z = S U L, where

L:={m€ETZ: e, € Ik, en+1 € I;, for i >k},

S = U Sk, Spi={meZ: en emt1 €I}
keZ

Let z; denote the center of @; (and of R;). Then, since v} (R ) =0 and suppub C Ry,

(Kgem, = v)(@)| = | [ ¢, (z —y)K(z —y) dv](y)

< / oo (5 — ) K (@ —y) — g (0 — 2) K (2 — 2)| ] ()

If m € L, it is easy to see that |V(<p§2+lK)(t)| < IV (@ep K)(t)] + V(g K)t)| <
[t|"L for all t € R?\ {0}. Moreover, since z € R?\ 2R; and suppry C R;, there are

finitely many m € £ (which depends only on n and d) such that (Ko = x Vg)(m) # 0,
and this number only depends on n and d. On the other hand, if m € Sy, it is not hard to
show that [V (pem, K)(t)| < 28|€, — €m1||t|™" L. Actually, this follows from the fact that

(pem [K)(t) # 0 only if |t| ~ 27% and the estimates

o pem ()] = \soR(n'il) (1)

Ll
Em+1

< llerllze

€ € 1
= |l pklloo [t] =—T= < 2"|em — €l
EmEm+1
and
t| |t] 1
Ol (t < | | L
|0 (0, ()] < ¥R (€m> il Sy P
NIEE | o \| 1
SO P Y
( ) 7R €m €m €m+1 7R €m 7R €Em+1 €m+1

[t \ €m — €m+1 _
< (Il + o L ) 25 b = i)l

m+1 EmEm+1

where 1 < i < d and ' denotes the i’th coordinate of ¢ € R? (recall that e, ~ €11 ~ 27"
for m € Sy, and we assumed |t| ~ 27). Similarly to the case m € L, there are finitely many

k € Z such that suppapgzz_l (x—-)NR; # 0, and the number only depends on n and d (notice
that supppt™ (x —-) C suppgz)g:z,l(a: — ) for all m € Sg).

€m+1
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From these estimates and remarks, and (22), (23), we obtain

Voo To(x) S Y D I(Ke, « ) (@) + Y (Ko, # 1)) ()]

keZ meSy, meL

S > Y 2Hlem — emntllz — 2R 1|

kEZ:suppgogizil(x—JﬂRﬁﬁ@ mESk
1 —n—
. 3 o = 2RI S o — 251 R |
meL: suppgp§m+1 (z—)NR;#0

for all j and = € suppp \ 2R;. Therefore, using that p has n-dimensional growth, that
||Vb || < |v|(Q;), and that the Q;’s are semidisjoint,

ooy [ G Tdn S S [ e sl e S S 1) S I
T JRI\2R, 7 RI\2R, ;
Let us now estimate the second term on the right hand side of (21). As above, given j
and = € 2R; \ 2Q);j, let {€m }mez be a decreasing sequence of positive numbers such that

1/p
P © < SOf'mﬁ—l T ?
V)0 T (w; 2<Z|K ) >|P)
meZ

where w; = xq, (X s XQk)fl. Since p > 2, V, o T, is sublinear, and since v} = w;v — bju,
for z € 2R; \ 2Q; we have

(Voo T (@) < (Vy 0 To) (wjo) > (V, 0 T)(bj12)(x)
2 Z ’ K(pém+1 ))(ZE)’ + (Vp o U)bj(:c)

meZ
S IQ))|w — 2|7 + (Vy 0 TE)bj ().

Since V, o 74" is bounded in L?(p), using the estimate above and Cauchy-Schwarz we get

> L ABST [ e+ 3 [ 0o T
RJ\2Q7

2R;\20; |$ - zj |" 2R, \ZQ]

NZ| |Q]
<Z|u| Q) +Z|\b ||Loo<u>u <Z|u| Q) < vl

Together with (26) and (21), this proves (20), and Theorem 2.5 follows.

IN

Z 1V, 0 TE)bjll 2 uym(2R;) V2

4. IF p 1S A UNIFORMLY n-RECTIFIABLE MEASURE, THEN
V,o0 T4 : LP(u) — LP(u) IS A BOUNDED OPERATOR FOR 1 < p < 00

The purpose of this section consists in proving the following theorem and the subsequent
corollary.

Theorem 4.1. Let pu be an n-dimensional AD regular Radon measure in R and let p > 2.
Assume that there exist constants Cy and Cy such that, for each ball B centered on suppu,
there is a set F' = Fpg such that:

(a) n(FNB) = Cou(B),
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(b) V, 0T, is bounded from M(R?) to L1°°(H%) with constant bounded by C1.

Then V, 0T, is bounded from M(R?) to LY (u), and V,o T} is a bounded operator in LP(u)
foralll <p< 0.

Corollary 4.2. If u is an n-dimensional AD regular uniformly n-rectifiable measure, then
Vo o T4 is a bounded operator in LP(p) for all 1 < p < oo and p > 2. Moreover, the operator
V, 0T, is bounded from M(R?) to LY (u), so V, 0 T} is also of weak type (1,1).

Proof. Recall from [DS2, Definition 1.26] that a Radon measure v in R? has BPLG (big
pieces of Lipschitz graphs) if v is n-dimensional AD regular and if there exist constants
Cy > 0 and 6 > 0 such that, for any = € suppr and 0 < r < diam(suppv), there is (a
rotation and translation of) an n-dimensional Lipschitz graph T with constant less than C}
such that v(I' N B(z,r)) > 6r™. Thus, if v has BPLG, the assumption (a) of Theorem 4.1
is satisfied for v by taking F' = T', while Theorem 2.5 implies that the assumption (b) holds
with a uniform constant. Therefore, from Theorem 4.1 we deduce that, if v has BPLG and
p > 2, then V, o T, is bounded from M (R?) to L1*(v).

Similarly, a measure v has (BP)?LG (big pieces of big pieces of Lipschitz graphs) if there
exist constants Cy, 0, and 0 < a < 1 so that, if B is any ball centered on suppv, then
there is an n-dimensional AD regular set F' C R? (with constant bounded by C,) such that
v(F N B) > av(B) and such that H}% has BPLG with uniform constants. So V, o7 is a
bounded operator from M (R?) to L1*°(H’%), by the comments above. Hence, we can apply
once again Theorem 4.1 to v (now (b) is satisfied for the big pieces F' of v), and we deduce
that, for any measure v which has (BP)2LG, V, o T, is bounded from M (R?) to L1*°(v).
Similar arguments yield that V, o 7 is a bounded operator in LP(v) for all 1 < p < oo.

Finally, from [DS2, page 22] and the remark given in [DS2, page 16], we know that if
1 is n-dimensional AD regular, then being uniformly n-rectifiable is equivalent to having
(BP)?LG. Therefore, the corollary is proved by applying the comments above to v = p. [

Since the arguments for proving Theorem 4.1 are more or less standard in Calderén-
Zygmund theory, for the sake of shortness we will only sketch its proof (see [To5, Chapter
2] or [DS2, Proposition 1.28 of Part I] for a similar argument).

Sketch of the proof of Theorem 4.1. The proof follows by the so-called good A\ inequal-
ity method. Fix p > 2 and let M* denote the Hardy-Littlewood maximal operator

B
M"v(x) := sup (B, 7)) (x,r))’
r>0 w(B(z,7))
The good A inequality: one shows that there exists some absolute constant 1 > 0 such that
for all € > 0 there exists § := d(e) > 0 such that

p({z e R . (V, 0 T,)v(x) > (1+e)\, MFy(x) < 6A})
<1 =np({zeR?: (V0 Tv(z) > A})

for all A > 0 and v € M(R?). It is easy to check that this implies that V), o T, is bounded
from M (R?) to L*°(u), and that V,0 7% is bounded in LP(y) for all 1 < p < oo, by standard
arguments (recall that M* is bounded in these spaces).

The proof of (27) is quite standard. The interested reader may look at [M, Theorem 5.2.1]
for the detailed proof, or to [To5, Chapter 2] for similar arguments. The only point that
we should mention is that, in order to pursue the good A inequality method, one needs the
following estimate: let v € M(R?), consider a ball B C R? and take z, z € B. Then,

(28) | (Vo 0 To) (xranapv) (2) = (V, 0 To) (xmarap?) (2)] S MPw(x).

for v € M(R?Y) and = € suppp.

(27)
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We finish the sketch of the proof of Theorem 4.1 by showing (28). Since z,z € B and V,07,
is sublinear and positive, by the mean value theorem,

(Vo 0 To) (xraranv) (%) = (Vp 0 To) (xmayapv) ()]

1/p
” <s3np(z|wemﬂ (xmanas) (@) — (Ko » <de\2Bu>><z>|P)

mEZ
N\ 1/p
< sup ( 3 ( [ IV, B at) - )l - z|du|<y>) ) |
em N\ ez B (z,2)

where B,,(z,z) := (R?\ 2B) N (supppem,  (z — ) Usuppper (2 — ) and uy (y) is some
point lying on the segment joining = and z. For each = and z, let €, = €,,(z, 2) be a sequence
that realizes the supremum in the right hand side of (29). Given €, > 0, let j(¢,,) denote
the integer such that e, € [279(em)=1 2=i(em)) For j € Z set I; := [27971,277). As usual,
we decompose Z = S U L, where
S = U Sj, Sj={m el : en,em1 €1},
JEZ
L:={meZ: el ens €I fori<j}.

Notice that if 277+2 < r(B), where 7(B) denotes the radius of B, then By, (z.z) = ) for
all m € §;. Therefore, we can assume that j < logy(4/r(B)). If m € S;, then B, (z,2) C
B(z,277%%), and for t € supp(pfr, K) we have that [V(gim  K)(t)] < 20042 e, — €]
(see (24) and (25)). If m € L, we easily have |V(gem  K)(t)| < [t 1. Therefore, using

Speerl

(29), that p > 2, that the sets By, (x, z) have bounded overlap for m € £, and that |z — z| <
r(B), we get

|(Vp °© Tw)(XRd\wV)(ﬂ?) (Vo %)(XR"ZWBV)(Z”
S Z Z |$ - Z‘Zj(n+2)|€m - 6m-i-1| d|V|(y)

—j+3
j<log,(4/r(B)) meS; B(x,277%3)

P / & — 47" dv| ()

meL B (2,2)

i d
S Y mpe [ e [
j<logy(4/r(B)) B(w,279+9) ri\2B |7 =yl
r(B)2 /
S T dlv|(y)
j<10g2(z‘1/r 5y MB @ 2774%)) gz 2-54)
d
+r(B Z/ %
k>1 728 r(B)2|z—y|=2F1r(B) |z -yl
2—k
S MM'v(x) + / dlv|(y) < M*v(z).
2 BT B S aeony O S

O

Remark 4.3. Notice that, to prove (28), it is a key fact that we are considering smooth
truncations (given by ¢g) in the definition of 7. These computations are no longer valid if
one replaces T, by T.



VARIATION FOR THE RIESZ TRANSFORM AND UNIFORM RECTIFIABILITY 15

5. IF K1 IS A UNIFORMLY n-RECTIFIABLE MEASURE, THEN
V,0TH: L*(u) — L*(u) 1S A BOUNDED OPERATOR
This section is devoted to the proof of the following result.

Theorem 5.1. Let p > 2 and let p be an n-dimensional AD regular Radon measure on RY.
If b is uniformly n-rectifiable, then V, o TH is a bounded operator in L2 ().

