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Abstract

We consider a polymeric fluid model, consisting of the incompressible Navier-
Stokes equations coupled to a non-symmetric Fokker-Planck equation. First, steady
states and exponential convergence to it in relative entropy are proved for the linear
Fokker-Planck equation in the Hookean case. The FENE model is also addressed
proving the existence of stationary states and the convergence towards them in
suitable weighted norms. Then, using the “entropy method” exponential conver-
gence to the steady state is established for the coupled model in the Hookean case
under some smallness assumption. The results continue and expand the analysis
of [JLLO] in both the Hookean and the FENE models.

1 Introduction

We consider a coupled microscopic-macroscopic model for a dilute solution of polymers
in a homogeneous fluid. The incompressible Navier-Stokes equations for the macro-
scopic flow shall be coupled via the stress tensor to a microscopic model for the poly-
mer chains distributed within the fluid (cf. [BAH, BCAH, DE, OP] for the physical
background of such models). Let us briefly review the coupled model for the polymer
distribution within a macroscopic flow. After putting the system in non-dimensional
form and setting all remaining dimensionless parameters equal to one for notational
simplicity, it reads as follows

∂u

∂t
(t, x) + (u(t, x)·∇x)u(t, x) = ∆xu(t, x) −∇xp(t, x) + divxτ(t, x) , (1.1)

divxu = 0 , (1.2)

τ(t, x) =

∫

IRd

(X ⊗∇XΠ(X))ψ(t, x,X) dX , (1.3)
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where u(t, x), x ∈ Ω ⊂ IRd, d ≥ 2 is the velocity field of the fluid, p(t, x) the pressure,
and τ(t, x) the stress tensor. This system is coupled through Eq. (1.3) to the follow-
ing microscopic model for the polymer evolution. Here, the polymers are modeled as
dumbbells of length and orientation given by the vector X ∈ IRd. The Fokker-Planck–
type evolution equation for ψ(t, x,X), the probability density of dumbbells w.r.t. the
(microscopic) extension X at time t and (macroscopic) position x reads

∂ψ

∂t
(t, x,X) + (u(t, x)·∇x)ψ(t, x,X)

= − divX

([
∇x ⊗ u(t, x) ·X − 1

2
∇XΠ(X)

]
ψ(t, x,X)

)

+
1

2
∆X ψ(t, x,X) . (1.4)

Here, ∇XΠ(X) denotes the recovering force field between the two beads of the dumb-
bells modelled as a spring with potential Π(X). The term ∇x ⊗ u(t, x) ·X comes from
the deformation of the dumbbell extensions due to the stress forces produced by the
inhomogeneous flow field u. Actually, the derivatives in the Fokker-Planck equation
involving the velocity u can be considered as the Eulerian terms coming from a mi-
croscopic Lagrangian description, see [BAH, OP, DLY, HCDL] for a full discussion of
the model. The model of Hookean dumbbells is obtained by setting the elastic spring
potential Π as Π(X) = |X|2, while the finite extensible nonlinear elasticity (FENE)
model of polymeric fluids comes from choosing

Π(X) = − b
2

ln

(
1 − |X|2

b

)
,

with b ≥ 2.
Under suitable boundary conditions, the equations (1.1)-(1.4) admit special solu-

tions in the form of homogeneous flows (i.e. ∇x⊗u = κ) with a stationary distribution
of the polymer extensions. The stability of such solutions will be one topic of this
paper. But first we shall focus on the x–homogeneous equation associated to (1.4) and
the coupled system (1.1)-(1.4). Using the entropy–entropy dissipation method we shall
analyze its large-time behavior. In particular we prove its exponential convergence to
equilibrium solutions in the form of homogeneous stationary flows.

The goal of this paper is to answer several open questions posed in [JLLO], more
precisely:

A. Hookean case: existence and uniqueness of stationary states for a general de-
formation matrix κ and convergence in relative entropy to them, both for the
x–homogenous case and in the coupled case under the assumption of a small
deformation matrix.

B. FENE case: existence, uniqueness, and asymptotic stability for the x–homogenous
case in weighted L2–spaces in a more general setting than in [JLLO].

But we cannot yet conclude large time convergence in relative entropy in the FENE case,
as we are still lacking certain bounds on the stationary states, see §2.4. This relative
entropy convergence result would immediately imply asymptotic stability results of
these homogeneous stationary flows for the coupled system for the FENE case by
repeating the arguments of [JLLO, Theorem 1] or [JLLO, Proposition 9].
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The paper is organized as follows: In §2 we study the linear Fokker-Planck equation
(1.4) for the dumbbell distribution in a given, homogeneous flow field ∇x⊗u = κ. Sta-
tionary states ψ∞ and exponential convergence of ψ(t,X) towards them are established
for Hookean dumbbells (for all matrices κ such that 2κ − I is stable) and the FENE
model (under some smallness conditions on κ). In §3 we analyze the coupled system in
the Hookean case with non-homogeneous Dirichlet boundary conditions on u. Under a
smallness assumption on κ and X-moments on ψ, we prove exponential convergence of
(u(t), ψ(t)) to the homogeneous stationary flow (u∞, ψ∞).

2 Homogeneous flow with a given velocity field

In this section we consider the case that the velocity field u is given and that there
exists an arbitrary (but constant in t and x) matrix κ ∈ IRd×d such that

u(t, x) = κx . (2.1)

Then we rewrite Eq. (1.4) for the unknown ψ = ψ(t,X), which is now independent of
the space variable x:

∂ψ

∂t
(t,X) = Lψ(t,X) , t > 0 , X ∈ IRd, (2.2)

Lψ(X) :=
1

2
divX ([∇XΠ(X) − 2κX]ψ(X)) +

1

2
∆Xψ(X),

ψ(0,X) = ψ0(X) .

Assuming ψ0 ≥ 0 implies ψ(t,X) ≥ 0 for t > 0 by a parabolic maximum principle.
Moreover, the divergence form of (2.2) implies that ψ stays normalized under time
evolution:

∫
ψ(t,X) dX =

∫
ψ0(X) dX = 1.

