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QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL
OF DEGREE THREE: A COMPLETE CLASSIFICATION IN THE

COEFFICIENT SPACE R12

JOAN C. ARTÉS1, JAUME LLIBRE1 AND NICOLAE VULPE2

Abstract. A quadratic polynomial differential system can be identified with a single
point of R12 through its coefficients. The phase portrait of the quadratic systems having

a rational first integral of degree 3 have been studied using normal forms. Here using the

algebraic invariant theory, we characterize all the non-degenerate quadratic polynomial
differential systems of R12 having a rational first integral of degree 3. We show that there

are only 31 different topological phase portraits in the Poincaré disc associated to this
family of quadratic systems up to a reversal of the sense of their orbits, and we provide

representatives of every class modulo an affine change of variables and a rescaling of the

time variable. Moreover, each one of these 31 representatives is determined by a set of
algebraic invariant conditions and we provide for it a first integral.

1. Introduction

Let R[x, y] be the ring of the polynomials in the variables x and y with coefficients in R.
We consider a system of polynomial differential equations or simply a polynomial differential
system in R2 defined by

(1)
ẋ = P (x, y),
ẏ = Q(x, y),

where P,Q ∈ R[x, y]. We say that the maximum of the degrees of the polynomials P and Q
is the degree of system (1). A quadratic polynomial differential system or simply a quadratic
system is a polynomial differential system of degree 2. We say that the quadratic system
(1) is non–degenerate if the polynomials P and Q are relatively prime or coprime.

Let U be an open and dense subset of R2, we say that a nonconstant function H : U → R
is a first integral of system (1) on U if H(x(t), y(t)) is constant for all of the values of t for
which (x(t), y(t)) is a solution of system (1). Obviously H is a first integral of system (1) if
and only if

(2) P (x, y)
∂H
∂x

(x, y) + Q(x, y)
∂H
∂y

(x, y) = 0,

for all (x, y) ∈ U . When a polynomial differential system (1) has a first integral we say that
the system is integrable.

On the other hand given f ∈ R[x, y] we say that the curve f(x, y) = 0 is an algebraic
invariant curve of system (1) if there exists K ∈ R[x, y] such that

(3) P
∂f

∂x
+ Q

∂f

∂y
= Kf.

The name of invariant for such an algebraic curve f(x, y) = 0 is due to the fact that if a
trajectory has a point on f(x, y) = 0, then the whole trajectory is contained in f(x, y) = 0.

The search of first integrals is a classic tool in order to describe the phase portraits of a
planar differential system. As usual the phase portrait of a differential system is the decom-
position of the domain of definition of the system as union of all its orbits or trajectories.
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If the first integral H is a rational function, then we say that H is a rational first integral.
For a rational first integral we always assume that the polynomial of its numerator is
coprime with the polynomial of its denominator. If the maximum between the degrees of
the polynomials of the numerator and denominator of a rational first integral is m, then we
say that the rational first integral H has degree m. Of course, a particular case of rational
first integrals are the polynomial first integrals, i.e. when the denominator of a rational first
integral is a non–zero constant.

We note that if a polynomial differential system has a rational first integral, then all
the trajectories of this differential system are contained in invariant algebraic curves. The
interest in the polynomial differential systems having rational first integrals goes back to
Poincaré [13]. But very few progress has been made up to nowadays.

Quadratic systems and its applications have been studied intensively in the last 25 years,
and more than one thousand papers have been published about the subject (see for instance
[24, 25]). But the problem of classifying all the integrable quadratic systems remains open.
More than that, the problem of classifying all the integrable quadratic having a rational
first integral also remains open.

We note that the degenerate quadratic systems can be reduced through a rescaling of
the independent variable to the linear differential systems, or to the constant differential
systems. So we do not consider them in this work.

The non–degenerate quadratic systems having a polynomial first integral and their phase
portraits have been characterized in [8, 9] using normal forms. Later on in [3] applying
the invariant theory we provided invariant algebraic conditions in the coefficients of any
non–degenerate quadratic system in order to determine if it has or not a polynomial first
integral without using any normal form. We obtain that the existence of a polynomial first
integral is directly related with the fact that all the roots of a convenient cubic polynomial
are rational and negative. The coefficients of this cubic polynomial are invariants related
with some geometric properties of the quadratic system.

Since the non–degenerate quadratic systems having a polynomial first integral are clas-
sified, now we are interested in the classification of the non–degenerate quadratic systems
having a rational first integral H such that H and 1/H are not polynomial. In what follows
when we say that H is a rational first integral we are assuming that H and 1/H are not
polynomial.

The phase portrait of all non–degenerate quadratic systems having a rational first integral
of degree 2 have been characterized in [6] using normal forms. Later on in [1] by identifying
every quadratic system with a single point of R12 through its coefficients, and by using
first the results of [6] and second the algebraic invariant theory, we classified all the non–
degenerate quadratic systems of R12 having a rational first integral of degree 2. We shown
that there are only 24 different topological phase portraits in the Poincaré disc associated to
this family of quadratic systems up to a reversal of the sense of their orbits, and we provide
a unique representative of every class modulo an affine change of variables and a rescalling
of the time variable. Moreover, each one of these 24 representatives is determined by a set
of algebraic invariant conditions and each respective first integral is given in an invariant
form directly from R12.

Our goal in this paper is to obtain a similar result to [1] for the non–degenerate quadratic
systems having a rational first integral of degree 3. Again we shall use a preliminary
work, see [10, 11], where they are characterized the phase portraits of the non–degenerate
quadratic systems having a rational first integral of degree 3. Then, again using the algebraic
invariant theory, we classified all the non–degenerate quadratic systems of R12 having a
rational first integral of degree 3. We show that there are only 31 different topological
phase portraits in the Poincaré disc associated to this family of quadratic systems up to a
reversal of the sense of their orbits, and we provide representatives of every class modulo
an affine change of variables and a rescaling of the time variable. Moreover, each one of
these 31 representatives is determined by a set of algebraic invariant conditions and we
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provide for it a first integral. These results are stated in our Main Theorem in Section 2
after providing the definitions of the algebraic invariants that we need for the classification.

We must mention that the corrections to the paper [10] made in [11] have been possible
due to the present work.

In Section 3 we prove our Main Theorem. We split the proof into several lemmas and
divide it according to some subsets to make it clearer.

2. Basic definitions and results. Statement of the Main Theorem

The use of the invariant theory applied to the study of differential polynomial systems
(mainly quadratic ones) has allowed to extend the conditions for many families of quadratic
systems from the used normal forms to the general system in the parameter space of 12
coefficients. In this direction the works of the Sibirskii school (cf. [21], [23], [14], [4], [7]) have
provided the necessary tools for determining the algebraic conditions on general systems to
achieve most of the geometric properties of the problem.

We consider real quadratic systems of the form

(4)

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y),

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y, i.e.

p0 = a00, p1(x, y) = a10x + a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x + b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Let a = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the 12-tuple of the coeffi-
cients of system (4) and denote R[a, x, y] = R[a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11,
b02, x, y], i.e. the ring of all polynomials in the variables a, x and y.

In order to find affine invariant conditions for determining the class of quadratic sys-
tems possessing a polynomial first integral we shall construct the necessary affine invariant
polynomials as follows.

We consider the polynomials

(5)
Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2.

Using the so-called transvectant of index k (see [12]) of two polynomials f, g ∈ R[a, x, y]

(f, g)(k) =
k∑

h=0

(−1)h

(
k

h

)
∂kf

∂xk−h∂yh

∂kg

∂xh∂yk−h
,

we construct the following GL—comitants of the second degree with the coefficients of the
initial system

T1 = (C0, C1)
(1)

, T2 = (C0, C2)
(1)

, T3 = (C0, D2)
(1)

,

T4 = (C1, C1)
(2)

, T5 = (C1, C2)
(1)

, T6 = (C1, C2)
(2)

,

T7 = (C1, D2)
(1)

, T8 = (C2, C2)
(2)

, T9 = (C2, D2)
(1)

.

In order to be able to calculate the values of the needed invariant polynomials directly for
every canonical system we shall define here a family of T—comitants (see [16] for detailed
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definitions) expressed through Ci (i = 0, 1, 2) and Dj (j = 1, 2):

Ã =
(
C1, T8 − 2T9 + D2

2

)(2)
/144,

D̃ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6)− (C1, T5)
(1)+ 6D1(C1D2 − T5)− 9D2

1C2

]
/36,

Ẽ =
[
D1(2T9 − T8)− 3 (C1, T9)

(1) −D2(3T7 + D1D2)
]
/72,

F̃ =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ẽ

− 24
(
C2, D̃

)(2)

+120
(
D2, D̃

)(1)

−36C1 (D2, T7)
(1)+8D1 (D2, T5)

(1)
]
/144,

K̃ =(T8 + 4T9 + 4D2
2)/72,

H̃ =(−T8 + 8T9 + 2D2
2)/72.