5.1. Short and long variation. Given j € Z, set I; := [27771,277). Then, using the
triangle inequality, we can split the variation operator into the so-called short variation and
long variation operators, i.e., (V, 0 TH)f(z) < (V;? o TH) f(x) + (V/f o TH)f(x), where

1/p
Vo= (X X I, < imor)

{em} jGZ ETIL:£’I7‘L+1€I]'

- 1/p
(VF o T () 1= s ( 3 I(Kxemﬂ*(fu))(w)I),

(30)

MEZL: €m€lj, em+1€lL
for some j<k

and, in both cases, the pointwise supremum is taken over all the sequences of positive numbers
{€m }mez decreasing to zero. To prove Theorem 5.1 we will show that both the short and
long variation operators are bounded in L?(p).

5.2. L?(u) boundedness of V5oT*. The L?(u)-norm of the long variation operator V5 o7
can be handled by comparing it with its smoothed version V, o 7', using Corollary 4.2, and
estimating the error terms by the short variation operator.

Lemma 5.2. We have H(Vf’f oTM)fll2y S ||(V;,g o TH)fll2(uy + 1flp2(p)-

Proof. We decompose

(V5 oTH") f(x))" = sup > (B X, (fu)(z)]?

{em} MEZL: em€lj, emy1€ly
for some j<k

s S (KOG, — e = G @) + (Kt () @)])
(31) {em} meZ:
em€lj, emy1€lL
for some j<k

< sup > ((K(xer,, =i, * (Fm) @) + (V0 T f(2)".

{em} MEZL: em€lj, emi1E€lL
for some j<k

For simplicity, we denote by ((V§ oaﬂ_w)f(x))p the first term on the right hand side of (31).

Notice that, given €,d > 0, we have x? — ©® = (xc — @c) — (xs — ©s5). Recall that, in the
definition of ¢g in Definition 2.1, we have taken X[4,o0) < ¥R < X([1/4,00)- Hence, given ¢ > 0,

4

QOIIR(S)X[S,OO) (t) ds = /
4 1/

4
XR(t) - (,OR(t) = X[1,00) (t) - /1/ . @{R(S) (X[l,oo) (t) — X[s,00) (t)) ds
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(that is, xg — ¢r is a convex combination of x[1,0c) = X[s,00) for 1/4 < s < 4), and thus, by
Fubini’s theorem,

(K (xe — o) * (fu) (z) = / (xr(lz — y[*/€%) — pr(lz — y[* /) K (z — y) f(y) du(y)

4
= /1/4 sDJ’R(S)/ (xu,oo)(lx —yP/€) = Xso0) (J2 — y|2/62)>K(x — ) fy) duly) ds

4 4
= [ ) [ - K@ - )il ds = [ o) s (f) (@) ds
1/4 1/4

Therefore, by the triangle inequality and Minkowski’s integral inequality, we get

1/p
||<v§o7;m>f||m<ms2] sup <ZI(K(Xem—@em)*(fu))(:r)l”)

{em€Im:meZ} \ =7 L2(p)
4 1/p
<2 [ )| sw (Z (XY « >><x>f’) ds
1/4 {emELm: mEL} meZ L2(u)

One can easily verify that supy, cr,..mezy (Y mez (Kx Em\[ (f,u))(x)|p)1/p < (VfoT”)f(x)
for all s € [1/4, 4] with uniform bounds. Hence

4
(32) IV o T ) Fllrzgy S /1/4 Cr(S)(VS o T fllz2guy ds S (VS o TH) fll p2(-

Finally, using (31), (32), and Corollary 4.2,
1V5 o T llz2g S 10 © TR Fllzzgo + 11V © T fllz2
SHOVS o T e + 112
O

Thus, to prove Theorem 5.1, it only remains to show the L?(x) boundedness of Vl‘f o TH.

5.3. L?(u) boundedness of V;? o TH. Given f € L?(u) and = € suppg, let {em fmez be a
decreasing sequence of positive numbers (depending on x) such that

2 em
(VFoThf@) <2 > [(Exa,, * (fu)@)*
JEZL €m,em41€l;
Given D € Dj and z € D, we set Sp(z) :=={m € Z: €, em+1 € I;}. Since p > 2, we have

1V o T) Iy < 10V o TH) 122 < / S KX, < () @) du(x)

JEZ em, em+1€IL;

=S [ F g s ()@ duo)

DeD meSp(x)

Let n and 6 be two positive numbers that will be fixed below (see the proofs of Claims 5.4
and 5.5). Consider a corona decomposition of p with parameters n and 6 as in Subsection
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2.4. Then, we can decompose D = BU ([ Jgerys S), so that

JVS o T oy S S / S KX () @) du()

DeB’ P mesp ()

XN [N g s Gl dute),

SeTws Des VD meSp(x)

(33)

Since the p-cubes in B satisfy a Carleson packing condition, we can use Carleson’s em-
bedding theorem to estimate the sum on the right hand side of (33) over the p-cubes in B.
More precisely, if we set m’, f := u(D)~* [, f du for D € D, we have

S LY I, (@) P duta)

DeB meSp(x)

(31) <S> (f Kie— 0] o)) dute)

DeB meSp(z)

2
Y [ (g [ 110 dum S gl 0i0) 5 171z

DeB DeB

Now we are going to estimate now the second term on the right hand side of (33), that
is the sum over the p-cubes in S, for all S € Trs. To this end, we need to introduce some
notation. Given R € D; for some j € Z, let P(R) denote the p-cube in D;j_; which contains
R (the parent of R), and set
Ch(R) = {Q S Dj+1 tQC R},

V(R) :={Q €D : QN B(y,4(R)) # 0 for some y € R}

(Ch(R) are the children of R, and V(R) stands for the vicinity of R). Notice that P(R) is
a p-cube but Ch(R) and V(R) are collections of p-cubes. It is not hard to show that the
number of p-cubes in Ch(R) and V(R) is bounded by some constant depending only on n
and the AD regularity constant of u. If R € S for some S € Trs, we denote by Tr(R) the
set of p-cubes @ € S such that @ C R (the tree of R). Otherwise, i.e., if R € B, we set
Tr(R) := (. Finally, if Tr(R) # 0, let Stp(R) denote the set of p-cubes Q € BU (G \ Tr(R))
such that @ C R and P(Q) € Tr(R) (the stopping p-cubes relative to R), so actually @ C R.
On the other hand, if R € B, we set Stp(R) := {R}.

Fix S € Trs, D € S, and «x € D. To deal with the second term on the right hand side
of (33), we have to estimate the sum 3, s () [(Kxen,, * % (fp))(x)|2. By the definition of
Sp(x), we have

(35)

(36) S OIEXT . ()@= Y EXT, () (@),
meSp (x) mESp(x)
where D := URE‘/(D) R. Since this union of p-cubes is disjoint, we can decompose the
function x5 f using a Haar basis adapted to D in the following manner:
(37) wi= Y (it ¥ aer+ ¥ Bar),
ReV(D) QETY(R) QeStp(R)

where we have set

Aof =Y xulmif—mf), and Agf:= > xu(f—mbf) =xo(f —mhf).

UeCh(Q) UeCh(Q)
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Using (37), we split the left hand side of (36) as follows:

Yoo lExg, () @P s Y

2

> (Kxen,, o+ (mhf)xrm)(x)

meSp(z) meSp(z) ' REV (D)
2
(38) + Y Y D (B, + (Agfm)(x)
meSp(z) ' REV (D) QeTr(R)
2
> SN (Bxan, + (Agfw)(@)| -
meSp(z) ' ReV (D) QeStp(R)

In the following subsections, we will estimate each part separately.

. . 2
5.3.1. Estimate of }_ s (. ‘ 2 Rev(D) 2-0eTe(r) (KX, * (Aqu))(m)‘ from (38).

Lemma 5.3. Under the notation above, we have

>y

SeTrs DeS meSp(x)

2

> (g, < Bofu)@)| du@) S 11

ReV (D) QeTr(R)

Proof. Let Cy > 0 be a small constant to be fixed below. Given m € Sp(z) set A, (z) =
A(x, €m+1, €m), and given R € V(D) let
JER = {Q e Tr(R) : QN An(z)

7£ (Q) > CO(Gm - 6m+1)}7
J2R = {Q e Tr(R): QN An(z) #
<

) (Q) < Colem — 6m+1)}-

For Q € Jy, we write [(Kxem | (Agfu))(z)]

€m4-1
claim will be proved in Subsection 5.3.2 below.

Claim 5.4. The following estimate holds: ZQEJLR Q)2 < o(Dyn1/2,

Using that V(D) has finitely many elements (depending only on n and the AD regularity
constant of u), Cauchy-Schwarz inequality, Claim 5.4, and the previous estimate, we obtain

2. \ DD (K, x (Befm)@)

meSp(z)  ReV(D) Qesl®

2
DS < > E(D)_HHXAm(x)AQﬂLl(H))

ReV(D) meSp(z) ~Qesyt
- XA () AQ 1|71
(39) S22 < 2, Q) 1/2>< 2 e(D)?ne(Q)”—Ll/(g)>

Rev D) meSp(x) ~Qeh? QeJn”

m

”XAm(m)AQfH 1(
Z Z Z n+1/2g Q)i 1/2

REV (D) meSp(xz) QeTr(R

2

12|18 21,

S22 ( > (D)@

ReV (D) QeTr(R)
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We deal now with the p-cubes Q € Ju™. Let zg denote the center of Q. Since [Ag fdu =
0, we can decompose

(Kxer, *(Agfu)(x) =/(><Am(gc>(y)K(rqu —Y) = Xan(2)(2Q) K (x — 2Q)) Aq f (y) du(y)
~ (Xt (K~ )~ K@ - 20)) Ao fw) du(w)
+ [ (o ®) = X200 K 2 = 20) B0 0) du(v)

=: T, (Aqf)(x) + T3 (Aqf) ().

For the first term on the right hand side of the last equality, we have the standard estimate
(by assuming Cp small enough, so any @ € JAT is far from x)

(40)

- ¢
TH (Ao f) ()| < /A ()mm@f( )| duly >Na(§?ﬂ||xAm<m>AQf||Ll<m.