Now we shall analyze the large-time behavior of (2.2) for three types of (given)
potentials Π(X): Hookean dumbbells, § 2.2, the finite extensible nonlinear elasticity
(FENE) model of polymeric fluids, § 2.4, and general (radially symmetric) potentials
in the special case that κ is a normal matrix, §2.3. To this end we shall apply the
entropy–entropy dissipation method (cf. [AMTU, BE84, MV, ACJ], e.g.).

2.1 Entropy–entropy dissipation method

Let us briefly summarize for later reference the main definitions and the steps of the
entropy–entropy dissipation method. It aims at deriving estimates for the relative
entropy of the solution ψ(t) w.r.t. the steady state ψ∞. For ψ, ϕ two probability
densities on IRd the (logarithmic) relative entropy is defined as

e(ψ|ϕ) :=

∫

IRd

ψ(X) ln
ψ(X)

ϕ(X)
dX ≥ 0 .

Since it satisfies the Csiszár-Kullback inequality [Cs, KL]

‖ψ − ϕ‖2
L1(IRd)

≤ 2e(ψ|ϕ) , (2.3)

it is a measure for the “distance” of ψ to ϕ.
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To apply the entropy–entropy dissipation method for non-symmetric Fokker-Planck
equations (cf. §2.4 of [AMTU]) we shall proceed in three steps: Firstly, we shall prove
the existence of a unique normalized steady state of (2.2). In several cases it is possible
to derive an explicit formula for ψ∞ (cf. §§2.2, 2.3).

In the second step we use the unique normalized steady state ψ∞ to split the drift
vector field in (2.2) as

∇Π(X) − 2κX = ∇A(X) + ~F (X), (2.4)

with
A(X) := − ln(ψ∞(X)) . (2.5)

Since ψ∞ is a steady state of (2.2), we obtain from

divX (∇XA(X)ψ∞ + ∇Xψ∞) = 0 (2.6)

that the (non-gradient) vector field ~F satisfies

divX

(
~Fψ∞

)
= 0 . (2.7)

Accordingly, finding the steady state ψ∞ of (2.2) is equivalent to decomposing the
given vector field (2.4) into a gradient field (∇A) and a divergence-free field (~F , in the
sense of (2.7)). This resembles the Helmholtz-Hodge decomposition in incompressible
fluid mechanics, and we shall illustrate this analogy in subsequent examples. Another
consequence of the above splitting of the drift field is the decomposition of the generator
L into its symmetric and anti-symmetric parts in L2(ψ−1

∞ dX):

Lsψ :=
1

2
divX (∇A(X)ψ + ∇Xψ) =

1

2
divX

(
ψ∞∇X

ψ

ψ∞

)
, (2.8)

Lasψ :=
1

2
divX

(
~F (X)ψ

)
. (2.9)

Note that Ls ≤ 0. Moreover, ψ∞ is not only the steady state of the non-symmetric
Fokker-Planck equation (2.2) but also of its “symmetric part” ψt = Lsψ.

The third step consists in applying Theorem 2.19 of [AMTU]: The entropy decay
of solutions to the non-symmetric Fokker-Planck equation (2.2) is at least as fast as
the decay rate for the corresponding symmetric Fokker-Planck equation ψt = Lsψ.

2.2 Hookean dumbbells

Here we assume that

Π(X) =
|X|2

2
. (2.10)

The resulting model (2.2), (2.10) was already analyzed in §2.1 of [JLLO]. There the
authors established a unique (normalized) steady state ψ∞ and the exponential decay
of the relative entropy for the two cases: κ either symmetric or antisymmetric. But
the generic case was left as an open problem. The following results close this gap in a
unified approach. The next proposition constitutes the first step of the entropy-entropy
method:
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Proposition 2.1 Let the potential Π be defined by (2.10) and let the eigenvalues of
the matrix κ satisfy ℜλj(κ) < 1

2 , j = 1, ..., d. Then there exists a unique normalized
steady state ψ∞ for Eq. (2.2). It has the form

ψ∞(X) = (2π)−d/2(det Σ)−1/2 exp

(
−1

2
XTΣ−1X

)
, (2.11)

with the symmetric, positive definite matrix Σ given by

Σ = 2

∫ ∞

0
e−(I−2κ)θe−(I−2κT )θ dθ . (2.12)

Here, κT denotes the transpose of κ and I the identity matrix. Moreover, the spectral
condition that the eigenvalues of the matrix κ satisfy ℜλj(κ) < 1

2 , j = 1, ..., d is
necessary for the existence of a stationary normalized solution of the form (2.11).

Remark 2.2 For κ normal, (2.12) simplifies to

Σ−1 = I − 2κs , (2.13)

with κs := (κ+ κT )/2.

Proposition 2.1 makes use of the following lemma (cf. [Br, SZ], §2.2 of [HJ]):

Lemma 2.3 Consider the continuous Lyapunov equation

BΣ + ΣBH +Q = 0 (2.14)

for the d × d matrix Σ with a given hermitian and positive definite d × d matrix Q.
A necessary and sufficient condition for the existence of a positive definite, hermitian
solution is that the d× d matrix B is stable (i.e. ℜλj(B) < 0, j = 1, ..., d). Then, the
unique solution is given by

Σ =

∫ ∞

0
eBθQeB

Hθ dθ . (2.15)

The solution of (2.14) can be computed by a standard numerical algorithm [BS],
which is also implemented in MATLAB, e.g.

