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EXISTENCE AND UNIQUENESS OF LIMIT CYCLES FOR
GENERALIZED ϕ-LAPLACIAN LIÉNARD EQUATIONS

S. PÉREZ-GONZÁLEZ, J. TORREGROSA, AND P. J. TORRES

Abstract. Liénard equation x′′+f(x)x′+g(x) = 0, appears as a simplified model in
many problems of science and engineering. Since the first half of 20th century, many
papers have appeared giving existence a uniqueness conditions for the limit cycles
that a Liénard equation exhibits. In this paper we extend some of these results for the
case of the generalized ϕ-laplacian Liénard equation (ϕ(x′))′ + f(x)ψ(x′) + g(x) = 0.
This generalization appears when other derivations, different from the classic one,
are considered, such as the relativistic one. Our results apply, for example, to the

relativistic van der Pol equation
(
x′/
√
1− (x′/c)2

)′
+ µ(x2 − 1)x′ + x = 0.

1. Introduction

Liénard equation,

x′′ + f(x)x′ + g(x) = 0, (1)

appears as simplified model in many domains in science and engineering. It was inten-
sively studied during the first half of 20th century as it can be used to model oscillating
circuits or simple pendulums. In the simple pendulum case, f and g represents the
friction and acceleration terms. One of the first models where this equation appears
was introduced by Balthasar van der Pol. See [12]. Considering the equation

x′′ + µ(x2 − 1)x′ + x = 0,

for modeling the oscillations of a triode vacuum tube. See [7] for other references about
more applications.
The first results on the existence and uniqueness of periodic solutions on the Liénard

equation appear in [8, 13]. For some results on the existence and uniqueness of limit
cycles, some papers like [16] or [17] and the books [18] and [19] could also be referred.
Additionally, more current references on related problems are [3] and [9].
In this work, some criteria are presented for existence and uniqueness results on limit

cycles for the generalized ϕ-laplacian Liénard equation

(ϕ(x′))′ + f(x)ψ(x′) + g(x) = 0. (2)

Besides the obvious mathematical interest of this generalization, our main motivation for
considering such equation comes from some relativistic models studied before. Special
Relativity imposes a universal bound for the propagation speed of any gravitational
or electromagnetic wave. If c is the speed of light in the vacuum, in the framework
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of Special Relativity the momentum of a particle with unitary rest mass is given by
ϕ(x′) = x′√

1−x2

c2

(see for instance [6]). The harmonic relativistic oscillator

(
x′√

1− (x′/c)2

)′

+ x = 0

is a classical topicstudied by several authors (see for instance [5, 11]). Other authors
have included damping terms and nonlinear forces. An example is the forced pendulum
with relativistic effects, which model can be expressed as


 x′√

1− x2

c2




′

+ kx′ + a sin x = p(t) (3)

where p(t) a periodic function, is presented in [14] (see also [15]). In this work, conditions
on the function p are given, for which equation (3) presents periodic orbits.
In the case of Liénard equation (1), it is usual to apply some change of variables to

express the equation as the planar system
{
ẋ = y − F (x),
ẏ = −g(x)

or {
ẋ = y,
ẏ = −g(x)− f(x)y.

In this work a variation of this approach is considered. Our results apply, after a time
rescaling, to system {

ẋ = yϕ′(y),
ẏ = −g(x)− f(x)ψ(y).

(4)

Before stating the results some necessary hypotheses are introduced. All the functions
in (2) should be at least locally Lipschitz continuous, C0,1, except ϕ(y) that should be in
C1,1. These properties assure the existence and uniqueness of a solution for any initial
value problem associated to system (4). More regularity of each function is required in
some concrete results.
Let D be the greater connected domain, neighborhood of the origin, for which the

four functions in (2), ϕ(y), ψ(y), f(x) and g(x), are well defined. In this way D can be
consider as D = (x1, x2)× (y1, y2) where x1, y1 ∈ R− ∪ {−∞} and x2, y2 ∈ R+ ∪ {+∞}.
Along this paper all the limits considered for x or y tending to xi or yi with i = 1, 2
are limits from the interior of the intervals of definition. It means that, for example, we
denote y → y2 instead of y → y2

−.
Based on the results of the classical Liénard equation (1) given in [16, 17, 19] the

following conditions, denoted by (H), are established.

(H0) f(x), g(x) and ψ(y) are of class C0,1 (R) and ϕ(y) is of class C1,1 (R) .
(H1) xg(x) > 0 for all x ∈ (x1, x2) \ {0} and g(0) = 0.
(H2) f(0) 6= 0.
(H3) Dom(ϕ) ⊆ Dom(ψ).
(H4) ψ(0) = 0.
(H5) ϕ

′(y) ∈ R+ \ {0} for all y ∈ (y1, y2) and ϕ(0) = 0.

(H0) represents the regularity condition. (H1) and (H2) are inherited from the referred
classic results. (H3 − H5) are the most basic hypotheses that we impose to ϕ(y) and
ψ(y). We have included the extra condition ϕ(0) = 0 for simplicity and symmetry
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reasons. Without lost of generality, the case ϕ(0) 6= 0 can also be considered after doing
a translation of this function.
Briefly the aim of this work is to provide conditions on functions f, g, ϕ and ψ such

that system (4) has at least a periodic orbit and, moreover, if it exists, when it is unique.
Next two results summarizes these properties.

Theorem 1. [Existence Theorem] Consider system (4) under the hypotheses (H). Ad-
ditionally, the next properties hold.

(i) yψ(y)f(x) ≤ 0 in a neighborhood of the origin, Ix × Iy = [x−, x+]× [y−, y+] ⊂ D,
except for a finite number of points where it vanishes.

(ii) There exist δ and η in R, with x1 < η < 0 < δ < x2, such that f(x) > 0 for all
x ∈ (x1, x2) \ [η, δ].

(iii) For each i = 1, 2 there exists λi in R+ ∪ {+∞} such that, if |xi| = +∞, then
lim inf
x→xi

x(|g(x)|+f(x)) = λi, and if xi ∈ R, then lim inf
x→xi

|x−xi|(|g(x)|+f(x)) = λi.

(iv) yψ(y) > 0 for all y 6= 0.
(v) For i = 1, 2, lim

y→yi
ψ(y)/(yϕ′(y)) ∈ R.