From this estimate and Cauchy-Schwarz inequality, we obtain

2
2 \ > X Ti'Aef)@)

meSp(z) ' REV(D) Qegitt

€ 2
DS ( 3 @ﬁ)ﬂnmm(m)AQﬂLl(m)

ReV (D) meSp(x) QGJ?,;R

< 2 (3 o

RGV(D) QEeTr(R

s > (5 ) S i)

ReV(D) S QeTr(R)

2
Z ||XAm(x)AQf||L1(p)>

meSp(x)

. n+1 n+1
Since £(R) = 4(D) for all R € V(D), we have ZQEﬂ(R) ((—g)) <> 0ep.Ocr (%) <
1. Thus, using that ¢ < v/t for all ¢t < 1, we conclude

@)y > | > > Tif(dehH

meSp(z) ' REV(D) Qegitt

)\ 2 AQfI

s 2 ¥ (o) wrior

ReV(D QETH(R)

We deal now with the second term on the right hand side of (40). Given Q € J&,
since supp(Aqf) C @, if Q@ C Ap(z) or Q C (Ap(z))° then we obviously have x4, (2)(y) —
XAm(2)(2q) = 0 for all y € supp(Aqf). Therefore, to estimate the sum of T%“(AQf)(x) over

2,R 2,R
all @ € Jp;™", we can replace J;; by

Il =1{Q € Te(R) : Q N An(2) # 0, QN (An(2))® # 0, 4Q) < Colem — ém+1)}-
For m € Sp(z) and Q € J5, we will use the estimate |T3{“(AQf)(x)| SUD)AQS Lt (-

Claim 5.5. The following holds: 3 ;s.r 0Q)12 < U(DY* Hem — €mir) /2.
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Hence, using that V(D) has finitely many terms, Cauchy-Schwarz inequality, assuming
Claim 5.5 (see Subsection 5.3.2), and by the previous estimate, we deduce

Z Z Z TEM(Agf)(z Z Z ( Z W)Q

meSp(z) ReV(D) Qe REV(D) meSp(z) ~ Qe

yr=1/2 0(Q)Y/*n 9
< ( = 1/2> ( Z WD) |AQf||L1(u)>
ReV ) mESp(x) ~ QesiR Qen™
1/2 1/2—n
em+1 Q)
< Z J(D\ntl2 ||AQinl(u)
(D)
ReV mES (z) QeI

1 2-n ) »
<> > Q,ﬁw 18 131 3 (mml> |

(D)
ReV (D QETr(R) meSp (x): Am (z)NQ#D,
K(Q) SCO (5m75m+1)

The sum over m on the right hand side of the last inequality can be easily bounded by some
constant depending on Cj, thus we finally obtain

@2 D, | > Y Tileh

meSp(z)  ReV(D) Qegit

N2 18013,
Re;(D Qe%(R) ( ) K(Q)ng( )

Finally, combining (39), (40), (41), and (42), we conclude

12(| A0 113,
w T |3 3 wacemio| s T T (35) e

meSp(x) ReV(D) QeTr(R ReV(D) QeTr(R) E(Q)”ﬁ( )

Since [[Aq fll1(w S ||AQf||L2(M)£(Q)”/2 by Hélder’s inequality, since V(D) has finitely many
terms, and since ¢(R) = {(D) for all R € V(D), we get

zz/z

SeTrs DeS meSp (z

2

S Y (X, x (Agfm) ()| dpulz)

ReV (D) QeTr(R)

Y Y T (1) e,

SeTrs DS ReV (D) QeTr(R)

XY > % (i) et

SeTrs QeS ReD: ROQ DeV(R)

S D A3 < D 180720 < IFI12-

SeTrs QeS QeD

To complete the proof of Lemma 5.3, it only remains to show Claims 5.4 and 5.5. O

5.3.2. Proof of Claims 5.4 and 5.5. First of all, we need an auxiliary result whose easy
proof is left for the reader.

Lemma 5.6. Let ' := {x ¢ R? : z = (y, A(y)), y € R"} be the graph of a Lipschitz function
A R" — R4 such that Lip(A) is small enough. Then, HE(A%(z,a,b)) < (b— a)b™ ! for
all0<a<bandzecT.
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Remark 5.7. Actually, to obtain the conclusion of the lemma, one only needs Lip(A) < 1
(see [M, Lemma 4.1.9]). Let us mention that this assumption is sharp in the sense that if
Lip(A) > 1 then the lemma fails. However, we do not need this stronger version for our
purposes.

Claims 5.4 and 5.5 follow from the next lemma, which will be proved using Lemma 5.6.

Lemma 5.8. Let Cy > 0 be some constant depending only on n, d, and the AD regqularity
constant of p, and consider x € D € D; for some j € Z. Let € € [27771 279). Given k > j
and R € V(D), set

A ={QeTr(R)NDy: Q C Az, e — Co27% e + Cr278)}.

Then, u( Ugea, Q) < 2-ke(D) 1 & 27 k—i(nm1),
Proof. First of all, we can assume k > j (otherwise, the claim follows easily using the AD
regularity of i), thus we may assume that dist(z, Q) > % e. For simplicity, set S = Tr(R). By
the property (f) of the corona decomposition of p, there exists a (rotation and translation of
an) n-dimensional Lipschitz graph I'g with Lip(T's) < 5 such that dist(y,T's) < 6 diam(Q)
whenever y € CgQ and Q € S, for some given constant C., > 2. Since x € D and
R € V(D), we have x € Cg,Q assuming C,,, big enough, and so dist(z,I's) < 6§ diam(Q).
Hence, if n and 6 are small enough, one can easily modify I's inside B(z, % €) to obtain a

Lipschitz graph I'g such that z € I'§, and moreover
(44)  Lip(T'g) < 7' for some 1’ small enough, and T'%\ B(z,e/4) =g\ B(z,€/4).

Using that dist(z, Q) > %e for all @ € Ay, that dist(zg,I's) < #diam(Q) for the centre zg
of @, and the last part of (44), we deduce that dist(zg,I'¢) < §diam(Q) for all @ € Ay. So
B(zq, 0 diam(Q))NI'g # 0, which in turn yields H" (TN B(zq, 20 diam(Q))) 2 (6 diam(Q))".
Therefore, since {B(zg, 20 diam(Q))}oea, is a family with finite overlap bounded by some
constant depending only on n, 6, and the AD regularity constant of u, we have

M( U Q> ~ Y UM<0 Y HY(I% N B(g, 20 diam(Q)))

Qe Qe Qe

S0 HE < U B(zq.20 diam(Q))>
QEA
SO HE (A, e — Co2 7%, e+ Co27F)) < gmah-itn=1),

where we used Lemma 5.6 and that e ~ 277 in the last inequality. The lemma is proved. [

Proof of Claim 5.4. Recall that J5% := {Q € Tr(R) : QN Ap(z) # 0, Q) > Colem —
€m+1)}, where R € V(D) and D € D;. We have to check that ZQEJLR Q12 <

K(D)”_l/ 2. We will split the sum into different scales and we will apply Lemma 5.8 at
each scale.

Given i € Z such that 27% > Cy(€y — €my1), the number of p-cubes @ € D; such that
Q C R and QN Ap(z) # 0 is bounded by Ce(R)"12i(n—1)  2-i(n=1)+i(n=1) "gince for all
these p-cubes, Q C A, emy1 — C27% €y + C278) C A(x, €60y — C271 L €y + C271FY) for
some constant C' > 0 big enough, and then by Lemma 5.8, u( UQeJﬂn’RﬁDi Q) S27(D)m L
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Therefore,

Z Z(Q)nfl/2: Z 21’/2 Z K(Q)ng Z 2i/227i€(D> -

QGJ’}V{R 1€L:1>] QEJ},{RmDi 1€L:1>]
~ 272Dyt = (D)2,

Proof of Claim 5.5. Recall that J5% := {Q € Tr(R) : QN Am(z) # 0, QN (A (x))° #
0, Q) < Co(eém — €m+1)}, where R € V(D) and D € D;j. We have to check that

Z K(Q)n_l/2 < E(D)n_l(ﬁm - 6m-i—l)l/z'
Qe

As before, we will split the sum into the different scales and we will apply Lemma 5.8 at
each scale. Given i € Z such that 27% < Co(em — 6m+1) since for any Q € JS{R ND; we have
Q C Az, eme1 — O27 ema1 + C27) U Az, €y — C27%, €y + C27%) for some constant C' > 0
big enough, by Lemma 5.8 applied to both annuli we have ( UQEJS,”,RQDi Q) S27(D)~ !
Therefore,

DRUS LT SRR D DI ()%

QeJH" i€Z:i>—logy(Co(em—€m+1)) QeJfrD;

< > 27 20(DY ! & (e — €mat)20(D) L

1€Z:1>—logy (Co(em—€m+1))

O

. . X 2
5.3.3. Estimate of ) s (. ‘ 2 Rev(D) 2-0estp(r) K Xam | * (Aqfu))(z)|” from (38).

Lemma 5.9. Under the notation above, we have

DDINEDS

SeTrs DeS meSp(x)

Proof. Given R € V(D), consider a p-cube @ € Stp(R). If Tr(R) # 0, then Q € BU
(G\ Tr(R)), @ C R and P(Q) € Tr(R) (in particular, @ C R). Take S € Trs such
that R € S. By property (f) of the corona decomposition (see Subsection 2.4), we have
dist(y,I's) < Odiam(P(Q)) for all y € Ceor P(Q). Hence, dist(y,I's) < COdiam(Q) for all
y € Ceor@. On the other hand, if Tr(R) = () we have set Stp(R) = {R}. In this case, we
have R € B. Take S such that D € S. Since R € V(D), we have R C C¢o D if C¢p, is chosen
big enough, and thus dist(y,I's) < Cfdiam(R) for all y € C'R, where C' is as above and C’
depends on C,,;.

Taking into account the comments above, one can prove the following claims using similar
arguments to the ones in the proof of Claims 5.4 and 5.5.

2

> Z X+ (A fm) (@) du(x) S 1IF1I72-

ReV (D) QeStp(R

Claim 5.10. Let x € D € D, R € V(D), and m € Sp(x). If we set LR = {Q € Stp(R) :
QNAn(x)£0,0Q) > Colém — €m+1)}, then ZQEJEI{R (Q)12 < o(Dyr1/2,

Claim 5.11. Let z € D € D, R € V(D), and m € Sp(z). If we set Jo& := {Q € Stp(R) :
QNAn(x) #0,QN (An(2) # 0, 4Q) < Colém — €ms1)}, then ZQGJ,?;{R g(Q)n—l/Q <
LD em — 6m+1)1/2-
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The only properties of Agf that we used to obtain (43) were that Agf is supported in
Q and that [Agfdu = 0. The function EQ f is also supported in @) and has vanishing
integral. Thus, if we replace Tr(R) by Stp(R), Claims 5.4 and 5.5 by Claims 5.10 and 5.11,
and Ag f by KQ f, the same arguments that gave us (43) yield the following estimate:

@) > | > D Ex, x(Bafu)

meSp(z)' ReV (D) QeStp(R)

Below we will use that [AqfI2,,0@Q) " = (fy|f — mlyf|du)*6Q)™ < (mbslf1)*n(Q).
Notice that, by the definition of Stp(R) and since the corona decomposition is coherent
(property (d)), any @ € Stp(R) is actually a maximal p-cube Qg of some S € Trs or
Q € B (and in this case Tr(R) is empty). Hence, if we integrate (45) in D, we sum over all
D € S € Trs, and we change the order of summation, we get

DD S D SR ID SRS DI REN e IE

SeTrs DeS meSp(z)' REV (D) QeStp(R)

—n

Z Z 1/2+n Qf||2L1(u)

REV(D QEStp(R)

2
du()

0Q)\ 21801131
PIPNPINDD <€(D)> (@)

SeTrs DES ReV (D) QeStp(R)

/ 1/2
Y Y Y (33 ehanues)

DeD ReV (D) SeTrs: QsCR

15 SUD SR DI O3 R e

DeD ReV (D) QeEB:QCR

-> > > (%

SeTrs ReD: ROQs DEV(R)

> % (i) e

QeB ReD: ROQ DeV (R

D
Qs

1/2 ,
) (s £1)°1(Qs)

Finally, using that V' (R) has finitely many elements, and that the y-cubes Qg with S € Trs
and the p-cubes Q € B satisfy a Carleson packing condition (so we can apply Carleson’s
embedding theorem), we deduce

DD SN D SIN D SIED DI SC T IC

SeTrs DeS meSp(z) ' ReV( )QeStp(R)

2(0)1/2
<y (mgS|f|)2u(Qs) > 5(851/2 +Z mQ|f| ZCINDY gi%l/?

