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REFINED ASYMPTOTICS FOR THE SUBCRITICAL
KELLER-SEGEL SYSTEM AND RELATED FUNCTIONAL

INEQUALITIES

VINCENT CALVEZ AND JOSÉ ANTONIO CARRILLO

Abstract. We analyze the rate of convergence towards self-similarity for the

subcritical Keller-Segel system in the radially symmetric two-dimensional case

and in the corresponding one-dimensional case for logarithmic interaction. We
measure convergence in Wasserstein distance. The rate of convergence towards

self-similarity does not degenerate as we approach the critical case. As a
byproduct, we obtain a proof of the logarithmic Hardy-Littlewood-Sobolev

inequality in the one dimensional and radially symmetric two dimensional

case based on optimal transport arguments. In addition we prove that the
one-dimensional equation is a contraction with respect to Fourier distance in

the subcritical case.

1. Introduction

We will concentrate on seeking decay rates towards equilibria or self-similarity
profiles for aggregation equations with linear diffusion in the fair competition regime.
These models describe the evolution of a population of individuals which are diffus-
ing by standard Brownian motion and attracting each other by a pairwise symmetric
potential W (x). We focus on a logarithmic interaction potential W (x) = 2χ log |x|,
with χ > 0. The Fokker-Planck equation governing the evolution of the probability
density function ρ(t, x) associated to this particle system reads as

(1.1)
∂ρ

∂t
= ∇ ·

[
1
N
∇ρ+ 2χρ (∇ log |x| ∗ ρ)

]
, t > 0 , x ∈ RN .

Due to translational invariance and mass conservation, in the rest of this work we
restrict to zero center of mass probability densities,

ρ(t, x) ≥ 0 ,
∫

RN

ρ(t, x) dx = 1 ,
∫

RN

xρ(t, x) dx = 0 ,

By fair competition, we mean that the dynamics of (1.1) are driven by a simple
dichotomy as in the classical Keller-Segel system in two dimensions [24, 30, 20, 12],
the modified Keller-Segel system in one dimension [15, 7] or the Keller-Segel model
with suitable nonlinear diffusion in larger dimensions [9]. In all these examples
there is a critical parameter which makes the distinction between global existence
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2 VINCENT CALVEZ AND JOSÉ ANTONIO CARRILLO

of solutions and finite-time blow-up. More precisely, we will discuss the modified
one-dimensional Keller-Segel equation [15, 7]:

(1.2) ∂tρ = ∂2
xxρ+ 2χ∂x (ρ∂x (log |x| ∗ ρ)) , t > 0 , x ∈ R ,

and the radially symmetric two-dimensional classical Keller-Segel equation:

(1.3) ∂t(rρ(t, r)) =
1
2
∂r(r∂rρ(t, r)) + 2χ∂r [ρ(t, r)M [ρ(t)](r)] , t > 0 , r ∈ R+ ,

where M [ρ] denotes the cumulated mass of ρ inside balls,

M [ρ](r) = 2π
∫ r

0

ρ(s)s ds .

Both equations (1.2) and (1.3) exhibit a transition depending on the sensitivity
coefficient χ:

• Subcritical Case.- For any 0 < χ < 1 solutions exist globally-in-time and
they approach a unique self-similar solution as t→∞, see [20, 12, 5, 15].

• Critical Case.- For χ = 1 solutions exist globally-in-time. There are
infinitely many stationary solutions with infinite second moment. Solutions
having finite initial second moment concentrate in infinite time towards the
Dirac mass δ0 [10, 5, 23]. Solutions of infinite initial second moment close
enough to a stationary solution converge to it as t→∞ [8].

• Supercritical Case.- For any χ > 1 smooth fast-decaying solutions do
not exist globally in time [28, 6, 12, 15].

The critical parameter χ = 1 can be obtained from two formal computations at
this stage. The evolution of the second moment satisfies in both cases the relation:

1
2
d

dt

∫
R
|x|2ρ(t, x) dx = 1− χ .

This implies that for χ > 1 solutions will necessarily blow-up before the second mo-
ment touches zero. On the other hand, the Keller-Segel equation (1.1) is equipped
with a free energy (entropy minus potential energy),

(1.4) F [ρ] =
1
N

∫
RN

ρ(x) log ρ(x) dx+ χ

∫∫
RN×RN

ρ(x) log(|x− y|)ρ(y) dxdy .

It is formally decreasing along the trajectories

(1.5)
d

dt
F [ρ(t)] = −

∫
RN

ρ(t, x)
∣∣∣∣∇( 1

N
log ρ(t, x) + 2χ log |x| ∗ ρ(t, x)

)∣∣∣∣2 dx .
Moreover, it was shown in [20, 12] that for χ < 1 the free energy estimate from
above implies an a priori bound in the entropy part of the functional which is at the
basis of the construction of global-in-time solutions. This was achieved by using the
Logarithmic-HLS inequality [4, 17] which relates the entropy and the interaction
part of the functional.