(vi) The integral
∫ δ
η
f(x)dx is positive or, alternatively, there exists y0 ∈ (y1, y2) such

that −ψ(y0) ∈
[
lim inf
x→xi

g(x)/f(x), lim sup
x→xi

g(x)/f(x)
]
for at least one of the xi and

there exists U , neighborhood of y0, such that sign(ψ′(y)) is constant almost for
every y ∈ U .

Then system (4) has at least a periodic orbit contained in D.

Theorem 2. [Unicity Theorem] Consider system (4) under the hypotheses (H). Addi-
tionally, the next properties hold.

(i) f, g ∈ C0,1((x1, x2)) and ϕ, ψ ∈ C1,1((y1, y2)) with x1, y1 ∈ R−∪{−∞} and x2, y2 ∈
R+ ∪ {+∞}.

(ii) There exist a < 0 < b such that f(x) < 0 when x ∈ (a, b) and f(x) > 0 when
x ∈ (x1, x2) \ [a, b],

(iii)
d

dx

(
f(x)

g(x)

)
> 0, for all x ∈ (x1, x2) \ I0 where I0 ⊂ [a, b] such that I0 contains

the origin and I0 = (a, x0) or I0 = (x0, b) with x0 satisfying that
∫ x0
0
g(s)ds =

min
{∫ a

0
g(s)ds,

∫ b
0
g(s)ds

}
.

(iv) ψ′(y) > 0 and
d

dy

(
ψ′(y)

yϕ′(y)

)
< 0, for all y in (y1, y2) \ {0}.

Then system (4) has at most one limit cycle. Moreover, when it exists, it is stable.

In Section 2, we present the different kinds of functions that we can find in our
study. Section 3 is devoted to introduce a new way to compactify the domain D to

D̃ = (−1, 1)× (−1, 1). This compactification allows us to consider the boundary of D as

the inverse of the boundary of D̃. Hence, we can study the behavior of the differential
equation (4) close to the boundary of D. Moreover, this compactification allows us to

consider all the cases in a unified way. So we restrict our study to the case D = D̃. In
Section 4, we show some first integrals of the particular cases of (4) when the friction
term vanishes, f(x) = 0, {

ẋ = yϕ′(y),
ẏ = −g(x), (5)
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or when the acceleration term vanishes, g(x) = 0,
{
ẋ = yϕ′(y),
ẏ = −f(x)ψ(y). (6)

We use both first integrals as state functions of system (4).
These first sections include all the technical results needed to prove the main results.

Hence, in Section 5, we prove the Existence Theorem, Theorem 1. The proof follows
from the Poincaré-Bendixson theorem, see [2], because the statement ensures that the
origin and the boundary of D have the same stability, in fact both are repellors. Propo-
sition 6 studies the stability of the origin and Propositions 20 and 21 deal with the
stability of the boundary of D. Finally, Section 6 is devoted to prove the uniqueness of
limit cycle in the whole space, Theorem 2. The proof, as it is done in [19], is obtained by
contradiction, computing the integral of the divergence of the vector field between any
two consecutive limit cycles. We remark that our proof does not need any restriction
on the location of the limit cycles.

2. Function families

In this paper we only consider three basic different behaviors of ϕ(y) over yi for
i = 1, 2. We say that

(a) ϕ(y) is singular over yi if yi ∈ R and lim
y→yi

ϕ(y) = ±∞,

(b) ϕ(y) is non-bounded regular over yi if yi = ±∞ and lim
y→yi

ϕ(y) = ±∞, and,

(c) ϕ(y) is bounded regular over yi if yi = ±∞ and lim
y→yi

ϕ(y) ∈ R+.

For shortness, we denote above properties by Si, NBi and Bi, respectively. Some
graphical representations of this basic functions are showed in Figure 1.

(a) Singular (b) Non-bounded Regular (c) Bounded Regular

Figure 1. Basic ϕ functions

The most representative function of the singular case could be the relativistic opera-
tor, ϕ(s) = s/

√
1− s2. An example of the non-bounded regular case is the p-laplacian

operator, ϕ(s) = |s|p−1s. And for the bounded regular case, we can use, for example, the
mean curvature operator, ϕ(s) = s/

√
1 + s2. These three examples are well known in

the literature about ϕ-laplacian problems. See for example [1], [10] or [4], respectively.
Although the previous examples are all symmetric we do not ask for any symmetry to

the function ϕ(y), nor a symmetric behavior at the boundary of the domain. Therefore
some mixed cases can also be considered. Hence the results of this paper apply also for
functions like ϕ(s) = s/(1− s) or ϕ(s) = es − 1. See Figure 2.
We also consider different kinds of function f(x) in terms of the type of its domain

of definition. So we say that we are in a finite (infinite) case on xi, denoted by Fi (Ii),
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Figure 2. Some examples of mixed behavior at the boundary of the domain

if xi ∈ R (xi /∈ R). The results of this paper also apply when we have not symmetry in
the behavior of f(x) at both xi, i = 1, 2, at the same time, as in the case of the function

ϕ. An example of this situation is the function f(s) = s2

1−s − 1, shown in Figure 3.

Figure 3. A mixed function f(x)

The functions g and ψ are actually determined by the hypotheses (H) and, as it can
be seen in the next section, they do not play an special role in the compactification.
Hence it is not necessary to study their different behaviors at the boundary of the
domain.

3. A Polygonal Compactification

The main tool of this work is a transformation of the domain of definition, D =
(x1, x2)× (y1, y2), of the generalized Liénard differential equation (4). Next proposition
allows us to unify all the different behaviors detailed in the previous section via a trans-
formation to the square (−1, 1)×(−1, 1). We consider it as a polygonal compactification
because the closure of the new domain is a compact set which boundary is a polygon.

Proposition 3. Given system (4) satisfying (H) and defined in D = (x1, x2)× (y1, y2)
where x1, y1 ∈ R− ∪ {−∞} and x2, y2 ∈ R+ ∪ {+∞}, there exists a change of variables
of class C1 such that (4) writes as

{
ẇ = χ(z),

ż = −g̃(w)− f̃(w)ψ̃(z),
(7)

the new domain of definition is D̃ = (−1, 1)× (−1, 1) and the functions f̃ , g̃, ψ̃ and χ
satisfy the following properties.