2
dp(z)

SeTrs ReD: RDOQs ReD: RDQ
2
<30 (b u@s) + D (mbl )@ )S 1£1172(,0)-
S€eTrs QEeB

O

. 2 .
5.3.4. Estimate of >_, ¢ (, lZReV(D)(KXem+1 ((m’;%f)xRu))(x)’ from (38). We will
need the following auxiliary lemma which we prove for completeness, despite we think it is
already known.
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Lemma 5.12. Given D € D and f € L*(pn), set ap(f) := > Rev(D) imly f —m/y f|. Then,
there exists C > 0 depending only n and the AD regularity constant of p such that

DZ;)(ap(f))Qu(D) < ClIf 122

Proof. By subtracting a constant if necessary, we can assume that f has mean zero. Con-
sider the representation of f with respect to the Haar basis associated to D, that is f =
>-0ep Aqf. For m € Z, we define the function u,, = > gep, Aqf, so f =3, c7um and
the equality holds in L?(y). Given j € Z, define the operator

s0=(3 <aD<f>>2xD)1/2.

DeD;
We will prove that there exists a sequence {o(k)}rez such that
(46) > o(k)<C<oo and |[S;(um)lrzy S o(m = 5wl r2g)-
keZ

Assume for the moment that (46) holds. Then, since each S; is sublinear, by Cauchy-
Schwarz inequality and the orthogonality of the u,,’s,

S @) = Y [ 3 o) xodi =318,

DeD JEL DeD; JEZ
2

Yo (S )| =S (S 1semew)
JEZ meZ L2(p) JEZ “mEZ

<3 (S ot (X om0 )
JEZ “mEZL meZ

<3S o= D2 = 3 gy S ol — )
JEZ meZ meZ JEL

< S oy = 11
MmEZ

and the lemma follows. Let us verify (46) now. By definition,

@) ISl = 3 >/ Qf(“—())du\)Qu(D»

DeD; ( ReV (D) ' QeDm

Assume first that m > j. If D € D;, R € V(D), and Q € D,;, then either QNR =0 or Q C R.
In both cases, since Ag f has mean zero and is supported in @, we have [ Agfxrdp = 0.
Thus, the right hand side of (47) vanishes (obviously D € V(D)), and (46) follows.

Assume now that m < j. Set D := UReV(D) R. Recall that Agf := ZUGCh(Q) xu(mly f—
mgf), so Ag [ is constant in each U € Ch(Q). Hence, if for some U € Ch(Q) we have DcU
or D C suppp \ U, then (RUD) C U or (RUD)NU =0 for all R € V(D), and so

[ xwtonts s =i (,jgg) - ﬁ)) d = (s~ mlyf) | (ﬁ% - /j{;) du =0

for all R € V(D). Therefore, if we set mng = (mp; f— m‘éf), using that V(D) has finitely
many elements and that [ [u(R) ™ xr—u(D) 'xp|du < 2 for all R € V(D), we deduce from
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(47) that
2
i(Um 22 = m
185 )220 DZD( |z /UECZMQ)XU tof (2 XY ) i)
QﬂU;ﬁ@
DNU#D
(48) S ( > > Im‘é,Qf> (D)

DeD; *QeDm yeCh(Q): DNUD,
DNU#£0)

2
- (% ) o)
DeD; *UeD,y1: DNUAD,
DNU#£0)
It is not hard to show that, since m < j and D € D;, the number of py-cubes U € Dy,41 such

that DN U # () and DNU® # ) is bounded by some constant depending only on n and the
AD regularity constant of p (but not on the precise value of m). Hence,

Z < Z |'mUP(U f|> Z Z |ml[j7p(U)f|2,u(D)

DED;j “U€Dpy11: DU, DED; UeDy11: DAUAD,
DnuUe Dnue
(49) NUC#) NUC#D
_ u 2
= 5 Wheofu( U D)
UE€Dp+1 DeDjzﬁﬂU;é(B,

DU
Fix U € Dp41. Recall that D : = Ugevp) It, s0 diam(D) ~ diam(D). Thus, there exists a
constant 79 > 0 such that
U D c{z e U : dist(z,suppu \ U) < 70¢(D)}
DeD;: DNU#0, DNUC#D
U{z € suppp \ U : dist(z,U) < 1¢(D)}
= {z € U : dist(z,suppp \ U) < 102" 7 1(U)}

U {z € suppp \ U : dist(z,U) < 702™ 7 T(U)}.
If m < j, then 7 := 1792™ 7! < 1, so we can apply the small boundaries condition (9) of
Subsection 2.3 to obtain UDeD]-:f?mUﬂ), Brvess D) < C7Y/C2=mn_On the contrary, if |m—
4l <1, then 71/€ ~ 1, so “(UDeDjzﬁnU;éw,ﬁmUﬁ;é@ D) < p(CiU) S27m = rl/Co=mn  for
some big constant Cy > 0. Thus, in any case, M(UDGD]-:EHU;&@,BQUC;&@ D) < 2(m=3)/C (U,
and combining this with (49) and (48) we conclude that, for m < j,

19 (um) 12y S 207737 |mif — mby ) FIPUU)"

UEDm+1

~ om— J)/C/ S xulmp = mb g f12dp =27 a3
U€Dm+1

which gives (46) with o(k) = 9-3¢ and finishes the proof of the lemma. O
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Lemma 5.13. Under the notation above, we have

>y [

SeTrs DeS meSp(x)

2

X (X)) @) () < 117122,

ReV(D)

Proof. Recall that, given D € D, we have set D := Urev(p) R- For @ € D, we have

>

meSp(x)

2

< ST BN, = (s Pxpe) (@)

meSp(z)

Y X, (i f)xru)) (@)

ReV (D)
p>

meSp(x)

(50) 2

> (B« (mlbf —mih f)xam)(z)

ReV (D)

We are going to estimate the two terms on the right hand side of (50) separately. For the
second omne, recall also that, given m € Sp(z), we have set A, (x) := A(z, €mt1,6m). We
write

(Rxem, o+ ((mis = mi P)xrm)(@)] < [misf — mis ] /A K= 9)xa() duy)
< mlf — s £ (A () N RYE(D) ™

Therefore, interchanging the order of summation,

>

meSp(z)

2

> (X, x (i f —mil f)xrm)(z)

ReV(D)

2
( S Y s — s fl a(An(2) 0 )/«D)—")

meSp(z) REV (D)
2 2
(X s ) < (X s 1) = Gan(r)®
ReV (D)

ReV(D)

where ap(f) are the coefficients introduced in Lemma 5.12. If we integrate on D and sum
over all D € S and S € Trs, we can apply Lemma 5.12, and we finally obtain

PIDIADS

(51) SeTrs DeS meSp (z)

2
du(z)

Xem oy * (Mg f —mlp f)xru))(z)
ReV(D)

S D (@n(H)Pu(D) S 11172

DeD

Let us estimate now the first term on the right hand side of (50). Let Lp be a minimizing
n-plane for a,,(D) and let L}, be the n-plane parallel to Lp which contains x. Given z € R,
let p§ denote the orthogonal projection onto Lf,. Let gi,¢92 : R — [0,1] be such that
suppgi C (—2el(D),2el(D)), suppga C (—4(D)e,£(D)e)¢, and g1 + g2 = 1, where € > 0 is

some fixed constant small enough. For z € R?, consider the projection onto L) given by
B
B2 = (o 8 -0
’ PG (2) — x|
Since suppgs does not contain the origin, p is well defined. Moreover, if z € R? is such that

92(Ip5 (2) — #[) = 1, then |z — z[ = [p”(2) — x|,

)gzupg(z) o) + () (155 (2) — 2.
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Let C, > 0 be a small constant which will be fixed below. Assume that au(loD) > (.
Then, we can easily estimate

2

ST, (s Pxpe) @) = lmbh 2> / _K(z—y)du(y)
meSp(x) meSp(z) Am(z)ND

(53) < |me|2< >/ ) du(y)>2

meSp(x)

m(:r)ﬂD
2
< |m§sf|2( /f/(D)” dﬂ(y)> < m £ < s f e (10D)2.

From now on, we assume that a,(10D) < C,. By assuming C, small enough, it is not

difficult to show that then the distance between D and L7, is smaller than ¢(D)/1000. More-
over, p® restricted to {y € Ap(x) : dist(y, L}) < €(D)/1000} is a Lipschitz function with
Lipschitz constant depending only n, d, and the AD regularity constant of . Furthermore,
by taking € small enough, we have

|2 — =]

(54) p(z) =2+ (p5(2) — )m

for all z € {y € DN A (z) : dist(y, L%) < £(D)/1000} C suppp.
Recall that D € S for some S € Trs. Let () be the maximal u-cube of S, and set
Vg 1= Py (X40Qg ). Then, since suppu N Ay, (x) C D by the construction of D

(FXEm ()X 5i0)(@) = (mls ) / K=

— (s f) /A K de ) (0) + () /A PRCETA0

=:Ulp(z) + U2, ().
Claim 5.14. Under the notation above, we have
dist(z, Lp)\ >
S 01 £ Iy (51D + a0+ () ),
meSp (x)

Proof of Claim 5.14. By (54), y € A, (x) if and only if p*(y) € A, (z) in the integral
defining Ul,,(z). Since |y — p*(y)| < dist(y, L})) < dist(y, Lp) + dist(z, Lp) for all y €
sup pu N A (),

ULn()] < [ /A K =)~ Kz =" ()] duty)

|me| o
< - d
< M (dist(y, Lp) + dist(z, Lp)) du(y).

D)™ 4 @)
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If L}, denotes a minimizing n-plane for 31(D), then disty(LpNBp, LHNBp) < a,(D)U(D),
so dist(y, Lp) < dist(y, LY) + a,(D)4(D) for y € CD (see [Tod)). Therefore

2
> |U1m<x>|25('mDnﬂl z / (ist(y, L) + dist(z, L) du) )

meSp(x)

2
< |m*,3f|2(e<D>—”—1 [ st L) +dist<x,LD>>du<y>)

< Im’éfIQ(ﬁl,u(D)z (D) + (W>>
O

Let us consider U2,,(z) now. We can assume that v, is absolutely continuous with respect
to "H%% (for example, by convolving it with an approximation of the identity and making

a limiting argument). Let h, be the corresponding density, so v, = hyH} Lz We may also
assume that h, € L*(H? ) So,

U2 () = me/()

At this point, we need to introduce a wavelet basis.

(@ =) dviy) = iy ) | =) 0) ),

Definition 5.15. Let D™ denote the standard dyadic lattice of R™. Let {/ng}QeDn’k:l’“.’2n_1
be an orthonormal basis of C' wavelets on R™ in the following manner (see [Da, Part 1] ):

(a) wg :R® = R is a C' function for all Q € D" and k=1,...,2" — 1.

(b) There exists C > 1 and 1o : [0,C]" — R with |[voll2 = 1, ||¢ollee S 1, and such
that, for any Q € D™ and k = 1,...,2" — 1, there exists | € Z"™ such that 1/15(1;) =
Yo(y/UQ) = DUQ) ™2 for ally € R".

(©) lvgllz = 1, [¢§dL™ = 0 and [¢@yhdL™ = 0, for all Q,R € D" and k,l =
1,...,2" =1 such that (Q, k) # (R,1), where L™ denotes the Lebesgue measure in R™.

(d) suppz/fg C CuQ for allQ € D" and k = 1,...,2" — 1, where Cy, > 1 is some fized
constant (which depends on m). In particular, for any j € Z the supports of the
functions in \Jgepn. °(Q)=2- ]{wg}k 1,....on—1 have finite overlap.