Nontrivial equilibrium profiles or critical profiles, only exist for the critical pa-
rameter χ = 1. They are solutions to the following Euler-Lagrange equations:

µ′(x) + 2µ(x)∂x (log |x| ∗ µ(x)) = 0 ,(1.6)
1
2
rµ′(r) + 2µ(r)M [µ](r) = 0 ,(1.7)
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resp. in dimension N = 1 and in dimension N = 2 with radially symmetry. In fact,
we have an explicit formulation of the stationary states,

(1.8) µ(x) =
1

π(1 + |x|2)N
, N = 1, 2 .

This coincides with the equality cases in the Logarithmic-HLS inequality.
In the subcritical case χ < 1, solutions are known to converge to unique self-

similar profiles [12]. For studying convergence towards self-similarity, it is generally
useful to rescale the space and time variables in the subcritical regime χ < 1. The
Keller-Segel system rewrites as

(1.9)
∂ρ

∂t
=

1
N

∆ρ+ 2χ∇ · [ρ (∇ log |x| ∗ ρ)] +∇ · [xρ] , t > 0 , x ∈ RN ,

and the free energy is complemented with a quadratic confinement potential:

(1.10) Fresc[ρ] = F [ρ] +
1
2

∫
RN

|x|2ρ(x) dx .

Due to the change of variables, self-similar solutions correspond to equilibrium
solutions of (1.9). The rate of convergence towards equilibrium for (1.9) in the
subcritical case was recently studied in [11] where the same rate as for the heat
equation was obtained for small mass.

Let us finally mention that both (1.1) and (1.9) are gradient flows of the free
energy functionals (1.4) and (1.10) respectively, when the space of probability mea-
sures is endowed with the euclidean Wasserstein metric W2. We refer to the seminal
papers [22, 29] and to [1] for a general theory. For instance, we can write (1.1) in
short as

(1.11) ρ̇(t) = −∇W2F [ρ(t)] .

This assertion was made rigorous in [7], where the variational minimizing movement
scheme [1] was shown to converge for (1.1). This fact allows us to consider a way of
measuring the distance towards equilibrium or self-similarity intimately related to
the evolution due to (1.11). In fact, we will show that optimal transport tools are
key techniques to describe this behavior at least in the one dimensional case (1.2)
and in the radial case in two dimensions (1.3).

In order to investigate further the bounds of the free energy functional leading
to the dichotomy discussed above and the characterization of the critical profiles,
the Logarithmic-HLS inequality proved in [4, 17] is essential. In Section 2, we show
an alternative proof based on optimal transport tools in the one dimensional case
and in the radial case in two dimensions. There is another recent proof of this
inequality with sharp constants in the two dimensional case by fast diffusion flows
[16]. The Logarithmic-HLS inequality can be restated with our notations as:

Theorem 1.1 (Logarithmic HLS inequality). Assume N = 1, 2. The functional
F is bounded from below. The extremal functions are uniquely given by (1.8) up to
dilations in the set of probability densities with zero center of mass.

In short, we demonstrate that any critical point of the free energy is in fact
a global minimizer. This is a property which holds true for convex functionals,
although the functional F is not displacement convex in the sense of McCann [27].

The ideas behind the proof of the sharp Logarithmic-HLS inequality allow us to
tackle the rate of convergence in W2 by similar methods for the rescaled version
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(1.9) in one dimension and for radial densities in the two dimensional case provided
χ < 1. We prove in Section 3 the following result.

Theorem 1.2 (Long-time asymptotics). Assume that N = 1, 2 being the initial
data ρ0 radially symmetric if N = 2. In the subcritical case χ < 1, solutions
of (1.9) in the rescaled variables converge exponentially fast towards the unique
equilibrium configuration ν. More precisely, the following estimate holds true

d

dt
W2(ρ(t), ν)2 ≤ −2W2(ρ(t), ν)2 .

Surprisingly enough, the rate of convergence that we obtain does not depend on
the parameter χ. Our estimate is uniform as long as χ remains subcritical and is
equal to the rate of convergence towards self-similarity for the heat equation. This
is due to the fact that entropy and interaction contributions cancel each other, and
only the confinement contribution remains yielding a uniform estimate. Although
convergence is likely to be uniform, notice that the asymptotic profile becomes more
and more singular as χ→ 1−, as shown by the simple second moment identity

(1.12)
∫

R
|a|2ν(a) da = 1− χ .

Finally, we devote Section 4 to propose an alternative method of measuring the
distance towards self-similarity in the one dimensional case. We make a connec-
tion between the one dimensional modified Keller-Segel model (1.2) and certain
Boltzmann-like equations used in granular gases and wealth-distribution models,
see [18, 21] and the references therein. This connection is due to the fact that (1.2)
can be written in Fourier variables like the referred Boltzmann equations. Follow-
ing the ideas of [18] we prove that equation (1.2) is indeed a contraction for the
so-called Fourier distances defined in Section 4.

Theorem 1.3. Assume χ < 1 and the initial data have finite second moments.
The one-dimensional Keller-Segel system (1.2) is a contraction for the distance d1.
It is a uniformly strict contraction in the rescaled frame, with a contraction factor
which does not depend on χ.