(H̃0) f̃(w), g̃(w) and ψ̃(z), χ(z) are of class C0,1 (R) .
(H̃1) wg̃(w) > 0 for all w ∈ (−1, 1) \ {0} and g̃(0) = 0.

(H̃2) f̃(0) 6= 0.

(H̃3) Dom(χ) ⊆ Dom(ψ̃).

(H̃4) ψ̃(0) = 0.

(H̃5) zχ(z) > 0 for all z ∈ (−1, 1) and χ(0) = 0.
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From now on we use either system (4) defined in D or system (7) defined in D̃. A
graphical interpretation of the last result can be seen in Figure 4.

ց

→

ր

Figure 4. Some examples of compactified boundaries

Proof of Proposition 3. All the functions, f , g, ϕ and φ are functions of one variable.
Taking into account the symmetry of the hypotheses (H) with respect to the origin we
can consider different changes of variables for the positive and the negative axes. These
changes define a global piecewise change of class C1 for the variable x and another one
for the variable y. Hence system (4) is equivalent to system (7) and all the conditions of

hypotheses (H) are transformed to the equivalent conditions of hypotheses (H̃). From
the above considerations we only show the changes corresponding to first quadrant, that
is x > 0 and y > 0. The other follow analogously.
Following the classification of Section 2 we consider all possible cases F2, I2, S2, NB2

and B2 because the changes of variables are different for each type.

For the type F2, let us consider the change of variable

w =
x2x

(x2 − 1)x+ x2
which inverse is x =

x2w

(1− x2)w + x2
,

that transforms (4) to {
ẇ = yϕ′(y),

ẏ = −g̃(w)− f̃(w)ψ(y)

where

g̃(w) =

x22 g

(
x2w

(1 + x2)w + x2

)

((1− x2)w + x2)
2 and f̃(w) =

x22 f

(
x2w

(1 + x2)w + x2

)

((1− x2)w + x2)
2

and the corresponding side of the boundary of the transformed D is the line w = 1.
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For the type I2, we consider the change of variable

w =
x

1 + |x| which inverse is x =
w

1− |w| , (8)

that transforms (4) to {
ẇ = yϕ′(y),

ẏ = −g̃(w)− f̃(w)ψ(y)

where

g̃(w) =

g

(
w

1− |w|

)

(1− |w|)2 and f̃(w) =

f

(
w

1− |w|

)

(1− |w|)2 .

Moreover, the line w = 1 contains the corresponding side of the boundary of the trans-
formed D.

For the type S2, consider the change of variable

z =
y22y

y2 − y2(2− y2)y + y22

which inverse is

y =
y2
2z

(
(2− y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

)
,

and (4) writes as
{
ẋ =

y2
2z

(
(2− y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

)
ϕ̃′(z),

ż = −g(x)− f(x)ψ̃(z),

where

ϕ̃(z) = ϕ
( y2
2z

(
(2− y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

))
,

ψ̃(z) = ψ
( y2
2z

(
(2− y2)z + y2 −

√
y2(z − 1)((y2 − 4)z − y2)

))
and

z = 1 contains the boundary of the transformed D.

For the type NB2, let us consider the change of variable

z =
y

1 + |y| which inverse is y =
z

1− |z| , (9)

and (4) writes as 



ẋ = z
ϕ̃′(z)

1− |z| ,
ż = −g(x)− f(x)ψ̃(z)

where

ϕ̃(z) = ϕ

(
z

1− |z|

)
, ψ̃(z) = ψ

(
z

1− |z|

)

and z = 1 contains a piece of the boundary of the transformed D.
Finally, for the type B2 if lim

y→y2
ϕ(y) = ν2, the change of variable needed is

z =

ϕ

(
ν2
ϕ′(0)

y

)

ν2
which inverse is y =

ϕ′(0)

ν2
ϕ−1(ν2z),
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that allow us to express (4) as follows
{
ẋ = γ(z),

ż = −g(x)− f(x)ψ̃(z),

where

γ(z) =
(ϕ′(0))2

ν2
ϕ−1(ν2z)

ϕ′
(
ϕ′(0)

ν2
ϕ−1(ν2z)

)

ϕ′ (ϕ−1(ν2z))
, ψ̃(z) = ψ

(
ϕ′(0)

ν2
ϕ−1(ν2z)

)

and again z = 1 contains the boundary of the transformed D.
The proof ends checking that the global piecewise changes are all C1. This is done

because any of the previous changes are of class C1 for x 6= 0 or y 6= 0. Moreover,
the left and right derivatives at the origin coincides, in fact, w′(0+) = w′(0−) = 1 and
z′(0+) = z′(0−) = 1. Therefore we combine the changes depending on the behavior at
R+ and R−. �
Under hypothesis (H0), system (4) satisfies the sufficient conditions to assure existence

and unicity of any initial value problem in D. Then, from the previous proposition, this

is also done for the equivalent system (7) in the corresponding D̃.

4. State functions

In a general framework, a differential equation can be thought as a dynamical system.
In that case, a function of state, also called state function, E is a property of the system
that depends only on the current state of it. That is, the value of the function E at
some point is independent of the processes undergone by the system to arrive to this
value. State functions usually appear in physical and chemical systems, for example the
mass, the energy, the entropy and the temperature, among others.
The state functions, for system (4), described in this section are constructed as first in-

tegrals in the null friction and the null acceleration cases, (5) and (6) respectively. They
are very helpful in the study of system (4), particularly in the proof of the Uniqueness
Theorem, Theorem 2.

Lemma 4. [Primary Energy Function] The function E(x, y) = G(x) + Φ(y), where
G(x) =

∫ x
0
g(u)du and Φ(y) =

∫ y
0
vϕ′(v)dv, is a first integral of system (5) in D.

Moreover E(0, 0) = 0 and the origin is a local center.

Proof. Straightforward computations show that E is well defined and Ė ≡ 0 over the
solutions of system (5). The existence of the first integral and the monodromic structure
of the origin gives the center property �
Likewise, next result holds.