We shall use the following invariant polynomials, constructed in [15] and [3]:

(6)

M(a, x, y) = 2 Hess
(
C2(x, y)

)
= (C2, C2)(2),

η(a) = Discriminant
(
C2(x, y)

)
= (M,M)(2)/384,

D(a, x, y) = D̃(a, x, y),

K(a, x, y) = 4K̃(a, x, y) ≡ Jacob
(
p2(x, y), q2(x, y)

)
,

H(a, x, y) = −4H̃(a, x, y),

µ0(a) = Discriminant
(
K(x, y)

)
≡ −(K, K)(2)/32 = µ(a),

N(a, x, y) = K(a, x, y) + H(a, x, y),

θ(a) = Discriminant
(
N(a, x, y)

)
= −(N,N)(2)/2,

B3(a, x, y) = (C2, D̃)(1) = Jacob
(
C2, D̃

)
,

B2(a, x, y) = (B3, B3)
(2) − 6B3(C2, D̃)(3),

B1(a) = Res x

(
C2, D̃

)
/y9 = −2−93−8 (B2, B3)

(4)
,

as well as the invariant polynomials µi(a, x, y) (i = 1, .., 4), constructed in [5] using the
invariant µ0(a) as follows.

Consider the differential operator L = x · L2 − y · L1 acting on R[a, x, y], where

L1 = 2a00
∂

∂a10
+ a10

∂

∂a20
+

1
2
a01

∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1
2
b01

∂

∂b11
,

L2 = 2a00
∂

∂a01
+ a01

∂

∂a02
+

1
2
a10

∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1
2
b10

∂

∂b11
.

Then

(7) µi(a, x, y) =
1
i!
L(i)(µ0), i = 1, .., 4, where L(i)(µ0) = L(L(i−1)(µ0)).

Remark 1. According to [5] a system (4) is degenerate (i.e. gcd(P,Q) 6= 1) if and only if
µi = 0 for all i = 0, 1, .., 4.

For our goal we shall use also the following invariant polynomials, which were constructed
and applied in [19],[20], [18] and [17] for characterization of the class of quadratic systems,
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possessing invariant lines of total multiplicity at least 4 (we keep the respective notations):

(8)

H1(a) = −
(
((C2, C2)(2), C2)(1), D̃

)(3)
,

H4(a) =
(
(C2, D̃)(2), (C2, D2)(1)

)(2)
,

H5(a) =
(
(C2, C2)(2), (D,D)(2)

)(2) + 8
(
(C2, D̃)(2), (D̃,D2)(1)

)(2)
,

H6(a, x, y) = 16N2(C2, D̃)(2) + H2
2 (C2, C2)(2),

H9(a) = −
(
((D̃, D̃)(2), D̃)(1), D̃

)(3)
,

H10(a) =
(
(N, D̃)(2), D2

)(1)
,

H12(a, x, y) = (D̃, D̃)(2) ≡ 2Hess (D̃),

N1(a, x, y) = C1(C2, C2)(2) − 2C2(C1, C2)(2),

N2(a, x, y) = D1(C1, C2)(2) −
(
(C2, C2)(2), C0

)(1)

,

N5(a, x, y) =
[
(D2, C1)(1) + D1D2

]2 − 4
(
C2, C2

)(2)(
C0, D2

)(1)
.

Finally we construct here the following new invariant polynomials, which being jointed
with the above ones are responsible for the existence of a cubic rational first integral for a
quadratic system:

(9)

Z1(a, x, y) = M − 2H,

Z2(a, x, y) =
[
4H2 + 3D2

2K + 11HK − 5K2 + 3C2(C2,K)(2)
]
×[

− 16H2 + 3D2
2K − 29HK − 25K2 + 3C2(C2,K)(2)

]
,

Z3(a) = 81
(
(D̃, D̃)(2), K̃

)
+ 4

[
(C2, D̃)(2)

]2
,

Z4(a) = 4D2
1(9D2

1 + 72T3 + 41T4) + 9T 2
4 − 800D1(T6, C0)(1)+

+ 144
(
(T6, C1)(1), C0

)(1) + 256
(
(T8, C0)(1), C0

)(1)
,

Z5(a) = 36D4
1

(
9D2

1 + 131T4 + 108T3

)
− 4116D1(C1, C0D2)(2)

[
2D2

1 + 9T4

]
+

+ 8D2
1T3

(
3687T4 + 1258T3

)
+ 9T 2

4

(
929D2

1 + 50T4 − 400T3

)
+

+ 6400(D,C2
0D2)(3) + 3200(C1, C

2
0 )(2)(C1, D

2
2)

(2)+

+ 4(C1, C0D2)(2)
[
7261(C1, C0D2)(2) − 10748D1T3

]
,

Z6(a, x, y) = D2Ẽ − 12C2Ã− 2(C2, Ẽ)(1),

Z7(a, x, y) = 2D̃(D2
2 + 4H)− 3C2

[
(C2, D̃)(2) + (D̃,D2)(1) + 6F̃

]
,

Z8(a, x, y) = 8D̃ + 3C2

[
2D2

1 + (C1, C1)(2)
]
,

U1(a) = 2H4 −H10.

Our main result is the following one.

Main Theorem. A non–degenerate quadratic system has a cubic rational first integral if
and only if one of the following sets of conditions holds.

A) If Z1C2 6= 0 then η ≥ 0, M 6= 0, θ = H4 = H6 = 0 and, either
A1) N 6= 0, B3 = Z2 = 0, or
A2) N = Z3 = 0, B3η 6= 0, or
A3) N = η = N1 = Z4 = 0, D 6= 0.

B) If Z1 6= 0 and C2 = 0 then Z5 = 0 and H12 6= 0.
C) If Z1 = 0 then Z6 = Z7 = 0 and either M 6= 0 or M = Z8 = 0 and D 6= 0.

Moreover a non–degenerate quadratic system having a cubic rational first integral pos-
sesses one of the indicated in Table 1 phase portraits if the respective conditions are ful-
filled. These conditions are invariant with respect to the action of the affine group and time
rescaling. In the second column of Table 1 the canonical systems obtained via the action of
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this group as well as the corresponding first integrals H are presented, respectively. Here the
invariant polynomials are defined in (6)–(9).

The proof of the Main Theorem is based on the classification of all non–degenerate qua-
dratic systems having a rational first integral of degree three (see [10, 11]), using the con-
structed explicit normal form. From [10, 11] we have the following result.

Proposition 2 (Proposition CRFI [10, 11]). . A non–degenerate quadratic system possesses
cubic rational first integral if and only if via an affine transformation and time rescaling it
can be written in one of the following forms:

ẋ = 4(da− 2bx + cx2), ẏ = cd + 4by + 4ay2); (S1)[(12)]

ẋ = ax + bx2, ẏ = −2ay − bxy + cy2; (S2)[(16)]

ẋ = abx + acx2, ẏ = −2aby + bdy2; (S3)[(17)]

Table 1

Necessary and sufficient
conditions for having

cubic rational first integral

Canonical systems
and first integrals

Additional
conditions for
phase portraits

Phase
portrait
(Fig.1)

Z1 6= 0,
C2 6= 0

M 6=0,
η≥0,
θ=0,

H4 =0,
H6 =0

N 6= 0,
B3 = Z2 = 0

ẋ=c2(2−g)+2cx+gx2,
ẏ=2(g−1)xy+ny2

g ∈
{
−2, 2/3, 3/4, 4},
c, n ∈ {0, 1}

H=
[
c(g−2)−gx

]g−2×[
(g−2)(c+x)+ny

]g
y−g

η>0,H1 6=0
n=1, c=1 P1

η>0,H1 =0
n=1, c=0 P2

η=0, L>0
n=0, c=1
g ∈

{
−2, 4}

P3

η=0, L<0
n=0, c=1

g ∈
{
2/3, 4/3}

P4

N =0

B3η 6= 0,
Z3 =0

ẋ=a +x2, ẏ=4a+y2

a ∈ {−1, 1}

H=
4ax−ay+x2y

a−x2+xy

H1 > 0
a = −1 P1

H1 < 0
a = 1 P5

η=0, D 6=0,
Z4 =N1 =0

ẋ=x2 − a2, ẏ=y
a ∈ {1, 1/4}

H=
4ax−ay+x2y

a−x2+xy

− P3

Z1 6= 0,
C2 = 0 H12 6=0, Z5 =0

ẋ=(x+c)2−1 + dy,
ẏ=xy, d∈{0, 1}

c∈{1/3, 2, 5};
H=y−2×[

(c+ 1)(x +c−1)+dy
]1−c×[

(c− 1)(x +c+1)+dy
]1+c

H10 6= 0
d=1

P6

H10 =0, µ2 <0
d = 0, c=1/3

P7

H10 =0, µ2 >0
d=0, c∈{2, 5} P8

Z1 = 0

M = 0, D 6= 0
B3 = Z8 = 0

ẋ = x, ẏ = 3y + x2;
H = (x2 + y)/x3

− P28

M 6= 0,
Z6 = Z7 = 0 N = 0

ẋ = x2 − δ2,
ẏ = b + 4δy + 2xy,

δ, b∈{0, 1}, (δ, b) 6=(0, 0);