2. An alternative proof of the logarithmic HLS inequality

2.1. Preliminaries on Optimal Transport Tools. Let µ and ρ be two density
probabilities. According to [13, 26] there exists a convex function ψ whose gradient
pushes forward the measure µ(a) da onto ρ(x) dx: ∇ψ# (µ(a) da) = ρ(x) dx. This
convex function satisfies the Monge-Ampre equation in the weak sense,

µ(a) = ρ(∇ψ(a)) detD2ψ(a) .

Regularity of the transport map is a big issue in general. Here we will use the
fact that the Hessian measure det HD

2ψ(a) can be decomposed in an absolute
continuous part det AD

2ψ(a) and a positive singular measure [31, Chapter 4]. In
particular we have det HD

2ψ(a) ≥ det AD
2ψ(a). The formula for the change of

variables will be important when dealing with the entropy contribution. For any
measurable function U , bounded below such that U(0) = 0 we have [27, 31]

(2.1)
∫

RN

U(ρ(x)) dx =
∫

RN

U

(
µ(a)

det AD2ψ(a)

)
det AD

2ψ(a) da .
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In fact this paper will only be concerned with the one-dimensional case, and
the two-dimensional radial case. The complexity of Brenier’s transport problem
dramatically reduces in both cases. In dimension one, the transport map φ′ is
explicitely given by: ψ′(a) = X ◦ A−1(a) where X and A denote respectively
the pseudo-inverse cumulative distribution function of the densities ρ and µ. The
singular part of the positive measure ψ′′ corresponds to having holes in the support
of the density ρ.

In the two-dimensional radial case, the Brenier’s map can be expressed as the
one-dimensional transport between the densities 2πµ(a)ad−1 da and 2πρ(r)rd−1 dr.
The determinant of the Hessian is given by

det HD
2ψ(a) =

1
2a

d

da
(ψ′)2 (a) ,

where the derivative of (ψ′)2 has to be understood in the distributional sense.
The following Lemma will be used to estimate the interaction contribution in

the free energy, and in the evolution of the Wasserstein distance. For notational
convenience we denote the convex combination of a and b by [a, b]t = (1− t)a+ tb.

Lemma 2.1. Let K : (0,∞) → R be an increasing and concave function such that
limz→0 F (z) = −∞. Then

(2.2) K

(∫ 1

0

ψ′′([a, b]t) dt
)
≥
∫ 1

0

K (ψ′′ac([a, b]t)) dt .

Equality is achieved in (2.2) if and only if the distributional derivative of the trans-
port map ψ′′ is a constant function.

Analogously in the two-dimensional radially symmetric case we deduce

(2.3) K

(∫ 1

0

det HD
2ψ([a, b]t) dt

)
≥
∫ 1

0

K
(
det AD

2ψ([a, b]t)
)
dt .

Equality is achieved in (2.3) if and only if ψ′ is a multiple of the identity.

Proof. We have on the one hand ψ′′ ≥ ψ′′ac. We next use the concavity of K to
conclude. Equality occurs if ψ′′ is absolutely continuous and if ψ′′ac is constant. In
the two-dimensional case we use det HD

2ψ(a) ≥ det AD
2ψ(a). �

Optimal transport is a powerful tool for reducing functional inequalities onto
pointwise inequalities (e.g. matrix inequalities). We highlight for example the
seminal paper by McCann [27] where the displacement convexity issue for some
energy functional is reduced to the concavity of det1/N . We also refer to the works
of Barthe [2, 3] and Cordero-Erausquin et al. [19]. We require simple pointwise
inequalities which are extensions of the classical Jensen’s inequality.

Lemma 2.2. We have the following convex-like inequality for some exponent γ > 0
and any positive u, v, α, β,

(2.4) α

(
u+ v

2

)−γ

− β

(
u+ v

2

)γ

≤ (α+ β)
(
u−γ + v−γ

2

)
− 2β .

Equality occurs if and only if u = v = 1. The continuous version reads as follows.
For any measurable function u : (0, 1) → (0,+∞):

(2.5) α

(∫ 1

0

u(t) dt
)−γ

− β

(∫ 1

0

u(t) dt
)γ

≤ (α+ β)
∫ 1

0

(u(t))−γ dt− 2β ,
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Proof. We only prove (2.4). The continuous version (2.5) is obtained by an approx-
imation procedure. We introduce the auxiliary function J defined as follows.

J(u, v) = (α+ β)
(
u−γ + v−γ

2

)
− α

(
u+ v

2

)−γ

+ β

(
u+ v

2

)γ

.

Clearly, J diverges towards +∞ as u → 0 or v → 0, and as u → ∞ or v → ∞,
and J is bounded below. Then there exists at least one critical point. Any critical
point (u0, v0) satisfies


−γ α+ β

2
u−γ−1

0 + γ
α

2

(
u0 + v0

2

)−γ−1

+ γ
β

2

(
u0 + v0

2

)γ−1

= 0 ,

−γ α+ β

2
v−γ−1
0 + γ

α

2

(
u0 + v0

2

)−γ−1

+ γ
β

2

(
u0 + v0

2

)γ−1

= 0 .