Lemma 5. [Secondary Energy Function] The function J(x, y) = F (x) + Ψ(y), where

F (x) =
∫ x
0
f(u)du and Ψ(y) =

∫ y
0
vϕ′(v)
ψ(y)

dv, is a first integral of (6) in D. Moreover

J(0, 0) = 0.

5. Existence results

Theorem 1, the Existence Theorem, is a consequence of the results of this section. In
order to simplify the reading of all the results we refer to system (4), defined in D, for the

functions f, g, ϕ, ψ and to system (7), defined in D̃, for the corresponding transformed

functions f̃ , g̃, χ, ψ̃, via the change of variables of Proposition 3. Additionally we also

assume the hypothesis (H) on (4) and (H̃) on (7).
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5.1. Local stability of the origin. Let us show some conditions so that system (4)
has a singular point at the origin which stability can be determined.

Proposition 6. Assume that f and ψ vanish only on a finite number of points in
neighborhoods of the origin Ix = [x−, x+] ⊂ (x1, x2) and Iy = [y−, y+] ⊂ (y1, y2), re-
spectively. If sign f(x) and sign yψ(y) are constant in Ix and Iy, then the origin is a
repellor (attractor) when yψ(y)f(x) ≤ 0 (≥ 0). Moreover the basin of repulsion (at-
traction) contains the biggest level curve of the Primary Energy Function E, defined in
Lemma 4, completely contained in Ix × Iy.

Proof. By equation (4) we have

Ė = g(x)ẋ+ yϕ′(y)ẏ = g(x)yϕ′(y) + yϕ′(y)(−g(x)− f(x)ψ(y)) = −yψ(y)ϕ′(y)f(x).

As ϕ′(y) > 0 for every y ∈ (y1, y2) \ {0} the sign of Ė is constant in a neighborhood
of the origin. Thus we can assure that the stability of the origin, applying Hartman’s
Theorem, is done by the sign of yψ(y)f(x). �

5.2. Stability of the infinity. This section is devoted to prove that the boundary of D
is a repellor under the hypotheses of Theorem 1. First, we study how the compatification
transforms the hypotheses. Second, Proposition 14 explains the behavior of the orbits

close to the boundaries of the compactified domain D̃ and Definition 15 introduces the
notion of regular and singular points in the boundary. Propositions 17 and 18 establish
the dynamics of the finite points and Corollary 19 shows that their ω-limit remains in

D̃ or is the full boundary. Finally, we prove that the boundary is a repellor considering
two cases. Proposition 20 deals with the case with singular points on the boundary
different from the vertex and Proposition 21 without them.

Lemma 7. If yψ(y) > 0 then zψ̃(z) > 0.

Lemma 8. If there exist δ, η ∈ R, with x1 < η < 0 < δ < x2, where f(x) > 0 for

all x ∈ (x1, x2) \ [η, δ], we have that there exist δ̃, η̃ ∈ R, with −1 < η̃ < 0 < δ̃ < 1,

satisfying f̃(w) > 0 for all w ∈ (−1, 1) \ [η̃, δ̃].

Lemma 9. Assume that there exists y0 ∈ (y1, y2) such that −ψ(y0) ∈
[
lim inf
x→xi

g(x)

f(x)
,

lim sup
x→xi

g(x)

f(x)

]
for at least one of the xi and a neighborhood U of y0 where sign(ψ′(y))

is constant almost for every y in U . Then this properties are also satisfied in the
compactified domain.

The proofs of the above lemmas involve straightforward computations, using the
appropriate change of variables from the proof of Proposition 3.

Lemma 10. Assume that there exist δ, η ∈ R, with x1 < η < 0 < δ < x2, such that
f(x) > 0 for all x ∈ (x1, x2) \ [η, δ], and λi ∈ R+ ∪ {+∞} such that, for i = 1, 2,

if |xi| = +∞, lim inf
x→xi

x(|g(x)|+ f(x)) = λi, or

if xi ∈ R, lim inf
x→xi

|x− xi|(|g(x)|+ f(x)) = λi.

Then there exist λ̃i ∈ R+ ∪ {+∞} such that lim inf
w→wi

|w − wi|(|g̃(x)| + f̃(x)) = λ̃i, for

i = 1, 2.
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Proof. The statement follows immediately for xi ∈ R, so we only prove it for |x2| = +∞.
The case |x1| = +∞ is analogous. From the change of variables (8) we have

lim inf
w→1

|1− w|(|g̃(w)|+ f̃(w)) = lim inf
x→x2

(
1− x

1 + x

)
g(x) + f(x)
(
1− x

1 + x

)2 =

= lim inf
x→x2

(1 + |x|)(|g(x)|+ f(x)) = β + λ.

And the above expression is positive because β = lim inf
x→x2

(|g(x)|+f(x)) ≥ 0, since |g(x)|
and f(x) are positive functions for |x| large enough. �

Lemma 11. The function χ satisfies lim
|z|→1

|χ(z)| = +∞.

Proof. We restrict the proof to the case z > 0. The other cases are analogous. Following
the structure of proof of Proposition 3 we consider the types S2, NB2 and B2.

For S2 we have χ(z) =
y2
2z

((2− y2)z + y2 − ζ) ϕ̃′(z) with

ϕ̃′(z) =
((2− y2)z + y2 − AAA) y22

2z2ζ
ϕ′
( y2
2z

((2− y2)z + y2 − ζ)
)

and ζ =
√
y2(z − 1)((y2 − 4)z − y2).

As we are in the singular type, lim
y→y2

ϕ′(y) = +∞. If not, ϕ can be regularly extended

from y = y2, which contradicts the maximality of the domain D. Thus,

lim
z→1

χ(z) = lim
y→y2

yϕ′(y)
(y2 − y2(2− y2)y + y22)

2

y22(y2 − y)(y2 + y)
= +∞.