H=
b+3δy+3xy

(x−δ)3

H6 6=0, B3 =0,
δ = 1, b = 0 P29

H6 6=0, B3 6=0,
δ = 1, b = 1 P30

H6 =0,
δ = 0, b = 1 P31
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Table 1 (continued)

Necessary and sufficient
conditions for having

cubic rational first integral

Canonical systems
and first integrals

Additional
conditions for
phase portraits

Phase
portrait
(Fig.1)

Z1 = 0 M 6= 0,
Z6 = Z7 = 0 N 6= 0

ẋ = xy,
ẏ=b+ex +lx2+3/2y2,

(b, e, l) :
b, l ∈ {−1, 0, 1},
e ∈ R+ ∪ {0};

H=(2b+3ex+6lx2+
+3y2)/x3

η > 0, U1 > 0,
(1, e,−1) P9

η>0, U1 <0,H9 >0,
(−1, e,−1), e<2 P10

η>0, U1 <0,
H9 <0,H4 >0,

(−1, e,−1), e> 4√
3

P11

η>0, U1 <0,
H9 <0,H4 <0,
(−1, e,−1),

2 < e < 4/
√

3

P12

η>0, U1 <0,
H9 <0,H4 =0,

(−1, e,−1), e= 4√
3

P13

η>0, U1 <0,H9 =0,
(−1, 2,−1) P14

η>0, U1 =0,H4 6=0,
(0, 1,−1) P15

η>0, U1 =0,H4 =0,
(0, 0,−1) P16

η < 0, U1 > 0,
(−1, e, 1) P17

η<0, U1 <0,H9 >0,
(1, e, 1), e>2 P18

η<0, U1 <0,H9 <0,
(1, e, 1), e<2 P19

η<0, U1 <0,H9 = 0,
(1, 2, 1) P20

η<0, U1 =0,H4 6= 0,
(0, 1, 1) P21

η<0, U1 =0,H4 = 0,
(0, 0, 1) P22

η=0,H4 6=0,H9 >0,
(1, 1, 0) P23

η=0,H4 6=0,H9 <0,
(−1, 1, 0) P24

η=0,H4 6=0,H9 =0,
(0, 1, 0) P25

η=0,H4 =0,H6 >0,
(1, 0, 0) P26

η=0,H4 =0,H6 <0,
(−1, 0, 0) P27

ẋ = ax + bx2 − cxy, ẏ = −2y(a + cy); (S4)[(18)]

ẋ = abx− bx2, ẏ = 2ac + a2d− 3cx− 3dx2 + 2aby − 3bxy; (S5)[(23)]

ẋ = −2adx + 2dx2, ẏ = −2ab + 3bx + cx2 − 2ady + 3dxy; (S6)[(24)]
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Figure 1. The 31 non equivalent topological phase portraits of the planar
quadratic polynomial vector field with a rational first integral of degree 3.

ẋ = 2ax + bx2 − 2cxy, ẏ = −4ay + bxy − 2cy2; (S7)[(19)]

ẋ = abx + acx2, ẏ = cd + cex + 3bay + caxy; (S8)[(21)]

ẋ = 2abx + 2acx2, ẏ = 3bd + ebx + 2dcx + 3aby + 2acxy; (S9)[(22)]

ẋ = 6acx− 6cx2, ẏ = 2ab− 3bx− adx + 4acy − 6cxy; (S10)[(25)]

ẋ = 2x(e + ax + by), ẏ = 2f + 2cx + 6ey + 2dx2 + 4axy + 3by2, (S11)[(20)]

where the notation (Sj)[(k)] stands for our compact re-numeration (Sj) of the families of
systems ([(k)]) as they appeared in [10].

The systems (Sj) for j = 1, 2, . . . , 11 could be split into the following three classes

A) {(S1), (S2), . . . , (S6)},
B) {(S7), (S8), (S9), (S10)},
C) {(S11)},

in accordance with some of their common geometrical properties. As it will be proved later
on (see Theorems A, B and C in the next section) these properties are described in the next
remark.
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Remark 3. A quadratic system belonging to the class either A), or B), or C) possesses the
following geometrical property.

A system from class A) possesses invariant straight lines of total multiplicity 5 (consid-
ering the line at infinity and considering their multiplicities).

A system from class B) has the infinity fulfilled of singular points.
A system from class C) in the generic case (b 6= 0 in (S11)) possesses a line of symmetry

and two singularities (real or complex) located on this line and having zero trace.

3. Proof of the Main Theorem

We split the proof of the Main Theorem in three theorems according with the three classes
A), B) and C).

Theorem A. A non–degenerate quadratic system (4) can be written via an affine trans-
formation and a time rescaling as one of the systems from the class A) if and only if η ≥ 0,
Z1M 6= 0, θ = H4 = H6 = 0 and one of the following sets of conditions holds:

A1) N 6= 0, B3 = Z2 = 0;
A2) N = Z3 = 0, B3η 6= 0;
A3) N = η = N1 = Z4 = 0, D 6= 0.

In addition any system in class A) has one of the phase portraits P1–P5 determined by
the invariant conditions given in Table 1.

Before proving Theorem A we shall prove first the following result.

Lemma 4. Assume that for a quadratic system (4) the conditions η ≥ 0, Z1M 6= 0 and
θ = 0 hold. Then its quadratic part (p2, q2) could be brought via a linear transformation and
a time rescaling into the form

(10) (p2, q2) = (g̃x2, 2(g̃ − 1)xy + ñy2) (g̃ ∈ R, ñ ∈ {0, 1}, (g̃ − 2)2 + ñ2 6= 0)

with g̃ 6= 1 if N 6= 0 and g̃ = 1 if N = 0.

Proof. Assume that for the homogeneous quadratic systems

(11) ẋ = gx2 + 2hxy + ky2, ẏ = lx2 + 2mxy + ny2

the conditions provided by the lemma are satisfied. Without loss of generality we may
assume k = 0 doing a rotation (if necessary) and then for these systems we calculate

θ = −64h
[
l(n− h)2 + gm(n− h)−m2n

]
.

We claim that if θ = 0 then without loss of generality we may assume h = 0. Indeed,
suppose h 6= 0. Then we may assume g = 0 and h = 1 due to the transformation x1 =
x, y1 = gx/2 + hy, i.e. we get the family of systems

ẋ = 2xy, ẏ = lx2 + 2mxy + ny2.

for which the condition θ = 0 yields l(n − 1)2 = m2n. We shall consider two cases: n 6= 1
and n = 1.

If n 6= 1 then l = m2n/(n− 1)2 and via the transformation x1 = mx + (n− 1)y, y1 = x,
we get systems (11) with k = h = 0.

Assume now n = 1. Then the condition θ = m2 = 0 implies m = 0, and we arrive to the
family of systems

ẋ = 2xy, ẏ = lx2 + y2,

for which η = 4l ≥ 0. Then setting l = u2 and applying the transformation x1 = ux+y, y1 =
x we again get systems (11) with k = h = 0.

Thus our claim is proved and in what follows we shall consider the family of systems

(12) ẋ = gx2, ẏ = lx2 + 2mxy + ny2

for which θ = 0 and the conditions Z1M 6= 0 and η = n2
[
(g − 2m)2 − 4ln

]
≥ 0 have to be

fulfilled.
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Assume first n 6= 0. In this case we may assume n = 1 due to a rescaling and then we
may set (g − 2m)2 − 4l = u2 ≥ 0 (due to η ≥ 0). So we obtain l = [(g − 2m)2 − u2]/4 and
via the transformation x1 = x and y1 = (2m− g + u)x/2 + y, we get the family of systems

ẋ = gx2, ẏ = 2mxy + y2,

for which we calculate N = 4(g − m)mx2. So if N 6= 0 we have g − m 6= 0 and via the
rescaling x → x/(g −m) we get the form (10) with ñ = 1 and g̃ 6= 1.

Suppose N = 0, i.e. m(g −m) = 0. If m = 0 we have two possibilities: (i) if g 6= 0 then
due to the rescaling x 7→ x/g we obtain the form (10) with g̃ = 1 and ñ = 1; and (ii) if
g = 0 applying the change (x, y) 7→ (y, x) we get the same form with g̃ = 1 and ñ = 0.