(€) ¥glloo S Q)™ and |[Vihhloe S (Q)*”/2*1 forallQeD", k=1,...,2" — 1.

(f) If h € L*(L™), then h =Y gepn gei,.. g1 Abh, where Ajh = ([ hapgy dL™) g

In order to reduce the notation, we may think that a cube of D™ is not only a subset of
R™, but a couple (Q, k), where @ is a subset of R” and k = 1,...,2" — 1. In particular, there
exist 2" — 1 cubes in D™ such that the subsets that they represent in R™ coincide. We make
this abuse of notation to avoid using the superscript k in the previous definition. Then, we
can rewrite the wavelet basis as {1)g}gepn, with the evident adjustments of the properties
(a),..., (f) in Definition 5.15.

Let Di° be a fixed dyadic lattice of the n-plane L%, and let {z/JQ}QeD:,o be a wavelet
basis as the one introduced in Definition 5.15 but defined on L%. Denote by E% the n-
dimensional vector space which defines L,, and let {Qg}kez be a fixed sequence of nested
dyadic cubes in E% having the origin as a common vertex and such that £(QY) = 2k for all
k € Z. Given s € Ef,, set Dy :={s+Q: Q € D2} (notice that, for any k € Z, the family
{Q € DI* : ¢(Q) = 27*} is periodic in the parameter s), For any Q € Dp° and y € L%, if
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Q' =5+ Q € Dy, we define ¥ (y) = ¥s4Q(y) := ¥y — 5). Then {Yq }geprs is also a
wavelet basis defined on L% . Consider the decomposition of h, with respect to this basis,

_ Yy P
(56) he= Y Abhe= Y A} ha,
QeDy” Qepy°
where A Ja(2) = ([ ha()vqy — s)du(y)) vg(z — s) (recall that, for any Q € Dy,
[ d’HLE = 0) We set J(QS) = —logy(¢(Qs)), and given Q € Dy*, we set J(Q) =

—logy(4(Q)) and J'(Q) := max{J(Qs), J(Q)}. Given Q C E},, denote by mscqg the average
of a function g : £, — R over all s € Q2 and with respect to ’H"%. Then, by the periodicity

of {¥g}gepr+ in the parameter s (recall Definition 5.15(b)) and (56), we can write

_ _ Y Y
ho = MseQ ) (he) = Z 0 Mo€Qyiag) (Bghs) = Z o MseQliq) (Aq.ha):
QeDy’ QeDy

Set J:={Q € Do suppyg(- — s) N suprQQ:jj,l(x — ) # () for some s € Qg/(Q)}. Then,

(57)  UZu(e) = (mipf) /A o T =9) D ey, o (A0, hew) dHE ()

QeJ

Recall that D € D; and m € Sp(z). Since z € D and (D) = 277, if Q € J, then
D C B(z,Cut(Q)) or Q C B(x,C,l(D)) for some constant C, > 0 big enough. In particular,
if £(Q) 2 ¢(D) then D C B(zg,Cul(Q)), and if ¢(Q) < CU¢(D) with C > 0 small enough
then Q C B(zp,C,l(D)), where zg denotes the center of ) C L7, and zp denotes the center
of D € D. We define

Ji:={QeJ: Q) <C¢D)} c{QeD™: Qc B(zp,Col(D))}, and
Jo:=J\J1 C{QeDM: DcC B(zg,Cal(Q))}

Then, using (57), that suppx ™, (v — ) C suppxg:jj,l(x — ) for all m € Sp(x), that

fAm(x)K(a: —y) d’H”zD(y) = 0 by antisymmetry, and that J'(Q) = J(Q) for all Q € J;
(because D C Qg), if 2’ denotes some fixed point in A(z,27771,277) N L, we have

U2la) = iy 1) | ( )K(m ) Y g, (A% hew) M (1)

Qe
(58) 11’ / n
s [ K 0 3 ey g (A ht1) = K ) i )

=: U3 (z) + Udp ().
Claim 5.16. Under the notation above, we have

(DN
S Ui St S (G} Q) (e, 185 ahelle)

meSp(z) QeJs

Proof of Claim 5.16. By property (e) of the wavelet basis in Definition 5.15, we have
|88 ha(y) = A% ha(2)] < IV(AG ha)loola’ =yl S IAG hallz|2’ —ylE(Q) =271, Moreover,
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if y € Ay, (), then |2/ — y| < 4(D). Therefore,
UAn (@)1 < S w1 [ 1K= ey, (85,hel) — A5 ha6)]) 7 0
QeJs Am Z

S D b flmaeqs, (186 hell2) (D) Q)™ Hiy (Am (),
Qe J2

and then, by Cauchy-Schwarz inequality and since J, C {Q € Dy : D C B(zq,Cul(Q))}
(in particular, £(D)/£(Q) < (¢(D)/4(Q))"/?),

n/2+1 2
S U @P S (X X b, (185.0d) s M (Anla))

meSp(z) meSp (z) QEJ2

2
<Z S macqs, o (180 shell2) UD)E <Q>”/2+1)

Qe
o(D) 2 4(D)
<< D) (3 ity P maca, 185 hala) s
Q%; 1))\ g, I e 120 g

1/2
Z( (o)) Qs 18 5l)”
€Jo

O

We are going to estimate U3, (x) with techniques very similar to the ones used in Sub-
sections 5.3.1 and 5.3.3. First of all, let b, > 0 be a small constant which will be fixed later
on, and consider the family P := {Q € D" : £(Q) < ¢(D)}. Let Stp denote the set of cubes
Q € P such that there exists Rg € D with ¢(Rg) = 4(Q), 10Rg N (p*) ™ (suppyg) # 0, and

(59) > a,(10R) > b, but > a,(10R) < b..
ReD: RoCR, £(R)<{(D) ReD: P(RQ)CR, {(R)<{(D)

Observe that if @ and Q' are different and belong to Stp, then Q@ N Q' = (). Notice also
that D ¢ Stp because we assumed «,(10D) < C,. Finally, denote by Tr the set of cubes
Q € P\ Stp such that R & Stp for all R € P with R > Q. Then P = Tr U UQeStp{R eP:
R C Q}. By taking C, small enough we can assume that, if R € J;NP and R C @ for some
Q € Stp, then Q € J;. So we write

Z mSGQJ(Q> Qsh’x)

QeJy
_ P P
- Z mseQ?j(Q) (AQ,ShI) + Z Z SGQJ(Q) (ARvsh'T)
QeJiNTr QeJiNStp ReJ1NP: RCQ

Set Eg,shx = ZRGP: RCQ A?Shz. Then, using the definition of J; and J, we can split

Usnla) = iy ) | ()K(x—y) S acas,, (A halw)) dHE (1)

QeJiNTr
(60) soph) [ K- Y g g (B ha(w) a3 )
Am(2) QeJmStp

= U3% (z) + U3 (x).
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Claim 5.17. Under the notation above, we have

a 2 < 12 2 Z(Q) 1/2 [ 2 —-n
D, Wsn@PSImbfP >0 \gpy)  Imeces o, (Bosha)l3 D)™
meSp(x) QeJiNTr
For simplicity of notation, we have set || - ||, :== | - ||Lp(’}_[zm )-
D

Proof of Claim 5.17. Notice that His (A (2)) < (€m — €my1)€(D)" 1. Moreover, the
function Mseqo o (Agshx) is supported in C'Q and has vanishing integral, because the same

holds for each Agshx with s € Qg(Q). Hence, thesum s

using arguments very similar to the ones in Subsection 5.3.1 (see (43)), and the analogues
of Lemma 5.6 and Claims 5.4 and 5.5 for ’;'—l”g]fj follow easily. One obtains the expected

(@) |U32 (2)|? can be estimated

estimate. O

Claim 5.18. Under the notation above, we have

AY 2
0@\ 2 Imseqy o, (Ao sha)lIT
U3l (x))? < |mh f)? ( ) @ .
mGSZD(m)| ()] N|me| thzﬂs‘cp D) ((D)e(Q)"

Proof of Claim 5.18. Since msEQ(}(Q)(ﬁg <ha) has vanishing integral and it is supported
in a neighbourhood of @, the term U3? (x) can be estimated in the same manner (but now
we do not use the estimate HmsEQ(}(Q)(Ag,th)H% < E(Q)nHmSeQ(}(Q) (Aé,shx)”%)) and one
obtains the expected estimate (compare with (45)). O

Recall that we have fixed x € D € S € Trs, and we denote by Qg the maximal p-cube in
S from the corona decomposition, so D C @Qs. The following lemma, whose proof is given in

. . . . ¥ b
Subsection 5.3.5, yields the suitable estimates for MseQS, o, (Ag she) and MseqQl, o, (Ag sha)-

Lemma 5.19. Assume that o, (D) < Cy, for some constant Cy > 0 small enough. Given
Q € DY, there exists constants Cy,Cy > 1 depending on C,, and b, (see (59) )such that,

(a) if @ € J2 and £(Q) > £(Qs), then msle’,,(Q)(||A¢,shx||2) S UQs)"UQ) ™2,

(b) if Q € Jo and £(Q) < £(Qs), then

dist(z, Lp n
Mg, o (185 shall2) S < ) au(C1R) + g((D)))e(Q) 2,
ReD: DCRCB(ZQ,CHZ(Q))

(c) if Q € Jy N'Tr, then there exists Qo = Qo(x,Q) € D depending on x and Q € Do
such that Qo C C2D, £(Qo) ~ £(Q), Qo N (p®) L (suppig) # 0 and
dist(x, Lp)

P n/2
||ms€Q3(Q)(AQ’Sh$)||2 < < E a,(CoR) + D) )K(Q) , and
ReD: QoCRCC2D

(d) if @ € AN Stp, then |Imeqn | (AG ha)ll < Q)™
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We are ready to put all the estimates together to bound the first term on the right hand
side of (50). From (53), (55), (58), and (60) we have

ST EX, (S Hxpe) @) S Iml f2a,(10D)?
meSp(z)
(61)
+ > ([ULn(@)? + [U3% (2) ] + UL, (2) 2 + [Udm(2)?).

meSp(z)

Let us deal with Ul,,(z) (the term |m/, f|?c,,(10D)? above is handled in the same man-
ner). If L1 and L% denote a minimizing n-plane for 31 ,(D) and B2, (D), respectively, one
can show that disty(Lp N Bp,Ls N Bp) < a,(D)Y(D) and disty(LL N Bp, L%, N Bp) <
Ba,,(D)(D), so we have dist(z, Lp) < dist(z, L%) + Ba,,(D)¢(D) + au(D)¢(D) for z € D.
Then, by Claim 5.14 and Carleson’s embedding theorem,

DY D SR

SeTrs DeS meSp(z)

(62) < [ it (a0 + a0y + (BN g

DeD

SO I fPUD)™ (Bru(D)? + au(D)? + B2u(D)?) S 11172

DeD

For the case of U3% (z), by Claim 5.17 and Lemma 5.19(c) applied to the p-cubes in
J1 NTr, we have

> Z/ > (U3, du

SeTrs DeS meSp(z)

P 2
>1/2 ||mser(Q) AG <)l

< X impst / Q;T(jg; e (o)
n+1/2 2
<L;J|muf|z/ le;m (ﬂ) i < R _ aH(CzR)> dp(z)