For NB2 we have χ(z) = zϕ̃′(z)/(1 − z) = zϕ′ (z/(1 − z)) /(1 − z)3 with z ∈ (0, 1)
and

lim
z→z2

χ(z) = lim
y→y2

y(1 + y)2ϕ′(y) = +∞

because lim
y→y2

y2ϕ′(y) = +∞. We show this assertion by contradiction. Assume that

lim
y→y2

y2ϕ′(y) = α where α is a real number. Then there exists y0 > 0 such that ϕ′(y) <

(α+ 1)/y2 for all y > y0. So, it follows that

ϕ(y) =

∫ y

0

ϕ′(v)dv =

∫ y0

0

ϕ′(v)dv +

∫ y

y0

ϕ′(v)dv = ϕ(y0) +

∫ y

y0

ϕ′(v)dv <

< ϕ(y0) +

∫ +∞

y0

α + 1

v2
dv = ϕ(y0) +

−(α + 1)

v

∣∣∣∣
+∞

y0

= ϕ(y0) +
α+ 1

y0

for all y ∈ (0,+∞). It means that ϕ is a bounded function, which contradicts the
condition of being of type NB2.
We conclude considering the type B2. We have

lim
z→1

χ(z) = lim
z→z2

ϕ′(0)2

ν2
ϕ−1(ν2z)

ϕ′
(
ϕ′(0)

ν2
ϕ−1(ν2z)

)

ϕ′(ϕ−1(ν2z))
= lim

y→+∞
ϕ′(0)y

ϕ′(y)

ϕ′
(

ν2
ϕ′(0)

y

) = +∞,
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because

lim
y→+∞

ϕ′(y)

ϕ′
(

ν2
ϕ′(0)

y

) = 1.

This equality follows from lim
y→+∞

ϕ′(y) = 0, hence ϕ′(y) is a Cauchy function. Let ε ∈
(0, 1) and δ = ε

3
. Thus there exists y0 such that for all y > y0, |ϕ′(y)− ϕ′(ν2y/ϕ′(0))| < δ

holds. Therefore,

min

{
1− δ,

1

1 + δ

}
<

ϕ′(y)

ϕ′
(

ν2
ϕ′(0)

y

) < max

{
1 + δ,

1

1− δ

}

and, consequently,

1− ε

2
< 1− ε

3
≤ ϕ′(y)

ϕ′
(

ν2
ϕ′(0)

y

) ≤ 3

3− ε
< 1 +

ε

2
.

�

Lemma 12. If the limit lim
y→yi

ψ(y)

yϕ′(y)
is real then lim

z→zi

ψ̃(z)

χ(z)
= 0, for i = 1, 2.

Proof. Let us just consider the case i = 2, that is z2 = 1. The case i = 1 follows
analogously. The different types that should be considered are S2, NB2 and B2.
We start with type S2,

lim
z→1

ψ̃(z)

χ(z)
= lim

y→y2

y22(y2 − y)(y2 + y)

(y2 − y2(2− y2)y + y22)
2

ψ(y)

yϕ′(y)
=

2

y32
lim
y→y2

(y2 − y)
ψ(y)

yϕ′(y)
= 0.

For type NB2, let us consider the change (9) and we obtain

lim
z→z2

ψ̃(z)

χ(z)
= lim

z→z2
(1− z)

ψ

(
z

1− z

)

z

1− z
ϕ′
(

z

1− z

) = lim
y→+∞

1

1 + y

ψ(y)

yϕ′(y)
= 0.

Finally, let us consider type B2. Since lim
y→+∞

ϕ′(y) = 0, we have

lim
z→z2

ψ̃(z)

χ(z)
= lim

y→+∞

ψ(y)ϕ′
(

ν2
ϕ′(0)

y

)

ϕ′(0)yϕ′(y)
=

1

ϕ′(0)
lim

y→+∞
ψ(y)

yϕ′(y)
ϕ′
(

ν2
ϕ′(0)

y

)
= 0.

�

Lemma 13. Let h be a function of class C0,1([0, 1)), if lim inf
s→1

(1 − s)h(s) > 0 then
∫ 1

0
h(s)ds = +∞.

Proof. From the statement, lim inf
s→1

(1 − s)h(s) = λ for a positive real number λ. Thus,

there exists ε ∈ (0, 1) such that h(s) ≥ λ/(2(1− s)), for all s ∈ (1− ε, 1). Hence,
∫ 1

0

h(s)ds =

∫ 1−ε

0

h(s)ds+

∫ 1

1−ε
h(s)ds.
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The proof ends because h(s) is bounded in [0, 1− ε] and
∫ 1

1−ε
h(s)ds ≥

∫ 1

1−ε

λ

2

1

1− s
ds = +∞.

�
Next result extends the dynamics to the boundary of D̃. Then we study the behavior

of the orbits in each quadrant.

Proposition 14. Consider system (7) under the hypotheses (H̃). Additionally we as-
sume that

(i) there exist real numbers δ̃, η̃, such that −1 < η̃ < 0 < δ̃ < 1, and f̃(w) > 0 for all

w ∈ (−1, 1) \ [η̃, δ̃],
(ii) there exists λ̃i ∈ R+ ∪ {+∞} with lim inf

w→wi

|w−wi|(|g̃(x)|+ f̃(x)) = λ̃i, for i = 1, 2,

(iii) zψ̃(z) > 0 for all z 6= 0,
(iv) lim

|z|→1
|χ(z)| = +∞, and

(v) lim
z→zi

ψ̃(z)/χ(z) = 0, for i = 1, 2.

Then for i = 1, 2, given w0, z0 ∈ (−1, 1) such that −ψ̃(z0) /∈
[
lim inf
w→wi

g̃(x)

f̃(x)
, lim sup

w→wi

g̃(x)

f̃(x)

]
,

the vector field defined by (7) is topologically equivalent to
{
ẇ = sign(zi),
ż = 0,

or

{
ẇ = 0,

ż = lim
w→wi

sign(−g̃(w)− f̃(w)ψ̃(z0))

in a neighborhood of (w0, zi) or (wi, z0), respectively.

Proof. First we prove the equivalence for neighborhoods of points (w0,±1). For any
z 6= 0, we can rewrite the system (7) with a positive time rescaling as

{
ẇ = sign(χ(z)),

ż = −g̃(w)−f̃(w)ψ̃(z)
|χ(z)| .