If m 6= 0 then m = g 6= 0 and via the transformation x1 = gx and y1 = gx + y we get the
(10) with g̃ = 1 and ñ = 1.

Assume now n = 0. In this case M = −8(g − 2m)2x2 6= 0 and then we may assume
l = 0 due to the transformation x1 = x and y1 = −lx + (g − 2m)y. So we get the family of
systems

ẋ = gx2, ẏ = 2mxy,

for which we calculate N = 4m(g −m)x2 and Z1 = 8(g −m)(3m − g)x2. As Z1 6= 0 (i.e.
g−m 6= 0) then via the rescaling x 7→ x/(g−m) we arrive to the form (10) with ñ = 0 and
g̃ 6= 1 if N 6= 0, and to the same form with ñ = 0 and g̃ = 1 if N = 0 (i.e. m = 0). This
completes the proof of the lemma. �

Proof of Theorem A. Sufficiency. Assuming that for a system (4) the conditions η ≥ 0,
Z1M 6= 0, θ = H4 = H6 = 0 hold, we shall consider step by step each set of the conditions
Ai) for i = 1, 2, 3.

Case A1). As N 6= 0 according to Lemma 4 we can consider the quadratic parts of this
system being in the form (4) with g̃ 6= 1. Therefore due to an additional translation we get
the family of systems

(13)
ẋ = a + cx + dy + gx2, ẏ = b + 2(g − 1)xy + ny2,

n ∈ {0, 1}, g 6= 1, (g − 2)2 + n2 6= 0,

for which we calculate

(14) Z2 = 256(g − 1)2(g − 4)(g + 2)(3g − 4)(3g − 2)x8,

and
Coeff[B3, x

4] = 12b(g − 2)(−1 + g)2, Coeff[B3, x
3y] = 24b(g − 1)2n,

Coeff[B3, xy3] = 6d2g(g − 2), Coeff[B3, y
4] = 3d2gn.

Hence considering (13) and the fact that the condition Z2 = 0 implies g 6= 0, we obtain that
B3 = 0 yields b = d = 0. Then calculations yield

B3 = −3(4a− 2c2 + c2g)nx2y2,

Coeff[H6, x
6] = 2048(2− g)(g − 1)4(4a− 2c2 + c2g).

So considering (13) the conditions B3 = H6 = 0 yield 4a− 2c2 + c2g = 0, and this implies
H6 = H4 = 0.

To construct a simpler canonical form we replace c 7→ 2c and taking into consideration
the relation above and Z2 = 0 we get the families of systems

(15) ẋ = c2(2− g) + 2cx + gx2, ẏ = 2(g − 1)xy + ny2,

where n ∈ {0, 1}, g ∈
{
− 2, 2/3, 4/3, 4}, c ∈ {0, 1} (due to a rescaling) and (c, n) 6= (0, 0)

(otherwise we get degenerate systems). These systems possess the first integral

H =
[
c(g − 2)− gx

]g−2[(g − 2)(c + x) + ny
]g

y−g,

and easily we see that H is a cubic rational first integral if and only if g ∈
{
−2, 2/3, 4/3, 4}.

We observe that the family of systems (15) possesses the invariant straight lines

x + c = 0, c(g − 2)− gx = 0, y = 0, (g − 2)(c + x) + ny = 0.
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So this family of systems possess invariant straight lines (including the line at infinity)
with total multiplicity at least five (see [15] for detailed definitions). In fact as it will be
shown later on, the conditions provided by Theorem A imply the existence of invariant
straight lines of multiplicity 5. Thus in order to determine the phase portraits which could
be realized for the family (15) we could apply the respective results from [17]. We observe
that for systems (15) we have

(16)
B3 = θ = H6 = 0, η = n2(g − 2)2, µ0 = g2n2, K = 4gx

[
(g − 1)x + ny

]
,

N = 4(g − 1)x2, H1 = 2304c2(g − 2)2(g − 1)2n2, g ∈
{
− 2, 2/3, 4/3, 4}.

Suppose that η > 0. Then n 6= 0 (i.e. n = 1) and this implies µ0 6= 0. So according to
[17, Table 5] the phase portrait of a system (15) corresponds to P1 (see Figure 1) if H1 6= 0
(i.e. c = 1), and corresponds to P2 if H1 = 0 (i.e. c = 0).

It remains to note that when n = 1 we could consider g ∈
{
−2, 4} and the other cases can

be reduced to these two. To show this it is sufficient to construct the two transformations
(we use the notation (c, g, n) for parameters):

x1 = −3(x + 4c), y1 = −4x + y − 4c then
[
(15)

]
(c,−2,1)

implies ⇒
[
(15)

]
(c̃,2/3,1)

;

x1 = 3(x− 2c), y1 = 2x + y + 2c then
[
(15)

]
(c,4,1)

implies ⇒
[
(15)

]
(c̃,4/3,1)

.

Assume now η = 0. We get n = 0 (then c 6= 0, i.e. c = 1) and this implies µ0 = 0. In this
case for systems (15) we calculate: L = 8g(2−g)x2 6= 0 for the given values of the parameter
g. As KN 6= 0, then according to [17] the phase portrait of a system (15) corresponds to
P3 if L > 0 (i.e. g ∈ {2/3, 4/3}), and corresponds to P4 if L < 0 (i.e. g ∈ {−2, 4}).

Case A2). Then for system (4) the condition N = 0 holds. According to Lemma 4 we
could consider its quadratic parts being in the form (4) with g̃ = 1. Therefore due to an
additional translation we get the family of systems

(17) ẋ = a + dy + x2, ẏ = b + ex + fy + ny2, n ∈ {0, 1},

for which we have H4 = 96(d2 + e2n4) and η = n2. So the condition H4 = 0 yields
d = en = 0, and since η 6= 0 (i.e. n = 1) this implies e = 0. Hence applying the additional
translation y 7→ y − f/2, we get the family of systems

ẋ = a + x2, ẏ = b + y2,

for which we calculate

B3 = 12(b− a)x2y2, Z3 = 2304(a− 4b)(4a− b).

The condition Z3 = 0 yields (a − 4b)(4a − b) = 0, and due to the change (x, y, a, b) 7→
(y, x, b, a) we may assume b = 4a 6= 0 (as B3 6= 0). Thus we arrive to the systems

(18) ẋ = a + x2, ẏ = 4a + y2,

with a ∈ {−1, 1} (due to a rescaling). It could be checked directly that the cubic rational
function

H =
4ax− ay + x2y

a− x2 + xy

is a first integral for these systems. We observe that systems (17) also possess invariant
straight lines of total multiplicity five (the affine lines being x2 + a = 0 and y2 + 4a = 0).

It remains to observe that for systems (17) we have

η = 1 > 0, B2 = N = H4 = 0, B3 = 36ax2y2 6= 0, H5 = 24576a2 > 0, H1 = −5760a,

and according to [17] we get the phase portrait P1 if H1 > 0 (i.e. a = −1), and P5 if H1 < 0
(i.e. a = 1).

Case A3). Since besides the condition N = 0 we have also η = 0, then the condition
H4 = 0 for systems (17) yields d = n = 0. So we get the family of systems

ẋ = a + x2, ẏ = b + ex + fy,
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for which we calculate

D = −f2x2y, N1 = 8ex4, Z4 = −256(a + f2)(16a + f2).

The condition N1 = 0 yields e = 0, whereas the condition D 6= 0 implies f 6= 0, and then we
could assume f = 1 (due to a rescaling), and b = 0 (due to a translation). As the condition
Z4 = 0 implies a < 0 we replace a 7→ −a2, and then considering the condition Z4 = 0 and
f = 1, we arrive to systems

(19) ẋ = x2 − a2, ẏ = y, a ∈ {1, 1/4},

possessing the first integral H =
(a + x)y2a

a− x
. Clearly both values of a ∈ {1, 1/4} lead to

cubic rational function H.
It remains to note that for systems (19) we have

B3 = N = η = H = N1 = 0, M = −8x2 6= 0, N5 = 64a2x2 > 0, N2 = 4(1− 4a2)x 6= 0,

and according to [17] for both values of a ∈ {1, 1/4} we obtain the phase portrait which is
topologically equivalent to P3. We remark that by [17] the above conditions imply also the
existence of the invariant straight lines of total multiplicity five for these systems.

Necessity. Assume that a system (4), which possesses a cubic rational first integral, could
be written via an affine transformation and time rescaling as a system from the class A).
We claim that for this system one of the sets of conditions provided in Theorem A must
hold. To prove this claim we shall consider step by step each family (Si) (i = 1, 2, . . . , 6) of
non–degenerate quadratic systems from the class A) and calculate the respective invariant
polynomials.