Hence u0 = v0 and

−α+ β

2
u−γ−1

0 +
α

2
u−γ−1

0 +
β

2
uγ−1

0 = 0 .

We conclude that u−γ
0 = uγ

0 . Therefore the unique critical point of J is (1, 1). �

2.2. The one-dimensional case. The novelty here is contained in the proof of
the logarithmic HLS inequality. This brings no information by itself since the
uniqueness of the extremal functions is already known [17]. We show below that
the logarithmic HLS inequality is a simple consequence of the Jensen’s inequality.
However our proof relies on the existence of a critical point of the free energy F . In
short, we demonstrate that any critical point of the free energy is in fact a global
minimizer. This is a property which holds true for convex functionals. However
the functional here is not convex.

Our first Lemma is a reformulation of the Euler-Lagrange equation for the ex-
tremal function (1.6).

Lemma 2.3 (Characterization of extremal functions). The critical profiles satisfy
the following identity,

(2.6) µ(p) =
∫

R

∫ 1

0

µ(p− tq)µ(p− tq + q) dtdq .

In the subcritical regime χ < 1, the equilibrium in the rescaled frame satisfies the
following identity,

(2.7) ν(p) =
∫

q∈R

∫ 1

0

(
χ+

|q|2

2

)
ν(p− tq)ν(p− tq + q) dtdq .
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Proof. The formulation (2.6) is equivalent to integrating once the equation for the
critical profile. We integrate equation (1.6) against some test function ϕ.∫

R
ϕ′(p)µ(p) dp = 2

∫∫
R×R

ϕ(x)
x− y

µ(x)µ(y) dxdy

=
∫∫

R×R

ϕ(x)− ϕ(y)
x− y

µ(x)µ(y) dxdy

=
∫∫

R×R

∫ 1

0

ϕ′ ([x, y]t)µ(x)µ(y) dtdxdy

=
∫

R
ϕ′(p)

{∫
R

∫ 1

0

µ(p− tq)µ(p− tq + q) dtdq
}
dp ,

where we have finally used the change of variables: (x, y) 7→ (p = [x, y]t, q = y−x).
This holds true for any derivative ϕ′, so we obtain identity (2.6) up to a constant.
Since both sides of (2.6) have mass one, the constant is zero. The identity (2.7) is
obtained in a similar way. �

Proof of Theorem 1.1. Applying the change of variables formula (2.1) for x = ψ′(p),
the functional F rewrites as follows,

F [ρ]−F [µ] =
∫

R
log
(
µ(a)
ψ′′ac(a)

)
µ(a) da+

∫∫
R×R

log |ψ′(a)− ψ′(b)|µ(a)µ(b) dadb−F [µ]

= −
∫

R
log (ψ′′ac(a))µ(a) da+

∫∫
R×R

log
(
ψ′(a)− ψ′(b)

a− b

)
µ(a)µ(b) dadb

= −
∫

R
log (ψ′′ac(a))µ(a) da+

∫∫
R×R

log
(∫ 1

0

ψ′′([a, b]t) dt
)
µ(a)µ(b) dadb

Using Lemma 2.1 for K = log z which is increasing and concave, we deduce

F [ρ]−F [µ] ≥−
∫

R
log (ψ′′ac(p))µ(p) dp+

∫∫
R×R

∫ 1

0

log (ψ′′ac([a, b]t))µ(a)µ(b) dtdadb

=−
∫

R
log (ψ′′ac(p))µ(p) dp

+
∫

R
log (ψ′′ac(p))

{∫
q∈R

∫ 1

0

µ(p− tq)µ(p− tq + q) dtdq
}
dp = 0 .

Equality arises if and only if the transport map ψ′′ is a constant function. Such a
map corresponds exactly to the dilations of the critical profile µ. �

It is possible to extend Theorem 1.1 to the rescaled energy Fresc (1.10).

Theorem 2.4 (Logarithmic HLS inequality with a quadratic confinement). As-
sume N = 1, 2 and χ < 1. The functional Fresc is bounded from below. The
extremal functions are unique in the set of probability densities with zero center of
mass.

We give below the main lines of the proof following a direct argument analogous
to the proof of Theorem 1.1. Note that the uniqueness of the extremal functions in
dimension N = 1 or in dimension N = 2 in the class of radially symmetric densities
is a consequence of Theorem 1.2.
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Sketch of proof of Theorem 2.4. The key point consists in replacing the Jensen’s
inequality with the following convex-like inequality. For any positive u, v, α, β the
following inequality holds true.