Proof of Prop. 2.1 The stationary version of Eq. (2.2) with Hookean potential (2.10)
reads

−divX
(
(2κ− I)Xψ(X)

)
+ ∆Xψ(X) = 0 . (2.16)

From this it is natural to assume that 2κ− I is a stable matrix for a confinement on ψ
to exist. Next we Fourier transform (2.16), denoting ψ̂(ξ) := FX→ξψ(X):

ξT (I − 2κ)∇ξψ̂(ξ) = −|ξ|2ψ̂(ξ) . (2.17)

Using the ansatz:

ψ̂(ξ) =
1

Z
exp

(
−1

2
ξTΣ ξ

)
,
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with a positive definite, symmetric matrix Σ and normalization constant Z, Eq. (2.17)
reduces to

ξT ((I − 2κ) Σ − I) ξ = 0 , ∀ξ ∈ IRd , (2.18)

which is equivalent to 0 = −2 ((I − 2κ) Σ − I)s = − (I − 2κ) Σ−Σ (I − 2κ)T +2I. This
is a continuous Lyapunov equation for Σ. Then, Lemma 2.3 guarantees the existence
of a unique positive definite and symmetric matrix Σ, since 2κ − I is stable and 2I
is positive definite and symmetric. Inverse Fourier transformation and normalization
yields (2.11). (2.13) is readily obtained by diagonalizing the normal matrix κ.

Uniqueness of the steady state in the weighted space L2(IRd;ψ−1
∞ dX) directly fol-

lows from the convergence result of Th. 2.5. The fact that the spectral condition is
necessary is included in Lemma 2.3.

An expression closely related to (2.12) is given in [JLLO], Remark 10 for the sta-
tionary stress tensor τ∞(x) in a homogeneous stationary flow.

So far we have established the existence of a unique normalized steady state of Gaus-
sian shape ψ∞(X) = exp (−A(X)) where A(X) is a quadratic polynomial (cf. (2.11)).
In order to prove exponential convergence of ψ(t) to the steady state ψ∞, we apply the
entropy-entropy dissipation method for “non-symmetric diffusion equations” as out-
lined in §2.

First we rewrite (2.2), (2.10) in the following “split form”:

∂ψ

∂t
(t,X) =

1

2
divX

((
∇XA(X) + ~F (X)

)
ψ(t,X)

)
+

1

2
∆Xψ(t,X) , (2.19)

with A(X) := − ln(ψ∞(X)) = 1
2X

TΣ−1X + const and

~F (X) = (I − 2κ)X −∇XA(X) = (I − 2κ− Σ−1)X . (2.20)

Corollary 2.4 Under the assumptions of Prop. 2.1, Eqs. (2.2), (2.10) can be written in
the “split-form” (2.19). In addition to (2.7), the (non-gradient) vector field ~F defined
by (2.20) also satisfies

divX(~F ) = 0 . (2.21)

As a consequence the splitting in (2.19) provides the “pointwise” Helmholtz-Hodge de-
composition of the vector field

∇Π − 2κX = ∇A+ ~F .

Proof of Cor. 2.4 Eq. 2.21 follows from

0 = divX

[
~F e−A(X)

]
= e−A(X)

(
divX ~F −∇XA· ~F

)
,

where

∇XA· ~F = XTΣ−1(I − 2κ− Σ−1)X =
(
XTΣ−1

)
[(I − 2κ)Σ − I]

(
Σ−1X

)
= 0

by (2.18).
Using (2.20), Eq. (2.21) implies Tr(I − 2κ−Σ−1) = 0, and hence TrΣ−1 ∈ IR is always
explicitly computable:

TrΣ−1 = Tr(I − 2κs) = d− 2
d∑

j=1

ℜλj(κ) > 0.
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Compare this expression to (2.13), which holds in the special case κ normal (Remark
2.2).

By using the third step of the entropy-entropy method in §2.1, we can prove the
following:

Theorem 2.5 Let ψ0 ∈ L1(IRd) be a probability density with e(ψ0|ψ∞) < ∞. Under
the assumptions of Prop. 2.1, it holds exponential convergence of ψ(t) towards ψ∞ in
relative entropy with rate λmin(Σ

−1) > 0:

e(ψ(t)|ψ∞) ≤ e−λmin(Σ−1)te(ψ0|ψ∞) , t ≥ 0 . (2.22)

Proof of Thm. 2.5 The decomposition of the generator L (cf. (2.8)) simplifies in the
Hookean case to

Lsψ =
1

2
div(Σ−1Xψ + ∇ψ) , Lasψ =

1

2
~F · ∇ψ .

§2.4 of [AMTU] now applies directly to the non-symmetric Fokker-Planck equation
(2.19): The entropy decay of its solution is at least as fast as that of the symmetric
counterpart ψt = Lsψ. Using the Bakry-Emery convexity condition (cf. [BE84, BE85,
AMTU]) for A(X), the decay rate is given by λmin(Hess(A)) = λmin(Σ

−1) > 0, the
minimal eigenvalue of the matrix Σ−1. Hence we have proved the thesis.

In the two special cases of κ either symmetric or antisymmetric we recover the
results of [JLLO]: For κ symmetric, we have Σ = (I − 2κ)−1 and the decay rate of e(t)
is 1 − 2λmax(κ) > 0, just as in Prop. 1(iv) of [JLLO]. For κ antisymmetric, we obtain
Σ = I, ψ∞(X) = (2π)−d/2e−Π(X) and the decay rate is 1 (like in Prop. 1(i) of [JLLO]).

Remark 2.6 The entropy decay rate of Theorem 2.5 is actually sharp which can be
seen as follows: “Optimal functions” for the entropy decay of the symmetric Fokker-
Planck equation ψt = Lsψ (with the quadratic potential 1

2X
TΣ−1X) are the shifted

Maxwellians µ(X) := ρ∞(X − ξe1), ξ ∈ IR \ {0}, where e1 is an eigenvector of Σ−1 for
λmin(Σ

−1) (cf. §3.5 of [AMTU]). This means that the entropy decay for the symmetric
Fokker-Planck equation with ψ0 = µ is exactly exponential with the rate λmin(Σ

−1).
Note that µ is also an “optimal function” of the corresponding Logarithmic Sobolev
inequality which makes it an equality.