Systems (S1): ẋ = 4(da− 2bx + cx2), ẏ = cd + 4by + 4ay2, then

θ = H4 = H6 = N = Z3 = 0, M = −128(c2x2 − acxy + a2y2), η = 256a2c2,

Z1 = −128(cx− ay)2, B3 = 2304ac(b2 − acd)x2y2.

For these systems the condition a(b2 − acd) 6= 0 must hold, otherwise we get systems with
rational first integral of degree less than three. Then evidently Z1M 6= 0.

If η 6= 0 then B3 6= 0, and we get the conditions A2). If η = 0 we have c = 0, and then
we obtain

N1 = Z4 = 0, D = 256ab2xy2,

and as ab 6= 0 (see the above reason) this leads to the set of conditions A3).

Systems (S2): ẋ = ax + bx2, ẏ = −2ay − bxy + cy2, then

θ = H4 = H6 = B3 = Z2 = 0, M = −8(4b2x2 − 2bcxy + c2y2),

η = 4b2c2, N = −3b2x2, Z1 = −2(15b2x2 − 12bcxy + 4c2y2).

We observe that MZ1 6= 0, otherwise we obtain b = c = 0 that leads to linear systems.
If N 6= 0 then evidently we get the conditions A1). Assuming N = 0 (i.e. b = 0 and then

c 6= 0), we obtain
η = N = N1 = Z4 = 0, D = a2cxy2 6= 0,

and this leads to the set of conditions A3).

Systems (S3): ẋ = abx + acx2, ẏ = −2aby + bdy2, then

θ = H4 = H6 = N = Z3 = 0, M = −8(a2c2x2 − abcdxy + b2d2y2),

η = a2b2c2d2, Z1 = −8(acx− bdy)2, B3 = −9a3b3cdx2y2.

So MZ1 6= 0, otherwise we obtain ac = bd = 0 and we get linear systems.
If η 6= 0 then B3 6= 0, and evidently we have the set of conditions A2). If η = 0 since

ab 6= 0 (otherwise we get degenerate systems), we obtain cd = 0. Then we calculate

N1 = Z4 = 0, D = −a2b2xy(4acx− bdy),
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and as c2 + d2 6= 0 (if c = d = 0 we get linear systems), we obtain D 6= 0 and this leads to
the set of conditions A3).

Systems (S4): ẋ = ax + bx2 − cxy, ẏ = −2y(a + cy), then

θ = H4 = H6 = B3 = Z2 = 0, M = −8(b2x2 + bcxy + c2y2),

η = b2c2, N = 3c2y2, Z1 = −2(4b2x2 + 12bcxy + 3c2y2).

We observe that MZ1 6= 0, otherwise we obtain b = c = 0, that leads to linear systems. So
if N 6= 0, then and we get the set of conditions A1).

Assuming N = 0 we obtain c = 0, and then for systems (S4) we calculate

N1 = Z4 = 0, D = −4a2bx2y,

and as ab 6= 0 (otherwise we get either linear or degenerate systems), we obtain D 6= 0 and
this leads to the set of conditions A3).

Systems (S5): ẋ = abx− bx2, ẏ = 2ac + a2d− 3cx− 3dx2 + 2aby − 3bxy, then

θ = H4 = H6 = B3 = Z2 = 0, M = −32b2x2,

N = −3b2x2, Z1 = −14b2x2.

As b 6= 0 (otherwise systems become degenerate), we have Z1MN 6= 0 and this leads to the
set of conditions A1).

Systems (S6): ẋ = −2adx + 2dx2, ẏ = −2ab + 3bx + cx2 − 2ady + 3dxy, then

θ = H4 = H6 = B3 = Z2 = 0, M = −8d2x2,

N = 3d2x2, Z1 = 10d2x2.

As d 6= 0 (otherwise systems become degenerate), we have Z1MN 6= 0 and this leads to the
set of conditions A1).

As all the possible cases are examined this completes the proof of the theorem. �

Theorem B. A non–degenerate quadratic system (4) can be written via an affine transfor-
mation and a time rescaling as one of the systems of the class B) if and only if C2 = Z5 = 0
and H12 6= 0. In addition any system in class B) has one of the phase portraits P6–P8

determined by the invariant conditions given in Table 1.

Proof. Necessity. Assume that a quadratic system having a cubic rational first integral
belongs to the class B). Straightforward calculations show that for each of the families S7,
S8, S9 and S10 we have C2 = Z5 = 0. The condition C2 = 0 means that any system from
this class has the infinity fulfilled of singular points. Moreover for these systems we obtain
(S7) has H12 = −4608a4(b2x2 + bcxy + c2y2), (S8) has H12 = −288a6b4c2x2,
(S9) has H12 = −288a6b4c2x2, (S10) has H12 = −21132a4c6x2.
It obviously could be checked that for each of the above families of systems the condition

H12 = 0 leads to either degenerate, or linear systems, or to systems with rational first
integral of degree 2. And the last situation could happens only for family (S8) when b = 0.
Indeed a first integral of this family (see [10]) is

H = x−3
[
2bcd + 3c(cd + be)x + 6c2ex2 + 6a(b + cx)2y

]
,

which for b = 0 becomes quadratic. Thus the necessity is proved.

Sufficiency. Assuming that the conditions provided by the theorem are verified for a
quadratic system (4) we shall show that it possesses a cubic rational first integral. As
C2 = 0 according to [19] any such system could be written via an affine transformation and
time rescaling to one of the nine canonical systems (C2.j), j = 1, 2, . . . , 9 (see [19, Table
1]). Among these systems only the systems corresponding to j = 1, 2, 3, 5, 6, 7 could satisfy
the condition H12 6= 0.
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Straightforward calculations show that the condition Z5 = 0 could be satisfied only for
two systems in this class, and namely, for systems

(C2.1) ẋ = (x + c)2 − 1 + y, ẏ = xy,

if H10 6= 0 and for systems

(C2.5) ẋ = (x + c)2 − 1, ẏ = xy,

if H10 = 0. We observe that these two families of systems could be joint into the family

ẋ = (x + c)2 − 1 + dy, ẏ = xy,

with d ∈ {0, 1} and possess the first integral

H = y−2
[
(c + 1)(x + c− 1) + dy

]1−c[(c− 1)(x + c + 1) + dy
]1+c

.

For these systems we calculate

(20) Z5 = 2304(c2 − 25)(c2 − 4)(9c2 − 1) = 0 then c ∈ {±1/3,±2,±5}.

It can be checked that any indicated value of the parameter c leads to a cubic rational first
integral. However we could minimize this set of values.

Remark 5. Due to the change (x, y, t) 7→ (−x, y,−t) we may assume c ∈ {1/3, 2, 5} in
both systems (C2.1) and (C2.5).

Moreover in systems (C2.1) we may assume c = 2 due to the transformations

x1 = −1
3
x− 4

3
, y1 =

4
9
x +

1
9
y +

8
3
, t1 = −3t, system (C2.1)|c=5 pass to (C2.1)|c=1/3;

x1 = −1
2
x− 3, y1 =

3
2
x +

1
4
y + 6, t1 = −2t, system (C2.1)|c=5 pass to (C2.1)|c=2.

In accordance with this remark we get the respective canonical system of Table 1. More-
over, if H10 = 0, then according to [19] these systems possesses a phase portrait topologically
equivalent to P6.

Assume H10 = 0, i.e. we consider (C2.5), for which by Remark 5 we have c ∈ {1/3, 2, 5}.
For these systems we calculate µ2 = (c2 − 1)x2, and according to [19] there phase portraits
are P7 if µ2 < 0 (i.e. c = 1/3), and P8 if µ2 > 0 (i.e. c = 2, 5). We note that in the
last case systems (C2.5) with c = 2 and with c = 5 are located on different affine orbits.
Note that for systems (C2.1) and (C2.5) we have Z1 6= 0. This completes the proof of the
theorem. �

Theorem C. A non–degenerate quadratic system (4) can be written via an affine transfor-
mation and a time rescaling as one of the systems of the class C) if and only if Z1 = Z6 =
Z7 = 0 and either M 6= 0, or M = B3 = Z8 = 0 and D 6= 0. In addition any system in
class C) has one of the phase portraits P9–P31 determined by the invariant conditions given
in Table 1.

Before proving Theorem C we shall prove first the following result.

Lemma 6. Assume that for a quadratic system (4) the condition Z1 = 0 holds. Then its
quadratic part (p2, q2) could be brought via a linear transformation and a time rescaling to
one of the form below if and only if the respective conditions hold:

(i) (p2, q2) = (xy, lx2 + 3/2y2) (l ∈ {0,±1}) ⇔ N 6= 0;
(ii) (p2, q2) = (x2, 2xy) ⇔ N = 0, M 6= 0;
(iii) (p2, q2) = (0, x2) ⇔ N = M = 0.