QU( 7Q)CRC02D

e s [ 3 (MDY (Lo ) s v,

DeD QeJiNTr

N

Recall that J; C {Q € Df’ : Q C B(zp,Cal(D))}. Then Y, (U(Q)/U(D))"+1/2 < 1,
and since dist(z,Lp) < dist(z, L) + B2, (D)D) + au(D)U(D) for z € D, then Sp <
> pep M f12(B2,u(D)? + u(D)?)€(D)™, and hence So < C’||f||%2(#)7 by Carleson’s embed-
ding theorem. For S, since £(Q) ~ ¢(Qo(x,Q)) (recall the definition of Qp = Qo(x, Q) in
Lemma 5.19(c)), Qo(z,Q) C C2D, and every Qo € D intersects (p®) ! (supptg) for finitely
many cubes Q) € Do (with a bound for the number of such cubes @ independent of z and
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Qo), we have

20 (D™ ™)

QeJiNTr ReD: Qo(z,Q)CRCC2D

S (9 y o)

PeD:PCCyD QED;L’O;QCB(ZD,C(LZ(D)), ReD: PCRCC2D
Qo(z,Q)=P

By Cauchy-Schwarz inequality,

/WP n+1/2 2
(o) (2., en)
PeD:PCC2D ReD: PCRCC>2D

 E (e () e

~

PeD:PCC2D <

PeD:PCCyD ReD: PCRCC2D
(63)
) E(P) n+1/4
< M
S > alGRP «D)
ReD: RCC2D PeD:PCR

n+1/4
Y a#(ch)Z(e(R)) =\ (D)%

(D)
ReD: RCCoD

By standard arguments one can easily show that these A; coefficients satisfy a Car-
leson packing condition, so by (63) and Carleson’s embedding theorem we obtain S; <
> pep M fI2U(D)" A\ (D)? < ||f||L2( ) which combined with Sa < || f]12. ylelds

(64) > / S UL de S I f 1,
SeTrs DeS meSp(x)

Let us deal now with U3%,. By Claim 5.18 and Lemma 5.19(d) applied to the u-cubes in
J1 N Stp, we have

DD EDS 10

SeTrs DeS meSp (x

0@\ 2 Imacqo, (BG sha)llF
syt [, ¥ (i) — b

DeD QeJiNStp ¢
DTN DS <W>n+l/2du.
DeD DQeJmStp ¢ )

Given D € D, consider the family Ap := {R € D: R = R for some € D and some Q €
J1NStp} (see the definition of Rg in (59)). Observe that every R € D intersects (p®)~1(Q N
L},) for finitely many p-cubes Q € D20 such that (@) = ¢(R). Thus, simlilarly to what we
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did for Q € J; NTr in the case of U3%,, we have

Z |m%f|2/ Z <§Eg;>n+mdu§ Z |m’,‘3f|2/ Z <g>n+l/zdu

DeD D gesinstp DeD D geap
) Y(R)\™T? S
<Y s Y (m) (D) = 3 ity f220(D)?u(D),
DeD ReAp DeD

where we have set \y(D)? := Y ReAp (U(R)/4(D))"*+1/2. Since the ay,’s satisfy a Carleson
packing condition, it is not hard to show that the same holds for the As’s. Indeed, since for
any R € Ap we have Y pep. pepr o(my<e(p) @u(10R’) = by by (59), then

Ao(D)? <07 > (ﬁgi)an( > au(loR’)>2,

ReAp R'€D: RCR!,{(R)<{(D)

and we can proceed as in (63). Hence, putting these estimates together and using Carleson’s
embedding theorem for the Ay’s, we obtain

(65) S [ X w1,

SeTrs DeS Y P mesp (a)

We deal now with U4,,(z). By Claim 5.16 and Lemma 5.19(a) and (b) applied to the
cubes in Jo,

DI AP WL

SeTrs DeS meSp(x
2
(185 hall2)

0(D)\ Y2 Mseqs, :
SIDNCTDS <€EQ§> “qar an

SeTrs DES QeJ2
f D 1/2
66) S Zlm‘fgf\Q/ > (g%@?)
SETrs DeS D Qets: 0(Q)<uQs)

2 . 2
dist(zx, L
{( Z au(C1R)> + <£((D)D)> ]dﬂ
ReD: DCRCB(2q,C14(Q))

D)\ 0(Qs)2"
X S [ X (G S = s s

SeTrs DeS D QEJ2: £(Q)>4(Qs)

Regarding Ss, since dist(x, Lp) < dist(z, L) + B2,(D)(D) + a, (D)D) for x € D

and > ocj, (0(D)/£(@))/? < 1, the second term in the definition of S3 is bounded by
> pep M F12(B2,u(D)* + a(D)?)4(D)™, and hence by C||f||2L2(#)7 by Carleson’s embedding
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theorem. For the first term in S3, by Cauchy-Schwarz inequality,

Sy X (@)% aan) s

SE€Trs DES QEJ2: L(Q)<L(Qs) DCRCé’%(iQD:C 2(Q))
sl

¢ 1/2 ¢
<)) Zlmelz/ 3 <%);> log, @g;) 3 au(C1R)? dy
SeTrs DeS Qe Ja: ReD:
HQ)<U(Qs) DCRCB(2,C14(Q))
1/4
<Y \m“f\Q/ > au(CiR) > (i(D)) du
DeD %GC% Qep™O. (Q)

RCB(20.C14(Q))

Notice that ZQeDQ’O:RcB(zQ,le(Q)) (f(D)/f(Q))l/4 (UD)/UR ))1/4

the preceeding inequality is bounded above by

1/4
(67) PRAYIRI NS a#(ClR)2<§EZ;> =: Y [mhfI2(D)" A3(D)?.

DeD ReD: DCR DeD

, thus the right side of

By standard arguments one can show that the A3’s satisfy a Carleson packing condition,
so by Carleson’s embedding theorem again, the last term in (67) is bounded by C||f||3. )

Thus we obtain S3 < || f]|2,
The estimate of Sy from (66) is easier:

0(D)24(Qg)*"
2
SeTrs DeS QEDZ’O:E(Q)>€(QS)7
DCB(zq,C14(Q))

As before, 3o pro, 0(Q)~21/2 < 0(Qs) 2" V/2, thus

LQ)>4(Qs), DCB(2q,C14(Q))

1/2
sis 3 S psteor(fgh) s S by S (72)

SeTrs DeS DeD S€Trs: S5D

=: Y [mhfI2(D)" \a(D)?.

DeD

Similarly to the case of the Az coefficients, one can show that the \4’s also satisfy a Carleson
packing condition, thus Sy < ||f ||2L2(u) by Carleson’s embedding theorem. Actually, if one
defines @, (Q) =1 if Q = Qg for some S € Trs and @,(Q) = 0 otherwise, using the packing
condition for the p-cubes Qg with S € Trs, one can easily verify that the a,,’s satisfy a
Carleson packing condition. Then,

) (YN (DN
M= S (Gay) wesr= ¥ (Gg) aer

SeTrs: DCQg QeD: DCQ

and we can argue as in the case of the Az’s in (67).
By the estimates of S3 and Sy, we obtain

(68) > Z/ > UAmlPdi S 172

SeTrs DeS meSp(x)
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Finally, plugging (62), (64), (65), and (68) in (61), and combining the result with (50)
and (51), we conclude that

PIPIEDS

SeTrs DeS meSp(x)

2
(@) S F 132000

Kxer, o+ ((mgf)xrp))(x)
RGV(D)

and Lemma 5.13 is finally proved, except for Lemma 5.19. O

5.3.5. Proof of Lemma 5.19.
Proof of Lemma 5.19(a). By Definition 5.15(e), for any s € QOJ,(Q) we have

188 halloe S b, )l 6Q) ™2 5 6Q)™ [ oty =@ [ v

@ [ 5 vag.) = Q)" [ s ﬁé(%s)gj |

Hence, ||Aé,shz”2 < ||Aw7shx||oo£”(supp¢5+Q)1/2 < UQs)™(Q)™? for all s € Qg,(Q), and
Lemma 5.19(a) follows by taking the average over s € Qg,(Q). O

Proof of Lemma 5.19(b). Since D C B(zq,Col(Q)), D € S, and (D) S 4(Q) < £(Qs),
by taking C.,, big enough (see property (f) in Subsection 2.4), we can assume that u is well
approximated by I'g in a neighborhood of ). We are going to show that, for each s € QOJ, @)

018Gl > au(Ca) + TP Q2
ReD: DCRCB(zq,C14(Q))
and Lemma 5.19(b) will follow by taking the average over s € Qg,(Q)
Fix Q € Ja, so D C B(zq, Col(Q)) with £(Q) < ¢(Qs), and s € Qg,(Q). Take Q' € D
such that ¢(Q) = £(Q’) and Q C B(zq,3¢(Q)). Recall that suppys+o C CQ and [Vihsig| S
0(Q)~"/*7 1. Let ¢s+q be an extension of 1siq, i.e., let ¢sro @ RY — R be such that

suppgsr C By CRY, Vg S UQ) ™27 and ¢erqr = Psyq in L,
Let Lg be a minimizing n-plane for a,,(C1Q’), where C; > 1 is some big constant to be
fixed below, and let L), be the n-plane parallel to Ly which contains . Let o¢ = CQ/H%Q,

be a minimizing measure for a,,(C1Q’) and define og = CQ/’Hzg,. Finally, set o := ch’Hz%.

Since 14 has vanishing integral in L%,, we also have [ ¢si¢ d?—[%% = 0. Hence,

185, hells = (o i) sl = e, sl =| [ 6us0(0) daty)
(70) o
= | [ bt s - o)) 5 £0Q) 2 st (v, ).

We can assume that

(71) > au(C1R) < by,

ReD: DCRCB(zq,C14(Q))

otherwise Lemma 5.19(b) follows easily. By assuming (71) one can show that the angle
between L%, and Loy is small. By the triangle inequality, we have

(72) distBQ,(Z/I, o) < dist,,, (Vs pfody) + distg,, (Piody, o).
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To deal with the first term on the right hand side of (72), let h be a Lipschitz function
such that supph C B¢ and Lip(h) < 1. Then, using that suppyu is well approximated in CQ’
by a Lipschitz graph I's with small slope, the function h o p® restricted to suppuU L”é can be
extended to a Lipschitz function supported in Be, ¢ (if Cy is big enough) with Lip(h o p®)
bounded by a constant which only depends on n, d, and Lip(T'g). Therefore,

. hd(vy — piogy)
(73) /BQ/

< distp,, . (w, o) + distp,, o (0g0d) S a, (C1Q)(Q)" T + dist(x, Lo )e(Q)™
Since z € D and D C C1Q’ (if C1 > Cy), by [To4, Remark 5.3] we have

(74) dist(z, Lgr) S Z a,(R)((R) + dist(x, Lp).
ReD: DCRCChQ’

_ ’/ hop” d(n—of)| < dists,. o, (1,08
BClQ/

Taking the supremum over all possible Lipschitz functions h in (73) and using that (D) <
(R) < £(Q) in the sum above, we get

. dist(z, Lp
(75)  diste, (veupfol) S DL au(CIRAQ)M + ;(D)) (Q™.
ReD: DCRCC1Q’
To estimate the second term on the right hand side of (72), notice that pjo = o because
p®|rz = 1d. Hence, as in (73),
distg,, (pfogy, o) = distp,,, (Piogy,pio) S distgle, (00, 0)
< diSthlQ’ (0’5/, O’Q/) -+ diStgle, (O’Q/, 0')
5 diSthlQ/ (Hga, ) H%Q/) + diSthlQ/ ( ZQ/ ) HgD) + diSthlQ/ (H2D7 ZTD)
< dist(z, Loy Q)" + dist,, o, (H],, H],) + dist(z, Lp)(@Q)"
The term distpg orar (Hle, %D) can be estimated using the intermediate u-cubes between
D and C1@Q) (similarly to (75)), and we obtain

~

ReD: DCRCC1Q

diste, o (M7 1Y) < > au(GiRQ)".