(10)

For any fixed w0 ∈ (−1, 1), applying (iv) and (v), we have ż → 0 when z → ±1. It

means that the segments of the boundary of D̃ contained in {z = ±1} are invariant for

(10). Using hypotheses (H̃), χ(z) and z have the same sign, so the proof, for this case,
ends.
Finally, we only prove the equivalence for neighborhoods of points (1, z0). For the

points (−1, z0) the proof is analogous. For any z0 satisfying −ψ̃(z0) /∈
[
lim inf
w→1

g̃(w)/f̃(w),

lim sup
w→1

g̃(w)/f̃(w)
]
there exists a neighborhood of (1, z0) in D̃ such that g̃(w)+f̃(w)ψ̃(z)

does not vanishes. In this neighborhood, system (7) is equivalent to




ẇ =
χ(z)

| − g̃(w)− f̃(w)ψ̃(z)|
,

ż = sign(−g̃(w)− f̃(w)ψ̃(z)).

Hence, the equivalence follows similarly to the previous case. �
Definition 15. We say that the points (w0,±1) or (±1, z0), are regular points in the
boundary when they satisfy the properties of the Proposition 14. The other points,
including the vertex, are called singular.
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Remark 16. Proposition 14 extends the dynamical behavior of system (7) in D̃ to the
regular points of its closure. See a possible phase portrait in Figure 5.

bc bc

bc bc

Figure 5. An example of a phase portrait on the boundary. The rounded
regions represent the set of singular points

Proposition 17. Under the assumptions of Proposition 14, the positive orbit of every
point in [0, 1)× (0, 1) (resp. in (−1, 0]× (−1, 0)) cuts transversally, in finite time, the
segment (0, 1)× {0} (resp. (−1, 0)× {0}). See Figure 6.

bc

δ̃0

1

1

Figure 6. Phase portrait of system (7) on the first quadrant

Proof. We only prove the result on the first quadrant. The other follows by symmetry.
The first component of the vector field on the points over the positive z-axis is greater

than zero. Proposition 14 provides a Flow Box argument for the vector field (7) in the
neighborhood of the points (0, 1) × {1}. As there are no critical points with w > 0,
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z > 0 in D̃, the proof ends, from the Poincaré-Bendixson Theorem, showing that there
are no orbits tending to (1, z0) with z0 > 0. We prove it by contradiction.

In a neighborhood of the segment {1}×(0, 1) in D̃, condition (ii) implies that lim
w→1

(1−
w)g̃(w) or lim

w→1
(1 − w)f̃(w) is strictly positive. Then, one of the state functions of

Section 4, after the changes of variables of Proposition 3,

Ẽ(w, z) = G̃(w) + Φ̃(z) =

∫ w

0

g̃(u)du+

∫ z

0

χ(v)dv

J̃(w, z) = F̃ (w) + Ψ̃(z) =

∫ w

0

f̃(u)du+

∫ z

0

χ(v)

ψ̃(v)
dv,

goes to infinity when (w, z) tends to the boundary of D̃ by Lemma 13.
Therefore, if an orbit goes to the boundary then one of the state functions goes to

infinity. This contradicts with the fact that both state functions decrease over the

solutions of the vector field on the region w > δ̃ and z > 0. Because, by (i) and (H̃),

˙̃
E(w, z) = g̃(w)ẇ + χ(z)ż = −f̃ (w)ψ̃(z)χ(z) < 0

and
˙̃
J(w, z) = f̃(w)ẇ +

χ(z)

ψ̃(z)
ż = −g̃(w)χ(z)

ψ̃(z)
< 0.

�
Proposition 18. Under the assumptions of Proposition 14, the positive orbit of every
point in (0, 1)× (−1, 0] (resp. in (−1, 0)× [0, 1)) cuts transversally, in finite time, the
segment {0} × (−1, 0) (resp. {0} × (0, 1)). See Figure 7.

bc

w

Figure 7. Phase portrait of system (7) on the fourth quadrant

Proof. We only prove the result on the fourth quadrant, the other follows by symmetry.
The second component of the vector field on the points over the positive w-axis is

negative. Proposition 14 provides a Flow Box argument for the vector field (7) in the
neighborhood of the points (0, 1) × {−1}. As there are no critical points with w > 0,

z < 0 in D̃, the proof ends, from the Poincaré-Bendixson Theorem, using the condition
ẇ = χ(z) < 0 on the fourth quadrant. �
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The last two propositions imply the next corollary.

Corollary 19. The ω-limit of a finite point of D̃ can not be partially contained in the
corresponding boundary.

Finally, the proof of Theorem 1 follows from the next two propositions. In the first
result, the boundary always presents singular points besides the vertex, while in the
second does not.

Proposition 20. Consider system (4) under the hypotheses (H) and satisfying that

(i) there exist δ, η ∈ R, with x1 < η < 0 < δ < x2, such that f(x) > 0 for all
x ∈ (x1, x2) \ [η, δ],

(ii) for each i = 1, 2 there exists λi ∈ R+ ∪ {+∞} such that, if |xi| = +∞, then
lim inf
x→xi

x(|g(x)|+f(x)) = λi, and if xi ∈ R, then lim inf
x→xi

|x−xi|(|g(x)|+f(x)) = λi,

(iii) yψ(y) > 0 for all y 6= 0,
(iv) for i = 1, 2, lim

y→yi
ψ(y)/(yϕ′(y)) ∈ R,

(v) there exists y0 ∈ (y1, y2) such that −ψ(y0) ∈
[
lim inf
x→xi

g(x)/f(x), lim sup
x→xi

g(x)/f(x)
]

for at least one of the xi, i = 1, 2, and there exists U , neighborhood of y0, such
that sign(ψ′(y)) is constant almost for every y ∈ U .

Then, the boundary of D is a repellor.

Proof. Applying Lemmas 7 to 12 to system (7), we can compactify and we are on the
hypotheses of Propositions 14. Then, from statement (v), see Lemma 9, there exists

z0 ∈ (−1, 1) such that −ψ̃(z0) is in Ii =
[
lim inf
w→wi

g̃(w)/f̃(w), lim sup
w→wi

g̃(w)/f̃(w)

]
for at

least one of the wi and there exists a neighborhood, Ũ , of z0 such that sign(ψ̃′(z)) is

constant almost for every z ∈ Ũ .

We only prove the case w2 = 1 and ψ̃′(z) > 0. The other cases follow similarly.
The proof is done in two steps. In the first one, we study the behavior of the vector

field close to (1, z0) and, in second place, we construct a negatively invariant region that
proves that the infinity is a repellor. For the first step we distinguish two different cases,
when I2 is a proper interval or it reduces to a point.