(2.8) α log
(
u+ v

2

)
+ β

(
u+ v

2

)2

≥ (α+ 2β)
(

log u+ log v
2

)
+ β ,

Equality occurs if and only if u = v = 1. It reduces to the usual Jensen’s inequality
when β = 0. The proof of (2.8) is analogous to Lemma 2.2. The proof of uniqueness
for the extremal functions of Fresc is a mixture between the proofs of Theorem 1.1
and Theorem 1.2. �

2.3. The two-dimensional case. We restrict to radially symmetric functions in
the two-dimensional case due to decreasing rearrangement [25, 4, 17]. We recall the
Newton’s theorem for Poisson potential: the field induced by a radially symmetric
distribution of masses outside a given ball is equivalent to the field induced by a
point at the center of the ball [25]. Equivalently it reads

(2.9)
1
2

∫ 2π

θ=0

log
(
r2 + s2 − 2rs cos(θ)

)
dθ = 2π log max(r, s) .

As a consequence we can rewrite the functional F simpler under radial symmetry:

1
2π
F [ρ] =

1
2

∫
R+

ρ(r) log(ρ(r)) rdr + χ

∫
R+

ρ(r)M [ρ](r) log(r) rdr .

The following characterizations are direct consequences of (1.7) and (1.3).

Lemma 2.5 (Characterization of extremal functions under radial symmetry). The
critical profiles satisfy the following identity

(2.10)
1
2
µ(b) = 2

∫ +∞

b

µ(a)M [µ](a)
1
a
da .

In the subcritical regime χ < 1, the radially-symmetric equilibrium satisfies the
following identity

(2.11)
1
2
ν(b) =

∫ +∞

b

ν(a)
(

2χM [ν](a)
1
a

+ a

)
da .

We are now ready to examinate the logarithmic Hardy-Littlewood-Sobolev in-
equality in the two-dimensional radial setting.

Proof of Theorem 1.1. We apply the change of variables formula (2.1) for r = ψ′(a)
to get:

1
2π
F [ρ] =

1
2

∫
R+

µ(a) log
(

µ(a)
det AD2ψ(a)

)
a da+2

∫
R+

µ(a)M [µ](a) log (ψ′(a)) ada ,

where we have used M [ρ](r) = M [µ](a). We have consequently,

1
2π
F [ρ]− 1

2π
F [µ] =− 1

2

∫
R+

µ(a) log
(
det AD

2ψ(a)
)
a da

+
∫

R+

µ(a)M [µ](a) log

(
(ψ′)2 (a)

a2

)
a da .(2.12)



REFINED ASYMPTOTICS FOR THE SUBCRITICAL KELLER-SEGEL SYSTEM 9

The last contribution of (2.12) can be evaluated using Lemma 2.1∫
R+

µ(a)M [µ](a) log
(∫ a

0

(
det HD

2ψ(b)
) 2b
a2
db

)
a da

≥
∫

R+

∫ a

0

µ(a)M [µ](a) log
(
det AD

2ψ(b)
) 2b
a
dbda

=
∫

R+

log
(
det AD

2ψ(b)
){

2
∫ +∞

b

µ(a)M [µ](a)
1
a
da

}
b db .

We obtain from the characterization (2.10) F [ρ] ≥ F [µ]. Again equality occurs if
and only if the transport map ψ′ is a multiple of the identity. �

2.4. Obstruction in dimension higher than three. We explain in this Section
why the above strategy fails to work in dimension higher than three, even in the
radially-symmetric setting. A first remark is that Newton’s Theorem is not valid,
since the logarithm kernel is not the fundamental solution of the Poisson equation,
although this is not essential as shown in dimension one. It turns out that our
strategy works fine for any interaction kernel W (x) = |x|k/k, for k ∈ (−N, 2−N ].
The case k = 0 corresponds to W = log |x|. The case k = −N is critical for
integrability reasons. The case k = 2 − N is exactly the harmonic case for which
the Newton’s Theorem holds true. We refer to [14] for details in the case k ∈
(−N, 2−N ]. Hence the case k = 0 is out of range when N ≥ 3. We sketch below
where some obstruction appears when N = 3.

The identity which generalizes (2.9) reads as follows. If r > s we have
1
2

∫ π

θ=0

log
(
r2 + s2 − 2rs cos(θ)

)
sin(θ) dθ =

1
2
H
(s
r

)
+ 2 log r ,

where H is defined as follows for t ∈ (0, 1),

H(t) =
1
2

(1 + t)2

t
log (1 + t)− 1

2
(1− t)2

t
log (1− t)− 2 .

To continue our strategy, it is required to decouple the variables r and s, and
more precisely to make the quantity rN − sN appearing. As a matter of fact
this is homogeneous to the determinant (under radial symmetry), which is the key
quantity to look at in dimension higher than two. Therefore we seek a convex-like
inequality

H(t) ≥ α+ β log
(
1− tN

)
,

where α and β are suitable constants determined by zero and first order conditions.
If we denote ϕ(t) = log(1 − tN ), this is equivalent to say that H ◦ ϕ−1 is convex.
However simple computations show that it is indeed a concave function. In the case
of an interaction kernel having homogeneity k ∈ (−N, 2−N ] we show in [14] that
the corresponding function H ◦ ϕ−1 is convex.