Now we recall that, for a non-symmetric Fokker-Planck equation, the relative en-
tropy e(ψ0|ψ∞) and the entropy dissipation

d

dt
e(ψ(t)|ψ∞)

∣∣∣
t=0

= −1

2

∫

IRd

∣∣∣∣∇
ψ0

ψ∞

∣∣∣∣
2 ψ2

∞

ψ0
dX

both coincide with the terms in its symmetric counterpart – the entropy by definition
and the entropy dissipation because of

∫
(Lasψ0) ln

ψ0

ψ∞
dX = −1

2

∫
ψ∞

~F · ∇ ψ0

ψ∞
dX =

1

2

∫
div(~Fψ∞)

ψ0

ψ∞
dX = 0

(cf. §2.4 of [AMTU]). Hence, for ψ0 = µ and t = 0 the time-derivative of both sides in
(2.22) coincide. And this rules out any better decay rate in Theorem 2.5.

7



Remark 2.7 In [ACJ, AC] an alternative entropy method for non-symmetric diffusion
equations was developed. There, the exponential decay rate of e(t) is estimated by the
uniform convexity of

∂2A

∂X2
− 1

2



 ∂ ~F

∂X
+

(
∂ ~F

∂X

)T

 .

In the Hookean case this lower convexity bound is λ̃ := λmin(2Σ
−1 − I + 2κs) with

Σ = Σ(κ) given by (2.12). As discussed in Remark 2.6 it has to satisfy λ̃ ≤ λmin(Σ
−1)

(which is easily verified numerically). Hence, this approach does not yield a “better”
decay rate for the Hookean dumbbell model having a homogeneous vector field ~F (X) =
(I − 2κ − Σ−1)X. This was to be expected from the examples given in [ACJ], where
improved decay rates were obtained only from highly non-homogeneous vector fields
~F (X).

2.3 General potential with a normal matrix κ

Here we consider (2.2) with a radially symmetric potential Π(X) = π(|X|). While we
present here the whole space problem X ∈ IRd, the same argument applies to bounded
domain models as is §2.4. For κ normal we have the following generalization of Prop. 2.1
(cf. (2.13)):

Proposition 2.8 Let κ be a normal matrix, and let the potential Π and κ satisfy
exp[−Π(X) +XTκsX] ∈ L1(IRd). Then,

ψ∞(X) = C e−Π(X)+XT κsX , (2.23)

with some appropriate constant C, is a normalized steady state of (2.2).

Proof.- Using the matrix decomposition κ = κs +κas, a straightforward computation
yields for all X ∈ IRd:

Lψ∞=−div(κasXψ∞)=XTκas

[
2κsX − X

|X|π
′(|X|)

]
ψ∞=

1

2
XT [κ, κT ]Xψ∞=0.

We remark that for the FENE model, this form of the steady state could also have
been deduced from the estimate (102) in [JLLO].

Now we proceed as in §2.2 and define

A(X) := − ln(ψ∞(X)) = Π(X) −XTκsX + const, ~F (X) = −2κasX

as the coefficients of the Fokker-Planck equation in “split form” (2.19). It satisfies
div ~F = 0, ~F · ∇A = 0. The entropy-entropy dissipation method then yields again:

Theorem 2.9 Let ψ0 ∈ L1(IRd) be a probability density with e(ψ0|ψ∞) < ∞ and as-
sume that λ := inf

X∈IRd

[λmin(Hess(Π(X)) − 2κs)] > 0. Under the assumptions of Propo-

sition 2.8, it holds exponential convergence of ψ(t) towards ψ∞ in relative entropy with
rate λ:

e(ψ(t)|ψ∞) ≤ e−λte(ψ0|ψ∞) , t ≥ 0 .
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We remark that an alternative decay rate can be obtained by considering A as an
L∞-perturbation of the uniformly convex potential Π and applying a Holley-Stroock
perturbation argument for logarithmic Sobolev inequalities (cf. [HS, AMTU]). Par-
ticularly for bounded domain models (like the FENE model of §2.4) this may yield a
better decay rate.

Corollary 2.10 Under the assumptions of Theorem 2.9, ψ∞ from (2.23) is the unique
normalized steady state of (2.2).

Let us finally mention a weaker condition for uniqueness of the steady state: Let
the coefficient A(X) be such that the operator Ls has a positive spectral gap when
considered on L2(ψ−1dX). This would then imply exponential convergence of ψ(t)
towards ψ∞ in the L2(ψ−1dX)–norm (cf. [AMTU] for details).

2.4 FENE potential

Here, we will improve on the hypotheses for the existence, uniqueness, and stability
of stationary states compared to §2.1 of [JLLO]. More precisely, the results in [JLLO]
show that being κ a general traceless matrix with κs ”small” (i.e. |κs| < 1/2), then
stationary states exist and asymptotic stability is obtained by a Holley-Stroock per-
turbation argument. We will show that the existence, uniqueness of stationary states
and their asymptotic stability can be established from a pure linear operator theory
point of view in weighted Sobolev spaces. This leads to the answer to these questions
under less restrictive hypotheses than in [JLLO]. However, we do not know in general
how to prove convergence in relative entropy due to the lack of pointwise control of the
behavior close to the boundary of the stationary states. Now, we consider Eq. (2.2)

∂ψ

∂t
=

1

2
divX ([∇XΠ(X) − 2κX]ψ) +

1

2
∆Xψ , (2.24)

with the potential Π given by

Π(X) = − b
2

ln

(
1 − |X|2

b

)
, (2.25)

for some b ≥ 2 (cf. §1.1 of [JLLO] for a discussion of this parameter bound). In this
model the polymer chains are assumed to have finite extensibility. This is reflected
by Π(X) → +∞ for |X|2 → b. Hence, it is natural to study the problem in the ball
of radius

√
b, B = B(0,

√
b) with a no-flux boundary condition on ∂B. Then ψ also

satisfies a homogeneous Dirichlet boundary condition (cf. §1.1 of [JLLO] for details).
Our first goal (cf. §2.1) is to prove that

Lψ(X) :=
1

2
divX ([∇XΠ(X) − 2κX]ψ(X)) +

1

2
∆Xψ(X) = 0 , B , (2.26)

ψ = 0 , ∂B

has a unique normalized solution. In contrast to §2.2, §2.3 we do not know here the
explicit form of the steady state (at least for κ not normal). This prevents us from using
for (2.24), (2.25) –at least at the very beginning– the canonical decomposition (2.4),
(2.5) of its drift field. As an alternative, we shall rather use a perturbation argument
to establish the existence of a steady state. In particular we shall discuss the following
four cases:
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(i) κ = κs, κ = κas, or the commutator [κ, κT ] small,

(ii) κ has a small distance to the set of normal matrices.