If we are in the first case, we can assume that φ̃(z0) is in the interior of I2. From
the definition of lim inf and lim sup, there exists a sequence {wn}+∞

n=1 ⊂ (0, 1) such that

lim
n→+∞

wn = 1 and −g̃(wn) − f̃(wn)ψ̃(z0) = 0. Moreover, there exists ε > 0 such that

(z0 − ε, z0 + ε) ⊂ Ũ and ψ̃(z0 − δ) < ψ̃(z0) < ψ̃(z0 + δ), for all δ in (0, ε). Hence, it
follows that for all n ∈ N and δ ∈ (0, ε) we have ż(wn, z0− δ) > 0 and ż(wn, z0+ δ) < 0,
and consequently there exists an orbit, Γ(z0), which α-limit set is the point (1, z0). See
Figure 8.

In the second case, −ψ̃(z0) = lim
w→1

g̃(w)/f̃(w) and ψ̃′(z) > 0 in Ũ . Then the branch

of ψ̃−1
(
−g̃(w)/f̃(w)

)
defined in Ũ is a well defined function for all w ∈ (1− γ, 1) for a

positive small enough γ. Similar arguments as the ones in the previous case imply that
Γ(z0) also exists. See Figure 9.
For the second step, Propositions 17 and 18 imply that the orbit Γ(z0) touches the

positive w-axis, in finite time, passing through all quadrants in counterclockwise direc-
tion. We call (ŵ, 0) the first time that this happens and (ŵ, ẑ) the first time that the

orbit Γ(z0) cuts the straight line w = ŵ in the fourth quadrant. Then, by (H̃5), the
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z0

z0 + ε

z0 − ε
wn wn+1 wn+2 . . .

(a) ψ̃′(z) > 0

z0

z0 + ε

z0 − ε
wn wn+1 wn+2 . . .

(b) ψ̃′(z) < 0

Figure 8. Behavior of the flux near to a continuum of singular points
in the boundary

b

b

z0

Figure 9. Behaviour of the flux near to an isolated singular point in the boundary

region defined by Γ(z0) between (ŵ, ẑ) and (ŵ, 0) and the segment with those endpoints,

Ŝ, is positively invariant. The proof ends because the positive orbits of all points in the

complement of this region in D̃ cross the segment Ŝ. See Figure 10.

bc bc

bc bc

Figure 10. Positively invariant region when the boundary has singular
points different from the vertex

�
Proposition 21. Consider system (4) under the hypotheses (H) and satisfying that

(i) there exist δ and η in R, with x1 < η < 0 < δ < x2, such that f(x) > 0 for all

x ∈ (x1, x2) \ [η, δ] and the integral
∫ δ
η
f(x)dx is positive,
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(ii) for each i = 1, 2 there exists λi in R+ ∪ {+∞} such that, if |xi| = +∞, then
lim inf
x→xi

x(|g(x)|+f(x)) = λi, and if xi ∈ R, then lim inf
x→xi

|x−xi|(|g(x)|+f(x)) = λi,

(iii) yψ(y) > 0 for all y 6= 0,
(iv) for i = 1, 2, lim

y→yi
ψ(y)/(yϕ′(y)) ∈ R.

Then the boundary of D is a repellor.

Proof. System (4) from Proposition 3 and Lemmas 7 to 12, writes as the compactified

equivalent system (7) in D̃. In order to obtain a contradiction, we suppose that the
boundary of D is not a repellor. Hence, Propositions 14, 17 and 18 ensure the existence
of a return map close to the boundary. More concretely, for ε > 0 small enough,
there exists an orbit, Γε, that starts at (η̃, z0) with z0 ∈ (1 − ε, 1), cuts after a time
T the segment {η̃} × (0, 1) at (η̃, zT ) with zT ∈ [z0, 1) and remains, for positive time,
in (−1, 1) × (−1, 1) \ (−1 + ε, 1 − ε) × (−1 + ε, 1 − ε). See Figure 11. Let us denote

by (η̃, z0), (δ̃, z1), (δ̃, z2), (η̃, z3) and (η̃, zT ) the consecutive cutting points of Γε with

the segments {η̃} × (−1, 1) and {δ̃} × (−1, 1). Consequently, z0, z1, zT ∈ (1 − ε, 1) and
z2, z3 ∈ (−1,−1 + ε).

bc bc

bc bc

1

1− ε

−1 + ε

−1

11− εδ̃η̃−1 + ε−1

Figure 11. Phase portrait, close boundary, of Γε when the boundary of
D̃ is not a repellor

The contradiction is obtained checking that the primary energy function Ẽ, see

Lemma 4, in (η̃, zT ) is lower than in (η̃, z0). Because, as z
∂Ẽ

∂z
= zχ(z) > 0 for all

z 6= 0, Ẽ grows when |z| grows but zT ≥ z0. So, we conclude proving that Ẽ decreases
when the orbit passes through the consecutive cutting points defined before.

Straightforward computations show that, from (i), there exist η̃, δ̃ satisfying −1 <

η̃ < 0 < δ̃ < 1 and
∫ δ̃
η̃
f̃(s)ds > 0. Then there exists a positive real number A such that

−
∫ δ̃
η̃
f̃(s)ds+2M(δ̃− η̃)/A < 0, where M = max

w∈(η̃,δ̃)
|g(w)|. By hypotheses (H), (iv) and

Lemma 12, we obtain that lim
z→zi

χ(z) = +∞ and lim
z→zi

ψ̃(z)/χ(z) = 0 or, equivalently,

lim
z→zi

χ(z)/ψ̃(z) = +∞, for i = 1, 2. Therefore we fix ε > 0, small enough, such that

χ(z) > A2 and χ(z)

ψ̃(z)
> A for all z ∈ (1− ε, 1) ∪ (−1,−1 + ε).
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Hence, writing equation (7) as dz/dw = −g̃(w)/ψ̃(z) − f̃(w)ψ̃(z)/χ(z), we can esti-
mate the differences

z1 − z0 =

∫ δ̃

η̃

(
− g̃(w)
ψ̃(z)

− f̃(w)ψ̃(z)

χ(z)

)
dw ≤ 1

A

(∫ δ̃

η̃

−f̃ (w)dw +
M

A
(δ̃ − η̃)

)
< 0,

G̃(δ̃)−G̃(η̃) =
∫ δ̃

η̃

g̃(w)dw ≤M(δ̃−η̃) and Φ̃(z1)−Φ̃(z0) = −
∫ z0

z1

χ(z)dz ≤ −A2(z0−z1),

where the G̃ and Φ̃ are the compactified functions defined in Lemma 4. Thus, the
primary energy function satisfies

Ẽ(δ̃, z1)− Ẽ(η̃, z0) ≤M(δ̃ − η̃) + A2(z1 − z0) ≤ 2M(δ̃ − η̃)−A

∫ δ̃

η̃

f̃(w)dw < 0.