3. Exponential convergence towards the self-similar profile

3.1. The one-dimensional case. To illustrate the strategy of proof of Theorem
1.2, we show a formal computation in the critical case χ = 1. Up to our knowledge,
the regularity of solutions under very weak assumptions is still an open problem In
particular it is not known whether the solutions satisfy the identity (1.5) or not. So
the following computation is questionable because the velocity field ∂x(log ρ(t, x)+
2 log |x| ∗ ρ(t, x)) is not clearly defined in L2(ρ(t, x)dx).
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We compute formally the evolution of the Wasserstein distance to one of the
equilibria (1.8) in the critical case χ = 1. Notice that equilibria are infinitely far
from each other with respect to the Wasserstein distance [8]. Using the gradient flow
structure with respect to W2, one obtains the following formula for the derivative
of F (t) = W2(ρ(t), µ)2, see [31, Chapter 8] and [1].

1
2
d

dt
F (t) =

∫
R
(φ′(t, x)− x) (∂x (log ρ(t, x) + 2 log |x| ∗ ρ(t, x))) ρ(t, x) dx

= −
∫

R
φ′′(t, x)ρ(t, x) dx+

∫∫
R×R

φ′(t, x)− φ′(t, y)
x− y

ρ(t, x)ρ(t, y) dxdy

= −
∫

R
(ψ′′(t, a))−1

µ(a) da+
∫∫

R×R

(
ψ′(t, a)− ψ′(t, b)

a− b

)−1

µ(a)µ(b) dadb

≤ −
∫

R
(ψ′′(t, a))−1

µ(a) da+
∫∫

R×R

∫ 1

0

(ψ′′(t, [a, b]s))
−1
µ(a)µ(b) dsdadb .

We recognize the characterization (2.6). Hence, we have at least formally F ′(t) ≤ 0.
Observe that the Lemma 2.1 has been used with K(z) = −z−1.

The same strategy is valid in the subcritical case χ < 1 for which we know
that solutions are regular enough to ensure the validity of the computations. As a
matter of fact, the density ρ(t, x) is everywhere positive and thus ψ′′ is absolutely
continuous. On the other hand the dissipation of energy is well-defined and the
dissipation estimate (1.5) holds true [12].

Proof of Theorem 1.2. We compute the evolution of F (t) = W2(ρ(t), ν)2:

1
2
d

dt
F (t) =

∫
R
(φ′(t, x)− x)

(
∂x

(
log ρ(t, x) + 2χ log |x| ∗ ρ(t, x) +

|x|2

2

))
ρ(t, x) dx

=−
∫

R
φ′′(t, x)ρ(t, x) dx+ χ

∫∫
R×R

φ′(t, x)− φ′(t, y)
x− y

ρ(t, x)ρ(t, y) dxdy

− 1
2

∫∫
R×R

(φ′(t, x)− φ′(t, y))(x− y)ρ(t, x)ρ(t, y) dxdy

+ 2
∫

R
φ′(t, x)xρ(t, x) dx+ 1− χ−

∫
R
|x|2ρ(t, x) dx ,

where we have used the fact that the center of mass is zero to double the variables.
We rewrite each contribution using the reverse transport map ψ′:

1
2
d

dt
F (t) =−

∫
R

(ψ′′(t, a))−1
ν(a) da+ χ

∫∫
R×R

(
ψ′(t, a)− ψ′(t, b)

a− b

)−1

ν(a)ν(b) dadb

− 1
2

∫∫
R×R

|a− b|2ψ
′(t, a)− ψ′(t, b)

a− b
ν(a)ν(b) dadb

+ 1− χ−
∫

R
|ψ′(t, a)|2ν(a) dx+ 2

∫
R
aψ′(t, a)ν(t, a) da

≤
∫∫

R×R

[(
χ+

|a− b|2

2

)∫ 1

0

(ψ′′(t, [a, b]s))
−1
ds− |a− b|2

]
ν(a)ν(b) dadb

−
∫

R
(ψ′′(t, a))−1

ν(a) da+ 2
∫

R
|a|2ν(a) da−

∫
R
|ψ′(t, a)− a|2ν(a) da ,
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where we have used that the second moment of the stationary state is explicitly
given by (1.12). Applying now (2.5) for γ = 1, α = χ and β = |a−b|2/2, we deduce

1
2
d

dt
F (t) ≤ −

∫
R
|ψ′(t, a)− a|2ν(a) da = −W2(ρ(t), ν)2 = −F (t) ,

giving the desired inequality. �

3.2. The two-dimensional radially-symmetric case. Proving convergence to-
wards a self-similar profile in the rescaled logarithmic case under radial symmetry
goes as previously.

Proof of Theorem 1.2. The virial computation reads equivalently

1
2
d

dt

∫
R+

ρ(t, r)r3 dr =−
∫

R+

r

(
1
2
∂r log ρ(t, r) + 2χM [ρ](t, r)

1
r

+ r

)
ρ(t, r)r dr

=
∫

R+

ρ(t, r)r dr − 2χ
∫

R+

M [ρ](t, r)ρ(t, r)r dr −
∫

R+

ρ(t, r)r3 dr

=1− χ−
∫

R+

ρ(t, r)r3 dr =
∫

R+

ν(a)a3 da−
∫

R+

ρ(t, r)r3 dr

We compute again the evolution of the Wasserstein distance F (t) = W2(ρ(t), ν)2.