We first use an auxiliary decomposition of κ as κ = κ1 +κ2, with κ1 a normal matrix to
be chosen later. Inspired by the steady state function in the case κ normal (cf. (2.23))
we set

µ(X) := C e−Π(X)+XT κs
1
X = C

(
1 − |X|2

b

) b

2

eX
T κs

1
X , (2.27)

with κs
1 := (κ1 + κT1 )/2 and the normalization

∫
B µdX = 1. Clearly, µ = 0 on ∂B, and

for b > 2 it also takes homogeneous Neumann boundary values.
In analogy to [AU] we define the following weighted H1

0–space:

V :=

{
ψ
∣∣∣
ψ

µ
, ∇ψ

µ
∈ L2(B;µdX), ψ

∣∣
∂B

= 0

}

with its obvious norm

‖ψ‖2
V =

∥∥∥∥
ψ

µ

∥∥∥∥
2

L2(B;µdX)

+

∥∥∥∥∇
ψ

µ

∥∥∥∥
2

L2(B;µdX)

.

The Hilbert space V (cf. [Tr], §3.2.2) is a dense subset of H := L2(B;µ−1dX). We
shall denote the H–inner product by 〈·, ·〉. Note that the space V is independent
of the decomposition κ = κ1 + κ2 (with equivalent norms) which is seen as follows:

Since 1
α ≤ eX

T κs

1
X ≤ α on B for some α > 0, this independence is trivial concerning

ψ
µ ∈ L2(B;µdX). For the second term in the definition of V we use

∇ψ

µ
=

∇ψ + ψ∇Π

µ
− ψ

µ
2κs

1X . (2.28)

Hence, the second term in (2.28) is always in L2(B;µdX), and for the first term we
conclude as before.

Following the decomposition of κ, we decompose L as L = L1 + L2:

L1ψ :=
1

2
div ([∇Π − 2κ1X]ψ + ∇Xψ) =

1

2
div

(
µ∇ψ

µ

)
,

L2ψ := −div (κ2Xψ) .

Next we define the associated quadratic forms:

q1(ψ,ϕ) := −〈L1ψ,ϕ〉 =
1

2

∫

B
∇ψ

µ
· ∇ϕ

µ
µdX , (2.29)

q2(ψ,ϕ) := −〈L2ψ,ϕ〉 = −
∫

B

ψ

µ

(
∇ϕ

µ

)
· κ2XµdX ,

q(ψ,ϕ) := q1(ψ,ϕ) + q2(ψ,ϕ) ,

which are all bounded on V2. Note that L1 (with form domain V) is symmetric in H,
but L2 is in general not anti-symmetric. From (2.29) it follows that the kernel of L1 is
spanned by µ.

Using these quadratic forms we shall now give a weak reformulation of the steady-
state problem (2.26):

10



Proposition 2.11 The weak formulation of (2.26) reads: Find φ ∈ µ⊥ such that

q(φ,ϕ) = −q2(µ,ϕ) , ∀ϕ ∈ µ⊥ , (2.30)

with µ⊥ the closed subset of V defined by

µ⊥ :=

{
ψ ∈ V

∣∣∣
∫

B
ψ dX = 0

}
.

The weak solution of (2.26) is then ψ := φ+ µ ∈ V.

Note that 〈ψ, µ〉 =
∫
B ψ dX = 0 characterizes the orthogonal complement of µ in H.

Proof.- The problem to solve reads

Lψ = 0 , with

∫

B
ψ dX = 1, ψ ∈ V . (2.31)

In order to cope with this normalization we proceed as in [AGGS] and introduce φ :=
ψ − µ ∈ µ⊥. It satisfies

Lφ = −Lµ = −L2µ , φ ∈ µ⊥ . (2.32)

Taking the H–inner product with ϕ ∈ µ⊥ yields the weak formulation (2.30).

Lemma 2.12

(a) L1 has a spectral gap λ1 > 0.

(b) L1 gives rise to the following Poincaré inequality:
∥∥∥∥
ψ

µ

∥∥∥∥
2

L2(B;µdX)

≤ 1

λ1

∥∥∥∥∇
ψ

µ

∥∥∥∥
2

L2(B;µdX)

∀ ψ ∈ µ⊥ . (2.33)

Proof.- (a) Since Π is an “infinitely deep potential well” (i.e. Π(X) → ∞ as |X| →
√
b),

L1 has a positive spectral gap (for any choice of κ1 !): This spectral gap λ1 can be
estimated with either of the following two arguments. First one could use the Bakry-
Emery-condition [BE84, AMTU] for the potential Π(X) −XTκs1X yielding

λ1 > λBE := min
X∈B

[λmin(Hess(Π(X)) − 2κs1)] = λmin(I − 2κs1) .

This yields a spectral gap if κs1 < 1
2 . An alternative estimate for the log-Sobolev

constant of L1 and hence for its spectral gap is obtained by considering −XTκs1X as
an L∞(B)–perturbation of the potential Π. Π is uniformly convex with

min
X∈B

[λmin(Hess Π(X))] = 1.

Using
bλmin(κ

s
1) ≤ XTκs1X ≤ bλmax(κ

s
1) , X ∈ B ,

the Holley-Stroock perturbation argument [HS, AMTU] yields for any κs1

λ1 > e−b[λmax(κs
1
)−λmin(κs

1
)] > 0 .