Proof. Necessity. Assuming that a system (4) has the quadratic parts of the form (i)
(respectively (ii); (iii)) calculations yield: Z1 = 0 and N = 2(2lx2 + y2) (respectively
Z1 = N = 0, M = −8x2; Z1 = N = M = 0). This proves the necessity.

Sufficiency. We consider the homogeneous quadratic systems (11) and without loss of
generality we may assume k = 0 doing a rotation (if necessary).
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Assume h 6= 0. Then we may consider g = 0 and h = 1/2 due to the transformation
x1 = x, y1 = gx + 2hy, and we get the canonical form

(21) ẋ = xy, ẏ = lx2 + 2mxy + ny2.

For these systems we calculate Coefficient[Z1, y
2] = 2(3−2n)(2n−1), and we shall consider

two cases n = 3/2 and n = 1/2.
Assume first n = 3/2. Then calculations yield

Z1 = −8mx(3mx + 2y), N = 4(l −m2)x2 + 4mxy + 2y2.

We observe that N 6= 0. The condition Z1 = 0 yields m = 0, and we get the canonical form
(i). Moreover, if l 6= 0, then we may assume l ∈ {−1, 1} due to the additional rescaling
x 7→ |l|−1/2x.

If n = 1/2 we have

Z1 = −8(2l + 3m2)x2, N = −4mx(mx− y),

and the relation Z1 = 0 implies l = −3m2/2. Hence we get the family of systems

(22) ẋ = xy, ẏ = −3m2x2/2 + 2mxy + y2/2,

which in the case N 6= 0 (i.e. m 6= 0) could be brought to the form (i) with l = −1 via the
transformation x1 = (−3mx + y)/

√
2, y1 = mx + y and t1 = t/2. If N = 0 (i.e. m = 0)

then via the change (x, y, t) 7→ (y, x, 2t), we get the form (ii) for which M = −8x2 6= 0.

Assume now h = 0. For systems (11) with k = h = 0 we obtain Coefficient[Z1, y
2] =

−8n2y2, and the condition Z1 = 0 implies n = 0. Thus we get the family of systems

(23) ẋ = gx2, ẏ = lx2 + 2mxy,

for which calculations yield

Z1 = 8(g −m)(3m− g)x2, N = 4(g −m)mx2, M = −8(g − 2m)2x2.

If N 6= 0 then we obtain g = 3m 6= 0, and via the transformation x1 = −lx+my, y1 = 2mx
we get the form (i) with l = 0.

Assume N = 0. If M 6= 0 then we get g = m 6= 0, and obviously via the change x1 = mx,
y1 = lx + my we obtain form (ii). If M = 0 then g = m = 0, and evidently due to a
rescaling we get the form (iii). This completes the proof of the lemma. �

Proof of Theorem C. Necessity. We shall consider the family (S11) (which corresponds to
the family of systems (20) from [10]):

(24) ẋ = 2x(e + ax + by), ẏ = 2f + 2cx + 6ey + 2dx2 + 4axy + 3by2,

for which Z1 = Z6 = Z7 = 0 and M = −16(2a2 − 3bd)x2 − 16abxy − 8b2y2. We observe
that the relation M = 0 is equivalent to b = a = 0, and in this case B3 = Z8 = 0 and
D = 72de2x3. Clearly D 6= 0, otherwise we get either degenerate (if e = 0), or linear (if
d = 0) systems. This proves the necessity of the conditions provided in Theorem C.

Sufficiency. In order to prove the sufficiency of these conditions we shall use the canonical
forms of quadratic parts provided by Lemma 6. For systems (24) we calculate N = 8b(2dx2+
2axy + by2).

Case N 6= 0. Then b 6= 0, and via the transformation x1 = x, y1 = ax + by + e, t1 = 2t the
6-parameter family of systems (24) will be brought to the 3–parameter family

(25) ẋ = xy, ẏ = b + ex + lx2 + 3/2y2,

where b, e and l are some new real parameters. We may consider b, l ∈ {−1, 0, 1} due to
the rescaling (x, y, t) 7→ (α−1/2β1/2x, β1/2y, β−1/2t), where α = |l| (respectively α = 1) if
l 6= 0 (respectively l = 0), and β = |b| (respectively β = 1) if b 6= 0 (respectively b = 0).
Moreover we may assume e ≥ 0 due to the change x 7→ −x. We note that a first integral
for this family is the cubic rational function H = (2b + 3ex + 6lx2 + 3y2)/x3.
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Consider now a generic quadratic system (4). According to Lemma 6 as N 6= 0 and
Z1 = 0, applying an additional translation (if necessary) this system can be written as

(26) ẋ = a + xy, ẏ = b + ex + fy + lx2 + 3/2y2,

where l ∈ {−1, 0, 1}. For these systems the condition Z6 = 3fy(2clx2 + y2)/2 = 0 yields
f = 0, and then the condition Z7 = 24ay(6lx2− y2)(2lx2 + y2) is equivalent to a = 0. Thus
we get the family of systems (25) and this proves the sufficiency of the conditions in this
case.

Case N = 0. Then b = 0 and for systems (24) we calculate M = −32a2x2.
Subcase M 6= 0. Then a 6= 0, and via the transformation

x1 = x +
e

2a
, y1 =

d

a
x + y +

ac− 2de

2a2
, t1 = 2at,

systems (24) (with b = 0 and a 6= 0) will be brought to the family of systems

(27) ẋ = x2 − δ2, ẏ = b + 4δy + 2xy,

having the first integral H = (b + 3δy + 3xy)/(x− δ)3. We may assume δ, b ∈ {0, 1} due to
the rescaling (x, y, t) 7→ (δx, y/δ, t/δ) if δ 6= 0, and y 7→ by if b 6= 0.

Consider now a quadratic system (4). As N = Z1 = 0 and M 6= 0 according to Lemma
6 after an additional translation (if necessary) this system can be written as

(28) ẋ = a + dy + x2, ẏ = b + fy + 2xy.

For these systems we calculate Z6 = 12dx2y and Z7 = −12x3y(16ax+f2x−4dfy). Therefore
the conditions Z6 = Z7 = 0 imply d = 0 and f2 +16a = 0. So a ≤ 0, and denoting a = −δ2

we get f = 4δ. So we get the family of systems (27), i.e. in this subcase the theorem holds.
Subcase M = 0. Then for systems (24) we have b = a = 0 and de 6= 0 (otherwise we get
either linear or degenerate systems). Therefore via the transformation

x1 = x, y1 =
1
6d

(
3cx + 6ey + 2f

)
, t1 = 2et,

systems (24) will be brought to the system

(29) ẋ = x, ẏ = 3y + x2,

having the first integral H = (x2 + y)/x3.
Considering a quadratic system (4) according to Lemma 6 (in this case N = Z1 = M = 0),

after an additional translation (if necessary), this system can be written as

(30) ẋ = a + cx + dy, ẏ = b + fy + x2.

For these systems we calculate M = Z1 = Z6 = Z7 = 0, B3 = 6d(fx−dy)x3 = 0 and hence
we get d = 0. Then D = f2x3 and Z8 = 8f(f − 3c)x3. Therefore the conditions D 6= 0 and
Z8 = 0 imply f = 3c 6= 0. So applying the transformation

x1 = x +
a

c
, y1 = −a

c
x + cy − 2a2 − bc2

3c2
, t1 = ct,

we obtain the canonical form (29).

Phase portraits. In what follows we shall determine the phase portraits of the systems be-
longing to the class C). For this goal we shall use the results obtained in three papers: [2] to
determine the configurations of the finite singularities; [16] to determine the configurations
of the infinite singularities, and [22] to determine the hole phase portrait in the case that
there exists a center for the system under examination. In the last case we shall denote by
Vulj the picture with number j from [22].

More precisely, from paper [2] we shall use the conditions from Table 1 given by the
respective subset Sfin ⊆ Ŝfin of invariant polynomials, where

Ŝfin ={µ,D,T,R,S,P,U,K,E1, E3, F1, F2,W1,W2,W3,W4,W7,

V1, G8, G9, G10, (C2), (C5), (C6), (C8), (C11)}.



QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE THREE 17

From paper [16] we shall use the conditions from Table 4 given by the respective subset
S∞ ⊆ Ŝ∞ of invariant polynomials, where

Ŝ∞ = {η, M, µ0, µ1, µ2, µ3, µ4, L,K,K2, κ, κ1}.

From paper [22] we shall use the conditions provide by the Main Theorem (see [22, page
279]) using the respective subset Scnt ⊆ Ŝcnt of invariant polynomials, where

Ŝcnt = {β, γ, I3, I4, I7, I8, I9, I13}.