1
2
d

dt
F (t) =

∫
R+

(φ′(r)− r)
(

1
2
∂r log ρ(t, r) + 2χM [ρ](t, r)

1
r

+ r

)
ρ(t, r)r dr

=
1
2

∫
R+

rφ′(r)∂rρ(t, r) dr + 2χ
∫

R+

φ′(r)M [ρ](t, r)ρ(t, r) dr −
∫

R+

φ′(r)ρ(t, r)r2 dr

+
∫

R+

ν(a)a3 da−
∫

R+

ρ(t, r)r3 dr + 2
∫

R+

φ′(r)ρ(t, r)r2 dr

≤2χ
∫

R+

(∫ a

0

detD2ψ(b)
2b
a2
db

)−1/2

M [ν](a)ν(a)a da

−
∫

R+

(
1

detD2ψ(b)

)1/2

ν(b)b db−
∫

R+

(∫ a

0

detD2ψ(b)
2b
a2
db

)1/2

a2ν(a)ada

+ 2
∫

R+

ν(a)a3 da−
∫

R+

|φ′(r)− r|2ρ(t, r)r dr .

The last step in the inequality is a consequence of the arithmetic and geometric
means inequality: −∂r(rφ′(r))/r = −φ′(r)/r − φ′′(r) ≤ −2(φ′′(r)φ′(r)/r)1/2. Next
we use Lemma 2.2 to handle the interaction contribution. More precisely, we choose
γ = 1/2, α = 2χM [ν](a) and β = a2. One gets finally:

1
2
d

dt
F (t) ≤− F (t)−

∫
R+

(
detD2ψ(b)

)−1/2
ν(b)b db

+
∫

R+

∫ +∞

b

(
2χM [ν](a) + a2

) (
detD2ψ(b)

)−1/2 2b
a2
ν(a)a dbda .

We conlude using characterization (2.11). �
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Figure 1. Simulation of (4.1) in the supercritical case χ > 1 for
successive times. The blow-up time is plotted in bolded dark.

4. Contraction in the one-dimensional case

The aim of this Section is to point out the peculiar structure of the modified
one-dimensional Keller-Segel system (1.2).

Lemma 4.1. Equation (1.2) rewrites in Fourier variables as:

(4.1) ∂tρ̂(t, ξ) = |ξ|2
(
−ρ̂(t, ξ) + χ

∫ 1

0

ρ̂(t, σξ)ρ̂(t, (1− σ)ξ) dσ
)
.

Proof. We test equation (1.2) against exp (iξx):

∂

∂t
ρ̂(t, ξ) =

∫
R

(
∂xxρ(t, x) + 2χ∂x

(
ρ(t, x)

(
p.v.

1
x

)
∗ ρ(t, x)

))
eiξx dx

= −|ξ|2ρ̂(t, ξ)− χiξ

∫∫
R×R

ρ(t, x)
eiξx − eiξy

x− y
ρ(t, y) dxdy

= −|ξ|2ρ̂(t, ξ) + χ|ξ|2
∫∫

R×R
ρ(t, x)

(∫ 1

0

eiξ[x,y]σ dσ

)
ρ(t, y) dxdy

= −|ξ|2ρ̂(t, ξ) + χ|ξ|2
∫ 1

0

(∫
R
ρ(t, x)ei(1−σ)ξx dx

)(∫
R
ρ(t, y)eiσξy dy

)
dσ ,

which gives the desired formulation. �

According to (4.1) the information propagates from lower to higher frequencies.
The evolution of ρ̂(t, ξ) requires the knowledge of lower frequencies |ξ′| < |ξ| due to
the integral contribution. This is of particular importance for designing a numerical
scheme. Indeed there is no loss of information after truncation of the frequency box.

Remark 4.2 (Analogy with 1D Boltzmann). It is worthy to metion that the integral
operator in the right-hand-side of (4.1) is reminiscent of the homogeneous Boltz-
mann equations in 1D used for granular gases [18] or wealth distribution models
[21] in Fourier variables.

Remark 4.3 (Evidence for blow-up in the supercritical case). We can directly notice
the occurence of blow-up when χ > 1 from (4.1). Observe that for |ξ| � 1, the
right-hand-side is equivalent to:

(4.2) ∂tρ̂(t, ξ) ∼ |ξ|2
(
−ρ̂(t, 0) + χρ̂(t, 0)2

)
= |ξ|2(−1 + χ) .
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This argues in favor of blow-up at low modes although misleadingly. We have
plotted in Figure 1 numerical simulation of (4.1) in the supercritical case. Observe
that blow-up arises for |ξ| � 1, on the contrary to the misleading heuristics (4.2).
The integro-differential equation (4.1) makes perfect sense even in the supercritical
regime χ > 1 after the first blow-up event. However the outcoming fonction ρ̂(t, ξ)
is no longer the Fourier transform of a probability measure. In fact the blow-up time
coincides with the formation of the first dirac mass, namely when the frequency
distribution ρ̂(t, ξ) is flat at infinity. This contradictory intuition is similar to
the proof of blow-up based on the virial identity: the second momentum provides
information at infinity but is used to prove blow-up which is a local behaviour.