Thus, by (74) and since ¢(D) < 4(Q),

dist(x, L
;. dist(z, Lp)

g(D) K(Q)n+1.

dist g, (Pjody, 0) S > a, (C1R)E(Q)"™ !
ReD: DCRCC1Q’

Then, (69) follows by plugging this last inequality and (75) in (72) combined with (70), and
recalling that £(Q) ~ ¢(Q’). Thus we are done with Lemma 5.19(b).
(]

Proof of Lemma 5.19(c). Given @ € J; N Tr, using (59) we have

a,(10R') < b,
R'e€D: RCR, {(R')<{(D)

for all R € D with (R) = ¢(Q) and such that RN (p®)~!(suppysiq) # 0 for all s € Q?](Q).
By assuming b, small enough, we are going to show that for some Qo(z,Q) € D as in the
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statement (c) and all s € Qg(Q) we have

dist(zx, L
(76) IAY Pall2 < > au(CoR) + B0 LD)
g (D)
ReD: QoCRCC2D

)e@)”/?

As before, Lemma 5.19(c) will follow by averaging over s € Q?](Q), and noting that
”msGQ‘}(Q) (Agyshx)ﬂg < MseQd o, ||Ag,shx||2 by Minkowski’s integral inequality.

Take @ € J; NTr. Let Cy be some big constant which will be fixed later on, and let
Qo € D be a minimal p-cube such that C5Qo contains suppu N (p®) ! (suppys+g N L%) for
all s € J(Q). We can assume that Qo C CyD if Cy is big enough and, by (59), we may
also suppose that ) »p. QoCRCCaD a,(C2R) is small enough. Hence, if Lg, is a minimizing
n-plane for S, (C2Qo), the angle between Lg, and L7, is also small enough, since it is
bounded by 3 rep. gycrco,p @u(C2R) (see [Tod, Lemma 5.2] for a related argument). It is
not hard to show that then

(77) diam(I' N (p")7H(Q N L)) < 4(Q)-
Let Lo, and oq, = CQOHZQO be a minimizing n-plane and measure for o, (C2Qo), respec-
tively. Fix zg, € Lg, N Bey,q, and let L, be an n-plane parallel to L}, which contains zg,.

1 3 — n U n
Finally, define the measures o, := cg,H7 and o' := cq, Lo -

Since ¢’ is a multiple of ’H”lb , similarly to (70) and using the triangle inequality,

1A hall20(Q)"2F1 < distpg (va, ')

(78) . : .
< dist B, (Va; PF0Q,) + dist, (pf0q,, Pfor) + distp, (pior, o),

where we have set B := B(2g,30(Q)) C R (for these computations, we may also assume
that ¢(Q) is small enough in comparison with ¢(D)).
Arguing as in (73), if Cy is big enough, we have

(79) dist pg (ve, 0 Q,) = distpg (1 PFoQy) S u(C2Q0)0(Q)",
and
diStBQ (ngQO,ng'r) < diStBC2Q0 (UQov o) S diStH(LQO N Beygy, Lr N BCQQO)K(Q)H.

Let v be the angle between L, and L¢, (which is the same as the one between Lp and Lg,).
Since zg, € Lg, N L, N Bc,q,, we have diStH(LQO N Beygo, Lr N BC2Q0) < sin(7)4(Q), and
it is not difficult to show that sin(v) < >-pep. gycrecyp @u(C2R). Thus,

(80) diStBQ (pjgchQoapjngr) S Z O‘u(CZR)g(Q)n+1'
ReD: QoCRCC2D

Let us estimate the last term on the right hand side of (78). Since cg, < 1, we have
distp, (pfor,0') < distp, (PfHT Z%) Let h be a 1-Lipschitz function supported in Bg
and such that Set d := dist(zq,,L%)). Since Q@ € J; C J and £(Q) < CU(D), if C is small
enough then dist(x, Bg) 2 ¢(D). Without loss of generality, we may assume that = 0 and
that L% = R™ x {0}97", so L, = zg, + R™ x {0}4~™. Thus, if we set 20, 1= (zgﬁl, ce zéo),
we have that d = |z(, | and p® restricted to L, N Bg can be written in the following manner:
Py =(y',... ,y”,zbo) = (F(yt,...,y"),0), where F: R™\ {0}" — R" is defined by

NrLET: e
Fly) =y~r—— =y /14 .
) 9l e
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Therefore, [ hd(pjH} ) = [hop” dH} = [p.(hop®)(y,2g,) dy = [g. M(F(y),0) dy, and we
also have [ hdtf. = Jrn P((1,0)) dy = [ h(F(y),0)J(F)(y) dy by a change of variables,
where J(F') denotes the Jacobian of F'. Hence

(31) [y, =)\ s [ EGLOI = I .

Notice that, because of the assumptions on supph(F(-),0) and since zg, € Bc,g, and Qo C
C3yD, we have d < |y| for all y € supph(F(:),0). If F; denotes the i’th coordinate of
F, it is straightforward to check that 9, F;(y) = —d?y'yI|y|3(|y|* + d*) Y2 if i # j and
Oy Fi(y) = (1 + d?/|y|HY? — d*(y")|y|~3(|y|> + d*)~'/2. Thus, we easily obtain

(82) 1= J(F) )| < d/lyl < d/¢(D)
for all y € supph(F(-),0). Since diam(supph(F(-),0)) < 4(Q) and h((F(-),0)) is Lip-

~

schitz, using (82) and taking the supremum in (81) over all such functions h, we have
distp, (py T, His ) < £(Q)"1d/¢(D). Finally, by [To4, Remark 5.3] and since zg, € Lg,,

d < dist(2g,, Lp) + dist(Lp, L}) < > o, (C2R)U(R) + dist(x, Lp),
ReD: QoCRCC2D

and thus

) o n dist(x, L "
(83) dlStBQ (pﬁ HLT,HLQED) 5 Z O[#(CQR)E(Q) +1 + M E(Q) +1.
ReD: QoCRCC2D

Finally, (76) follows by applying (79), (80), and (83) to (78), which yields Lemma 5.19(c).
U

Proof of Lemma 5.19(d). This is the key point where taking averages of dyadic lattices
with respect to the parameter s is necessary. Given Q € J; N Stp, we have to show that

||m$€Q3(Q)(ﬁg’shx)||1 < 4(Q)™. Unlike in (a),...,(c), the estimate in (d) does not hold for
a particular choice of s in general but, as we will see, it holds in average. Recall that, for a

0
fixed s S QJ(Q)’

ANY _ P
AY he = Z Ay, e

ReP: RCQ
= Z Xs+Q A%shz - Z Xs+Q Aq]{%,shl7
ReP: suppyyrNQFAD ReP: suppyrNQ#D
L(R)<U(Q) {R)<6(Q), RZQ
AY hy = Iy + I, + 11
+ X(s+Q)e Rs'tx =+ 1s s+ s-
ReP:
RCQ

We are going to estimate I, I, and 111, separately. For the case of I, we have

Xs+Q ha = Xs+Q > A ha + Xs4Q > A% e = Xsro I + 1,
ReDP % U(R)>H(Q) ReD°: 0(R)<U(Q)

where we have set I} := ZRED”’O:E(R)>€(Q) Aﬁshm. On one hand, since Q € J; N Stp, (59)
holds. Thus, using that }-pep. p(ry)cr, o(r)<t(p) @u(10R) < by, one can show that

(84) [Xs+Q Pzl S €(Q)"
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(see above (77) for a related argument). On the other hand, since ||xs+@ hell1 S £(Q)", it is

known that then ||xs+olil1 S €(Q)" (see [Da, Part I, in particular pay attention to the last

sum in equation (46) of Part I). Combining these estimates, we conclude that || 151 < £(Q)™.
Let us now deal with Il,. First of all, split 11, into different scales, that is

> Xot@Afpshe = D > Xs+Q A -

REP: suppy g NQ#D k>J(Q) REP:suppyrNQ#AD
R)<U(Q), RZQ L(R)=2"% RzQ

Observe that if k& > J(Q), suppr N Q # 0, ((R) = 27% and R ¢ Q, then s + R C
Ugo-+(s + 0Q), where C' > 1 is some fixed constant and Ugg-r(s + 0Q) = {z € L7, :
dist(z,s + 0Q) < C27*}. Hence, using Definition 5.15(e) and the definition of h,, we get

L < > > 1A% halli €3 ve(Ucy-r(s +0Q)).

k>J(Q) REP:suppyprNQ#D k>J(Q)
L(R)=2"%,RzQ

The case of I11; can be dealt with very similar techniques, and then one obtains the same
estimate. Therefore,

AY —
ey, (B ohallls = Imaeqy,, (I + 1o+ T < macgo 1o+ T+ T

SHQ)" Ms€Qfq) < Z

k>J(Q)

(85) Va(Uga-k(s + 8@))).

Using Fubini’s theorem, it is not difficult to show that
MaeqQl )Vx(Ucz—k(S +0Q))) S27M(Q) ' (CQ)

for all for k > J(Q) (see [To2, Lemma 7.5] for example, for a related argument). Since
Q € Stp, then (59) holds and then, as in (84), we have v,(CQ) < £(Q)™, thus

MseQf o) <k>ZJ(:Q) Vo (Ugg—+ (s + 5’@))) SUQ)™

If we combine this last estimate with (85), we are done. d

5.3.6. Final estimates. From Lemmas 5.3, 5.9, and 5.13, we obtain the following;:

LR[S e

SeTrs DeS meSp(x) ' ReV (D) QeTr(R

DID N ADIRIDS Z KX (Bof)m)(a)

SeTrs DeS meSp(z) ' ReEV (D) QeStp(R

153D 3 D SN 1D SIS C R NIE

5eTrs DeS P mesp(x) | ReV(D)

2

du(x)

2
dp(z)

2
dp(x) S 1 F1Z2

Combining this estimate with (38), we deduce

S [ i = )@ dute) S 151

SeTrs DeS meSp(x)
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Finally, using (33) and (34), we conclude that

(RS OTARED DY DS

€m 2
[(Kxez,, * (fu)(@)]" du(z) S 11f172(,-
DeD meSp(x)

This finishes the proof of Theorem 5.1.

6. Ir V, 0o R* : L?(u) — L?*(u) 1S A BOUNDED OPERATOR,
THEN g IS A UNIFORMLY n-RECTIFIABLE MEASURE

Let €y > 0 be the AD regularity constant of an AD regular measure y, that is C,; Lpn <
u(B(x,r)) < Cyr™ for all o € suppp and 0 < r < diam(suppp). For simplicity of notation,
we may assume that diam(suppu) = oo (the general case follows with minor modifications
in our arguments). As before, we denote by D the dyadic lattice of p-cubes introduced in
Subsection 2.3.

In this section, we set K(x) = z|z|™""! for x # 0. Recall that, given ¢ > 0, a Radon
measure p, and f € L'(u), we have set R¥f := {RF f}c~0, where

R f(z) = / K9S duty)
xr—y|>€

In order to prove the main theorem of this section, namely Theorem 6.8, we need first to
introduce some notation and state some preliminary results.