We shall examine step by step each of the three obtained canonical forms for the class
C).

Systems (25): ẋ = xy, ẏ = b+ex+ lx2 +3/2y2, b, l ∈ {−1, 0, 1}, e ≥ 0. For these systems
we have η = −l/2 and µ0 = 3l/2. If η 6= 0 then µ0 6= 0, and following [16] we conclude
that the infinite singularities are determined. More precisely, since S∞ = {η = −l/2, µ0 =
3l/2, κ = 40l}, then considering Table 4 [16] we arrive to the next result.

Remark 7 ([16]). Assume that for systems (25) the condition η 6= 0 holds. Then the
behavior of the trajectories of these systems in the vicinity of infinity on the Poincaré disc
corresponds to Fig. 7 (one simple node and two simple saddles) if η > 0, and to Fig. 30
(one simple node) if η < 0.

In what follows we shall consider three cases: η > 0, η < 0 and η = 0.

Assume η > 0. Then l = −1 and we have U1 = 256b.
Assume first U1 > 0. Then b = 1, and we get the 1–parameter family of systems

ẋ = xy, ẏ = 1 + ex− x2 + 3/2y2, e ≥ 0,

for which
Sfin = {µ < 0,D > 0,K > 0,W4 > 0,W1 > 0, V1 > 0, (C6)}.

So the conditions for the case 53 from [2, Table 1 ] are satisfied, i.e. systems above have 2
centers: M1,2

(
(e ∓

√
e2 + 4)/2, 0

)
. Translating the point M1 at the origin of coordinates

we obtain the systems

ẋ = (e−
√

e2 + 4)y/2 + xy, ẏ =
√

e2 + 4 x− x2 + 3/2y2,

for which Scnt = {I13 = 0, I9 < 0, β > 0, γ > 4}. So according to [22] the phase portrait of
these systems corresponds to P9 (Vul21).

Suppose now U1 < 0, i.e. b = −1. Then we get the systems

(31) ẋ = xy, ẏ = −1 + ex− x2 + 3/2y2, e ≥ 0,

for which H9 = 3456(4− e2).
If H9 > 0 then we have

Sfin = {µ < 0,D > 0,K > 0,W4 > 0,W1 > 0, V1 > 0},

i.e. the conditions for the case 30 from [2, Table 1 ] are satisfied (we have two nodes). On the
other hand according to Remark 7 at infinity there are one node and two saddles. Therefore
taking into consideration the invariant hyperbola −2 + 3ex− 6x2 + 3y2 = 0 of systems (31)
passing through the finite nodes as well as the line of symmetry y = 0, we arrive univocally
to the phase portrait P10.

In the case H9 < 0 (then e > 2) we obtain

Sfin = {µ < 0,D < 0,R > 0,S > 0,K > 0,W4 < 0, (C2)},

i.e. the conditions for the case 18 from [2, Table 1 ] hold. This means that systems (31)
possess two nodes, one saddle and one center, which is the point

(
(e +

√
e2 − 4)/2, 0

)
.

Translating this point to the origin of coordinates we get the systems

(32) ẋ = (e +
√

e2 − 4)y/2 + xy, ẏ =
√

e2 − 4 x− x2 + 3/2y2,
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for which Scnt = {I13 = 0, β < 0, 4 < γ < 6, sign (I3I4) = sign (3e2 − 16)}. According to
[22] the phase portrait of these systems corresponds to P11 (Vul26) if e > 4/

√
3, and to P12

(Vul28) if 2 < e < 4/
√

3. In the case e = 4/
√

3 following [22] for systems (32) we obtain
Scnt = {I3 = 0, I9− I8 < 0, 18I7 + I9− 27I8 > 0}, and this leads to the picture P13 (Vul27).

It remains to note that for systems (31) we have H4 = 24(3e2−16), and hence sign (3e2−
16) = sign (H4) and this leads to the conditions given in Table 1.

If H9 = 0 we get e = 2, and for the finite singularities of systems (31) we obtain

Sfin = {µ < 0,D = 0,T < 0,K > 0, E1 = 0,W2 > 0}.

Hence the conditions for the case 73 from [2, Table 1 ] are fulfilled, i.e. systems (31) possess
two nodes and one cusp.

Taking into consideration Remark 7 and the invariant hyperbola −2+6x−6x2 +3y2 = 0
of systems (31) (with e = 2) passing through the finite nodes as well as the line of symmetry
y = 0, we arrive univocally to the phase portrait P14.

Assume finally U1 = 0. Then b = 0 and we obtain systems

ẋ = xy, ẏ = ex− x2 + 3/2y2,

for which e ∈ {0, 1} (due to a rescaling) and H4 = 72e2.
If H4 6= 0 (i.e. e = 1) then we have

Sfin = {µ < 0,D = 0,T = 0,P = 0,R 6= 0, E3 < 0, G10 = 0,W1 < 0, (C8)},

i.e. the conditions for the case 99 from [2, Table 1 ] hold. This means that system (31)
(with b = 0 and e = 1) possesses the triple point (0,0) (elliptic saddle) and the center (1, 0).
Translating this point to the origin of coordinates we get the systems

ẋ = y + xy, ẏ = −x− x2 + 3/2y2,

for which Scnt = {I13 = 0, β = 0, I4 6= 0, 4 < γ < 6}. According to [22] the phase portrait
of these systems corresponds to P15 (Vul24).

Assuming H4 = 0 we get e = 0, and this leads to a homogeneous system for which we
have

Sfin = {µ < 0,D = 0,T = 0,P = 0,R = 0, F1 = 0, η > 0, κ < 0}.
So the conditions for the case 106 from [2, Table 1 ] are fulfilled and hence topological phase
portrait is induced by picture (e) (Fig.1)[2] and on the Poincaré disc we obtain picture P16.

Suppose now η < 0, i.e. l = 1. In this case we have U1 = −256b.
Assume U1 > 0. Then b = −1 and we get the 1–parameter family of systems

ẋ = xy, ẏ = −1 + ex + x2 + 3/2y2, e ≥ 0,

for which we calculate

Sfin = {µ > 0,D < 0,R > 0,S > 0,W4 > 0,W2 > 0,W1W3 > 0}.

So the conditions for the case 4 from [2, Table 1 ] are verified, and hence these systems
possess two saddles and two nodes.

On the other hand as η < 0 by Remark 7 at infinity there exist only one simple node.
Taking into consideration that all three nodes (finite and infinite) are located on the invari-
ant straight line x = 0 and two saddles are located on the line of symmetry y = 0, we get
univocally the phase portrait P17.

Suppose now U1 < 0, i.e. b = 1. Then we get the systems

(33) ẋ = xy, ẏ = 1 + ex + x2 + 3/2y2, e ≥ 0,

for which H9 = 3456(e2 − 4).
If H9 > 0 then we have e > 2 and

Sfin = {µ > 0,D > 0,W4 < 0, (C5)}.
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Hence the conditions for the case 28 from [2, Table 1 ] are satisfied, i.e. we have one
saddle and one center. Translating the center point

(
(−e +

√
e2 − 4)/2, 0

)
to the origin of

coordinates we get the systems

ẋ = (−e +
√

e2 − 4)y/2 + xy, ẏ =
√

e2 − 4 x− x2 + 3/2y2,

for which Scnt = {I13 = 0, βγ > 0, γI9 > 0, I9(4 − γ) < 0}. According to [22] the phase
portrait of these systems corresponds to P18 (Vul2).

Assuming H9 < 0 we obtain 0 ≤ e < 2, and obviously could be determine that systems
(33) have not real finite singularities, whereas at infinity according to Remark 7 there exists
one simple node. Considering the invariant straight line x = 0 we arrive to P19.

Assuming H9 = 0 we get e = 2, and for system (33) we obtain

Sfin = {µ > 0,D = 0,T > 0, E1 = 0},
i.e the conditions for the case 83 from [2, Table 1 ] are fulfilled. Therefore this system
possesses a unique finite singularity which is a cusp located on the line of symmetry y = 0.
Taking into consideration the existence of a node at infinity (see Remark 7) and the invariant
straight line x = 0, we arrive univocally to the phase portrait P20.

Suppose now U1 = 0. Then b = 0, and we obtain systems

ẋ = xy, ẏ = ex + x2 + 3/2y2,

for which e ∈ {0, 1} (due to a rescaling) and H4 = 72e2.
If H4 6= 0 (i.e. e = 1) then we have

Sfin = {µ > 0,D = 0,T = 0,P = 0,R 6= 0, E3 < 0, G10 = 0},
i.e. the conditions for the case 88 from [2, Table 1 ] hold. This means that the above system
(when e = 1) possesses the triple point (0,0) (elliptic saddle) and the saddle (−1, 0). By
Remark 7 there is a simple node at infinity and considering the invariant straight line x = 0
(on which the elliptic saddle is located) we get the phase portrait P21.