We remark that neither of these estimates is sharp for the considered Π.

(b) The spectral gap of L1 gives rise to the Poincaré inequality (2.33) (e.g. put g = ψ
µ

in §3.3 of [AMTU]).
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Proposition 2.13 Let the spectral gap of L1 and the matrix decomposition of κ satisfy

√
b ‖κ2‖2 <

√
λ1

2
. (2.34)

Then, the stationary Fokker-Planck equation (2.26), (2.25) admits a unique normalized
weak solution ψ∞ = φ+ µ ∈ V.

Proof.- We estimate with the Poincaré inequality for ψ ∈ µ⊥:

|q2(ψ,ψ)| ≤
√
b ‖κ2‖2

∥∥∥∥
ψ

µ

∥∥∥∥
L2(µdX)

∥∥∥∥∇
ψ

µ

∥∥∥∥
L2(µdX)

≤
√

b

λ1
‖κ2‖2

∥∥∥∥∇
ψ

µ

∥∥∥∥
2

L2(µdX)

. (2.35)

Hence, q is coercive on µ⊥:

q(ψ,ψ) ≥
(

1

2
−
√

b

λ1
‖κ2‖2

)∥∥∥∥∇
ψ

µ

∥∥∥∥
2

L2(µdX)

≥
(

1

2
−
√

b

λ1
‖κ2‖2

)
λ1

1 + λ1
‖ψ‖2

V ,

(2.36)
and the assertion follows from the Lax-Milgram lemma applied to (2.30).
We remark that the weak solution ψ∞ is independent of the decomposition κ = κ1+κ2:
Otherwise this would contradict the unique solvability of the weak formulation (2.30).

We shall now illustrate condition (2.34) for several typical decompositions of the
shear matrix κ:

Example 2.14 Choose κ1 = κs, κ2 = κas, and hence µ = C e−Π(X)+XT κsX . Then,
condition (2.34) reads

√
b ‖κas‖2 <

√
λ1

2
. (2.37)

To derive an alternative condition, q2 can be rewritten here as

q2(ψ,ψ) = −1

2

∫

B
∇T

(
ψ

µ

)2

κasXµdX =
1

2

∫

B

(
ψ

µ

)2

div(κasXµ) dX

=

∫

B

(
ψ

µ

)2

XTκsκasXµdX = −1

4

∫

B

(
ψ

µ

)2

XT [κ, κT ]XµdX .

Estimating as in (2.35) yields the following alternative condition for Prop. 2.13 to hold:

b ‖[κ, κT ]‖2 < 2λ1 . (2.38)

Example 2.15 Choose κ1 = κas, κ2 = κs, and hence µ = C e−Π(X), λ1 > λBE = 1.
Then, condition (2.34) reads

√
b ‖κs‖2 <

√
λ1

2
. (2.39)

Example 2.16 With §2.3 in mind, another obvious option is to choose κ1 as the closest
normal matrix to κ [Ru], and κ2 as the non-normal remainder. We refer to [La] for
estimates between this non-normal remainder and the commutator [κ, κT ].

Next we turn to the large-time convergence of the Fokker-Planck solution ψ(t)
towards the steady state ψ∞:
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Theorem 2.17 Let ψ0 ∈ H. Then, the Fokker-Planck equation (2.24), (2.25) has a
unique weak solution ψ ∈ L2((0, T ),V) ∩ H1((0, T ),V ′) ∩ C([0, T ],H) for any T > 0.
Moreover,

∫
ψ0 dX =

∫
ψ(t) dX, ∀ t ≥ 0. For ψ0 normalized and under the assumptions

of Proposition 2.13 it satisfies

‖ψ(t) − ψ∞‖H ≤ e
−λ1

“

1

2
−

q

b

λ1
‖κ2‖2

”

t‖ψ0 − ψ∞‖H , t > 0 ,

and analogously under assumption (2.38). Moreover, ψ∞(X) ≥ 0.

Proof.- Using q(ψ,ϕ) = −〈Lψ,ϕ〉 we see that L ∈ L(V,V ′). Since q satisfies on V
the following modified coercivity estimate (use (2.29), (2.35) and Young’s inequality):

q(ψ,ψ) ≥
(

1

2
− ε

)
‖ψ‖2

V − C(ε)‖ψ‖2
H ,

standard parabolic theory (cf. §11.1 of [RR], e.g.) yields the first assertion. Moreover,
this solution satisfies a.e. in (0, T ):

d

dt
‖ψ(t)‖2

H = 2 V ′〈ψ′(t), ψ(t)〉V = −2q(ψ(t), ψ(t)).

For normalized ψ0 we have ψ(t)−ψ∞ ∈ µ⊥, a.e. in (0,∞) by using µ as test function
in the weak formulation of the equation. Hence, (2.36) and the Poincaré inequality yield

d

dt
‖ψ(t) − ψ∞‖2

H ≤ −2λ1

(
1

2
−
√

b

λ1
‖κ2‖2

)

‖ψ(t) − ψ∞‖2
H , a.e. in (0, T ) ,

and the exponential convergence follows.
The fact that ψ(t)−ψ∞ ∈ µ⊥ and ψ ∈ C([0, T ],H) imply the conservation of mass.

To prove the non-negativity of ψ∞ we choose an arbitrary non-negative, normalized
ψ0 ∈ H. ψ(t,X) ≥ 0 then implies ψ∞(X) ≥ 0.

We remark that the existence part of the above theorem (in an equivalent norm)
was already sketched in Appendix B of [JLLO]. We only included it for the sake of
completeness.