Definition 6.1 (Special truncation of the Riesz transform). For e > 0, let p. be as in
Definition 2.1. Given m € Z and a Radon measure pu in R%, we set

Supi() = / (Ga-met (2 — ) — oo (z — ) K (z — y) du(y).

Lemma 6.2 (Lemma 5.8 of [DS1]). Given Q € D, there exist n + 1 points xg, ..., x, in Q
(and thus in suppp) such that dist(z;, Lj—1) > CU(Q), where Ly denotes the k-plane passing
through xo, ..., x, and where C depends only on n and C,,.

Lemma 6.3 (Lemma 7.4 and Remark 7.5 of [Tod]). Let Q € D and xg, ..., z, € Q be like in
Lemma 6.2. Denote r = diam(Q), and let m,p € Z be such that t > s > 4r for t =27P and
s = 27", Suppose that A(xg,2~™ Y2 2712y N supppu # 0. Then any point T,,1 € 3Q
satisfies

n+l m 2
. r rs
(86) dist(p+1, Lo) < 8 Z > 1Skp(;) — Sgp(o)| + T
j=1k=p
where Lg is the n-plane passing through xg, ..., ZTy.

The following proposition is a direct consequence of the techniques used in the last section
of [To4]. We give the proof for completeness.

Proposition 6.4. Given ey > 0, there exist og > 0 and mg, ko € N depending on €y, n, and
C,, such that, for all i € Z and all Q € D; with B1,,(Q) > o, there exist k € Z with |k| < ko
and P € Ditkym, such that P C 4Q and |Siyip(z)| > 0o for all x € P.

Proof. Fix ey > 0. Let @ € D; such that 31 ,(Q) > €. Take points zo,...,z, in @ as in
Lemma 6.2, denote r = diam(), and let m € Z to be fixed below such that 4r < 27 =: s
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and A(zg,2~™1/2,27m+1/2) M suppp # O (we assume diam(suppu) = o). By Lemma 6.3,
for t :=27P > s to be fixed below and all z,11 € 3Q),

n+l m 2 rs
dlSt(l‘n_;,_h L() Z Z |Sk:/i x] Sku(xo)‘ + -+
J=1k=p
m n+1 7“2 rs
<s S +—+—.
~ Zp]zo| k,LL LE] s t

Then, by integrating on x,41 € 3Q, for some constant C; > 0 depending only on n and C),

1 dist(xn41, L
€0 < B1u(@) < /3@ (@n1, Lo) dp(Zng1)

aQm (Q)

<0 (53 (s [ ISuatensnldutensn) + X e + 542,

k=p Jj=0
Thus,

(61 =g (g o+ s

k=p 7=0

We can easily choose s and t big enough (depending on r, €y, and C) such that, for some
constant €; > 0 depending only on €y, n and C,,,

(87) 0<e < Z </ W dp(Tni1) + Y |Skﬂ(a7j)|>~

J=0

Notice that, since t = 27P and s = 2™ where chosen depending on 7 ~ 2%, the sum on the
right hand side of (87) has a finite number of terms which only depends on €, n and C,,.
Therefore, there exists kg € N and Cz > 0 depending only on €y, n and C, such that, for

some negative integer k with |k| < ko and some j =0,...,n,
1
< oy L ISeons o ISt ).

which implies that there exists C3 (depending on C2) and z € 3Q such that e; < C3|S; ppu(2)]-
Given x € suppp, if |v — z| < 277, then

[Sirkp(z) — Sigrp(z)| < /I P IV (@it kK)ol — 2| dpu(y)
y—z|S27
< 20HRm D5 — 4 dpy) S 27w - 2|,
ly—z|<S27=F

Hence if |z—z| < C4277F with C; > 0 small enough, we have C3|S;  pu(x)—Si pp(2)| < €1/2,
so €1/2 < C3|S;4xp(x)|. Therefore, there exist mg € N depending on Cy (and thus on ¢,
n, and C) and P € Djij1m, such that €;/2 < C3|Sj1pp(x)| for all z € P. We can also
assume that P C 4Q by taking Cy small enough, and since |k| < ko we have {(P) ~ {(Q).
The proposition follows by setting dg := €1/(2C3) > 0. O

Definition 6.5. Given ¢y > 0, let g, mg > 0 be as in Proposition 6.4. Set

B:={QeD: Q) >e}, B:i=|J{QEDism, : [Skp(z)| > o for all z € Q}.
keZ
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Given P,R € D with P C R, we set F& = ZQGE:PCQCRXQ and Ff = ZQEE:QCRXQ'
Lemma 6.6. Let p > 0. Assume that there exists Cy > 0 such that, for all R € D,
(88) / (F™)*? dp < Cop(R).
R

Then, there exists C > 0 such that ZQEE: OCR w(Q) < Cu(R) for all R € D.
Proof. Let M > 1 big enough (it will be fixed below). For R € D, set

Tree(R) := {Q €B:QCR, XQFg < Mxq},

Topy(R) := {P € B: PCR, xpFF > Myp, and XQFg < Mxq

for all Q € B such that P C Q C R}.
For m > 1, set Top,,(R) := UPeTopm,l(R) Topy(P), and Top(R) := U,,>0 Top,,(P).

Notice that if R € B then R € Tree(R), because M > 1. Notice also that
(89) {QeB: QC R} =Tree(R) U (UPQTOP(R)Tfee(p)),

and the union is disjoint.
Fix R € D. Then, by (89),

oow@= D> w@+ >, D> wQ

(90) QeB:QCR Q€ Tree(R) PeTop(R) Q€Tree(P)
/ > XQ dp + / Y xedu
QeTree(R PGTOP(R) QETree(P)

Given € R and P € D such that P C R, by the definition of Tree(P), we have
> xelx) < Mxp(x).

QETree(P)
Therefore, by (90),
o1 > n@ <Mu(R / > Mxpdp= ( (R)+>. > M(P)>~

0eB: OCR R peTop(R) m>0 PeTop,, (R)
We are going to prove that, if M is big enough,

(92) > w(P)<27"u(R)

PcTop,, (R)
for all m > 0, and then, by (91), we will finally obtain

> @) < Mp(R)+M > 27" u(R) < 3Mpu(R),
QeB:QCR m>0

and the lemma will be proven.
Notice that, if P, P’ € Topy(R) are different, then PN P’ = () because of the last condition
in the definition of Topy(R). So, to verify (92), it is enough to show that, for all m > 0,

(03 S oup<y Y )

PeTop,,,+1(R) PeTop,, (R)
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We have

(94) Y, uBP)= ) Y. @)

PETop,, 1 (R) P€Top,, (R) Q€Topy(P)

and ZQETopO(P) XQ = Xxu, where U := UQETopO(P)Q C P. If x € U, there exists Q €
Topy(P) such that z € Q, so 1 = yg(x) < M‘Q/f’(Fg(x))Wp < M—2/P(Fp(x))2/p, and then
using (88) we have

_ 2 Co
Qe Top, (P) P QETopg(P) v F
which, in combination with (94), yields (93) by taking M > (2Cy)*/2. O

Lemma 6.7. Assume that, for some C; > 0, ZQGE:QCR w(Q) < Ciu(R) for all R € D.
Then there ezists Ca > 0 such that Y nep. ocr H(Q) < Cop(R) for all R € D.

Proof. Given @) € B, by Proposition 6.4, there exists Py € Dy, for some k € Z such that
Po C 4Q, u(Pg) > Cou(Q), and |Sku(z)| > do for all x € Py, where Cy > 0 is some small
constant. Thus, in particular, Py € B for all Q € B. Since Py C 4Q and p(Pg) > Cop(Q)
for all @Q € B, given P € B there are finitely many p-cubes @ € B such that Py = P, and
the number of such p-cubes is bounded above by a constant depending only on n, Cp, and
Cy. Hence, since 4R is contained in the union of a bounded number of p-cubes with side
length ¢(R),

Yo owQ <G Y wP)S Y u(P)<Cuu(R)

QEB:QCR QEB:QCR PeB: PCAR
for all R € D, as wished. O

Theorem 6.8. Let p > 0. Given an n-dimensional AD regular measure p, if V, o R¥ is a
bounded operator in L?(u), then u is uniformly n-rectifiable.

Proof. 1t is easy to see that, if V, o R¥ is a bounded operator in L?(p), then RY is also
bounded in L?(x). By Theorem 1.2 in [DS2, Part III, Chapter 1], in order to show that p
is uniformly n-rectifiable, it is enough to show that u satisfies the Weak Geometric Lemma,
i.e., that for any €y > 0, the set B is a Carleson set. In other words, it suffices to show that
there exists a constant C' > 0 depending on €y such that } o 5 ocpu(Q) < Cu(R) for all
R € D. By Lemma 6.7 and Lemma 6.6, this holds if, for some p > 0, there exists C' > 0
depending on ¢y such that, for all R € D,

(95) [ < cuim.
R

Notice that, for m € Z and f € L'(u), Sm(fp) = T6, ., f — Th,_,, f, where Sp, is
introduced in Definition 6.1 and 75, is as in Definition 2.1 (remember that now K denotes
the Riesz kernel), thus

(96) Z Sk (f ) (@)]P < ((Vp © 7Z;lf)f(aj))p

kEZ
We may assume that p > 1, since (V50 RH)f(x) < (V, 0 R¥)f(x) for p > p, and then the
L?(p) boundedness of V, o R* for some p > 0 implies the L?(1) boundedness of Vz 0 R* for
all p > p. Since pgr (22mt2) is a convex combination of the functions X (scr:s>e}(f) for € >0,
using that p > 1 and Minkowski’s integral inequality, it is not hard to show that the L?(u)
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boundedness of V, o R* implies the L?*(;) boundedness of V, o 73" (see Subsection 5.2, or
[CJRW1, Lemma 2.4], for a similar argument). Therefore, for any M > 0, we have

(97) 1(Vp 0 TE)xarml 72 < CH(MR) < Cu(R) for all B € D.

Fix €9 > 0, let d9,mo > 0 be as in Proposition 6.4, and let R € D. Given z € R and
k € Z, for any Q) € Dy, N B such that € Q@ C R we have |Siu(x)| > dp. Notice that,
since () € Dy, and @ C R, there exists M > 1 depending only on n and mg such that
0o < |Skpu(x)| = |Sk(xarrit)(x)|. Therefore, using (96) and that for each k € Z there is at
most one p-cube @ € Dy, such that v € Q C R,

FR@)=>" > xo@) < > 8o P 1Sk (xarri) ()]

(98) K€Z QEDyymoNB:2€QCR k€Z QeDyym,NB:2€QCR
<60 1Sk(xarrm) (@)1P < 857 ((V, 0 TH)xur())”
keZ

and then, by (97),

/R (FR)2/° dp < 502/R (Vo o TH)xarr)” dpn < 65211 (Vo 0 T xar 132,y < Cui(R)
for all R € D. This yields (95), and the theorem follows. O

Remark 6.9. Let {ry,}mez C (0,00) be a fixed decreasing sequence defining O. If there
exists C' > 0 such that C~'r,,, < 7 — Tyt < Oryy for all m € Z, then the last inequality in
(98) still holds if we replace V, by O (by taking from the beginning p = 2). Hence, Theorem
6.8 still holds replacing V, by O for this particular sequence {r,, }mez. However, we do not
know if it holds for any {rm}mez C (0,00).
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