Assuming H4 = 0 we get e = 0 and this leads to a homogeneous system for which we
have

Sfin = {µ < 0,D = 0,T = 0,P = 0,R = 0, F1 = 0, η < 0}.
So the conditions for the case 104 from [2, Table 1 ] are fulfilled and hence topological phase
portrait is induced by picture (c) (Fig.1)[2] and on the Poincaré disc we obtain picture P22.

Assume finally η = 0, i.e. l = 0. In this case we get the systems

(34) ẋ = xy, ẏ = b + ex + 3/2y2, b ∈ {−1, 0, 1}, e ∈ {0, 1}, (b, e) 6= (0, 0),

for which H4 = 72e2 and H9 = 3456b3e2. So we have five concrete systems each of them
being determined by the values of invariant polynomials H4 and H9 as follows.

If H4 6= 0 then e = 1, and following [16] for systems (34) we obtain S∞ = {η = 0,M 6=
0, µ0 = 0, µ1 6= 0, κ = 0, L > 0,K > 0}. Then considering [16, Table 4 ] we arrive to the
next result.

Remark 8 ([16]). Assume that for systems (34) the condition H4 6= 0 holds. Then the
behavior of the trajectories of these systems in the vicinity of infinity on the Poincaré disc
corresponds to Fig.23 (one simple node and one topological saddle with three sectors on the
the same part of the circle of Poincaré disc).

For systems (34) with e = 1 we have sign (H9) = sign (b).
Assume first H9 > 0. Then b = 1 and for the obtained system we have

Sfin = {µ = 0,D > 0,R 6= 0,K > 0, G9 = 0,W7 < 0, (C11)},
i.e. the conditions for the case 134 from [2, Table 1 ] hold. This means that the system under
examination possesses only one real point which is a center with the coordinates (−1, 0).
Translating this point to the origin of coordinates we get the systems

ẋ = −y + xy, ẏ = x + 3/2y2,
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for which Scnt = {I9 = 0, I13 = 0, I4 6= 0, 4 < γ < 6}. According to [22] the phase portrait
of this system corresponds to P23 (Vul13).

If H9 < 0 then b = −1 and for the obtained system we have

Sfin = {µ = 0,D < 0,R 6= 0,K > 0, G9 = 0,W7 > 0}.

So the conditions for the case 117 from [2, Table 1 ] hold, i.e. this system possesses only
three real points: the saddle (1, 0) and two nodes (0,±

√
2/3).

Taking into consideration Remark 8 and the fact that all three nodes (finite and infinite)
are located on the invariant straight line x = 0 as well as the existence of the line of
symmetry y = 0, we arrive univocally to the phase portrait P24.

Assuming H9 = 0 we get b = 0 and for system (33) we obtain

Sfin = {µ = 0,D = 0,P = 0,R 6= 0,K > 0, G10 = 0},

i.e the conditions for the case 147 from [2, Table 1 ] hold. Therefore the system (34) with
e = 1 and b = 0 possesses a unique (triple) finite singularity which is an elliptic saddle
located at the intersection of the line of symmetry y = 0 with the invariant line x = 0.

Taking into consideration Remark 8 we obtain univocally the phase portrait P25.
Finally suppose H4 = 0, i.e. e = 0, and then b ∈ {−1, 1}. In this case for systems (34)

we have H6 = 256by6, and hence sign (H6) = sign (b).
If H6 > 0 then b = 1 and we obviously detect that system (34) with e = 0 and b = 1 has

no real finite singularity. On the other hand following [16] for this system we obtain

S∞ = {η = 0,M 6= 0, µ0 = 0, µ1 = 0, µ2 > 0, κ = 0, κ1 = 0, L > 0,K2 < 0},

and according to [16, Table 4 ] for the infinite singular points we get Fig.8 (i.e. one node and
one two-separatrices saddle). Considering the invariant line x = 0 and the line of symmetry
y = 0 we arrive to the phase portrait P26.

In the case H6 < 0 we get b = −1, and for system (34) with e = 0 and b = −1 we obtain

Sfin = {µ = 0,R = 0,P 6= 0,U > 0,K > 0, G8 = 0, F2 < 0},

i.e the conditions for the case 164 from [2, Table 1 ] are fulfilled and we obtain two nodes.
For the infinite singular points we have

S∞ = {η = 0,M 6= 0, µ0 = 0, µ1 = 0, µ2 < 0, κ = 0, κ1 = 0, L > 0,K > 0}

and according to [16, Table 4 ] we get Fig.27 (i.e. one node and multiple point with six
saddle sectors). As all three nodes (finite and infinite) are located on the invariant straight
line x = 0, and considering the line of symmetry y = 0 we obtain the phase portrait P27.
Systems (27): ẋ = x2−δ2, ẏ = b+4δy+2xy, δ, b ∈ {0, 1}, (δ, b) 6= (0, 0). As we can observe
this family consists of three distinct systems, for which we calculate H6 = −32768δ2x6 and
B3 = 12bx4.

If H6 6= 0 then δ = 1, and following [16] for systems (27) we obtain S∞ = {η = 0,M 6=
0, µ0 = 0, µ1 = 0, µ2 > 0, L < 0, κ = 0, κ1 = 0}. Then considering [16, Table 4 ] we
conclude that the behavior of the trajectories of these systems in the vicinity of infinity on
the Poincaré disc corresponds to Fig. 17, i.e. there are one simple saddle and one singularity
of multiplicity 4 (having two elliptic sectors, each one of the different parts of infinity).

On the other hand for the finite singularities, following [2], we obtain

Sfin = {µ = 0,R = 0,P 6= 0,U > 0,K > 0, G8 = 0, F2 > 0},

i.e the conditions for the case 150 from [2, Table 1 ] hold. Therefore systems (27) with δ = 1
possesses two finite singularities: one node and one saddle.

If B3 = 0 (i.e. b = 0), then the finite singular points are located on the invariant straight
line y = 0 which are at the same time the separatrices of the infinite saddles. Moreover,
this invariant straight line is also a line of symmetry of the respective vector field of the
system (27) with δ = 1 and b = 0. Considering the existence of two invariant straight lines
x = ±1 passing through the finite singularities we get univocally the phase portrait P29.
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In the case B3 6= 0 we have b = 1, and clearly in this case the there does not exist a
separatrix connection between finite and infinite saddles because the flow along the segment
{(x,−1/2), x ∈ (−∞,−1)} goes always upwards. Taking into account the invariant straight
lines x = ±1 and the locations of all the singularities (finite and infinite) we obtain the phase
portrait P30.

Assume now H6 = 0, i.e. δ = 0. Then b = 1 and we get the concrete system

ẋ = x2, ẏ = 1 + 2xy,

which evidently has not finite singularities. To determine the configuration of infinite sin-
gularities following [16] we obtain

S∞ = {η = 0,M 6= 0, µ0 = 0, µ1 = 0, µ2 = 0, µ3 = 0, µ4 > 0, L < 0, κ = 0, κ1 = 0}.

Then considering [16, Table 4 ] we conclude that the behavior of the trajectories of this
system in the vicinity of infinity on the Poincaré disc corresponds again to Fig.17, but
besides the simple saddle there is one singularity of multiplicity 6 (having two elliptic
sectors, each one of the different parts of infinity).

Taking into consideration the double invariant straight line x = 0 and the facts that the
change (x, y, t) 7→ (−x − y − t) keeps this system (i.e. the origin of coordinate is a center
of symmetry of its phase portrait) and that the flow along x-axis goes upward we arrive to
picture P31.
III. System (29): ẋ = x, ẏ = 3y + x2. Evidently the unique simple singular point (0, 0) of
this system is a node.

To examine infinite singularities, following [16], we obtain

S∞ = {M = 0, µ0 = 0, µ1 = 0, µ2 = 0, µ3K1 > 0,K3 < 0},

i.e. according to [16, Table 4 ] the behavior of the trajectories of this system at infinity
corresponds to Fig. 38 (a unique singular point of multiplicity six, having two hyperbolic
and two parabolic sectors which alternate as it is indicated in Fig. 38 [16]).

As the finite node is located on the invariant straight line x = 0 and this line is also the
line of symmetry for the system under consideration we get the phase portrait P28. �
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[21] K.S. Sibirskii, Introduction to the algebraic theory of invariants of differential equations, translated
from the Russian, Nonlinear Science: Theory and Applications, Manchester University Press, Manch-

ester, 1988.

[22] N.I. Vulpe, Affine–invariant conditions for the topological discrimination of quadratic systems with
a center, Differential Equations 19 (1983), 273–280.
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