Recall the definition of Fourier distances [18] as they have been introduced for
the analysis of the Boltzmann equation.

Definition 4.4 (Fourier distances). Let ρ1, ρ2 being two probability measures
having the same center of mass. The d1−distance is defined as follows:

(4.3) d1 (ρ1, ρ2) = sup
ξ 6=0

{
|ξ|−1 |ρ̂1(ξ)− ρ̂2(ξ)|

}
.

Proof of Theorem 1.3. First notice that supremum in (4.3) is attained in R \ {0}.
Clearly we have |ρ̂1(ξ)− ρ̂2(ξ)| ≤ 2 and

ρ̂1(ξ)− ρ̂2(ξ) ∼
(∫

R
|x|2[ρ1(x)− ρ2(x)] dx

)
|ξ|2/2 as ξ → 0.

We denote F (t) = d1(ρ1(t), ρ2(t)) and h(t, ξ) = |ξ|−1(ρ̂1(t, ξ) − ρ̂2(t, ξ)). We
multiply the difference between the two equations (4.1) by sign(h(t, ξ)),

∂t |h(t, ξ)| = |ξ|2 (− |h(t, ξ)|+ χsign (ρ̂1(t, ξ)− ρ̂2(t, ξ))A(t, ξ)) ,

where

A(t, ξ) = |ξ|−1

∫ 1

0

ρ̂1(t, σξ)ρ̂1(t, (1− σ)ξ) dσ − |ξ|−1

∫ 1

0

ρ̂2(t, σξ)ρ̂2(t, (1− σ)ξ) dσ .

The self-attraction contributions are handled as follows [18, Th. 6.3]:

|A(t, ξ)| ≤ |ξ|−1

∫ 1

0

|ρ̂1(t, σξ)− ρ̂2(t, σξ)| |ρ̂1(t, (1− σ)ξ)| dσ

+ |ξ|−1

∫ 1

0

|ρ̂1(t, (1− σ)ξ)− ρ̂2(t, (1− σ)ξ)| |ρ̂2(t, σξ)| dσ

≤ d1 (ρ1(t), ρ2(t))
∫ 1

0

(σ + (1− σ)) dσ = F (t) .

We obtain finally
∂t |h(t, ξ)| ≤ |ξ|2 (− |h(t, ξ)|+ χF (t)) .

We deduce

|h(t+ ε, ξ)| ≤ e−ε|ξ|2 |h(t, ξ)|+ χ
(
1− e−ε|ξ|2

)
sup

s∈(0,ε)

F (t+ s) ,

|h(t+ ε, ξ)| − F (t) ≤
(
1− e−ε|ξ|2

)(
−F (t) + χ sup

s∈(0,ε)

F (t+ s)

)
,

lim sup
ε→0+

F (t+ ε)− F (t)
ε

≤ (χ− 1)
(

lim inf
ε→0+

|ξ∗(t+ ε)|2
)
F (t) ,
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where |ξ∗(t)| denotes the lowest frequency moduli for which the supremum is at-
tained in F (t) = sup |h(t, ξ)|. We have used the continuity of F to pass to the limit.
Therefore we get a contraction estimate as soon as χ < 1. There is no explicit rate
since we do not know how to control |ξ∗(t)| from below.

We also obtain a uniform strict contractivity in self-similar variables. The Keller-
Segel equation (1.9) writes as follows in Fourier variables:

∂tρ̂(t, ξ) = |ξ|2
(
−ρ̂(t, ξ) + χ

∫ 1

0

ρ̂(t, σξ)ρ̂(t, (1− σ)ξ) dσ
)
− ξ∂ξρ̂(t, ξ) .

We proceed as above to get:

∂t |h(t, ξ)| =|ξ|2 (− |h(t, ξ)|+ χsign (ρ̂1(t, ξ)− ρ̂2(t, ξ))A(t, ξ))

− ξ∂ξ (|h(t, ξ)|)− |h(t, ξ)| .
We integrate along characteristics and argue as previously,

|h(t+ε, ξ)|−F (t)≤F (t)
(

exp
(
−ε+

e−2ε − 1
2

|ξ|2
)
− 1
)

+χ
(∫ ε

0

|es−εξ|2 exp
(
s−ε+ e2(s−ε) − 1

2
|ξ|2
)
ds

)
sup

s∈(0,ε)

F (t+ s)

We deduce the following contraction estimate,

lim sup
ε→0+

F (t+ ε)− F (t)
ε

≤ −F (t) + (χ− 1)
(

lim inf
ε→0+

|ξ∗(t+ ε)|2
)
F (t) .

Hence the one-dimensional Keller-Segel equation (4.1) is a contraction with rate 1
with respect to the Fourier distance d1. �
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