Following the procedure of Remark 13 in [JLLO], one can deduce that the weak
solutions from Prop. 2.13 and Th. 2.17 then satisfy the no-flux boundary condition in
the following sense:

∫

∂B

(
1

2
∇ψ(t)

µ
− κ2X

ψ(t)

µ

)
· nχµdS = 0 ∀χ ∈ H1(B;µdX) ,

with n being the unit outward normal vector on ∂B.
One strategy to extend the above large time convergence to the logarithmic relative

entropy (w.r.t. the stationary state ψ∞) would be to apply a Holley-Stroock perturba-
tion argument. To this end we would have to show that there exist constants C1, C2

such that
0 < C1 ≤ ψ∞/µ ≤ C2 , (2.40)

as done in [JLLO, Proposition 10, Lemma 6] in their case. However, we do not know
how to show these bounds in the present case.
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3 Coupled model: large time behavior

In this section, we derive exponential convergence results towards homogeneous sta-
tionary flow solutions of the coupled problem

∂u

∂t
+ (u·∇x)u = ∆xu−∇xp+ divx

∫

IRd

(X ⊗∇XΠ(X))ψ dX ,

divxu = 0 , (3.1)

∂ψ

∂t
+ u·∇xψ = −divX

(
[∇xu ·X − 1

2
∇XΠ(X)]ψ

)
+

1

2
∆Xψ .

More precisely, this problem is posed in a bounded spatial domain x ∈ Ω and in the
configuration space B ⊂ IRd with B = IRd in the Hookean case or B = B(0,

√
b), the

Euclidean ball centered at 0 with radius
√
b, in the FENE model. These equations have

to be complemented by boundary conditions in such a way that u∞ = κx, with κ any
traceless real matrix, and ψ∞ = ψ∞(X) form a stationary solution. Here, ψ∞ is given
by the stationary solution obtained in Section 2 either in the Hookean or in the FENE
case. These solutions were called homogeneous stationary flows in [JLLO, §3.3]. These
boundary conditions amount to u = u∞ on ∂Ω and ψ = 0 on ∂B(0,

√
b) in the FENE

case or decay at infinity of the solution ψ in the Hookean case. The latter condition is
usually imposed by the class of solutions we work with. We will refer to these boundary
conditions as non-homogeneous stationary Dirichlet boundary conditions as in [JLLO].

In this section we will concentrate on the Hookean case, in particular on the long
time asymptotics of smooth solutions to (3.1), where u satisfies the above boundary
conditions and ψ has a fast decay at infinity. Such solutions in the Hookean case are
known to exist for small initial data when κ = 0 [LLZ] with a smallness condition in
some suitably chosen high-order Sobolev space. Similar results are quite likely to hold
for the above non-homogeneous boundary conditions in a suitable neighbourhood of
the steady state (u∞, ψ∞). Let us remark that in these “close to equilibrium” results,
one obtains (see [LLZ]) that the deformation matrix ∇x⊗us := 1

2

(
∇x⊗u+(∇x⊗u)T

)

is globally bounded, i.e., that

D := sup
0<t<∞

‖∇x ⊗ us(t, ·)‖L∞(Ω) <∞. (3.2)

We will make this bounded deformation matrix assumption in the rest of this section. In
far-from-equilibrium situations, however, the existence of such global solutions remains
an open problem.

The objective of this section is to improve over the results obtained in [JLLO] in the
coupled case. More precisely, we will show an exponential rate of convergence in the
Hookean case under some smallness assumption, a result stated as an open problem in
[JLLO, §3.3].

One of the technical ingredients is the following generalization of the Csiszár-
Kullback inequality obtained by a similar proof to the standard Csiszár-Kullback in-
equality [Cs, KL]. It can also be derived from the Csiszár-Kullback inequality and
standard moment interpolation.

Lemma 3.1 Let ψ,ϕ ∈ L1
+(IRd) with unit mass such that ϕ > 0 with bounded fourth

moments, i.e., |X|4(ψ + ϕ) ∈ L1(IRd). Then, the following inequality holds:

‖|X|2(ψ − ϕ)‖2
L1(IRd)

≤ 2 e(ψ|ϕ) max

(∫

IRd

|X|4ψ dX,
∫

IRd

|X|4ϕdX
)
. (3.3)
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Proof.- By a Taylor expansion at order two of s log s at s = 1 and the normalization
of mass, we can write the relative entropy for ψ and ϕ as

e(ψ|ϕ) =

∫

IRd

ψ

ϕ
ln
ψ

ϕ
ϕdX =

1

2

∫

A

1

ξ
(ψ − ϕ)2 dX (3.4)

where A := {X ∈ IRd : ψ(X) 6= ϕ(X)} and ξ(X) lies between ψ(X) and ϕ(X), i.e.,
0 ≤ min(ψ,ϕ) < ξ < max(ψ,ϕ) in A, and thus ξ > 0 in A. By Hölder’s inequality and
since A is measurable, we get

∫

A
|X|2|ψ − ϕ| dX ≤

(∫

A

1

ξ
(ψ − ϕ)2 dX

)1/2 (∫

A
|X|4ξ dX

)1/2

,

from which the stated inequality (3.3) is obtained.

Now, let us show that the assumption of a bounded deformation matrix (3.2),
implies the boundedness in space and time of all moments of the distribution function ψ
and in particular of the stress tensor in the Hookean case, if they are initially bounded.
In order to verify this, we multiply the equation for ψ by |X|2n, with n ∈ IN and
integrate to obtain

∂m2n(ψ)

∂t
+ u·∇xm2n(ψ) = 2n

∫

IRd

XT (∇x ⊗ us)X |X|2n−2ψ dX

− nm2n(ψ) + n(2n− 2 + d)m2n−2(ψ) ,

where

m2n(ψ)(t, x) :=

∫

IRd

|X|2nψ(t, x,X) dX.

Using the assumption (3.2), we get

∂m2n(ψ)

∂t
+ u·∇xm2n(ψ) ≤ n(2D − 1)m2n(ψ) + n(2n− 2 + d)m2n−2(ψ)

for all n ∈ IN. Assuming that the inhomogeneity is small enough, i.e., D < 1
2 , then we

get
d

dt
M2n(ψ) ≤ −AnM2n(ψ) +BnM2n−2(ψ) ,

where M2n(ψ)(t, x) = m2n(ψ)(t,Φt(x)) with Φt the flow map associated to the velocity
field u, i.e., 





dΦt(x)

dt
= u(t,Φt(x)) t ≥ 0 ,

Φ0(x) = x x ∈ IRd .