So, the energy decreases from (η̃, z0) to (δ̃, z1) and from (δ̃, z2) to (η̃, z3), applying the
same argument replacing z0 and z1 by z2 and z3, respectively.

Finally, the energy also decreases from (δ̃, z1) to (δ̃, z2) and from (η̃, z3) to (η̃, zT )

because f̃(w) > 0 and
˙̃
E = −f̃(w)χ(z)ψ̃(z) ≤ 0, for all w ∈ (−1, 1) \ [η̃, δ̃] and z ∈

(−1, 1). �

6. Uniqueness of limit cycle

This section is devoted to prove the Unicity result, Theorem 2.
Proposition 6 shows that the origin is the unique singular point, which is a repellor.

Additionally, there is no periodic orbits entirely contained in (a, b) × (y1, y2) because

Ė = −f(x)yϕ′(y)ψ(y) > 0, for all (x, y) ∈ (a, b) × (y1, y2) \ {(0, 0)}. Moreover, all
the periodic orbits contain the region {(x, y) ∈ D : 0 ≤ E(x, y) ≤ min(G(a), G(b))},
because it is negatively invariant. In the proof we assume that G(a) ≤ G(b), in other
case we can change (x, y) by (−x,−y).
The proof is done by the method of comparison. Let us suppose that we have two

different limit cycles, Γ1 and Γ2. Then we prove that the integral of the divergence of
the vector field (4), between them, is different from zero, in fact it is negative. This
contradicts the existence of two limit cycles because it implies that both orbits have the
same stability.
Taking into account the above considerations, there are three possible configurations

of Γ1 and Γ2 in terms of the position of a, b and x0. See Figure 12. We only present
the proof when Γ1 contains the segment (a, x0) × {0} and Γ2 contains the segment
(a, b)× {0}. See Figure 12(b). The proof follows similarly for the other two cases.
The integral of the divergence of equation (4),

divX =
d

dx
(yϕ′(y)) +

d

dy
(−g(x)− f(x)ψ(y)) = −f(x)ψ′(y),

between both periodic orbits is computed decomposing the region in five different regions
Gi, i = 1, . . . , 5. See them in Figure 13.
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a x0 b

Γ1

Γ2

(a)

a x0 b

Γ1

Γ2

(b)

a x0 b

Γ1

Γ2

(c)

Figure 12. Relative positions between Γ1 and Γ2 with respect to the
intervals (a, b) and (a, x0)

G1

G2

G3

G5 G4

Γ1

Γ2

Figure 13. Decomposition of the enclosed region between Γ1 and Γ2

The different time reparametrizations that we use along the periodic orbits, in each
region, are

dt =





1

yϕ′(y)
dx if (x, y) ∈ Γ|G1∪G3

,

− 1

g(x) + f(x)ψ(y)
dy if (x, y) ∈ Γ|G2∪G4,

− ψ(y)

g(x)yϕ′(y)
dJ if (x, y) ∈ Γ|G5 ,
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where J is the secondary energy function, defined in Lemma 5. Then, by the Green’s
Lemma, the integral of the divergence along the curve Γ1 − Γ2 can be written as

∫

Γ1−Γ2

divXdt =

∫∫

G1∪G3

− d

dy

(
f(x)ψ′(y)

yϕ′(y)

)
dx dy+

+

∫∫

G2∪G4

d

dx

(
− f(x)ψ′(y)

g(x) + f(x)ψ(y)

)
dy dx+

+

∫∫

G5

d

dx

(
−f(x)ψ

′(y)ψ(y)

g(x)yϕ′(y)

)
dJ dx =

=

∫∫

G1∪G3

∆1 dx dy +

∫∫

G2∪G4

∆2 dy dx+

∫∫

G5

∆5 dJ dx,

where

∆1=−f(x) d
dy

(
ψ′(y)

yϕ′(y)

)
, for x ∈ (a, b), y ∈ (y1, y2) \ {0},

∆2=−ψ′(y)
g(x)2

(g(x) + f(x)ψ(y))2
d

dx

(
f(x)

g(x)

)
, for x ∈ (x1, x2) \ [a, b], y ∈ (y1, y2) \ {0},

∆5=−ψ
′(y)ψ(y)

yϕ′(y)

(
−f(x)
g(x)

)
, for x ∈ (x0, b), y ∈ (y1, y2) \ {0}.

The proof ends because, from the statements, it can be checked that all the integrands,
∆1, ∆2 and ∆5, are negative in each region where they are considered.
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[4] Z. Došlá, M. Cecchi, and M. Marini. Asymptotic problems for differential equations with bounded
Φ-Laplacian. Electron. J. Qual. Theory Differ. Equ., (Special Edition I):No. 9, 18, 2009.

[5] L. Gold. Note on the relativistic harmonic oscillator. J. Franklin Inst., 264:25–27, 1957.
[6] H. Goldstein. Classical mechanics. Addison-Wesley Publishing Co., Reading, Mass., second edition,

1980. Addison-Wesley Series in Physics.
[7] J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of

vector fields, volume 42 of Applied Mathematical Sciences. Springer-Verlag, New York, 2002. Re-
vised and corrected reprint of the 1983 original.

[8] N. Levinson and O. K. Smith. A general equation for relaxation oscillations. Duke Math. J.,
9:382–403, 1942.

[9] C. Li and J. Llibre. Uniqueness of limit cycles for Liénard differential equations of degree four. J.
Differential Equations, 252(4):3142–3162, 2012.
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