Now, a simple induction argument starting at n = 1 for which M0(ψ) = 1, implies that

M2n := max
0≤t<∞

∥∥∥∥
∫

IRd

|X|2nψ(t, x,X) dX

∥∥∥∥
L∞(Ω)

<∞ (3.5)

if initially m2n(ψ0) ∈ L∞(Ω), i.e.,
∥∥∥∥
∫

IRd

|X|2nψ0(x,X) dX

∥∥∥∥
L∞(Ω)

<∞. (3.6)
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Actually, the assumption D < 1
2 involving (3.2) could be slightly weakened to

sup
0<t<∞

sup
x∈Ω

λmax(∇x ⊗ us(t, x)) <
1

2
,

which is a closely related analogue of 2κ − I having to be a stable matrix (cf. the
condition in Prop. 2.1).

Now, with these estimates together with the entropy-entropy dissipation procedure
applied in [JLLO, §3.3.1], we can deduce an exponential convergence result towards
homogeneous stationary flows in the Hookean case with small enough initial data. Now
we define the total relative entropy of a solution of the coupled model (u, ψ) to the
homogeneous stationary flow (u∞, ψ∞) as:

E(t) =
1

2

∫

Ω
|ū(t)|2 dx+

∫

Ω

∫

IRd

ψ(t) ln

(
ψ(t)

ψ∞

)
dX dx,

with ū := u − u∞. Then one has the following formula for its evolution, see [JLLO,
Appendix A]:

dE

dt
+

∫

Ω
|∇x ⊗ ū|2 dx+

1

2

∫

Ω

∫

IRd

ψ

∣∣∣∣∇X ln

(
ψ

ψ∞

)∣∣∣∣
2

dX dx = (3.7)

−
∫

Ω
ūTκū dx−

∫

Ω

∫

IRd

∇X ln

(
ψ∞

e−Π(X)

)T
(∇x ⊗ ū)X ψ̄ dXdx

with ψ̄ := ψ − ψ∞, Π(X) = 1
2 |X|2.

Theorem 3.2 Let us consider the homogeneous stationary flow (u∞ = κx, ψ∞) with
the traceless matrix κ satisfying ℜλj(κ) < 1

2 , j = 1, ..., d and ψ∞ given by (2.11). Let
(u, ψ) be a given, smooth, fast-decaying at infinity solution to the system (3.1) with
non-homogeneous Dirichlet boundary conditions such that the deformation matrix is
uniformly bounded (in the sense of (3.2)). Then, the solution converges exponentially
fast towards (u∞, ψ∞), provided a “smallness” condition holds for the solution and κs

as specified in (3.8). More precisely, u converges exponentially fast to u∞ in L2(Ω) and
the total relative entropy of ψ w.r.t. ψ∞ converges exponentially fast to 0.

Proof.- We proceed as in [JLLO, Theorem 1] for the FENE case. The potential
1
2X

TΣ−1X = C − lnψ∞ (cf. (2.11)) satisfies the Bakry-Emery condition with constant
λ = λmin(Σ

−1). Using the resulting Logarithmic Sobolev inequality for the measure
ψ∞dX in (3.7) we obtain

dE

dt
+

∫

Ω
|∇x ⊗ ū|2 dx+ λ

∫

Ω

∫

IRd

ψ ln

(
ψ

ψ∞

)
dX dx

≤ |κs|
∫

Ω
|ū|2 dx+

∫

Ω
|∇x ⊗ ū|

∫

IRd

∣∣∣∣∇X ln

(
ψ∞

e−Π(X)

)∣∣∣∣ |X| |ψ̄| dXdx.

Applying Young’s inequality with ǫ < 1 to be chosen, using the Poincaré inequality on
Ω, and the explicit formula of ψ∞, we get

dE

dt
+

1 − ǫ

C2
P

∫

Ω
|ū|2 dx+ λ

∫

Ω

∫

IRd

ψ ln

(
ψ

ψ∞

)
dX dx ≤

|κs|
∫

Ω
|ū|2 dx+

|I − Σ−1|2
4ǫ

∫

Ω

(∫

IRd

|X|2 |ψ̄| dX
)2

dx.
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Now, we apply the inequality (3.3) proved in Lemma 3.1 to obtain

dE

dt
+

1 − ǫ

C2
P

∫

Ω
|ū|2 dx+ λ

∫

Ω

∫

IRd

ψ ln

(
ψ

ψ∞

)
dX dx ≤

|κs|
∫

Ω
|ū|2 dx+

|I − Σ−1|2
2ǫ

max(M4,M
∞
4 )

∫

Ω

∫

IRd

ψ ln

(
ψ

ψ∞

)
dX dx,

where M4 is given by (3.5) and M∞
4 is the fourth moment of ψ∞. From here it is clear

that, if ǫ can be chosen such that

ǫ < 1 −C2
P |κs| and ǫ >

|I − Σ−1|2
2λ

max(M4,M
∞
4 ),

or equivalently if

C2
P |κs| +

|I − Σ−1|2
2λ

max(M4,M
∞
4 ) < 1 , (3.8)

then exponential convergence holds.

The previous result is the main new addition to the results in [JLLO] concerning
the long time asymptotics of the coupled problem. Concerning the FENE case, we
have shown in §2.4 the existence of the stationary state ψ∞ in several new situation
not covered in [JLLO]. Those stationary states ψ∞ that eventually verify the bounds
(2.40), give rise to a Logarithmic Sobolev inequality via a Holley-Stroock perturbation
argument. In these cases we can derive the corresponding long time asymptotics result
of the coupled problem just by repeating the proof of [JLLO, Theorem 1] or [JLLO,
Proposition 9].
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